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We study the nonequilibrium dynamics of a pseudoscalar axionlike particle (ALP) weakly coupled to 

degrees of freedom in thermal equilibrium by obtaining its reduced density matrix. Its time evolution is 

determined by the in-in effective action which we obtain to leading order in the ALP coupling but to all 

orders in the couplings of the bath to other fields within or beyond the standard model. The effective 

equation of motion for the ALP is a Langevin equation with noise and friction kernels obeying the 

fluctuation dissipation relation. A “misaligned” initial condition yields damped coherent oscillations, 

however, the ALP population increases towards thermalization with the bath. As a result, the energy density 

features a mixture of a cold component from misalignment and a hot component from thermalization with 

proportions that vary in time ðcoldÞe−Γt þ ðhotÞð1− e−ΓtÞ, providing a scenario wherein the “warmth” of 

the dark matter evolves in time from colder to hotter. As a specific example we consider the ALP-photon 

coupling gaE⃗ · B⃗ to lowest order, valid from recombination onwards. For T ≫ ma the long-wavelength 

relaxation rate is substantially enhanced ΓT ¼ g216
m

π2aT. The ultraviolet divergences of the ALP self-energy 

require higher-order derivative terms in the effective action. We find that at high temperature, the finite-

temperature effective mass of the ALP is m2
aðTÞ ¼ m2

að0Þ½1
− 

ðT=TcÞ4, with Tc ∝ pmað0Þ=gffi, suggesting 

the possibility of an inverted phase transition, which when combined with higher derivatives may possibly 

indicate exotic new phases. We discuss possible cosmological consequences on structure formation, the 

effective number of relativistic species and birefringence of the cosmic 

microwave background. 

DOI: 10.1103/PhysRevD.106.123503 

I. INTRODUCTION 

The axion, introduced in quantum chromodynamics 

(QCD) as a solution of the strong CP problem [1–3] may be 

produced nonthermally in the early Universe, for example 

by a misalignment mechanism and is recognized as a 

potentially viable cold dark matter candidate [4–6]. 

Extensions beyond the standard model can accommodate 

pseudoscalar particles with properties similar to the QCD 

axion, namely axionlike particles (ALPs) which can also 

be suitable dark matter candidates [7–11], in particular as 

candidates for ultra light dark matter [12,13]. Constraints 

on the mass and couplings of ultralight ALPs [9–11,14] are 

being established by various experiments [15–17]. There 

are two important features that characterize ALPs: (i) a 

misalignment mechanism results in coherent oscillations of 

the expectation value of the ALP field which gives rise to 

the contribution to the energy density as a cold dark matter 

component [4–6,9–11,18], and (ii) its pseudoscalar nature 

leads to an interaction between the 
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ALP and photons or gluons via pseudoscalar composite 

operators of gauge fields, such as E⃗ · B⃗ in the case of the 

ALP-photon interaction and Gμν;bG˜ 
μν;b in the case of 
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gluons, which allows an ALP to decay into two photons or 

gluons. The effect of this decay process in the evolution of 

ALP condensates has been studied in Refs. [19–21] 

including stimulated decay in a photon background. 

A. Motivation and objectives 

In this article we study the nonequilibrium dynamics of 

coherent oscillations of ALPs coupled to generic 

environmental fields in thermal equilibrium by obtaining 

the nonequilibrium in-in effective action from which we 

derive the effective equations of motion of ALP 

condensates. 

A simple example highlights our main motivation and 

objectives; consider the textbook situation of a particle in 

an harmonic potential immersed in a heat bath in 

equilibrium. The interaction of the particle with the bath 

degrees of freedom induce two main modifications to the 

equations of motion of the particle; (i) a friction term 

arising from energy transfer with the bath degrees of 

freedom, and (ii) a 

stochastic noise term arising from the random “kicks” that 

the environment gives the particle. This is the basis of 

Brownian motion and the effective equation of motion of 

the Brownian particle is a Langevin equation, ẍðtÞ þ γx˙ðtÞ 

þ ω2xðtÞ ¼ ξðtÞ; ð1:1Þ 

with ξ a stochastic noise with a (generally) Gaussian 

probability distribution function yielding the (classical) 

averages and correlations 

 ⟪ξðtÞ⟫ ¼ 0; ⟪ξðtÞξðt0Þ⟫ ¼ 2γkBTδðt − t0Þ: ð1:2Þ 

The relation between the noise correlation function and the 

friction coefficient in (1.2) is the (classical) fluctuation 

dissipation relation, a direct consequence of the bath 

degrees of freedom being in thermal equilibrium. As a 

result, whereas the (stochastic) average ⟪xðtÞ⟫∝ 

e t, the mean square fluctuation 

⟪x2ðtÞ⟫!kBT=ω2, this is simply classical equipart ≫ 1=γ 

tition, namely the Brownian particle reaches thermal 

equilibration with the bath on a relaxation time scale ∝ 1=γ. 

This simple illustrative example motivates our study in 

this article, namely to understand the effective dynamics of 

ALPs when they are coupled to a bath of other degrees of 

freedom in (local) thermal equilibrium. The familiar 

example of a Brownian particle in a heat bath suggests that 

the effective equations of motion of a coherent ALP 

condensate should be akin to a Langevin equation with a 

friction and noise term related by a fluctuation dissipation 

relation as a consequence of the bath degrees of freedom 

with which the ALP interacts being in thermal equilibrium. 

Our objective is precisely to derive, and solve such 

equation and explore its consequences by implementing 

the methods of nonequilibrium field theory. For this 

purpose, we adapt the seminal formulation of quantum 

Brownian motion [22–25] to the realm of nonequilibrium 

quantum field theory [26–30]. This is achieved in the in-in 

or Schwinger-Keldysh [26,31–33] formulation of time 

evolution in quantum field theory. Unlike the in-out 

formulation, the in-in formulation yields causal, retarded 

equations of motion [30,34–36]. 

The objectives of this study are twofold: (i) to obtain the 

time evolution of a reduced density matrix, nonequilibrium 

effective action, equations of motion and correlation 

functions for ALPs weakly coupled to degrees of freedom 

in thermal equilibrium. We first consider a generic model 

with coupling of the form ∝ gaO with g a weak coupling, a 

the ALP field and O a composite pseudoscalar operator 

associated with the bath degrees of freedom. We obtain the 

effective action to leading order in the coupling (Oðg2Þ), 

and to all orders of the couplings of the environmental 

fields to other degrees of freedom within or beyond the 

standard model, and (ii) to apply the general results to the 

relevant case of ALP-photon interaction with O ¼ E⃗ · B⃗ 

where the radiation field in thermal equilibrium is 

identified with the cosmic microwave background (CMB). 

In this article we address these objectives in Minkowski 

space-time, obtaining the (nonequilibrium) effective action 

and effective equations of motion for ALPs to order g2 in 

the (weak) coupling g and arbitrary ALP mass ma as a 

prelude to extending the methods to an expanding 

cosmology and exploring phenomenological consequences 

and constraints in future work. Furthermore, in this study 

we do not adopt a particular set of parameters for ALP 

couplings and mass, nor on possible bounds on these. Our 

main focus is to study the general aspects of the effective 

dynamics resulting from these interactions under the sole 

assumption of weak coupling between the ALP and degrees 

of freedom of the standard model and that the latter are in 

thermal equilibrium. 

B. Summary of results 

We study the time evolution of an initially prepared 

density matrix describing a misaligned initial state for the 

ALP and an equilibrium thermal bath of generic fields 

coupled to the ALP. Tracing over the bath fields yields a 

reduced density matrix for the ALP field whose time 
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evolution is determined by the nonequilibrium effective 

action which is obtained up to Oðg2Þ but to all orders in the 

couplings of the bath degrees of freedom to other degrees 

of freedom within or beyond the standard model. 

The ALP equations of motion obtained from the 

nonequilibrium effective action are stochastic of the 

Langevin type (1.1) with a friction kernel determined by 

the retarded ALP self-energy (a manifestation of radiation 

reaction) and a Gaussian noise whose two-point correlation 

function is related to the self-energy via a generalized 

fluctuation dissipation relation. This is a consequence of 

the bath degrees of freedom being in thermal equilibrium. 

Hence, the notion of Brownian ALP’s. In Ref. [37] a local 

friction coefficient for the equation of motion of the 

expectation value of the axion field was obtained as a 

consequence of sphaleronlike transitions in high-

temperature QCD. Thermal friction from the ALP coupling 

to high-temperature plasmas has also been discussed in 

Refs. [38,39], and thermalization has been studied in Refs. 

[40,41]. Our approach is very different in that we obtain the 

in-in nonequilibrium effective action which allows us to 

obtain the full equation of motion including the noise term 

and directly show that the selfenergy contribution which 

yields the “friction” term and the noise correlation 

functions are related by fluctuation dissipation. The noise 

term is of paramount importance in obtaining correlations 

of the ALP field, and as a consequence of the noise term 

we find that the processes that lead to “friction” and 

damping of the misaligned expectation value are the same 

as those leading to thermalization with the environment on 

similar time scales, thereby providing a direct bridge 

between damping of a coherent condensate and 

thermalization. To the best of our knowledge, this 

approach, which explains both aspects of ALP’s 

nonequilibrium dynamics, has not yet been implemented 

for ALPs. A corollary of this important result, relevant for 

dark matter, is that the energy density features a mixture of 

a “cold” and “hot” components whose relative weight vary 

in time; E ¼ ðcoldÞe−Γt þ ðhotÞð1 − e−ΓtÞ where the “cold” 

component corresponds to the damped coherent 

oscillations arising from a misaligned initial condition and 

the hot component to the approach to thermalization and is 

a consequence of the stochastic noise. The relaxation rate Γ 

is determined by the imaginary part of the ALP self-energy 

and is a result of (stimulated) emission and absorption 

processes with the bath. 

After obtaining the general results, we focus on the 

interaction of ALPs with photons via the coupling gaE⃗ · B⃗ 

. The coupling g has dimensions of 1=ðenergyÞ resulting in 

a nonrenormalizable interaction. Ultraviolet divergences 

necessitate the introduction of higher-derivative terms of 

the (ALP) fields. Emission and absorption processes such 

as a ↔ 2γ yield a relaxation rate that is enhanced at high 

temperatures T ≫ ma by a factor ∝ T=ma. Furthermore, we 

find that the finite temperature contribution to the 

selfenergy yields a temperature dependent effective ALP 

mass m2aðTÞ ¼ m2að0Þ½1 − ðT=TcÞ4 with Tc ∝ 

pmað0Þ=gffi, this behavior of the effective mass suggests 

an inverted phase transition and combined with the 

necessity for higher-derivative terms in the effective 

Lagrangian points to the possibility of novel phases and 

Lifshitz phase transitions [42]. 

In Sec. II we obtain the effective action out of 

equilibrium for ALP fields implementing the in-in 

Schwinger-Keldysh formulation of nonequilibrium field 

theory for a generic interaction of the form gaðxÞOðxÞ, 

with an initial density matrix for the ALP field that 

implements a misaligned initial condition and a thermal 

density matrix for the environmental fields. In this section 

we obtain general results; the Langevin equation of motion 

for the ALP field, and the time-dependent energy density 

with a cold component from misalignment and a hot 

component from thermalization. In Sec. III we focus on the 

interaction with photons, obtain the one-loop, self-energy, 

and noise-correlation function at finite temperature, 

discuss renormalization issues and study their high- and 

low-temperature limits. 

In Sec. IV we discuss the main aspects of the results and 

point out some caveats. In this section we argue that the 

results obtained in the case of photon interactions are valid 

after recombination in the early Universe and discuss 

possible cosmological consequences. Our conclusions are 

summarized in Sec. V. Several appendices include 

technical details. 

II. THE EFFECTIVE ACTION OUT OF 

EQUILIBRIUM 

We study the nonequilibrium effective action of an we 

refer asaxionlike field“environmentalaðxÞ coupled to 

generic fields” fields via an operatorχðxÞ to whichOχðxÞ, 

with the Lagrangian density 

L½a;  ¼ 2 ð 

Þ ð Þ 2 ð ÞgaðxÞOχðxÞþLχ; 

ð2:1Þ 

where Lχ is the Lagrangian density describing the 

“environmental” fields χ, these fields could be the 

electromagnetic field, fermion or gluon fields. We will first 

treat these fields generically to leading order in the 

coupling to exhibit the general form and properties of the 
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effective action for ALP and then we will focus specifically 

on the case of the pseudoscalar coupling to the 

electromagnetic field, a hallmark of ALPs. 

