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We study the nonequilibrium dynamics of a pseudoscalar axionlike particle (ALP) weakly coupled to
degrees of freedom in thermal equilibrium by obtaining its reduced density matrix. Its time evolution is
determined by the in-in effective action which we obtain to leading order in the ALP coupling but to all
orders in the couplings of the bath to other fields within or beyond the standard model. The effective
equation of motion for the ALP is a Langevin equation with noise and friction kernels obeying the
fluctuation dissipation relation. A “misaligned” initial condition yields damped coherent oscillations,
however, the ALP population increases towards thermalization with the bath. As a result, the energy density
features a mixture of a cold component from misalignment and a hot component from thermalization with

proportions that vary in time dcoldpe ™ p ShotPd1- e b, providing a scenario wherein the “warmth” of

the dark matter evolves in time from colder to hotter. As a specific example we consider the ALP-photon
coupling gaE” - B” to lowest order, valid from recombination onwards. For T > m, the long-wavelength
relaxation rate is substantially enhanced 't % g6™2". The ultraviolet divergences of the ALP self-energy

require higher-order derivative terms in the effective action. We find that at high temperature, the finite-
temperature effective mass of the ALP is m2,8Tb % m2,80b%1~ 8T=Tb* with T pm.30p=gffi, suggesting

the possibility of an inverted phase transition, which when combined with higher derivatives may possibly

indicate exotic new phases. We discuss possible cosmological consequences on structure formation, the

effective number of relativistic species and birefringence of the cosmic

microwave background.

DOI: 10.1103/PhysRevD.106.123503

[. INTRODUCTION

The axion, introduced in quantum chromodynamics
(QCD) as a solution of the strong CP problem [1-3] may be
produced nonthermally in the early Universe, for example
by a misalignment mechanism and is recognized as a
potentially viable cold dark matter candidate [4-0].
Extensions beyond the standard model can accommodate
pseudoscalar particles with properties similar to the QCD
axion, namely axionlike particles (ALPs) which can also
be suitable dark matter candidates [7—11], in particular as
candidates for ultra light dark matter [12,13]. Constraints

on the mass and couplings of ultralight ALPs [9-11,14] are
being established by various experiments [15—17]. There
are two important features that characterize ALPs: (i) a
misalignment mechanism results in coherent oscillations of
the expectation value of the ALP field which gives rise to
the contribution to the energy density as a cold dark matter
component [4-6,9-11,18], and (ii) its pseudoscalar nature
leads to an interaction between the
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ALP and photons or gluons via pseudoscalar composite
operators of gauge fields, such as E” - B” in the case of the

ALP-photon interaction and G**G . in the case of
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gluons, which allows an ALP to decay into two photons or
gluons. The effect of this decay process in the evolution of
ALP condensates has been studied in Refs. [19-21]
including stimulated decay in a photon background.

A. Motivation and objectives

In this article we study the nonequilibrium dynamics of
coherent oscillations of ALPs coupled to generic
environmental fields in thermal equilibrium by obtaining
the nonequilibrium in-in effective action from which we
derive the effective equations of motion of ALP
condensates.

A simple example highlights our main motivation and
objectives; consider the textbook situation of a particle in
an harmonic potential immersed in a heat bath in
equilibrium. The interaction of the particle with the bath
degrees of freedom induce two main modifications to the
equations of motion of the particle; (i) a friction term
arising from energy transfer with the bath degrees of
freedom, and (ii) a
stochastic noise term arising from the random “kicks” that
the environment gives the particle. This is the basis of
Brownian motion and the effective equation of motion of
the Brownian particle is a Langevin equation, Xdtb p yx dtp
2470-0010=2022=106(12)=123503(24)

b w2xdth % £dtb; 61:1P

with § a stochastic noise with a (generally) Gaussian
probability distribution function yielding the (classical)
averages and correlations

(EOtPY) % 0;  ((EOtPEStoPY) % 2ykeT63t — tob:  31:2p

The relation between the noise correlation function and the
friction coefficient in (1.2) is the (classical) fluctuation
dissipation relation, a direct consequence of the bath
degrees of freedom being in thermal equilibrium. As a
result, whereas the (stochastic) average ((xdtpP))x

“11/2 cog [ @* — %

e t, the mean square fluctuation

{(x20tP)) ks T=w?, this is simply classical equipart > 1=y

tition, namely the Brownian particle reaches thermal
equilibration with the bath on a relaxation time scale o< 1=y.

This simple illustrative example motivates our study in
this article, namely to understand the effective dynamics of
ALPs when they are coupled to a bath of other degrees of
freedom in (local) thermal equilibrium. The familiar
example of a Brownian particle in a heat bath suggests that
the effective equations of motion of a coherent ALP
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condensate should be akin to a Langevin equation with a
friction and noise term related by a fluctuation dissipation
relation as a consequence of the bath degrees of freedom
with which the ALP interacts being in thermal equilibrium.
Our objective is precisely to derive, and solve such
equation and explore its consequences by implementing
the methods of nonequilibrium field theory. For this
purpose, we adapt the seminal formulation of quantum
Brownian motion [22-25] to the realm of nonequilibrium
quantum field theory [26-30]. This is achieved in the in-in
or Schwinger-Keldysh [26,31-33] formulation of time
evolution in quantum field theory. Unlike the in-out
formulation, the in-in formulation yields causal, retarded
equations of motion [30,34-36].

The objectives of this study are twofold: (i) to obtain the
time evolution of a reduced density matrix, nonequilibrium
effective action, equations of motion and correlation
functions for ALPs weakly coupled to degrees of freedom
in thermal equilibrium. We first consider a generic model
with coupling of the form o< gaO with g a weak coupling, a
the ALP field and O a composite pseudoscalar operator
associated with the bath degrees of freedom. We obtain the
effective action to leading order in the coupling (Odg?P),
and to all orders of the couplings of the environmental

© 2022 American Physical Society
fields to other degrees of freedom within or beyond the
standard model, and (ii) to apply the general results to the
relevant case of ALP-photon interaction with O % E~ - B~
where the radiation field in thermal equilibrium is
identified with the cosmic microwave background (CMB).
In this article we address these objectives in Minkowski
space-time, obtaining the (nonequilibrium) effective action
and effective equations of motion for ALPs to order g?in
the (weak) coupling g and arbitrary ALP mass m, as a
prelude to extending the methods to an expanding
cosmology and exploring phenomenological consequences
and constraints in future work. Furthermore, in this study
we do not adopt a particular set of parameters for ALP
couplings and mass, nor on possible bounds on these. Our
main focus is to study the general aspects of the effective
dynamics resulting from these interactions under the sole
assumption of weak coupling between the ALP and degrees
of freedom of the standard model and that the latter are in
thermal equilibrium.

B. Summary of results

We study the time evolution of an initially prepared
density matrix describing a misaligned initial state for the
ALP and an equilibrium thermal bath of generic fields
coupled to the ALP. Tracing over the bath fields yields a
reduced density matrix for the ALP field whose time
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evolution is determined by the nonequilibrium effective
action which is obtained up to O8g?P but to all orders in the
couplings of the bath degrees of freedom to other degrees
of freedom within or beyond the standard model.

The ALP equations of motion obtained from the
nonequilibrium effective action are stochastic of the
Langevin type (1.1) with a friction kernel determined by
the retarded ALP self-energy (a manifestation of radiation
reaction) and a Gaussian noise whose two-point correlation
function is related to the self-energy via a generalized
fluctuation dissipation relation. This is a consequence of
the bath degrees of freedom being in thermal equilibrium.
Hence, the notion of Brownian ALP’s. In Ref. [37] a local
friction coefficient for the equation of motion of the
expectation value of the axion field was obtained as a
consequence of sphaleronlike transitions in high-
temperature QCD. Thermal friction from the ALP coupling
to high-temperature plasmas has also been discussed in
Refs. [38,39], and thermalization has been studied in Refs.
[40,41]. Our approach is very different in that we obtain the
in-in nonequilibrium effective action which allows us to
obtain the full equation of motion including the noise term
and directly show that the selfenergy contribution which
yields the “friction” term and the noise correlation
functions are related by fluctuation dissipation. The noise
term is of paramount importance in obtaining correlations
of the ALP field, and as a consequence of the noise term
we find that the processes that lead to “friction” and
damping of the misaligned expectation value are the same
as those leading to thermalization with the environment on
similar time scales, thereby providing a direct bridge
between damping of a coherent condensate and
thermalization. To the best of our knowledge, this
approach, which explains both aspects of ALP’s
nonequilibrium dynamics, has not yet been implemented
for ALPs. A corollary of this important result, relevant for
dark matter, is that the energy density features a mixture of
a “cold” and “hot” components whose relative weight vary
in time; E % 8coldpe™™ p 8hotPd1 — e"P where the “cold”
component corresponds to the damped coherent
oscillations arising from a misaligned initial condition and
the hot component to the approach to thermalization and is
a consequence of the stochastic noise. The relaxation rate I
is determined by the imaginary part of the ALP self-energy
and is a result of (stimulated) emission and absorption
processes with the bath.

After obtaining the general results, we focus on the
interaction of ALPs with photons via the coupling gaE™ - B”
. The coupling g has dimensions of 1=8energyb resulting in
a nonrenormalizable interaction. Ultraviolet divergences
necessitate the introduction of higher-derivative terms of
the (ALP) fields. Emission and absorption processes such

PHYS. REV. D 106, 123503 (2022)

as a <> 2y yield a relaxation rate that is enhanced at high
temperatures T >> m, by a factor « T=m,. Furthermore, we
find that the finite temperature contribution to the
selfenergy yields a temperature dependent effective ALP
mass m2a0Th % m2ad0b%1 - OT=Tch4 with Tc
pmad0pb=gffi, this behavior of the effective mass suggests
an inverted phase transition and combined with the
necessity for higher-derivative terms in the effective
Lagrangian points to the possibility of novel phases and
Lifshitz phase transitions [42].

In Sec. II we obtain the effective action out of
equilibrium for ALP fields implementing the in-in
Schwinger-Keldysh formulation of nonequilibrium field
theory for a generic interaction of the form gadxpOdxPp,
with an initial density matrix for the ALP field that
implements a misaligned initial condition and a thermal
density matrix for the environmental fields. In this section
we obtain general results; the Langevin equation of motion
for the ALP field, and the time-dependent energy density
with a cold component from misalignment and a hot
component from thermalization. In Sec. 111 we focus on the
interaction with photons, obtain the one-loop, self-energy,
and noise-correlation function at finite temperature,
discuss renormalization issues and study their high- and
low-temperature limits.

