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EXACT MINIMAX OPTIMALITY OF SPECTRAL METHODS IN PHASE
SYNCHRONIZATION AND ORTHOGONAL GROUP SYNCHRONIZATION

BY ANDERSON YE ZHANGa

Department of Statistics and Data Science, University of Pennsylvania, aayz@wharton.upenn.edu

We study the performance of the spectral method for the phase synchro-
nization problem with additive Gaussian noises and incomplete data. The
spectral method utilizes the leading eigenvector of the data matrix followed
by a normalization step. We prove that it achieves the minimax lower bound
of the problem with a matching leading constant under a squared ℓ2 loss.
This shows that the spectral method has the same performance as more so-
phisticated procedures including maximum likelihood estimation, general-
ized power method, and semidefinite programming, as long as consistent pa-
rameter estimation is possible. To establish our result, we first have a novel
choice of the population eigenvector, which enables us to establish the exact
recovery of the spectral method when there is no additive noise. We then de-
velop a new perturbation analysis toolkit for the leading eigenvector and show
it can be well-approximated by its first-order approximation with a small ℓ2
error. We further extend our analysis to establish the exact minimax optimal-
ity of the spectral method for the orthogonal group synchronization.

1. Introduction. We consider the phase synchronization problem with additive Gaus-
sian noises and incomplete data [2, 5, 17, 39]. Let z∗

1, . . . , z
∗
n ∈ C1 where C1 := {x ∈ C :

|z| = 1}, the set of all unit complex numbers. Then each z∗
j can be written equivalently as

e
iθ∗

j for some phase (or angle) θ∗
j ∈ [0,2π). For each 1 ≤ j < k ≤ n, the observation Xjk ∈C

is missing at random. Let Ajk ∈ {0,1} and Xjk satisfy

Xjk :=
{
z∗
j z

∗
k + σWjk if Ajk = 1,

0 if Ajk = 0,
(1)

where Ajk ∼ Bernoulli(p) and Wjk ∼ CN (0,1). That is, each Xjk is missing with probabil-
ity 1 − p and is denoted as 0. If it is not missing, it is equal to z∗

j z
∗
k with an additive noise

σWjk where Wjk follows the standard complex Gaussian distribution: Re(Wjk), Im(Wjk) ∼
N (0,1/2) independently. Each Ajk is the indicator of whether Xjk is observed or not. We
assume all random variables {Ajk}1≤j<k≤n, {Wj,k}1≤j<k≤n are independent of each other.
The goal is to estimate the phase vector z∗ := (z∗

1, . . . , z
∗
n) ∈ C

n
1 from {Ajk}1≤j<k≤n and

{Xjk}1≤j<k≤n.
The observations can be seen as entries of a matrix X ∈ C

n×n with Xjj := 0 and
Xkj := Xjk for any 1 ≤ j < k ≤ n. Define Ajj := 0 and Akj := Ajk for all 1 ≤ j < k ≤ n.
Then the matrix A ∈ {0,1}n×n can be interpreted as the adjacency matrix of an Erdős–Rényi
random graph with edge probability p. Define W ∈ C

n×n such that Wjj := 0 and Wkj := Wjk

for all 1 ≤ j < k ≤ n. Then all the matrices A, W , X are Hermitian and X can be written
equivalently as

X = A ◦ (
z∗z∗H + σW

) = A ◦ (
z∗z∗H

) + σA ◦ W.(2)
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Note that X can be seen as a noisy version of

EX = pz∗z∗H − pIn(3)

whose leading eigenvector is z∗/
√

n. This motivates the following spectral method [12, 17,
35]. Let u ∈ C

n be the leading eigenvector of X. Then the spectral estimator ẑ ∈ C
n
1 is defined

as

ẑj :=
⎧⎨⎩

uj

|uj | if uj �= 0,

1 if uj = 0,

(4)

for each j ∈ [n], where each uj is normalized so that ẑj ∈C1. The performance of the spectral
estimator can be quantified by a normalized squared ℓ2 loss

ℓ
(̂
z, z∗) := min

a∈C1

1

n

n∑
j=1

∣∣̂zj − z∗
j a

∣∣2,(5)

where the minimum over C1 is due to the fact that z∗
1, . . . , z

∗
n are identifiable only up to a

phase.
The spectral estimator ẑ is simple and easy to implement. Regarding its theoretical perfor-

mance, it was suggested in [17] that an upper bound ℓ(̂z, z∗) ≤ C(σ 2 + 1)/(np) holds with
high probability for some constant C. However, the minimax risk of the phase synchroniza-
tion was established in [17] and has the following lower bound:

inf
z∈Cn

sup
z∗∈Cn

1

Eℓ
(
z, z∗) ≥ (

1 − o(1)
) σ 2

2np
.(6)

To provably achieve the minimax risk, the spectral method is often used as an initialization
for some more sophisticated procedures. For example, it was used to initialize a generalized
power method (GPM) [7, 28, 30] in [17]. Nevertheless, numerically the performance of the
spectral method is already very good and the improvement from GPM is often marginal. This
raises the following questions about the performance of the spectral method: Can we derive
a sharp upper bound? Does the spectral method already achieve the minimax risk or not?

In this paper, we provide complete answers to these questions. We carry out a sharp ℓ2
analysis of the performance of the spectral estimator ẑ and further show it achieves the min-
imax risk with the correct constant. Our main result is summarized below in Theorem 1.1 in
asymptotic form. Its nonasymptotic version will be given in Theorem 2.1 that only requires
np

σ 2 , np
logn

to be greater than a certain constant. We note that in this paper, p and σ 2 are not
constants but functions of n. This dependence can be more explicitly represented as pn and
σ 2

n . However, for simplicity of notation and readability, we choose to denote these as p and
σ 2 throughout the paper.

THEOREM 1.1. Assume np

σ 2 → ∞ and np
logn

→ ∞. There exists some δ = o(1) such that
with high probability,

ℓ
(̂
z, z∗) ≤ (1 + δ)

σ 2

2np
.(7)

As a consequence, when σ = 0 (i.e., there is no additive noise), the spectral method recovers
z∗ exactly (up to a phase) with high probability as long as np

logn
→ ∞.

Theorem 1.1 shows that ẑ is not only rate-optimal but also achieves the exact minimax
risk with the correct leading constant in front of the optimal rate. The conditions needed in
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Theorem 1.1 are necessary for consistent estimation of z∗ in the phase synchronization prob-
lem. The condition np

σ 2 → ∞ is needed so that z∗ can be estimated with a vanishing error
according to the minimax lower bound (6). The condition np

logn
→ ∞ allows p to decrease as

n grows and is close to the np
logn

> (1 + ε) condition required for A to be connected. If A has
disjoint subgraphs, it is impossible to estimate z∗ with a global phase. These two conditions
are also needed in [17, 18] to establish the optimality of MLE (maximum likelihood esti-
mation), GPM and SDP (semidefinite programming). Under these two conditions, [17] used
the spectral method as an initialization for the GPM and shows GPM achieves the minimax
risk after log(1/σ 2) iterations. On the contrary, Theorem 1.1 shows that the spectral method
already achieves the minimax risk. This means that the spectral estimator is minimax optimal
and achieves the correct leading constant whenever consistent estimation is possible, and in
this parameter regime, it is as good as MLE, GPM and SDP.

There are two key novel components toward establishing Theorem 1.1. The first is a new
idea regarding the choice of the “population eigenvector” as u can be viewed as its sample
counterpart obtained from data. Due to (3) and the fact pz∗z∗H = np(z∗/

√
n)(z∗/

√
n)H is

rank-one with the eigenvector z∗/
√

n, existing literature such as [17, 19, 25] treated z∗/
√

n

as the population eigenvector and study the perturbation of u with respect to z∗/
√

n. This
seems natural but turns out to be unappealing as it fails to explain why the spectral estimator
is able to recover all phases exactly when σ = 0, that is, when there is no additive noise.
Instead, we denote qu ∈ R

n as the leading eigenvector of A and regard u∗ ∈C
n, defined as

u∗ := z∗ ◦ qu,(8)

that is, u∗
j = z∗

j quj for each j ∈ [n], as the population eigenvector. Note that u∗ is random as
it depends on the graph A. A careful analysis of u∗ reveals that it is the leading eigenvector
of A ◦ z∗z∗H (see Lemma 2.1). In addition, Proposition 2.1 shows that with high probabil-
ity, u∗

j /|u∗
j | = z∗

j for each j ∈ [n], up to a global phase. Since u equals u∗ when σ = 0, it
successfully explains the exact recovery of the spectral method in the no-additive-noise case.
Another advantage of viewing u∗ as the population eigenvector, instead of z∗/

√
n, is that

intuitively u∗ is closer to u than z∗/
√

n is. This is because A ◦ z∗z∗H is closer to the data
matrix X than pz∗z∗H is.

The second key component is a novel perturbation analysis for u. Classical matrix pertur-
bation theory such as Davis–Kahan theorem focuses on analyzing infb∈C1 ‖u − u∗b‖. We go
beyond it and show u can be well-approximated by its first-order approximation ũ defined as

ũ := Xu∗

‖Xu∗‖ ,(9)

in the sense that the difference between these two vectors (up to a phase) has a small ℓ2 norm.
This means that when np � logn and np � σ 2, we have

inf
b∈C1

‖u − ũb‖� σ 2 + σ

np
,(10)

with high probability (see Proposition 2.2). In fact, our perturbation analysis extends beyond
the phase synchronization problem. What we establish is a general perturbation theory that
can be applied to two arbitrary Hermitian matrices (see Lemma 2.2), which might be of
independent interest.

With the help of these two key components, we then carry out an entrywise analysis for
each ẑj = uj/|uj |. Note that uj can be decomposed into ũj and the difference between uj

and ũj (up to some global phase). We can decompose the error of ẑj into two parts, one
is related to the estimation error of ũj /|ũj |, and the other is related to the magnitude of
the difference between uj and ũj (up to some global phase). Summing over all coordinates,
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the first part eventually leads to the minimax risk (1 + o(1))σ 2/2np and the second part is
essentially negligible due to (10), which leads to the exact minimax optimality of the spectral
estimator.

Orthogonal group synchronization. The above analysis for the phase synchronization can
be extended to quantify the performance of the spectral method for orthogonal group syn-
chronization, which is about orthogonal matrices instead of phases. Let d > 0 be an integer.
Define

O(d) := {
U ∈ R

d×d : UUT = UTU = Id

}
(11)

to include all orthogonal matrices in R
d×d . Let Z∗

1 , . . . ,Z∗
n ∈ O(d). Analogous to (1), we

consider the problem with additive Gaussian noise and incomplete data [19, 25, 26]. For
each 1 ≤ j < k ≤ n, we observe Xjk := Z∗

j Z∗T
k + σWjk ∈ R

d×d when Ajk = 1, where Wjk

follows the standard matrix Gaussian distribution. The goal is to recover Z∗
1 , . . . ,Z∗

n from
{Xjk}1≤j<k≤n and {Aj,k}1≤j<k≤n. This is known as the orthogonal group synchronization
(or O(d) synchronization).

