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Fundamental Limits of Spectral Clustering in
Stochastic Block Models

Anderson Ye Zhang

Abstract— Spectral clustering has been widely used for com-
munity detection in network sciences. While its empirical
successes are well-documented, a clear theoretical understanding,
particularly for sparse networks where degrees are much smaller
than logn, remains unclear. In this paper, we address this
significant gap by demonstrating that spectral clustering offers
exponentially small error rates when applied to sparse networks
under Stochastic Block Models. Our analysis provides sharp
characterizations of its performance, backed by matching upper
and lower bounds possessing an identical exponent with the same
leading constant. The key to our results is a novel truncated
£2 perturbation analysis for eigenvectors, coupled with a new
analysis idea of eigenvectors truncation.

Index Terms— Spectral clustering, community detection,
stochastic block model, spectral perturbation, network analysis.

I. INTRODUCTION

OMMUNITY detection [1], [2], [3] is a central prob-
lem in network science. The goal is to recover hidden
community structures from network data and has broad appli-
cations in social science, neuroscience, computer science, and
physics. Among various approaches for community detection,
spectral clustering [4], [5], [6], [71, [8], [9], [10], [11], [12],
[13], [14], [15] is a particularly popular one and has achieved
tremendous success. It first reduces the dimensionality of
data by a spectral decomposition and performs clustering in
a reduced-dimension space. It is computationally appealing,
easy to implement, and has surprisingly good performance.
Driven by its popularity and success, there has been growing
interest in theoretical and statistical analysis for the perfor-
mance of spectral clustering. In most literature [4], [16], [17],
[18], [19], spectral clustering is shown to attain polynomially
small errors. As a result, it is often used as a warm start
to initialize [19], [20], [21], [22], [23] delicate procedures
in order to provably achieve exponentially small errors and
even optimal statistical accuracy. However, spectral clustering
performs exceptionally well numerically, indicating a gap
between theory and practice. This raises important questions:
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Does spectral clustering achieve exponentially small errors?
How small can it be?

These questions are answered in a seminal work [24]
that considers a very special setting where the network has
two equal-sized communities and p = a(logn)/n,q
b(logn)/n with fixed constants a,b. The spectral cluster-
ing procedure studied in [24] has a simple form: it only
utilizes the second leading eigenvector of the adjacency
matrix and partitions the network using signs of coordi-
nates. Under this setting, [24] proves the spectral clustering
achieves an optimal exponential rate. However, the procedure,
result, and proof technique of [24] are limited to this spe-
cial setting and cannot be extended to even slightly more
general cases especially when p,q are of a smaller order
of (logn)/n. This leads to the following open problem:
Can we establish sharp exponential error bound for spectral
clustering on sparse networks when the degrees are far smaller
than logn?

In this paper, we address this open problem by demonstrat-
ing that spectral clustering offers exponentially small error
rates when applied to sparse networks under the Stochastic
Block Model (SBM) [25] which is the most studied model
for community detection. In addition, we provide a matching
lower bound that has the same exponent, including the lead-
ing constant, as the upper bound. The matching upper and
lower bounds together give a sharp characterization of the
performance of spectral clustering, demonstrating its ability
and also limit. Hence, we refer to our results as the funda-
mental limits of spectral clustering in SBMs. We emphasize
that this is different from information-theoretical analysis for
SBMs, referred to as fundamental limits of SBMs in [1] and
minimax rates of SBMs in [26]. See Section III-C for further
elaboration.

Consider an n-node network with k£ communities. For every
two nodes, we observe an edge with probability p if they
belong to the same community and q otherwise. The goal is to
recover the hidden community structure z* given the network.
We study a popular spectral clustering procedure [16], [18],
[19], [27] Z that is based on the eigendecomposition of the
adjacency matrix. It first regularizes [28] the network by
removing high-degree nodes, a step that is necessary for the
concentration of sparse networks [29], [30]. It then weights
leading eigenvectors of the regularized adjacency matrix by
corresponding eigenvalues, followed by the k-means cluster-
ing. Its clustering error can be measured by a loss (2, z*).
See Sections II-A-II-B for more details about the model and
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the algorithm. The main result of this paper is summarized
below in Theorem 1.

Theorem 1: Assume k is a constant and all community sizes
ni,Na,...,Ni are of the same order. Assume p, g satisfy 0 <
g < p <1/10 and are of the same order. We further assume

771(’);'1)2 — 00. Then

E4(2,2%) < exp (= (1 —0(1)) Jyin) + 2073,
and  EL(2,2%) > exp (= (1 + 0(1)) i) — 2073,
where
= i _ Pty
o =, e (na =2

—nglog (ge' +1—q) —nblog(pet+1—p)>. (1)

Theorem 1 gives both upper and lower bounds for the partial
recovery of spectral clustering 2. We note that the additive
term 2n~3 in the error bounds can be replaced by n~=C for
an arbitrarily large constant C' > 0, and in general should be
ignored. Then the upper and lower bounds are both in an expo-
nential form with a matching asymptotic exponent Jy,;y . In this
way, Theorem 1 gives an exact characterization of the error
exponent of the spectral clustering, even including the sharp
leading constant. Theorem 1 holds under mild conditions,
allowing networks to have multiple imbalanced communities
and to be sparse with p,q < (logn)/n. The assumption
n(p — q)?/p — oo is known to be the necessary and sufficient
condition to have consistent community detection [26]. It is
also worth mentioning that Theorem 1 characterizes precisely
the performance of the spectral clustering for each instance of
z*, which is beyond the minimax framework that only focuses
on the worst case of a large parameter space.

The asymptotic exponent Jy,i, in Theorem 1 has a compli-
cated dependence on p,q and the community sizes. Despite
no explicit expression, the quantity Jpi, is closely related to
tail probabilities of Bernoulli random variables. Let {X;} and
{Y;} be independent Bernoulli random variables with proba-
bilities g, p respectively. By Chernoff bound (see Lemma 15),

doXi— ), sz(na—nb)p;q

i€[na) J€[n]
= (14 0(1)) Juin

min

—logP
1<a#b<k 08

To further explain why Jni, appears in Theorem 1 and is
fundamental for the performance of the spectral clustering,
we study an oracle estimator that is inspired by Z but uti-
lizes the unobserved population eigenstructure instead of the
sample one. Its corresponding statistical accuracy turns out
to be determined by the aforementioned tail probabilities (see
Section II-D).

Under the setting of Theorem 1, Ji,in, and n(p — q)?/p can
be shown to be of the same order (see Lemma 13). Hence,
the assumption n(p — q)?/p — oo in Theorem 1 can be
replaced by Juyi, — oo and is the sufficient and necessary
condition for Z to have a vanishing error. Theorem 1 also
immediately indicates a sharp threshold of the exact recovery.
When Juin > (1+¢€)logn for any constant € > 0, 2 achieves
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the exact recovery (i.e., (2, 2*) = 0) with high probability.
When Jyin < (1 — €)logn for any constant ¢ > 0, Z fails
to achieve the exact recovery with constant probability, i.e.,
P (¢(%,2*) # 0) > ¢ for some constant ¢ > 0.

The most related work in the literature is [24]. As mentioned
earlier, [24] considers a very special setting where the network
has two equal-sized communities and p = a(logn)/n,q =
b(logn)/n with fixed constants a,b and its results cannot
be extended to even slightly more general cases. On the
contrary, our results hold for general SBMs and cover the
setting of [24] as a special case. Other closely related papers
including [31], [32], [33] obtain exponential error bounds
for spectral clustering under Gaussian and sub-Gaussian mix-
ture models. However, they rely heavily on Gaussianity and
sub-Gaussianity of data. Direct application of their results to
networks or to other binary data can only lead to trivial upper
bounds.

The key to Theorem 1 is a novel truncated ¢ perturbation
analysis for eigenvectors and a proof idea of eigenvectors
truncation. Let u be one of the leading k eigenvectors of
the regularized adjacency matrix. Analysis of the spectral
clustering shows that tail probabilities of quantities in the form
of 3 icm wi(Xi —EX;) play a crucial role, where {X;}ic[y
are some Bernoulli random variables such as edges of a node.
Direction applications of classical concentration inequalities
for Bernoulli random variables often involve |lu||, that has
some inevitable logn factor. To deal with this logn factor
and to derive meaningful tail probabilities, p has to be at
least of an order (logn)/n as seen in literature [24], [34],
[35]. However, in this paper, we consider sparse networks
with the connectivity probability allowed to be far smaller
than (logn)/n and the aforementioned analysis breaks down.
Instead, we truncate coordinates of u by some carefully
selected threshold ty. The truncated eigenvector has an f.,
norm bounded by ty and its inner product with {X; — EX;}
is well-controlled with desired tail probabilities. The approxi-
mation error of replacing u by its truncated counterpart turns
out to be related to 3¢, [[us 12 T{|us| > to}, which we refer
to as a truncated /5 norm of u. We establish an upper bound
for the truncated ¢ norm in Theorem 3 and further show
such approximation error is negligible. The idea of eigenvector
truncation and Theorem 3 are critical to establishing sharp
upper and lower bounds in Theorem 1, and might be useful
for fine-grained spectral perturbation analysis of other binary
random matrices. To establish Theorem 1, we also use a leave-
one-out technique [24], [36] to decouple dependence between
the eigenvectors and the regularized adjacency matrix.

We conclude this section by summarizing contributions of
this paper:

1) Our result is the first in the literature to show spectral
clustering has exponentially small error rate for sparse
networks.

2) Our characterization of the performance of spectral
clustering is sharp and precise. In addition to the
upper bound, we provide a matching lower bound
that has the same exponent, including the leading
constant.
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3) Our results are backed by a novel spectral perturbation
analysis that could be a valuable tool for other sparse
graph problems.

Organization: In Sections II-A-II-B, we provide more
details about SBMs and give a detailed implementation of
the spectral clustering. In Section II-C, we give a preliminary
polynomial upper bound for the performance of the spectral
clustering. In Section II-D, we carry out an oracle analysis
to provide intuition on the fundamental limits of the spectral
clustering. We establish the upper bound part of Theorem 1
in Section III-A and the lower bound part in Section III-
C. The truncated ¢ perturbation analysis of eigenvectors is
presented in Section III-B. The proofs of the upper bound and
the truncated ¢» perturbation analysis are given in Section V-
A and Section IV-B, respectively. We include the proof of the
lower bound in the appendix, along with proofs of the results
of Section II and all auxiliary lemmas.

Notation: For any positive integer r, let [r] := {1,2,...,r}.
For any vector =, we denote ||z|| := max; |x;| to be its {o
norm and ||z||; = >, |#;| to be its £; norm. For a matrix A,
denote A;. and A.; to be its ith row and column, receptively.
We further denote || Al to be its operator norm, ||Al|, to be
its Frobenius norm, and ||Al|, ., := max; ||A;.| to be its
maximum ¢, norms of rows. For any two numbers a,b € R,
we denote a A b := min{a,b} and a V b := max{a,b}.
We denote 1{-} as the indicator function. For any two positive
integers a, b, we denote I, to be the a X a identity matrix and
O(a,b) to be the set of all @ x b matrices with orthogonal
columns. For any random vectors X,Y, and Z, we use X L
Y'|Z to mean X and Y are independent conditioned on Z. For
any event G, we denote G to be its complement.

II. PRELIMINARIES
A. Community Detection and Stochastic Block Models

Consider an n-node network with its adjacency matrix
denoted by A € {0,1}"*" such that A = AT and A;; =
0 for all ¢ € [n]. Under the SBM, all edges {A;;}1<i<j<n
are independent Bernoulli random variables with probabili-
ties depending on the underlying community structure. Let
z* € [k]™ be a community assignment vector such that each
coordinate indicates which community the corresponding node
belongs to. We assume

p, if 2 = 2%,
]EAij N {q OWZ ’

for all 1 <7 < j <n, where 0 < ¢ < p < 1. That is, nodes
are more likely to be connected if they are from the same
community: the probability for two nodes to be connected is
p if they belong to the same community and is ¢ otherwise.
The goal of community detection is to estimate z* given the
network A. Throughout the paper, we assume k, the number
of communities, is known.

We denote nq,...,n; to be community sizes such that
Na = Y e 1{z] =a} for all a € [k]. Define 8 :=
(mingepr) nq)/(n/k) such that fn/k is the smallest commu-
nity size. For any z € [k]™, its performance for community
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detection can be measured by the following loss function [19]:
1
£(z,2") ;== —min Z I{z; = ¢(2])},

where ® := {¢ : ¢ is a bijection from [k] to [k]}. Itis a value
between 0 and 1, giving the proportions of nodes mis-clustered
in z compared to z*.

B. Spectral Clustering

Spectral clustering refers to clustering procedures built upon
the eigendecomposition or the singular value decomposition of
matrices constructed from data. There exist different variants
of spectral clustering for community detection [7], [37], [38],
[39], [40]. They differ in the matrix on which the spectral
decomposition is applied and in what spectral components
are used for the subsequent clustering. The spectral clustering
considered in this paper is a popular one and has been widely
studied in literature. It contains three steps summarized below
with the detailed implementation given in Algorithm 1.

Algorithm 1 Spectral Clustering for Community
Detection in Stochastic Block Models
Input: Adjacency matrix A € {0,1}"*", number of
communities k, threshold 7
Output: Community assignment 2
1 Define d; := >, ,; Aij for all i € [n] to be degrees of
A. Let A be a trimmed version of A by replacing its
ith row and column by O whenever d; > 7 , for all
i € [n]. That is, for all i, j € [n],

. {Aij, if i, d; <,
ij 1=

0, o.w.

2 Let the eigendecomposition of A be
A= Zie[n] Niwjul with eigenvalues Ay > ...
and eigenvectors uy, ..., u, € R". Define
U := (u1,...,u) € R"* to be the leading
eigensapce and A := diag(\q, ..., \x) € R¥*¥ to be
the diagonal matrix with the leading k eigenvalues.
Denote Us.,...,U,. € R'*™ to be rows of U.