In Sec. IV we discuss the main aspects of the results and
point out some caveats. In this section we argue that the
results obtained in the case of photon interactions are valid
after recombination in the early Universe and discuss
possible cosmological consequences. Our conclusions are
summarized in Sec. V. Several appendices include
technical details.

II. THE EFFECTIVE ACTION OUT OF
EQUILIBRIUM

We study the nonequilibrium effective action of an we

refer asaxionlike field“environmentaladxp coupled to

generic fields” fields via an Operator)(axp to whichoxéxb,
with the Lagrangian density

1 1
La; X —-d,a x da x ——mia® x ~ %2 5

b ob 2 0 bgadxbOyxdxbply;

02:1p

where Ly is the Lagrangian density describing the
“environmental” fields x, these fields could be the
electromagnetic field, fermion or gluon fields. We will first
treat these fields generically to leading order in the
coupling to exhibit the general form and properties of the
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effective action for ALP and then we will focus specifically
on the case of the pseudoscalar coupling to the
electromagnetic field, a hallmark of ALPs.

The Lagrangian density (2.1) describes several relevant
couplings of ALPs, such as

Ly Y4—gadxPE” 8xb-B~ 8xb; L %-gsadxPGHPEXPG™ y;u8xP;

Li ¥4-gyadxbW dxbysWoxp; 82:2b

where E , B are the electromagnetic fields, G**;G HPare
the gluon field strength tensor and its dual respectively, and
Woxp a fermionic field. Therefore the interaction in (2.1)
describes a wide range of possible interactions of the ALP
with other degrees of freedom which in this study are
assumed to be in thermal equilibrium initially.

Whereas the photon and gluon interactions are not
renormalizable because the respective couplings g;gs
feature dimensions 1=0energyP, the coupling gy is
dimensionless so the interaction with the fermionic
pseudoscalar is renormalizable. This aspect will have
important consequences as discussed below in Sec. III.

Upon evolving the total initial density matrix in time, the
degrees of freedom x with the generic operator O, will be
traced over to obtain a reduced density matrix for adxp. We

achieve this to leading order in the coupling g, but to all
orders in the couplings of the x fields with themselves or
with other degrees of freedom within or beyond the
standard model, except for the ALP.

Although we are ultimately interested in obtaining an
effective quantum field theory by tracing out these degrees
of freedom in an expanding cosmology, in this study we
focus on Minkowski space time as a first step towards
extending these methods to cosmology. We consider the
generic fields x as a bath in thermal equilibrium.

The main strategy is to begin with an initial density

evolve it in timematrix p”d0P describing the ALP field and
the environment,p”6tb % UdtPp"60PU-10tP with UStp the

unitary time evolution operator for the ALP-environment,
and trace over the environmental degrees of freedom
yielding a reduced density matrix for the ALP fields,
namely p",0tb % Tryp"dtb. This is the in-in or Schwinger-

Keldysh [26,31-33] formulation of nonequilibrium
quantum field theory, the time evolution of the reduced
density matrix is determined by a nonequilibrium effective
action that includes the effects of the environment via a
nonlocal term known as the influence functional [22] in the
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theory of quantum Brownian motion. This effective action
yields causal equations of motion [34,35], which turn out
to be stochastic, akin to a Langevin equation with noise and
dissipation terms that are related by a general fluctuation
dissipation relation, a consequence of the environmental
bath being in thermal equilibrium.

The reduced density matrix can be represented by a path
integral in terms of the nonequilibrium effective action that
includes the influence functional. This method has been
used previously to study quantum Brownian motion [22—
28,30] and for studies of quantum kinetics beyond the
Boltzmann equation [26,43,44].

Let us consider the initial density matrix at a time t %4 0

to be of the form p“d0P % p~ad0b Qp xd0P: 82:3p

The initial density matrix p~,00P is normalized so that
Trap™200P % 1 and that of the x fields will be taken to
describe a statistical ensemble in thermal equilibrium at a

temperature T % 1=, namely

€-BHy

pxoobP Vi
Trye

-BHx; 02:4b

where Hy is the total Hamiltonian for the fields x, and may
include other fields to which x is coupled other than the
ALP; this possibility will be discussed further below.

The factorization of the initial density matrix is an
assumption often explicitly or implicitly made in the
literature, it can be relaxed by including initial correlations
at the expense of daunting technical complications. We will
not consider here this important case, relegating it to future
study.

In the field basis the matrix elements of p“,60p and

p"x00Pp are given by

hajp”ad0Pbjaoi % pa,08a;aoP;  hyjp x00Pjxoi ¥4 px;00X;X0b;

02:5p

we emphasize that this is a functional density matrix as the
field has spatial arguments. The density matrix for the ALP
field a represents either a pure state or more generally an
initial statistical ensemble, whereas p”,80p is given by Eq.
(2.4).

The physical situation described by (2.4) is that of a field
(or fields) in thermal equilibrium at a temperature T % 1=,
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namely a heat bath, which is put in contact with another
system, here represented by the field a. Once the system
and bath are put in contact their mutual interaction will
evolve the initial state out of equilibrium because the initial
density matrix does not commute with the total
Hamiltonian with interactions.

To obtain the effective action out of equilibrium for the
ALP field a we evolve the initial density matrix in time and

it follows that the reduced density matrix elements are

PHYS. REV. D 106, 123503 (2022)
from which the reduced density matrix elements are

prdaf;aof;;th % Z Dxfhaf;xfjudtbp~00pPU-18tbPjaof;xfi:

prdaf;aof;;th % Z Dxf Z DaiDyiDaoiDyoihaf;xfjUdtpjai;xiipa;00ai;aciP

& px;00xi;x0iPhaoi;xoijU-1dtPjaof;xfi:

trace over the “bath” degrees of freedom, leading to a
reduced density matrix for the field a, from which we can
compute its expectation values or correlation functions as
a function of time.

The time evolution of the initial density matrix is given

by p"dtb ¥ UdtPp~00PU-13tb; 62:6b

where
Uatp % et 82:7p
The total Hamiltonian H is given by
H % Hoa b Hy b g Z d*xadxP0O,dxp; 82:8p

and Hoa;Hx are the Hamiltonians for the respective fields.
The reduced density matrix for the ALP field is obtained
by tracing over the x degrees of freedom as

pradtpb % TrxUdtPp"80PU-18tb: 82:9p

To extract the nonequilibrium effective action for the ALP
it is more convenient to obtain the density matrix elements
in field space,

haf;xfjudtbp”80bPU-18tPjaof; xofi;

namely pdaf;xf,aof;xof;th %

82:10p

02:11p
02:13p
|
With  the functional integral representation
haf;xfjudtbp”80PU-18tPjaof; ofi
% Z DaiDyiDaoiDyoihaf;xfjUdtpjai;iipa;00ai;aciP
& px;00xi;x0iPhaoi;xo0ijU-18tbjaof;xofi; 02:12b The

Da etc, are functional integrals where the spatial

argument has been suppressed. The matrix elements of
theR

time evolution forward and backward can be written as
path integrals, namely hafxfjUdtbjai;xii % Z DapDxpeiR

daxLsap;xp; 02:14p

haoi;x0ijU-18tPjaof;xofi % Z Da-DX-e-iR dsxLna-x-; 62:15p

where we use the shorthand notation

Z d*x = Zotdt Z d3x; 82:16p

L’%a;x is given by (2.1) and the boundary conditions on the
path integrals are
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apdx;t”% Ob % aidx” b; abdx:t’p % adx” b; 92:17p  where the time evolution kernel is given by

£ % 0P % xidx_ b; b % 7 b; 2:18p

xpOx;t” % Ob % xidx~ b; XpOx;t'b % x0x b; 02:18 T Yagasasadit

a dx;t"% Ob % aoidx_ b; R R

P A 3-3x;t7p % a%dx_ b; 02:19p

1, -1 VsLoVsap—LoYsa-Cil%sap:a-; .

x—6x;t*% ob % xou‘ixﬁ D; X_ax'_t-)p % xoféx* b: 52:90p Wl Dab Z Da-eiR daxtsLlokap-Losa-€ilYsap;a ; 02:22pb
The field variables a;x along the forward (p) and

backward (-) evolution branches are recognized as those from which the in-in effective action out of equilibrium is

identified as

|
necessary for the in-in or Schwinger-Keldysh [26,31-33]
closed time path approach to the time evolution of a density
matrix. Seff¥2ap;a- % Zot dtZ d3xflolsap—Lolsa-pl¥sap;a-g;
The reduced density matrix for the light field a (2.13),
can be written as

02:23p
prdaf;aof;th % Z DaiDaoiT Yaf;afo ;ai;aio;tpadai;aoi;0b; where |%ap;a- is the influence action [22] obtained by
tracing over the x degrees of freedom,
02:21b
1
eilab;a- g Z DyiDxioDxfZ DxP Z Dx-€iR dxsLyxe-gaboxre-iR dixvslysx-—ga-0x-PxOXi; Xio;0b: 02:24b

The path integral representations for both T Yara;;a’%;a%t and I’/zab;a‘ feature the boundary conditions in (2.17)—(2.20)

except that we now set xdx;t” b % xs0x” b to trace over  field.

