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A B S T R A C T

Inspired by mammal cranial sutures with spatiotemporal morphological variation, two-phase space-filling fractal 
metamaterial was designed. Designs with different levels of complexity are fabricated via multi-material polymer 
jetting. Mechanical tests and systematic finite element (FE) simulations are conducted to evaluate the mechanical 
performance of the designs. It is found that the hierarchical number N of two-phase space-filling fractal meta
material played an important role in their mechanical behaviors. The experimental results show that with 
increasing the hierarchical number N, these metamaterials show enhanced stiffness, strength, and toughness 
under tensile tests. From the simulation results, we found by decoupling the strain energy density in two phases, 
with increasing N, the soft phase has contributed almost the same energy level, however, the hard phase has 
contributed increasing energy level. Moreover, we found the volume fraction and the stiffness ratio of the hard 
phase dominate the overall mechanical properties of these two-phase space-filling fractal metamaterial. The bio- 
inspired mechanical metamaterials have broad applications in engineering materials for dissipating energy 
dissipation, mitigating impact, and retarding damages.

1. Introduction

Natural materials often feature intricate geometries that play a 
crucial role in their mechanical performance, inspiring engineers to 
create new materials (Dunlop et al., 2011; Meyers et al., 2008; Wain
wright, 1982). These geometries often exhibit hierarchy across different 
scales, showcasing complex, fractal-like patterns with repeated 
self-similar shapes (Long and Long, 2008; Saunders et al., 1999; Yao and 
Gao, 2006; Zhou and Zhang, 2005). Such hierarchical designs are known 
to significantly enhance the mechanical properties of natural materials 
(Jaslow, 1990; Jaslow and Biewener, 1995). Man-made hierarchical and 
fractal metamaterials via additive manufacturing also exhibit enhanced 
mechanical properties (Martínez-Magallanes et al., 2023, 2024; Zhang 
et al., 2023). An intriguing example of hierarchical design in nature is 
seen in suture interfaces, which consist of compliant, interlocking seams 
connecting stiffer components (Jaslow, 1990; Krauss et al., 2009; 
Landman et al., 2007; Li et al., 2011; Saunders et al., 1999; Sun et al., 
2004). Biological suture morphologies are versatile, such as wavy cra
nial sutures in human skulls (Song et al., 2010), the elaborate hierar
chical designs seen in ammonites (Li et al., 2012; Saunders and Work, 
1996), the 3D interdigitations in turtle shell (Alheit et al., 2020; Wang 
et al., 2021).

Mechanics of suture interfaces have been studied via experiments 

and finite element analysis (FEA). It has been found that suture in
terfaces can provide uniform stress distribution (Li et al., 2011), 
enhanced energy absorption (Jaslow, 1990), compliance (Hubbard 
et al., 1971), deformability (Dunlop et al., 2011), flexibility (Herring, 
2008; Krauss et al., 2009), and damping behavior (Cui et al., 2021). 
Moreover, bio-inspired sutural tessellation was shown to play an 
important role in amplifying strength, toughness, and authenticity (Cao 
et al., 2019; Gao et al., 2018). These studies confirm that geometric 
variation affects the effective mechanical behavior of the sutures.

Interestingly, morphologies of cranial sutures for mammals with 
horns show spatiotemporal variation. For example, for Shetland sheep, 
the cranial sutures show spatial variation in complexity, as shown in 
Fig. 1a, exhibiting a more complicated space-filling type of morphology 
between the horns. The different suture complexity at different locations 
can be conceptually represented by a simple rectangular wave (Fig. 1b 
and c) vs. a space-filling curve, such as the Hilbert curve (Fig. 1d and e). 
Also, dear cranial sutures show age-dependent geometries (Nicolay and 
Vaders, 2006). In adult-age deer (>4 years), cranial sutures show a 
much more complicated morphology than those in young-age deer 
(<1.5 years). Although this spatiotemporal variation in cranial sutures is 
well observed and recorded, it is not clear how the variation in suture 
morphology is quantitatively related to the mechanical performance and 
functions of sutures.
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In this paper, we design a new family of space-filling fractal meta
material which is inspired by the complex microstructures of cranial 
sutures of mammals. A multi-material 3D printer (Stratasys Connex 3) is 
used to fabricate the designs. Uni-axial tension tests are performed to 
evaluate their mechanical performance. Also, systematic finite element 
(FE) simulations are conducted to explore the effects of hierarchy 
number, stiffness ratio of multi-material, and volume fraction of each 
phase on the overall mechanical properties of the designs.