The Lagrangian density (2.1) describes several relevant 

couplings of ALPs, such as 

LI ¼−gaðxÞE⃗ ðxÞ·B⃗ ðxÞ; LI ¼−gsaðxÞGμν;bðxÞG˜ μν;bðxÞ; 

LI ¼−gψaðxÞΨ̄ ðxÞγ5ΨðxÞ; ð2:2Þ 

where E⃗ , B⃗ are the electromagnetic fields, Gμν;b;G˜ μν;b are 

the gluon field strength tensor and its dual respectively, and 

ΨðxÞ a fermionic field. Therefore the interaction in (2.1) 

describes a wide range of possible interactions of the ALP 

with other degrees of freedom which in this study are 

assumed to be in thermal equilibrium initially. 

Whereas the photon and gluon interactions are not 

renormalizable because the respective couplings g;gs 

feature dimensions 1=ðenergyÞ, the coupling gψ is 

dimensionless so the interaction with the fermionic 

pseudoscalar is renormalizable. This aspect will have 

important consequences as discussed below in Sec. III. 

Upon evolving the total initial density matrix in time, the 

degrees of freedom χ with the generic operator Oχ will be 

traced over to obtain a reduced density matrix for aðxÞ. We 

achieve this to leading order in the coupling g, but to all 

orders in the couplings of the χ fields with themselves or 

with other degrees of freedom within or beyond the 

standard model, except for the ALP. 

Although we are ultimately interested in obtaining an 

effective quantum field theory by tracing out these degrees 

of freedom in an expanding cosmology, in this study we 

focus on Minkowski space time as a first step towards 

extending these methods to cosmology. We consider the 

generic fields χ as a bath in thermal equilibrium. 

The main strategy is to begin with an initial density 

evolve it in timematrix ρˆð0Þ describing the ALP field and 

the environment,ρˆðtÞ ¼ UðtÞρˆð0ÞU−1ðtÞ with UðtÞ the 

unitary time evolution operator for the ALP-environment, 

and trace over the environmental degrees of freedom 

yielding a reduced density matrix for the ALP fields, 

namely ρr
aðtÞ ¼ TrχρˆðtÞ. This is the in-in or Schwinger- 

Keldysh [26,31–33] formulation of nonequilibrium 

quantum field theory, the time evolution of the reduced 

density matrix is determined by a nonequilibrium effective 

action that includes the effects of the environment via a 

nonlocal term known as the influence functional [22] in the 

theory of quantum Brownian motion. This effective action 

yields causal equations of motion [34,35], which turn out 

to be stochastic, akin to a Langevin equation with noise and 

dissipation terms that are related by a general fluctuation 

dissipation relation, a consequence of the environmental 

bath being in thermal equilibrium. 

The reduced density matrix can be represented by a path 

integral in terms of the nonequilibrium effective action that 

includes the influence functional. This method has been 

used previously to study quantum Brownian motion [22–

28,30] and for studies of quantum kinetics beyond the 

Boltzmann equation [26,43,44]. 

Let us consider the initial density matrix at a time t ¼ 0 

to be of the form ρˆð0Þ ¼ ρˆað0Þ ⊗ρˆχð0Þ: ð2:3Þ 

The initial density matrix ρˆað0Þ is normalized so that 

Traρˆað0Þ ¼ 1 and that of the χ fields will be taken to 

describe a statistical ensemble in thermal equilibrium at a 

temperature T ¼ 1=β, namely 

e−βHχ 

 ρˆχð0Þ ¼ −βHχ ; ð2:4Þ 

Trχe 

where Hχ is the total Hamiltonian for the fields χ, and may 

include other fields to which χ is coupled other than the 

ALP; this possibility will be discussed further below. 

The factorization of the initial density matrix is an 

assumption often explicitly or implicitly made in the 

literature, it can be relaxed by including initial correlations 

at the expense of daunting technical complications. We will 

not consider here this important case, relegating it to future 

study. 

In the field basis the matrix elements of ρˆað0Þ and 

ρˆχð0Þ are given by 

hajρˆað0Þja0i ¼ ρa;0ða;a0Þ; hχjρˆχð0Þjχ0i ¼ ρχ;0ðχ;χ0Þ; 

ð2:5Þ 

we emphasize that this is a functional density matrix as the 

field has spatial arguments. The density matrix for the ALP 

field a represents either a pure state or more generally an 

initial statistical ensemble, whereas ρˆχð0Þ is given by Eq. 

(2.4). 

The physical situation described by (2.4) is that of a field 

(or fields) in thermal equilibrium at a temperature T ¼ 1=β, 
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namely a heat bath, which is put in contact with another 

system, here represented by the field a. Once the system 

and bath are put in contact their mutual interaction will 

evolve the initial state out of equilibrium because the initial 

density matrix does not commute with the total 

Hamiltonian with interactions. 

To obtain the effective action out of equilibrium for the 

ALP field a we evolve the initial density matrix in time and 

trace over the “bath” degrees of freedom, leading to a 

reduced density matrix for the field a, from which we can 

compute its expectation values or correlation functions as 

a function of time. 

The time evolution of the initial density matrix is given 

by ρˆðtÞ ¼ UðtÞρˆð0ÞU−1ðtÞ; ð2:6Þ 

where 

 UðtÞ ¼ e−iHt: ð2:7Þ 

The total Hamiltonian H is given by 

 H ¼ H0a þ Hχ þ g Z d3xaðxÞOχðxÞ; ð2:8Þ 

and H0a;Hχ are the Hamiltonians for the respective fields. 

The reduced density matrix for the ALP field is obtained 

by tracing over the χ degrees of freedom as 

 ρraðtÞ ¼ TrχUðtÞρˆð0ÞU−1ðtÞ: ð2:9Þ 

To extract the nonequilibrium effective action for the ALP 

it is more convenient to obtain the density matrix elements 

in field space, namely ρðaf;χf;a0f;χ0f;tÞ ¼ 

haf;χfjUðtÞρˆð0ÞU−1ðtÞja0f;χ0fi; 

ð2:10Þ 

from which the reduced density matrix elements are 

ρrðaf;a0f;;tÞ ¼ Z Dχfhaf;χfjUðtÞρˆð0ÞU−1ðtÞja0f;χfi: 

ð2:11Þ 

With the functional integral representation 

haf;χfjUðtÞρˆð0ÞU−1ðtÞja0f;χ0fi 

¼ Z DaiDχiDa0iDχ0ihaf;χfjUðtÞjai;χiiρa;0ðai;a0iÞ 

⊗ρχ;0ðχi;χ0iÞha0i;χ0ijU−1ðtÞja0f;χ0fi; ð2:12Þ The

 Da etc, are functional integrals where the spatial 

argument has been suppressed. The matrix elements of 

theR 

time evolution forward and backward can be written as 

path integrals, namely haf;χfjUðtÞjai;χii ¼ Z DaþDχþeiR 

d4xL½aþ;χþ; ð2:14Þ 

ha0i;χ0ijU−1ðtÞja0f;χ0fi ¼ Z Da−Dχ−e−iR d3xL½a−;χ−; ð2:15Þ 

where we use the shorthand notation 

 Z d4x ≡ Z0t dt Z d3x; ð2:16Þ 

L½a;χ is given by (2.1) and the boundary conditions on the 

path integrals are 

it follows that the reduced density matrix elements are 

ρrðaf;a0f;;tÞ ¼ Z Dχf Z DaiDχiDa0iDχ0ihaf;χfjUðtÞjai;χiiρa;0ðai;a0iÞ 

 ⊗ρχ;0ðχi;χ0iÞha0i;χ0ijU−1ðtÞja0f;χfi: ð2:13Þ 
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aþðx;t⃗ ¼ 0Þ ¼ aiðx⃗ Þ; aþðx;t⃗Þ ¼ afðx⃗ Þ; ð2:17Þ 

χþðx;t⃗ ¼ 0Þ ¼ χiðx⃗ Þ; χþðx;t⃗Þ ¼ χfðx⃗ Þ; ð2:18Þ 

a−ðx;t⃗¼ 0Þ ¼ a0iðx⃗ Þ; a−ðx;t⃗Þ ¼ a0
fðx⃗ Þ; ð2:19Þ 

χ−ðx;t⃗ ¼ 0Þ ¼ χ0iðx⃗ Þ; χ−ðx;t⃗Þ ¼ χ0fðx⃗ Þ: ð2:20Þ 

The field variables a;χ along the forward (þ) and 

backward (−) evolution branches are recognized as those 

 
necessary for the in-in or Schwinger-Keldysh [26,31–33] 

closed time path approach to the time evolution of a density 

matrix. 

The reduced density matrix for the light field a (2.13), 

can be written as 

ρrðaf;a0f;tÞ ¼ Z DaiDa0iT ½af;af0 ;ai;ai0;tρaðai;a0i;0Þ; 

ð2:21Þ 

where the time evolution kernel is given by 

T ½af;ai;a0
f;a0

i;t 

 ¼ Z Daþ Z Da−eiR d4x½L0½aþ−L0½a−eiI½aþ;a−; ð2:22Þ 

from which the in-in effective action out of equilibrium is 

identified as 

Seff½aþ;a− ¼ Z0t dtZ d3xfL0½aþ−L0½a−þI½aþ;a−g; 

ð2:23Þ 

where I½aþ;a− is the influence action [22] obtained by 

tracing over the χ degrees of freedom, 

 eiI½aþ;a− ¼ Z DχiDχi0Dχf Z Dχþ Z Dχ−eiR d4x½L½χþ−gaþOχþe−iR d4x½L½χ−−ga−Oχ−ρχðχi;χi0;0Þ: ð2:24Þ 

The path integral representations for both 
T ½af;ai;a0

f;a0
i;t and 

I½aþ;a− feature the boundary conditions in (2.17)–(2.20) 

except that we now set χðx;t⃗ Þ ¼ χfðx⃗ Þ to trace over χ field. 

In the above path integral defining the influence action Eq. (2.24), the ALP fields aðxÞ act as external sources (c-

number) coupled to the operator Oχ. Therefore, it is straightforward to conclude that the right hand side of Eq. (2.24) is 

the path integral representation of the trace over the environmental fields coupled to external sources a, namely 

 eiI½aþ;a− ¼ Trχ½Uðt;aþÞρχð0ÞU−1ðt;a−Þ; ð2:25Þ 

where Uðt;aÞ is the time evolution operator in the χ sector in presence of external sources a, i.e., 

 Uðt;aþÞ ¼ Tðe−iR0t Hχ½aþðt0Þdt0 Þ; U−1ðt;a−Þ ¼ T˜ðeiR0t Hχ½a−ðt0Þdt0Þ; ð2:26Þ 

with 

 Hχ½aðtÞ ¼ Hχ þ g Z d3xaðx;t⃗ ÞOχðx⃗ Þ; ð2:27Þ 
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and T˜ is the antitime evolution operator describing evolution backward in time, it is defined by T˜ðAðt1ÞBðt2ÞÞ ¼ 

AðThe calculation of the influence action is facilitated by passing to the interaction picture for the 

Hamiltoniant1ÞBðt2ÞΘðt2 − t1Þ þ Bðt2ÞAðt1ÞΘðt1 − t2Þ. Hχ½aðtÞ, defining 

 Uðt;aÞ ¼ e−iHχt Uipðt;aÞ ð2:28Þ 

and the⃗ Þefor theiHχt cancel out in the trace inχ sector, it follows that(2.25), since 
Uðt;aÞ is the time evolution operator in 

presence of external sources 

aðx;t 

Uipðt;aþÞ ¼ 1 − ig Z d4x0aþðx;t⃗ 0ÞOχðx;t⃗0Þ 
 

− g 2 Z d4x1 Z d4x2Tðaþðx⃗ 1;t1ÞOχðx⃗ 1;t1Þaþðx⃗ 2;t2ÞOχðx ⃗ 2;t2ÞÞ þ ; 2 

U−
ip

1ðt;a−Þ ¼ 1 þ ig Z d4x0a−ðx⃗ 0;t0ÞOχðx⃗ 0;t0Þ 

ð2:29Þ 

− g
22 Z d4x1 Z d4x2T˜ða−ðx⃗ 1;t1ÞOχðx⃗ 1;t1Þa−ðx⃗ 2;t2ÞOχðx⃗ 2;t2ÞÞ þ ; ð2:30Þ 

where Oχðx;t⃗ Þ is in the Heisenberg picture of Hχ. 