In the above path integral defining the influence action Eq. (2.24), the ALP fields adxp act as external sources (c-
number) coupled to the operator O,. Therefore, it is straightforward to conclude that the right hand side of Eq. (2.24) is

the path integral representation of the trace over the environmental fields coupled to external sources a, namely

eilnsap;a- 74 Trx/4U0t;apPpxd0PU-10t;a-b; 02:25pb

where Udt;ab is the time evolution operator in the x sector in presence of external sources a, i.e.,

Udt;apb % Toe-iRot Hysapdtopdto P; U-10t;a-P % T~ deiRot Hy¥a-dtobdtoP; 02:26b

with
H,%adtp % Hyp g Z d*xadx;t” PO,Ox” b; 82:27p
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and T~ is the antitime evolution operator describing evolution backward in time, it is defined by T~ §Adt1PBSt,PP %
AOThe calculation of the influence action is facilitated by passing to the interaction picture for the

Hamiltoniant'pgdt’pOdt? — t'b b Bot2bAStIPOSL: - ¢2b. Hy%adtP, defining
Udt;ab % e-iHxt UipOt;ab 02:28b

and the” pefor the™ cancel out in the trace iny sector, it follows that(2.25), since Uét;ab is the time evolution operator in

presence of external sources

adx;t

Uipdt;aPb % 1 - ig Z d*x%aPdx;t”  °pO,dx;t b

- g_z Zd*:.Z d“széabéxﬁ 1;t1POX6X_) 1;t1bab6xé z;tzpoxéx - 2, tPP b ;2 62:29p
U p'dt;a™P % 1 b ig Z d*x%adx” %t°p0,dx” %t
- _822 Z d*%1Z d*%,T"8a 0x 1;t1pOX6X_) 1;t1ba‘6x* z;tzpoxax_) 21tPPp; 32:30p

where O,8x;t” P is in the Heisenberg picture of H,.

Now the trace (2.25) can be obtained systematically in perturbation theory in g from which we obtain the influence
functional. Up to O8g2p we find

1%2ap;a- % —g Z daxdapOxpb — a-0xPPhOx0xPbiy

b __ig22Z dax1Z daxafaPdx1PaPdx2PGPPc 8x1 - x2b p a-dx1Pa-dx2PG--c 3x1 — x2P

- aPBx1Pa dx2PGP. "Xy — x2b — a0x1PaPEx2PG~PEx1 — x2bg; 82:31p

which is confirmed by expanding the left-hand side of (2.25) and comparing to the right-hand side. In this expression the
connected correlation functions in the initial density matrix of the x fields, namely p,00P are given by

G-cpdx1— x2P % hOxdx1POxdx2bPix — hOxOx1PixhOxO0x2Pix ¥4 G>c Ox1 — x2b; 02:32pb

Gpe -0x1 — x2P % hOxdx2POxdx1Pix — hOxOx2PixhOx0x1Piy ¥4 G<c Ox1 — x2b; 02:33p
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Gppe 0x1 — X2P % Ge>0x1 — x2POJt1 — t2P b G<c dx1— x2PO8t2 - t1P;

G--c Ox1— x2b % Ge>0x1 — x2PO3Jt2 - t1P b G<c Ox1— x2POJt1 - t2b;

in terms of fields in the Heisenberg picture of Hx, where

hdbi % Trxdbpxd0b: 02:36b

Furthermore, for the case of hermitian operators Oy as
considered here it follows that

G>c 6X1— sz Ya G<c 6X2— X1|3: 02:37p

We highlight that the correlation functions G”;G* are
exact, namely to all orders in the couplings of the
environmental fields x that enter in O to all other fields to
which it couples except the ALPs.

In the cases under consideration, we assume that the
initial density matrix for the bath, p,00P % ePfxis CP
invariant, for example in quantum electrodynamics where

p,00P describes blackbody radiation, for which hE™ - B~ %

0. Therefore hoéxl;zbi = 0 in the connected correlation

functions (2.32)—(2.35), hence in what follows we suppress
the subscript “c” in the correlation functions.

The influence action (2.31) becomes simpler by writing
it solely in terms of the two correlation functions G3, this
is achieved by implementing the following steps:

(1) In the term with aPdx;baPdx,b: in the contribution

G<Ox1 - x2POO8t; - t1P [see Eq. (2.34)] relabel x1 <>
xz and use the property (2.37).

(i1) In the term with a~8x;,Pa~dx,Pp: in the contribution
G>0x1— x,POOt, - t1b [see Eq. (2.35)] relabel x; <>
x2 and use the property (2.37).

(iii) Inthe term with aPdx1pa~6x,P: multiply G*6x1 - x2p
by ©8t1 - t,p b ©0t, - t1P % 1 and in the term with
@0t - t1b relabel x1 €> x; and use the property
(2.37).

PHYS. REV. D 106, 123503 (2022)
02:34p

02:35pb

|
(iv) Inthe term with a~8x1PaPdx,P: multiply G>8x; - x,P

by @dt: - t,P p O8t, - t1P % 1 and in the term with
O0dt; - t1P relabel x; <> x; and use the property
(2.37).

We find

1%aP;a %ig?Z d*xid*xxfaPdx” 1;t1PaPdX” 2;t,PG>8x1 —x2P
ba 8x” 1;t1Pa 80X 2;t.PG<dx1 —x2P —aPdX”

1;t1ba‘6x* 2;12PG<0x1 —x2P

-a dx”~ 1;t1ba"6x" 2,1.PG”0x1 —xzbgeétl -tob;
02:38p

where G= are given by Egs. (2.32) and (2.33). This is the
general form of the influence function up to second order
in the ALP-environment coupling but to all orders in the
couplings of the environmental fields that enter the
composite operator O to any other field. Notice that
I%aP;a7java- % O consistently with its definition given by
Eq. (2.25). A graphical depiction of the influence action
I%aP;a” is displayed in Fig. 1.

For example, for the ALP-photon interaction in Eq.
(2.2), some of the correlations included in the influence
action are displayed in Fig. 2; the one-loop diagram
features free-

aE
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FIG. 1. A graphical depiction of IVzab;a’. The black circle

denotes the correlation functions Ggto all orders in the couplings

to degrees of freedom other than the ALP.
O —

R
FIG. 2. 1%2ap;a- for the ALP-photon interaction in (2.2). The one-

loop diagram features free photon propagators, the two-loop
diagram includes the polarization from ePe” pairs in the thermal

plasma, etc.

photon propagators, the two-loop diagram features a
polarization correction to one of the propagators with
electron-positron pairs in the thermal bath, this two-loop
diagram features an extra power of a the fine structure
constant. Similar diagrams with quarks and gluon loops are
included for the ALP-gluon interaction in (2.2). The black
bath degrees of freedom in thermal equilibrium to all
orders“bubble” symbolizes the hOOi correlation functions
of the

in their interactions, a;as, etc.
We can obtain expectation values and correlation

functions of the ALP fields by including sourcesLodab

—Lodab p JoxPadxp and defining the gener-JoxpP with

ating functional

AdX;t” % tb % adx_ b;

PHYS. REV. D 106, 123503 (2022)

Z%3P:0 % Trp'd)P:0t” 4 7 DaDaiDa® Z DaP

02:39p

X Z Da-eisefivsap;lp;a-;-;tpadai;aoi;0p

with the boundary conditions

aPox;t” % 0b % aidx b; aPdx;t” P % adx b
a5x:t” % 0b % a%x” b; 2-8x:t” b % adx b:
02:40p

Expectation values or correlation functions of a in the
reduced density matrix are obtained as usual with
variational derivatives with respect to the sources J.

A. Effective equations of motion: Langevin equation

The effective action (2.23) may be written in a manner
more suitable to exhibit the equations of motion by
introducing the Keldysh [32] variables

1
ABX;tP % 28aP8x;t”b b a~dx;t bb;
ROx;t”P % 6aPdx;t’b — a~dx;t bb: 82:41p
The boundary conditions on the a path integrals given by
(2.40) translate into the following boundary conditions on
the center of mass and relative variables
02:42p

Adx;t” % ObP % A; Rox;t” % Ob % Ri;

Rox;t” % tib % 0: 82:43p

In terms of the center of mass and relative field variables, the effective action (2.23) with the influence functional (2.31)

becomes with w% % mZ, b k?

iSeftV2A;R % —i Z d3xRidXPA dx;t % 0P b i Zot dtXk f-R-k” 3A k* 8tb p w2kAk* 3tbb b Ak’ k" g

- Zotdty Zot dt212_R-kﬁ Ot1bN ¢ 0ty — toPR” 0t,P b Ry iZRk 0ty — toPAL atzp;

-

02:44p
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where we have integrated by parts and defined JoxP % 6JpdxpP - J-gxPb, keeping solely the source conjugate to A because

we are interested in expectation values and correlation functions of this variable only as discussed in detail below. The

kernels in the above effective Lagrangian are given by [see Egs. (2.32)—(2.35)]

N 3t - °p % &__2215G>3k;t - t° b G<ak;t - t°P; §2:45p

iZR 0t — t°P % g2 G>0k;t - t°P — G<0k;t - t°POAIt — tOP = %Ot - t°POSt - tOP; 02:46b

wherethe effective actionG<>8k;t — t%Ppisare the spatial Fourier transforms of the correlation functions inerr, the quadratic

term in the relative variable R can be written as a functional integra] over a n01se(232)—(235) In the exponential of

variable § as follows:

exp —12_ 7 dt1Z dtsRic 5tiBN | 8ty - PR 6"

C

1% C~ 7 DEexp ~12_ Z dt1 Z dtz€ 5tiPN K18ty - 1P 3P p i Z dté” StPR Ot ; 52:47p

where C™ is a normalization factor.

For the initial density matrix p,da;;a%;0p in (2.39) it proves convenient to write it in terms of the initial center of mass

and relative variables Aj, Rias

padai;aoi;;0P =paAip 2i;Ai=2i;0 — 02:48p

and introduce the functional Wigner transform [45]

W¥:Ai;Ti ¥4 Z DRie-iR dsxmiox” pRiox” bpaAi p R2i;Ai —R2i;0 > 02:49p

which allows us to write (up to a normalization factor)

R R
paAi p2r;Ai - 2i ;16— Y Z DrtieiR daxmox” bRiox "pW2A; TU: 62:50p
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As it will become clear below, the Wigner transform naturally leads to an initial value problem wherein the evolution
of the field is determined from initial conditions on its value and first time derivative.

Gathering these results together, we now write the generating functional (2.39) in terms of the Keldysh variables (2.41),
with the effective action in these variables given by Eq. (2.44), implementing the Wigner transform (2.50) and using the
representation (2.47)

ZY5) ¥ Z DAsZ DRiDADTi;Z DADRDEW YA TG X PY4E X exp i Z dtXk” A dtb).y 8tb

X exp —i ZdtXk®  R-k” 6tPA k 8tb b wak” Ak* 8tb b Zot Ik” 8t — toPAk” 8toPdot —Ek” dtp

x exp iXk* Rid—k~ bondk” b -A'i6k” bb; 82:51p

where the noise probability distribution function

PUE% N Vi exp -_21 Z dt1 Z dtz€ 3tiPN 16t - toPEc Ot 52:52p

The generating functional Z%4J is the final form of the time evolved reduced density matrix after tracing over the bath

yield the correlation functions of the Keldysh center degrees of freedom. Variational derivatives with respect to the source
of mass variable A.