2. Space-filling fractal sutures design

2.1. Hilbert’s space-filling curve

Hilbert space-filling curve was first defined by the German mathe
matician David Hilbert in 1891 (Hilbert, 1891). It is one of the 
space-filling, self-avoiding, simple (single stroke), and self-similar 
(FASS) curves. It is generated via a recursive algorithm: the seed of 
the Hilbert space-filling curve is an upside-down U-shape at hierarchy 
level N = 1, as shown in Fig. 2a. To create the Hilbert space-filling curve 
of N = 2, the seed curve of N = 1 repeats twice on the top row and rotates 
90◦ clockwise and counterclockwise at the bottom row, respectively, as 
shown in Fig. 2b. By connecting these four seed sections with three 
straight lines (blue), the Hilbert curve with N = 2 is constructed. By 
repeating this process, a group of Hilbert space-filling curves is con
structed with the hierarchy number N. The examples with N = 1 to 6 are 
shown in Fig.2a-e, respectively. By assuming the edge length of the 
square as 1, the total length of the Hilbert curve with N is 2N− 1

2N 

(Hilbert, 1891). The total length grows exponentially with N, while the 
filling area is kept close to a constant, as shown in Fig. 2.

2.2. Two-phase space-filling fractal metamaterial

By assigning a thickness t to the Hilbert curves, the space-filling 
curve becomes a space-filling layer. Defining the layer as a domain 
with a different material property from the matrix domain outside the 
layer, a two-phase space-filling fractal metamaterial is obtained. For this 
type of metamaterial with hierarchical number N, the layer thickness is 
tN. Here, each sample contains two repeated units arranged in a hori
zontal direction. Both curves are connected in the center and extended 

to the edges. Therefore, the metamaterial includes three parts: the top 
part, the center part of the fractal layer, and the bottom part. The top and 
bottom parts are defined as a harder phase and the center part is defined 
as a softer phase. By changing the thickness of the layer, the volume 
fractions of hard and soft phases can be adjusted. The thickness of the 
soft phase, tN as tN = Hfs /

(
2N − 1 /2N)

, where H is the height of the, fs =

Vs/V is the volume fraction of the soft phase, and N is the hierarchical 
number. A group of space-filling fractal metamaterials is designed with a 
hierarchical number N varies from 1 to 5, as shown in Fig. 3.

3. Material and methods

3.1. 3D printing

The prototypes of space-filling fractal metamaterials are fabricated 
using a multi-material 3D printer Objet Connex3 260. We use two photo- 
sensitive polymeric materials, a soft elastomeric material, Agilus 30 
(A30), and an acrylic-based photopolymer, VeroWhite (VW). The soft 
phase is printed with the material of A30 (Young’s modulus~0.7 MPa), 
and the hard bone phase is printed with VW (Young’s modulus~1.7 
GPa).

The geometry of the 3D printed specimen is shown in Fig. 4a, the 
design is in the middle, and shoulders are added as VW plates. In the 
middle design area, the height is H = 50 mm, the length is L = 100 mm, 
the out-of-plane thickness is D = 2 mm, and the thickness of shoulder 
plates is D1 = 4 mm. The thicker shoulder plates are used to reduce the 
boundary effects and facilitate homogeneous deformation in the middle 
design area. To achieve high resolution in the printed specimens, the 
minimum in-plane layer thickness tN is ~400 μm, which is one order of 
magnitude greater than the minimum resolution (16 μm) provided by 
the 3D printer. All the specimens are printed along the same orientation 
to avoid the potential influences from the printing direction. The as- 
fabricated specimens are kept at room temperature for 7 days to allow 
for the saturation of the curing.

Two groups (G1 and G2) of the specimens are designed and manu
factured (the design parameters are summarized in Table 1). The spec
imens in G1 shown in Fig. 4b-d have the same volume fraction, 
fs = 0.256 but different numbers of hierarchy N = 3, 4, and 5, respec
tively. The volume fraction of the soft phase is kept at 25%, thus the 

Fig. 1. (a) Shetland sheep skull cranial sutures (b) with a relatively simple zigzag geometry, conceptually represented by a rectangular wave (c), and (d) with a more 
complete geometry, represented by a 2D space-filling Hilbert curve (f).
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volume fraction of the hard phase is 75%. The specimens in G2 shown in 
Fig. 4e-g have the same in-plane thickness of the fractal layer (tN = 0.4 
mm) and different N (N = 3, 4, and 5, respectively).

