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Effective field theory of particle mixing
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We introduce an effective field theory to study indirect mixing of two fields induced by their couplings
to a common decay channel in a medium. The extension of the method of Lee, Ochme, and Yang, the
cornerstone of analysis of CP violation in flavored mesons, to include the mixing of particles with different
masses provides a guide to and benchmark for the effective field theory. The analysis reveals subtle caveats
in the description of mixing in terms of the widely used non-Hermitian effective Hamiltonian, more acute
in the nondegenerate case. The effective field theory describes the dynamics of field mixing where the
common intermediate states populate a bath in thermal equilibrium, as an open quantum system. We obtain
the effective action up to second order in the couplings, where indirect mixing is a consequence of
offdiagonal self-energy components. We find that if only one of the mixing fields features an initial
expectation value, indirect mixing induces an expectation value of the other field. The equal time two point
correlation functions exhibit an asymptotic approach to a stationary thermal state, and the emergence of
long-lived bath-induced coherence which displays quantum beats as a consequence of interference of
quasinormal modes in the medium. The amplitudes of the quantum beats are resonantly enhanced in the
nearly degenerate case with potential observational consequences.
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I. INTRODUCTION

The dynamics of particle mixing induced by their
coupling to a common intermediate state or decay channel
is of broad fundamental interest within the context of CP
violation and/or baryogenesis. Field mixing may also be a
consequence of “portals,” connecting standard model
degrees of freedom to hypothetical ones via mediator
particles beyond the standard model. Such portals may lead
to mixing between fields on different sectors of the portal
via the exchange of these mediators, namely a common
intermediate state to which fields on different sides of the
portals couple.

Axions, CP-odd pseudoscalar particles proposed in
extensions beyond the standard model as a possible
solution of the strong CP problem in quantum
chromodynamics (QCD) [1-3], could be a compelling cold
dark matter candidate [4—6]. However, various extensions
beyond the standard model can include axionlike particles
with properties similar to the QCD axion which may also
be suitable dark matter candidates [7-11]. Just as the QCD
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axion these axionlike particles couple to photons and
gluons via Chern-Simons terms such as E” - B” in the case

of photons, or G "Gy, in the case of gluons, as a
consequence of the chiral anomaly. Their mutual coupling
to photons and gluons entails that the various “flavors” of
axions or axionlike particles may mix via a common
intermediate state of photons and gluons. For example,
processes such as A <>yy <> A%, with A, A%being different
axionlike particles, yield off-diagonal self-energy
components Zaao , hence an indirect mixing via the
common intermediate state.

A paradigmatic example in vacuum is the mixing of K°-
K™ % or flavored meson-antimesons as a consequence of
common intermediate states of two or three pions (or the
weak interaction box diagram), providing dynamical
observational signatures of CP violation [12—17].
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Field mixing via a common intermediate state in a
thermal medium has recently been studied [18] within the
context of axion-neutral pion mixing after the QCD phase
transition, since the neutral pion couples to two photons
precisely via a U1p Chern-Simons term as a consequence
of the chiral anomaly.

Recently, it has been realized that topological materials
and/or Weyl semimetals also feature emergent axionlike
quasiparticles as collective excitations, which couple to
electromagnetism via processes akin to the U(1) anomaly
[19-28]. Therefore, these “synthetic” axions may mix with
the cosmological axion in the same manner as pions or
generic axionlike particles in the early universe.

This possibility motivates the study of mixing between the
cosmological and the synthetic axions, which may yield
2470-0010=2024=109(3)=036038(33)

alternative experimental avenues to probe cosmological
axions with condensed matter experiments.

A. Motivations and objectives

Motivated by the ubiquity of field mixing and its broad
relevance in particle physics, cosmology, and possibly in
condensed matter physics, we extend the preliminary study
of Ref. [18] and develop a more general effective field
theory framework to study mixing as a consequence of
coupling of different fields to common intermediate states
or decay channels. We distinguish direct mixing as a result
of explicit mixing terms in the Lagrangian, such as
offdiagonal mass matrices or kinetic mixing terms, from
the indirect mixing via common intermediate states leading
to off-diagonal self-energy components, such as flavored
meson mixing, for example, K®- K™ °. Our study is focused
on this latter, indirect mixing case.

The theory of K° - K™ ° mixing via weak interaction
intermediate states was advanced by Lee et al. [29] in their
pioneering study of CP violation. It is based on the theory
of atomic linewidths developed by Weisskopf and Wigner
[30-33], and it is the cornerstone of the analysis of mixing
dynamics of flavored mesons and CP violation [12—-15] in
terms of an effective non-Hermitian Hamiltonian.

Our main focus is to develop an effective field theory
framework to study the dynamics of indirect mixing when
the particles in the intermediate states are components of a
thermal bath as is the case in cosmology. An advantage of
the effective field theory formulation of mixing is that it
allows one to obtain correlation functions in the medium,
to understand their approach to thermalization, and to
observe the emergence of long-lived coherence, namely
off-diagonal components of the two point field correlation
function that survives in the long time limit even when
initially the different fields are uncorrelated.

The preliminary study of Ref. [18] focused on the
particular case of axion-neutral pion mixing near the QCD
phase transition where the axion was assumed to be a light
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or ultralight CP-odd scalar. In this case there is a large mass
difference between the mixing partners leading to
suppression of interference effects. Furthermore, axions
and neutral pions couple to photons with the same operator

(E” - B” ) but with different couplings, making this a
particular case.

Instead, here we contemplate more general scenarios
including that of degenerate or nearly degenerate mixing
fields and coupling to intermediate states with different
operators with nonvanishing correlations in the thermal
bath, thereby leading to mixing via off-diagonal self-
energy matrix elements. This more general situation may
be relevant for CP violation in the early universe and yields
far richer dynamics including nonperturbative interference

Published by the American Physical Society
phenomena in the form of quantum beats that plays an
important role in the approach to thermalization and the
dynamics of coherence, with possible observational
consequences.

Unlike the case of direct mixing, such as neutrino mixing
via an off-diagonal mass matrix, or kinetic mixing, indirect
mixing in a medium, as is relevant in cosmology, to the best
of our knowledge has not yet been studied at a deeper level.

Our objectives are (i) to provide a consistent effective
field theory framework to study the dynamics of mixing via
intermediate states in equilibrium in a medium,; (ii) to apply
this formulation to study the nonequilibrium dynamics of
expectation values and correlation functions of the mixing
fields; and (iii) to focus in particular on the approach to
thermalization and the emergence and long time survival
of coherence even when initially the mixing fields are
uncorrelated.