Carrying out the functional integrals over Ridk™ b and R 8tP yields a more clear form, namely

Z%) < Z DA:Z DADm; Z DADEW5Ai;TL X P%E X exp i Z dtXk” Ak 8tb)- th
X Yk 8%A k& 8tb p wak” Ak dtb b Zot

Ik Ot
- tobAk” 8tobPdot -k 8tb x Yk §%mdk” b -A" k™ b: 82:53p
|
The functional delta functions clearly determine the field (i) The equation of motion of Ay 8tb is a stochastic
configurations that contribute to the generating functional

74): Langevin equation, namely
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Ak 8th b wak Ak 6tPb bt Z
otb:
0

2k Ot - toPAk” dtobdot % &

02:54p

Note that this equation of motion involves the
retarded self-energy, thereby defining a causal initial
value problem, this is a distinct consequence of the in-in
formulation of time evolution. (ii) The initial conditions

of Ak* satisfy
Ak’ 0t % 0b % Aiik; A"k 0t % 0b % ik ; 02:55b where
Ai;k* ;ni;k* are drawn from the distribution function

W¥Y%A;m; (i.e., the initial density matrix). This is one
of the manifestations of stochasticity,

and we use ngenote averaging over the initial
conditions (2.55) with the distribution function
WLA; .

(i) The expectation value and correlations of the
stochastic noise & dtp are determined by a Gaussian
probability distribution P%§, yielding

(§0x;t” P)) % O; (€ OtPEk "0 OtoP)) % N kdt-toP8k;” k" o;

02:56b

Sincefunctions are obtained by implementing Wickwhere
P{(%:€ )is Gaussian, higher-order correlationmeans

averaging weighted by P/¢’s.

theorem. This averaging is the second manifestation
of stochasticity.
Therefore, averaging over both the initial conditions
with the Wigner distribution function, and the noise with
PE, is

now denoted by {(dpP)andand ¢6p. These stochastic

averagesis any functional of the initial conditions (2.55)

PHYS. REV. D 106, 123503 (2022)
yield the expectation values and correlation functions of
functionals of A obtained from variational derivatives with
respect to J .

It remains to relate observables to correlation functions
of the Keldysh center of mass variable A. The path integral
representations for the forward and backward time
evolution operators (2.12), (2.14), and (2.15) show that aP
is

associated withthat inside the path integral operators in the
forward,Udtp and a~ with U~1dtb; hence, it follows

backward and mixed forward-backward branches,

APBP > TrABp; A B> TrpAB; APB~-> TrApB;

02:57p
etc. Therefore, from the cyclic property of the trace the
expectation value of the ALP field in the total density
matrix is

hadx;t"bi % Trapdx;t pp~80pP % Trp"60ba-dx;t” b

% TrAdx;t ' Pp~60Pb % (AdX;t” P)); 92:58p
whereas
TrRéx;t"Pp~60P % 0: 02:59p
We now introduce
C>k Ot;tob % Tra—k dtba-pk” dtobPp~00P;
C<k Ot;tob % Tra—k dtobap-k” dtPp~00P; 02:60p
and the energy per mode of wave vector k”
100
Ek% — —— b Q2%C-0t;tob b CkeOt;tobtsto;  62:61P
4 atot

where we anticipate a renormalization of the frequency wk
—Qx, which will be addressed in detail below. Using the
definition (2.41) and the

relations (2.57) it is
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straightforward to show that this symmetrized product

yields k1" ktPA"-k* 6tP p QakAk® 6tPA-k"dtPbp~ 80P

E % 2TroA"d

1 "k 8tPA -k 8th)) b Qr2{(Ak” OtPA-Kk* Bth)o: §2:62b
%2 (A

which is the average energy per mode, a component of the
energy momentum tensor. This analysis confirms that at
least for the time evolution of the expectation values of the
ALP field and its energy (momentum tensor) only the
center of mass Keldysh variable A is needed.

B. General properties of environmental correlation
functions

The dynamics and dissipative processes depend on the
correlation functions of the environment and crucially on
their spectral density, these correlation functions determine
the self-energy 2 and the noise-correlation function N.

Because the bath is in thermal equilibrium, its initial

density matrix is pxd0b % e-pH=Tre-pHywhich is spacetime
translationally invariant, and the Heisenberg picture
operators associated with the bath are given byiHx iHx

O,0x;t" b %

e O0x;” 0Pe-  we can write

G>0x” - X~ %t - t° % hOdx;t"P0O,dX” %;tObiy

VA
Y 4 Lo . G x
0 2dm kp4 p>6k,k obe-ikodt-topeik” -dx

-x 7,

92:63p

GOx” - x_ %t - t% % hO,dx” %t°pO,dx;t”  Piy

y
8 d*% p<dk;k”

Pe-ikost-topeik” -6x” —x "0p:

21bg 0

PHYS. REV. D 106, 123503 (2022)

02:64p These
representations are obtained by writing O,0x;t” P % eiHye-ip”
X" 0x80” ;0be-iHgeir” x* and introducing a complete set of
simultaneous eigenstates of Hy and the total momentum
operator P~ , 8Hy;P~ Pjni % OEn;P” nPjni, from which we
obtain the following Lehmann representations,
p>6ko;k_> b ¥ Tro2priydP04bPXm;n e—BEnjhnij60*
;0Pjmij2

x &8ko —0Em —EnPP&3K™ —~0Pm —PnbP;  §2:65P

p<6k0,'k_) b Y Tt0ZprydP04bXm;n e—BEnjhijxao_)
;0Pjnij2

x 88ko —8En—EmPPSSK” ~3Pn-PmbP:  §2:66b
Upon relabeling m <> n in the sum in the definition (2.66)
and recalling that O is an Hermitian operator, we find the
Kubo-Martin-Schwinger relation [46—50] p<Gko;kP %
p>8-ko;kP % e Pkop>Bko;kb: 82:67p

The spectral density is defined as pdko;kb % p>dko; kP

—p<6ko;kb Ya p>6ko;kp1/zl — ek,

02:68p
therefore,
p>0ko;kp % pdko;kb%1 p ndkob;
p<0ko;kb % pdko;kPndkoP; 02:69p
where
_1
ndkob % e — 1o: 82:70p

Furthermore, from the first equality in (2.67) it follows
that

pd—ko;kb % —pdko;kb; 02:71p

pdko;kP >0  for ko> O: 02:72b
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In terms of the spectral densities we find

%GO - X %t - 1% - GO - x_ %t -t

% Z 8 2di*kb pdk ;kbe-ikost-topeik” -ox" " o®  §2:73b

4 0

which determines the self-energy 26t - t°p Eq. (2.46), and

%GOX - X Ot — 1% b G<6x” - X~ %t -t - Z 52dmtkb*

~ ko;kbe-ikost-topeik” -8x” —x" ob 02:74P KO

which determines the noise correlation function N&t - tOp,

Eq. (2.45), where

K™ 8ko:kb % pdko;kbeothP__oKo.  2:75p

Equation (2.75) is the general form of the fluctuation
dissipation relation. Note that pdko;kp is odd whereas

K~ gko;kb is even“environmentalin ko. We emphasize that

these are exact” fields X may be coupled to relations, the

other fields, for example, in the case of the ALP interaction
with the electromagnetic fields as in Eq. (2.2) the gauge
field also interacts with electrons, charged leptons and
quarks, and similarly with the possible interaction with
fermionic fields in Eq. (2.2), these interact with other
gauge fields. The relations (2.67)—(2.75) are general,
nonperturbative statements relying on thermal equilibrium
and spacetime translational invariance and do not depend
on these couplings.

The general expressions (2.73)—(2.74) allow us to write
functionthe self-energyN 8t -2t 28pt(2.45)- t°p (2.46)as

and the noise correlation

PHYS. REV. D 106, 123503 (2022)

20t - tob % —ig2Z 6___dk2mobpdko;kbe-ikost-top;  62:76P

N kdt-t%Yg_ 227 8dkoroPpdko;kPcothp___

2koe-ikost-top; 62:77P

this is the general relation between the self-energy and the
noise-correlation function commonly determined by the
spectral density pdko;kP, a direct consequence of the
fluctuation-dissipation relation as a result of the bath being
in thermal equilibrium.

C. Misaligned initial conditions

The initial density matrix for the ALP field is determined
by initial conditions. We consider an initial density matrix
describing a pure state compatible with a “misalignment”
mechanism whereby the expectation value of the ALP field
is nonvanishing initially and also allow a nonvanishing
expectation value of its canonical momentum. This is
achieved by considering a coherent state of the form jAi %
Mk eac b -ac b j0i; 82:78p

where j0i is the free field (ALP) vacuum state, bk ;b are

ALP free-field creation and annihilation operators, and Ay’
are complex c-number coefficients that determine the
initial values for Ay, . In the Schrodinger representation,
the state (2.78) is represented by the coherent state
wavefunctional

W¥a % eiR dsxit iox” pasxpWolsa —A i; 82:79p

where Wy is the ground state wavefunctional of a free ALP
field theory. Such a wavefunctional is Gaussian and yields
an average momentum 1t ;and expectation value of the field
given by A ;whose Fourier expansion is determined by the
complex coefficients Ac* in Eq. (2.78). The pure state
density matrix describing this coherent state as
representative of the

“misaligned” initial condition is
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paYka;a0;0 % WlaoWla; 02:80p
and its Wigner transform is given by
WYAi;Tt Y NIk e-axdAix -A i PSA;-k -A ik b
X e—%ludm;k‘ 1t i POT;-k” —1T i;-k b} 02:81p

with N a normalization factor and Qi the covariance which
will be related to the renormalized effective frequency (see
below). Translational invariance imposes that the
expectationvalue of the (pseudo) scalar (ALP) field be
independent of the momentum, therefore we write in a
finite but large quantization volume V

A% ApVFfidi o, T ik Y% 1T ipVfidk o; 02:82p

where A ;;it;are the space-time constant expectation values
of the field and canonical momentum in the translational
invariant initial state. With this Wigner probability
distribution function we find the averages over the initial
conditions

dAik %A ipVFfidk; o; dAiK

-A ik PSA;-k —A -k P1%p21Qk

Ok PYrt ipVAfibk;” o;

OTti;k” =Tt i;k” POTU;-k” =TT i;-k” PY% —
rQ2«ffi; ffi

2:83

with higher-order correlations obtained via Wick’s
theorem.