Now the trace (2.25) can be obtained systematically in perturbation theory in g from which we obtain the influence 

functional. Up to Oðg2Þ we find 

I½aþ;a− ¼ −g Z d4xðaþðxÞ − a−ðxÞÞhOχðxÞiχ 

þ ig22 Z d4x1 Z d4x2faþðx1Þaþðx2ÞGþþc ðx1 − x2Þ þ a−ðx1Þa−ðx2ÞG−−c ðx1 − x2Þ 

 − aþðx1Þa−ðx2ÞGþ
c 

−ðx1 − x2Þ − a−ðx1Þaþðx2ÞG−
c
þðx1 − x2Þg; ð2:31Þ 

which is confirmed by expanding the left-hand side of (2.25) and comparing to the right-hand side. In this expression the 

connected correlation functions in the initial density matrix of the χ fields, namely ρχð0Þ are given by 

 G−c þðx1 − x2Þ ¼ hOχðx1ÞOχðx2Þiχ − hOχðx1ÞiχhOχðx2Þiχ ¼ G>c ðx1 − x2Þ; ð2:32Þ 

 Gþc −ðx1 − x2Þ ¼ hOχðx2ÞOχðx1Þiχ − hOχðx2ÞiχhOχðx1Þiχ ¼ G<c ðx1 − x2Þ; ð2:33Þ 



SHUYANG CAO and DANIEL BOYANOVSKY PHYS. REV. D 106, 123503 (2022) 

123503-8 

 Gþþc ðx1 − x2Þ ¼ Gc>ðx1 − x2ÞΘðt1 − t2Þ þ G<c ðx1 − x2ÞΘðt2 − t1Þ; ð2:34Þ 

 G−−c ðx1 − x2Þ ¼ Gc>ðx1 − x2ÞΘðt2 − t1Þ þ G<c ðx1 − x2ÞΘðt1 − t2Þ; ð2:35Þ 

 
in terms of fields in the Heisenberg picture of Hχ, where 

 hðÞi ¼ TrχðÞρχð0Þ: ð2:36Þ 

Furthermore, for the case of hermitian operators Oχ as 

considered here it follows that 

 G>
c ðx1 − x2Þ ¼ G<

c ðx2 − x1Þ: ð2:37Þ 

We highlight that the correlation functions G>;G< are 

exact, namely to all orders in the couplings of the 

environmental fields χ that enter in O to all other fields to 

which it couples except the ALPs. 

In the cases under consideration, we assume that the 

initial density matrix for the bath, ρχð0Þ ¼ e−βHχ is CP 

invariant, for example in quantum electrodynamics where 

ρχð0Þ describes blackbody radiation, for which hE⃗ · B⃗ i ¼ 

0. Therefore hOðx1;2Þi ≡ 0 in the connected correlation 

functions (2.32)–(2.35), hence in what follows we suppress 

the subscript “c” in the correlation functions. 

The influence action (2.31) becomes simpler by writing 

it solely in terms of the two correlation functions G≶, this 

is achieved by implementing the following steps: 

(i) In the term with aþðx1Þaþðx2Þ: in the contribution 

G<ðx1 − x2ÞΘðt2 − t1Þ [see Eq. (2.34)] relabel x1 ↔ 

x2 and use the property (2.37). 

(ii) In the term with a−ðx1Þa−ðx2Þ: in the contribution 

G>ðx1 − x2ÞΘðt2 − t1Þ [see Eq. (2.35)] relabel x1 ↔ 

x2 and use the property (2.37). 

(iii) In the term with aþðx1Þa−ðx2Þ: multiply G<ðx1 − x2Þ 

by Θðt1 − t2Þ þ Θðt2 − t1Þ ¼ 1 and in the term with 

Θðt2 − t1Þ relabel x1 ↔ x2 and use the property 

(2.37). 

(iv) In the term with a−ðx1Þaþðx2Þ: multiply G>ðx1 − x2Þ 

by Θðt1 − t2Þ þ Θðt2 − t1Þ ¼ 1 and in the term with 

Θðt2 − t1Þ relabel x1 ↔ x2 and use the property 

(2.37). 

We find 

I½aþ;a−¼ig2Z d4x1d4x2faþðx⃗ 1;t1Þaþðx⃗ 2;t2ÞG>ðx1 −x2Þ 

þa−ðx⃗ 1;t1Þa−ðx⃗ 2;t2ÞG<ðx1 −x2Þ −aþðx⃗ 

1;t1Þa−ðx⃗ 2;t2ÞG<ðx1 −x2Þ 

−a−ðx⃗ 1;t1Þaþðx⃗ 2;t2ÞG>ðx1 −x2ÞgΘðt1 −t2Þ; 

ð2:38Þ 

where G≶ are given by Eqs. (2.32) and (2.33). This is the 

general form of the influence function up to second order 

in the ALP-environment coupling but to all orders in the 

couplings of the environmental fields that enter the 

composite operator O to any other field. Notice that 

I½aþ;a−jaþ¼a− ¼ 0 consistently with its definition given by 

Eq. (2.25). A graphical depiction of the influence action 

I½aþ;a− is displayed in Fig. 1. 

For example, for the ALP-photon interaction in Eq. 

(2.2), some of the correlations included in the influence 

action are displayed in Fig. 2; the one-loop diagram 

features free- 
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FIG. 1. A graphical depiction of 
I
½aþ;a−. The black circle 

denotes the correlation functions G≶ to all orders in the couplings 

to degrees of freedom other than the ALP. 

 

FIG. 2. I½aþ;a− for the ALP-photon interaction in (2.2). The one-

loop diagram features free photon propagators, the two-loop 

diagram includes the polarization from eþe− pairs in the thermal 

plasma, etc. 

photon propagators, the two-loop diagram features a 

polarization correction to one of the propagators with 

electron-positron pairs in the thermal bath, this two-loop 

diagram features an extra power of α the fine structure 

constant. Similar diagrams with quarks and gluon loops are 

included for the ALP-gluon interaction in (2.2). The black 

bath degrees of freedom in thermal equilibrium to all 

orders“bubble” symbolizes the hOOi correlation functions 

of the 

in their interactions, α;αs, etc. 

We can obtain expectation values and correlation 

functions of the ALP fields by including sourcesL0ðaÞ 

→L0ðaÞ þ JðxÞaðxÞ and defining the gener-JðxÞ with 

ating functional 

Z½Jþ;J− ¼ TrρrðJþ;J−;tÞ ¼ Z DafDaiDa0
i Z Daþ 

 × Z Da−eiSeff½aþ;Jþ;a−;J−;tρaðai;a0i;0Þ ð2:39Þ 

with the boundary conditions 

aþðx;t⃗ ¼ 0Þ ¼ aiðx⃗ Þ; aþðx;t⃗ Þ ¼ afðx⃗ Þ 

a−ðx;t⃗ ¼ 0Þ ¼ a0
iðx⃗ Þ; a−ðx;t⃗ Þ ¼ afðx⃗ Þ:

 ð2:40Þ 

Expectation values or correlation functions of a in the 

reduced density matrix are obtained as usual with 

variational derivatives with respect to the sources J. 

A. Effective equations of motion: Langevin equation 

The effective action (2.23) may be written in a manner 

more suitable to exhibit the equations of motion by 

introducing the Keldysh [32] variables 

 Aðx;t⃗Þ ¼ ðaþðx;t⃗ Þ þ a−ðx;t⃗ÞÞ; 

 Rðx;t⃗Þ ¼ ðaþðx;t⃗Þ − a−ðx;t⃗ÞÞ: ð2:41Þ 

The boundary conditions on the a path integrals given by 

(2.40) translate into the following boundary conditions on 

the center of mass and relative variables 

 Aðx;t⃗ ¼ 0Þ ¼ Ai; Rðx;t⃗ ¼ 0Þ ¼ Ri; ð2:42Þ 

 Aðx;t⃗ ¼ tfÞ ¼ afðx⃗ Þ; Rðx;t⃗ ¼ tfÞ ¼ 0: ð2:43Þ 

In terms of the center of mass and relative field variables, the effective action (2.23) with the influence functional (2.31) 

becomes with ω2
k ¼ m2

a þ k2 

iSeff½A;R ¼ −i Z d3xRiðxÞA˙ðx;t ¼ 0Þ þ i Z0t dtXk f−R−k⃗ ðÄ k⃗ ðtÞ þ ω2kAk⃗ ðtÞÞ þ Ak⃗ J−k⃗ g 

⃗ 

 − Z0t dt1 Z0t dt2
12 R−k ⃗ ðt1ÞN k⃗ ðt1 − t2ÞRk⃗  ðt2Þ þ R−k⃗ iΣRk⃗ ðt1 − t2ÞAk⃗ ðt2

Þ; ð2:44Þ 
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where we have integrated by parts and defined JðxÞ ¼ ðJþðxÞ − J−ðxÞÞ, keeping solely the source conjugate to A because 

we are interested in expectation values and correlation functions of this variable only as discussed in detail below. The 

kernels in the above effective Lagrangian are given by [see Eqs. (2.32)–(2.35)] 

 N kðt − t0Þ ¼ g 22 ½G>ðk;t − t0Þ þ G<ðk;t − t0Þ; ð2:45Þ 

 iΣR
k ðt − t0Þ ¼ g2½G>ðk;t − t0Þ − G<ðk;t − t0ÞΘðt − t0Þ ≡ iΣkðt − t0ÞΘðt − t0Þ; ð2:46Þ 

wherethe effective actionG<;>ðk;t − t0eÞiSare the spatial Fourier transforms of the correlation functions ineff , the quadratic 

term in the relative variable R can be written as a functional integral over a noise(2.32)–(2.35). In the exponential of 

variable ξ as follows: 

exp −12  Z dt1 Z dt2R−k⃗ ðt1ÞN k⃗ ðt1 − t2ÞRk ⃗ ðt2
Þ

 

 ¼ C˜ Z Dξexp −1
2  Z dt1 Z dt2ξ−k⃗ ðt1ÞN k−

⃗ 
1ðt1 − t2Þξk ⃗ ðt2Þ þ i Z dtξ−k⃗  ðtÞRk⃗ ðtÞ; ð2:47Þ 

where C˜ is a normalization factor. 

For the initial density matrix ρaðai;a0
i;0Þ in (2.39) it proves convenient to write it in terms of the initial center of mass 

and relative variables Ai, Ri as 

 R R 

ρaðai;a0i;0Þ ≡ρaAi þ 2i ;Ai − 2i ;0  

and introduce the functional Wigner transform [45] 

ð2:48Þ 

W½Ai;πi ¼ Z DRie−iR d3xπiðx⃗ ÞRiðx⃗ ÞρaAi þ R2i ;Ai −R2i ;0 ; 

which allows us to write (up to a normalization factor) 

ð2:49Þ 

 R R 

 ρaAi þ 2i ;Ai − 2i ;0 ¼ Z DπieiR d3xπiðx⃗ ÞRiðx ⃗ÞW½Ai;πi: ð2:50Þ 
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As it will become clear below, the Wigner transform naturally leads to an initial value problem wherein the evolution 

of the field is determined from initial conditions on its value and first time derivative. 

Gathering these results together, we now write the generating functional (2.39) in terms of the Keldysh variables (2.41), 

with the effective action in these variables given by Eq. (2.44), implementing the Wigner transform (2.50) and using the 

representation (2.47) 

Z½J ¼ Z DAf Z DRiDAiDπi Z DADRDξW½Ai;πi × P½ξ × exp i Z dtXk⃗ Ak⃗ ðtÞJ−k⃗ ðtÞ 

 × exp −i Z dtXk⃗ R−k⃗ ðtÞÄ k⃗ ðtÞ þ ω2k⃗ Ak⃗ ðtÞ þ Z0t Σk⃗ ðt − t0ÞAk⃗ ðt0Þd0t −ξk⃗ ðtÞ  

 × exp iXk⃗ Rið−k⃗ Þðπðk⃗ Þ −A˙iðk⃗ ÞÞ; ð2:51Þ 

where the noise probability distribution function 

 P½ξ ¼ N˜ Yk⃗ exp − 21 Z dt1 Z dt2ξ−k⃗ ðt1ÞN k−
 
1ðt1 − t2Þξk⃗ ðt2

Þ: ð2:52Þ 

The generating functional Z½J is the final form of the time evolved reduced density matrix after tracing over the bathJ 

yield the correlation functions of the Keldysh center degrees of freedom. Variational derivatives with respect to the source 

of mass variable A. 