The observations {Xjk}1≤j<k≤n can be seen as submatrices of an nd × nd matrix X with
Xjj := 0 and Xkj := X T

jk for any 1 ≤ j < k ≤ n. Then X is symmetric and can be seen as a
noisy version of

EX = pZ∗Z∗T − pInd(12)

whose leading eigenspace is Z∗/
√

n, where Z∗ ∈ O(d)n is an nd × d matrix such that its
j th submatrix is Z∗

j . Similar to the phase synchronization, we have the following spectral

method. Let λ1 ≥ · · · ≥ λd be the largest d eigenvalues of X and u1, . . . , ud ∈ R
nd be their

corresponding eigenvectors. Denote U := (u1, . . . , ud) ∈ R
nd×d as the eigenspace that in-

cludes the top d eigenvectors of X . For each j ∈ [n], denote Uj ∈ R
d×d as its j th submatrix.

Then the spectral estimator Ẑj ∈ O(d) is defined as

Ẑj :=
{
P(Uj ) if det(Uj ) �= 0,

Id if det(Uj ) = 0,
(13)

for each j ∈ [n]. Here the mapping P : Rd×d → O(d) is derived from the polar decomposi-
tion and serves as a normalization step for each Uj such that Ẑj ∈ O(d). Let Ẑ ∈ O(d)n be
an nd × d matrix such that Ẑj is its j th submatrix for each j ∈ [n]. Then the performance
of Ẑ can be quantified by a loss function ℓod(Ẑ,Z∗) that is analogous to (5). The detailed
definitions of P and ℓod are deferred to Section 3.

The spectral method Ẑ was used as an initialization in [19] for a variant of GPM to achieve

the exact minimax risk (1 + o(1))d(d−1)σ 2

2np
for d = O(1). To conduct a sharp analysis of its

statistical performance, we extend our novel perturbation analysis from analyzing the leading
eigenvector to the leading eigenspace. Recall qu is the leading eigenvector of A. Analogous to
(8), we have a novel choice of the population eigenspace U∗, defined as

U∗ := Z∗ ◦ (qu ⊗ 1d),(14)

and view U as its sample counterpart. This is different from existing literature [19, 40] which
uses Z∗/

√
n as the population eigenspace. Our choice of U∗ enables the establishment of the

exact recovery of the spectral method when there is no additive noise (i.e., σ = 0), as seen in
Proposition 3.1, and is closer to U than Z∗/

√
n is.

The first-order approximation of U is a matrix determined by XU∗ whose explicit ex-
pression will be given later in (22). We then show U can be well-approximated by its first-
order approximation, analogous to (9), with a remainder term of a small ℓ2 norm (see Propo-
sition 3.2). This is a consequence of a more general eigenspace perturbation theory (see
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Lemma 3.2) for two arbitrary Hermitian matrices. Using the first-order approximation, we
then carry out an entrywise analysis for Ẑ. Our main result for the spectral method in the
O(d) synchronization is summarized below in Theorem 1.2. The nonasymptotic version will
be given in Theorem 3.1.

THEOREM 1.2. Assume np

σ 2 → ∞, np
logn

→ ∞ and 2 ≤ d = O(1). There exists some δ =
o(1) such that with high probability,

ℓod
(
Ẑ,Z∗) ≤ (1 + δ)

d(d − 1)σ 2

2np
.

As a consequence, when σ = 0 (i.e., there is no additive noise), the spectral method recovers
Z∗ exactly (up to an orthogonal matrix) with high probability as long as np

logn
→ ∞.

Theorem 1.2 shows that the spectral method Ẑ achieves exact minimax optimality as it

matches the minimax lower bound (1+o(1))d(d−1)σ 2

2np
established in [19]. Similar to the phase

synchronization, the two conditions needed in Theorem 1.2 so that consistent estimation of
Z∗ is possible. They are also needed in [19] to achieve the minimax risk by a variant of GPM
initialized by the spectral method. On the contrary, Theorem 1.2 shows that in this parameter
regime, the spectral method is already minimax optimal with the correct leading constant.

Related literature. Synchronization is a fundamental problem in applied math and statistics.
Various methods have been studied for both phase synchronization and O(d) synchroniza-
tion, including MLE [17, 39], GPM [17, 19, 26, 28, 33, 39], SDP [4, 15, 18, 21, 27, 36, 37],
spectral methods [4, 8, 16, 29, 32, 36], and message passing [24, 30, 34]. The theoretical per-
formance of spectral methods was investigated in [17, 19, 25] and crude error bounds under
ℓ2 or Frobenius norm were obtained. An ℓ∞-type error bound for spectral methods was also
given in [25].

Fine-grained perturbation analysis of eigenvectors has gained increasing attention in re-
cent years for various low-rank matrix problems in machine learning and statistics. Existing
literature has mostly focused on establishing ℓ∞ bounds for eigenvectors [1, 11, 14] or ℓ2,∞
bounds on eigenspaces [3, 9, 10, 22]. For instance, [1] developed ℓ∞-type bounds for the
difference between eigenvectors (or eigenspaces) and their first-order approximations. In this
paper, we focus on developing sharp ℓ2-type perturbation bounds, where direct applications
of existing ℓ∞-type results will result in extra logarithm factors.

For the phase synchronization problem, [16, 20, 31] investigated variants of spectral
methods based on Laplacian matrices. Instead of using the leading eigenvector of X as in
this paper, they utilize the eigenvector corresponding to the smallest eigenvalue of D − X

or In − D− 1
2 XD− 1

2 , where D ∈ R
n×n is the degree matrix of A with diagonal entries

Djj := ∑
k �=j Ajk and off-diagonal entries set to zero. These studies have established up-

per bounds for the performance of their spectral methods applicable to general graphs A

and additive noise W . Our focus, however, is on Erdős–Rényi random graphs with Gaussian
noise. Under our setting, their results imply an upper bound of Cσ 2

np
, where C is a constant

significantly greater than 1. In contrast, our work establishes a sharp upper bound with the
correct leading constant 1/2. Our analytical approach could potentially be extended to their
methods to achieve the correct constant 1/2.

The existing literature [17–19] explored the exact minimax risk in synchronization prob-
lems, focusing primarily on minimax lower bounds and analyzing MLE, GPM and SDP.
While our study shares a thematic resemblance with these prior efforts, it fundamentally di-
verges in both analysis and proof techniques. Previous studies hinge on contraction properties
of the generalized power iteration (GPI), demonstrating the iterative reduction in GPM error



OPTIMALITY OF SPECTRAL METHODS IN SYNCHRONIZATION PROBLEMS 2117

until an optimal error is achieved. This approach further interprets MLE as a GPI fixed point
and SDP as an extension of GPI in a higher-dimensional space, thereby establishing their op-
timality. In contrast, this paper employs a novel strategy specifically tailored for the spectral
method. Instead of relying on the GPI framework, which proves inadequate for spectral anal-
ysis, we introduce a new perturbation toolkit designed for eigenvector analysis. This toolkit
provides precise characterization of eigenvector perturbation and leads to the optimality of
the spectral method. It opens new avenues for research and application beyond synchroniza-
tion problems.

Organization. We study the phase synchronization in Section 2. We first establish the exact
recovery of the spectral method in the no-additive-noise case in Section 2.1. Then in Sec-
tion 2.2, we present our main technical tool for quantifying the distance between the leading
eigenvector and its first-order approximation. We then carry out an entrywise analysis of the
spectral method and obtain nonasymptotic sharp upper bounds in Section 2.3. Finally, we
consider the extension to the orthogonal group synchronization in Section 3. Proofs of results
for the phase synchronization are given in Section 5. Due to the page limit, we include proofs
of results for the orthogonal group synchronization in the Supplementary Material [38].

Notation. For any positive integer n, we write [n] := {1,2, . . . , n} and 1n := (1,1, . . . ,1)T ∈
R

n. Denote In as the n×n identity matrix and Jn := 1n1
T
n ∈ R

n×n as the n×n matrix with all
entries being one. Given a, b ∈R, we denote a∧b := min{a, b} and a∨b := max{a, b}. For a
complex number x ∈C, we use x̄ for its complex conjugate, Re(x) for its real part, Im(x) for
its imaginary part, and |x| for its modulus. Denote Sn := {x ∈ C

n : ‖x‖ = 1} as including all
unit vectors in C

n. For a complex vector x = (xj ) ∈ C
d , we denote ‖x‖ := (

∑d
j=1 |xj |2)1/2

as its Euclidean norm and ‖x‖∞ := maxj∈[d] |xj | as its ℓ∞ norm. For a complex matrix B =
(Bjk) ∈ C

d1×d2 , we use BH ∈ C
d2×d1 for its conjugate transpose such that (BH)jk = Bkj . The

Frobenius norm and the operator norm of B are defined by ‖B‖F := (
∑d1

j=1
∑d2

k=1 |Bjk|2)1/2

and ‖B‖ := supu∈Cd1 ,v∈Cd2 :‖u‖=‖v‖=1 uHBv. We use Tr(B) for the trace of a squared matrix

B and define ‖B‖2→∞ := maxj∈[d1](
∑d2

k=1 |Bjk|2)1/2. The notation det(·) and ⊗ are used
for determinant and Kronecker product. For U,V ∈ C

d1×d2 , U ◦V ∈ R
d1×d2 is the Hadamard

product (U ◦V )jk = UjkVjk . For any B ∈ R
d1×d2 , we denote smin(B) as its smallest singular

value. For two positive sequences {an} and {bn}, an � bn and an = O(bn) both mean an ≤
Cbn for some constant C > 0 independent of n. We also write an = o(bn) or bn

an
→ ∞ when

lim supn
an

bn
= 0. We use I{·} as the indicator function. Define O(d1, d2) := {V ∈ R

d1×d2 :
V TV = Id2} to include all d1 × d2 real matrices that have orthonormal columns.

2. Phase synchronization.

2.1. No-additive-noise case. We first study a special case where there is no additive noise
(i.e., σ = 0). In this setting, the data matrix X = A◦z∗z∗H. Despite the data still being missing
at random, we are going to show the spectral method is able to recover z∗ exactly, up to a
phase.

Recall that qu is the leading eigenvector of A and u∗ is defined in (8). The following lemma
points out the connection between u∗ and A ◦ z∗z∗H as well as the connection between eigen-
values of A and those of A ◦ z∗z∗H.