The equations of motion obtained from the effective
field theory allow one to study the dynamical evolution of
expectation values and correlation functions and the
emergence and evolution of coherence, hence providing an
approach to the study of coherence that complements the
quantum master equation [34-36]. We also recognize that
the effective field theory approach to mixing may also be
extended to the case of neutrinos in the mass basis, and may
provide an alternative framework to study the quantum
kinetics of massive neutrinos in the medium [37]. More
recentlyaquantumfieldtheoreticalapproachtoaBoltzmann
equation for axions consistently including misaligned
condensateshasbeenintroducedinRef.[38]. Theformulation
of an effective field theory of mixing developed in this
study
mayprovideacomplementaryapproachwhendifferenttypes
of axions mixing indirectly via a common intermediate
state are considered.

In this article our main objective is to develop the
theoretical framework in general, without specifying
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particular models or applications, which will be the subject
of future study.

B. Brief summary of results

As a prelude to developing the effective field theory
framework, in Sec. II we extend the Lee-Oehme-Yang
(LOY) theory of mixing to the case of nondegenerate
mixing particles and with generic couplings to intermediate
states, and solve exactly the equations for the amplitudes,
which goes beyond the usual approach based on a non-

HermitianeffectiveHamiltonian[ 12—15]. Thegeneralization
to the nearly degenerate and nondegenerate cases provides
an extension to analyze the dynamics of mixing relaxing
the assumption of validity of CPT. This study serves as a
guide and benchmark toward establishing the effective
field theory framework, and also reveals interesting
caveats of the usual approach with a non-Hermitian
Hamiltonian, which become more important in the
nondegenerate case and may be relevant in precision
measurements of CP violation.

Appendix A discusses the origin of some of these caveats
in the case of a single species.

In Sec. III we consider indirect mixing of two bosonic
fields induced by their couplings to a common decay
channel in the medium. These common intermediate states
populate a bath in thermal equilibrium.

We generalize the methods of Refs. [18,39] to obtain the
effective action in the in-in or Schwinger-Keldysh
formulation of nonequilibrium quantum field theory [40-
44] up to second order in couplings. This effective action
determines the time evolution of the reduced density matrix
upon tracing the bath degrees of freedom, and it describes
the dynamics of mixing as an open quantum system. The
equations of motion obtained from the effective action are
stochastic with self-energy and noise kernels obeying a
generalized fluctuation dissipation relation. Indirect
mixing is a consequence of off-diagonal self-energy
components arising from the correlations of the coupling
operators in the bath. The solution of the equations of
motion yield the time evolution of expectation values and
correlation functions in terms of superpositions of
quasinormal modes in the medium. The cases of
nondegenerate and nearly degenerate fields are studied in
detail. We find that if only one of the fields has an initial
nonvanishing expectation value, indirect mixing induces
an expectation value for the other field. Furthermore, the
equal time two points correlation function approaches a
stationary thermal state independent of the initial
conditions and even when initially the fields are
uncorrelated exhibit an emergent long-lived bath-induced
coherence, namely off-diagonal components. Both
diagonal and off-diagonal correlation functions display
quantum beats, as a consequence of interference of
quasinormal modes. The amplitudes of the quantum beats
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are resonantly enhanced in the case of nearly degenerate
fields. In this section we establish the correspondence
between the LOY formulation of particle mixing and the
effective field theory of mixing.

Several appendixes supplement technical details.
Appendix A discusses the caveats associated with a
nonHermitian Hamiltonian for a single species. Section IV
summarizes the main results and conclusions.

II. THE LEE-OEHME-YANG THEORY OF MIXING

We begin by extending and generalizing the formulation
of meson mixing pioneered by Lee et al. [29,30] to analyze
CP violation in the kaon system, which is based on the
Weisskopf-Wigner theory of atomic linewidths [30], to the
case when particles of different masses mix via a common
set of intermediate states, or common decay channel. Such
a generalization will lead us to the formulation of an
effective quantum field theory of mixing including the case
when the particles in the intermediate states constitute a
medium as is relevant in cosmology.

Consider a system whose Hamiltonian H is given as a
soluble part Hoand a perturbation H;: H % Hop H..

The time evolution of states in the interaction picture of Ho
is given by

d

i__jWatbii¥ HiIotbjWatbi; 62:1b dt

where the interaction Hamiltonian in the interaction picture
is

Hi0tP % eiHotHie-iHot; 02:2b

where His proportional to a set of couplings assumed to be
small.

Equation (2.1) has the formal solution jWd&tbii %

Udt;tobjWatobii; 82:3p

where the time evolution operator in the interaction picture
Udt;tob obeys

d
idt_Udt;tob % H,0tPUdt;tob: 62:4P Now we

can expand jW4atbii %4 Xn Cndtbjni; 82:5p
where jni form a complete set of orthonormal states chosen

to be eigenfunctions of Ho, namely Hojni % Enjni; in the

quantum field theory case these are many-particle Fock
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states. From Eq. (2.1) and the expansion (2.5) one finds the

equation of motion for the coefficients C,dtP, namely

C ndtP % —iXm CmdtPhnjHidtPjmi: 02:6b

Although this equation is exact, it generates an infinite
hierarchy of simultaneous equations when the Hilbert
space of states spanned by fjnig is infinite dimensional.
However, this hierarchy can be truncated by considering
the transition between states connected by the interaction
Hamiltonian at a given order in H,.

Let us consider quantum states jobii;jb.i associated with
the meson fields ¢1;2, respectively; these may be single
particle momentum eigenstates of the Fock quanta of these
fields, and focus on the case when the interaction

Hamiltonian does not coupleaib . Instead, these states are
connecteddirectly the states jui;jd2i, namely hd jH jd i %4
0

indirect coupling through the common set of
intermediatejto a common set of intermediate statesp1The

states;2i <> jfkgijd#1ijdanda2ij, as depicted in Fig.g2i mix
as a consequence of thisjfkgilby. Hi, namely

states, namely i, N ifkgi < jd12i, yielding an

k) |w)

(PalHr|r) (k| H|dp)

FIG. 1. Mixing between j$i, and jdi, mediated by a common
set of intermediate states jKi.

offdiagonal self-energy matrix. If H, has nonvanishing
matrix elements hoijHijd;i # 0, we assume that these have
been absorbed into terms in Ho and only consider
and other

thejd1;2i

transitions betweenIn the subspacejoii

statesjoii;jdai;jfikkigizthe quantum state in

mediated by Hi.
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interaction picture is given by jWidtP % Cidtbjbii p

C20tbjd2i p Xfg Ckdtbjki; 62:7P

and the set of equations (2.6) becomes

C 16tb % —iXfg hd1jHI0tPjkiCkdtb; 02:8p
C 20tb % —iXfg hd2jHI0tPjKkiCkdtb; 02:9p

C'«0tb % —iYshkjHI0tPjd1iC18tP p hkjHIdtPjb2iC201tP;
92:10p

where the time dependent transition matrix elements are
given by hljHi6tPjmi % TimeisE-Empt; Tim % hljHIG0Pjmi;

02:11p

Hermiticity of H, entails that

Tm|%T|mZ 02:12p

The set of equations (2.8)—(2.10) truncates the hierarchy
of equations by neglecting the transitions between the
states

jfnect the stateskgi and

jfrogic122ijf <> kgi%jf;jkdogit;2iat a higher order in, and such
transitions con-H, and the set of equations for the

amplitudes, effectively reducingare neglected up toj O8Hp.