This is a simple realization of the “misalignment”
mechanism whereby the initial state is a coherent state that
features a nonvanishing expectation value of the field and
its canonical momentum, these define the initial value

problem.

D. The solution of the Langevin equation

PHYS. REV. D 106, 123503 (2022)
The solution of the Langevin (stochastic) equation
(2.54) is obtained by Laplace transform, define the Laplace
transforms

A ¢ 8sP 7 20 e-AC Btbdt; 52:84b

1 6285[3
£ 0P % 70 e, Gtbdt;

oo

2 o
5" b % Zome 3 thdt e _ 9 2Pl

T e ko—is %7 koKpgi : 52:86b

where in (2.86) we used the dispersive representation
(2.76).

With the initial conditions (2.55) the solution of the
Laplace transform of the Langevin equation is

A~ k" 3sP % Ttizsk 27 psgAzkipk P3™ K g”ak‘sa

02:87p

psb:

The solution in real time is obtained by inverse Laplace
transform, it is given by

Ak Otb % Ak ;h0tb p Ak ;¢dtb; 02:88p

-

where Ak ;h;Ak* £0tP are the homogeneous and
inhomogeneous solutions respectively, namely

Ak ;hdtb % Aik G'kOtP b ik Gkdth

Ak ;¢dtb % Zot Gkdt — tob&k” 6tobdto; 02:89p

and the Green’s function is given by
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GkOtb %

2mi Zcs2p
02:90p 1

C denotes the Bromwich contour parallel to the imaginary

wakestp 27 k* dsbds;

axis and to the right of all the singularities of ds2p wakp 2~
k sPP-11in the complex s-plane and closing along a large
0

correspond to poles and multiparticle branch cuts

withsemicircle at infinity with RedspP < 0. These

singularities axisRedsbs<%0, thus the contour runs parallel

to the imaginaryjdv- j€P, with —>°<v<ee and €-> QOb.

Therefore,

GKOtP %4 — Z-0=G"~ kBVbeivt 2__dmv; 02:91p

where

G~ kOvb % Ov- ieb2 —1w2k —2dVv;kb: 02:92b

The self energy in frequency space is given by the
dispersive form

2Z = pikg; kP

SOV;kP % 281 —o vk o — iedko = ROV;KP b i58v;kP;

02:93p

with the real and imaginary parts given by

SROV;kP ¥ __2gm?P Z—oc""pvék—o;kkopdko; 82:94p

g2

210v;kbp % __2 pdv;kp; 02:95p
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yielding the Kramers-Kronig relation

ZROV;KP % i_1P Z_woeoZy'd- "%k’ "0 Pdko:  82:96b

To obtain the above representations we have used the
relation pd—ko;kP % —pdko;kP [see Eq.2ZrROV(2.72);kb %], as

a con2rd-v;kb-; sequence of which it follows that

complex poles corresponding to the solution of the
equation2idv;kp % -218-v;kP. G™ kOVP given by Eq. (2.92)

features

w2rdkb % w2k b Z0wrdkpb;kb; 02:97b
to leading order in g2 we find
wrdkb % Qkp ilr__2k; 02:98b

where

Qk % wk p2r&2wwrickP; Mk ¥ ZIdwwkk kP 2gwzk
pdwk;kb:

02:99b Writing in the denominator of the integrand
in (2.91) that near each pole,2dv;kp % 28w,0kp;kp b 8G™
kdZvbdv;kcan be written in a Breit-p -2dw,0kb;kPb we

find

Wigner form as

G kdVP % 200POKPOVFZ Qk - iraub;

02:100p

with the wave function renormalization constant
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g _Z(@p k) ZpOdg?p;
@p 5
598wp;kb = d_Oy508v;kbuyr: §2:101p
To leading order in g? we find
GKOtpP % e-rut SmE¥OEKKtP p 00g2bh;  02:102b

where we have assumed a narrow width =0 x g? « *and
neglected terms of this order. Using this result in Eq. (2.89)
we find

(A 8tP)) % e-rwtA ik %c0s0QktP — 2Fkk sindQkth

b 7t ik sin@dQKtP b 0dg2b; 32:103p

(A K 8tP)) ¥ e-rat QKA ik —sindQktp — 2MrkcosdQktP p

TUik” cosQOQk ktP —T2k ((Ak” 6tP)) b Odg2P;

02:104p

where we used (2.56), and A ;;it i are the average of the
initial conditions with the Wigner distribution function
(2.83). We have explicitly displayed the terms ol=0Qy to
exhibit that they arise from the derivative of the
exponential damping term, however, these terms are of
00dg2b and must be neglected for consistency as we are also
neglecting terms of the same order from wave function
renormalization. Similarly, we find

! The residue for m % 0 vanishes because the spectral density
vanishes at ko % 0.

PHYS. REV. D 106, 123503 (2022)
(A 8tPA-k* tP)aAK” ;hGtPA-K” ;hOtPPAT2 Z-opBko; kb

—  xcothP2ko ZotGkd ikerdT

2dko: the 82:105pb

Using the leading order result (2.102) for Gkdtb the integral
in (2.105) is straightforward. Inserting the result into
(2.105) yields four terms, the resulting integrals are
performed by contour integration in the complex ko-plane:
in the narrow width approximation the two direct terms
feature residues o 1=y, whereas the interference terms
feature residues &« 1=02Qk p ilkP, these latter terms and the
poles at frequencies,ko % 2mim=13;myield contributions

of¥% 0;1;2, namely the MatsubaraOdg2b and will be

neglected, whereas the terms with residues « 1=l &
1=g?yield the leading contributions. Using the definition of

«(2.99) and keeping solely the leading-order terms in
(2.103) we obtain

(A'tA-t)he

kP k8P Y -neHk 8tPH-k* 8tb p 2001 k%21 b 2n6QkP
x 01 - e-rtb p 00g2P; 02:106p
where
Hi 8thb % Aik cosdth b iy ™ Q8 b;
02:107p O

and ndQyb is the Bose-Einstein distribution function.
This is a noteworthy result; for Mt > 1 the surviving
term is precisely the free-field expectation value dhbt by

b by bt iP=2Q of (ALP) operators, where the average is
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in a thermal equilibrium statistical ensemble; namely, at
long time t > 1=[ the ALPs thermalize with the bath.

A similar calculation, implementing the same
approximations yields for the average energy per mode
(2.62)

Ek % e=2rth " kOtPH -k 8tbP p Qk2Hk” dtPH-k 8tbi
H<)
b Q%1 b 2ndQkPA1 - e-reb p Odg2b: 62:108p 2

This result confirms thermalization at long time, the
second term, which survives for t > 1=l is identified as
the expectation value of the free field Hamiltonian in a
thermal density matrix, namely the internal energy. These
results are a manifestation of thermalization in the same
manner as a Brownian oscillator as mentioned in the
introduction; whereas the average of the coordinate relaxes
to the minimum of the potential, the mean square root
fluctuations reveal thermalization with the bath. This is
ultimately a consequence of the fluctuation-dissipation
relation manifest in the relation (2.75) between the noise
and the self-energy (friction) kernels, a corollary of the
Kubo-Martin-Schwinger  condition (2.67) as a
consequence of the equilibrium bath correlations.

Therefore, for the Wigner distribution function (2.81)
describing a misaligned initial condition with the averages
given by Eq. (2.83) and neglecting a zero-point
contribution, we find the energy density

E%1— > (E% e-rot hfe2i p ma2A 2ii

V V2

b 02dmizkb3 QkndQkPd1 — e-rtb p O0g2b:

02:109p oscillations arising from a “misaligned”

initial condition as in the usual case of an ALP, whereas
the second term yields a hot dark matter contribution
from the approach to thermalization, each weighted by
the damping exponentials. Whereas the first term depends
on the initial conditions of the ALP, the second term is
completely determined by the noise, namely the thermal
bath. This is one of the important results of this study.

PHYS. REV. D 106, 123503 (2022)

Therefore, if the ALP relaxes on cosmological time
scales at a given time t its contribution to dark matter is a
mixture of cold and hot components, with a fraction
determined by the relaxation rate lcand the time scale t.
This result suggests a scenario where the “warmth” of the
dark matter evolves in time from colder to hotter.

The result (2.109) is general, it is valid to order g2 for
any ALP interaction of the form gadxPOdxp and to all
orders in the interactions of the bath fields with other fields
besides the ALP. This is an important corollary of the
results in this section: the processes that yield the friction
in the equation of motion of the misaligned expectation
value are the same processes that lead to thermalization.
Therefore, whereas several studies focused on the friction
term in the equation of motion of the coherent condensate
[37-39] and other studies focused on thermalization
[40,41] our results show that both processes are related by
the fluctuation dissipation relation, occur on similar time
scales and both contribute to the evolution of the energy
density of the ALP field. Therefore, the time evolution of
the energy density given by Eq. (2.109) is one of the
important results of our study, it applies to all dissipative
processes resulting from interactions of the ALP with other
degrees of freedom and is a direct consequence of the
fluctuation dissipation relation.

III. ALP INTERACTING WITH PHOTONS

The results obtained in the previous section are general,
although the focus is on ALP fields, the results also apply
to any field with an interaction of the form (2.1) and initial
conditions that allow for the evolution of a coherent
condensate [18]. These results have a clear physical
significance in terms of the nonequilibrium manifestation
of Brownian fluctuations; a bath in equilibrium induces
both a self-energy (friction) and a noise term in the
effective equations of motion, the spectral properties of

The first term is identified with a cold dark matter
contribution and originates in the damped coherent

both are related by the generalized fluctuation dissipation
relation, a hallmark of a bath in thermal equilibrium.
Although the results are general, the details, namely
relaxation times, frequency renormalization etc., depend
on the spectral properties of the bath correlations. In this
section we focus on ALP interaction with photons via the
coupling

L % —gadxPE~ 6xP - B~ dxb; 83:1p
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as in Eq. (2.2). The main assumption invoked in our study
is that we consider free massless photons neglecting
interactions with charged leptons and quarks. The one

W

FIG. 3. One loop ALP self-energy from the coupling
L % —gadxPE” 8xb - B” 6xb.

loop contribution to the ALP self-energy is displayed in
Fig. 3.