LEMMA 2.1. The unit vector u∗ is the leading eigenvector of A ◦ z∗z∗H. That is, with λ∗
denoting as the largest eigenvalue of A ◦ z∗z∗H, we have(

A ◦ z∗z∗H
)
u∗ = λ∗u∗.(15)

In addition, all the eigenvalues of A are also eigenvalues of A ◦ z∗z∗H, and vice versa.
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Since X = A ◦ z∗z∗H in the no-additive-noise case, we have u = u∗. Note that ẑj =
uj/|uj | = u∗

j /|u∗
j | = z∗

j quj/|z∗
j quj | for each j ∈ [n]. If quj > 0, we have ẑj = z∗

j . If ûj < 0
instead, then ẑj = −z∗

j . If all the coordinates of qu are positive (or negative), we have ẑ being
equal to z∗ (or −z∗) exactly. The following proposition provides an ℓ∞ control for the differ-
ence between qu and 1n/

√
n, which are eigenvectors of A and EA, respectively. The proof of

(16) follows proofs of results in [1]. When the right-hand side of (16) is smaller than 1/
√

n,
it immediately establishes the exact recovery of ẑ.

PROPOSITION 2.1. There exist some constants C1,C2 > 0 such that if np
logn

> C1, we
have

min
b∈{1,−1} max

j∈[n]

∣∣∣∣quj − 1√
n
b

∣∣∣∣ ≤ C2

(√
logn

np
+ 1

log(np)

)
1√
n
,(16)

with probability at least 1 − 8n−10. As a result, if np
logn

> max{C1,2C2
2}, we have ℓ(̂z, z∗) = 0

with probability at least 1 − 8n−10.

Lemma 2.1 and Proposition 2.1 together establish the exact recovery of ẑ for the special
case where σ = 0, through studying u∗. This provides a starting point for our analysis of the
general case where σ �= 0. From (2), the data matrix X is a noisy version of A ◦ z∗z∗H with
additive noise σA ◦ W that scales with σ . As a result, in the following sections, we view u∗
as the population eigenvector and u as its sample counterpart, studying the performance of
the spectral method.

2.2. First-order approximation of the leading eigenvector. In this section, we provide a
fine-grained perturbation analysis for the eigenvector u. Classical matrix perturbation theory,
such as Davis–Kahan theorem, can only give a crude upper bound for infb∈C1 ‖u − u∗b‖,
which turns out to be insufficient to derive a sharp bound for ℓ(̂z, z∗). Instead, we develop a
more powerful tool for perturbation analysis of u using its first-order approximation ũ defined
in (9). In fact, our tool goes beyond the phase synchronization problem and can be applied to
arbitrary Hermitian matrices.

LEMMA 2.2. Consider two Hermitian matrices Y,Y ∗ ∈ C
n×n. Let μ∗

1 ≥ μ∗
2 ≥ · · · ≥ μ∗

n

be the eigenvalues of Y ∗. Let v∗ (resp. v) be the eigenvector of Y ∗ (resp. Y ) corresponding to
its largest eigenvalue. If ‖Y − Y ∗‖ ≤ min{μ∗

1 − μ∗
2,μ

∗
1}/4, we have

inf
b∈C1

∥∥∥∥v − Yv∗

‖Yv∗‖b

∥∥∥∥ ≤ 40
√

2

9(μ∗
1 − μ∗

2)

((
4

μ∗
1 − μ∗

2
+ 2

μ∗
1

)∥∥Y − Y ∗∥∥2

+ max{|μ∗
2|, |μ∗

n|}
μ∗

1

∥∥Y − Y ∗∥∥)
.

In Lemma 2.2, there are two matrices Y , Y ∗ whose leading eigenvectors are v, v∗, respec-
tively. It studies the ℓ2 difference between v and Yv∗/‖Yv∗‖ up to a phase. Let μ1 be the
largest eigenvalue of Y . The unit vector Yv∗/‖Yv∗‖ is interpreted as the first-order approxi-
mation of v, as v can be decomposed into v = Yv/μ1 = Yv∗/μ1 + Y(v − v∗)/μ1 where the
first term Yv∗/μ1 is proportional to Yv∗/‖Yv∗‖. If Y ∗ is rank-one, meaning μ∗

2 = μ∗
n = 0,

the upper bound in Lemma 2.2 becomes 80
√

2‖Y − Y ∗‖2/(3μ∗2
1 ). Lemma 2.2 itself might

be of independent interest and be useful in other low-rank matrix problems.
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The key to Lemma 2.2 is the following equation. Since μ1v = Yv and ‖Yv∗‖ Yv∗
‖Yv∗‖ = Yv∗,

we can derive (see (29) in the proof of Lemma 2.2):

μ−1
1

∥∥Yv∗∥∥(μ1In − Y)

(
v − Yv∗

‖Yv∗‖
)

= Y
(
μ−1

1 Yv∗ − v∗)
.

Its left-hand side can be shown to be related to infb∈C1 ‖v − Yv∗b/‖Yv∗‖‖. By carefully
studying and upper bounding its right-hand side, which does not involve v, we derive
Lemma 2.2.

Lemma 2.2 requires that the perturbation between Y and Y ∗ is not only small compared
to the eigengap μ∗

1 − μ∗
2, but also small compared to the leading eigenvalue μ∗

1. A simi-
lar requirement is also needed in [1] to establish ℓ∞ bounds for the difference between the
eigenvector and its first-order approximation. In contrast, classical theory such as Davis–
Kahan theorem (see Lemma 5.1) only needs the perturbation to be small compared to the
eigengap to bound infb∈C1 ‖v − v∗b‖. A natural question is whether the bound in Lemma 2.2
can be modified to depend on eigenvalues only through the eigengaps. It turns out this is not
feasible, as it deals with the distance between v and its first-order approximation Yv∗/‖Yv∗‖,
not the distance between v and v∗ as in Davis–Kahan theorem. To illustrate it, consider the
following counterexample. Let e1, . . . , en be the canonical basis of Rn. Let δ > 0. Define

(17) Y ∗ := diag(0,−1,−1, . . . ,−1) ∈ R
n×n, and Y := Y ∗ + δ(e1 + e2)(e1 + e2)

T/2.

Then μ∗
1 = 0, μ∗

2 = −1, μ∗
1 − μ∗

2 = 1, v∗ = e1, ‖Y − Y ∗‖ = δ and Yv∗/‖Yv∗‖ = (e1 +
e2)/

√
2. We can show v has the following explicit expression (see Appendix C in the Sup-

plementary Material for detailed calculation):

v =
√

1

2

(
1 + 1√

1 + δ2

)
e1 +

√
1

2

(
1 − 1√

1 + δ2

)
e2.(18)

When δ is sufficiently close to 0, we have v ≈ v∗. This is not surprising as it is con-
sistent with the bound from Davis–Kahan theorem as the ratio between the perturbation
and eigengap is ‖Y − Y ∗‖/(μ∗

1 − μ∗
2) = δ ≈ 0. On the other hand, ‖v − Yv∗/‖Yv∗‖‖ ≈

‖e1 − (e1 + e2)/
√

2‖ = 2 − √
2 > 0 no matter how small δ may be. As a result, in this

counterexample, Yv∗/‖Yv∗‖ is not a good approximation of v despite the sufficiently small
perturbation.

Applying Lemma 2.2 to the phase synchronization, we have the following result.

PROPOSITION 2.2. There exist constants C1,C2,C3 > 0 such that if np
logn

> C1 and
np

σ 2 >

C2, we have

inf
b∈C1

‖u − ũb‖ ≤ C3
σ 2 + σ

np
,

with probability at least 1 − 3n−10.

Proposition 2.2 shows that u is well-approximated by its first-order approximation ũ (up
to a phase) with an approximation error that is at most in the order of (σ 2 + σ)/np. Note
that we can show infb∈C1 ‖u − u∗b‖ is of order σ/

√
np by using Davis–Kahan theorem. This

is much larger than the upper bound derived in Proposition 2.2, particularly when np/σ 2 is
large. As a result, ũ provides a precise characterization of u with negligible ℓ2 error.
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2.3. Sharp ℓ2 analysis of the spectral estimator. In this section, we will conduct a sharp
analysis of the performance of the spectral estimator ẑ using the first-order approximation ũ

of the eigenvector u. According to Proposition 2.2, u is close to ũ (up to a phase) with a small
difference. Then intuitively, ẑ should be close to its counterpart that uses ũ instead of u in
(4), up to a global phase. For each j ∈ [n], the distance of ũj /|ũj | from z∗

j is essentially de-

termined by z∗
j ũj . By the definition in (9), ũj is proportional to [Xu∗]j , the j th coordinate of

Xu∗. With (2), it leads to z∗
j ũj ∝ λ∗z∗

ju
∗
j + σ

∑
k �=j AjkWjkz

∗
ju

∗
k . Here the first term λ∗z∗

ju
∗
j

can be interpreted as the signal as it is related to the population quantity u∗
j , which gives the

exact recovery of the spectral method in the no-additive-noise case in Proposition 2.1. As
u∗ is close to z∗/

√
n, the second term is approximately equal to n−1/2 ∑

k �=j AjkWjkz
∗
j z

∗
k .

Its contribution toward the estimation error is essentially determined by its imaginary part
n−1/2 Im(

∑
k �=j AjkWjkz

∗
j z

∗
k), which can be interpreted as the main error term. Summing

over all j ∈ [n], the signals and the main error terms together lead to the minimax risk
σ 2/(2np). At the same time, contributions of approximation errors such as infb∈C1 ‖u − ũb‖
turn out to be negligible. This leads to the following theorem on the performance of the
spectral estimator.

THEOREM 2.1. There exist constants C1,C2,C3 > 0 such that if np
logn

> C1 and
np

σ 2 > C2,
we have

ℓ
(̂
z, z∗) ≤

(
1 + C3

((
σ 2

np

) 1
4 +

√
logn

np
+ 1

log(np)

))
σ 2

2np
,

with probability at least 1 − n−9 − exp(− 1
32(

np

σ 2 )
1
4 ).

Theorem 2.1 is nonasymptotic and its asymptotic version is presented in Theorem 1.1. It
covers the no-additive-noise case (i.e., Proposition 2.1), as it implies that ℓ(̂z, z∗) = 0 with
high probability when σ = 0. Theorem 2.1 shows that ℓ(̂z, z∗) is equal to σ 2/(2np) up to
a factor that is determined by (σ 2/(np))1/4,

√
logn/(np) and 1/ log(np). The first term is

related to various approximation errors including the one from Proposition 2.2. The second
and third terms are derived from (16).

We can make a comparison between Theorem 2.1 and the existing result ℓ(̂z, z∗) �
(σ 2 + 1)/np in [17]. There are two main improvements. First, we obtain the exact constant
1/2 for the error term σ 2

np
, which gives a more accurate characterization of the performance

of the spectral estimator. Second, the 1/np error term in (σ 2 + 1)/np no longer exists in
Theorem 2.1. We further compare Theorem 2.1 with the minimax lower bound for the phase
synchronization problem. The paper [17] proved that there exist constants C4,C5 > 0 such
that if np

σ 2 ≥ C4, we have

inf
z∈Cn

sup
z∗∈Cn

1

Eℓ
(
z, z∗) ≥

(
1 − C5

(
σ 2

np
+ 1

n

))
σ 2

2np
.(19)

Compared with (19), the spectral estimator ẑ is exact minimax optimal as it not only achieves
the correct rate σ 2/(np) but also the correct constant 1/2. Under the parameter regime as
in Theorem 2.1, [17, 18] showed that MLE, GPM (if properly initialized), and SDP achieve
the exact minimax risk. Theorem 2.1 points out that the spectral method is as good as these
methods.
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3. Orthogonal group synchronization. In this section, we will extend our analysis to
matrix synchronizations where the quantities of interest are orthogonal matrices instead of
phases. The orthogonal group synchronization problem has been briefly introduced in Sec-
tion 1. Here we provide more details about the problem.