Carrying out the functional integrals over Riðk⃗ Þ and Rk⃗ ðtÞ yields a more clear form, namely 

Z½J ∝ Z DAf Z DAiDπi Z DADξW½Ai;πi × P½ξ × exp i Z dtXk⃗ Ak⃗ ðtÞJ−k⃗ ðtÞ 

× Yk δ½Ä k⃗ ðtÞ þ ω2k⃗ Ak⃗ ðtÞ þ Z0t 

Σk⃗ ðt 

⃗ 

− t0ÞAk⃗ ðt0Þd0t −ξk⃗ ðtÞ × Yk⃗ δ½πðk⃗ Þ −A˙ iðk⃗ Þ: ð2:53Þ 

 
The functional delta functions clearly determine the field 

configurations that contribute to the generating functional 

Z½J: 

(i) The equation of motion of Ak⃗ ðtÞ is a stochastic 

Langevin equation, namely 
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Ä k⃗ ðtÞ þ ω2k⃗ Ak⃗ ðtÞ þt Σk⃗ ðt − t0ÞAk⃗ ðt0Þd0t ¼ ξk⃗ 

ðtÞ: 
0 

ð2:54Þ 

Note that this equation of motion involves the 

retarded self-energy, thereby defining a causal initial 

value problem, this is a distinct consequence of the in-in 

formulation of time evolution. (ii) The initial conditions 

of 
A

k⃗ satisfy 

Ak⃗ ðt ¼ 0Þ ¼ Ai;k⃗ ; A˙ k⃗ ðt ¼ 0Þ ¼ πi;k⃗ ; ð2:55Þ where 

A
i;k⃗ ;

π
i;k⃗ are drawn from the distribution function 

W½Ai;πi (i.e., the initial density matrix). This is one 

of the manifestations of stochasticity, 

 

and we use ðÞ to denote averaging over the initial 

conditions (2.55) with the distribution function 

W½Ai;πi. 

(iii) The expectation value and correlations of the 

stochastic noise ξk⃗ ðtÞ are determined by a Gaussian 

probability distribution P½ξ, yielding 

⟪ξðx;t⃗ Þ⟫ ¼ 0; ⟪ξk⃗ ðtÞξk ⃗0 ðt0Þ⟫ ¼ N kðt−t0Þδk;⃗ −k⃗ 0; 

ð2:56Þ 

Sincefunctions are obtained by implementing Wickwhere 

P⟪½ξ ⟫is Gaussian, higher-order correlationmeans 

averaging weighted by P½ξ’s. 

theorem. This averaging is the second manifestation 

of stochasticity. 

Therefore, averaging over both the initial conditions 

with the Wigner distribution function, and the noise with 

P½ξ, is 

 

now denoted by ⟪ðÞ⟫andand ξðÞ. These stochastic 

averagesis any functional of the initial conditions (2.55) 

yield the expectation values and correlation functions of 

functionals of A obtained from variational derivatives with 

respect to J . 

It remains to relate observables to correlation functions 

of the Keldysh center of mass variable A. The path integral 

representations for the forward and backward time 

evolution operators (2.12), (2.14), and (2.15) show that aþ 

is 

associated withthat inside the path integral operators in the 

forward,UðtÞ and a− with U−1ðtÞ; hence, it follows 

backward and mixed forward-backward branches, 

AþBþ → TrABρ; A−B−→ TrρAB; AþB−→ TrAρB; 

ð2:57Þ 

etc. Therefore, from the cyclic property of the trace the 

expectation value of the ALP field in the total density 

matrix is 

 haðx;t⃗Þi ¼ Traþðx;t⃗Þρˆð0Þ ¼ Trρˆð0Þa−ðx;t⃗ Þ 

 ¼ TrAðx;t⃗Þρˆð0Þ ¼ ⟪Aðx;t⃗ Þ⟫; ð2:58Þ 

whereas 

 TrRðx;t⃗Þρˆð0Þ ¼ 0: ð2:59Þ 

We now introduce 

C>k ðt;t0Þ ¼ Tra−k⃗ ðtÞa−þk⃗ ðt0Þρˆð0Þ; 

 C<k ðt;t0Þ ¼ Tra−k⃗ ðt0Þaþ−k⃗ ðtÞρˆð0Þ; ð2:60Þ 

and the energy per mode of wave vector k⃗ 

1 ∂ ∂ 

 Ek ¼  ½Ck>ðt;t0Þ þ Ck<ðt;t0Þt¼t0 ; ð2:61Þ 

where we anticipate a renormalization of the frequency ωk 

→Ωk, which will be addressed in detail below. Using the 

definition (2.41) and the relations (2.57) it is 
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straightforward to show that this symmetrized product 

yields k 1 ˙ k tÞA˙−k⃗ ðtÞ þ Ω2kAk⃗ ðtÞA−k ⃗ðtÞÞρˆð0Þ 

E ¼ 2TrðA⃗ ð 

 1 n ˙ k⃗ ðtÞA˙−k⃗ ðtÞ⟫ þ Ωk2⟪Ak⃗ ðtÞA−k⃗ ðtÞ⟫o: ð2:62Þ 

¼ 2 ⟪A 

which is the average energy per mode, a component of the 

energy momentum tensor. This analysis confirms that at 

least for the time evolution of the expectation values of the 

ALP field and its energy (momentum tensor) only the 

center of mass Keldysh variable A is needed. 

B. General properties of environmental correlation 

functions 

The dynamics and dissipative processes depend on the 

correlation functions of the environment and crucially on 

their spectral density, these correlation functions determine 

the self-energy Σ and the noise-correlation function N. 

Because the bath is in thermal equilibrium, its initial 

density matrix is ρχð0Þ ¼ e−βHχ=Tre−βHχ which is spacetime 

translationally invariant, and the Heisenberg picture 

operators associated with the bath are given byiHχt iHχt 

Oχðx;t⃗ Þ ¼ 

e Oχðx;⃗ 0Þe− we can write 

G>ðx⃗ − x⃗ 0;t − t0Þ ¼ hOχðx;t⃗ÞOχðx⃗ 0;t0Þiχ 

 ¼  ð 2dπ4kÞ4 ρ>ðk;k⃗0Þe−ik0ðt−t0Þeik⃗ ·ðx⃗ 

−x ⃗0Þ; 

ð2:63Þ 

G<ðx⃗ − x⃗ 0;t − t0Þ ¼ hOχðx⃗ 0;t0ÞOχðx;t⃗ Þiχ 

 ¼ ð d4k ρ<ðk;k⃗

 Þe−ik0ðt−t0Þeik⃗ ·ðx⃗ −x ⃗0Þ: 

 2πÞ4 0 

ð2:64Þ These 

representations are obtained by writing Oχðx;t⃗ Þ ¼ eiHχte−iP⃗ 

·x⃗ Oχð0⃗ ;0Þe−iHχteiP⃗ ·x⃗ and introducing a complete set of 

simultaneous eigenstates of Hχ and the total momentum 

operator P⃗ , ðHχ;P⃗ Þjni ¼ ðEn;P⃗ nÞjni, from which we 

obtain the following Lehmann representations, 

ρ>ðk0;k⃗ Þ ¼ Trð2ρπχðÞ04ÞXm;n e−βEn jhnjOχð0⃗ 

;0Þjmij2 

× δðk0 −ðEm −EnÞÞδðk⃗ −ðPm −PnÞÞ; ð2:65Þ 

ρ<ðk0;k⃗ Þ ¼ Trð2ρπχðÞ04ÞXm;n e−βEn jhmjOχð0⃗ 

;0Þjnij2 

× δðk0 −ðEn −EmÞÞδðk⃗ −ðPn −PmÞÞ: ð2:66Þ 

Upon relabeling m ↔ n in the sum in the definition (2.66) 

and recalling that O is an Hermitian operator, we find the 

Kubo-Martin-Schwinger relation [46–50] ρ<ðk0;kÞ ¼ 

ρ>ð−k0;kÞ ¼ e−βk
0ρ>ðk0;kÞ: ð2:67Þ 

The spectral density is defined as ρðk0;kÞ ¼ ρ>ðk0;kÞ 

−ρ<ðk0;kÞ ¼ ρ>ðk0;kÞ½1 − e−βk
0 

ð2:68Þ 

therefore, 

ρ>ðk0;kÞ ¼ ρðk0;kÞ½1 þ nðk0Þ; 

 ρ<ðk0;kÞ ¼ ρðk0;kÞnðk0Þ; ð2:69Þ 

where 

 nðk0Þ ¼ 0 : ð2:70Þ 

Furthermore, from the first equality in (2.67) it follows 

that 

 ρð−k0;kÞ ¼ −ρðk0;kÞ; ð2:71Þ 

 ρðk0;kÞ > 0 for k0 > 0: ð2:72Þ 
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In terms of the spectral densities we find 

½G>ðx⃗ − x⃗ 0;t − t0Þ − G<ðx⃗ − x⃗ 0;t − t0Þ 

 ¼ Z ð 2dπ4kÞ ρðk ;kÞe−ik0ðt−t0Þeik⃗ ·ðx⃗ −x⃗ 0
Þ ð2:73Þ 

 4 0 

which determines the self-energy Σðt − t0Þ Eq. (2.46), and 

½G>ðx⃗ − x⃗ 0;t − t0Þ þ G<ðx⃗ − x⃗ 0;t − t0Þ ≡ Z ð2dπ4kÞ4 

˜ k0;kÞe−ik0ðt−t0Þeik⃗ ·ðx⃗ −x⃗ 0Þ ð2:74Þ Kð 

which determines the noise correlation function Nðt − t0Þ, 

Eq. (2.45), where 

 K˜ ðk0;kÞ ¼ ρðk0;kÞcoth
β

2
k0; ð2:75Þ 

Equation (2.75) is the general form of the fluctuation 

dissipation relation. Note that ρðk0;kÞ is odd whereas 

K˜ ðk0;kÞ is even“environmentalin k0. We emphasize that 

these are exact” fields χ may be coupled to relations, the 

other fields, for example, in the case of the ALP interaction 

with the electromagnetic fields as in Eq. (2.2) the gauge 

field also interacts with electrons, charged leptons and 

quarks, and similarly with the possible interaction with 

fermionic fields in Eq. (2.2), these interact with other 

gauge fields. The relations (2.67)–(2.75) are general, 

nonperturbative statements relying on thermal equilibrium 

and spacetime translational invariance and do not depend 

on these couplings. 

The general expressions (2.73)–(2.74) allow us to write 

functionthe self-energyN kðt −Σtk
0ðÞt(2.45)− t0Þ (2.46)as 

and the noise correlation 

Σkðt − t0Þ ¼ −ig2 Z ð dk2π0Þρðk0;kÞe−ik0ðt−t0Þ; ð2:76Þ 

N kðt−t0Þ¼g 22 Z ðdk2π0Þρðk0;kÞcothβ

2k0e−ik0ðt−t0Þ; ð2:77Þ 

this is the general relation between the self-energy and the 

noise-correlation function commonly determined by the 

spectral density ρðk0;kÞ, a direct consequence of the 

fluctuation-dissipation relation as a result of the bath being 

in thermal equilibrium. 

C. Misaligned initial conditions 

The initial density matrix for the ALP field is determined 

by initial conditions. We consider an initial density matrix 

describing a pure state compatible with a “misalignment” 

mechanism whereby the expectation value of the ALP field 

is nonvanishing initially and also allow a nonvanishing 

expectation value of its canonical momentum. This is 

achieved by considering a coherent state of the form jΔi ¼ 

Πk⃗ eΔk⃗ b†k⃗ −Δk⃗ bk⃗ j0i; ð2:78Þ 

where j0i is the free field (ALP) vacuum state, b†k⃗ ;bk⃗ are 

ALP free-field creation and annihilation operators, and Δk⃗ 

are complex c-number coefficients that determine the 

initial values for Ak, πk. In the Schrödinger representation, 

the state (2.78) is represented by the coherent state 

wavefunctional 

 Ψ½a ¼ eiR d3xπ̄ iðx⃗ ÞaðxÞΨ0½a −Ā i; ð2:79Þ 

where Ψ0 is the ground state wavefunctional of a free ALP 

field theory. Such a wavefunctional is Gaussian and yields 

an average momentum π̄ i and expectation value of the field 

given by Ā i whose Fourier expansion is determined by the 

complex coefficients Δk⃗ in Eq. (2.78). The pure state 

density matrix describing this coherent state as 

representative of the 

“misaligned” initial condition is 
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 ρa½a;a0;0 ¼ Ψ½a0Ψ½a; ð2:80Þ 

and its Wigner transform is given by 

W½Ai;πi ¼ NΠk⃗ e−Ω2kðAi;k⃗ −Ā i;k⃗ ÞðAi;−k⃗ −Ā i;−k⃗ Þ 

 × e− 2ðπi;k⃗ −π̄ i;k⃗ Þðπi;−k⃗ −π̄ i;−k ⃗ Þ; ð2:81Þ 

with N a normalization factor and Ωk the covariance which 

will be related to the renormalized effective frequency (see 

below). Translational invariance imposes that the 

expectationvalue of the (pseudo) scalar (ALP) field be 

independent of the momentum, therefore we write in a 

finite but large quantization volume V 

 Ā i;k⃗ ¼ Ā ipVffiδk;⃗ 0; π̄ i;k⃗ ¼ π ̄ipVffiδk;⃗ 0; ð2:82Þ 

where Ā i;π̄ i are the space-time constant expectation values 

of the field and canonical momentum in the translational 

invariant initial state. With this Wigner probability 

distribution function we find the averages over the initial 

conditions 

 ð Þ 

with higher-order correlations obtained via Wick’s 

theorem. 