The regime of validity of this assumption is discussed in
detail in Sec. I'V. An important aspect of the coupling (3.1)
is that this interaction is nonrenormalizable because the
coupling g has dimensions of 1=energy. As a result the loop
corrections associated with the self-energy feature
ultraviolet divergences which cannot be absorbed into the
parameters of the Lagrangian and the theory must be
interpreted as a low-energy effective field theory.

In Appendix A we obtain the spectral density from the
thermal correlation functions of the composite operator E~
dxb - B” dxb, it is given by [see Eq. (A15)],

pdqo;q” b %6Q3221tb2 1pB2qlntt—ee=Buwpwpii 08Qz2b
2 1-e-Bwp
PBaliT—epu-m0©d—-Q2Psigndqob;
Q2% q20-q2; walp % jgoj2 q; walib¥ei2a0j:

PHYS. REV. D 106, 123503 (2022)
03:2p

namely emission and absorption of photons with the
reverseThe terms with @3Q?2p arise from the processes a
<> 2y, or recombination process 2y - a a consequence of
the heat bath, these processes feature support on the ALP
mass shell for massive ALPs. The contribution
proportional toonly features support below the light cone
and describes off©od-Q?p shell processes ya <>y. This
interpretation stems from the delta functions in the
expressions for the spectral density equation. [see the
second line in Eq. (A13)].

From the definition of the relaxation rate (2.99) and with
the result (3.2) we find

2 1-e-Bwpi g2Mm4a

It %r1ppglni-e-pw- kokQi; (Y464 niQk; §3:3b

the first contribution is the zero temperature ALP decay
rate, and the second is the finite temperature contribution
which is a consequence of stimulated emission and
absorption in the heat bath. The ratio =TI is displayed in
Fig. 4 as a function of the dimensionless ratios T=ma;k=ms,.
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YsropOV;kb %4 —64gm2 2 Z-kn22 Pa p 2K2 b 8Kazb2da;

T/m, 4
2

/]
|
l\' K2% v2 - k% 33:7p
|
f

20 ¢
15 .
with the result
10
5
ok 2sropOV; kb % —64gm2 2 127t 2K2/\2 b 32_0K2b2
k/m, 4 d A2
b 8K2b2 In_jKaj: 03:8p

This result clearly exhibits the nonrenormalizability of the effective field theory of ALPs; the A*term is
absorbed into a mass renormalization, the dv2 —kab

FIG. 4. Ratio =l vs T=ma;k=ma.
A2 term yields an ultraviolet divergent wave

function renormalization as per Eq. (2.101),
however the
ment over the zero temperature case forThe finite temperature contribution yields a large enhance-T >> mg;k. For
logarithmic divergence v2
- keb2 In%" cannot be &
absorbed into the renormalization of parameters and
example in the long-wavelength limit k << ma we find field redefinitions of the original Lagrangian, which then must be

appended with a new higher-derivative

g64’mri3, len __m2,

IT%
3:4btermbe renormalized by the term with the logarithmicCd0,0"ab? where C is a new

d
coefficient that will
divergence. Therefore, the effective action necessi-

which in the high-temperature limit T >> m, yields tates the addition of a higher derivative term to absorb the ultraviolet
divergences. While such ex-

tension of the effective field theory is both necessary

M%gl6’mmd, mT, 63:5b minimal ALP effective field theory to establishand interesting
on its own, here we focus on the
contact with the more familiar ALP Lagrangians,
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thereby we set the new renormalized coupling

For example, if T corresponds to the temperature of the cosmic microwave

background today T = 10~ eV the finite C,0. In Sec. IV we comment on possible effects

associated with the higher-derivative terms.
temperature correction yields a large enhancement for

ma <KpeV, and an enormous one if the ALP is an ultralight (ii) T # 0: The finite temperature contribution to the
-

candidate ~ with ~ mal0-22 eV with potentially relevant self-energy is ultraviolet finite and is studied in detail in

Appendix B; the results of this appendix

cosmological consequences discussed in Sec. IV.
allow to obtain its high- and low-temperature behavior. For T >>Qiwe find to leading orders in the
A. Real part of the self-energy high-temperature expansion

(1) Tthe spectral density’(2.94)0: The real part of the self-energy is given by, with the zero-temperature contribution
to(3.2) we findSr3QickP % g2T4-1572 - 24" TaZ2 b 32" T4 1 -V
Eq.

oo 6k2 —_ k2 pZ Oa _
Y5ropOV;kP % 64gr220PZ0 V7 ko ° % k2 kabdko
b IndmmaT -Qkk” InQk’mpa kp 83:9b;

_f (K= k) o
—w V—ky 0 k2bdko; 83:6p and for T «< mawe find

integral is ultraviolet divergent, introducing an upperrelabeling ko >-koin the second —— ——— —

integral, the total ZTRGQk P % 2Tad45m1% k?a b 32163*mMa 1 b 4mk?2a

frequency cutoff A delimiting the range of validity of 164 T2

b5m4 m2b

the effective ALP field theory, and changing inte-gration variables to a % k% - k? ~ 8v?- k?p, we find a a

: d3:10p
Defining the effective finite temperature mass as the k  temperature limit T > m, (3.9) yields an effective,
- 0 limit of the dispersion relation (2.97), the high  temperature dependent mass
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m2,0Th % m2ar 1 -

03:11Pbm2m

15g2T2aR4;

where mag is the renormalized mass absorbing the zero
temperature renormalization. Equation (3.11) can be
written in a more illuminating form as

T

m2a0TPb % ma200bP1 - __ ' 4,' Tc /4

1,115m360bfﬁ:
T g
03:12p

This result suggests the possibility of an inverted phase
transition at a temperature T % Tc: for T > T, the effective
squared mass is negative signaling an instability, whereas
it is positive for T < T.. This situation is the opposite of the
usual phase transition where m23TP > 0 for T > Tcindicating
an ordered phase and symmetry restoration, and m26Tp <0
for T < T indicating symmetry breaking. This intriguing
result is a consequence of the high-temperature behavior of
the real part of the self-energy, which to the best of our
knowledge has not been studied before.

For T < T, we define the finite temperature correction to
the dispersion relation (2.99) as

WT —Wa =XFQuckb— 03:13p

20
in Fig. 5 we display the finite temperature correction to the

dispersion relation Jwr -w.P=g? in units of m3, vs

T=ms;k=ma..
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(wT_wa)/gz

00
For k % 0 the figure clearly shows the fast drop in the

effective mass as T increases in agreement with the analysis
yielding Eq. (3.11).
The possible high

consequence of m2,8TP < O for T > T. indicates that the

temperature instability as a

results obtained in the previous section for the energy
density

(2.109) are valid only for T < T since the solution of the
Green’s function (2.102) implied real frequencies Qcand a
perturbative correction to the position of the poles. The
instability for T > Tcyields an imaginary frequency Qin the
solution which translates into a growing exponential.

I'V. DISCUSSION AND CAVEATS:
A. The Gaussianity of noise correlations

The noise variable § is described by a Gaussian
probability distribution function (PDF) given by Eq.
(2.52). The Gaussianity is a consequence of the
nonequilibrium effective action of the ALP field being
quadratic [26]. However, this Gaussian PDF does not entail
that either the ALP or the environmental fields are free. As
per the discussion in Sec. II B the Lehmann representation
of the environmental correlation functions is to all orders
in the couplings of the environmental fields to other fields
within or beyond the standard model other than the ALP
field. The fluctuation dissipation relation (2.75) is a
consequence of the Lehmann representation, the self-
energy (2.76)—(2.86), which enters in the full propagator
(2.92) is the sum (to all orders) of one particle irreducible
diagrams such as those displayed in Fig. 2. Therefore the
spectral density pdko;kp that determines the noise
correlation functions are also to all orders in such
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couplings. Hence, even when the noise PDF is Gaussian,
this does not entail that either the ALP or the environmental
fields are free.

FIG. 5. Finite temperature correction to the dispersion relation
dwr-w,P=g?in units of m3,vs T=my;k=m,.

after recombination for T < 0.3 eV. For a light ALP with
ma SpeV even the temperature of the CMB today Temb =
10" eV is such that T=m, > 1 and there is a large finite
temperature enhancements to the relaxation rate, which
becomes quite substantial for an ultralight (ALP) with ma
< 10-20eV.

2. Thermalization

Thermalization of ALPs in the early Universe has been
studied previously [40,41,52]. However, our method and
results go much further. The nonequilibrium effective
action yields the effective equation of motion for ALP
fields which is a Langevin equation with “friction” and
noise contributions that satisfy the fluctuation dissipation
relation. The solution of this Langevin equation allows us
to study the evolution of ALP condensates from misaligned
initial conditions along with thermalization which is shown
to be a consequence of the noise term and the fluctuation-
dissipation relation. The effective action also allows us to
study renormalization aspects and the finite temperature
corrections to the (ALP) mass arising from the real part of

PHYS. REV. D 106, 123503 (2022)

1. ALPs coupled to photons: Region of validity

In the case of ALP interaction with photons, we have
assumed that photons constitute a thermal bath of
blackbody radiation, having in mind the cosmic microwave
background. At high temperatures, for relativistic
electrons, namely T > me with me the electron mass,
photons acquire a gauge invariant plasma mass ~eT=3 via
hard thermal-loop corrections to the photon self-energy
[47,48,51]. For a light or ultralight (ALP) this plasma mass
would shut off the lowest-order emission/absorption
channel a <> 2y. When electrons become nonrelativistic,
but there is a free-electron density n, the plasma frequency
becomes 2 212 which would also shut off this channel
for light or ultralight ALP. However, after recombination,
the free electron density vanishes precipitously as electrons
combine with protons into neutral hydrogen. Photons are
effectively massless as evidenced by the nearly perfect
blackbody spectrum of the CMB. Since we have assumed
massless photons in the calculation of the spectral density,
our assumptions are valid
the self-energy (the thermalization rate is related to the
imaginary part of the self-energy on the mass shell). The
effective action has been obtained up to second order in
(ALP) coupling, but to all orders in the couplings of the
“environmental” fields to any other fields to which they
couple other than the (ALP). For example the study of
thermalization in Refs. [40,41,52] in which the ALP is
coupled to quarks or other Standard Model degrees of
freedom correspond to obtaining the two loop
contributions to G*;G*in Egs. (2.45) and (2.46), hence they
are included in the general considerations of Sec. II. To see
this, let us consider the ALP-gluon interaction vertex
g-:adxPGHPdxPG™ yp0xP. The process a p gluon <> qq is
contained in the correlation function hGGG™ G™ i at two

loops, with one gluon propagator featuring a q selfenergy
loop, this is the QCD equivalent of the second diagram in
Fig. 2 featuring a fermion loop correction to the propagator
of the gauge boson. Using Cutkosky’s cutting rules it is a
simple exercise to see that the rate for the scattering
process a p gluon <> qq is given by the imaginary part of
the two loop diagram where the cut goes through the qg
loop. Similarly for the processes a p gluon <> 2gluons
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which corresponds to a gluon loop for a gluon self-energy.
This is the thermalization rate that enters in the Boltzmann
equation in Ref. [41] or the cross section in Ref. [52].