Let d > 0 be an integer. Recall the definition of O(d) in (11) and that Z∗
1 , . . . ,Z∗

n ∈ O(d).
For each 1 ≤ j < k ≤ n, the observation Xjk ∈ R

d×d is given by

Xjk :=
{
Z∗

j Z∗T
k + σWjk if Ajk = 1,

0 if Ajk = 0,
(20)

where Ajk ∼ Bernoulli(p) and Wjk ∼ MN (0, Id, Id), that is, the standard matrix Gaus-
sian distribution.1 We assume {Ajk}1≤j<k≤n, {Wj,k}1≤j<k≤n are all independent of each
other. Similar to the phase synchronization problem, the observations are missing at random
with additive Gaussian noises. The goal is to recover Z∗

1 , . . . ,Z∗
n from {Xjk}1≤j<k≤n and

{Aj,k}1≤j<k≤n.
The data matrix X ∈ R

nd×nd can be written equivalently in a way that is analogous to
(2). Define Ajj := 0 and Akj := Ajk for all 1 ≤ j < k ≤ n. Define W ∈ C

nd×nd such that
Wjj := 0d×d and Wkj := WT

jk for all 1 ≤ j < k ≤ n. Then we have the expression

X = (A ⊗ Jd) ◦ (
Z∗Z∗T + σW

) = (A ⊗ Jd) ◦ Z∗Z∗T + σ(A ⊗ Jd) ◦W .(21)

From (12), the data matrix X can be seen as a noisy version of pZ∗Z∗T − pInd . Since the
columns of Z∗ are orthogonal to each other, we have the following eigendecomposition:
pZ∗Z∗T = np(Z∗/

√
n)(Z∗/

√
n)T where Z∗/

√
n ∈ O(nd, d). That is, np is the only nonzero

eigenvalue of pZ∗Z∗T with multiplicity d .
The definition of the spectral estimator Ẑ1, . . . , Ẑn is given in (13). The mapping P :

R
d×d → O(d) is from the polar decomposition and is defined as follows. For any matrix

B ∈ R
d×d that is full-rank, it admits a singular value decomposition (SVD): B = MDV T with

M,V ∈ O(d) and D a diagonal matrix. Then its polar decomposition is B = (MV T)(V DV T)

and P(B) := MV T is defined as its first factor.
Recall that qu is the leading eigenvector of A and the population eigenspace U∗ is defined

in (14). That is, U∗ ∈ R
nd×d and its j th submatrix is U∗

j = qujZ
∗
j ∈ R

d×d for each j ∈ [n].
Following the proof of Lemma 2.1, we can show U∗ is the leading eigenspace of (A ⊗ Jd) ◦
Z∗Z∗T:

LEMMA 3.1. Denote λ∗
1 ≥ λ∗

2 ≥ · · · ≥ λ∗
nd as the eigenvalues of (A ⊗ Jd) ◦ Z∗Z∗T. Then

λ∗
1 = λ∗

2 = · · · = λ∗
d , all equal the leading eigenvalue of A. In addition, λ∗

d+1 is equal to the
second largest eigenvalue of A. Furthermore, U∗ is the eigenspace of (A ⊗ Jd) ◦ Z∗Z∗T

corresponding to λ∗
1, that is, (

(A ⊗ Jd) ◦ Z∗Z∗T
)
U∗ = λ∗

1U
∗.

Following the proof of Proposition 2.1, particularly using (16), we can further establish
the exact recovery of Ẑ, up to an orthogonal matrix, in the no-additive-noise case.

PROPOSITION 3.1. Consider the no-additive-noise case where σ = 0. There exists some
constant C1 > 0 such that if np

logn
> C1, we have ℓ(̂z, z∗) = 0 with probability at least 1 −

7n−10.

1A random matrix X follows a matrix Gaussian distribution MN (M,	,
) if its density function is propor-
tional to exp(− 1

2 Tr(
−1(X − M)T	−1(X − M))).
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Similar to the phase synchronization, we can study the first-order approximation of the
eigenspace U . Denote � := diag(λ1, . . . , λd) ∈ R

d×d as the diagonal matrix of the d largest
eigenvalues of X . Then U can be expressed as U =XU�−1. Define

Ũ := argmin
U ′∈O(nd,d)

∥∥U ′ −XU∗∥∥2
F.(22)

Then Ũ is the projection of XU∗ onto O(nd, d). This is similar to the definition of ũ in (9)
for the phase synchronization, where ũ is the projection of Xu∗ onto the unit sphere. As a
result, Ũ can be regarded as the first-order approximation of U .

The following lemma provides an upper bound for a leading eigenspace and its first-order
approximation of two arbitrary Hermitian matrices. It is an extension of Lemma 2.2 which is
only about the perturbation of a leading eigenvector. The proof of Lemma 3.2 follows that of
Lemma 2.2 but is more involved, as it needs to deal with matrix multiplication which is not
commutative.

LEMMA 3.2. Consider two symmetric matrices Y,Y ∗ ∈ R
n×n. Let μ∗

1 ≥ μ∗
2 ≥ · · · ≥ μ∗

n

be the eigenvalues of Y ∗. Let V ∗ ∈ R
n×d (resp. V ) be the leading eigenspace of Y ∗ (resp.

Y ) corresponding to its d largest eigenvalues. Define Ṽ := argminV ′∈O(n,d) ‖V ′ − YV ∗‖2
F. If

‖Y − Y ∗‖ ≤ min{μ∗
d − μ∗

d+1,μ
∗
d}/4, we have

inf
O∈O(d)

‖V − Ṽ O‖

≤ 16
√

2

3(μ∗
d − μ∗

d+1)μ
∗
d

(
2μ∗

1

3(μ∗
d − μ∗

d+1)
+ 1

)∥∥Y − Y ∗∥∥2

+ 8
√

2

3(μ∗
d − μ∗

d+1)μ
∗
d

(
4μ∗

1(μ
∗
1 − μ∗

d)

μ∗
d − μ∗

d+1
+ 2

(
μ∗

1 − μ∗
d

) + max
{∣∣μ∗

d+1
∣∣, ∣∣μ∗

n

∣∣})∥∥Y − Y ∗∥∥.
Lemma 3.2 includes Lemma 2.2 as a special case when d = 1. For d > 1, if μ∗

1 = μ∗
d , that

is, the largest d eigenvalues of Y ∗ are all equal, the upper bound in Lemma 3.2 simplifies to

inf
O∈O(d)

‖V − Ṽ O‖� 1

μ∗
d − μ∗

d+1

((
1

μ∗
d − μ∗

d+1
+ 1

μ∗
d

)∥∥Y − Y ∗∥∥2

+ max{|μ∗
d+1|, |μ∗

n|}
μ∗

d

∥∥Y − Y ∗∥∥)
,

which is similar in form to the upper bound in Lemma 2.2. This expression can be used in
the O(d) synchronization problem as λ∗

1 is shown to be equal to λ∗
d in Lemma 3.1. A direct

application of this expression leads to the following proposition regarding the perturbation
between U and Ũ .

PROPOSITION 3.2. Assume 2 ≤ d ≤ C0 for some constant C0 > 0. There exist constants
C1,C2,C3 > 0 such that if np

logn
> C1 and np

σ 2 > C2, we have

inf
O∈O(d)

‖U − ŨO‖ ≤ C3
σ 2d + σ

√
d

np
,

with probability at least 1 − 6n−10.
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When d = 1, Proposition 3.2 reduces to Proposition 2.2. With Proposition 3.2, we can
carry out a sharp ℓ2 analysis of the performance of the spectral estimator Ẑ using Ũ . The loss
function is defined analogously to (5) as

ℓod(
Ẑ,Z∗) := min

O∈O(d)

1

n

∥∥Ẑj − Z∗
j O

∥∥2
F.

In this way, we have the following theorem which is similar to Theorem 2.1. Its asymp-
totic version is given in Theorem 1.2. The proof of Theorem 3.1 follows that of Theo-
rem 2.1 but is more complicated due to the existence of the mapping P in the definition
of the spectral method. To prove Theorem 3.1, note that for each j ∈ [n], ‖Ẑj − Z∗

j ‖F =
‖P(Uj ) − Z∗

j ‖F = ‖P(Z∗T
j Uj ) − Id‖F where Z∗T

j Uj can be approximated by Z∗T
j Ũj accord-

ing to Proposition (3.2). The term Z∗T
j Ũj can be further expanded using (21) and Lemma 3.1,

leading to
∑

k �=j AjkZ
∗T
j WjkZ

∗
k and several approximation error terms. Careful analysis of∑

k �=j AjkZ
∗T
j WjkZ

∗
k eventually leads to the minimax risk d(d − 1)σ 2/(2np) and all the

other error terms turn out to be negligible.

THEOREM 3.1. Assume 2 ≤ d ≤ C0 for some constant C0 > 0. There exist constants C1,
C2, C3 such that if np

logn
> C1 and np

σ 2 > C2, we have

ℓod
(
Ẑ,Z∗) ≤

(
1 + C3

((
σ 2

np

) 1
4 +

√
logn

np
+ 1

log(np)

))
d(d − 1)σ 2

2np

holds with probability at least 1 − n−9 − exp(− 1
32(

np

σ 2 )
1
4 ).

We can compare the upper bound in Theorem 3.1 to existing results for the O(d) synchro-
nization. [19] derived an upper bound for the spectral method: ℓ(Ẑ,Z∗)� d4(1 +σ 2d)/(np)

with high probability. In comparison, our upper bound has a smaller factor of d(d − 1)/2 for
σ 2/np. In addition, it does not have the d4/np error term. The paper [19] also established
the minimax lower bound: when 2 ≤ d ≤ C0, there exist constants C4,C5 > 0 such that if
np

σ 2 > C4, we have

inf
Z∈O(d)n

sup
Z∗∈O(d)n

ℓod(
Ẑ,Z∗) ≥

(
1 − C5

(
1

n
+ σ 2

np

))
d(d − 1)σ 2

2np
.

Compared to the lower bound, the spectral estimator Ẑ is exact minimax optimal as it
achieves the correct rate with the correct constant d(d − 1)/2 in front of the optimal rate
σ 2/np.