This is a simple realization of the “misalignment” 

mechanism whereby the initial state is a coherent state that 

features a nonvanishing expectation value of the field and 

its canonical momentum, these define the initial value 

problem. 

D. The solution of the Langevin equation 

The solution of the Langevin (stochastic) equation 

(2.54) is obtained by Laplace transform, define the Laplace 

transforms 

∞ 

Σ˜ k⃗ ðsÞ ¼ Z0∞ e−stΣk⃗ ðtÞdt ¼ 2 

Z k0;kÞdk ; ð2:86Þ 

where in (2.86) we used the dispersive representation 

(2.76). 

With the initial conditions (2.55) the solution of the 

Laplace transform of the Langevin equation is 

 A˜ k⃗ ðsÞ ¼ πi;sk⃗2
þþsωA2ki;þk⃗ 

þ
Σ˜ k⃗ ξ˜ðk⃗s

ðÞsÞ:

 ð2:87Þ 

The solution in real time is obtained by inverse Laplace 

transform, it is given by 

 Ak⃗ ðtÞ ¼ Ak⃗ ;hðtÞ þ Ak⃗ ;ξðtÞ; ð2:88Þ 

where 
A

k⃗ ;h;Ak⃗ ;ξðtÞ are the homogeneous and 

inhomogeneous solutions respectively, namely 

Ak⃗ ;hðtÞ ¼ Ai;k⃗ G˙kðtÞ þ πi;k⃗ GkðtÞ 

 Ak⃗ ;ξðtÞ ¼ Z0t Gkðt − t0Þξk⃗ ðt0Þdt0; ð2:89Þ 

and the Green’s function is given by 

ðAi;k⃗ Þ¼Ā ipVffiδk;⃗ 0; 

 

ðπi;k⃗ Þ¼π̄ ipVffiδk;⃗ 0; 

ðAi;k⃗ 

−Ā i;k⃗ ÞðAi;−k⃗ −Ā i;−k⃗ Þ¼p21Ωk 

ðπi;k⃗ −π̄ i;k⃗ Þðπi;−k⃗ −π ̄i;−k⃗ Þ¼ 

rΩ2kffi; ffi 

2:83 

A˜ k⃗ ðsÞ ¼ Z0 e−stAk⃗ ðtÞdt; ð2:84Þ 

∞ 

ξ˜k⃗ ðsÞ ¼ Z0 e−stξk⃗ ðtÞdt; 
ð2:85Þ 
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ρ      

   
 

GkðtÞ ¼ 2πi ZC s2 þ 

ω2kestþ Σ˜ k⃗ ðsÞds; ð2:90Þ 1 

C denotes the Bromwich contour parallel to the imaginary 

axis and to the right of all the singularities of ðs2 þ ω2k þ Σ˜ 

k sÞÞ−1 in the complex s-plane and closing along a large 

⃗ ð 

correspond to poles and multiparticle branch cuts 

withsemicircle at infinity with ReðsÞ < 0. These 

singularities axisReðsÞs<¼0, thus the contour runs parallel 

to the imaginaryiðν− iϵÞ, with −∞≤ν≤∞ and ϵ→ 0þ. 

Therefore, 

 GkðtÞ ¼ − Z−∞∞G˜ kðνÞeiνt 2 dπν; ð2:91Þ 

where 

 G˜ kðνÞ ¼ ðν− iϵÞ2 −1ω2k −Σðν;kÞ: ð2:92Þ 

The self energy in frequency space is given by the 

dispersive form 

Σðν;kÞ ¼ 2
g

π ν k iϵdk0 ≡ Rðν;kÞ þ iΣIðν;kÞ; 

ð2:93Þ 

with the real and imaginary parts given by 

 ΣRðν;kÞ ¼ 2gπ2 P Z−∞∞ρνðk−0;kk0
Þdk0; ð2:94Þ 

g2 

 ΣIðν;kÞ ¼ 2 ρðν;kÞ; ð2:95Þ 

yielding the Kramers-Kronig relation 

 ΣRðν;kÞ ¼ π 1P Z−∞∞ΣνIð−k0k
;k

0 Þdk0: ð2:96Þ 

To obtain the above representations we have used the 

relation ρð−k0;kÞ ¼ −ρðk0;kÞ [see Eq.ΣRðν(2.72);kÞ ¼], as 

a conΣRð−ν;kÞ-; sequence of which it follows that 

complex poles corresponding to the solution of the 

equationΣIðν;kÞ ¼ −ΣIð−ν;kÞ. G˜ kðνÞ given by Eq. (2.92) 

features 

 ω2PðkÞ ¼ ω2k þ ΣðωPðkÞ;kÞ; ð2:97Þ 

to leading order in g2 we find 

 ωPðkÞ ¼ Ωk þ iΓ 2k ; ð2:98Þ 

where 

Ωk ¼ ωk þΣRð2ωωkk;kÞ; Γk ¼ ΣIðωωkk;kÞ ¼ 2gω2k 

ρðωk;kÞ: 

ð2:99Þ Writing in the denominator of the integrand 

in (2.91) that near each pole,Σðν;kÞ ¼ ΣðωpðkÞ;kÞ þ ðG˜ 

kðΣνÞðν;kcan be written in a Breit-Þ −ΣðωpðkÞ;kÞÞ we 

find 

Wigner form as 

G˜ kðνÞ ¼ 2ωPðkÞðν∓
Z Ωk − iΓ2kÞ;

 ð2:100Þ 

with the wave function renormalization constant 
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Zþ Oðg2Þ; 

2 

Σ0ðωP;kÞ ≡ d
d

νΣ0ðν;kÞν¼ωP: ð2:101Þ 

To leading order in g2 we find 

 GkðtÞ ¼ e−Γ2kt sinΩðΩkktÞ þ Oðg2Þ; ð2:102Þ 

where we have assumed a narrow width Γk=Ωk ∝ g2 ≪ 1and 

neglected terms of this order. Using this result in Eq. (2.89) 

we find 

⟪Ak⃗ ðtÞ⟫ ¼ e−Γ2ktĀ i;k⃗ ½cosðΩktÞ − 2ΓΩkk sinðΩktÞ 

 þ π̄ i;k⃗ sinΩðΩkktÞ þ Oðg2Þ; ð2:103Þ 

⟪A˙ k⃗ ðtÞ⟫ ¼ e−Γ2ktΩkĀ i;k⃗ −sinðΩktÞ − 2ΓΩkk cosðΩktÞ þ 

π̄ i;k⃗ cosΩðΩk ktÞ −Γ2k ⟪Ak⃗ ðtÞ⟫ þ Oðg2Þ; 

ð2:104Þ 

where we used (2.56), and Ā i;π̄ i are the average of the 

initial conditions with the Wigner distribution function 

(2.83). We have explicitly displayed the terms ∝Γk=Ωk to 

exhibit that they arise from the derivative of the 

exponential damping term, however, these terms are of 

Oðg2Þ and must be neglected for consistency as we are also 

neglecting terms of the same order from wave function 

renormalization. Similarly, we find 

 g ∞ 

 
1 The residue for m ¼ 0 vanishes because the spectral density 

vanishes at k0 ¼ 0. 

⟪Ak⃗ ðtÞA−k⃗ ðtÞ⟫¼Ak⃗ ;hðtÞA−k⃗ ;hðtÞþ4π2 Z−∞ρðk0;kÞ 

×cothβ2k0    Z0tGkð ik0τdτ    

2dk0: τÞe ð2:105Þ 

Using the leading order result (2.102) for GkðτÞ the integral 

in (2.105) is straightforward. Inserting the result into 

(2.105) yields four terms, the resulting integrals are 

performed by contour integration in the complex k0-plane: 

in the narrow width approximation the two direct terms 

feature residues ∝ 1=Γk, whereas the interference terms 

feature residues ∝ 1=ð2Ωk þ iΓkÞ, these latter terms and the 

poles at frequencies,k0 ¼ 2πim=1β;myield contributions 

of¼ 0;1;2, namely the MatsubaraOðg2Þ and will be 

 
neglected, whereas the terms with residues ∝ 1=Γk ∝ 

1=g2 yield the leading contributions. Using the definition of 

Γk (2.99) and keeping solely the leading-order terms in 

(2.103) we obtain 

⟪A⃗ t A−⃗ t ⟫ e 

 kð Þ kð Þ ¼ −ΓktHk⃗ ðtÞH−k⃗ ðtÞ þ 2Ω1 k ½1 þ 2nðΩkÞ 

 × ð1 − e−ΓktÞ þ Oðg2Þ; ð2:106Þ 

where 

Hk⃗ ðtÞ ¼ Ai;k⃗ cosðΩktÞ þ πi;k⃗ 
sin

ðΩktÞ;

 ð2:107Þ Ωk 

and nðΩkÞ is the Bose-Einstein distribution function. 

This is a noteworthy result; for Γkt ≫ 1 the surviving 

term is precisely the free-field expectation value ðhb†k⃗ bk⃗ 

þ bk⃗ b†k⃗ iÞ=2Ωk of (ALP) operators, where the average is 
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in a thermal equilibrium statistical ensemble; namely, at 

long time t ≫ 1=Γk the ALPs thermalize with the bath. 

A similar calculation, implementing the same 

approximations yields for the average energy per mode 

(2.62) 

Ek ¼ e−2Γkt h ˙ kðtÞH˙−k⃗ ðtÞ þ Ωk2Hk⃗ ðtÞH−k⃗ ðtÞi 

H⃗ 

þ Ωk ½1 þ 2nðΩkÞð1 − e−ΓktÞ þ Oðg2Þ: ð2:108Þ 2 

This result confirms thermalization at long time, the 

second term, which survives for t ≫ 1=Γk is identified as 

the expectation value of the free field Hamiltonian in a 

thermal density matrix, namely the internal energy. These 

results are a manifestation of thermalization in the same 

manner as a Brownian oscillator as mentioned in the 

introduction; whereas the average of the coordinate relaxes 

to the minimum of the potential, the mean square root 

fluctuations reveal thermalization with the bath. This is 

ultimately a consequence of the fluctuation-dissipation 

relation manifest in the relation (2.75) between the noise 

and the self-energy (friction) kernels, a corollary of the 

Kubo-Martin-Schwinger condition (2.67) as a 

consequence of the equilibrium bath correlations. 

Therefore, for the Wigner distribution function (2.81) 

describing a misaligned initial condition with the averages 

given by Eq. (2.83) and neglecting a zero-point 

contribution, we find the energy density 

k Ek ¼ e−Γ0t hπ2i þ ma2Ā 2i i  E ¼ 1

 V V2 
⃗ 

þ  ð2dπ3kÞ3 ΩknðΩkÞð1 − e−ΓktÞ þ Oðg2Þ:

 ð2:109Þ oscillations arising from a “misaligned” 

initial condition as in the usual case of an ALP, whereas 

the second term yields a hot dark matter contribution 

from the approach to thermalization, each weighted by 

the damping exponentials. Whereas the first term depends 

on the initial conditions of the ALP, the second term is 

completely determined by the noise, namely the thermal 

bath. This is one of the important results of this study. 

Therefore, if the ALP relaxes on cosmological time 

scales at a given time t its contribution to dark matter is a 

mixture of cold and hot components, with a fraction 

determined by the relaxation rate Γk and the time scale t. 

This result suggests a scenario where the “warmth” of the 

dark matter evolves in time from colder to hotter. 

The result (2.109) is general, it is valid to order g2 for 

any ALP interaction of the form gaðxÞOðxÞ and to all 

orders in the interactions of the bath fields with other fields 

besides the ALP. This is an important corollary of the 

results in this section: the processes that yield the friction 

in the equation of motion of the misaligned expectation 

value are the same processes that lead to thermalization. 