3 Apply k-means on the rows of UA € R™** and let 2
be the clustering output. That is,

(2,{61,...,0,})

= argmin
z€[k]™,01,...,0, ERIXK

> An

SlUiA=0.7. @

1€[n]

In the first step, we regularize the adjacency matrix by
removing high-degree nodes, i.e., nodes with degrees greater
or equal to the threshold 7. This step is necessary for sparse
networks as the adjacency matrix A is known to be away from
its expectation EA when p < (logn)/n. On the contrary,
by zeroing out rows and columns of A that correspond to the
high-degree nodes, we have a trimmed adjacency matrix A
that is highly concentrated around EA [29], [30]. Primarily
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for the sake of theoretical analysis, we choose
7 = 20np,

throughout the paper. However, it is conceivable to replace this
with a more general form, such as C'np, where C represents a
large constant. It is important to emphasize that the inclusion
of p, an unknown parameter, in both 20np and Cnp makes
the threshold, 7, impractical for direct application. In order
to render Algorithm 1 more feasible in practice, one could
follow the approach in [19] and [41] by setting 7 to be C’ d.
Here, d stands for the average degree and C’ is a sufficiently
large constant. Nevertheless, for the purposes of streamlined
theoretical exposition, we have opted for 7 = 20np ino this
paper.

In the second step, we obtain two matrices U, A through the
eigendecomposition of A, where U is a matrix including the
leading k eigenvectors and A is a diagonal matrix with the
leading k eigenvalues. Throughout the paper, we refer to U
as the leading eigenspace of A. Since eigenvectors are not of
equal importance, they are weighted with their corresponding
eigenvalues and UA is used for the subsequent clustering.

In the third step, we perform the k-means clustering on rows
of UA which are of dimension k. Compared to the adjacency
matrix A, we greatly reduce the dimensionality of data from
n to k as usually £ < n and perform clustering in a low-
dimensional space. The k-means clustering returns a partition
of the data and cluster centers, which are denoted as Z and
{02} e k] Tespectively.

Algorithm 1 effectively performs a rank-%k approximation of
A as part of its process. To elaborate, after constructing Ain
Algorithm 1, applying k-means directly to the rows of UA is,
in fact, equivalent to performing k-means on the rows of the
rank-k approximated matrix UAUT € R™*"_ This equivalence
arises because the orthonormal columns of U ensure that
the Euclidean distance between the rows in UA remains
unchanged in UAUT. Formally, for any two indices i, j € [n],
the distance property ||U;. A — U, Al = ||U. AUT —U;. AUT||
holds, guaranteeing identical clustering results from k-means
on either matrix. Although the two approaches are equivalent
in terms of clustering outcome, using U A instead of UAU for
k-means offers computational benefits, as the former reduces
the computational load and storage requirements, given the
lower dimensionality of UA compared to UAU”. As a result,
in the third step of Algorithm 1, k-means is applied to UA
instead of the rank-k approximation of A.

The current form of Algorithm 1 is tailored for the standard
SBMs introduced in Section II-A. However, it holds potential
for adaptation to more complex models such as bipartite
SBMs, which are characterized by an asymmetric adjacency
matrix with distinct row and column community structures,
as studied in [18]. To accommodate the unique features
of bipartite graphs, the algorithm requires modification as
follows. In the initial step, we compute both row-wise and
column-wise degrees to identify and trim high-degree nodes,
resulting in a matrix A. Subsequently, instead of eigende-
composition, singular value decomposition (SVD) is applied
to A, yielding the left singular matrix U, right singular
matrix V, and a diagonal matrix of singular values A. This
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adaptation leverages the asymmetry of the bipartite structure.
Finally, community detection is performed by applying k-
means clustering separately to the rows of U A and the columns
of AV, facilitating the recovery of the distinct row-wise and
column-wise community structures.

It should be emphasized that Algorithm 1 is not a novel
contribution of this paper. Our primary contribution lies not
in the algorithm itself, but in the precise and detailed analysis
of its performance.

C. A Polynomial Upper Bound

In this section, we provide preliminary analysis for the
spectral clustering and show it achieves a polynomial error
rate. We first introduce a matrix P € R™*" defined as

It can be viewed as a population matrix with A being its sam-
ple counterpart. Note that P is different from the expectation
matrix [EA as the latter has all diagonal entries being zero due
to the fact that the network has no self-loops.

The matrix P is rank-k. Let the eigendecomposition
Pbe P = 3,y Mujui” with eigenvalues A\f > ...
. and eigenvectors uj,...,u; € R". Define U*
(uf,...,u;) € R™*¥ (o be the leading eigenspace and A* :=
diag(A},...,A;) € RF** (o be the diagonal matrix with the
leading k eigenvalues. Then we have P = U*A*U*T and the
matrix U*A* satisfies the following property.

Lemma 1: The matrix U*A* € R™** has k unique rows.
To be more specific, there exist 67,...,0; € R** such that
(U*A*);. = 07. for all i € [n]. In addition,

16a = 051l = Vo + nu(p — ),

and [|0%]|? = (p? — ¢*)na + ¢°n, for all a,b € [k] such that
a #b.

Lemma 1 reveals that rows of U*A* are equal if their
corresponding nodes belong to the same community and the
k unique rows {0’} are separated from each other. As a
result, if the k-means clustering is performed on rows of
U*A*, we will have a perfect partition of the network with
clustering centers {6%}. But this is unrealistic as U*A* is
unobserved. A natural idea is to use the eigendecomposition
of the adjacency matrix A. Intuitively, if A and P are close,
then U*A* is close to its counterpart obtained from A, and
consequently the clustering error using the latter is small.
However, it is known in random matrix and graph theory that
sparse random graphs do not concentrate [29], meaning that A
is away from P*. Recent literature reveals that the removal of
the high degree vertices enforces concentration [29], which
motivates the use of A instead of A in Algorithm 1. The
concentration of A around P (note that P are EA are nearly
equal as they only differ in diagonal entries) is given in the
following Lemma 2.

Lemma 2: There exists a constant Cy > 0 such that

HA_EAH < Con/mp 3)

v e

with probability at least 1 — 2n73.

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 19,2024 at 05:25:33 UTC from IEEE Xplore. Restrictions apply.



7324

In Lemma 2, Cj represents an unspecified absolute con-
stant. Lemma 2 is given as Lemma 12 and proved in [30].
Despite that [30] only states that the upper bound holds with
probability 1 — o(1), its proof gives an explicit expression for
the probability that is at least 1 — 2n~3. However, [30] does
not give an explicit value for Cj. By scrutinizing its proof,
1 — 2n~3 in Lemma 2 can be generalized to 1 — n~" for
any constant > 0, and then Cy can be denoted as Cy(r),
a function of r. A similar result is given as Theorem 1.1 and
proved in [29]. The proofs in [29] and [30] are lengthy and
technical. For these reasons, and to maintain focus on the core
contributions of our work, we choose not to include the proof
of the lemma in this paper and refer readers to these sources
for a broader context of graph concentration.

In the remaining part of the paper, we will analyze the
performance of the spectral clustering under the with-high-
probability event that A is well-concentrated around EA.
Denote an event

F :=I{||A - EA| < Coy/np}, )

where Cj is the constant from the statement of Lemma 2. Then
P (F) > 1—2n=3. Under F, by classical spectral perturbation
theory, we immediately have the following preliminary result.

Proposition 1: Assume the event F holds. There exist
constants C7,Co > 0 and some ¢ € ® such that if "(p yan k%) >
C4, we have

kB~ 'p

n(p —q)?’ ®

LY s #6G) < O

1€[n]

and max

a€lk]

OsiyU” — 00"

| <8 hyp (6

The upper bound in (5) is essentially equal to the reciprocal
of n(p—q)?/p, a quantity regarded as the signal-to-noise
ratio in the community detection literature [26]. Hence, (5)
decreases polynomially as n(p — ¢)?/p grows and we refer
to it as a polynomial upper bound. Proposition 1 also gives
an upper bound for the deviation between cluster centers
{6,} and their population counterpart {#*}. Results similar
to Proposition 1 for spectral clustering can be found in [16],
[31], [33]. Proposition 1 serves as the starting point for our
further analysis toward Theorem 1.

D. Oracle Analysis and Exponents

In this section, we provide heuristic arguments to explain
why the spectral clustering has exponential error bounds and
to derive the exponent Jy,i,. For any two positive integers
my, meo, define

= max ((m1 — mg)tm

J, :
m1,mz2,p,q o 9

—mllog(qet—l—l—q) —mglog(pe_t—i—l—p)). @)

Then Jmin = mini<axb<i Jn, ny,p,q- FOr simplicity, we con-
sider a two-community SBM. In addition, instead of analyzing
£, we study a simplified procedure Z € {1,2}" defined as
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follows:

s Loif [[A,. U =07 < [|A. U —65]]
)2, ow

We refer to Z as an oracle estimator since it involves the
unknown U* and 07,05 and is not practical. Nevertheless,
Z is closely related to Z as we elaborate below. Note that
z performs clustering on rows of AU as AU = UA. The k-
means clustering (2) implies ; is equal to 1 if | A;.U — 6] <
| A;.U — 65| and is equal to 2 otherwise for each i € [n]. As a
comparison, Z has a similar form but with AU replaced by
AU* and 6, 0, replaced by 01, 05. Since 07, 05 are provided, 2
is more of a classification procedure than a clustering method.
Despite all these discrepancies, Z captures the key ingredient of
z and analyzing Z reveals fundamentally important properties
of the spectral clustering.

The following proposition characterizes the statistical accu-
racy of the oracle estimator with both upper and lower bounds.
From Proposition 2, the oracle estimator has an exponential
classification error with Jni, being the exact asymptotic
exponent. Though it only considers £ = 2 case, it can be
generalized to multi-community cases with Jy,;, appearing in
the exponent.

Proposition 2: Consider a two-community SBM with com-
munity sizes ni,ns both of the order n. In addition, assume
0<q<p<1/2, p,q are of the same order, and w
00, we have

Zﬂ{zl#z

16 n)

<exp(—(1—o(1)) (Jm,nz,p,q A anmhp,q)) )

and

Zﬂ{zl#z )
) (

Zexp (1+o0(1

J”lv”?vpvq 7127"171)7(1))

To explain why Jy, ny.p.q¢ N Jnsni,p,q appears in Proposi-
tion 2, let us consider any ¢ € [n] such that 2] = 2. By simple
algebra (see proof of Proposition 2), the event I{2; # 2} can
be written equivalently as

IQ > Ay-

ok
].zj_l

+
> A= (- nz)? 5 . ®
j;éi:z;f=2

Note that for any j € [n], A;; is a Bernoulli random variable
with probability ¢ if z;‘ land pif 25 = 2 and j # .
In addition, [{j : z; = 1}| = ny and |{j # i : 2] =
2} = ng — 1. Let {X } and {Y;} be independent Bernoulli
random variables with probabilities g,p respectively. Then

EI{z; # z}} is essentially equal to

P E:Xr—

1€[nq]

Jr
Z YjZ(nl—nz)p?q )
J€lnz]
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where we ignore a minor difference between ny and
ng — 1 which is negligible. For this tail probabil-
ity, a direct application of Chernoff bound leads to
an upper bound exp (—Jn, ny,pq), and its lower bound
exp (—(1 +0(1))Jn, napg) can be established using the
Cramér-Chernoff argument. Similarly, J,,, n, p 4 appears in the
analysis for any ¢ € [n] such that zf = 1. Between these
two exponents, the smaller one of Jy, nypq and Jy, 0y pg
dominates and leads to Proposition 2.

III. MAIN RESULTS

A. Upper Bound

In this section, we present one main result of the paper:
a sharp upper bound for the performance of the spectral
clustering. Theorem 2 is essentially the upper bound part of
Theorem 1 but with an explicit formula for the o(1) term in
the exponent.

Theorem 2: Under the assumption that 371, k = O(1),
0<g<p=<1/10,2=0(1), and "(T’TW — 00, there exists
some constant C' > 0 such that

E((2,2%) <

The upper bound in Theorem 2 involves two terms, the
exponential term is essentially from E£(Z, z*)I {F} where we
study £(2,z*) under the event F and the term 2n~3 comes
from P(F¢) < 2n~3 (see Lemma 2). Since 2n~3 can be
improved into n~C for any constant C' > 0 by scrutinizing
the proof of Lemma 2, it should be generally ignored.
By Lemma 13, Jyin can be shown to be of the order n(p —
q)?/p. Hence, n(p — q)?/p — oo is the sufficient condition
for £ to have a vanishing error. When J,i, > (1 + €)logn
for any constant ¢ > 0, Theorem 2 immediately implies
that Z achieves the exact recovery with high probability.
Theorem 2 requires that the number of communities £ remains
constant. However, our preliminary result in Proposition 1,
allows k to increase with n, provided it does not grow faster
than ("(ﬁp_i}qj)%. This more restrictive condition on & in our
main results arises from the limitations of our current proof
techniques.

The proof of Theorem 2 is quite involved. Below we give
an overview of the proof and highlight challenges we face
and new ideas and techniques we use to address them. Since
AU = UA, the k-means clustering is performed on rows of
AU and #; satisfies 2; = argmin, | A;.U — 6,]| for each
i € [n]. Consider any node i € [n] and any a # z;. The node
will be incorrectly clustered if || AU — 6, < || AU — éZ;
happens, an event that is about (A;. — EA;.)U. To analyze it,
we further decompose it into two terms: one is essentially in a
form of (A;. —EA;.)U* and the other one is (A;. —EA;.)(I —
UrUuTu.
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The analysis for the term (A; — EA;)U* is relatively
straightforward. It eventually leads to the following event

11{ > Ay -

j:z;.‘:a

+
Z Az]Z(na_nz;‘)p2q
Jizp=2 i

_o(l)(na+nz;)p2_q}, )

which mimics the event (8) of the oracle estimator. The
existence of o(1)(ng + n.:)(p — q)/2 is due to the discrep-
ancy between the spectral clustering and the oracle estimator.
The probability of the event (9) leads to an upper bound
exp (—(1 — o(1))Jn, n«p,q)- Going through all ¢ € [n] and
a € [k], the largest one is exp (—(1 — o(1))Jmin) and appears
in the upper bound of Theorem 2.