Truncating the hierarchy closes
the set of states to a closed subset in the full Hilbert space.
As a familiar example, let us consider the case whereo ™ o

mesons mixing via a common decayjoi,»i correspond to K
;K
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channel into two pions (there is also the three pion decay
channel) so that K® <> 2 <> K™ 0.

t
Taking the normalized initial quantum state jWdt % Opi

as a coherent linear superposition of the single particle
states jd1,0i, it is given by jWdt % 0bi % 8C180pjbii p
C200pjd2ib @ jO«i; 62:13P where jOgi is the vacuum state

for the intermediate states jki, corresponding to setting

CkO0P % 0; 02:14p

for the excited jki states, and with normalization condition

jC180Pj2 b jC280bj2 % 1: 02:15p

A. Unitarity
The set of equations (2.8)—(2.10) describes unitary time
evolution in the restricted Hilbert space of states jspace of
the theory that is closed under the equationsdai;jdai;jki,
which is a subset of the full Hilbert

of motion (2.8)—(2.10). Unitarity can be seen as follows:

using Eqs.mjH6tbjli(2.8)because—(2.10)Hiand noticing

thatdtb is an Hermitian operator, ithljH,dtPjmi % hfollows

that

C 0th % —Z Xanlsze‘aE1—Ekpat—t0pC16tob b T1KTKzei6E1—E2bteiéEz—EKbét—tobCzatOpOdtO;

0 K

C. 20tP % —Z ' XnT2kTk1eisE2-E1pteisEL-

0 «k

Expot-topC10toP p jT2«j2eisE2-Exbat-topC20toPodto:

This procedure of solving for the amplitudes of the
intermediate states plays the role of “integrating out” or
“tracing over” the k degrees of freedom, yielding an
effective set of equations of motion for the amplitudes of

PHYS. REV. D 109, 036038 (2024)

d
dt__jC18tbj2 p jC20tbj2 b Xfig jCkOtPj2 % O; 02:16b

and the initial conditions (2.14) and (2.15) yield jC16tPj2 b

jC20tPj2 p Xfkg jCkOtPj2% 1: 82:17P

This is the statement that time evolution within the sub-

Hilbert space fjbii;jbaid; ijkigstates decay, it follows
thatis unitary. In particular, if the jC1,20t % obj2% 0, and
jCxOt Y4 oobj2 %4 1: 02:18p

K

The set of equations (2.10) with the initial condition
(2.14) can be integrated to yield

t
CxdtbY—io hT«1eisEc-E1ptoC13toPPTk2€i5E-E2bto
C20tobidto;

82:19p
where the labels 1 and 2 correspond to ¢1;,. Inserting the

solution (2.19) into Egs. (2.8) and (2.9) leads to the
following set of equations for the coefficients C;8tp;C,dtb:

02:20p

02:21p

|
the single particle states jdi.i. Since the interaction

Hamiltonian H, is assumed to include a weak coupling, the
amplitude equations (2.20) and (2.21) are exact up to
second order in this coupling. Pictorially, this procedure is

036038-5



SHUYANG CAO and DANIEL BOYANOVSKY

equivalent to joining the legs representing the x field
together in Fig. 1, thereby forming a loop or loops that
yield(s) the self-energy.

B. Exact solutions
The set of amplitude equations (2.20) and (2.21) can be
solved exactly. For this purpose it is convenient to define

e“EltC16tD = A,0th; e‘iEthzétb = A,0tb; 82:22b and to

introduce the spectral densities

I-labakop X %TaKTKbaakO - EKD % uba 6k0p;

K

ab % 1;2;

02:23p

where the second identity follows from Eq. (2.12). The set
of equations for the amplitudes A;;; following from (2.20)
and (2.21) is written more compactly by introducing the
self-energy matrix

z oo

oab0t - tob YaabdkoPe-ikost-topdko:

32:24b -

This self-energy has an intuitive interpretation as a second
order Feynman diagram wherein the lines representing the
intermediate states jki in Fig. 1 are joined into
“propagators” yielding a (multi)loop diagram, representing
the self-energy up to second order in H,.

In terms of the self-energy the set of equations (2.20) and
(2.21) becomes

A" J0tPpiE,A,OtPPZ t dt®Xoap0t-t°PALSOP % 0: §2:25p

0 b

This equation can be solved via a Laplace transform.
Defining the Laplace transforms for Redsb >0

z
0 A" .sb Ye™'A,dtbdt;
0

z
o oollab ko
abOsp vae” oabOthdt 4 Z p& —Pdk;
02:26bP 0”7st
0 -s iko

PHYS. REV. D 109, 036038 (2024)
the set of equations (2.25) leads to

M1121  M1222 A™ 120sb % AA120600PP; 02:27p
M M A" dsb
with matrix elements
Mi1% s b iE1p 67120sb; 02:28p
M1, % 07 120sb; M1 % 07210sb; 02:29p
M2, % s b iEap 07220sb; 52:30p

where we suppressed the dependence of the matrix
elements M;; on the Laplace variable s to simplify notation
but it is implicit in all matrix elements.

It proves convenient to introduce

1

M~ % _28M11 p M22b; 02:31b
D % %0M11— M22bP2 p 4M12M211=2; 02:32b
M - 02:33p

a1 M2z B%2 Mi2 .,

Y %2 Ma1,;
D D D
where a, B, y fulfill the relation

a’p By % 1: 02:34p

The inverse of the matrix with elements M,y yields the
Laplace Green’s function, which is given by (see Appendix
C for details)

AA™" 1280ssbPb77a "M G_R,P—é—spozasp_blvr OPsp
pbOsbPp2ssp#AA218800bb;

82:35p

where the projector operators (see Appendix C) are given
by
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Pdosb — 7% 12061 RAsbh; RAsh % ayddssbb

—Baddssbb:

02:36b

Finally, the time evolution of the amplitudes A1;26tp is

obtained via the inverse Laplace transform,

AA2100ttbb % Zc est'™ 6Psl5—_6—sbozasp b IV_BPS'D_
bbOsbp2sspH#2dsTi
A
150p. )
x2167p; 02:37p
A G0P

where the Bromwich countour C runs parallel to the
imaginary axis to the right of all the singularities in the
complex s plane. Stability implies that the real parts of the
therefore, the contour

singularities are negative;

corresponds to s % iv p €;—eo<v<eo;e—> OP. It is convenient

to change variables to v % -w, in terms of which

0" ab0s%i0-w—-iePP=iAabOwp

Yai P L Ok P-gtk—irept b ; Z-oo

Wab—kO0O 0ab

02:38p

where P stands for the principal part. The relation (2.23)
implies that

- U
Skob_
AbaBwb % Z--Pw— kaARO—H s @ ob:  82:39p

! More precisely, the poles are in the second Riemann sheet,
but close to the real axis in the complex w plane.