3.2. Uniaxial tension experiments

To characterize the effective mechanical properties of the space- 
filling fractal metamaterials, uniaxial tension experiments are per
formed on the 3D printed specimens, by using an Instron mechanical 
testing machine with a 10 kN load cell. All the tests are conducted in a 
quasi-static regime with a strain rate of 0.001 s−1. A high-resolution 

camera (Grasshooper3) is used to record the deformed configurations 
of the specimens at each time instant during the experiments. By post- 
processing images, the displacement histories of two marked points in 
the design area are obtained, from which the effective stress-strain 
curves are calculated.

3.3. Finite element simulations

The numerical simulations of the uniaxial tension experiments are 
conducted by using the commercial finite element (FE) package ABA
QUS/Standard (Simulia, Providence, RI). 2D FE models with plane stress 
elements (CPS3) are developed. Mesh convergence tests are conducted. 
Geometric and material nonlinearities are taken into consideration to 
enable the precise simulation at relatively large deformation. The stress- 
strain behavior of the hard phase is modeled from the true stress-strain 
relation of VeroWhite. The elastomeric stress-strain behavior of Agi
liusBlack is modeled as a hyperelastic material via Arruda-Boyce 
hyperelastic model (Arruda and Boyce, 1993) with an initial shear 
modulus of 0.213 MPa and a locking stretch of 1.9. To simulate the 
experimental conditions, prescribed uniaxial displacement was applied 
on the top surface, fixed on the bottom surface, and free on the hori
zontal surfaces.

4. Experimental results

The experimental results of group G1 are shown in Fig. 5. The en
gineering stress-strain curves for samples with N = 3, 4, and 5 exhibit 
three deformation stages: elastic deformation, plastic yielding, and 
failure, as shown in Fig. 5a. Fig. 5a shows that in the elastic stage, when 
N increases, the stress-strain curves show an increase in slope, indicating 
a higher effective stiffness. In the plastic yielding stage, the initial 
yielding stress increases with N. To clearly demonstrate the evolution of 
deformation, for each specimen four snapshots (Fig.5b-d) are selected to 
represent the deformation in the elastic stage, plastic yielding, first 
failure, and final failure, respectively.

For all three samples, at a small overall strain (ε = 0.03), the overall 
deformation is dominated by the deformation of the soft phase. How

Fig. 2. Hilbert space-filling fractal curves. (a) N = 1; (b) N = 2; (c) N = 3; (d) N = 4; (e) N = 5; (f) N = 6.

Fig. 3. Space-filling fractal metamaterials. (a) Geometry parameters, and the 
design of N = 1, (b) N = 2, (c) N = 3, (d) N = 4, and (e) N = 5.
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ever, different parts of the soft phase are under different deformation 
modes including compression, tension, or shearing. When the specimens 
continue to be stretched to a larger overall tensile strain, the soft phases 
under tension break. The cracks can be noticed and marked with yellow 
circles in Fig. 5 b1, c1, and d1. At the same time, the deformation in the 
hard phase increases, and yielding occurs in certain locations in the hard 
phase. The first failure occurs in the same positions marked in Fig. 5 b3, 
c3, and d3, followed by crack propagation until a catastrophic failure is 
shown in Fig. 5 b4, c4, and d4.

The experimental results of specimens in the G2 group are shown in 
Fig. 6. The engineering stress-strain curves for samples with N = 3, 4, 

and 5 also exhibit three stages: elastic deformation, the plastic yielding, 
and failure process, as shown in Fig. 6a. Fig. 6a shows that when N in
creases, both the effective stiffness and yielding stress decrease. This is 
mainly because when the layer thickness is the same, the total volume 
fraction of the hard phase decreases with increasing N. For example, 
when N = 3, the design has the largest volume fraction of the hard phase 
(93.6%) making its property getting closer to the constituent material of 
the hard phase (VW). For each specimen, the snapshots of the elastic 
stage, plastic yielding, first failure, and final failure are shown in Fig. 6b- 
d).