The proof of Theorem 2 mostly focuses on analyzing tail
probabilities of (A; —EA;.)(I —U*U*T)U which is the most
difficult and technical part toward establishing Theorem 2.
There are two main challenges. The first challenge is that A;.
and U are heavily dependent on each other. This challenge can
be addressed by a refined leave-one-out technique to decouple
the dependence. The second challenge is more critical and is
the reason why we need to develop new techniques. For the
purpose of illustration, let us consider a simplified setting:
we want to study tail probabilities of (X — EX)u where

X € {0,1}1*" with X; “d Bernoulli(p) and is independent of
u, a column of (I — U*U*T)U. Existing literature [24], [34],
[35] typically applies classical tail probabilities of Bernoulli
random variables (e.g., Bernstein inequality) which involve
both ||u|| and ||u||~. Between these two norms, the former one
is well-controlled but the latter one is essentially ||U |2, that
has some inevitable logn factor. To deal with this logn factor
and to derive meaningful tail probabilities, p has to be much
bigger than (logn)/n. However, in this paper, we consider
sparse networks with the connectivity probability allowed to
be far smaller than (logn)/n and the aforementioned analysis
breaks down.

To analyze (A;. — EA;.)(I — U*U*T)U, we develop a new
technical tool that avoids the use of ||u||,, by truncating its
coordinates. More accurately, to avoid dealing with |U]|, _,
we truncate rows of U if their /5 norms are above a certain
threshold. Let ¢ > 0 and define a mapping f; : R1*% — R1x*

such that
z, if ||z| <t,

: (10)
@/ |l2ll, if |zl > ¢.

That is, f;(z) truncates x if ||z|| > ¢ so that ||f;(z)| <t is
always satisfied. If £ = 1, f; is a truncation operator such
that fy(x) = zI{|z| <t} +tI{x >t} — tI{x < —t} for any
scalar 2. Apply f; to rows of U and we get a matrix U € R"**
defined as

(1)

The definition of U ensures ||U||2,o < t. Note that U depends
on the value of ¢. In the proof of Theorem 2, we set t =

Ui. = ft(Uz),VZ € [Tl]
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t0~where to is defined later in (13). With U, we decompose
(A, —EA (I —U*U*T)U into

(A —EA)(I - UUTU = (A —EA) (I - U UT)O
+ (A;. —EBA)(I - U*U*T (U - U). (12)

We now use classical concentration inequalities to analyze
(A;. —EA;)(I —U*U*T)U (after decoupling the dependence
between A;. and U by the leave-one-out technique) thanks
to that the controlled |U]|2,00. It leads to negligible tail
probabilities that can be absorbed into exp (—(1 — 0(1))Jmin)-
Aggregating all i € [n], the impact of (A; — EA;)(I —
U*U*T)(U — U), the second term in (12), turns out to be
related to a truncated (2 norm 3,1 [|Ui.| *T{||Us|| > to}-
According to Theorem 3 below, this truncated ¢5 norm is expo-
nentially small. With the help of Theorem 3, the contribution
of {(As. —EA)I—U*U*T)(U—~T)} toward £(2, z*) is also
negligible and can be absorbed into exp (—(1 — o(1))Jmin)
as well. In this way, we derive the exponential term
exp (—(1 — o(1))Jmin) in Theorem 2.

B. Truncated {, Perturbation Analysis for Eigenspaces
Theorem 3: Define

o 160K> [ k-

Under the assumption that 371k = O(1),0 < ¢ < p < 1/2,
and n(p—q)*
p

13)

— 00, wWe have

E | > NTPT{|T | = to} | T{F}

i€[n]
3 _ 2
< t%nexp <_n(p2pq)) .

Theorem 3 provides a truncated ¢o norm for U and is
crucial to establishing Theorem 2. The choice of ¢y in (13) is
carefully chosen. Note that ||[U*||2,.c = v/k/(8n) according
to Lemma 3. When 3,k are both constants, ty is equal to
[IU*||2,00 multiplied by a large constant. Since U can be seen
as a perturbation of U*, the truncated ¢ norm can also be
interpreted as a perturbation bound for U and U*. Particularly,
it focuses on rows of U with norms that far exceed the baseline
[lU*]|2,00- Theorem 3 immediately implies the number of such
rows is exponentially small.

Corollary 1: Under the same assumption as in Theorem 3,
we have

3n(p — q)2> .

2p

E( S I{|Us] = to} | I{F} < nexp (—

i€[n]

Theorem 3 and Corollary 1 together provide insights on
why the eigenvector truncation idea works in analyzing (/L -
EA;)(I — U*U*T)U in the proof of Theorem 2. Let us
revisit the simplified setting (X —EX)u discussed above. The
magnitude of ||u|| ., does break down classical concentration
inequalities. However, these concentration inequalities are
usually sharp for the worst case: their upper bounds hold for all
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weight vectors u with given [ju|| and ||u||,. On the contrary,
the particular u appearing in our analysis is very special: it has
a small number of high magnitude coordinates (Corollary 1)
which have an exponentially small aggregated /5 norm (The-
orem 3), an important property completely ignored if classical
concentration inequalities are applied. Instead, in our analysis,
we fully exploit this structure by singling out high-magnitude
coordinates of u using the eigenvector truncation and eliminate
the use of ||ul|. . This is the intuition behind (12) which
is crucial to proving Theorem 2. The idea of eigenvector
truncation, the decomposition (12), and Theorem 3 might
be useful for spectral perturbation analysis of other random
matrix problems and models.

The proof of Theorem 3 is also complicated. Since U =
AUA™, for each i € [n], the event ||U. ||>T{||U;.|| > to} is
essentially also about (A;. —EA;.)U, the same as in the proof
of Theorem 2. As a result, we face the same challenges that
appear in the analysis of Theorem 2, and we address them with
the same eigenvector truncation arguments and techniques.
Similar to how we establish Theorem 2, we decompose
(fli. — EA;)U into two parts: one eventually leads to a
well-controlled tail probability of (A;. — EA; )U*, and the
other one involves (A;. —EA;.)(I — U*U*T)U. For the latter
one, we use (12) again, handle the quantity (A;. — EA;.)(I —
U*U*T)U with the help of the leave-one-out technique, and
aggregate (A; —EA;)(I—U*U*T)U across all i € [n] which
leads 0 3=;c(,, | Us|I* TI{||Us.|| > to}. The remaining part of
the proof is different from that of Theorem 2. So far, we obtain
an inequality: its left-hand side is our target of Theorem 3, the
truncated {2 norm ;.1 [|Ui. IPI{||U;.|| > to}: its right-hand
side involves various terms with one being the truncated
{5 norm as well. The one appearing on the right-hand side
(from the aggregation of {(A; — EA;)(I — U*U*T)U}) can
be shown to have a small constant factor and consequently can
be absorbed into the one on the left-hand side. The inequality
then becomes an upper bound for the truncated /5 norm and
leads to Theorem 3.

C. Lower Bound

Following the proof of Theorem 2 with some modifications,
we are able the obtain a matching lower bound presented
below in Theorem 4. It corresponds to the lower bound part
of Theorem 1.

Theorem 4: Under the same assumption as in Theorem 2,
there exists some constant C’ > 0 such that

El(2,2") >

By Lemma 13, Jyy is of the order n(p—q)?/p. Theorem 4
indicates n(p — q)?/p — oo is the necessary condition for 2
to have a vanishing error. When Ji;, < (1 — €)logn for any
constant € > 0, Theorem 2 immediately implies that Z has a
constant probability of not achieving the exact recovery.

Theorem 4 complements Theorem 2 and together they
provide a precise characterization of the performance of the
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spectral clustering Z, which is referred to as its fundamen-
tal limit in this paper, demonstrating its ability and limit.
This differs from the information-theoretical perspective on
SBMs, referred to as fundamental limits of SBMs in [1] and
minimax rates of SBMs in [26]. Specifically, [1] establishes
a sharp threshold for exact community recovery, delineating
a boundary where below it, no algorithm can succeed, and
above it, there exists an algorithm capable of exact recovery.
Reference [26] gives the minimax risk of the community
detection problem: inf;zsup,. El(Z,z*) where the infimum
is over all possible algorithms. In contrast, our focus is on
the spectral clustering algorithm 2, with Theorems 2 and 4
providing bounds for E4(Z, z*).

From Theorems 2 and 4, the efficacy of Z for exact recovery
hinges on whether Jyin/logn > 1+ € or Jyin/logn <
1 — ¢, for some constant ¢ > (0. For SBMs where all
connectivity probabilities are of order (logn)/n, [1] showed
that exact recovery is feasible by some algorithm if and only
if the Chernoff-Hellinger divergence D, > 1. Although both
Jmin/logn and D relate to tail probabilities of Bernoulli
random variables, they are distinct; the former is specific to
the performance of spectral clustering, while the latter arises
from the information-theoretic analysis.

IV. PROOFS OF THEOREM 2 AND THEOREM 3

In this section, we give detailed proofs of Theorem 2 and
Theorem 3. Before giving the proofs, we first introduce some
useful concepts and tools and state some important properties.

Preliminary Results From Proposition 1: Recall the defi-
nition of the event F in (4). Under this event, Proposition 1
gives a preliminary analysis for the performance of the spectral
clustering, showing that there exists some constant Co > 0 and
some ¢ € ® such that (5) and (6) hold as "(f’;k%)2 — 0.
Without loss of generality, we can assume ¢ = Id. Then (6)
leads to

0,UT —0:U*T (14)

max
a€lk]

‘ < Czﬁ_0'5k\/]3.
In addition, we have

EE@,%UH{F}::E%:E:H{éi#;ﬁ}H{F}. (15)

i€[n]
Facts About U: Define
S:={ien]:d;i >71},

to be the set that includes all indexes of rows and columns
zeroed out in the spectral clustering where the value of 7 is
given in Algorithm 1. Then A can be written equivalently as

Since U is the leading eigenspace of A, we have

Ui =0,Yi € S, (16)

and consequently ||U.|| = 0,¥i € S. In addition, we have

(A;. —EA)U = (A;. —EA;)U,Vi ¢ S. (17)
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This is becgluse due to (16), the left-hand side of (17) is equal
to ngS(Aij — EA”)UJ = ngS(Aij — ]EAU)UJ which is
equal to the right-hand side of (17).

Row-Wise Truncation of U: In the proofs of the main
theorems, we need to study quantities that involve rows of
A and U. To avoid dealing with [|U||, ., we truncate rows of
U if their /5 norms are above a certain threshold. Recall the
definitions of f; and U in (10) and (11). Since || f;(z) — z| <
le| L{]l]| > 1}, we have

U =012 =3 ||V = 0| < 3 0P T{|Us | = 1.
i€[n] i€[n]

(18)

Note that U depends on the value of . In the proofs of the
main theorems, we will first consider any ¢ > 0 and then set
t = to.

Leave-One-Out Counterparts of U and U: One challenge
is that rows of A and U are not independent of each other.
To decouple the dependence, we introduce leave-one-out coun-
terparts of U and U. For any i € [n], define A®) € {0,1}"*"
to be the leave-one-out counterpart of A such that

AW = Al {j #iand I £}V, € ). (19)

That is, A is obtained from A by zeroing out its ith row and
column. Let U € R"** be the leading eigenspace of AW,
Under the event F and "(fgﬁ); — 00, conditions in Lemma 7
are satisfied, which leads to

HU—U@W@

< 6]€1‘5
F

Uil (20)

for some orthogonal matrix W@ e O(k, k). Apply f, to rows
of U® and we have U(®) € R"*¥:

0% = £,UP),] € [n].
Since W is an orthogonal matrix, for any j € [n],
we have HU;?)W(")H = HUJ(”H and consequently, U)W () =
ft(U](.i)W(i))- By Lemma 8, we have ||U;. — Uj(l wo| =
1£:(U;) = LOPW)| < U — UPWO|. Then (20)

gives

HU,waw

<HU7UmW@
. S

< 6k U
F
(22)

Similar to U, U depends on the value of ¢. In the proofs of
the main theorems, we will first consider any ¢ > 0 and then
set t = tg.

Decomposition of Rows of A: For each i € [n], A;
and the leave-one-out eigenspace U still depend on each
other, mainly due to the removal of high-degree nodes and
S. To further decouple the dependence, we need to have a
decomposition for A;.. Define a set

Sii=qj€:j#iand Y Ajy>7-1 (23)
1,5
By its definition, .S; is independent of A;.. We also have
Su{i} c S U{i}. (24)
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This is because for each j ¢ i, we have d; — (3_,,; ; Aji) =
Aj; = A;; € {0,1}. As aresult, if j € S, it must be in S; as
well; if j € S;, it is in S if and only if A;; = 1. This leads
to the independence between S U {i} and coordinates in A;.
with indexes not in S; U {i}, conditioned on the set S; U {i}.
Define A;., P;. such that

Ajj == A l{j #iand j € S5}

and P := P;I{j #i and j € S§},Vj € [n]. (25)

Then the aforementioned independence can be stated equiva-
lently as

(Ai. — P) L SU{i}|S; U {i}.

By its definition in (19), A® is obtained from A by zeroing
out rows and columns in SU{i}. In addition, U(") is a function
of A, Hence,

(A — P) L AD|S; U {i} and (A;. — P.) L UD|S; U {i},

(26)

for all 7 € [n].

Decouple Dependence Between Rows of A and F: For
each i € [n], A;. — P, introduced above and the event F
are dependent on each other. To decouple this dependence,
we introduce

Fi i=1{|| AV —EA| < (Co+2)yp}.

Denote [EA]®) € [0,1]"*" to be a matrix that is equal to
EA but with its ith row and column zeroed out. Then A(?) —
[EA]@ is equal to A — EA but with its ith row and column
zeroed out. Then we have | A®) — [EA]| < ||A — EAH and
consequently |A®D —EA|| < ||A— EAH+||IEA [EA)|| <
|A—EA| +2|EA;| < |[A—EA| + 2y/np. Hence

I{F} <I{F:},Vie€ n].

27)

Since F; is a function of A®, from (26) we have

(A;. — Pp) L F|S; U {i}, (28)
for all ¢ € [n]. By Lemma 9, we have
«7rxT\ 77(7) k
|0 vty o <toyl=— (9
2,00 on

for all 4 € [n]. In addition, under the event F;, by Lemma 9,

n(p—q)”
as Hha,

— 00, wWe have

2v/2(Co + 3)kv/knp
P Bn(p - q)
k/(Bn).