PHYS. REV. D 109, 036038 (2024)
Upon this analytic continuation, Eq. (2.37) becomes

OtP % —7-coew €_i0x P-BBb-p-PrB, 0 b-tho—— —
W= W- W

wW—W W 2mj

A12

A dtp
A

x A2155°0bb; 32:40p

where

1
WOwb % 2_foE1p E2p A110wbk p A220wbP D3wbg;

02:41b

DAwb % %0E1 - E2 p A110wb -A228wbb2 b

4N120wbPA210wb1=2; 62:42b

s S>-iwOwpPeare the analytic continuation of, (2.40) has a

simplePésb for and P

The bracket inside the integral in interpretation: it is the
Dyson (geometric) resummation of the second order self-
energy matrix, and the time evolution obtained from (2.40)
includes this resummation of second order self-energy
corrections. Note that as a consequence of the projector
matrices being off-diagonal, even when one of the
amplitudes vanishes initially, for example, if time. This
observation will have interesting implications inA,d0p %
C200P % 0, it becomes nonvanishing at a later

the analysis of in-medium mixing in the next section.

In the weak coupling limit we invoke the Breit-Wigner
approximation, valid in the intermediate time regime,
where each term in (2.40) features a complex pole in the
lower half w plane at!

T

W) =ey —i—

w% W0 2; 82:43p

where € are the renormalized frequencies andzr the decay

rates.In weakcoupling, it followsthat % Hi < Ei;2, and we
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will refer to these complex frequencies as quasinormal
modes. For a vanishing damping rate, these are the usual
normal modes associated with the coupling of harmonic
oscillators, the “quasi” reflects their damping as a
consequence of their coupling to and decay into a
(common) continuum.

Evaluating (2.40) by contour integration closing in the
lower half w plane for t > 0, and expanding near the

complex poles Wdwb % Wdwb b dw-wbdWdwb= dwjwyw
b , we obtain the final result

A120tb % Y2e-iwptZbPpOwpP p e-iw-tZ-P-dw-b

A otp
A

x A2135°0bb; 82:44b

where Z % %1 - dWdwb=dwjw'and
Powb % _211y%640“pp  15(@+FoBwbb;  52:45p

this result is general.

The Breit-Wigner approximation relies on weak
coupling so that the width of the state is much smaller than
its mass and that the distance between the real part of the
pole and the beginning of the multiparticle cuts must be
much larger than the half-width of the particle. This entails
that the spectral representation of the propagator can be
well approximated by a Lorentzian centered at the real part
of the pole with the width determined by the imaginary part
of the self-energy at the position of the pole. Furthermore,
this entails that the spectral density of the self-energy is
finite and smooth near the value of the pole. This is the
same criterion as in Fermi’s golden rule.

It is important to highlight that the Breit-Wigner
approximation leading to the result (2.44) is valid only
during an intermediate time regime; it is neither valid as t
- 0 nor at a very long time, when power law corrections
emerge [33,45-48].

As analyzed in detail in these references, the asymptotic
late time behavior of the integral in Eq. (2.40) is
determined by the behavior of the spectral density at the
threshold of multiparticle cuts, which yields a power law
that emerges when the amplitude is already perturbatively
small (see Ref. [49] for a specific example), and the
behavior at early times, t = 0, receives contributions from

PHYS. REV. D 109, 036038 (2024)

the full spectral density, contributing to a renormalization
of the amplitude of the field. We refer to the intermediate
timescale, as the scales between these two limits that
depend specifically on the details of the spectral density of
the self-energy. However, as is expected in the case of a
weakly coupled theory, the intermediate timescale in which
there is exponential decay is generically wide and is
captured reliably by the usual Breit-Wigner approximation
of the propagator.

Therefore, the extrapolation to t - 0 is not consistent
with this approximation. In fact, the wave function
renormalization is a consequence of “dressing” and
renormalization during an initial transient timescale
describing the formation of a quasiparticle [50]; in
renormalizable theories it is usually ultraviolet divergent.
The timescale of formation of the quasiparticle is typically
associated with the ultraviolet behavior of the spectral
density, and it is in general much shorter than the typical
oscillation and decay timescales of the particle [50].

In the following analysis we assume without loss of
generality that E1 2 E», and, consistently with perturbation

theory, that E 12> A & HF Furthermore, from the
identity (2.34) we choose

adwb % pl -Bowbydwbffi: 02:46p

Hence, in the limit of vanishing coupling A, = 0, it follows
that

wp > Ey; w--> Ey; o> 1; B;y > 0;
10 0 0

PP >0 0; P-->0 1: 02:47p

Therefore, in this limit the amplitudes Ci.» do not depend
on time as it must be the case in the absence of interactions.
Two limits are important: (i) E1 — E2 >>Aap, to which we refer
as the nondegenerate case, and (ii) E1 — Ex SAab, to which
we refer as the (nearly) degenerate case. The first case
describes, for example, the mixing between axionlike
particles and a neutral pseudoscalar meson as studied in
Ref. [18], such as the pion, with the pion mass much larger
than that of the axion. The second case includes neutral
(pseudoscalar) flavored meson-antimeson mixing, such as
K®- K~ ®under the condition of charge conjugation, parity,
and time reversal (CPT) invariance [in which case E1 % Ej;
A118sP % A»,8sP]. This second case also applies to neutral
meson mixing if there is a small (CPT) violation, in which
case Ej, E; and the diagonal matrix elements A11, Az may
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be slightly different but small compared to the individual
energies Ei;».