It is noticed that the first failure (Fig. 6a) occurs at a similar strain in 
the sample with N = 3, 4, and 5, respectively. However, the final failure 
in the sample with N = 3 and 4 is catastrophic, indicating a brittle failure 
mode. Differently, the final failure in the sample with N = 5 shows a 
progressive failure which indicates a ductile mode. Experimental snap
shots (Fig. 6b-d) clearly show that in the stage of failure, when N in
creases, the final failure becomes more and more graceful. For example, 
for the design of N = 5, the process of d3-d4 is way more graceful than 
the processes of b3-b4, and c3-c4.

Based on the experimental stress-strain curves, the effective 

Fig. 4. Designed specimens for tensile tests. (a) Schematics for the geometry parameters of the tensile specimens. 3D printed specimens in group 1 (G1) have the 
same volume fraction of soft phase (25%) with (b) N = 3, (c) N = 4, and (d) N = 5.3D printed specimens in group 2 (G1) have the same thickness of soft phase (0.4 
mm) with (e) N = 3, (f) N = 4, and (g) N = 5.

Table 1 
Geometry parameters of experimental samples for tensile tests. Here, the volume 
fraction of the soft phase is fs and the thickness of the fractal layer is tN.

Geometry Parameters G1 G2

N = 3 N = 4 N = 5 N = 3 N = 4 N = 5

fs 0.256 0.256 0.256 0.064 0.128 0.256
tN (mm) 1.6 0.8 0.4 0.4 0.4 0.4
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mechanical properties including the effective stiffness, strength, and 
resilience for the G1 and G2 specimens are compared in Fig. 7a-c, 
respectively. Effective stiffness is defined as the initial slope of the stress- 
strain curve in the elastic regime. Effective strength is defined as the 
overall stress at the peak of the stress-strain curve. Resilience is defined 
as the energy absorbed in the elastic regime.

Fig. 7a and b shows that for designs in group G1, both the effective 
stiffness and effective strength increase with increasing N, however, for 
designs in group G2, the trends are opposite. As we explained before, 
this is dominated by the effects of volume fraction. While for resilience, 
the designs from both groups show a consistent trend and similar level of 
values at each N level, resilience increases with increasing N.

5. Results of systematic parametric study

5.1. Effective stiffness of space-filling fractal metamaterial

The mechanical properties of space-filling fractal metamaterials are 
strongly affected by the material properties of both the hard and soft 
phases. Especially, the effective stiffness E depends on the stiffness ratio, 
Eh/Es between hard phase and soft phase. To systematically explore the 
effects of stiffness ratio Eh/Es, FE models with N = 1-5 in the G1 groups 
are developed. For all models, the volume fraction of the soft phase is 

25%. For the FE models with N = 1-5, the in-plane thickness of the soft 
layer is 0.4, 0.8, 1.6, 3.2, and 6.4 mm, respectively. Then for each FE 
model, the stiffness of the hard phase is fixed as Eh = 1.7 GPa, and the 
stiffness of the soft phase varies as Es = 0.01, 0.1, 0.7, 1, 3, and 10 MPa. 
Thus, the stiffness ratio Eh/Es varies from 1.7 × 102 to 1.7 × 105. A total 
of 30 FE simulations were conducted.

It is worth mentioning that for the multi-material 3D printer, the 
effective stiffness of very thin flat soft layers (less than 1 mm) depends 
on the thickness of the layer (Liu et al., 2020b; Liu and Li, 2018). This is 
because of material mixing between the soft and the hard phases during 
printing. A group of specimens of flat layers with in-plane layer thick
nesses of 0.4, 0.8, 1.6, 3.2, and 6.4 mm are designed and fabricated. 
Uni-axial tension experiments are conducted. The effective stress-strain 
curves are obtained (Fig. 8a).

The effective stiffness of layers with different thicknesses are 
compared in Fig. 8b. It can be seen that for t = 1.6 mm, 0.8 mm, and 0.4 
mm, Es = 0.7 MPa, 1 MPa, and 3 MPa, respectively. This is consistent 
with the values we used in the parametric FE simulations, as shown in 
Table 2.