(1~ o u Ty T

(30)
for all 4 € [n] when ¢ >

A. Proof of Theorem 2
Note that
El(2,2%)
< El(2,2")I{F} +P(F°)
1 .
<E= Y I{% #2111 2n3
<E- S I{s# 5 H{F} +2n

1€[n]
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1 . . 1 _3
=E— %H{z, # 2 JI{F} + ~E|S| +2n
1 . -
< f}EZH {2 # 25 }I{F} + exp (—128np) + 2n73, (31)
" lgs
where the second inequality is by (15) and the last inequality is
by Lemma 6. In the following proof, we are going to establish
an upper bound for E) ", s I{z # =z YI{F}.
Now consider a fixed 7 ¢ S. According to the objective
function of the k-means, we have the following inequality

I{z # 27 YI{F}

< H{gﬁgm Ui A — 0. }H{]’—}
<y H{’ g‘ . }]I{]-"}. 32)
atz?

Further consider a fixed a € [k] \ {#]}. We are going to
study the event that U;. A is closer to an incorrect center 6,

than the correct center éz;. We have
H{’ —d, g‘Ui.A—ézf Ji{F}
R . 114 .2
= 0,0, —0,)> = — 0,
]I{<UA 0uz,00 =0 ) = 5 |00 — 0z }]I{]—'}
(33)

We are going to have a decomposition of (U;. A—HAZ; , éa—ézz«
Due to UA = AU, we have U;. A = A, U = (A; )
(EA;.)U. We have

UzA - éz?‘,éa - éz?‘

{ )

= (A —BA)U, By — b )+ {(BA)U = 0.0, — 0. )
T

— (4. —EA)U (éa ~0.) + ((BANU = 0.;,00— 0. )

= (4. —
+ (A;. — EA,. (U@T Utg;" UL, + Ure:r )
<(EA YU —0.:,6, — 6. > (34)

where the third equation is by (17). Using Lemma 4, the first
term in (34) can be simplified

(A;. —EA.)U* (9;; - 9:Z)T

= (p -q) (Aij _EAij)

> (Aij—EAy) -

j:z;‘:a

>

jizg =27 i

Together with (33) and (34), we have

o <| hrery
:]I{(p—Q)( Z (Ai;—EA;;)— Z (Aij_EAij))
Jizj=a Jizy=2)j#

+ (4 —EA,) (Ué{ ~ U ;T — U6 + UrerT )
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+ ((BA)U — 2,6, - 6. ) >

Al }H{]—'}.
(35)

Next, we are going to give an upper bound for (35). Since
EA;. and P; only differ in their ith coordinates with A; =
0 and P;; = p, we have

H(EA,.)U — 6.

P.U — PuU;. — 0.

IN

P.U—0.-

=02.U""TU — 0. U ||

= o0 - .. + p U

= oo™ 0 *UTH A

< maXHUeb U 6T
be [k]

< Cof"Pkyp+p
< 20,87 %%k /p,

where the second to last inequality is due to (14). We also
have

H . —EA;) (Uég“ —Urg:T — UéT, + U*@;T) H
< H (4 —EA)UUT (V0T — U7 — V6L, + U*0T) H

+ |[(As. — BA)(T, — 00T
X (Uéf — U~ UdL + U*ejg’) H

< 2||(As. — EA;)U*|| max HUng T
be(k]

+ H(Ai. CEA) I, — UUT) (Uéf - UéZ}) H
<2058 % kyp ||(As. — BAU||

+||(Ai. — EAL) (I, — U*U*T)

where in the last inequality we use (14) again. Then (35) leads
to

& < [Joea -0 1y
<]1{(P—Q)( Z(Aij_EAij)_ Z (Aij — EAy))
Jizi=a Jizi=z]j#
+2Co 87 k/p ||(Ai. — EA U
+ ||(Ai. = EA) (I, — U*U*T)
+2Cy 5™ P |0a Az,’i“
1 . 2
5 0o — 0> }]I{]—"}. (36)

To further simplify the above display, we need to study
0o — 0.:]|. From Lemma 1, we have [0 — 07 | =

VMo + 1z (p —q) > \/26n/k(p — q). Under the event F,

from (14), we have

0o — 0.
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= |67 - 6..07)|
= |, 0T gz porU T — 02U T 4 07U 6 UTH
> |oxo T — gt T Ha;;U*T - ébUTH
i bek]
— oz — 0| - 2max‘ g:U*T — ébUTH
i be(k]
> \/na + nz:(p— q) — 2026~ "k y/p, 37)
which can be further lower bounded by 3 26 “(p—gq) a
%@{ k%)z — 00. Then,
1 2
= — 20,57
1 20,3795k . .12
— - (1= 20267 ky/p 0, — 0,
2 i
2 —0.5L
> % 1_ C20 VP

2 \/Q‘ﬁ(p Q)

X (y/1a +nzr(p—q) — 2C26’0'5k\/]3)2

—21.3
;<1c?, B2k3p

2) (na + nz;‘)(p - q)2,
for some constant C's > 0, where the last inequality holds as

Vv

n(p —q)

ﬁ(p%qg) — oo. Similar to (37), we also have
< ‘0;—9} +2max‘ ébUTH
K be(k]

S \/ Na + nzf (p - Q) + 202ﬁ70.5k\/ﬁ

< L1y/ne+ Nzr (p - Q),
where the last inequality is under the assumption %(f;f%);
00. Then (36) becomes
] <[Jvia o[ jrim
< H{(pQ)( Z (Aij —EA;j)— Z (Aij — EAyy))
Jizi=a j:z;:z; NE

+ 20287 %5 ky/p ||(Ai. — EA)U™|

Pl T — ) |4
1 B 2k3p

> - 1_6’3 T N9 (na'i‘nzf‘)p_Q)Q I{r}.

2 ( n(p—q)? 2 )
We are going to split the indication function in (38) into sev-
eral ones using the following fact: I {x; + o > x3 + 24} <
I{z; > x3}+1{xy > x4} for all 1, z9, x5, 24 € R. Consider

a positive sequence p = o(1) whose value will be determined
later. We have

(I, — U U U

(38)

] <| 1!
S]I{ Z (Ai; —EA;;) — Z (4i; —EA;) > %X
j:z.;f:a jizf=z;‘,j;éi
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ﬁg”@)om+n4xp—@}Mf}

n(p—q
p(ng +nz)(p — q)? }H{f}

(1—4,0—03

A U™ >

+{1.1||[(As. —EAL) (I, — U UT)U||
> P/ Ma + Tz (p - q)}]I {f}
SH{ (A —EAy) - Y

jizy =2t i

(Aij

10_@ 2 ﬁ;i&%m+m%%w%
{ . —EA)(L, - U U
>

pﬁ( )}H{f}

=:G1,ia+ G2+ Gs, (39)

where G2 ; and G'3; do not depend on a. y
To further decompose Gs ;, first we replace A;. by A;. as

(A;. —EA (I, — U UTU

= (A —EA) (I, — U UTU
+ (A — AT, — UUTU

= (A —EA) I, —U'UTU —

(A;. — AU U,

where we use (17) in the last equation. Since A;; =

A for all j ¢ S and Ay = 0 for all j € 8,

we have (A;. — A, )UUTU = 32, g AyUrUTU. As a

result, ||(A; — A, WVUUTU|| = ||des AZJU* Uty <
HZjeS AijU;-” < (Zjes ZJ)”U*HQ,OO < \/% JjES AlJ
where the last inequality is due to (3). Hence,
|(Ai. —EA) (I, — U*UT)U||
- k
< H(Ai. —EA) (I, — U*U*T)UH \ 3 Ay
jes

Recall that U and U®) are defined in (18) and (21) by applying
f:(-) to rows of U and U™ where t > 0. For now, let us
consider any ¢ > 0. We will set ¢ = o later in the proof.
Using U = (U — U) + (U — U(i)W(i)) +UDOW® | we have
|(Ai. = EA) (1, —U*U U
SM&—E&MA—UW“MU—WH

' H@z CBA (I - 0 UTOOW
o A
7ES
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The third term in the above display can be further simplified:

H(A CEA) (L, — UFUT) T O W )

= ||(A;. —EA (I, - U U T T®

< (4. = B (I, —UrUuh)ut

+

H (MZ‘ ~EA;) - (Ai - Pi.)) (I, — U*U*To®

IN

(A;. — P)(I, — U UTU "

+ H([li.—EAi_)—(/li_ )| |l - v ryo®

2,00

where the last inequality is by Holder’s inequality. Note that
(A —EA;j) — (Aij — Pij) = (Ai; — EA;)I{j € S°n S;}
for each j € [n]. Together with (29), we have

H(A,-. CEA (L, — U TOW O

< H(A,». — P)(I, — UrUrTYT®

Y Ay Byl (14—
- J J ﬁn
FjESCNS;

< (s = Py (1, - 07U T)EO

| k
+ Z |AZJ —EAij| (t—I— 5n> .
JES;:

Hence, the above displays lead to

|(Ai. = EAy) (I, — U*U*TU||

< (& — BAs) (1, - v U)W - )|
+ H(Ai. CEA)I, — UTUTY(O — U”)W(“)H
+ H(A — BT, — UUTO ZAU
+(}*V@Z>22MH‘EA“' 0
Then
Gy < ]1{ H(Al CBA (I, — U U U — U)H
> 2 i%)qﬁuf}

T H(/L. CEA)I, — UTUTY (O — U“)W(i))H

kquﬁuf}

B (I, - U uTyo®

[\
NG
I
) <>

(p—Q)}H{F}
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k
%ZA@ > 5\/ %n(p—Q) {7}
JES

) g
JjES;
> gﬁ@—q)}w}

= Hy;+ Hy; + Hz; +Hy; + Hs ;.

So far, by (32), (39), and (41), we have

1
_E 3 *
Ley i £
¢S
1
< EE E g (G1ia+ G2, +Gsy)

¢S aFz}

Z Y EGuia+— Z]EGzﬂr > EHy,
[ ] a#z} Ze["]
+ - Z EHs; + — Z (EHs, +EHy, + EH5 ;).
" i€[n] " i€[n]
(42)

We are going to analyze terms in (42) one by one. Consider
any ¢ € [n] and any a # z.
For G1 4,4, we have

EGl,z,a
< IP’( > (A —EAy) > (A —EAy)
j:z;‘:a j:z;:z;‘,j#i
1 B2k*p
>—|1—4p— 1
= p—Cs = q)2> (ng +nz: —1)(p Q)>
Cs | 72k3p
< — JIngn x— 2 a
exp( Jn, . l,p,q+<p+ 2 \| nlp—q)?

(p—q)?
q

X (ng +nzr — 1)

N——

- q
p na,nznzxq
16k
L 1) L6kp
n) Bqg
X Jnmnzf«.,p,q)
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where the first inequity is due to Lemma 15 and the second
and third inequalities are due to Lemma 13.

For Gz, we have [|(Ai. —EA)U*|| < 320 (A
EA;)U%|. Note that U is a unit vector with ||U*H00 <
Vk/(Bn) for each j € [k] according to Lemma 3. By the
union bound and Bernstein inequality, we have

EG2,;

) pn(p — q)° >
< P(|(A4; —EA,U%| > =——F—
<3 (I W3l >

s (%)
<2 Z exXp | — 2 12ﬁ \/ﬁpn(pfq)"‘

jElk] plUE + 5 (U5 CoB- 5k 5
| (ctin)
< 2kexp 0 vP
p + 6” Cng(lfsggf

1p*n?(p — q)*
< 2kexp (— (4 C’%,@_?’kaQ

1 _ 2
< kexp (_()n(pq)) ,
p

where the last inequality holds as long as

py/TP
B-2k35 Q.

In the remaining part of the proof, we set t = £y whose value
is given (13). We are going to analyze Hy ;, Ho;, H3;, Hy;,
and Hs; term by term. For H; ;, we have

Z Hy
i€[n]

16k
= Z 2pn(p — q)?

1€[n]

) (PEE)

p’n(p—q)®

F=ige,~ — O and

« ||(A;. = BA ) (I, — U U (U — U)H2]I{}'}
_ 16k
- p*6n(p —q)?
~ TP
< | 3 |[(Ai — B @ - oo - 0)|” | 1)
1€[n]
_ 16k
- p*Bn(p —q)?
~ _ 2
x H(A —EA)(I, - U*U*T)(U — U)HF 1{F}
< 168
~ p*Bn(p—q)?
~ 2 _
x HA - IEAH (T, — U*U*T) (U - 0)||nT{F}
2
OO - 02 17, “3)

PP —q)

where in the last equation, we use the fact that {(A;

EA) (I, — U UT)U - U)}ze[n] are rows of (A -
EA)(I, —U*U*T)(U — U), and in the last inequality, we use
|A—EA| < Co/np under the event F. By (18) and
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Theorem 3, we have

16C2kp
B M€ o 0E Z 1P TIUL N T{F) = to}
_ p*B(p
i€[n] i€[n]
16C2kp ( 3n(p —q)? >
———————1{inex —_——
= 2B —q2 P 2p
N2
< nkexp (_?m(p 9 ) )
2p

where the second and the third 1nequa11t1es hold under the
assumption 3~ k= O(1),p < 1/2, and M — 0.
For H> ;, using (22), we have

H“L‘ CEA)I, — UUFT) (O — U@‘)W(“)H

< HA’“ 7 (@) 7 ()

< H[lfIEAHGkM Ul - (44)
Then
Hyi <1 {HA—EAH 6k U] > jﬁ@— q>}w}

<I {Gcoklﬁ\/ﬁpnm.n > g %"(p - q)}ﬂ{f}

<I{|Us.|| > to}L{F},

where the last inequality holds under the assumption that
A1k = O1),p < 1/2, and P"@ 2° _, . Then by
Corollary 1, we have

E Z Hy; <E Z L{|U:|| > to}L{F}
i€[n] i€[n]
)2
< nesp (-2 =07),
P
For H3 ;, using (27), we have
- Pz)(-[n

Hj; < ]I{ H(A

)

Note that vaccorfiing to 7(26) and (28), we have independence
between A;. — P, and U, F; when conditioned on S; U {i}.
On the other hand, we have (30) holds under the event F; and

the assumption %(f’{ k%); — o0. Together with (29), we have

>0 /P% q>}ﬂ{f}

EHj3;

sup

- E( HCot3)kvEnp E<H{
nxk. C kVE
AR || Al < HEGEDRVERD A, <2t

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 10, OCTOBER 2024

|(Ai. — P)A[ > Zﬁ(PQ)}H{fi}

<E
<E

S; U {'L}>>

>

Bn(p—q)

(sf 1. - 2oal= 4y 50— 0]

sup E Z

) 4(Co+3)kvEnp
AER™ k|| Al < HEEEBREGEL A, <210

lelk] ae{~1,1}
. g p |0Bn
(]I{a(Al. P)A; > 8]6\/ 3 (p (I)}

sui) )
EE
k

E

e{-1,1} (AER"Xk:|A|F§4(Cg:f<3’;k‘q/)m,||A|2,00§2t0
o £n .