(I) Nondegenerate case: E1 - E; >>Agp. In this case we can
approximate

DOwb = E1- E2 p A118wb —A220wb p O8A2b; 02:48b

from which it follows that to leading order [O8AP] Wpdwb
¥ E1pA116wb; W-0wb % E2 pA220wb; 62:49p

and to leading order in couplings, the complex poles are at

wp ¥ E1p A118E1b %4 E1r— il2p; ETR % E1 p ReA118E1b; p

% 2np110E1b; 82:50p
I_
w-% E2p A220E2P ¥4 E2r—i 2 ;

E2r % E2 p ReA228E2b; M-% 2np220E2b;  82:51P

where Eif;; are the renormalized energies. Up to leading
orderdependent amplitudes are given byOO&AP, it is

straightforward to find that the time

A10tb % ZpA180Pe-iwpt p 2 120E1Pe-iEwp1Rt ——

EA2rR120E2Pe-iw-tA200P;

1A

82:52p

A20tb Y% Z-A200Pe-iw-t

b 21A218E1he iEwpire=——FEAR2218E2be-iy-tA100P:

PHYS. REV. D 109, 036038 (2024)
02:53p

The terms in brackets in (2.52) and (2.53) are
perturbatively small in this case because Asp < E; - E,.

Since

brackets, which are already ofZ (II) (Nearly) degenerate

case~ 1 p OsH2 P, we neglected them in the terms in

the:QEG1A;2P>> X AHab21; F1-F2 SAab,
In this case we write
5t

b2 “2= E” D Au; E1- E;=865008AP; 02:54p

and to leading order in A the complex poles are given by

w4~ _ _ Ep233bp BEPP
- Ap E Ay S
02E°PD
r - r E
e — R ) ()z— E i-
= 2% 2 2 02:55p
where
R 1

E” % E™ p 26ReA110E™P p ReA220E™bb;

I % -128ImA118E™P b ImA228E™Pb: 02:56b

From Egs. (2.23) and (2.38) it follows that " > 0. Since in
this case 6SA®, we find that Bdwp =~ydwp =0381b;

therefore, in this case all matrix elements of the

proquentlyjectors P ~008y1lgby. However, to leading order
inpp %OE ypd E"P;adwb % adE™P, and conse-A we find

BOwP %4pPBJSE wb;b 1%
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In this (nearly) degenerate case, the individual energies
are much larger than the respective widths and the energy
difference is smaller than or of the same order as the
imaginary part of the self-energies evaluated at 6E; p E;p=2.
Therefore, in this (nearly) degenerate case, the Breit-
Wigner approximation is valid, and we find to leading
order in A the time dependent amplitudes

A 0P 1

1
A210th % 2_0Zpe-iwpt p Z-e-iw-tPl

b RGE™PdZpe-iwpt — Z-e-iw-tPAA126500bP;

02:57p

with

ROE™P %4 _120y08EE™ PP —BadSE"E"PP:  §2:58p

We can now compare this result with the usual result for
flavored meson-antimeson mixing, such as K° - K~ ®under

purpose of comparison, we definethe conditions of (; 7
A116E™P %CPTA220)E invariance, which impliesp. In this
case, and for theE; %

EW%E
ab ab —— —ilab; mMab=Z ~Pu-ap—=tkkoobdko;
A OEP % m 2 oo E

Fab = 21tasdE b 32:59p

in terms of which we find

2 See Appendix A, footnote in page 102 in Ref. [32], where it
is explicitly stated that such a contribution was neglected but
would modify the amplitudes.

PHYS. REV. D 109, 036038 (2024)

DOE™P % 2mi12—-i___212m12 - il2121=2; 02:60p
al0E"P % 0; 02:61p
B mm—z———i%@:z; 82:62p
2
BEP % m-i
m-—ir
YOE™P Y% m1212 — Ir22001-2 % BO1E™P; 062:63P
yielding
A10tb % ¥%fpdtPA160P b BOE Pf-0tPA200b; 02:64b
A20tb % % fpdtPA200b b yOE™Pf-8tPA180b;
02:65b with
1
fotb % 20Zpe-iwpt Z-e-iw-th: 02:66p

Setting Z % 1, the expressions (2.64) and (2.65) with
(2.66) are the usual ones for the case of flavored
mesonantimeson mixing with (CPT) symmetry [12-15,32].
In Ref. [32] the contribution from wave function
renormalization was neglected” but it was recognized that
it would

modify the amplitudes. Therefore, with Z =~ 1 p O8AP it

is clear that neglecting the wave function renormalizations
affects the amplitudes at second order in the interaction.
This perturbative correction may become relevant for
precision measurements of flavor mixing.

C. Markov approximation: The effective
non-Hermitian Hamiltonian Let us write
VA to

XTaxT«beisEs-Exbt-toobdtoo =Wablit;to; Wablst;0 % 0
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02:67b
so that

> TakTxbeises-Exbat-tob ¥4 —_d Wablst;to:

92:68p ¢ dt°

Inserting this definition in (2.20) and (2.21) and integrating
by parts

Z d
—_W2Pt;t0CPatO0Pdt0 %4 Wablat;tCPath
odto z
- WabYat;to __d Cbdtobdto; t
0 dto
02:69p

since Tax ! b & H %, and from the evolution equations (2.20)

and (2.21) it follows that c a ¢ H?; therefore, the second

term in (2.69) is of O8H* b and will be neglected to leading

order in the interaction, namely H?.

Hence, up to 06H2|b, the evolution equations for the

amplitudes (2.20) and (2.21) become

C 10th % _f\Nant;tclétb b e‘aEszbthVzt;tCzétbg;
02:70p

C ,0th % _feiéEz_Ethzf/zt,'tClatp b szVzt,‘tCzatpg:
02:71p

With the definitions (2.22) the amplitude equations become
iA" 10tP % E1A; — iIW11Wst;tAL — iIW 104t tA,; 02:72P A

20tP % E2Ar — iIW21 4t tA, — iIW2 YAt tAS: 62:73P

3 This approximation is also implicitly implemented in Ref.
[29].

PHYS. REV. D 109, 036038 (2024)
With

h =< Wabt;t %TakTkb Z t €idEb-Expdt-topdto

K Z 0t

YZ PabBkobeisen-kobst-topdkodto; 02:74p

0 -co

where we used the definition of the spectral density, Eq.
(2.23). We highlight that this first step in the Markov
approximation is equivalent to the full set of equations
consistently up to order H?, since the neglected terms of
064> ~Hjp.

Because in the nearly degenerate case E1 - E» <

Agp x H ,2', the first stage of the Markov approximation,
yielding Eqs. (2.72) and (2.73) is consistent with this case.