Therefore, whereas several studies focused on the friction 

term in the equation of motion of the coherent condensate 

[37–39] and other studies focused on thermalization 

[40,41] our results show that both processes are related by 

the fluctuation dissipation relation, occur on similar time 

scales and both contribute to the evolution of the energy 

density of the ALP field. Therefore, the time evolution of 

the energy density given by Eq. (2.109) is one of the 

important results of our study, it applies to all dissipative 

processes resulting from interactions of the ALP with other 

degrees of freedom and is a direct consequence of the 

fluctuation dissipation relation. 

III. ALP INTERACTING WITH PHOTONS 

The results obtained in the previous section are general, 

although the focus is on ALP fields, the results also apply 

to any field with an interaction of the form (2.1) and initial 

conditions that allow for the evolution of a coherent 

condensate [18]. These results have a clear physical 

significance in terms of the nonequilibrium manifestation 

of Brownian fluctuations; a bath in equilibrium induces 

both a self-energy (friction) and a noise term in the 

effective equations of motion, the spectral properties of 

both are related by the generalized fluctuation dissipation 

relation, a hallmark of a bath in thermal equilibrium. 

Although the results are general, the details, namely 

relaxation times, frequency renormalization etc., depend 

on the spectral properties of the bath correlations. In this 

section we focus on ALP interaction with photons via the 

coupling 

 LI ¼ −gaðxÞE⃗ ðxÞ · B⃗ ðxÞ; ð3:1Þ 

The first term is identified with a cold dark matter 

contribution and originates in the damped coherent 
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as in Eq. (2.2). The main assumption invoked in our study 

is that we consider free massless photons neglecting 

interactions with charged leptons and quarks. The one 

 

LI ¼ −gaðxÞE⃗ ðxÞ · B⃗ ðxÞ. 

loop contribution to the ALP self-energy is displayed in 

Fig. 3. 

The regime of validity of this assumption is discussed in 

detail in Sec. IV. An important aspect of the coupling (3.1) 

is that this interaction is nonrenormalizable because the 

coupling g has dimensions of 1=energy. As a result the loop 

corrections associated with the self-energy feature 

ultraviolet divergences which cannot be absorbed into the 

parameters of the Lagrangian and the theory must be 

interpreted as a low-energy effective field theory. 

In Appendix A we obtain the spectral density from the 

thermal correlation functions of the composite operator E⃗ 

ðxÞ · B⃗ ðxÞ, it is given by [see Eq. (A15)], 

ρðq0;q⃗ Þ ¼ ðQ322πÞ2 1þβ2qln11−−ee−−βωβωþI−I  ΘðQ2Þ 

 2 1−e−βωþ 

þβqln1−e−βω−IIII Θð−Q2Þsignðq0Þ; 

 Q2 ¼ q20 −q2; ωðIÞ ¼ jq0j2 q; ωðIIÞ ¼ qj2q0j: 

ð3:2Þ 

namely emission and absorption of photons with the 

reverseThe terms with ΘðQ2Þ arise from the processes a 

↔ 2γ, or recombination process 2γ → a a consequence of 

the heat bath, these processes feature support on the ALP 

mass shell for massive ALPs. The contribution 

proportional toonly features support below the light cone 

and describes offΘð−Q2Þ shell processes γa ↔γ. This 

interpretation stems from the delta functions in the 

expressions for the spectral density equation. [see the 

second line in Eq. (A13)]. 

From the definition of the relaxation rate (2.99) and with 

the result (3.2) we find 

 2 1−e−βωþI g2m4a 

ΓT ¼Γ1þβqln1−e−βω−I  k0¼Ωk; Γ¼64 πΩk ; ð3:3Þ 

the first contribution is the zero temperature ALP decay 

rate, and the second is the finite temperature contribution 

which is a consequence of stimulated emission and 

absorption in the heat bath. The ratio ΓT=Γ is displayed in 

Fig. 4 as a function of the dimensionless ratios T=ma;k=ma. 

 3.        
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ΣðR0Þðν;kÞ ¼ −64gπ2 2 Z−KΛ22 Pα þ 2K2 þ ðKα2Þ2dα; 

 K2 ¼ ν2 − k2; ð3:7Þ 

with the result 

ΣðR0Þðν;kÞ ¼ −64gπ2 2 12Λ4 þ 2K2Λ2 þ 32 ðK2Þ2 

Λ2 

 þ ðK2Þ2 ln jK2j: ð3:8Þ 

This result clearly exhibits the nonrenormalizability of the effective field theory of ALPs; the Λ4 term is 

 FIG. 4. Ratio ΓT=Γ vs T=ma;k=ma. absorbed into a mass renormalization, the ðν2 −k2Þ 

Λ2 term yields an ultraviolet divergent wave 

function renormalization as per Eq. (2.101), 

however the 

ment over the zero temperature case forThe finite temperature contribution yields a large enhance-T ≫ ma;k. For

 logarithmic divergence ν2 

− k2Þ2 ln½Λ cannot be ð 

absorbed into the renormalization of parameters and 

example in the long-wavelength limit k ≪ ma we find field redefinitions of the original Lagrangian, which then must be 

appended with a new higher-derivative 

 ΓT ¼ g642mπ3
a 

1 þ 2n m2a  ;

 ð
3:4Þtermbe renormalized by the term with the logarithmicCð∂μ∂μaÞ2 where C is a new 

coefficient that will 

divergence. Therefore, the effective action necessi- 

which in the high-temperature limit T ≫ ma yields tates the addition of a higher derivative term to absorb the ultraviolet 

divergences. While such ex- 

tension of the effective field theory is both necessary 

 ΓT ¼ g162mπ3
a mTa

: ð
3:5Þ minimal ALP effective field theory to establishand interesting 

on its own, here we focus on the 

contact with the more familiar ALP Lagrangians, 
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For example, if T corresponds to the temperature of the 
thereby we set the new renormalized coupling 

cosmic microwave 

background today T ≃ 10−4 eV the finite 
C ¼ 0

. In Sec. IV we comment on possible effects
 

associated with the higher-derivative terms. 

temperature correction yields a large enhancement for 

ma ≪μeV, and an enormous one if the ALP is an ultralight (ii) T ≠ 0: The finite temperature contribution to the 

ma10−22 eV with potentially relevant self-energy is ultraviolet finite and is studied in detail in candidate with 

Appendix B; the results of this appendix 

cosmological consequences discussed in Sec. IV. 

allow to obtain its high- and low-temperature behavior. For T ≫Ωk we find to leading orders in the 

 A. Real part of the self-energy high-temperature expansion 

(i) Tthe spectral density¼(2.94)0: The real part of the self-energy is given by, with the zero-temperature contribution 

to(3.2) we findΣRTðΩk;kÞ ¼ g2T4−15π2 − 24
m

Ta
2

2 þ 32
m

T4
a4 1 −γ 

Eq. 

 ΣðR0Þðν;kÞ ¼ 64gπ2 20PZ  0 k2 k2Þdk0

 þ ln4mπaT −Ωkk⃗ lnΩk⃗mþa k þ ð3:9Þ; 

 k2Þdk0; ð3:6Þ and for T ≪ ma we find 

integral is ultraviolet divergent, introducing an upperrelabeling k0 →−k0 in the second 

integral, the total 
Σ

TRðΩ
k Þ ¼ 2T4445π2 k2

2a þ 32π634ma 1 þ 4mk2
2a 

 ;k g 

m 

 frequency cutoff Λ delimiting the range of validity of 16 4 T2 

k 

 þ 5 m4 m2 þ  

the effective ALP field theory, and changing inte-gration variables to α ¼ k2
0 − k2 − ðν2 − k2Þ, we find a a

 : ð3:10Þ 

Defining the effective finite temperature mass as the k 

→ 0 limit of the dispersion relation (2.97), the high 

temperature limit T ≫ ma (3.9) yields an effective, 

temperature dependent mass 
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m2aR 1 − 15g2T2aR4;m2aðTÞ ¼ 

 ð3:11Þ π2 m 

where maR is the renormalized mass absorbing the zero 

temperature renormalization. Equation (3.11) can be 

written in a more illuminating form as 

m2aðTÞ ¼ ma2ð0Þ1 −  Tc 4; Tc ¼ 

1.11smað0Þffi: 

 T g 

ð3:12Þ 

This result suggests the possibility of an inverted phase 

transition at a temperature T ¼ Tc: for T > Tc the effective 

squared mass is negative signaling an instability, whereas 

it is positive for T < Tc. This situation is the opposite of the 

usual phase transition where m2ðTÞ > 0 for T > Tc indicating 

an ordered phase and symmetry restoration, and m2ðTÞ < 0 

for T < Tc indicating symmetry breaking. This intriguing 

result is a consequence of the high-temperature behavior of 

the real part of the self-energy, which to the best of our 

knowledge has not been studied before. 

For T < Tc, we define the finite temperature correction to 

the dispersion relation (2.99) as 

 ωT −ωa ≡ΣTðΩk;kÞ; ð3:13Þ 

2Ωk 

in Fig. 5 we display the finite temperature correction to the 

dispersion relation ðωT −ωaÞ=g2 in units of m3
a vs 

T=ma;k=ma. 

 
For k ¼ 0 the figure clearly shows the fast drop in the 

effective mass as T increases in agreement with the analysis 

yielding Eq. (3.11). 

The possible high temperature instability as a 

consequence of m2
aðTÞ < 0 for T > Tc indicates that the 

results obtained in the previous section for the energy 

density 

(2.109) are valid only for T < Tc since the solution of the 

Green’s function (2.102) implied real frequencies Ωk and a 

perturbative correction to the position of the poles. The 

instability for T > Tc yields an imaginary frequency Ωk in the 

solution which translates into a growing exponential. 

IV. DISCUSSION AND CAVEATS: 

A. The Gaussianity of noise correlations 

The noise variable ξ is described by a Gaussian 

probability distribution function (PDF) given by Eq. 

(2.52). The Gaussianity is a consequence of the 

nonequilibrium effective action of the ALP field being 

quadratic [26]. However, this Gaussian PDF does not entail 

that either the ALP or the environmental fields are free. As 

per the discussion in Sec. II B the Lehmann representation 

of the environmental correlation functions is to all orders 

in the couplings of the environmental fields to other fields 

within or beyond the standard model other than the ALP 

field. The fluctuation dissipation relation (2.75) is a 

consequence of the Lehmann representation, the self-

energy (2.76)–(2.86), which enters in the full propagator 

(2.92) is the sum (to all orders) of one particle irreducible 

diagrams such as those displayed in Fig. 2. Therefore the 

spectral density ρðk0;kÞ that determines the noise 

correlation functions are also to all orders in such 
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couplings. Hence, even when the noise PDF is Gaussian, 

this does not entail that either the ALP or the environmental 

fields are free. 

1. ALPs coupled to photons: Region of validity 

FIG. 5. Finite temperature correction to the dispersion relation 

ðωT −ωaÞ=g2 in units of m3
a vs T=ma;k=ma. 

In the case of ALP interaction with photons, we have 

assumed that photons constitute a thermal bath of 

blackbody radiation, having in mind the cosmic microwave 

background. At high temperatures, for relativistic 

electrons, namely T ≫ me with me the electron mass, 

photons acquire a gauge invariant plasma mass ≃eT=3 via 

hard thermal-loop corrections to the photon self-energy 

[47,48,51]. For a light or ultralight (ALP) this plasma mass 

would shut off the lowest-order emission/absorption 

channel a ↔ 2γ. When electrons become nonrelativistic, 

but there is a free-electron density n, the plasma frequency 

becomes 4π
m

ne
e 2

1=2 which would also shut off this channel 

for light or ultralight ALP. However, after recombination, 

the free electron density vanishes precipitously as electrons 

combine with protons into neutral hydrogen. Photons are 

effectively massless as evidenced by the nearly perfect 

blackbody spectrum of the CMB. Since we have assumed 

massless photons in the calculation of the spectral density, 

our assumptions are valid 

after recombination for T ≲ 0.3 eV. For a light ALP with 

ma ≲μeV even the temperature of the CMB today Tcmb ≃ 

10−4 eV is such that T=ma ≫ 1 and there is a large finite 

temperature enhancements to the relaxation rate, which 

becomes quite substantial for an ultralight (ALP) with ma 

≲ 10−20 eV. 