3. Mixed cold and hot components

An important corollary of the Langevin-like equation of
motion (2.54) are the general results (2.108) and (2.109)
which entail that the energy density of ALPs feature a
mixture of cold and hot components, the cold component
is determined by oscillatory coherent condensate resulting
from misaligned initial conditions and the hot corresponds
to the thermalized part, which is determined by the “noise”
term in the Langevin equation, with proportions varying in

time as ~ dcoldpe " p 8hotPd1 - e "p. The damping of the

cold component is a consequence of the “friction” term in
the equations of motion determined by the imaginary part
of the self-energy, and the growth rate of the hot
component, namely the thermalization rate, is related to the
damping rate of the cold component by the fluctuation
dissipation relation. The cold component originates in the
coherent oscillations resulting from a “misaligned” initial
condition, whereas the hot component results from the
approach to thermal equilibration with the bath.

4. Novel exotic phases

For ALP-photon coupling, the real part of the self-
energy reveals two important features: because the
coupling g has dimensions 1=8energyp the interaction
Lagrangian density is nonrenormalizable. As a result we
find that the effective action must necessarily include

Ouagxbb? with C a

constant that absorbs the logarithmic ultraviolet divergence
(3.8). We have (arbitrarily) set C % 0O to establish contact
with the usual Lagrangian proposed for ALPs, but this
clearly implies a fine-tuning. Furthermore, the finite
temperature part of the self-energy features the high
temperature limit (3.9) which yields an effective
temperature dependent mass squared given by Eq. (3.12).
The power of temperature o T*is a consequence of the

higher derivative terms of the form C80,

nonrenormalizable coupling with mass dimension -2. The
negative sign yields the opposite behavior compared to
scalar theories with (second-order) phase transitions, the
physical origin of the negative sign eludes these authors.
We conjecture that the sign is a result of the coupling to a
pseudoscalar composite operator with vector fields, but
such conjecture awaits confirmation by comparing to other
pseudoscalar couplings such as those shown in Eq. (2.2),
which is beyond the original scope of this study. This
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effective mass squared suggests the possibility of an
inverted phase transition with m?6Tp < 0 for T > T.
signalling an instability towards a phase of lower free
energy. Such instability entails that nonlinearities in the
ALP effective Lagrangian are relevant, these may be
associated with a potential for the ALP field, or from higher
orders in the effective action, for example a term of the
form =~g*a* (with the various branch labels ), which
because of the nonrenormalizable nature of the coupling
will feature the largest scale in the loop to the fourth power
and may conspire with the quadratic term to stabilize the
theory. The emergence of these nonlinearities in higher
orders of the effective action merit further study. The main
result of the energy density (2.109) is valid only for T < T¢
because the analysis relies on the perturbative
renormalization of the frequencies, so that Qi in (2.109) is
real. Taken together, this instability in combination with
higher-derivative terms may lead to novel exotic
inhomogeneous phases for T > T, of the Lifshitz type [42].
The possibility of high-temperature instabilities and novel
phases are worthy of a more detailed and deeper study
including other types of pseudoscalar interactions, which
is beyond the scope of this article.

5. QED vs QCD

Although this discussion has focused on ALP-photon
coupling, a similar conclusion can be drawn for ALPgluon

coupling gsaébe“"b(’ibe" wbOXP, since gs also has

dimensions of denergyP. To lowest order in the strong
coupling as the correlation function hGGG™ G™ i is a gluon
loop and yields a similar high temperature dependence of
the effective mass squared « g%T*on dimensional grounds,
and a zero-temperature logarithmic ultraviolet divergence
which requires a higher-derivative counterterm. Although
similar to the QED case, the actual contributions from
gluon loops must be studied in detail because the non-
Abelian nature may lead to cancellations which these
simple arguments may not capture. The study of the QCD
contribution from gluons must necessarily focus on
temperatures scales above the deconfinement temperature
~150 MeV, which requires hard-thermal loop
resummations [48,51] since the light quarks are
ultrarelativistic in this temperature range whereas for T <
150 MeV (ALP) interact with neutral pions. The study of
these processes is well beyond the scope of this article but
clearly merit further study.
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6. Possible cosmological consequences

While the results obtained above are valid in Minkowski
space time, we can conjecture on their possible
implications in cosmology. The effective squared mass at
high temperature (3.12) suggests a high temperature
inverted phase transition with m2dTp < 0 for T > T.
becoming positive for T < T, the opposite of the usual
behavior in (second-order) phase transitions. This in turn
implies that the nonlinearities in the ALP (effective)
potential are important in the evolution of the coherent
condensate, furthermore, the necessity of introducing
higher-order derivatives to absorb logarithmic ultraviolet
divergences when combined with the high-temperature
instability may lead to novel inhomogeneous phases, such
as Lifshitz phases [42] with the possible generation of
inhomogeneities associated with the dark matter
component that are not a consequence of inflationary
fluctuations. The time evolution of the energy density
yielding a mixture of a cold and a hot component (2.109)
gives rise to the interesting possibility that the “warmth” of
this dark matter candidate evolves in time from a colder to
a hotter component, the weight of each component is
determined by the relaxation rate and the time scale.
Hence, it is possible that for a specific set of parameters
(coupling and mass) the dark matter component is cold at
the time of recombination but warms up as time evolves
towards a warmer component, thereby yielding ALPs as a
warm dark matter candidate in the most recent Universe.
This possibility has potentially important consequences for
galaxy formation since an ALP which is a warm dark
matter candidate may help to solve the core vs cusp
problem in dwarf galaxies. Furthermore, if the ALP is an
ultralight dark matter candidate, it can become an
ultrarelativistic component even for a temperature ~Tmp =
0.1 eV at the time of recombination, which then contributes
to Negr the effective number of relativistic species. As the
interaction with the cosmic microwave background
continues after recombination until today, the decay of the
coherent condensate component and thermalization may
affect the signal on birefringence if it is a consequence of
the interaction of the CMB with a pseudoscalar field [53].

7. Caveats

In this article we have studied the effective action and its
consequence in Minkowski space-time as a prelude
towards a more comprehensive study including
cosmological expansion which will be addressed in future
work. Cosmological expansion introduces several
important modifications; in the evolution of the
condensates (coherent states) from misaligned initial
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conditions, dilution of the population and time dependent
relaxation rates [54] among the most obvious ones. In the
regime when the cosmological expansion rate Htp is
much smaller than the relaxation rate, we expect an
adiabatic treatment (see Ref. [54]) to be reliable. However,
in this case we would expect that ALPs would completely
thermalize with the CMB after recombination and would
feature the CMB temperature today. In obtaining the
effective action we have traced over the CMB degrees of
freedom therefore we cannot assess at this stage whether
the back reaction a - 2y would induce distortions in the
CMB power spectrum. Such distortion would impose
severe constraints on the coupling and mass of the ALP
fields since these determine the relaxation rate. If, on the
other hand the relaxation rate is much smaller than H&tp
we would expect that the thermal (hot) ALP population
today would be rather small. In our treatment we have
assumed the initial ALP density matrix to describe a
misaligned vacuum state, described by a coherent state of
a free field vacuum. This initial state neglects any
population that could have been produced earlier, such as
a produced thermally from QCD processes [40,41,52] or
even processes beyond the standard model or during
inflation. A thermal initial condition can be accounted for,
including misalignment, simply by proposing a coherent
state built from a thermal density matrix. Such
modification will result in new contributions to the
correlation functions and energy density from the initial
averages with the Wigner function or alternatively with the
initial density matrix. In particular this scenario would
yield another thermal contribution to the energy density
originating in the initial density matrix of the ALP field,
therefore, the results obtained in this study provide a lower
bound on the ALP energy density.

V. CONCLUSIONS

We studied the nonequilibrium dynamics of a
pseudoscalar ALP weakly coupled to “environmental”
degrees of freedom in thermal equilibrium in Minkowski
space-time as a prelude towards extending the methods to
cosmology. We considered a generic coupling gadxbPOdxp
with O a pseudoscalar composite operator of the bath
degrees of freedom without adopting a particular set of
parameters, couplings and ALP mass or bounds on them
but only assuming a weak coupling between the ALP and
the standard model degrees of freedom. Our focus in this
article is to obtain the ALP effective action and equations
of motion and to explore their consequences for general
couplings and mass.
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By considering the time evolution of an initial density
matrix for the ALP and environmental fields in the in-in or
Schwinger-Keldysh formulation, we obtained the reduced
density matrix for the ALP by tracing over the
environmental fields. The time evolution of the ALP
reduced density matrix is determined by the
nonequilibrium effective action, which we obtain up to
008g?p in the weak coupling g but to all orders in the
couplings of the environmental fields to any other field
(different from the ALP) within or beyond the standard
model. The effective equations of motion for the ALP field
obtained from the in-in effective action are causal
Langevin equations with a (nonlocal) self-energy and a
Gaussian stochastic noise term whose power spectra fulfill
the fluctuation-dissipation relation. The initial density
matrix for the ALP field implements a “misaligned” initial
condition. The effective Langevin equations of motion
show that the processes that lead to the damping of the
coherent condensate are the same that lead to
thermalization with the environment as a direct result of
the fluctuation dissipation relation. Whereas previous
studies either focused on the “friction” term in the
equations of motion of the coherent condensate, or on
thermalization  via  Boltzmann  equations,  the
nonequilibrium effective action and Langevin equation
obtained in this study establishes a bridge between both
aspects linking them via the fluctuation dissipation
relation, a hitherto unrecognized but important aspect of
coupling to an environment and shows that both occur on
similar time scales. Damping of the coherent misaligned
expectation value and thermalization with the environment
emerge naturally from the effective Langevin equations of
motion, and for generic environments we find that the total
energy density features a mixture of a cold and hot
components; E§tp % dcoldpe™ b dhotPd1 - e b the cold
component is a consequence of the coherent oscillations
from misalignment and the hot component from
thermalization with the bath. The relaxation rate I is
determined by the imaginary part of the self-energy. The
damping of the cold and the growth of the hot components
are a direct consequence of the fluctuation-dissipation
relation.