The effective stiffness as a function of N and Es are shown in Fig. 8c 
and d. First, the results from FE simulations agree well with those from 
previous experiments. Second, it shows that for a certain Es, higher hi
erarchy number N results in higher effective stiffness. With increasing 

Fig. 5. Experimental results for specimens in group 1 (G1) with the same volume fraction of soft phase (25%). (a) Experimental engineering stress-strain curves, and 
(b) selected deformation patterns for the sample with N = 3, (c) N = 4, and (d) N = 5. In the soft phase, the deformation of compression (red arrows), shearing (green 
arrows), tension, and tensile failures (yellow circles or arrows) are marked in selected areas.
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Es, the effective stiffness becomes less dependent on N. For example, as 
shown in Fig. 8c, when Es = 0.01 MPa, the effective stiffness increases 
from 0.1 MPa to 3 MPa when N increases from 1 to 4. When N increases 
from 4 to 5, the effective stiffness increases from 3 MPa to 3.5 MPa. In 
compassion, when Es = 10 MPa, when N increases from 1 to 2, the 
effective stiffness increases from 75 MPa to 172 MPa. However, when 
N ≥ 2, the effective stiffness remains almost unchanged when increasing 

N.
To further understand the effects of stiffness ratio and N on the 

effective stiffness, we explored the total strain energy and the strain 
energy of the hard phase and soft phase, respectively. The relationship 
between the total strain energy and the overall stiffness is: 

U =
1
2
Eε2V. (1) 

Fig. 6. Experimental results for specimens in group 2 (G2) with the same in-plane thickness (0.4 mm) of the soft phase. (a) Experimental engineering stress-strain 
curves and the snapshots for the specimens with (b) N = 3, (c) N = 4, and (d) N = 5. In the soft phase, the deformation of compression (red arrows), shearing (green 
arrows), tension, and tensile failures (yellow circles or arrows) are marked in selected areas.

Fig. 7. Measured effective mechanical properties, (a) stiffness, (b) strength, and (c) resilience as functions of the hierarchy number, N.
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Here, ε is the overall strain and V is the total volume of the design. The 
total strain energy of the composite can be decomposed into the strain 
energy of the soft and hard phases: 

U = Us + Uh. (2) 

For the soft phase, the strain energy is: 

Us =
1
2
Es

∑
ε2

i Vi =
1
2
Esεs

2Vs. (3) 

Similarly, the strain energy for the hard phase is 

Uh =
1
2
Ehεh

2Vh, (4) 

where, εs and εh are the average strains for the soft phase and hard 
phase, respectively. Vs and Vh are the volume of the soft and hard phases, 
respectively. Here, we define the effective strain energy of the soft phase 
as: 

Us = εs
2 =

2Us

EsVs
. (5) 

Similarly, the effective strain energy of the hard phase is as 

Uh = εh
2 =

2Uh

EhVh
. (6) 

The effective strain energy of the composite is as 

U = ε2 =
2U
EV

. (7) 

Substitute Eqs. (5)-(7) to Eq. (2), the normalized effective stiffness, 
E/Eh is 

E
Eh

= fs
Es

Eh

Us

U
+ (1 − fs)

Uh

U
. (8) 

Here, fs is the volume fraction of the soft phase. The normalized effective 
stiffness of the composite is the sum of normalized effective strain en
ergies from both the soft phase and hard phase.

Fixing the volume fraction of the soft phase, fs, the normalized 
effective strain energies, Us/U and Uh/U are functions of stiffness ratio, 
Eh/Es and the hierarchy number, N, which have been obtained from the 
simulations, as shown in Fig. 9a and c, respectively. First, both Uh/U and 
Us/U increase when increasing Eh/Es. Second, Uh/U increases with 
increasing N. When Eh/Es ≤ 2429 and N ≥ 3, Uh/U keeps almost un
changed. In comparison, when Eh/Es ≤ 2429 and N ≥ 2, Us/U keeps 
almost unchanged. Furthermore, the von Mises stress contour of selected 
phases for N = 1, 3, and 5 has been shown in Fig. 9b and d. The stress 
contour in the hard phase increases with increasing Eh/Es or increasing 
N (Fig. 8c). In comparison, the stress contour in the soft phase increases 
with increasing Eh/Es and is independent of N. These results show that 
the stiffness ratio between hard and soft phases strongly affects the 
overall effective stiffness from strain energy analysis. However, the 
increasing hierarchy number mostly increases the stress in the hard 

Fig. 8. The effect of stiffness ratio between hard phase and soft phase on the effective stiffness of space-filling fractal metamaterial. (a) The effective stiffness is a 
function of the hierarchy level, N under various stiffness ratios. (b) The effective stiffness as functions of the stiffness of soft phase under various hierarchy level, N.