(Lot~ is. 2B boia)

Define

A
( sup
AeRnxk:HAHFSM \/knp7”A”2,oo§2t0

4(Co + 3)k\/knp
W:={weR":||w| < wlloe < 2t}
{ [[wll Bl —q) [Jw]] 0}
(45)
Then,
EH3;

Y 5 a(

lelk]ac{—1,1} \WEW

where the last equation is due to the definition of Ai. and P;.
in (25). Now consider any « € {—1,1} and any w € W. Then
by Chernoff bound, the conditional probability in the above
display can be upper bounded by

p |Bn ,
logP | « Z(Aij —EA;j)w; > 3% ?(pfq) S; U{i}
JESS
Bn
<_7 Pl
sep\ 5 @9
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+logEexp | sa Z (Aij — EAZ'j)U)j S; U {Z}

JESS
p [Bn 1 E A — BA: D w.s
2P - 10 T Benp st~ B
JESE
B p ﬂn 1 A A
= —s /2 - +Z ogEexp (sa(A;; — EA;j)w;)
JESS
p [Bn 2 (1|12
__S§ P05~ @) + 55wl exp s ..
£n
= 8k; T 9
4(Co + 3)kv/Fnp\ >
(B s

for any s > 0, where the second to last inequality is due
to Lemma 10 under the assumption p < 1/2. Choose s =

8k \/ Bn M so that the first term in the above display is

_4n(p 2)*
P

equal to . Then, we have

logP | « Z(Aij — EA;j)w; > 8%\/ %(p —q)|S; U {i}
jeSs
< _Anlp-aP
p
2
N 8k |k dn(p — q) 4(Co + 3)kv/knp
b fn - p Bn(p —q)
X exp <8k £4n(p —9) 2t )
p\pBn p
__dn(p—q)®
p

128%(Cy + 3)2kS (64 x 160 k*(p — q))
P33 pB*p ’
where in the last equation we use the definition of ¢y in (13).
When 371, k = O(1) and % — 00, a sufficient condi-
tion for the second term in the above display to be dominated
by the first term is that p satisfies p~! = o (log (MPTW))
Then

pn .
logP [ @) (A —EAij)w; > %\/ - (P —a)|5i U {i}
jESE
< _p-a
p
Hence,

2 _ 2
EHy, <k Y Eexp (—”(pq)>

ae{-1,1} p
2 _ 2
< heexp (_n@q)> .
D

For Hy;, we first have Zjes Ay <2
to (24) and the fact A;; =
on Sis Zjesi A’Lj ~

JES; Aij due
0. Note that conditioned
Binomial(|S;|,p). This leads to

7333

E> s, Aij = pE|Si| < npexp(—128np) where the last
inequality is by Lemma 6. Then

EH,; <EI Z Ay > M

jeS 8k
< Ais
- pﬂn gsj ’
8kp
< ————exp (—128np
pB(p —q) ( )
W}f«/ pexp( 128’np)

< kexp (—64np),

where the last inequality holds under the assumption that

% — oo. Similarly, for Hj ;, we have

p [Bn
EH;5,; < EI { 2to Z |A; —EA;| > 3 ?(P* q)

jes
< 5 —— E Z |Ai; — EA;]
8\/*"(2?*(1) jes;
2t
< 702PE|5¢\
8 \/ @(p - Q)
2to

2npexp (—128np)

: 8 \/E(p Q)

< k €Xp (*64”})) )

where the last 1nequa11ty holds under the assumption that
51k—0() le”(PQ)_)OO
) D .
Now we can combine the above results together to derive
the final conclusion. From (42), we have

LES 15 # 2 ){F)
" lgs

1 Cs B 2k3p 1
ZZ(( (2 ) n@qwn)

16kp
X — Jna, *,D,

ﬁq ) L P,Q>

k 1 —q)?
S hep <_O”(p9)>

n p

i€[n]

k 3 —q)?

+ ey (_n@q))

2p

+2 Z <2kexp< (pp 9’ )+2kexp(—64np))
B—2k*p

Cs 1\ 16kp
< — — i —
_k’exp( (1 <2p+ 5 n(pq)2+n> 34 )

3n(p —q)?
Jna,nb,p’q> + 4k? exp <—2p )

X  min
1<a#£b<k

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 19,2024 at 05:25:33 UTC from IEEE Xplore. Restrictions apply.



7334

So far, we require 1k =
2
1/2, M=), oo and p! =
p

using (31), we have

Eé(3, 2%)

§kexp<— (1— <2,0+C2(3

X min J,
1<adb<k na,nmp,q)

01,0 < g < p <
{log (M)) Then

1) 16kp
2)5)

) + exp (—128np) 4+ 2n 73
(48)

When p < 1/10 is further assumed, by Lemma 13,
we have Jyin = min1<a¢b<k Tnamppg < maxX,ek] na4(p —
7)?/(3p) < 4n(p — q)?/(3p). As a result, the exponents
128np and M in (48) are bigger than Jy,;,,. We can let

p- <log (M)> - With 2 = O(1) further assumed,
there exists some constant C'y such that

El(2, 2 {F} <

B. Proof of Theorem 3

We first have a decomposition of rows of U. Consider any
€ [n]. Due to UA = AU, we have U = AUA™! and its ith
row satisfies U;. = A; UA~!. Then we have

Ui = A, UANY = (BA)UAY + (A —EA ) UAL

B2k%p
n(p —q)?

3n(p — q)?

+ 4k? exp (—
2p

This gives us
U1 T{F} < [|(BA)UATH|T{F}
+ || — BayU|| AT {FY. @)

For the term ||(EA; ) UA™!|| in (49), we have

(BEA)UAY = PBLUA —pU A1
=UNUTUA T —pU AT?
=U;UU + U (MUTU - UTUA) AT
—pUi.A_l.
Hence,
| (EA;. ) UAY|
< |UZI+ U |A o TU = U TUA| A7
+pllU| A

Note that |U;.|| < |[U|| = 1. From Lemma 3, we have
|Uz]l < 1/4/Bn/k. Note that A*U*" = U*'P and UA =
AUT. We have A*U*TU UTUAN = U*TPU-U*TAUT =

U*T(P — A)U and thus |[A*U*TU — U*TUA|| < ||A - P|.
By Lemma 5, we have |A7Y|| < 2k/(Bn(p—q)). As a resul,

|(EA; ) UAH| T{F}
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k k 2k 2k
VB BV —0) TP —a)
< 2,/%

where the last inequality holds under the assumption that

ﬁ(p 3 qu) — 00. Then (49) leads to
< 1 .
U1 1{F} 2\/; ﬁnp . H ~EA4)U|| 147}
(50)

From (16), we have
SN TUL] = 8 =Y MU T{U > ¢}, (51)
i€[n] ¢S

Hence, we only need to consider indexes not in S. From now
on, consider any ¢ ¢ S. Then together with (17), (50) leads to

k
A |H{f}<2ﬁ ] (O

We are going to decompose (4;. —EA;.)U in a similar way as
in the proof of Theorem 2. Recall that U and U are defined
in (18) and (21) by applying f;(-) to rows of U and U?) where
t > 0. For any ¢ > 0, we have

(4 —EA;)U||
< |I(4s. —EA)U*UTU||

EA)U|T{F}.
(52)

+ ||(Ai. —=EA) (I — U U*T)U||
< [(Ai. — BAL)U* || + ||(Ai. — EA) (I = U*UU|
< |I(Ai. = EA)U|
+ H(Al —EA) I, - UUTYU — U)
+||(Ai — BA) (1, - 07U T)@ - TOWO) |
+ (A = Pyt = U Ty OO ,/ ZA”
+ ( \/ ) Z |AU - l]
JES;
where the last inequality is by (40). From (44),

we have ||(A; —EA.)(I, — U U - UODW®)|| <
6Cok*®\/np||U;.|| under the event F. Then (52) gives

U || T{F}

< (2\/;7 + s (4 ~ B4V
n % (A~ BA) (1 - 00T - O
2 o)
4 ﬂn(ik_q) ((Ai. —B)(I, — UG
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8k
+ﬂ Jez; T =) (t+\/;> ]; |A;;—EA;j| > - })H{]—"}.

+ﬂn(2k_q)< \/7> Z|AU— ijl)ﬂ{]:}. For anyt>2()\/> we have (4@)2]1{4\/%2%}:

JES: 0. With this and the fact that an indication function is always
smaller or equal to 1, the above display can be simplified into

U P T{|T: || = 1{F}

<o (G0t )||<Ala A1)’
At al s

t
A, —EA)U"|| > }
5
< (42 + 4. —Ba )
Bn ﬁn(p q) 495 >

ﬁn

2
Under the assumption that nlp—q) oo, we have

B~2k%p
B 24C‘gk2'5\/15> 1
(1 SN > 3. After arrangement, we have

+ Gnlp—q) H(/L —EA) (I, _U*U*T)(U—U)H y H(/L CEA(I, - UTTYU - T) H 1{F}
+7ﬂn( — || - P - UrU T ”5<5np . H B — UMDY >
LI An( anezs « 1 A;. _pi_)(In_U*U*T)U(i

ﬂn
8k
ﬂ<>< ) Sz e zé}w}

By Lemma 11, we have Sk
() E (s,
An(p—q)) Bn

TP {1 U: )| = T {F} 7es

2 9 2
k k t 16k > 2 A —FAs
§25<<4,/ﬂn> 11{4 67125} +?5<ﬁn(p_q) t (];iI ij il

2 / ! / ! /
— H).+H,, + H,, + H,, + H. .
4 ( 8k H(AZ _ EAl)U*|> 0,2 1,4 3.t 4,0 5,1
An(p = q) Note the similarity between HLi, Hé’i, Héll,i’ Hél and Hy ,,
]I{ 8k 1(As. — EAU*| > t} Hs;, Hy;, Hs ; defined in the proof of Theorem 2. Summing
Bn(p —q) 5 over all i ¢ S, we have
N _ 2
8k | (i — B4 ) (1, - U0 T) (W - 0) SN P TU > ¢)
+ i¢s
Bn(p —q)
~ - <ZHOZ+ZH11+ZH3’L+ZH4’L+Z
[ H(Al. CRA (L, — UUT) (U — U)H . ) i) i) i) o
> —
) Bn(p —q) =5 (53)
2 For ), em H 1,i» following the analysis to establish (43) for
I, - Ut ) H; ; 1 the proof of Theorem 2, we have
ﬁn _ q i€[n] ) p
t
X]I{ H I *U*U*T)U 25} Z[le
i€[n]

2 Sk 2
8k |k <25(——
Bnlp—q) KTZ (ﬂn(p—q)>
8k

jes <3 H(/L-.—EAZ-.)(I”—U*U*T)(U—U)Hzﬂ{f}

i€[n]

sk \°
2 <25 (M) (Covip)? U - T2 1{F}

__ 8k L _EAL 402C2k2p
Bnlp—a) (H\/;”)j;si% #al H{ < iy g IV = Ol 147):
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Using (18) and (16), we have

402C2k2%p
» Hi, < W Z U2 T{| U]l > t}
402072 k2
= WOQZHU I T{|U:.] > t}.
¢S
Under the assumption %(f 27];12); — 00, we have
(1 — %) > 1. Rearranging (53), we have
2
Dol T{|Us | = ¢}
i¢s
<2> Hy,+2Y Hy,+2> Hi,+2Y H,
i€[n] i€[n] i€[n] i€[n]
Using (51), we have
EY U I{|U| > t}
i€[n]
<2E Y Hy,+2E> Hj,;+2EY H,;+2E> Hi,
i€[n] i€[n] i€[n] i€[n]
(54)

In the following, we are going to consider any i € [n]
and analyze EH) ;, EH; ;,, EH} ;, and EH ;, term by term.
We first analyze the latter two as their analysis is more
straightforward. Similar to the analysis for H, ; in the proof
of Theorem 2, we have

ZAU- <E ZAZ»]»

2

jES JES;
2
=E[E| (D 4] |8
JES:
E ((1S:|p)* + |Si| p)

np+ 1) E|S;|p

<
<(
< 2(np)® exp (—128np)

where the last inequality is by Lemma 6. Then,

EH}, =25 (m (ik D ) ZA”

jes
m exp (—128np) .
Similarly, we have
2
EHé,i <25 (m(ljliq))Zt2E Z |Aij - IEAz‘j|
JES;
2
<25 <6n(1;]iq)) 2E ((Zp |Si|)2 +2p \SZ\)

m exp (—128np) .
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For ]EH0 ;» note that for any positive random variable
X and any s > 0, we have EX’I{X >s} = > 77,
EX2I{(j +1)s > X > js} <3252, (j+1)2s*EI{X > Js}

Then
EH! . < 25E (81{ (A, — EA; )U*||>2
0= Bnp—q) " "
8k '
I —L (A —EANU*|| > =
{ ol il 5}
<Y (j+1)7
j=1
8k t
(5o I e L
<IN ([G+1)?
le[k] j=1
R US| >
x P (|(4i. —EA.)US| YT
<22 > (j+1)°
le[k] j=1
2
1.2 ( Bn(p—q) t
1 t
% oxp 2 ( 8k k) ,

p+§jﬁn(p q) t ﬁkn

where in the last inequality, we use Bernstein inequality and

the fact that ||U;[| = 1 and |U3||, < \/55 from Lemma 3.