This time dependent energy density may provide a
compelling dark matter scenario wherein the “warmth” of
the dark matter evolves in time from colder to hotter. This
is one of the important results of our study.

As a specific example we study ALP-photon coupling
with O % E” - B” where the radiation field represents the
CMB after recombination when photons can be treated as
free and massless (vanishing plasma frequency). This is a
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nonrenormalizable interaction, the one-loop contribution
to the ALP self-energy features ultraviolet divergences that
necessitate higher-derivative terms in the effective action,

of the form Cédspa“aéxbbz. The long wavelength

2

relaxation rate L % L 2y b ndm,=2b features a
large enhancement for T >> m, which is substantial even for
the CMB temperature ~10"*¢V if the ALP is a light dark
matter candidate with m, SpeV and even more so if it is an
ultralight candidate with m, = 1072° eV. We find that the

high-temperature limit of the self-energy yields a
temperature-dependent effective mass squared mzac’in Ya

m2,00p%1 - 8T=T.b* with T. = pm,d0b=gffi suggesting a
possible inverted phase transition with a negative mass
squared for T > T. which when combined with
higherderivative terms in the effective action may lead to
the possibility of novel exotic phases.

This study has revealed aspects that have not been
previously discussed, such as the necessity of higher
derivative operators, the high-temperature correction to the
mass which suggests a possible inverted phase transition,
and that a misaligned initial condition naturally leads to an
energy density that features a mixture of cold and hot
components with fractions that depend on time through the
relaxation rate, with the cold component diminishing and
the hot component increasing in time. If ALPs are suitable
dark matter candidates this mixed cold-hot component may
lead to interesting cosmological consequences: for
structure formation the “warmth” of the dark matter, a
consequence of the cold and hot components, may help in
solving the core vs cusp problem, furthermore, the hot
component may provide a contribution to the effective
number of relativistic degrees of freedom at
recombination, and the continued interaction between the
ALP and the CMB postrecombination until today may
affect a birefringence signature if it is a consequence of a
coupling of the CMB to a pseudoscalar field. These results
may also point to possibly alternative bounds on the
couplings and mass of ALPs.

The next step is to extend the methods implemented here
to the realm of an expanding cosmology as well as other
possible interactions which will be the focus of future
work.
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APPENDIX A: SPECTRAL DENSITY FOR E” - B> COUPLING

We begin with the quantization of the gauge field within a volume V eventually taken to infinity,

A Oxb % plyffi k;” Xau1;2 p€ k" 2Akffi Yadk;” Ae-ik-x p dik;t” Aeik-x; 0AlP

where € |;*xare the transverse polarizaton vectors chosen to be real. From Eqgs. (2.63) and (2.64) we need the correlation

functions

G>dx - yb % hE” 8xb - B” dxPE” 8yb - B” 8ybi; dA2b

G<dx - yb % hE” dyb - B” 8ybE~ 6xb - B” dxPi % G>dy — xb; dA3P

where we now refer to hdbi as averages in the thermal density matrix of free field photons.E” dxp - B~ 8xbi % 0 by parity
invariance. Using Wick’s theorem the

In the thermal ensemble the expectation value h

correlation function
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A straightforward calculation yields

1 0ASP
hEidxPEjdybi % hBidxbB;dybi % 2V Xk kd&ij— k™"ik™"jp%61 p ndkbbe-ik-6x-yp p ndkPeik-ox-yp;

similarly
hEidxPB;jdyPi % —hBidxpPE;jdyPi % — __1 Xkd€"” €"jk;” 2 =€ ki~ 2€”jk;” 1P%31 p ndkPbe-ik-5x-yb b ndkpPeik-sx-yp; JAOP

2V K1k

where ndkp % 1=8ePk- 1p. Combining the two terms in (A4) we find

>— 1 - 2 —ik-Ox-yp ik-0x-yp
G
0 bP%av2Xe Xpo 0 b f%0 b d bb bob
y
X %01 p ndpPbe-ip-ax-yp p NdpPeip-ox-ypbg: dA7Tb
mk ‘p’1  nke nke

Expanding the product, we perform the following change of variables in the various terms: (1) in the term” >-k;” p” >-p~
; (2) in the term with 81 p ndkPPndpPk: p” >-p~, (3) in the term with ndkPd1 b ndpbb: k ndkPndpbk: k ~ >-k™ , yielding
in

the infinite volume limit

P%

G>Ox -y — _ dg2r®Z 8d2r3gb3 p>6qo;abeTigest tpeig” -ax” Ty " p; dA8P

where
p>8qo;qb % _ n2 2 82dmskbskjqg" -k 7j1-_ _— kk”-jagq~ ——kkj 2%381 b ndkbbd1 b ndjq” -k~
jpp&8qo- k- jg" -k jp
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b ndkpndjq” - k” jp88qob kb ja” —k ~jp b 1 b kk_ qq” - kK %481 b

ndkpbndjq” -k jp&dqo-k b jq” -k~ jb |

b ndkpd1 b ndjq” - k™ jpp&dqop k - jg~ -k~ jp: dA9p
Writing

G<Ox - yp % 7Z____ _quT[O z 6d21‘[3q p3 p<6q0;qbe-iq06t-t0peiqa 8 _y4 P 0A10p

and using the relation (A3) we find that p<8qo;q” P % p>8-qo;—q~ P, however the sign change in g~ can be compensated by

k™ >-_ inside the k-integral with the final result

p*8ao;a” P % p°8-qo;q” P; 3AL1P
furthermore, using the identity 1 p ndwpp % eP*ndwp and using the various delta functions in the definition of p>we find
p<300;q” P % e-paop>000;q” P; 3A12p

which is the Kubo-Martin-Schwinger relation, thereby confirming the general results (2.67). The spectral density is given

by [see Eq. (2.68)] pdao;qb % p8qo;qb —p<dqo;qb with pdqo;qb % m2 Z 82dmskbPs kw1l 2~ - q” b2%1 b ndkb b ndwbd68qo -

b 8kw - k2p k- g~ b28ndwb - n6kPPd88qo— k b wb -88qop k- wbbg;  wlkjg -k’ j:  8A13p

The spectral density is calculated by implementing the following steps:

d3k = dk dcos© dw
k —wb -68qop k p wbb fokw p k — k

2 . - _
78 mat%zok —3d cos 947‘[ ) d bb; w % jq” -k’ j % qgz2 b k2 — 2kgcosd0bffi;
owdbbp¥-kq: 0A14p

Carrying out the integrations, which are facilitated by the delta function constraints we find
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do b % 32m b Bq 1 - e-Buw- d PpPBq 1-e-Bw O > dob 6 P
where
dA16b
Q2 7% g20 - q2; walb %4 jqoj 2-e;—twste 74 q j2qoj: APPENDEX B: FINITE
TEMPERATURE CONTRIBUTION TO 2r
pa;q dab2 1 . 2Inl-e-pwOQ . 2lnl-e-pumO-Q2
signq; Al5Q
2—22  1-—
YrRaTPOV; kP Y4 32gomT2kP Z-me—ékv% In1=ee=——pwpwr-dko = 32 gamT2kldv;kbP;w % —KkK2ko oB1p

Since the argument of the logarithm is odd under ko ko, it follows that | can be written as

18v;kP % P Zoodkko2 — kab2bInl — e jpkkjpdko % l1 p 6v2 — k2b2l2; dB2b - 2k L
_ B
where oV 1= e 2k
z w1 - etk j
ko k2 =12 212-K In L,
1% Po 0 Kp—V v o] bd bpb 1 —e2
pkpdko
oo 2k 1- e_g kO_J' j
1 i o k .
2% P Zo Ké — In - e‘%ﬁko pkpdko: 0B3p
Using the results
Z )
0 xnIn¥1 — e-sxpypdx % —[dn p 1bLizpnde-yb

0B4p
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Zo=> xn In%1 — e-jx-yjdx % 0—-1Pnldn p 1PLin20e yb - 2 Xi%n0 N n-2i; 0B5b
b 2i Fd1 p 2ib7ad2 p 2iby
Ya
where Li is the polylogarithm, we find
1% -4____ 3mP2k dv2 - kab p ___85mP22
0Bo6p
For |,, we first write it as
oo 2 o
1 1 17 exp _B”S“z—kl
|2%PZO 0 K _Vb bV lng Z dk
K 0 0 17 exp _Bk%k“ :
dB7b
Note that
(o]
1n61—xb%;_l nXn ;
0B8p
and
z dx 1
——e
Po néxbyp Y n_le_nay_zbEia—an; 0B9p
xbz n
P Zok dx=%e-nsk=yp % —n_1 e-noypzp¥s—Eidnzb p Eidndy p zbb; dB10bxp z n
z dx 1 e
Pk yb ¥ n_lenskpzpEi-ndy p zbb: 0B11bp
xpz n

The exponential integral function features a useful representation,

o xn
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Eidxp %y b Indjxjp p Xn1_nn!;

PHYS. REV. D 106, 123503 (2022)
oB12p

Y

where y is Euler’s constant. This expansion allows us to extract the low- and high-temperature limits, yielding the

SRTOQKKP % g2T2=15=24Ta2p32Tasl -y p In ne=kclim—  <mpa b: 0B13p
In the low-temperature limit T << mg;k we find
4n
0B14p
ZRTOQK; kP %4 g2Ta___ 452k22p 32n63amalpd . ___k2p 165 kss T22p:
hightemperature behavior for T >>Qx
W o m2 ma4 4nT Q Qk
Ma Ma Ma Ma
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