4. Discussions.

4.1. Comparison of spectral method and other methods. In synchronization problems,
the spectral method offers computational advantages over alternative methods such as MLE,
SDP and GPM. According to Theorem 1.1, the spectral method attains statistical optimality in
the limit as np

σ 2 → ∞, achieving the minimum possible risk. The performance of the spectral
method in scenarios where np

σ 2 does not approach infinity, however, remains less understood.
Previous studies [21, 23] have explored the PCA method in Bayesian settings for synchro-

nization problems with p = 1. Unlike the spectral method, as defined in (4), PCA does not
involve entrywise normalization but scales the leading eigenvector u to minimize the mean
square error (MSE). These studies offer a comprehensive asymptotic analysis of PCA’s MSE
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and that of the Bayes-optimal estimator, demonstrating both methods’ ability to achieve sub-
stantial accuracy when σ 2 is below a specific threshold. However, PCA tends to exhibit a
higher MSE compared to the Bayes-optimal estimator. Furthermore, [21] indicates that the
MSE of SDP falls between that of PCA and the Bayes-optimal estimator, leaning more to-
wards the latter.

While Theorem 1.1 addresses the regime where np

σ 2 → ∞, Theorem 2.1 establishes an
upper bound in scenarios where np

σ 2 exceeds a certain constant. This suggests a complex

interplay between the performance of the spectral method and the ratio σ 2

np
in the con-

stant np

σ 2 regime. To better understand this relationship, we conducted numerical experi-

ments using the spectral method, GPM and SDP under various σ 2 levels. The GPM, ini-
tialized with the spectral estimator ẑ

(0)
GPM := ẑ, iteratively updates ẑ

(t)
GPM := f (Xẑ

(t−1)
GPM ) for

t ≥ 1, where f : Cn → C
n
1 is an entrywise normalization function defined as [f (x)]i :=

xi/|xi |I{xi �= 0} + I{xi = 0} for any x ∈ C
n. The SDP, a convex optimization problem, maxi-

mizes maxZ∈Cn×n:Z=ZH,diag(Z)=In,Z�0 Tr(XZ) over complex positive-semidefinite Hermitian
matrices with unit diagonal entries and can be initialized using the spectral method. We as-
sessed their performances using the normalized squared ℓ2 loss (5).

Figure 1 summarizes the comparative performances of these methods. For low σ 2 values,
the error rates of all methods approximate σ 2

2np
. The left panel of the figure shows that as σ 2

increases, their error rates rise more steeply than σ 2

2np
. As σ 2 continues to increase, the spectral

method exhibits higher error rates, as expected, since the other two methods use the spectral
method for initialization and enhance it through more complex procedures. For a deeper
insight into the numerical performance differences, we compare the high-order terms in their
errors. Specifically, the normalized squared ℓ2 loss for each method can be expressed as
(1+δ) σ 2

2np
, where δ represents the high-order term. The right panel of Figure 1 compares δ for

these three methods. It reveals that even at small σ 2 values, the spectral method’s performance
diverges from those of the other methods. This suggests that while δ diminishes to 0 for
all three methods as σ 2 decreases (thus achieving exact minimax optimality), the spectral
method’s δ diminishes more slowly than those of the other two methods.

Deriving explicit expressions for these error rates would be insightful, yet it falls outside
the scope of this paper and presents an avenue for future research.

FIG. 1. Numerical results for the spectral method, GPM and SDP in phase synchronization, with n = 100,
p = 0.5 and σ 2 varying within [0,20]. Left: Error comparison measured by the normalized squared ℓ2 loss.
Right: Comparison of the high-order term in their errors.
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4.2. Condition on p. In the phase synchronization problem (1), observations are missing
at random, forming an Erdős–Rényi random graph A with edge probability p. The value of
p cannot be excessively small, as this could result in A being disconnected, thereby making
accurate estimation of z∗ under a global phase impossible. Theorem 1.1 assumes np

logn
→ ∞

to establish the exact minimax optimality of the spectral method. A less stringent condition,
where np

logn
exceeds a certain constant, is considered in Theorem 2.1. However, it is known

that A is connected with high probability when np
logn

> 1 + ε for any constant ε > 0. This

raises the question of how the spectral method performs when np
logn

is a small constant.

Our analysis requires np
logn

to be greater than a certain constant for several technical rea-
sons. This condition ensures desired bounds hold for critical quantities such as ‖A − EA‖
and ‖A ◦ W‖, which are essential for the ℓ∞ analysis in Proposition 2.1 and the ℓ2 analy-
sis of the first order approximation in Proposition 2.2. Moreover, the proof of Theorem 2.1

leverages the ℓ∞ results from Proposition 2.1, leading to the inclusion of the
√

logn
np

factor

in the theorem’s upper bound. This requires np
logn

to approach infinity for the upper bound to
asymptotically match the exact minimax risk. Obtaining precise bounds for the performance
of the spectral method when np

logn
is a small constant would require an extension beyond our

current analytic framework, a task we leave for future research.

4.3. Other low-rank problems. The synchronization problems investigated in this manu-
script are part of a broader category of problems characterized by low-rank matrix structures
disrupted by additive noise and incomplete data. The methodologies developed herein are
applicable to a variety of related problems, such as matrix completion, principal component
analysis, factor models, mixture models, and ranking from pairwise comparison data. A key
observation is that many of these problems encompass multiple sources of randomness, such
as that arising from missing data and additive noise. An effective approach, as demonstrated
in this study, is to isolate these sources and evaluate their individual contributions to the over-
all estimation error. This strategy is exemplified in our analysis of synchronization problems,
where we introduce a novel population eigenvector and eigenspace. Furthermore, Lemma 2.2
and Lemma 3.2 offer a general framework for the perturbation analysis of eigenvectors and
eigenspaces.

On the other hand, synchronization problems are special in that their leading eigenvector or
eigenspace is spread out. In the literature [11], the coherence of an eigenvector u is defined as
maxi∈[n] |ui |2/n, where u1, . . . , un are its coordinates. In phase synchronization, the leading
eigenvector of EX in (3) possesses uniformly equal magnitude 1/

√
n, indicating maximal

coherence. Contrastingly, in many low-rank problems, eigenvectors exhibit lower coherence,
which naturally factors into theoretical analysis. Therefore, when extending the concepts
and methodologies from this paper to other scenarios, it is crucial to monitor eigenvector
coherence for more precise and insightful analysis.

5. Proofs for phase synchronization.

5.1. Proof of Lemma 2.2. We first present a variant of Davis–Kahan theorem [13] and
an inequality about infb∈C1 ‖x − yb‖ and ‖(Id − xxH)y‖ that will be used in the proof of
Lemma 2.2.

LEMMA 5.1. Let X, X̃ ∈ C
d×d be two Hermitian matrices. Let λ1 ≥ λ2 ≥ · · · ≥ λd be

the eigenvalues of X. Consider any r ∈ [d]. Let U ∈ C
d×r (resp. Ũ ) be the eigenspace of



2126 A. Y. ZHANG

X (resp. X̃) that includes its leading r eigenvectors. Under the assumption that ‖X − X̃‖ <

(λr − λr+1)/4, we have ∥∥(
I − UUH

)
Ũ

∥∥ ≤ 4‖X − X̃‖
3(λr − λr+1)

.

LEMMA 5.2. For any unit vectors x, y ∈ C
d , we have infb∈C1 ‖x − yb‖ ≤ √

2‖(Id −
xxH)y‖.

PROOF OF LEMMA 2.2. Denote μ1 ≥ · · · ≥ μn as the eigenvalues of Y . We first give
some inequalities for the eigenvalues and ‖Yv∗‖ that will be used later in the proof. By
Weyl’s inequality, we have

max
{∣∣μ1 − μ∗

1
∣∣, ∣∣μ2 − μ∗

2
∣∣} ≤ ∥∥Y − Y ∗∥∥.

Since ‖Y − Y ∗‖ ≤ min{μ∗
1 − μ∗

2,μ
∗
1}/4 is assumed, we have

3

4
μ∗

1 ≤ μ1 ≤ 5

4
μ∗

1, μ1 − μ2 ≥ μ∗
1 − μ∗

2

2
,(23)

and ∣∣∣∣μ∗
1

μ1
− 1

∣∣∣∣ = |μ∗
1 − μ1|
μ1

≤ ‖Y − Y ∗‖
μ∗

1 − ‖Y − Y ∗‖ ≤ 4‖Y − Y ∗‖
3μ∗

1
.(24)

Regarding ‖Yv∗‖, using the decomposition

Y = Y ∗ + (
Y − Y ∗) = μ∗

1v
∗v∗H + (

Y ∗ − μ∗
1v

∗v∗H
) + (

Y − Y ∗)
,

and its consequence

Yv∗ = Y ∗v∗ + (
Y − Y ∗)

v∗ = μ∗
1v

∗ + (
Y − Y ∗)

v∗,(25)

we have ∥∥Yv∗∥∥ ≥ μ∗
1 − ∥∥Y − Y ∗∥∥ ≥ 3μ∗

1

4
.(26)

We define qv ∈ C
n and ṽ ∈ Sn as

qv := Yv∗

μ1
,(27)

ṽ := Yv∗

‖Yv∗‖ .(28)

Then ṽ is the first-order approximation of v, written equivalently as ṽ = qv/‖qv‖. Note that
with ‖Yv∗‖ > 0 as shown in (26), ṽ is well defined.

Since v is the eigenvector of Y corresponding to μ1, we have

μ1v = Yv,

μ1ṽ = Yv∗/‖qv‖.
Subtracting the second equation from the first one, we have

μ1(v − ṽ) = Y

(
v − v∗

‖qv‖
)

= Y(v − ṽ) + Y

(
ṽ − v∗

‖qv‖
)

= Y(v − ṽ) + 1

‖qv‖Y
(
qv − v∗)

.

After rearranging, we have

‖qv‖(μ1In − Y)(v − ṽ) = Y
(
qv − v∗)

.(29)
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Since (μ1In − Y)v = 0, we have span(μ1In − Y) being orthogonal to v. As a result,
‖qv‖(μ1In − Y)(v − ṽ) = ‖qv‖(μ1In − Y)(In − vvH)ṽ. In addition, since the left-hand side
of (29) belongs to span(In − vvH), its right-hand side must also belong to span(In − vvH).
That is, Y(qv − v∗) = (In − vvH)Y (qv − v∗). Then (29) leads to

‖qv‖(μ1In − Y)
(
In − vvH

)
ṽ = (

In − vvH
)
Y

(
qv − v∗)

.(30)

Observe that 0 ≤ μ1 − μ2 ≤ · · · ≤ μ1 − μn are the eigenvalues of μ1In − Y . In particular,
the eigenvector corresponding to 0 is v. Since (In − vvH)ṽ is orthogonal to v, from (30) we
have

‖qv‖(μ1 − μ2)
∥∥(

In − vvH
)
ṽ
∥∥ ≤ ‖qv‖∥∥(μ1In − Y)

(
In − vvH

)
ṽ
∥∥ = ∥∥(

In − vvH
)
Y

(
qv − v∗)∥∥.