Bn(p—q) t

2
1
For any ¢t > we have 5( o ﬁ) — oo and

K
Bn’

Bn(p—q) t .
also (% ﬁ) ﬁT” — 00, under the assumption that

n(p—q)*
B~1k3p

EH, ;

<2t222j+1 exp< ;2

lelk] j=1

(Gewna)”
e )
)
D))

(ﬂn(p ) t)
2 8k Bk
k

18n(p—q) t
P+ 378 5k\ Bn

— 00. By Lemma 12, we have

= 16t%k exp

The analysis for EH; ; is similar to that of EH ; but is
more involved. By the same argument as in the analysis of
EH] ;, we have
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Vo (MY e () )

}H {F}  and consequently,

< 95E <8k)H i

. D gy TN7T(4
i (A;. — B (I, — U*U*T)T

gy VAPt =00

8k - 2n(p — q)°
<t*) (j+1)°EEq ————— EH,, < 2k2Y (j+1)%exp | — ———j
;( ) ﬂn(p_ q) 3,0 = ;(] ) p p J
P N 640(Co + 3)k3-5\ > 320k%(p — q)
x [[(A;. — P, — U UTYUW|| > Z5 S1{F). bl el L AL itV 74
I )( 00| = 25 p1{F} () e (P
2
Consider a fixed j > 1 and any ¢ > 4/ ﬂ% Follow the analysis < 16k*t? exp ( _ M
of EH3 ; in the proof of Theorem 2, we have p
P 2 2
8k S _ ¢ 640(Co + 3)k3° 320k*(p — q)
EI 7H A, — P, — U YU || > 25 \14F +< exp| ———= ,
{ s =P 00| > L) P ,
0| s B = ) ]
=EI {H A —P; )L, =U"U T)U | > T {F}  where the last inequality is due to that "(pTTq)Q — 00.
Combining all the above expressions together, (54) leads to
<k El su
<k D (@3/ EY U 2 ¢}
ac{-1,1} e
Bn(p — q)tj 40°k°p?
x P ang:g(Aij —EAij)w; > S0K2 S; U {i} < 463n(p — q)znexp(—128np)
' 160k2t2np?
which is analogous to (46). Here W := {w € R™ : |Jw| < + 12mn exp (—128np)
(ngg’pk;)’m |w| < 2t}, analogous to the definition of L pno—a) 1 \2
W in (45). Consider any o € {—1,1} and any w € W' ) 2 (#57)
Analogous to (47), we can obtain +32t%knexp | — 1 Bn(p—q) t &
P+ 3% Bn
Bn(p — q)tj 2 _
JESE p
. 2
—q)t 4(Co + 3)kVE 3.5 2 20
< _ Bn(p 2q) T st ps? ( (Co + 3)k+/ np) exp (25) L (640(Co + 3)k exp 320k2(p — q)
80k On(p — q) 32 /nt » ) )

for any s > 0. To derive the above display, we use Lemma 10

and assume p < 1/2. Choose s = 166075’“ % such that for any ¢ > 20,/ . Taking t = t, where t is defined in (13),

ﬂ"éé’;;’”s = 2"(pp_q)2. Then we have we have
Bl — @)t E > 0P I{IU] > to}
logP a3 (A — EAy)w, > % Si U {3} il
Ppp 4 2
7es ) < 4%71%(711)) exp (—128np)
2n(p —q)* . 160%” (p — q) k2n(p — q)
p 6225 p + 12ﬁnt§(np) exp (—128np)
§ <4(co n 3)km> . <320k2(p - q)) #*n(p —q) ) )
Bn(p —q) P p + 32t2kn exp (_n(p—q))
nlp—q) . [640(Cy + 3)k3>5\> P
- i+ 2 2n(p — g)°
p 32y/nt + 32k*t2nexp | —
320k%(p — q) P
xexp | —— . 320k2(p — q)
P +72k%(Co + 3)28 L exp <pq>
Then p
3n(p — q)?
VI, = U UU I{F < t2nexp (- ,
{ﬂn —q) H P ) } {7} 0 %
< kexp | — 2n(p — q)° j wIﬁn:re the last inequality holds undern(tltlfq)%ssumption that
D Ié; ,k:O(l),O<q<p§1/2,and7p — 0.
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APPENDIX A
PROOF OF THEOREM 4

The proof of Theorem 4 follows the proof of Theo-
rem 2 with some modifications as we need to derive a
lower bound instead of an upper bound. Define (a,b) :=
argminlga,ib,gk JIn,i ny pq- WE have

1
E 2 * 2 * - 5. *
(2,2%) 2 (2,2 )H{F} 2 — 3 T{z: # 5 }1{F}
i¢s
1
~ > Ha#{F)
¢Sz =b
1
It
i¢€S:zr=b
where in the second inequality we use (15). Consider any ¢ ¢

S such that 27 = b. Analogous to the establishment of (38),
we can have

H{HUZ».A—@
>

> H{(p—Q)(
jizi=zp i

— 202570'5k\/5 H(Al — EAZ)U*H
—2/nq F1z: (p —q) ||(Ai. —EA) (I, — U U T)U||

> % <1 _03“ Tm> (na +nz,*)(p_Q)2}H{]:}

Consider a positive sequence p = o(1) whose value will
be determined later. Analogous to the establishment of (39),
we have

v

U, A—0,

Y

<|

U\ — 0.

JI{F).

<]

Ui\ — 0.

Ji{F}

> (Ay —EA;)— —EA;))

j:z]’.‘:a

(Aij

H{‘Ui.A—éa g’Ui.A—éZ; }H{]—"}
1
ZH{AZ (Aij—]EAz‘j)—l Z V(Az'j—EAij) 2 5 X
Jizi=a Jizi=z],j#i
B—2k%p
1+4p+Csy | ——— | (ng + 1= - {F
( PO a7 ) | D —a) pI{F}

_ ]I{H(Ai. —EAU > L0 }

025—1.5%2\/5

- ]1{ |(Ai. = EA:) (I, —U*UT)U|| >

p\/ﬁ,jn(pq)}ﬂ{f}

=: ! H{f} — G27i — G3,i~

. 1,3,a

Note here G ; , is slightly different from G'1 ; , in the proof
of Theorem 2 and G ;, Gz ; are exactly the same quantities as
they appear in the proof of Theorem 2. Then the decomposi-

tion (41) also holds for G3 ;. Then analogous to (42), we have

1
E€(2, Z*) Z EE Z ( /1)2»7(1]1 {.7:} — Gg)i — G37i)
i¢S:z¥=b
1 1
> _E " - ;
>~ > GLJIF) - > EGa,
i¢S:zF=b i€[n]
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—%ZEHL,»—

1
— E EH, ;
n

1€[n] i€[n]

. > (EHs; +EHy; + EHs ;).
" i€[n]

In the above display, we only need to analyze
EY i¢s..rp Gl {F} as all the remaining terms have
been analyzed in the proof of Theorem 2. Consider any
i € [n] and any zf = b. We introduce an auxiliary random
variable X ~ Bernoulli(p) that is independent of A. Since
X >0, we have

EG,

1,2,a

:P< Y (Ay —Edy) -
j:z;f:a

> (Ay —EAy)

GiEp=a7 i

B~2k3p
n(pq)g) (na + nzg)(P - Q)>

>

iz =zt i

>

N =

<1+4p+C’3

X

N

> P( > (A —EAy) - (Aij — EAy) =
j:z]’f:a

B—2k*p
1+4p+Csy | —= | (na +n2s)(p—q) + X
( RV ey ( ) )
=P< > (Ay—EAy) — > (Ay —EA4y)
Jizi=a j:z;:z,’;,j;ﬁi
1 B 2k3p
(X —p)>=-|144 2P
( p)_2< +4p+Cs n(p_q)2>
X(na+nz;)(p—q)+p>
> P( D (A —E4y) - Y (Ay —EAy)
j:z;f:a j:z;‘:z;‘,j;ﬁi

v 1 B~2k?p pk
K=r=3 (1 At \ n(p — a)? "By - q))

X (na + nz;‘)(p - Q)>

B~2k3p pk
2 eXp - ']navn N2 4 + C +
( e (p Nl —a? Bnlp— o)

X (g +1n2r) v —pq)2 — 4\/(n“ + )P — Q)2P>

e
N
4 (g +n2x)q |

where we use Lemma 15 in the last inequality. Under the

assumption néz:g — oo and p/q = O(1), using Lemma 13,
we have
EG/l,i,a

1 3 B~2k3p pk
=30 ( (H <4p+03 n(p — q)? - Bn(p—q)>
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16kp kp D
X —— + 64 ———— | Jno.nppq |-
Bq Ba\ n(p — q)2 o

Note that Jp, n,.q.q = Mili<azvr<k Jn, nypg = Jmin-
We have
E Z Gl K3 a}1 {"T}
1¢S5z =b
>E ) Gha—|S|—nP(F)
i€[n]:zf=b
pn B~2k3p pk
>—exp| —[1+[4p+C +
8k N np—a? " Bnlp—0q)
16kp kp P
Bg ﬁq n(p — q)*

—nexp (—128np) — 2n"2,

where we use Lemma 6. Analogous to the establishment
of (48), we have

El(z,2%)

B B~2k3p pk
> ﬁexp ( <1+ <4p+03 n(p—q)° + ﬂn(p—q))

16kp kp p
X — + 64 95 Jmin
Bq Ba\ n(p —q)?

— exp (—128np) — 2n3 — 4k% exp (—

3n(p2; Q)2> 7

o1),1 < q <
1

under the assumption B~ 1,k =
p < 1/2,p/q = O(1), "0

n(p—q)*
p

— 00, and p~

)

When p < 1/10 is additionally assume, by following same
argument as in the proof of Theorem 2, there exists some
constant C'5 such that

El(2,2%) >

o (= (1 (o (252)) Yt ) -2

APPENDIX B
PROOFS OF RESULTS IN SECTION II

ENC H

0 (10g< )) We can take p~

First we give an equivalent expression for P. Define Z*
{0,1}™** to be a matrix such that Zl; = 1{z; = j} for all
i € [n] and j € [k]. In addition, define B € R*** such that
Bay, = ql{a # b} +pl{a = b} for all a,b € [k]. Then we can
verify

pP=2z"Bz2*T.

Then following lemmas are about properties of population
quantities.

Lemma 3: Define A := diag(y/n1, ..., /). There exists
some W € O(k,k) such that U* = Z*A~'W and A* =
WTABAW. In addition,

U = ——, Vi € [n].
,/’/ZZ;

7339
Consequently,
ma. UsIl < |U* — /K .
e W51 S W0 e = /R 5)
Proof: Note that P - 7+ B7*T _
Z*A"Y(ABA)A1ZT and Z*A' € O(k,k). Apply

SVD to the matrix ABA and we obtain ABA = WAWT
for some W € O(k,k) and some diagonal matrix A. Since
Z*AT'W € O(n,k) and P = (Z*A~ WHAZFATTW)T,
we have A* = A = WTABAW and U = Z*A~'W. As a
result, for each ¢ € [n], we have

.|l = || Z; A~ W] =

O
Lemma 4: For any a,b € [k]| such that a # b, we have
U*(0: — 0;)" € R™ satisfies

(p_ q)a if Z]* =a,
_(p_Q)a if Z; = ba
0, o.w.,

(U0 —0;)"); = (55)

for all j € [n].
Proof: Leti,i € [n] be any two indexes such that z} = a
and 2z}, = b. From Lemma 1, we have

U*(0: — 05T = U*(U*A*);. — (U*A*)p )T
= U*(UA* —U; AT

The proof is complete with Pj; = pl {2} = a}+ql{z} # a}
and Pjy = pl{z; = b} +ql{z; # b} forany j € [n]. O
Proof of Lemma 1: From Lemma 3, we have U* =
Z*A7YW and A* = WTABAW for some W € O(k, k).
Then
UA* = (7

*ATYW)YWTABAW) = Z* BAW.

Since Z* has k unique rows, so does U*A*. Denote 0’ =
B,. AW for each a € [k]. Then

”92”2 = ”Ba'A”2 = Z (BabAbb)2 = Z (Babnb)2
belk] belk]

= (p2 - q2)na + q2n7va € [k]7
where we use the fact that ), . n, = n. For each i € [n],
we have (U*A*);. = Z; BAW = 60}.. We also have for any
a,b € [k] such that a # b. '

105 — 6511 = [[(Ba. — By.)AW|| = ||(

= (P = D)Vna+m.

Ba. — By)A||

O

Proof of Proposition 1: Note that performing k-means

on {U;.A};cn is equivalent to performing k-means on

{Us. AUT };¢},). This is because U has orthonormal columns

and consequently ||U;. A — U;. A|| = ||U;. AUT — U;. AUT || for
all 4, j € [n]. Since U, AUT = A, UUT, we have

(éa {él, ey ék})
B a i U AUT —0 UT
Ze[k]"ﬂigmg:emlxk Z] || zi H
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= argmin HA vut - QleTH

z€[k]™,04,.. ekeRlxk ]

Note that P has k unique rows 0;U*T ...,
ing to Lemma 1,

0;U*T. Accord-

. Q*U*T o 0*U*T — . 9* - 9*
a,ben[lkl]I:la;éb H @ b H a,ben[lkl]I:la;éb 16 = 0zl
= min n,+mp—gq) =4

a,bek]:a##b

Hence, ¢ is the minimum distance among all k& unique rows
of P. Then by Proposition 3.1 of [33], if

0

- > 16 (56)
505k [ P

is satisfied, there exists some ¢ € ® and some constant C' >
0 such that

CMM PH

nd?