2. Thermalization 

Thermalization of ALPs in the early Universe has been 

studied previously [40,41,52]. However, our method and 

results go much further. The nonequilibrium effective 

action yields the effective equation of motion for ALP 

fields which is a Langevin equation with “friction” and 

noise contributions that satisfy the fluctuation dissipation 

relation. The solution of this Langevin equation allows us 

to study the evolution of ALP condensates from misaligned 

initial conditions along with thermalization which is shown 

to be a consequence of the noise term and the fluctuation-

dissipation relation. The effective action also allows us to 

study renormalization aspects and the finite temperature 

corrections to the (ALP) mass arising from the real part of 

the self-energy (the thermalization rate is related to the 

imaginary part of the self-energy on the mass shell). The 

effective action has been obtained up to second order in 

(ALP) coupling, but to all orders in the couplings of the 

“environmental” fields to any other fields to which they 

couple other than the (ALP). For example the study of 

thermalization in Refs. [40,41,52] in which the ALP is 

coupled to quarks or other Standard Model degrees of 

freedom correspond to obtaining the two loop 

contributions to G>;G< in Eqs. (2.45) and (2.46), hence they 

are included in the general considerations of Sec. II. To see 

this, let us consider the ALP-gluon interaction vertex 

gsaðxÞGμνbðxÞG˜ μνbðxÞ. The process a þ gluon ↔ qq̄ is 

contained in the correlation function hGGG˜ G˜ i at two 

loops, with one gluon propagator featuring a qq̄ selfenergy 

loop, this is the QCD equivalent of the second diagram in 

Fig. 2 featuring a fermion loop correction to the propagator 

of the gauge boson. Using Cutkosky’s cutting rules it is a 

simple exercise to see that the rate for the scattering 

process a þ gluon ↔ qq̄ is given by the imaginary part of 

the two loop diagram where the cut goes through the qq̄ 

loop. Similarly for the processes a þ gluon ↔ 2gluons 
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which corresponds to a gluon loop for a gluon self-energy. 

This is the thermalization rate that enters in the Boltzmann 

equation in Ref. [41] or the cross section in Ref. [52]. 

3. Mixed cold and hot components 

An important corollary of the Langevin-like equation of 

motion (2.54) are the general results (2.108) and (2.109) 

which entail that the energy density of ALPs feature a 

mixture of cold and hot components, the cold component 

is determined by oscillatory coherent condensate resulting 

from misaligned initial conditions and the hot corresponds 

to the thermalized part, which is determined by the “noise” 

term in the Langevin equation, with proportions varying in 

time as 
≃ðcoldÞe−Γt þ ðhotÞð1 − e−ΓtÞ. The damping of the 

cold component is a consequence of the “friction” term in 

the equations of motion determined by the imaginary part 

of the self-energy, and the growth rate of the hot 

component, namely the thermalization rate, is related to the 

damping rate of the cold component by the fluctuation 

dissipation relation. The cold component originates in the 

coherent oscillations resulting from a “misaligned” initial 

condition, whereas the hot component results from the 

approach to thermal equilibration with the bath. 

4. Novel exotic phases 

For ALP-photon coupling, the real part of the self-

energy reveals two important features: because the 

coupling g has dimensions 1=ðenergyÞ the interaction 

Lagrangian density is nonrenormalizable. As a result we 

find that the effective action must necessarily include 

higher derivative terms of the form Cð∂μ
∂μaðxÞÞ2 with C a 

constant that absorbs the logarithmic ultraviolet divergence 

(3.8). We have (arbitrarily) set C ¼ 0 to establish contact 

with the usual Lagrangian proposed for ALPs, but this 

clearly implies a fine-tuning. Furthermore, the finite 

temperature part of the self-energy features the high 

temperature limit (3.9) which yields an effective 

temperature dependent mass squared given by Eq. (3.12). 

The power of temperature ∝ T4 is a consequence of the 

nonrenormalizable coupling with mass dimension −2. The 

negative sign yields the opposite behavior compared to 

scalar theories with (second-order) phase transitions, the 

physical origin of the negative sign eludes these authors. 

We conjecture that the sign is a result of the coupling to a 

pseudoscalar composite operator with vector fields, but 

such conjecture awaits confirmation by comparing to other 

pseudoscalar couplings such as those shown in Eq. (2.2), 

which is beyond the original scope of this study. This 

effective mass squared suggests the possibility of an 

inverted phase transition with m2ðTÞ < 0 for T > Tc 

signalling an instability towards a phase of lower free 

energy. Such instability entails that nonlinearities in the 

ALP effective Lagrangian are relevant, these may be 

associated with a potential for the ALP field, or from higher 

orders in the effective action, for example a term of the 

form ≃g4a4 (with the various branch labels ), which 

because of the nonrenormalizable nature of the coupling 

will feature the largest scale in the loop to the fourth power 

and may conspire with the quadratic term to stabilize the 

theory. The emergence of these nonlinearities in higher 

orders of the effective action merit further study. The main 

result of the energy density (2.109) is valid only for T < Tc 

because the analysis relies on the perturbative 

renormalization of the frequencies, so that Ωk in (2.109) is 

real. Taken together, this instability in combination with 

higher-derivative terms may lead to novel exotic 

inhomogeneous phases for T > Tc of the Lifshitz type [42]. 

The possibility of high-temperature instabilities and novel 

phases are worthy of a more detailed and deeper study 

including other types of pseudoscalar interactions, which 

is beyond the scope of this article. 

5. QED vs QCD 

Although this discussion has focused on ALP-photon 

coupling, a similar conclusion can be drawn for ALPgluon 

coupling gsaðxÞGμνbðxÞG˜ μνbðxÞ, since gs also has 

dimensions of ðenergyÞ−1. To lowest order in the strong 

coupling αs the correlation function hGGG˜ G˜ i is a gluon 

loop and yields a similar high temperature dependence of 

the effective mass squared ∝ g2
sT4 on dimensional grounds, 

and a zero-temperature logarithmic ultraviolet divergence 

which requires a higher-derivative counterterm. Although 

similar to the QED case, the actual contributions from 

gluon loops must be studied in detail because the non-

Abelian nature may lead to cancellations which these 

simple arguments may not capture. The study of the QCD 

contribution from gluons must necessarily focus on 

temperatures scales above the deconfinement temperature 

≃150 MeV, which requires hard-thermal loop 

resummations [48,51] since the light quarks are 

ultrarelativistic in this temperature range whereas for T < 

150 MeV (ALP) interact with neutral pions. The study of 

these processes is well beyond the scope of this article but 

clearly merit further study. 
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6. Possible cosmological consequences 

While the results obtained above are valid in Minkowski 

space time, we can conjecture on their possible 

implications in cosmology. The effective squared mass at 

high temperature (3.12) suggests a high temperature 

inverted phase transition with m2ðTÞ < 0 for T > Tc 

becoming positive for T < Tc, the opposite of the usual 

behavior in (second-order) phase transitions. This in turn 

implies that the nonlinearities in the ALP (effective) 

potential are important in the evolution of the coherent 

condensate, furthermore, the necessity of introducing 

higher-order derivatives to absorb logarithmic ultraviolet 

divergences when combined with the high-temperature 

instability may lead to novel inhomogeneous phases, such 

as Lifshitz phases [42] with the possible generation of 

inhomogeneities associated with the dark matter 

component that are not a consequence of inflationary 

fluctuations. The time evolution of the energy density 

yielding a mixture of a cold and a hot component (2.109) 

gives rise to the interesting possibility that the “warmth” of 

this dark matter candidate evolves in time from a colder to 

a hotter component, the weight of each component is 

determined by the relaxation rate and the time scale. 

Hence, it is possible that for a specific set of parameters 

(coupling and mass) the dark matter component is cold at 

the time of recombination but warms up as time evolves 

towards a warmer component, thereby yielding ALPs as a 

warm dark matter candidate in the most recent Universe. 

This possibility has potentially important consequences for 

galaxy formation since an ALP which is a warm dark 

matter candidate may help to solve the core vs cusp 

problem in dwarf galaxies. Furthermore, if the ALP is an 

ultralight dark matter candidate, it can become an 

ultrarelativistic component even for a temperature ≃Tcmb ≃ 

0.1 eV at the time of recombination, which then contributes 

to Neff the effective number of relativistic species. As the 

interaction with the cosmic microwave background 

continues after recombination until today, the decay of the 

coherent condensate component and thermalization may 

affect the signal on birefringence if it is a consequence of 

the interaction of the CMB with a pseudoscalar field [53]. 

7. Caveats 

In this article we have studied the effective action and its 

consequence in Minkowski space-time as a prelude 

towards a more comprehensive study including 

cosmological expansion which will be addressed in future 

work. Cosmological expansion introduces several 

important modifications; in the evolution of the 

condensates (coherent states) from misaligned initial 

conditions, dilution of the population and time dependent 

relaxation rates [54] among the most obvious ones. In the 

regime when the cosmological expansion rate HðtÞ is 

much smaller than the relaxation rate, we expect an 

adiabatic treatment (see Ref. [54]) to be reliable. However, 

in this case we would expect that ALPs would completely 

thermalize with the CMB after recombination and would 

feature the CMB temperature today. In obtaining the 

effective action we have traced over the CMB degrees of 

freedom therefore we cannot assess at this stage whether 

the back reaction a → 2γ would induce distortions in the 

CMB power spectrum. Such distortion would impose 

severe constraints on the coupling and mass of the ALP 

fields since these determine the relaxation rate. If, on the 

other hand the relaxation rate is much smaller than HðtÞ 

we would expect that the thermal (hot) ALP population 

today would be rather small. In our treatment we have 

assumed the initial ALP density matrix to describe a 

misaligned vacuum state, described by a coherent state of 

a free field vacuum. This initial state neglects any 

population that could have been produced earlier, such as 

a produced thermally from QCD processes [40,41,52] or 

even processes beyond the standard model or during 

inflation. A thermal initial condition can be accounted for, 

including misalignment, simply by proposing a coherent 

state built from a thermal density matrix. Such 

modification will result in new contributions to the 

correlation functions and energy density from the initial 

averages with the Wigner function or alternatively with the 

initial density matrix. In particular this scenario would 

yield another thermal contribution to the energy density 

originating in the initial density matrix of the ALP field; 

therefore, the results obtained in this study provide a lower 

bound on the ALP energy density. 

V. CONCLUSIONS 

We studied the nonequilibrium dynamics of a 

pseudoscalar ALP weakly coupled to “environmental” 

degrees of freedom in thermal equilibrium in Minkowski 

space-time as a prelude towards extending the methods to 

cosmology. We considered a generic coupling gaðxÞOðxÞ 

with O a pseudoscalar composite operator of the bath 

degrees of freedom without adopting a particular set of 

parameters, couplings and ALP mass or bounds on them 

but only assuming a weak coupling between the ALP and 

the standard model degrees of freedom. Our focus in this 

article is to obtain the ALP effective action and equations 

of motion and to explore their consequences for general 

couplings and mass. 
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By considering the time evolution of an initial density 

matrix for the ALP and environmental fields in the in-in or 

Schwinger-Keldysh formulation, we obtained the reduced 

density matrix for the ALP by tracing over the 

environmental fields. The time evolution of the ALP 

reduced density matrix is determined by the 

nonequilibrium effective action, which we obtain up to 

Oðg2Þ in the weak coupling g but to all orders in the 

couplings of the environmental fields to any other field 

(different from the ALP) within or beyond the standard 

model. The effective equations of motion for the ALP field 

obtained from the in-in effective action are causal 

Langevin equations with a (nonlocal) self-energy and a 

Gaussian stochastic noise term whose power spectra fulfill 

the fluctuation-dissipation relation. The initial density 

matrix for the ALP field implements a “misaligned” initial 

condition. The effective Langevin equations of motion 

show that the processes that lead to the damping of the 

coherent condensate are the same that lead to 

thermalization with the environment as a direct result of 

the fluctuation dissipation relation. Whereas previous 

studies either focused on the “friction” term in the 

equations of motion of the coherent condensate, or on 

thermalization via Boltzmann equations, the 

nonequilibrium effective action and Langevin equation 

obtained in this study establishes a bridge between both 

aspects linking them via the fluctuation dissipation 

relation, a hitherto unrecognized but important aspect of 

coupling to an environment and shows that both occur on 

similar time scales. Damping of the coherent misaligned 

expectation value and thermalization with the environment 

emerge naturally from the effective Langevin equations of 

motion, and for generic environments we find that the total 

energy density features a mixture of a cold and hot 

components; EðtÞ ¼ ðcoldÞe−Γt þ ðhotÞð1 − e−ΓtÞ the cold 

component is a consequence of the coherent oscillations 

from misalignment and the hot component from 

thermalization with the bath. The relaxation rate Γ is 

determined by the imaginary part of the self-energy. The 

damping of the cold and the growth of the hot components 

are a direct consequence of the fluctuation-dissipation 

relation. 