Hence, ∥∥(
In − vvH

)
ṽ
∥∥ ≤ 1

‖qv‖(μ1 − μ2)

∥∥(
In − vvH

)
Y

(
qv − v∗)∥∥.(31)

From Lemma 5.2, we have infb∈C1 ‖v − ṽb‖ ≤ √
2‖(In − vvH)ṽ‖. With this, (31) leads to

inf
b∈C1

‖v − ṽb‖ ≤
√

2

‖qv‖(μ1 − μ2)

∥∥(
In − vvH

)
Y

(
qv − v∗)∥∥.(32)

In the following, we are going to analyze (In − vvH)Y (qv − v∗). We have(
In − vvH

)
Y

(
qv − v∗)

= (
In − vvH

)
Y

(
Yv∗

μ1
− v∗

)

= (
In − vvH

)
Y

(
μ∗

1

μ1
− 1

)
v∗ + 1

μ1

(
In − vvH

)
Y

(
Y − Y ∗)

v∗

=
(

μ∗
1

μ1
− 1

)(
In − vvH

)
μ∗

1v
∗ +

(
μ∗

1

μ1
− 1

)(
In − vvH

)(
Y − Y ∗)

v∗

+ 1

μ1

(
In − vvH

)
μ∗

1v
∗v∗H

(
Y − Y ∗)

v∗ + 1

μ1

(
In − vvH

)(
Y ∗ − μ∗

1v
∗v∗H

)(
Y − Y ∗)

v∗

+ 1

μ1

(
In − vvH

)(
Y − Y ∗)(

Y − Y ∗)
v∗

=
((

μ∗
1

μ1
− 1

)
+ 1

μ1
v∗H

(
Y − Y ∗)

v∗
)
μ∗

1
(
In − vvH

)
v∗

+
(

μ∗
1

μ1
− 1

)(
In − vvH

)(
Y − Y ∗)

v∗ + 1

μ1

(
In − vvH

)(
Y ∗ − μ∗

1v
∗v∗H

)(
Y − Y ∗)

v∗

+ 1

μ1

(
In − vvH

)(
Y − Y ∗)(

Y − Y ∗)
v∗.

Hence,∥∥(
In − vvH

)
Y

(
qv − v∗)∥∥

≤
(∣∣∣∣μ∗

1

μ1
− 1

∣∣∣∣ + |v∗H(Y − Y ∗)v∗|
μ1

)
μ∗

1
∥∥(

In − vvH
)
v∗∥∥ +

∣∣∣∣μ∗
1

μ1
− 1

∣∣∣∣∥∥Y − Y ∗∥∥
+ ‖Y ∗ − μ∗

1v
∗v∗H‖‖Y − Y ∗‖
μ1

+ ‖Y − Y ∗‖2

μ1
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≤
(∣∣∣∣μ∗

1

μ1
− 1

∣∣∣∣ + ‖Y − Y ∗‖
μ1

)
μ∗

1
∥∥(

In − vvH
)
v∗∥∥ +

∣∣∣∣μ∗
1

μ1
− 1

∣∣∣∣∥∥Y − Y ∗∥∥
+ max{|μ∗

2|, |μ∗
n|}‖Y − Y ∗‖

μ1
+ ‖Y − Y ∗‖2

μ1
,

where we use the fact that ‖In − vvH‖ = 1 and ‖Y ∗ − μ∗
1v

∗v∗H‖ = max{|μ∗
2|, |μ∗

n|}. Then
together with (32), we have

inf
b∈C1

‖v − ṽb‖ ≤
√

2

‖qv‖(μ1 − μ2)

((∣∣∣∣μ∗
1

μ1
− 1

∣∣∣∣ + ‖Y − Y ∗‖
μ1

)
μ∗

1
∥∥(

In − vvH
)
v∗∥∥

+
∣∣∣∣μ∗

1

μ1
− 1

∣∣∣∣∥∥Y − Y ∗∥∥ + max{|μ∗
2|, |μ∗

n|}‖Y − Y ∗‖
μ1

+ ‖Y − Y ∗‖2

μ1

)
.

In the rest of the proof, we are going to simplify the display above. From (23) and (26),
we have

‖qv‖ = ‖Yv∗‖
μ1

≥ 3

5
.

Using Lemma 5.1 and the assumption ‖Y − Y ∗‖ ≤ (μ∗
1 − μ∗

2)/4, we have∥∥(
In − vvH

)
v∗∥∥ ≤ 2‖Y − Y ∗‖

μ∗
1 − μ∗

2
.

With the above results, together with (23) and (24), we have

inf
b∈C1

‖v − ṽb‖

≤
√

2
3
5

μ∗
1−μ∗

2
2

((
4‖Y − Y ∗‖

3μ∗
1

+ ‖Y − Y ∗‖
3
4μ∗

1

)
μ∗

1
2‖Y − Y ∗‖
μ∗

1 − μ∗
2

+ 4‖Y − Y ∗‖
3μ∗

1

∥∥Y − Y ∗∥∥
+ max{|μ∗

2|, |μ∗
n|}‖Y − Y ∗‖

3
4μ∗

1

+ ‖Y − Y ∗‖2

3
4μ∗

1

)

= 10
√

2

3(μ∗
1 − μ∗

2)

((
16

3(μ∗
1 − μ∗

2)
+ 8

3μ∗
1

)∥∥Y − Y ∗∥∥2 + 4 max{|μ∗
2|, |μ∗

n|}
3μ∗

1

∥∥Y − Y ∗∥∥)

≤ 40
√

2

9(μ∗
1 − μ∗

2)

((
4

(μ∗
1 − μ∗

2)
+ 2

μ∗
1

)∥∥Y − Y ∗∥∥2 + max{|μ∗
2|, |μ∗

n|}
μ∗

1

∥∥Y − Y ∗∥∥)
. �

5.2. Proofs of Lemma 2.1, Proposition 2.1 and Proposition 2.2.

PROOF OF LEMMA 2.1. Denote λ′ as an eigenvalue of A with its corresponding eigen-
vector u′. Then we have Au′ = λ′u′. This can be equivalently written as∑

k �=j

Ajku
′
k = λ′u′

j ∀j ∈ [n].

Multiplying by z∗
j on both sides, we have∑

k �=j

Ajkz
∗
ju

′
k = ∑

k �=j

Ajkz
∗
j z

∗
k

(
z∗
ku

′
k

) = λ′z∗
ju

′
j ∀j ∈ [n].

That is, (A ◦ z∗z∗H)(z∗ ◦ u′) = λ′(z∗ ◦ u′). Hence, λ′ is an eigenvalue of A ◦ z∗z∗H with the
corresponding eigenvector z∗ ◦ u′.
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By the same argument, we can show each eigenvalue of A ◦ z∗z∗H is also an eigenvalue
of A. As a result, since qu is the leading eigenvector of A, z∗ ◦ qu is the leading eigenvector of
A ◦ z∗z∗H. �

Before proving Proposition 2.1 and Proposition 2.2, we first state some technical lemmas
related to A and W .

LEMMA 5.3. The largest eigenvalue of EA is (n−1)p and the corresponding eigenvector
is 1n/

√
n. The remaining eigenvalues of EA are−p with multiplicity n−1. Denote λ′ ≥ λ′

2 ≥
· · · ≥ λ′

n as the eigenvalues of A. We have∣∣λ′ − (n − 1)p
∣∣, max

2≤j≤n

∣∣λ′
j + p

∣∣ ≤ ‖A −EA‖, and λ′ − λ′
2 ≥ np − 2‖A −EA‖.(33)

LEMMA 5.4. There exist constants C1,C2 > 0 such that if np
logn

> C1, then we have

‖A −EA‖ ≤ C2
√

np,

‖A ◦ W‖ ≤ C2
√

np,

∑
j∈[n]

∣∣∣∣Im(∑
k �=j

AjkWjkz
∗
j z

∗
k

)∣∣∣∣2 ≤ n2p

2

(
1 + C2

√
logn

n

)
,

with probability at least 1 − 3n−10.

The first part of Proposition 2.1 (i.e., (16)) can be proved using Theorem 2.1 of [1] which
we include below for completeness. The statement of Theorem 2.1 in [1] is complicated as
the theorem works for perturbation of eigenspaces. However, what we need to consider here
is only the perturbation of the leading eigenvector. For easier reference, we present below a
simpler version of the theorem.

LEMMA 5.5 (A simpler version of Theorem 2.1 of [1]). Consider two symmetric matrices
Y,Y ∗ ∈ R

n×n. Let the eigenvalues of Y ∗ be μ∗
1 ≥ μ∗

2 ≥ · · · ≥ μ∗
n. Define �∗ := min{μ∗

1 −
μ∗

2,μ
∗
1} and κ := max{|μ∗

1|, |μ∗
n|}/�∗. Let the leading eigenvector of Y (resp. Y ∗) be v (resp.

v∗). Assume the following conditions are satisfied for some γ ≥ 0 and some function φ :
[0,+∞) → [0,+∞):

1. ‖Y ∗‖2→∞ ≤ γ�∗.
2. For any m ∈ [n], {Yjk : j = m or k = m} are independent of {Yjk : j �= m,k �= m}.
3. 32κ max{γ,φ(γ )} ≤ 1 and for some δ0 ∈ (0,1), P(‖Y − Y ∗‖ ≤ γ�∗) ≥ 1 − δ0.
4. Suppose φ(x) is continuous and nondecreasing in [0,+∞) with φ(0) = 0, φ(x)/x is

nonincreasing in [0,+∞) and δ1 ∈ (0,1). For any m ∈ [n] and w ∈ R
n,

P

(∣∣[Y − Y ∗]
m·w

∣∣ ≤ �∗‖w‖∞φ

( ‖w‖√
n‖w‖∞

))
≥ 1 − δ1

n
.

Then with probability at least 1 − δ0 − 2δ1, there exists some constant C > 0 and some
b ∈ {−1,1} such that∥∥vb − Yv∗/μ∗

1
∥∥∞ ≤ C

(
κ
(
κ + φ(1)

)(
γ + φ(γ )

)∥∥v∗∥∥∞ + γ
∥∥Y ∗∥∥

2→∞/�∗)
.

The following Lemma 5.6 provides two Bernstein-type concentration inequalities to be
used in the proof of Proposition 2.1. The first one is the classical Bernstein inequality; see
Section 2.8 of [6] for its proof. The second one is proved in Lemma 7 of [1].
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LEMMA 5.6. Let B1, . . . ,Bn be real independent random variables such that
maxj∈[n] |Bj | ≤ M for some M > 0. Then

P

(∣∣∣∣ ∑
j∈[n]

(Bj −EBj)

∣∣∣∣ ≥ t

)
≤ 2 exp

(
−

1
2 t2∑

j∈[n]E(Bj −EBj)2 + 1
3Mt

)
.

Let w ∈ R
n be a fixed vector and α ≥ 0. If {Bj }j∈[n]

i.i.d.∼ Bernoulli(p), we have

P

(∣∣∣∣ ∑
j∈[n]

wj(Bj − p)

∣∣∣∣ ≥ (2 + α)np

1 ∨ log(
√

n‖w‖∞
‖w‖ )

‖w‖∞
)

≤ 2 exp(−αnp).