The set of equations (2.72) and (2.73) can be written in
terms of a time dependent Hamiltonian

— dA1dthb % d PA103tPP d b

iHefft ; 2:75 dt A,0thb Ast

where the matrix elements of Hex0tP are obtained from
Egs. (2.72) and (2.73). Unlike the case of a single species
analyzed in detail in Appendix A, for two species mixing,
HerOtb is a 2 X 2 matrix, and %Hendtb;HendtP # 0 for t = t°;
therefore, the solution of the evolution equations is not a
simple exponential. The usual approach, following the
main approximation in the Weisskopf-Wigner method
implemented in the LOY formulation [29], invokes the

long time limit?

t idEb-Exbdt-topbdto HPt+— imdIEb — Exb;

0 t->eo E - Ex

82:76b

yielding
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—iWap¥st;t >Aa0ELP; 02:77p b2 01 2Pd1  2pP 0 p
where A.pdwb is defined by Eq. (2.38). Taking this long where | is the 2 x 2 identity matrix and
time limit, the amplitude equations (2.75) become an D™ OE1;E2b % hOE1 b A110E1P ~ E2 -A220E2PP2
effective Schrodinger equation with a time independent
effective Hamiltonian i__dtA2150ttbb % HeftpA2100ttPP b 4A128E2bA218E1Pi1=2
02:78p d A
with and 02:81b
R™ 8E1;E2b Y4 ay~ ~"O00EE11;E;E22PP 02:82pb

-B~0"OOEE11;E;E22bP;
Heft %4 E1Ab21A6ElllabElpEzAbleaEzzzépEzb

H11 H12 with the definitions

=H21 H22 % HeftOoob: 82:79p a~dE1;E2b % 8E1p A11°DE~
02:83p

16pE_1;EE22D—A226E2DD;
This' effec.tive Hgmiltonign is not Hermitian; this is. a B~GE1L;E2b % D2 BOET10;EE2bD; y"OETEP i —  52:84b
manifestation that it describes the (approximate) dynamics ~
D2"AJE2110;EE12PP:

of a quantum open system, namely of a subset of degrees
of freedom which are coupled to a continuum of other
degrees of freedom whose dynamics has been “integrated
out.” Time evolution is not unitary in this subset, as is
explicit from the unitarity condition (2.16) and (2.17),
which indicates a flow of probability from the jai;jd.i to
the exc?itec.l int.erm'ediate statesgr.ated out in the equations 1~ E:ER"EE; .80
of motion.jfkgi which have been inte- D

which implies that

It follows from these definitions that

a?pB Ty L, 02:85p

It proves convenient to rewrite Hegras
1 R™ 20E;Ep % | 02:86b
Heff % 20E1 p A118E1b b E2 b A228E2PbI

therefore the matrixConsider the eigenvalue equation
(suppressing the argu-R™ features eigenvalues 1.

ments Eq;),

R"p!% pql; 02:87p

the solution of which is

pb % Npd1 p a”b; ab % Npy~; 02:88p
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p~% N01-a"p; g YNy 02:89p

with N normalization factors. These are eigenvectors of

Hesr, namely

Hetfq ! %4 A q!; 02:90p
with eigenvalues
1
p p
2+ Ap(E;
A% 2_%38E1p A1BEIP b E T bp
D" 6E.Er =F" - p i 2;
92:91p

where £7;I™ are both real. The effective Hamiltonian can be
diagonalized by introducing

U-1 7apabb —pa-;

U % pba- b app-ab —pb ; 62:92p
satisfying UU™1% U™U % |, and yielding
Ap 02:93p
UHefflU-17% 0O AO-:
Let us define
A120th % U_1VV1zaattDb; A 852:94p

otp

PHYS. REV. D 109, 036038 (2024)

and the effective evolution equations for V1;26t|3 become idt

—d V120tb % A\p-yV2130ttPP=V\V1200ttPb

v OtbP

Y4 e-inpt -Oix-t V1200P: 02:95p

0 e V 80b

Using the definition (2.94) evaluated at t % O yields the

solution for the amplitudes

AA2100ttPP % U-1e-Oinst e-Oir-t UAA120000bP:  02:96b

With the relations (2.85), (2.88), and (2.89) it is
straightforward to find that

AA2100ttPP % Yie-intP™ p p e-in-tP7-AA120000PbP; 62:97b

with the projector operators

P~ — %1261 R"b;P” 2% P™; 02:98p
where R™ is given by Eq. (2.82),
or, alternatively
AzlatID % 12_hde it b e"in-tP b e int — e in-tbR”i
A OtP
A
x A2166°0pb: 52:99p

Comparing the results via Laplace transform and
BreitWigner approximation, namely (2.44) to the solution
of the set of equations (2.78) obtained in the infinite time
limit, namely (2.97) and (2.99), we find several sources of
discrepancies: (i) The wave function renormalization
constants Z in
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(2.44) and (2.57) are missing in (2.97) and (2.99).

(i1) Whereas the projector operators in (2.44) depend on

the values of w , namely the complex poles, those in

(2.97) depend on E;, E; separately. Furthermore, the
values of the complex frequencies w (2.43) are

not obviously similar to A (2.91).

The origin of these discrepancies can be traced to taking
the long time limit (2.76) and (2.77) before integrating the
set of equations (2.72) and (2.73), which is equivalent to
the original set of equations (2.20) and (2.21) up to order

time limits will translate into differences ofO8H21P. Any
discrepancy between the order of the longO8H2i b.

In Appendix A it is shown that the discrepancy in wave
function renormalization of amplitudes originates in this
long time limit in the simpler case of one species. We now
compare the results for the eigenvalues and eigenvectors of
the Laplace transform method and the Markov
approximation with the effective Hamiltonian.

1. Nondegenerate case

For E; - E; A, we can approximate D™ 8Es;EP, given

by (2.81), as

D~ 6E1;E2b = E1 b A116E1p - Ez —AzzﬁEzb; 02:100p

yielding for the eigenvalues A, Eq. (2.91),
Ab% Eq b A110E1b = E1R— i__Ip;
T
1+ Ap(Ey) = EX - I
2-

N % E; 02:101p

which agree with the eigenvalues obtained from the
Laplace transform (2.50) and (2.51). For the amplitudes we
now find up to O3AP

A18tb % A180Pe-inst b 1A128E2Pe-inpRt

—ArR120E2be-int O b

2 E1-E2 A20;

02:102p
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A20th % A200Pe-ir-t p 1A218E1Pe-inpRt

-ArR210E1be-in-t 6 P

2 Ei1-E2 A10:

02:103p

The differences with the result from the Laplace transform,
Egs. (2.52) and (2.53), are noteworthy: (i) the wave
function renormalization constants multiplying the
diagonal terms in (2.52) and (2.53) are missing in (2.102)
and (2.103); and (ii) the differences in the arguments of A1,
Ay; are in the brackets. Clearly the discrepancies are of

. 2 .
second order in 8ab & H7 a5 discussed above.