Table 2 
The effective stiffness of space-filling fractal metamaterial from experiments and 
simulations. The error between results from experiments and simulations is 
defined as 

⃒
⃒Esim /Eexp − 1

⃒
⃒.

E (MPa) G1 (fs = 0.256) G2 (tN = 0.4 mm)

N = 3 N = 4 N = 5 N = 3 N = 4 N = 5

Experiment 41.72 63.86 136.98 249.05 180.30 136.98
Simulation 42.16 57.80 110.77 247.20 167.83 110.77

Error (%) 1.1 9.5 19.1 0.7 6.9 19.1
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phases which contributes to the increasing effective stiffness of 
composites.

The mechanical properties of space-filling fractal metamaterial is 
also affected by the volume fractions of hard phase and soft phase. From 
previous experimental results, the suture composite designs in G2 have 
the same soft interlayer thickness. Thus, the volume fraction of each 
phase is varied. For example, the volume fractions of the soft phase, fs 
are 0.064, 0.128, and 0.256 for designs with N = 3, 4, and 5, respec
tively. Therefore, to study the effect of volume fraction on their overall 
properties, we performed another group of FE simulations of the suture 
composites with the volume fraction of the soft phase, fs = 0.50, 0.256, 
0.128, and 0.064. In all the designs, the thickness of the soft phase is 0.4 
mm, meanwhile, the stiffness ratio is fixed as, Eh/Es = 567. The effective 
stiffness measured from these simulations and previous experiments is 

shown in Fig. 10. First, the experiment data from G2 agrees well with the 
results from the simulations. Second, Fig. 10a shows at a certain volume 
fraction, a higher hierarchy number results in higher effective stiffness. 
However, the effective stiffness of composite tends to remain constant at 
larger hierarchy numbers (N ≥ 3). Moreover, at a certain hierarchy 
number, smaller fs results in higher effective stiffness, as shown in 
Fig. 10b. These results indicate that both the volume fraction and the 
hierarchy number strongly affect the overall stiffness of suture 
composites.

To further study the effect of volume fraction on each phase of the 
suture composite, the normalized effective strain energies, Us/U and 
Uh/U are as functions of the volume fraction of the soft phase, fs and the 
hierarchy number, N, is obtained from simulations and shown in 
Fig. 11a and c, respectively. First, both Uh/U and Us/U increase when 

Fig. 9. The effect of stiffness ratio, Eh/Es on the normalized effective stiffness. (a) The normalized effective strain energy, Uh/U as a function of hierarchy number, N. 
(b) The von Mises stress contour of selected deformation pattern of hard phase under the overall tensile strain of 0.01. (c) The normalized effective strain energy, Us/

U as a function of hierarchy number, N. (d) The von Mises stress contour of selected deformation pattern of hard phase under the overall tensile strain of 0.01.

Fig. 10. The effect of volume fraction on the stiffness of space-filling fractal metamaterial. (a) The effective stiffness is a function of the hierarchy level, N under 
various volume fractions of hard phase. (b) The effective stiffness as functions of the volume fraction of hard phase under various hierarchy levels, N.
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decreasing fs. Second, at a certain fs, Uh/U increases with increasing N. 
In comparison, at a certain fs, Us/U keeps almost unchanged when N ≥

2. Furthermore, the von Mises stress contour of selected phases for N =
1, 3, and 5 has been shown in Fig. 11b and d. The stress contour in the 
hard phase increases with decreasing fs or increasing N (Fig. 8c). In 
comparison, the stress contour in the soft phase increases with 
decreasing fs and is independent of N. These results show that the vol
ume fraction of each phase strongly affects the overall effective stiffness 
from strain energy analysis. However, the increasing hierarchy number 
mostly increases the stress in the hard phases which contributes to the 
increasing effective stiffness of composites.

5.2. Strength and resilience of space-filling fractal metamaterial

The strength and resilience of the suture composites is also affected 
by the hierarchy number and volume fraction of the hard phase. From 
previous experimental results (Section 4.1), we noticed that at early 
stage of stress-strain curves before the peak stress, most of the soft phase 
under stretching are pulled to break. And the left parts of the soft phase 
are under compression or shearing. The strength ratio between hard and 
soft constituent materials is larger than 40, here, σh = 42 MPa and σs ≤ 1 
MPa. Therefore, the contribution of the soft phase to the strength of the 
suture composites can be neglected. To study the strength and resilience 
of the suture composites numerically, we performed simulations on the 
suture composite designs without the soft phase. Here, we use an elastic- 
perfect-plastic material model to capture the behavior of hard phase 
material, VW. Its yield stress is modeled as, σh = 42 MPa. From these 
simulations, the strength and the resilience can be obtained as functions 
of hierarchy numbers as shown in Fig. 12a and b, respectively. First, we 
notice that at a certain volume fraction of the hard phase, the strength of 
the composites increases with increasing the hierarchy number. 