PROOF OF PROPOSITION 2.1. We use Lemma 5.5 to prove the first part of the propo-
sition. Denote μ∗

1 ≥ μ∗
2 ≥ · · · ≥ μ∗

n as the eigenvalues of EA. Define �∗ and κ the same as
in Lemma 5.5. From Lemma 5.3, we have �∗ = (n − 1)p, κ = 1, with 1n/

√
n being the

leading eigenvector of EA. Since EA = pJn − pIn, we have ‖EA‖2→∞ = √
(n − 1)p. By

Lemma 5.4, there exist constants c1, c2 > 1 such that if np
logn

> c1, then ‖A −EA‖ ≤ c2
√

np

with probability at least 1 − 3n−10. Define γ := 2c2/
√

np, δ0 := 2n−10 and φ(x) :=
3(1 ∨ log(x−1))−1. Then the first assumption of Lemma 5.5 is satisfied as long as c2 ≥ 1.
When np

logn
is greater than some sufficiently large constant, we have φ(γ ) ≤ 8/ log(np) and

the third assumption is satisfied. We can also verify that the second assumption is also sat-
isfied. For any m ∈ [n], denote [A − EA]m· as the j th row of A − EA. For any w ∈ R

n,
since [A−EA]m·w is a weighted average of centered Bernoulli random variables, the second
inequality of Lemma 5.6 can be applied to have

P

(∣∣[A −EA]m·w
∣∣ > �∗‖w‖∞φ

( ‖w‖√
n‖w‖∞

))

≤ P

(∣∣[A −EA]m·w
∣∣ ≥ 2.5np

1 ∨ log(
√

n‖w‖∞
‖w‖ )

‖w‖∞
)

≤ 2n−11,

when np
logn

≥ 11 is greater than some sufficiently large constant. Define δ1 := 2n−10. Then
the last assumption of Lemma 5.5 is satisfied. Then Lemma 5.5 leads to the conclusion that
with probability at least 1 − 6n−10, there exists some constant c1 > 0 and some b ∈ {−1,1}
such that∥∥∥∥qub − 1

μ∗
1
√

n
A1n

∥∥∥∥∞
≤ c1

(
κ
(
κ + φ(1)

)(
γ + φ(γ )

)∥∥∥∥ 1√
n
1n

∥∥∥∥∞
+ γ

‖EA‖2→∞
�∗

)

≤ c1

(
(1 + 3)

(
2c2√
np

+ 8

log(np)

)
1√
n

+ 2c2√
np

√
(n − 1)p

(n − 1)p

)

≤ c2

log(np)

1√
n
,

for some constant c2 > 0. Note that

1

μ∗
1
√

n
A1n = 1

μ∗
1
√

n
EA1n + 1

μ∗
1
√

n
(A −EA)1n = 1√

n
1n + 1

(n − 1)p
√

n
(A −EA)1n.

Then we have∥∥∥∥qub − 1√
n
1n

∥∥∥∥∞
≤ c2

log(np)

1√
n

+ 1

(n − 1)p

∥∥∥∥ 1√
n
(A −EA)1n

∥∥∥∥∞
.
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For any m ∈ [n], by the first inequality of Lemma 5.6, there exists some constant c3 > 0 such
that

P
(∣∣[A −EA]m·1n

∣∣ ≥ c3

√
np logn

) ≤ 2 exp
(
−

c2
3
2 np logn

(n − 1)p(1 − p) + c3
3

√
np logn

)
≤ 2n−11.

Together with a union bound, we have P(‖(A −EA)1n‖ ≥ c3
√

np logn) ≤ 2n−10. Hence,∥∥∥∥qub − 1√
n
1n

∥∥∥∥∞
≤ c2

log(np)

1√
n

+ 1

(n − 1)p

c3
√

np logn√
n

≤ c4

(√
logn

np
+ 1

log(np)

)
1√
n
,

for some constant c4 > 0 with probability at least 1 − 8n−10.
The second part of the proposition is an immediate consequence of the first part. If

np
logn

> max{C1,2C2
2}, all the coordinates of qu have the same sign according to (16). From

Lemma 2.1, we have u = u∗ as u∗ is the leading eigenvector of A ◦ z∗z∗H. If {quj }j∈[n] are all
positive, we have

ẑj = u∗
j /

∣∣u∗
j

∣∣ = z∗
j quj/quj = z∗

j ,

for each j ∈ [n]. That is, ẑ = z∗. If {quj }j∈[n] are all negative, we then have ẑ = −z∗. �

PROOF OF PROPOSITION 2.2. Recall λ∗ is the largest eigenvalue of A ◦ z∗z∗H. From
Lemma 2.1, u∗ is the corresponding eigenvector. Denote λ∗

2 ≥ · · · ≥ λ∗
n as its remaining

eigenvalues. By Lemma 5.4, there exist constants c1, c2 > 0 such that when np
logn

> c1, we

have ‖A −EA‖ ≤ c2
√

np and ‖A ◦ W‖ ≤ c2
√

np with probability at least 1 − 3n−10. By
Lemma 2.1 and Lemma 5.3, we have λ∗ ≥ (n−1)p − c2

√
np, max{|λ∗

2|, |λ∗
n|} ≤ p + c2

√
np,

and λ∗ − λ∗
2 ≥ np − 2c2

√
np. When np

logn
and np

σ 2 are greater than some sufficiently large
constant, we have 4σ‖A ◦ W‖ ≤ np/2 ≤ min{λ∗

1, λ
∗ − λ∗

2} satisfied. Since X − A ◦ z∗z∗H =
σA ◦ W , a direct application of Lemma 2.2 leads to

inf
b∈C1

‖u − ũb‖

≤ 40
√

2

9(λ∗ − λ∗
2)

((
4

λ∗ − λ∗
2

+ 2

λ∗
)
σ 2‖A ◦ W‖2 + max{|λ∗

2|, |λ∗
n|}σ‖A ◦ W‖
λ∗

)

≤ 40
√

2

9np/2

((
4

np/2
+ 2

np/2

)
c2

2σ
2np + (p + c2

√
np)c2σ

√
np

np/2

)

≤ c3
σ 2 + σ

np
,

for some constant c3 > 0. �

5.3. Proof of Theorem 2.1. We first state some technical lemmas that will be used in the
proof of Theorem 2.1.

LEMMA 5.7. There exists some constant C1 > 0 such that for any γ satisfying γ 2np

σ 2 ≥ C1,
we have ∑

j∈[n]
I

{
2σ

np

∣∣∣∣∑
k �=j

AjkWjkz
∗
j z

∗
k

∣∣∣∣ ≥ γ

}
≤ 4σ 2

γ 2p
exp

(
− 1

16

√
γ 2np

σ 2

)
,

holds with probability at least 1 − exp(− 1
32

√
γ 2np

σ 2 ).
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LEMMA 5.8 (Lemma 10 and Lemma 11 of [17]). For any x ∈ C such that Re(x) > 0,
| x
|x| − 1| ≤ | Im(x)

Re(x)
|. For any x ∈ C \ {0} and any y ∈ C1, we have | x

|x| − y| ≤ 2|x − y|.

PROOF OF THEOREM 2.1. Let b1 ∈ C1 satisfy ‖u − ũb1‖ = infa∈C1 ‖u − ũa‖. Denote
δ := u − ũb1 ∈ C

n. Recall qu is the leading eigenvector of A. From Proposition 2.1, Proposi-
tion 2.2 and Lemma 5.4, there exist constants c1, c2 > 0 such that if np

logn
,

np

σ 2 > c1, we have

‖δ‖ ≤ c2
σ 2 + σ

np
,(34)

max
j∈[n]

∣∣∣∣quj − 1√
n
b2

∣∣∣∣ ≤ c2

(√
logn

np
+ 1

log(np)

)
1√
n
,(35)

‖A −EA‖ ≤ c2
√

np,(36)

‖A ◦ W‖ ≤ c2
√

np,(37)

∑
j∈[n]

∣∣∣∣Im(∑
k �=j

AjkWjkz
∗
j z

∗
k

)∣∣∣∣2 ≤ n2p

2

(
1 + c2

√
logn

n

)
,(38)

with probability at least 1 − n−9, for some b2 ∈ {−1,1}.
From (35), when np

logn
≥ 2c2

2, qu is closer to 1n/
√

nb2 than to −1n/
√

nb2 with respect to

ℓ2 norm. From Lemma 5.3, 1n/
√

n is the leading eigenvector of EA. By Lemma 5.1 and
Lemma 5.2, we have

‖qu − 1n/
√

nb2‖ ≤ √
2
∥∥(

I − 1n1
T
n/n

)
qu
∥∥ ≤ 2‖A −EA‖

np
≤ 2c2√

np
.

Recall that u∗ is defined as z∗ ◦ qu in (8). Define δ∗ := u∗ − 1√
n
z∗b2. This yields

∥∥δ∗∥∥ =
∥∥∥∥z∗ ◦ qu − 1√

n
z∗ ◦ 1nb2

∥∥∥∥ =
∥∥∥∥z∗ ◦

(
qu − 1√

n
1nb2

)∥∥∥∥
=

∥∥∥∥qu − 1√
n
1nb2

∥∥∥∥ ≤ 2c2
√

np + 2p

np
.

(39)

By the definition of ũ in (9), we can decompose u into

u = ũb1 + δ = Xu∗

‖Xu∗‖b1 + δ = b1

‖Xu∗‖
((

A ◦ z∗z∗H
)
u∗ + σ(A ◦ W)u∗) + δ

= b1

‖Xu∗‖
(
λ∗u∗ + σ(A ◦ W)u∗) + δ,

(40)

where we use the fact that u∗ is the eigenvector of A ◦ z∗z∗H corresponding to the eigenvalue
λ∗ by Lemma 2.1. With the definition of u∗ and also its approximation 1√

n
z∗b2, (40) leads to

u = b1

‖Xu∗‖
(
λ∗(

z∗ ◦ qu
) + σ(A ◦ W)

(
1√
n
z∗b2 + δ∗

))
+ δ.