This time dependent energy density may provide a 

compelling dark matter scenario wherein the “warmth” of 

the dark matter evolves in time from colder to hotter. This 

is one of the important results of our study. 

As a specific example we study ALP-photon coupling 

with O ¼ E⃗ · B⃗ where the radiation field represents the 

CMB after recombination when photons can be treated as 

free and massless (vanishing plasma frequency). This is a 

nonrenormalizable interaction, the one-loop contribution 

to the ALP self-energy features ultraviolet divergences that 

necessitate higher-derivative terms in the effective action, 

of the form Cð∂3μ
∂μaðxÞÞ2. The long wavelength 

2 

relaxation rate  ¼ ½ þ nðma=2Þ features a 

large enhancement for T ≫ ma which is substantial even for 

the CMB temperature ≃10−4 eV if the ALP is a light dark 

matter candidate with ma ≲μeV and even more so if it is an 

ultralight candidate with ma ≃ 10−20 eV. We find that the 

high-temperature limit of the self-energy yields a 

temperature-dependent effective mass squared m2
að

TÞ ¼ 

m2
að0Þ½1 − ðT=TcÞ4 with Tc ≃ pmað0Þ=gffi suggesting a 

possible inverted phase transition with a negative mass 

squared for T > Tc which when combined with 

higherderivative terms in the effective action may lead to 

the possibility of novel exotic phases. 

This study has revealed aspects that have not been 

previously discussed, such as the necessity of higher 

derivative operators, the high-temperature correction to the 

mass which suggests a possible inverted phase transition, 

and that a misaligned initial condition naturally leads to an 

energy density that features a mixture of cold and hot 

components with fractions that depend on time through the 

relaxation rate, with the cold component diminishing and 

the hot component increasing in time. If ALPs are suitable 

dark matter candidates this mixed cold-hot component may 

lead to interesting cosmological consequences: for 

structure formation the “warmth” of the dark matter, a 

consequence of the cold and hot components, may help in 

solving the core vs cusp problem, furthermore, the hot 

component may provide a contribution to the effective 

number of relativistic degrees of freedom at 

recombination, and the continued interaction between the 

ALP and the CMB postrecombination until today may 

affect a birefringence signature if it is a consequence of a 

coupling of the CMB to a pseudoscalar field. These results 

may also point to possibly alternative bounds on the 

couplings and mass of ALPs. 

The next step is to extend the methods implemented here 

to the realm of an expanding cosmology as well as other 

possible interactions which will be the focus of future 

work. 
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 APPENDIX A: SPECTRAL DENSITY FOR E⃗ · B⃗ COUPLING 

We begin with the quantization of the gauge field within a volume V eventually taken to infinity, 

 A⃗ ðxÞ ¼ p1Vffi k;⃗ Xλ¼1;2 pϵˆ
k;⃗2λkffi ½dk;⃗ λe−ik·x þ dk;†⃗ λeik·x; ðA1Þ 

where ϵˆ
k;⃗ λ are the transverse polarizaton vectors chosen to be real. From Eqs. (2.63) and (2.64) we need the correlation 

functions 

 G>ðx − yÞ ¼ hE⃗ ðxÞ · B⃗ ðxÞE⃗ ðyÞ · B⃗ ðyÞi; ðA2Þ 

 G<ðx − yÞ ¼ hE⃗ ðyÞ · B⃗ ðyÞE⃗ ðxÞ · B⃗ ðxÞi ¼ G>ðy − xÞ; ðA3Þ 

where we now refer to hðÞi as averages in the thermal density matrix of free field photons.E⃗ ðxÞ · B⃗ ðxÞi ¼ 0 by parity 

invariance. Using Wick’s theorem the 

In the thermal ensemble the expectation value h 

correlation function 
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 G

 x

 y

 
 kp 1k · p⃗1 n k e n k e 

Expanding the product, we perform the following change of variables in the various terms: (1) in the term⃗ →−k;⃗ p⃗ →−p⃗ 

; (2) in the term with ð1 þ nðkÞÞnðpÞ: p⃗ →−p⃗ , (3) in the term with nðkÞð1 þ nðpÞÞ: k nðkÞnðpÞ: k ⃗ →−k⃗ , yielding 

in 

the infinite volume limit 

 G>ðx − yÞ ¼ Z dq2π0 Z ðd2π3qÞ3 ρ>ðq0;qÞe−iq0ðt−t0Þeiq⃗ ·ðx⃗ −y ⃗ Þ; ðA8Þ 

where 

ρ>ðq0;qÞ ¼ π2 Z ð2dπ3kÞ3 kjq⃗ − k ⃗ j1 − kk ⃗· jqq⃗⃗ −− kk⃗⃗ j 2½ð1 þ nðkÞÞð1 þ nðjq⃗ − k⃗ 

jÞÞδðq0 − k − jq⃗ − k⃗ jÞ 

hE⃗ ðxÞ · B⃗ ðxÞE ⃗ðyÞ · B⃗ ðyÞi ¼ Xi;j fhEiðxÞEjðyÞihBiðxÞBjðyÞi þ hEiðxÞBjðyÞihBiðxÞEjðyÞig: 

A straightforward calculation yields 

ðA4Þ 

1 

hEiðxÞEjðyÞi ¼ hBiðxÞBjðyÞi ¼ 2 V Xk kðδij − k⃗ˆik⃗ˆjÞ½ð1 þ nðkÞÞe−ik·ðx−yÞ þ nðkÞeik·ðx−yÞ; 

⃗ 

similarly 

ðA5Þ 

hEiðxÞBjðyÞi ¼ −hBiðxÞEjðyÞi ¼ − 1 Xkðϵˆi⃗ ϵˆjk;⃗ 2 −ϵˆk;i ⃗ 2ϵˆjk;⃗ 1Þ½ð1 þ nðkÞÞe−ik·ðx−yÞ þ nðkÞeik·ðx−yÞ; 

2V k;1 k⃗ 

where nðkÞ ¼ 1=ðeβk − 1Þ. Combining the two terms in (A4) we find 

 > − 
1 − ⃗ˆ ˆ 2 −ik·ðx−yÞ ik·ðx−yÞ 

ðA6Þ 

ð Þ ¼ 4V2 Xk⃗ Xp⃗ ð Þ f½ð þ ð ÞÞ þ ð Þ  

× ½ð1 þ nðpÞÞe−ip·ðx−yÞ þ nðpÞeip·ðx−yÞg: ðA7Þ 
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þ nðkÞnðjq⃗ − k⃗ jÞδðq0 þ k þ jq⃗ − k ⃗ jÞ þ 1 þ kk ⃗ · qq⃗⃗  −− kk⃗ ⃗ j 2½ð1 þ 

nðkÞÞnðjq⃗ − k⃗ jÞδðq0 − k þ jq⃗ − k⃗ jÞ j 

 þ nðkÞð1 þ nðjq⃗ − k⃗ jÞÞδðq0 þ k − jq⃗ − k⃗ jÞ: ðA9Þ 

Writing 

 G<ðx − yÞ ¼ Z dq2π0 Z ðd2π3qÞ3 ρ<ðq0;qÞe−iq0
ðt−t0Þeiq⃗ ·ðx⃗ −y ⃗ Þ; ðA10Þ 

and using the relation (A3) we find that ρ<ðq0;q⃗ Þ ¼ ρ>ð−q0;−q⃗ Þ, however the sign change in q⃗ can be compensated by 

k⃗ →−k⃗ inside the k-integral with the final result 

 ρ<ðq0;q⃗ Þ ¼ ρ>ð−q0;q⃗ Þ; ðA11Þ 

furthermore, using the identity ð1 þ nðwÞÞ ¼ eβwnðwÞ and using the various delta functions in the definition of ρ> we find 

 ρ<ðq0;q⃗ Þ ¼ e−βq0ρ>ðq0;q⃗ Þ; ðA12Þ 

which is the Kubo-Martin-Schwinger relation, thereby confirming the general results (2.67). The spectral density is given 

by [see Eq. (2.68)] ρðq0;qÞ ¼ ρ>ðq0;qÞ −ρ<ðq0;qÞ with ρðq0;qÞ ¼ π2 Z ð2dπ3kÞ3 kw1 2 ⃗ · q⃗ Þ2½1 þ nðkÞ þ nðwÞðδðq0 − 

k − wÞ −δðq0 þ k þ wÞÞ fðkw þ k − k 

 Z 8 π3 ¼ Z0k 4π ð ð ÞÞ; w ¼ jq⃗ − k⃗ j ¼ qq2 þ k2 − 2kqcosðθÞffi;

 ð wð ÞÞ ¼ − kq : ðA14Þ 

Carrying out the integrations, which are facilitated by the delta function constraints we find 

 þ ðkw − k2 þ k⃗ · q⃗ Þ2ðnðwÞ − nðkÞÞðδðq0 − k þ wÞ −δðq0 þ k − wÞÞg; w ¼ jq⃗ − k⃗ j: 

The spectral density is calculated by implementing the following steps: 

 d3k ∞ dk d cos θ dw 

ðA13Þ 
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ρ q ;q⃗ ð 2Þ2 1 2 ln 1 − e−βωþI Θ Q2 2 ln 1 − e−βωþII Θ−Q2

 sign q ; A15 Q 

 ΣRðTÞðν;kÞ ¼ 32g2πT2kP Z−∞∞ ðkν− k0Þ ln1 − ee−−βωβωþ−dk0 ≡ 32 g2πT2kIðν;kÞ;ω ¼     k 2k0    : ðB1Þ 

Since the argument of the logarithm is odd under k0 →−k0, it follows that I can be written as 

Iðν;kÞ ¼ P Z0 0ðkk02 − k2Þ2Þln1 − e j þkkjÞdk0 ¼ I1 þ ðν2 − k2Þ2I2; ðB2Þ ∞ 2k  

where 

 ∞1 − e  j j 

 ð þ ð ÞÞ  I1 ¼ P 0

þ
k

kÞdk0 

 ∞ 2k 1 − e  j j 

 I2 ¼ P Z0 k 0  þ
kkÞdk0: ðB3Þ 

Using the results 

∞ 

 0 xn ln½1 − e−ðxþyÞdx ¼ −Γðn þ 1ÞLi2þnðe−yÞ

 ðB4Þ 

− 

 ð 0 Þ ¼ 32π  þ βq 1 − e−βω−I ð Þ þ βq 1 − e−βω−II  ð Þ ð 0Þ 

where 

ð Þ 

Q2 ¼ q20 − q2; ωðIÞ ¼ jq0j 2 q; ωðIIÞ ¼ q  j2q0j: APPENDIX B: FINITE 

TEMPERATURE CONTRIBUTION TO ΣR 

ðA16Þ 

 

 



BROWNIAN AXIONLIKE PARTICLES PHYS. REV. D 106, 123503 (2022) 

123503-31 

 Z0∞ xn ln½1 − e−jx−yjdx ¼ ð−1ÞnΓðn þ 1ÞLin 2ðe yÞ − 2 Xi½n20 n n−2i; ðB5Þ 

 þ 2i Γð1 þ 2iÞζð2 þ 2iÞy 
¼ 

where Li is the polylogarithm, we find 

 I1 ¼ −4 3πβ2k ðν2 − k2Þ þ 85πβ22 :

 ðB6Þ 

For I2, we first write it as 

∞ 

 I2 ¼ P Z0  dk

 k  :

 ðB7Þ 

Note that 

 lnð1 − xÞ ¼  nxn ;

 ðB8Þ 

and 

∞ 

 P 0  nðxþyÞ ¼ n 1e−nðy−zÞEið−nzÞ; ðB9Þ 

 x þ z n 

P Z0k dx −1e−nðk−yÞ ¼ −n 1 e−nðyþzÞ½−EiðnzÞ þ Eiðnðy þ zÞÞ; ðB10Þ x þ z n 

∞ 

 P k  yÞ ¼ n 1enðkþzÞEið−nðy þ zÞÞ: ðB11Þ 

 x þ z n 

The exponential integral function features a useful representation, 

∞ xn 
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 EiðxÞ ¼ γ þ lnðjxjÞ þ Xn 1 nn!; ðB12Þ 

¼ 

where γ is Euler’s constant. This expansion allows us to extract the low- and high-temperature limits, yielding the 

hightemperature behavior for T ≫Ωk 

 π2 m2 m4 4πT Ω Ω k 

 ma ma ma ma 
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