LS £ 6} <

1€[n]

and,

max H9¢(a)U —o:uT

‘<iCﬁ 05kn_05HA PH

In the following, we are going to give an upper bound for
H/I — P||. Note that |A— P|| < |A—EA| + |[EA - P| =
|A —EA| + p with [|[A — EA| < Cy\/np assumed. In addi-
tion, we have § > /208n/k(p — q). As a result, there exists
a constant C7 > 0, such that if (_2 T > (4, we have (56)
satisfied, and consequently obtaln the des1red upper bounds
in (5) and (6) for some constant C5 > 0. O

Proof of Proposition 2: First consider any ¢ € [n] such
that z; = 2. Then

I{z # 27}
= 1{l4:0" - 611” < | 4.U" - 03]}
> — lo511° + ez 11°}

oA ) Ay

jizp=1 iz =2

- ]I{2AZ-.U* 07 —03)"

H{%pa)
> (* = ¢*) (m — "2)}

SoAy- Y Ayt
jizr=1 iz =2

:H{ Y (A —EAy) -
jizr=1

>p_qn—p}7

=1 q(n1—n2)

> (A —EAy)

j;éi:z;‘:2

2= (57)

where the third equation is by Lemma 1 and Lemma 4 and

in the last equation we use 1y + nz = n. Note that [{j # i :
2% =2} = ng — 1. Using Lemma 15, we have

J
EI{z # 27}
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> (Ay —EAy)

j;éi:z;‘:2

1 2q
Z 5 <1_(n—1)(p—q)> (n—l)(p—q)>

< exp (‘ Jnyna—1,p,q

IP’( > (Aij —EAy) -
j:z]’-‘:

q WQV>
+—  (ni4n,—1
(n—U@—w( ) q
= exp (_Jm,nzfl,p,q +(—q).
From Lemma 13, we have
EI{% # 2}
2
b—q
< exp (_Jnhnzm,q + ( 4 ) + (p - q))
q
N2
(p4;1) + (p - Q)
<exp|—|1- A n1,m2,0,q
ni,n2,p,q
(r—a)®
+(—q)
1
sexp|—|1- (I(Tq)z Jninap.a
Tlgig
D

C
S €xXp (_ (1 - nl) Jnl,nz,p,q) )

for some constant C7; > 0. For its lower bound, we intro-
duce an auxiliary random variable X ~ Bernoulli(p) that is
independent of A. Since X > 0, (57) leads to

I{z # 2}

> H{ > (A —EAy) — > (Aij —EAy)
j:z;‘:l

j;éi:zj’.‘=2

zpzqn—FX p}

j:z;.‘:l

D> (A —BAy) — > (A —EAy)

Lok
j;éz.zj =2

Using Lemma 15 and Lemma 13 again, we have

EI{z # 27}

> exp <Jn1,n2,p,q —4

> exp

§ n(P;;I)QI) ; 1 5
exp Tz | Tmmera |\ g

p
@—QV>L“M“Q’

for some constant Cy > 0.
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Similarly, for any ¢ € [n] such that z} = 1, we have

p
o0 (= (1o ) o)

<m(a o) son(~ (1= D) s
n

Hence,

(S 1z

i€[n]

1 Gy
< - <n1 exp <— (1 - n> an,m,p,q>
+ ng exp <— (1 - C;;) Jnl-,n2apaQ> )

Cq
< exp (— (1 - n) (Jm,nz,p.,q A anﬂn,p,q)) )

and similarly

1
E|- 5 A o
n Z H{Zl7é27}
1€[n]
Z nl/\ng

! exp<(1+02 (pp_q>>

X (Jnhnm;lhq A Jn27n17pvQ) > .

APPENDIX C
AUXILIARY LEMMAS

Lemma 5: We have \j > W and

max |Ai —

A7 max [\ < H[l — PH .
1€[k] i>k

Under the assumption that | A — P|| < %,;q), we have

2k
A < 5
pn(p—q)
Proof: From Lemma 3, we know Aj,..., A} are the
eigenvalues of ABA. Then

vI ABAv = (Av)T B(Av)

min
vERF:||v]|=1

vT Bu

L > min
vERF:||v||=1
min

> (minn
= G)UER"‘:Huuzl

a€lk]
: T]l 2
st (a0 1e)
Bn(p — q)

> (p- Q)(ml[g]na)— PR

The upper bound for max;e ] [A; — AF|, max;~ | A;| is from

Weyl's inequality. If |4 — P|| < £ "(p 9 is further assumed,
ﬂn(p a)

= Gy

+ (- a)ol)

we have A\, >
At
Lemma 6: We have

. The proof is complete with ||[A7Y] =
O

E|S] < nexp (—128np).

7341

Recall the definition of S; in (23). We also have E|S;| <
exp (—128np) for each i € [n].

Proof: We have E |S| = nP (Binomial(n — 1,p) > 7) <
nexp (—128np) by Chernoff bound. The same upper bound
holds for E|S;]. O

Lemma 7: Under the assumption max{p\/n, ||A — P||} <

Bn(p — q)/(8k?), we have
inf HU - U@)WH < 6K ||UL|| Vi € [n].
WeO(k,k) F

Proof of Lemma 7: Consider any ¢ € [n]. Note that U
(resp. U™) is the leading eigenspace of A (resp. A®Y and
A s obtained from A by zeroing out its ith row and column.
In addition, from Lemma 5, we have A} > fn(p—q)/k.
We also have max;c, || P;.|| < pyv/n.

We are going to have a partition for the eigenspaces. But
before that, we need to have a partition of [k]. With \j :=
00, Aj1 = 0, and a; := 1, define b; := argmax{a; < j <
ko X5 /(A5 — Aj41) < 2k} Note that the set {a; < j <
kAl /()\* Afi1) < 2k} is not an empty set. Otherwise,
we have )\* - )\;‘H < A /(2k) for all a; < j < k. Then
we have /\a1 Nop1 = Z] a1(>‘* Aii1) < A;, /2 which
gives \j | > A; /2 > A;/2 > 0, a contradiction with the
fact that A} 11 = 0. As a result, the aforementioned set is
non-empty and b; is well-defined. If b; < k, then we define
az = by + 1 and by := argmax{as < j < k : )\22/()\; —
>\§+1) < 2k}. By the same argument as above, by is also
well-defined. If by < k, we repeat this procedure until we
have b, = k for some r < k. In this way, we have a partition
of [k] = UF_{j € N:a, < j <b}. For any s € [r], define
U = (u},...,u} ), Us := (Uq,,...,up,), and define Ul

analogously. Then
2

HUUT — U(z‘)U(i)THi — H Z (USUST _ Ué(i)Ug)T)

s€lr) F

<ry HUSUST _ US“‘)USFZ')THQ.
sE€[r

Now consider any s € [r]. With bg := 0 and a,41 := k+1,
define A7 := (Aj | — A5 ) A(A;, —AL,,) to be the spectral
gap for U;. We have

Aa, Aa
AT AN,

AL AL
IR T
AZS
[{s>2} 4 occl{s=1}

As41

< G v (2k) = 2k,

This implies that A* > X2 /(2k) > Ai/2k > fn(p —
q)/(2k?). Under the assumption that max{p/n, | A — P||} <

Bn(p — q)/(8k?), by Lemma 3 of [24], we have
|v.vT — uPvT|| < 32k |@UTUL)|
=6k ||(U,):. UL U
< 6k |I( s)l-H-

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 19,2024 at 05:25:33 UTC from IEEE Xplore. Restrictions apply.
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Hence,

HUUT _ U(i)U(i)TH2
F

< D36k [|(Us)s |
s€(r]

= 36k%r ||U,.||?

< 36k° ||U;. |,

where the second inequality is due to that U =
By properties of the Sin © distance, we have

(U17 o '7U7")'

inf HU - U“)WHF <

joor -]
WeO(k,k) F

O

Lemma 8: Recall the definition of f(-) in (10). For any ¢ >

0 and any z,y € RV, we have || fi(z) — fi(y)l| < [l — y]|.

Proof: Without loss of generality, assume ||z| > ||y||-

We first state a fact that can be easilty verified: if we shrink

z until it has the same norm as y, its distance toward y is
always decreasing. It implies:

IIyH

Now we discuss three cases. If ||33|| < t. Then we have
fi(x) = x and fi(y) = y, and then the equality holds. If ||y|| >
t, we have

=M@—ﬁ@W:’ﬁd nm"|yﬂ
<[

lsz —yll < flz —yll, V=0 < s < 1. (58)

Iyl H

[EI

Lo —

where the last inequality is due to (58). If ||z|| > ¢ > ||y]|,
we have

/()

where the last inequality is due to (58). O
Lemma 9: Consider any i € [n]. For any ¢ > 0, we have

<t4 |
2.00 Bn’

Under the assumption ||A®) —EA| +p < (p — q)fn/(2k),
for any ¢t > \/k/(08n), we have

/a0 (J30 - 24] )
Bn(p —q) '

Proof: Note that ||[U*||2,c < 4/k/(8n) from Lemma 3
and we have A > (p—q)fn/k from Lemma 5. For any t > 0,

we have UJ(,) = fi (U;,)) = sJUJ(,) for some s; € [0,1] for
any j € [n]. Then,

<z =yl

t
= — =yl < llz =
Dl = =] < e =i,

H (I, — U*U* YT

<
F

HU“> U@hﬂ::nmx
zERF zERF
_ 2 (1)
o ﬁ%@ Z 5j (UJ r

j€ln]
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NN
(@) — -
< Sé%’é Z (Uj, x) =|U|| =1.
j€[n]
Then,
H(I” U < HU@) n HU*U*TU(“
o) 2,00
<t Ul [0 O
<1+ |07 [0
<t U, <t4 ]2
— 2,00 — ﬂn
On the other hand, we have ||A)—P| < ||[A®) —EA| +

|IEA — P|| = |A® —EA|| + p. By Davis-Kahan Theorem,
when ||[A®) —EA| 4+ p < (p — q)Bn/(2k), there exists some
orthogonal matrix W € O(k, k) such that

2 a0—p| _ 2k (|49 - E4]+p)

o -vow] < == Bnp—a)
Since U* — UMW e R"*(2F) | we have
o - vow], < vak|or - vow]|
s 10 24|
= Bnlp—q) |

For any j € [n] and any t > \/k/(fn), we have U} = f;(U})

and

<ol -
<o -u
where the last inequality is due to Lemma 8. Hence,
T
F F
2v219 (|| A —E4| +p)
< .
- fn(p —q)

We get the desired ||||F upper bound with
im0, = o],
o 5 0o, <o oo

F F

O

Lemma 10: Consider an integer m > 0 and indepen-

dent Bernoulli random variables {X;};c[m). Denote pmax :=

max; e[, EX; and assume ppna, < 1/2. For any s € R and
any w € R™, we have

3" log Eexp (swi(X; — EX,)) < pracs” [Jw]? el
i1€[m]

Proof: Define f(t;q) :=
a function of ¢ where 0 < ¢
derivatives are

f'(tiq)=

log (¢e* + (1 — q)) — qt to be
< 1. Then its first and second

gt (¢ k)
@riog M= P
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Note that f(0;q) = f'(0;q) = 0 and f”(¢;q) > 0 for all
t € R.If ¢ < 1/2 is further assumed, we have f(¢;q) <
qe'/(1 — q) < 2q¢e' for any t. Then for ty > 0 and any
t € [—to, to], we have f”(t;q) < 2ge’® and

1
ftig) < 5 (2qe™) 2 < ge'ot?.
Hence,
Z log Eexp (sw;(X; — EX;)) = Z flswi; EX;)
1€[m]

i€[m]
< Z EX ‘ |H“’Hoc$ w; <pmax52 ||u}H2e\s|HwHoc

O
Lemma 11: Consider any s > 0 and any integer m > 0.
For any {ai}ie ] such that a; > 0,Vi € [m], we have

>

i€[m]

Proof: We have

Zaz>s <m22 Zﬂ{alza}

i€[m]

2

S ) i Y

1€[m] 1€[m)]
() Bz e

i€[m] le[m] i€[m]

5 (os So) o oz e
le[m] Jig#l i€[m]
< may)?1 a; > s,a; > maxa
< Y t] ¥z vz e

le[m)] i€[m)]

< Z (mal)2]l{al > %}
l€[m]

Lemma 12: Consider any two scalars s,¢ > 8. Then

oo

lj2 1
. 2 2 2
Z(]Jrl) exp TTL g §8exp(1+11).
j=1 s 3t s 3t
Proof: For any j > 1, we have
3(+1)? .
2 . .
AT (1)’ s+3r (G 1
12 2 1 14+l 52 =
et
CG+nr 1 G+1)2 1 j+1
e S
Hence
3 joj-1 2 5 .3
117 =45_15j-2 "fl+i_‘71+i'
s 3t s 3t s 3t
As a result

7343

1

2
1, 1
s+3t

< Z(] +1)%exp <]
j=1

1
Since s,t > 8, we have 2+

).

> 2. Then the first term

1 s 3t
in {exp (—jﬁ)} - dominates. As a result, the above
J=Z

1

display is upper bounded by 8 exp i O
Lemma 13: Recall the definition of Jm1 ma,p,q 1 (7). For

any positive integers mi,mo and any p,q such that 0 < ¢ <
p < 1/2, we have

N2
me q)
8p

(p—q)?

< Jm177n27pvq < (ml + m2) 4(] 5

and

(r—q)?*

Jml7m2+1,p-,q S J7"/17m21177q + 4q

In addition, define

t* := argmax

+
; <(m1 — mg)tz% —my log (qet +1- q)

— meo log (pe*t +1 p)>
We have

pP—q

0<tr<——. (59)
q

If p < 1/10 is further assumed, we have

Alp —q)°
I mapig N Imamapg < (M2 V ml)(?)p)
Proof: We introduce auxiliary functions:

Ptyq

g1(t) = t—— —log

ga(t) :
f(t) == mig1(t) + maga(t).