Apparently, at a certain hierarchy number, the composites with a higher 
volume fraction of hard phase have higher strength. The measured 
strength from the experiment agrees well with those measured from the 
simulations. Moreover, for resilience, it is noticed that, with increasing 
the hierarchy number, the composites have reached a higher resilience. 
Especially, the resilience of the composites seems independent of the 
volume fraction. Composites with various volume fractions have a close 
trend of the relations between resilience and hierarchy number. 
Furthermore, image snapshots at the maximum stress from the simula
tions and experiments are shown in Fig. 12c and d. We found that the 
locations where crack starts to occur in the experiment are the same ones 
where the stress is maximum in the simulations. This indicates that our 
simulations can predict not only the strength but also the locations of the 
crack start to propagate.

In general, the newly designed space-filling fractal metamaterial 
shows several differences compared with the conventional composite 
design from cellular material patterns. For cellular material patterns, 
there are two types. First, the cellular phase is hard and connected, while 
the inverse phase is empty or a softer material. This design is also known 
as a lattice-reinforced composite. Previous studies (Li et al., 2018, 2020; 
Li and Li, 2024) have shown that the properties of lattice-reinforced 
composites are dominated by the hard cellular phase, with the inverse 
soft matrix only providing limited additional contribution to the overall 
properties. Second, the cellular phase is made of connected soft mate
rials, while the inverse phase is composed of harder materials. In these 
designs, the hard phase is separated into many isolated sections by the 
soft-connected lattices. One of our previous studies (Gao et al., 2018; Liu 
et al., 2020a) demonstrated that the properties of these designs are 
highly influenced by the deformation of the soft phase. In comparison, 
the currently designed space-filling fractal metamaterial features a more 
complex multi-phase geometry. These designs offer advantages over 

Fig. 11. The effect of volume fraction of both phases on the normalized effective stiffness. (a) The normalized effective strain energy, Uh/U as a function of hierarchy 
number, N. (b) The von Mises stress contour of selected deformation pattern of hard phase under the overall tensile strain of 0.01. (c) The normalized effective strain 
energy, Us/U as a function of hierarchy number, N. (d) The von Mises stress contour of selected deformation pattern of hard phase under the overall tensile strain 
of 0.01.
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both abovementioned types of cellular material patterns. Due to the 
space-filling fractal design, the new metamaterials can have increased 
interactions between the two phases and therefore can involve great 
contributions from both phased: the shear, compression, and tension of 
the soft phases, as well as the bending, stretching, interlocking of the 
hard phases. Consequently, both phases are more effectively taking the 
load and contribute to the overall deformation. Moreover, by rationally 
designing the fractal number, stiffness ratio of both phases, and the 
volume fraction of each phase, the overall mechanical properties can be 
significantly tuned.

6. Conclusion

In this paper, we design a new family of space-filling fractal meta
material which is inspired from the complex microstructures of deer 
cranial sutures. These novel designs are generated from a mathematical 
fractal space-filling curve - Hilbert curves with a hierarchy number, N 
indicating the hierarchical/fractal level of the structures.

We use our multi-material 3D printer to fabricate these composite 
structures with N from 3 to 5. Tensile tests are performed to test their 
mechanical behaviors. We find that with increasing the hierarchical 
level, these suture composites have shown enhanced stiffness, strength, 
and resilience.

To study the effects of hierarchy number, stiffness ratio of multi- 
material, and volume fraction of each phase on the overall mechanical 
properties of these suture composites. We perform systematic 

simulations with various designs and constituent material properties. 
We found that with higher stiffness ratio and higher volume fraction of 
the hard phase will improve their stiffness and strength. However, the 
resilience is independent of the volume fraction of each phase. Our 
simulations can predict the mechanical properties which agree well with 
those from the experiments.

In general, these space-filling fractal metamaterials are a novel ma
terial design that has the potential to provide various applications 
including energy absorption materials, impact-resistant materials, and 
multi-functional materials.
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