2. (Nearly) degenerate case

For E1;E> > A, but with E; — E; =6S00AP, it follows that

A% E™ b 18A116E"P p A26E"PP D™-6E;
2 2

E™ % 18E1 b E2b;
2

02:104p

where D™ 8E™P corresponds to setting E; =~ E; =~ E” in the
matrix elements of D™ 8Ey;E,P. The eigenvalues A again
coincide with w given by Eq. (2.55). Furthermore, it is
straightforward to confirm that in this case D™ 8E1;EoP %

RGEp given by Eq. (2.58). Therefore, the main difference

between the Laplace result (2.57) and that from the
effective Hamiltonian (2.99) is the wave function
renormalization Z multiplying the initial amplitudes in
(2.57).

In fact, at a fundamental level, the emergence of the
wave function renormalization of the amplitudes of the
quasinormal modes precludes the description of their time
evolution intermsofaneffectivenon-
HermitianHamiltonian. Thiscan be understood from the
following simple argument: the formal solution of the
amplitude equation (2.78) is

A20tP % e—iHeﬁtAAlzééoopp; 52:105p P1gtp
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which obviously does not include a wave function
renormalization as prefactor of the quasinormal mode
amplitudes. The wave function renormalization is an off-
shell contribution that describes the dressing by virtual
states of the single (quasi-)particles
onshorttimescales,andyields secondorder corrections to the
amplitudes. While it may be finite in the case of the box
diagram contribution to flavored neutral meson mixing, it
is in general ultraviolet divergent in quantum field theory.
Therefore, we conclude that the Laplace transform with
the Breit-Wigner approximation provides a more accurate
description of the evolution of mixing as compared to that
obtained from the effective non-Hermitian Hamiltonian.

3. Quantum beats

The two orthogonal states joii;jd.i decaying into a
common channel jki lead to interference in the amplitudes
of the decay state jki as a consequence of “which path”
information in the decay. This is similar to the case of
quantum beats in “V”-shaped three level systems, in which
two higher levels radiatively decay to the lowest level [51],
an ubiquitous phenomenon in quantum optics. This
interference phenomenon, or quantum beats, is featured in
the amplitudes of the decay products described by the

states,

jkiThe analysis above has focused on the time evolution,
namely the coefficients Ctp.

tudesof the amplitudesC,dtpb of the intermediate states via
Eq.C126th, which also determine the ampli-(2.23), we

ﬁndA(2_ 19)1;25'('9.,

Writing these coefficients in terms of the amplitudes
and introducing the spectral densities

[}

!
jCkdtbj2 %4 Z tdty . diy f Zdko

o0

Xk 0

X a;b

Aadt1bpabOkoPAbdt2Pe-ikosti-tab:

%12

02:106p
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It is convenient to introduce @8t - t?p p Ot? - t'Pp % 1

inside the time integrations, use the property of the spectral
density (2.23), and include the definition of the self-energy
(2.24) to show that

jCeatbj2 dt1Ast.P o 8t1 ~t2bA St2bdts
Xk a;bX%l;ZZOt aZo%ab b
bc:c:; 02:107p

the complex conjugate (c.c.) contribution arises from the
term with ©38t, - t1P upon relabeling t1 ¢ t,, a <> b and
using the property (2.23). Using the amplitude equations
(2.25) we finally find

XjCxBtbj2 % -XZ dt1__d VAadt1PAaSt1D

K aul2 0 dt;
% jA100Pj2 b jA280bj2 - %jA10tPj2 b jA20tPj2;
§2:108p

and this result is precisely the unitarity relation formally
established by Egs. (2.16) and (2.17) providing a
complementary and explicit proof of unitarity exhibiting
the role of the self-energy.

Following LOY [29], introducing the total population of
the ¢1;¢2 states as
NOtb % %jA10tPj2 b jA20tPj2 = 1jC18tbj2 b jC20tbj2;

82:109p

and writing the amplitudes A,0tp as linear superpositions
of the quasinormal modes, namely

—ig

Aaltb % Aape pte-rapt IZ) Aa-e-ie-te—r-t; al%l;2;

02:110p

where the coefficients A, can be read off Eq. (2.44), it

follows that
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NOtb % X'jAapj2e-rit p jAa-j2e-r-t
a%1;2

b 2RedAzpAs-e's% Epbe s b2 §2:111P

the last term displays the quantum beats as a consequence
of the interference between the quasinormal modes. With
the normalization (2.15) the unitarity relations (2.17) and
(2.108) yield

jCthj2% 1 - N&tb; 82:112p

displaying the quantum beats from (2.111) in the last term.
Therefore unitarity entails that the quantum beats in the
total population are reflected in the time evolution of the
decay products.

These interference terms are, of course, well known,
originally recognized in the seminal work by LOY [29],
and have been experimentally observed in the decays
products of flavored neutral mesons [12—15]. We note that
the coefficients A, depend on the wave function
renormalization constants Z in the solutions (2.44), an
important  discrepancy with the usual effective non-
Hermitian Hamiltonian description of particle mixing.

Our main objective in analyzing the dynamics of mixing
within the framework of the LOY theory of flavored meson
mixing is to provide a guide to and benchmark for the
effective field theory approach to the dynamics of mixing
in a medium studied in the next section.

III. THE EFFECTIVE ACTION FOR
PARTICLE MIXING

The previous section extended and generalized the
formulation of particle mixing, originally implemented to
study CP violation in the neutral kaon system, to the case in
which different particles (in general with different masses)
mix via common intermediate states or decay channels. As
it is clear from this analysis, such a formulation is
applicable and generally applied to the case of an initial
state being a pure state, and primarily, when such a state is
a linear superposition of single particle states [29]. This
analysis also revealed several subtleties associated with the
time evolution of the amplitudes in terms of an effective
Hamiltonian. It also highlighted that the nonHermiticity of
the effective Hamiltonian is a hallmark of a quantum open
system, namely such a Hamiltonian describes the
nonunitary time evolution of a reduced subset of states
which are coupled to a continuum of states that have been
integrated out.

PHYS. REV. D 109, 036038 (2024)

Our main objective is to provide a framework to study
the dynamics of particle mixing in a medium, as it is
necessary within the realm of cosmology. In this case, we
are interested in the time evolution of a density matrix,
describing a statistical ensemble of particles, not just a pure
state of a few particles. Furthermore, we are interested in
obtaining the time evolution of correlation functions and
distribution functions in the medium, in particular their
asymptotic behavior and possible thermalization, not on
the amplitudes of single (or a few) particle states.

Rather than considering the most general case of mixing
between charged bosons or fermions which necessarily add
several technical complications, we consider the simpler
case of real scalar or pseudoscalar bosonic fields ¢1;¢2
interacting with degrees of freedom in thermal equilibrium
denoted collectively by ¥, to establish the main framework
and results within a simpler setting, thus paving the way to
extrapolating to a more general case.