For any j ∈ [n], denote [A ◦ W ]j · as its j th row. From the display above, we can express uj

as

uj = b1

‖Xu∗‖
(
λ∗z∗

j quj + σ√
n

∑
k �=j

AjkWjkz
∗
kb2 + σ [A ◦ W ]j ·δ∗

)
+ δj .
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By (4), when uj �= 0, we have

∣∣̂zj − z∗
j b1b2

∣∣ = ∣∣b2b1z
∗
j ẑj − 1

∣∣ =
∣∣∣∣b2b1z

∗
j

uj

|uj | − 1
∣∣∣∣ =

∣∣∣∣ b2b1z
∗
juj

|b2b1z
∗
juj |

− 1
∣∣∣∣

=
∣∣∣∣ ‖Xu∗‖

λ∗ b2b1z
∗
juj

| ‖Xu∗‖
λ∗ b2b1z

∗
juj |

− 1
∣∣∣∣

(41)

which is all about ‖Xu∗‖
λ∗ b2b1z

∗
juj . With

ξj := ∑
k �=j

AjkWjkz
∗
j z

∗
k,

we have

‖Xu∗‖
λ∗ b2b1z

∗
juj = b2quj + σ

λ∗√n
ξj + σ [A ◦ W ]j ·δ∗b2z

∗
j

λ∗ + ‖Xu∗‖
λ∗ δjb2b1z

∗
j .(42)

Note that from (35), we have

b2quj ≥
(

1 − c2

(√
logn

np
+ 1

log(np)

))
1√
n
.(43)

Let 0 < γ,ρ < 1/8 whose values will be given later. Consider the following two cases.
(1) If ∣∣∣∣ σ

λ∗√n
ξj

∣∣∣∣ ≤ γ√
n
,(44) ∣∣∣∣σ [A ◦ W ]j ·δ∗

λ∗
∣∣∣∣ ≤ ρ√

n
,(45) ∣∣∣∣‖Xu∗‖

λ∗ δj

∣∣∣∣ ≤ ρ√
n

(46)

all hold, then from (42) and (43), we have

Re
(‖Xu∗‖

λ∗ b2b1z
∗
juj

)
≥

(
1 − c2

(√
logn

np
+ 1

log(np)

)
− γ − 2ρ

)
1√
n
,

which can be further lower bounded by 1/(2
√

n) for sufficiently large np
logn

. Therefore, uj �= 0
in this case. Then by Lemma 5.8 and (41) we have∣∣̂zj − z∗

j b1b2
∣∣

≤
|Im( σ

λ∗√n
ξj + σ [A◦W ]j ·δ∗b2z

∗
j

λ∗ + ‖Xu∗‖
λ∗ δjb2b1z

∗
j )|

(1 − c2(
√

logn
np

+ 1
log(np)

) − γ − 2ρ) 1√
n

≤
|Im( σ

λ∗√n
ξj )|

(1 − c2(
√

logn
np

+ 1
log(np)

) − γ − 2ρ) 1√
n

+ |σ [A◦W ]j ·δ∗
λ∗ | + |‖Xu∗‖

λ∗ δj |
1

2
√

n

=
σ
λ∗ |Im(ξj )|

(1 − c2(
√

logn
np

+ 1
log(np)

) − γ − 2ρ)
+ 2

√
nσ

λ∗
∣∣[A ◦ W ]j ·δ∗∣∣ + 2

√
n‖Xu∗‖
λ∗ |δj |.
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Note that for any x, y ∈ R and any η > 0, we have (x + y)2 = x2 + 2(η1/2x)(η−1/2y)+ y2 ≤
(1 + η)x2 + (1 + η−1)y2. We have

∣∣̂zj − z∗
j b1b2

∣∣2 ≤ (1 + η) σ 2

λ∗2 |Im(ξj )|2
(1 − c2(

√
logn
np

+ 1
log(np)

) − γ − 2ρ)2

+ (
1 + η−1)8nσ 2

λ∗2

∣∣[A ◦ W ]j ·δ∗∣∣2 + (
1 + η−1)8n‖Xu∗‖2

λ∗2 |δj |2,
where the value of η > 0 will be given later.

(2) If any one of (44)–(46) does not hold, we simply upper bound |̂zj − z∗
j b1b2| by 2. Then

this case can be written as∣∣̂zj − z∗
j b1b2

∣∣2
≤ 4

(
I

{∣∣∣∣ σ

λ∗√n
ξj

∣∣∣∣ >
γ√
n

}
+ I

{∣∣∣∣σ [A ◦ W ]j ·δ∗

λ∗
∣∣∣∣ >

ρ√
n

}
+ I

{∣∣∣∣‖Xu∗‖
λ∗ δj

∣∣∣∣ >
ρ√
n

})

≤ 4
(
I
{
σ |ξj | ≥ γ λ∗} + σ 2n|[A ◦ W ]j ·δ∗|2

ρ2λ∗2 + n‖Xu∗‖2|δj |2
ρ2λ∗2

)
,

where in the last inequality we use the fact I{x ≥ y} ≤ x2/y2 for any x, y > 0.
Combining the above two cases together, we have∣∣̂zj − z∗

j b1b2
∣∣2

≤ (1 + η) σ 2

λ∗2 |Im(ξj )|2
(1 − c2(

√
logn
np

+ 1
log(np)

) − γ − 2ρ)2

+ (
1 + η−1)8nσ 2

λ∗2

∣∣[A ◦ W ]j ·δ∗∣∣2 + (
1 + η−1)8n‖Xu∗‖2

λ∗2 |δj |2

+ 4
(
I
{
σ |ξj | ≥ γ λ∗} + σ 2n|[A ◦ W ]j ·δ∗|2

ρ2λ∗2 + n‖Xu∗‖2|δj |2
ρ2λ∗2

)

≤ (1 + η) σ 2

λ∗2 |Im(ξj )|2
(1 − c2(

√
logn
np

+ 1
log(np)

) − γ − 2ρ)2
+ 4I

{
σ |ξj | ≥ γ λ∗}

+ 8
(
1 + η−1 + ρ−2)nσ 2

λ∗2

∣∣[A ◦ W ]j ·δ∗∣∣2 + 8
(
1 + η−1 + ρ−2)n‖Xu∗‖2

λ∗2 |δj |2.
The display above holds for each j ∈ [n]. Summing over j , we have

nℓ
(̂
z, z∗)
≤ ∑

j∈[n]

∣∣̂zj − z∗
j b1b2

∣∣2

≤ (1 + η) σ 2

λ∗2

(1 − c2(
√

logn
np

+ 1
log(np)

) − γ − 2ρ)2

∑
j∈[n]

∣∣Im(ξj )
∣∣2 + 4

∑
j∈[n]

I
{
σ |ξj | ≥ γ λ∗}

+ 8
(
1 + η−1 + ρ−2)nσ 2

λ∗2

∑
j∈[n]

∣∣[A ◦ W ]j ·δ∗∣∣2 + 8
(
1 + η−1 + ρ−2)n‖Xu∗‖2

λ∗2

∑
j∈[n]

|δj |2
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≤ (1 + η) σ 2

λ∗2

(1 − c2(
√

logn
np

+ 1
log(np)

) − γ − 2ρ)2

∑
j∈[n]

∣∣Im(ξj )
∣∣2 + 4

∑
j∈[n]

I
{
σ |ξj | ≥ γ λ∗}

+ 8
(
1 + η−1 + ρ−2)nσ 2

λ∗2 ‖A ◦ W‖2∥∥δ∗∥∥2 + 8
(
1 + η−1 + ρ−2)n‖Xu∗‖2

λ∗2 ‖δ‖2,

where in the last inequality, we use
∑

j∈[n] |[A◦W ]j ·δ∗|2 = ‖(A ◦ W)δ∗‖2 ≤ ‖A◦W‖2‖δ∗‖2.
We are going to simplify the display above. From (34), (37), (39) and (38), we have

upper bounds for ‖δ‖, ‖A ◦ W‖, ‖δ∗‖ and
∑

j∈[n] |Im(ξj )|2. Using (36), Lemma 2.1 and
Lemma 5.3, we have λ∗ ≥ (n − 1)p − c2

√
np and a crude bound np/2 ≤ λ∗ ≤ 2np when

np
logn

is greater than some sufficiently large constant. Due to the decomposition X = A ◦
z∗z∗H + σA ◦ W and that (A ◦ z∗z∗H)u∗ = λ∗u∗, we have∥∥Xu∗∥∥ = ∥∥λ∗u∗ + σA ◦ Wu∗∥∥ ≤ λ∗ + σ‖A ◦ W‖ ≤ np + c2σ

√
np.

From Lemma 5.7, if γ satisfies γ 2np

σ 2 > c3 for some constant c3 > 0, we have

∑
j∈[n]

I
{
σ |ξj | ≥ γ λ∗} ≤ ∑

j∈[n]
I

{
2σ

np
|ξj | ≥ γ

}
≤ 4σ 2

γ 2p
exp

(
− 1

16

√
γ 2np

σ 2

)
,

holds with probability at least 1 − exp(− 1
32

√
γ 2np

σ 2 ). When c3 is sufficiently large, we have

4σ 2

γ 2np
exp

(
− 1

16

√
γ 2np

σ 2

)
≤

(
σ 2

γ 2np

)3
,

which is due to the fact 4 exp(−√
x/16) ≤ 1/x2 when x ≥ x0 for some large x0 > 0.

Combining the above results together, we have

ℓ
(̂
z, z∗) ≤

(1 + η)( 1
1−c2

1√
np

− 1
n

)2

(1 − c2(
√

logn
np

+ 1
log(np)

) − γ − 2ρ)2

(
1 + c2

√
logn

n

)
σ 2

2np
+

(
σ 2

γ 2np

)3

+ 32
(
1 + η−1 + ρ−2)

c2
2

(
2c2√
np

)2 σ 2

np

+ 128
(
1 + η−1 + ρ−2)(

1 + c2
2σ

2

np

)
c2

2
σ 4 + σ 2

(np)2 .

Note that 1
(1−x)2 ≤ 1 + 16x, ∀0 ≤ x ≤ 1

2 . We have (1 − c2(
√

logn
np

+ 1
log(np)

) − γ − 2ρ)−2 ≤
1+16(c2(

√
logn
np

+ 1
log(np)

)+γ +2ρ) and (1−c2
1√
np

− 1
n
)−2 ≤ 1+16(c2

1√
np

+ 1
n
) as long as

np
logn

is greater than some sufficiently large constant. After rearrangement, there exists some
constant c5 > 0 such that

ℓ
(̂
z, z∗) ≤

(
1 + c5

(
η + γ + ρ +

√
logn

np
+ 1

log(np)
+ γ −6

(
σ 2

np

)2

+ (
η−1 + ρ−2)(1 + σ 2

np

)))
σ 2

2np
.
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We can choose γ 2 =
√

σ 2/(np) (then γ 2np

σ 2 > c3 is guaranteed as long as np

σ 2 > c2
3). We also

set ρ2 =
√

(1 + σ 2)/np and let η = ρ2. Then, there exists some constant c6 > 0 such that

ℓ
(̂
z, z∗) ≤

(
1 + c6

((
σ 2

np

) 1
4 +

√
logn

np
+ 1

log(np)

))
σ 2

2np
.

This holds with probability at least 1 − n−9 − exp(− 1
32(

np

σ 2 )
1
4 ). �
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SUPPLEMENTARY MATERIAL

Supplement to “Exact minimax optimality of spectral methods in phase synchroniza-
tion and orthogonal group synchronization” (DOI: 10.1214/24-AOS2424SUPP; .pdf). In
the supplement [38], we first prove the auxiliary lemmas of Section 5 in Appendix A. We then
include proofs of results for the orthogonal group synchronization in Appendix B. A calcula-
tion to derive (18) is included in Appendix C.
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