Then Jon, mop.q = maxy f(2)

(qe +1fq)

p+q
~ 2 log (pe-

+1—p)

= f(t*). Through calculation,

we have
+q l—q
) =—(1-229
() < 2 get +1— q)
+q L—-p
) =1 — p _
92( ) 2 pe_t 41— P
1— t
gl(t) = — ( q)qe .
(ge" +1—q)
1—p)pe?
g3 (t) = — (7 ) 2
(pet+1—p)
f1(t) = mag) () + mags(t)
f'(t) = magy (t) + mags ().
Note that g (¢), g4 (t), f”(t) < 0 for all ¢ € R which implies
g1 (), g5(), f'(¢ ) are all decreasing functions. Define

ptq

tog (=L 20 ) g (14—
:og —_— :Og —_—
- (RSP
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and

-2 p
—1lo L) cog (14 —2 ),
B\ T ) T T

such that ¢/ (¢1) = 0 and g5(¢2) = 0. Under the assumption
that 0 < ¢ < p < 1/2, we have (1 —2}%) ¢ < (1 —p)2H2
and consequently 0 < to < t;. Using the fact f'(¢t) =
m1g;(t) + magh(t) and that ¢, g5 are decreasing function,
we have f'(t2) = m1gi(t2) > migi(t1) = 0 and f'(t1) =
magh(t1) < magh(ta) = 0. That f'(¢) is a decreasing function
leads to

0 <ty <tr<t. (60)

Let us first study go(t2) and gq(¢;) which are important
quantities for further analysis. Through calculation, we can
show that go(¢2) can be simplified into

p+q —ra pyy
ty)=11-— 1 log
92(12) ( 9 )og 1—p T

ptq
2 .
p

Define h(d) := (p + ) log p+5 +(1—(p+9))log M
We have h(0) = 0 and h” (5) W. Since 0 < q <
p < 1/2, we have h"(8) > p(%p for any —254 < ¢ < 0 and
consequently,

i) =1 <_p;q) - %p(llfp) (p;q>2 = . gpq)g'
(61)

Similarly, we have

2
< max h”(5)> (p—q)
— 231520 2
2 2

1 _ _
ptq ptq (p 2 q) < u 4 2 - (62)
B (1-r) q
Using the same argument, we have

p+q -2 g
t1)=(1-— 1 log
g1(t1) ( 9 )0.?; 1—¢ + 5

11 p—q (p—q)?
S261(1—q)( 2 > STag

Now we are ready to establish the bounds for Jy,, ms.p.q-
For the upper bound, we have

g2(t2) <

<

N = N

+

(63)

(p— )

4q
by (62) and (63). For the lower bound, note that g1 (t2) >
g1(0) = 0. Then by (61), we have

Ty mapg < M1gi(t) +mag(tz) < (my +ma)

(»—9)*
8p
From (60) and the definition of ¢;, we also have

Jml,mz,p,q > f(tZ) > m29(t2) > mo

pP—q

2 < pP—q
G- 59q "«
where the last inequality is due to that 0 < p,q < 1/2. Note
that t* is a function of my, mo and (64) still holds if we vary

0<t*< (64)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 10, OCTOBER 2024

values of mq,mso, This implies the maximizer of mqg; (t) +
(m2 + 1)g2(t) is also within [0, 2-4]. Hence,

Imy mat1,p,q = te%%?(;q] (m1g1(t) + (m2 +1)g2(t))

= max (f(t) +g2(t))

tef0,24]
< max (f(t)+ g2(t2))

tel0, 2]
= Jim1,ma,pg T g2(t2)

(p—q)?

S Jml,mg,p,q + Tq;

where the last inequality is due to (62).

In the last part of the proof, we are going to derive an
improved upper bound for Jy,, m,.p.qg AN Jmg,mi,p,e Under an
additional assumption that p < 1/10. From (60), we have
g1(t*) > g1(0) = 0. Let us first consider the case that m; <
ms. Then

= f(t") = m1gi(t") + maga(t™)
< magr(t°) + maga(t”)

Jm17m2,P,q

4(p — q)*
3p
where the last equation is due to Lemma 14. If my
my instead, by the same argument, we have Jy, m; p,q

%_ < (mg

ml)zl(’g;@ holds for both cases.
Lemma I14: Consider any 0 < ¢ < p < 1. Define I, ; :

—2log(\/pq + /(1 —p)(1 —q)). Then I, ; > 0 and

+17p)flog(qet+lfq)).

)

< mp max(g1(t) + g2(1)) < ma

mq Hence, Jml,mz,p,q A Jm27mlipiq

IO <INV

Ing = max (—log (pe~*

If p <1/10 is further assumed, we have I, , < 4(”37@
Proof: The equation for I, ; is by direct calculatlon and
its proof is omitted here. For the upper bound of I, ;, we have

Ipsq

log (1 (p+4) +2vpa (Vha+ VI -1 -0)))
~10g (1= (VB - va)*

via (1= vpa - VU= -9) )
=—log<1—(ﬁ7—\/§)2

(vP — va)?
1—\ﬁ+m
_—log<1—<l+ 2VPd )
1—/pg++/(1—=p)(1—gq)
X(\/ﬁ—\/@)2>~
Note that —log(1 —z) < 1.22,V0 < z < 0.3. When p < 1/2.
2,/pq )
(1 1—f—|—\/1—7—> WP VD

-2

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 19,2024 at 05:25:33 UTC from IEEE Xplore. Restrictions apply.



ZHANG: FUNDAMENTAL LIMITS OF SPECTRAL CLUSTERING IN STOCHASTIC BLOCK MODELS

2(vP—va)* < 2.

Hence, if we further assume p < 1/10, the above display is
smaller than 0.3, and we have

2/Pq )
T Y T = (VRN

2 _ 2

<12(1+ p (p—q)

1-0.140.9 p
N2
oA q).
<3,

O

Lemma 15: Consider any two integers m,mz > 0 and
any p,q such that 0 < q < p < 1/2. Let {Xi}icim,) i

Bernoulli(q), {Y;}je[ma] ~ Bernoulll( ) and assume they are
mdependent of each other. Consider any p such that 0 < p < 1.
We have

P( Z (Xi—q) —
i€[mq]
> e (m1 +ma) (p — Q)>

2
p (p—q)*
( mi,ma,pq T 5 9 (m1 +ma) T .

> (Y;-p)

J€[m2]

and

P( Yo Xi—g- >, (Y;-p)
1€[m1] JE€[ma]
> Lgip(ml +m2)(p—q)>

p—q)?

> exp (— T g = p s +ma)

gt me)(p—q)?p) (1 2
q2 4 (m1+ma)q )’

Proof: We first prove the upper bound. By Chernoff
bound, we have

1ogIP>< > (Xi—q) -
i€[mi]

I—p
ZT(m1+m2) (pQ)>

> (Y;-p)

J€[ma2]

+
logIP’(l[Z]Xi Z Y; Z(mlme)p2q
S

J€[ma2]

*g(ml +m2)(pQ)>

m1 +ma) (p — q)t

. p+q
< _ g4
_Itn>1(r)1< (mq —ma)t 5 + 2(

—l—mllog(qet—i—l—q)—i—mglog(pe_t—i—l—p))

7345

_ ptqg p _
= Igagi ((m1 ma)t 5 9 (m1 +ma) (p— q)t

—my log (qet +1-— q) — meo log (pe_t +1- p) )

<~ (Jmsomapg = 5 (m +m2) (p = q)t")

r-9?

IN

p
—Jmy,mapg + B} (m1 +ma)

where t* is defined in the statement of Lemma 13. Here the
second to last inequality holds as t* > 0 according to (59)
and the last inequality holds as t* < qq according to (59) as

well.
We next prove the lower bound. Define
f
= (= ma)t "L 4 & s+ ma) (0 )t
— my log (qet +1-— q) — mglog (pe_t +1 —p)

— (t<p;rq+p(qu)) log(q6t+1Q))

g ( <p;rqp(p2q)) 10g(pet+1p)>a

t := argmax, f(t), and jml,mz,p,q,p = [f(t) = max f(1).
Define
g L;rq + p(p;q)
pte 4 p(p2 q)) q
(1+p)51

p+q + p(p2 ‘J))) q

an

p+q _ plp— q))
2 p

ptq _ plp—q)
2 2

= log (
= log (
= log (
(I+p)55t

(1-p) (zﬁ—@)

Following the same argument used to derive (60) in the proof
of Lemma 13, we have ¢ sandwiched between #; and 5.
Hence, similar to (64), we have

=log | 1+

- 2(p —
Vi, < (p q),
q
where we use the assumption 0 < p < land0 < g <p <1/2.

In addition, we have

0<t<t (65)

1§e£§e£1Ve£2

p—q p=q
<1+ (1+p)(2 ) Y (1+p)2( )
(i (- 5))s o (- )
<1+2(p7—q)§27p. (66)
q

Using (65), we have

Jml »1M2,D,9,P
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p+q
ti
ma)t—, +2(

— mq log (qet~ +1-— q) — mglog (pe

my +mz) (p— q)t

_{—l—l—p)

< max <(m1 - mg)tz% —my log (qet +1- q)

= (mq1 —

mglog(petJrlp)) +g(m1 +ma) (p—q)t

P
= Jmy,mapg ) (m1 +ma) (p—q)t
(p—q)?
q

< Jml,mmp,q +p (ml + m2) (67)

Define M := ¢ (25 + 7”(’)_(1) — log (qe’? +1- q) and

N:=—t (22— —log (pe +1 —p). We are going
to use the Cramér—Chernoff argument to establish the lower
bound. We have

P( > (Xi—aq) -
i€[my]

>1te (m1 + ma) (p—q)>

p(p q)

> (Y;-p)

Jj€[m2]
- 2

:P<i§;ﬂ (XZ- (p-;q+ (p2 Q))>
-3 (e )

JE mg

i€[mq]

(-9

—Z<

JE[mM2]
= > | II m) IT 7e(y))
(@,y)€X \i€[m1] J€[m2]

In the above display, 6 > 0 is some quantity whose value
will be given later. The set X := {(z,y) : ¢ € R™,y €

R™2 (my + mg)d > Zie[ml] Ti — Zje[mQ] y; > 0} and
hi(+), ha() are defined to be the probability mass functions of

X, — % + W) and Y, — (% — W), respectively.
We further define

o o522

p ) (1 _ q) 7t(pT+q+p(p2—rJ))

)

_ pe_g(l_(%_p(p;q))) 4 (1 _ p)eg(%—i_ p(p;q)).

)

Then

P( > (Xi—q) -
1€[mq]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 10, OCTOBER 2024

> 1;7;7 (m1 +m2) (p — Q)>

exp (fxl) hi(x;)
exp (fxi) M

=M™NT Y

(z,y)eX

I1

i€[m1]

exp (—ty;) ha(y;)

< 11

JE€[ma] &xp (_tyj) N
M N oxp () b (2:)
~ exp ((my +mo)is) (I%é( z‘el[:n[ﬂ M

1 exp(—t%)ha(yﬂ |
JE€[ma]

where the last inequality is due to that ), el Ti

2 jcima) Yi < (m1 + m2)d as (z,y) € X. Define
W (w) = SR g gy () = SRR gy

D P (w) Z h4(w) = 1, they are both probability
mass functlons Let Uy,...Up,, be iid. random variables
distributed according to h%(:) and let Vi,...V,,, be iid.
random variables distributed according to h,(-). We further
assume they are independent of each other. Then

P( Y Xi—g - >, (Y;-p)
i€[m]

jE[ma]
1+
> Tp (m1 +ms) (p— (D)
M™ N™2

~ exp ((m1 + mg)fé)

<y (T e
(z,y)eX \i€[m1]
Mm1N7n2

exp ((my + m2)td)

I Patws)

J€[m2]

x P (m1+m2)62 Z U, — Z V}ZO
i€[mi] J€[m2]

Note that M™:N™2 =

_Jm11m27pqup) 2

exp (—Jmhmz,p,q — p(my +mo) @) where we use (67).
Hence,

HD( Z (Xi—q)—
1€[mq]

exp

> (Y-p)

J€[ma]
1+
ZQan+mﬁ@—qO
N2
2 €xXp (_ Jml,mg,p,q - p(ml + m2) (p qq)

—(m1+ mg)f6>]1”<(m1 +ma)d

Authorized licensed use limited to: University of Pennsylvania. Downloaded on September 19,2024 at 05:25:33 UTC from IEEE Xplore. Restrictions apply.



ZHANG: FUNDAMENTAL LIMITS OF SPECTRAL CLUSTERING IN STOCHASTIC BLOCK MODELS

> X U= > V| =20
i€[ma] Jj€[m2]
Note that
E( > U- > V| =mEU —mEV, = f(i) =0,
i€[m1] JjE€[me]

where the second equation is by calculation and the third
equation is by the fact that ¢ is the maximizer of f.

Then > e Ui = 2jcpma Vi Yieim,) (Ui —EU;) —
> jeima) (Vi — EV;). Through calculation, we have
1—
E|U) — EUL[* = Var(Uy) = —L =94
(get +1—q)
1 — pype—i
E|Vi — EVi[? = Var(V}) = — L —PIPC"
(pe~t+1—p)
In addition, we have Uy —EU;| < 1 and conse-
quently E |U1 EU,)* <E |U1 EU;|?. Similarly, we have
E|V; — EVi|* < E|V4 — EVi|*. Then by Berry-Essen Theo-

rem, we have

Yooy
1€[m] jE[m2]
(my1 4+ mg)d

\/lear U1> + mgVar U2
Zze[ml U Z]E[mz j >
>

\/lear Ul) + mQVar Ug

(my 4+ mg)d
\/lear Ul) + mgVar(Ug)
1
\/miVar(Uy) + maVar(Uy)
Through direct calculation, we have
my Var(Uy) 4+ meo Var(Us)
1— t
(~ q)ge -
(get +1—q)
t —t
qe pe
1—gq e D
2p P
= me
1-qq 1-p
< 4(m1 +ma)p,

> exp N(0,1) >0

1 pype—t
- (1 —p)pe

=m1 =
(pe i +1-p)’

<my

<my

where the second mequahty is due to (66). Note that as a
function of ¢, (;;% first increase and then decrease when

t > 0 and grows. By (66) again, we have

g 2
(1 - q)ge’ (1-q)q 1-9¢7 _q
e 2 = 2 2 = .
(1—p)pe~?

The same lower bound holds for . As a result,

(pe t+17p)

may Var(Uy) + moVar(Uz) > (mq + mg)g.

7347

Taking 6 = 2,/ m1+m , we have

Pl(mitme)d>| > U= > Vi|=>0
i€[m1] Jj€[ma2]
2
>P(1>N(0,1)>0)— ] ———
>P(1>N(0,1) >0) (1 + 12)g

1 2

— 4 (m1 4+ m2)q
With this choice of §, using (65), we have

P Z (Xi—a)— Y (Y;—p)

J€[mo2]

— p(m1+ma

2
_ N2
Z exp ( - Jml,mz,p,q ) (pqq)

_4\/<m1+m2><p—q>2p 1 2

q? 4 (m1 +ma)q
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