The mixing between ¢: and ¢, is indirect and a
consequence of a coupling to a common set of intermediate
states yielding a self-energy with off-diagonal elements in
the space of ¢, similar to the cases studied in the previous
section.

The general Lagrangian density describing this situation
is given by

L%db1;d2;x Y% Lo p Lxb Li; 03:1p

where
|

L ¢ %X %00dab2 - m2ad2a; 2 au12

LI 7% -d101%x -$202%x; 83:2p

where Ly is the Lagrangian of the x fields. These are
assumed to describe degrees of freedom in thermal
equilibrium including interactions among these fields, and

012X are (composite) operators associated with the x

degrees of freedom. These operators include couplings g1,»
assumed to be small. Indirect field mixing is a consequence
of nonvanishing correlations h0:0;i in the medium
yielding off-diagonal self-energy matrix elements.

Let us consider the initial density matrix at a time t %4 0

to be of the form p“d0b % p"$00P Qp"xd0bP: §3:3p

The initial density matrix p"¢80Pb is normalized so that
Trep“$00pP % 1 and that of the x fields will be taken to
describe a statistical ensemble in thermal equilibrium at a

temperature T % 1=, namely
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€-BHx

p"xd0b % Trxe-gHy; 03:4pb

where Hyis the total Hamiltonian for the fields x and may
include other fields to which ¥ is coupled other than the
fields ¢1;2. The x vacuum is obtained in the limit f —oo.

For example, for the discussion of the previous section
the initial density matrix is given by

p"30P % jW8t % OPihWat % OPj; 33:5p

where jWdt % OPi is the state (2.13).

The factorization of the initial density matrix is an
assumption often explicitly or implicitly made in the
literature, it can be relaxed by including initial correlations
among the various fields at the expense of daunting
technical complications. In this study we will not consider
this important case, assuming the factorization as in (3.4).
In what follows we will refer to the set of fields ¢i;2
collectively simply as ¢= fd1;b.g to simplify notation.

The main concept that anchors the framework developed
below is the following: the time evolution of the full
density matrix in the Schrodinger picture is given by

p"oth % e-iHtp~80PeiHt; 03:6b
where H is the total Hamiltonian
H % Hoo b Hy P Z dX; d2040xb; 53:7p

a%l2

where Hoo and Hy are the Hamiltonians for the respective
fields. We will assume that the composite operators O,
include weak couplings so as to define a perturbative
expansion, and second order terms in O, imply second
order in couplings, which we will denote as 08g?p with g a
generic coupling.

The reduced density matrix for the ¢i., degrees of
freedom is obtained by tracing over the x degrees of
freedom, namely

p or 0th % Trxp"Otb: 03:8p

This reduced density matrix does not evolve unitarily in
time, its time evolution is determined by a time nonlocal
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effective action [35,40—44]. One of our main objectives is
to obtain this effective action.
It is convenient to write the density matrix in the field
basis which facilitates a path integral representation of the
nonequilibrium reduced density matrix [35,40—44].

In the field basis the matrix elements of p"$d0P and

p"xd0b are given by

hdjp”+30bjdoi % pe;08d;doP;  hxjp x80Pjxoi % px0dx;xoP;

03:9p

and this is a functional density matrix as the fields feature
spatial arguments. p“480P represents either a pure state,
such as a coherent state, or more generally an initial
statistical ensemble, whereas p”,d0Pp is assumed to describe
a thermal ensemble and is given by Eq. (3.4).

To obtain the effective action, we follow the procedure
described above: evolve the initial density matrix in time,
trace over the x degrees of freedom thereby obtaining the
reduced density matrix for the ¢ fields, and determine the
effective action from its time evolution. Including source
terms for the fields ¢, we can compute expectation values
and correlation functions as a function of time from
variational derivatives as usual.

We now follow the main methods and results of Refs.
[18,39], summarizing here the main aspects pertinent to the
case of mixing for consistency of presentation. The reduced
density matrix is given by

por 0tk % TrxUOtPp~60bU-10tP;  UJth % e-iHt: 03:10p

In field space,

pObsXs; Pos; X0k tP % hgxdUdtPp 80PU1dtbjdor;Xori;

d3:11p

from which the reduced density matrix elements are

obtained by taking the trace on X, namely setting x%% xrand
carrying out the functional integral in xr, p"dds;dos; ;tID % Z

Dyths;xjUdtbp~80PU18tbjdor;xsi:
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93:12p
With  the functional integral representation
hof;xfjUdtbp”80PU-18tPjdof;xofi
% 2 DDx Do DXOhPrxUBPidXipaoOdiibob
Qpy.00xi;x0iPhdoi;xojU-tbjdosxori;  63:13p it

follows that the reduced density matrix elements are

,
pdbrbor;t” %7 DxrZ DiDyiDdoiDXo;

* hor;xUtPjdixilpe,00di; poiP
& py;00xi;x0iPhdo;; xoij U atbjdor; si:
83:14
P The D¢, etc., are functional integrals where the spatial
argument has been suppressed. The matrix elements of

theR time evolution forward and backward can be written
as path integrals, namely hdf;xfjUdtbjdi;xii % Z DdpDypeiR

daxLiadp;xp; 03:15P

haoi;x0ijU-10tPjdor;xofi ¥ Z Dd-Dx-e-iR daxLisd-;x-;

03:16p

where we use the shorthand notation

z

d*x =Z tdtZ d3x: 03:17p

PHYS. REV. D 109, 036038 (2024)
L¥%d;x is given by (3.1) and (3.2) and the boundary
conditions on the path integrals are

dpdx;t 7% 0P % idx b;  dpdx;t” b % ddx” b; 63:18p
xpdx;t” % 0b Y% xidx~ b;  xpdx;t” P % x:Ox b;  8§3:19p
b-Ox;T % OP %4 Q00X P; -5t b 14 ordx” b 63:20b
x-0x;t % 0P % x0i0x P; x O0x;t” b % xodx b: 53:21p

The field variables ¢ and y along the forward (p) and
backward (-) evolution branches are recognized as those
necessary for the in-in or Schwinger-Keldysh [40-43]
closed time path approach to the time evolution of a density
matrix.

The reduced density matrix for the fields ¢a(3.14) can
be written as

1
p'ddrdort”  Z DoDT 01, dr0;disio;tpe 0 di; doi;0P;
93:22p
where the time evolution kernel is given by
T Yadf;di; dor;doist ¥ Z Db Z Dd-eiservidn;d-;t; 03:23p

from which the in-in effective action out of equilibrium is
identified as

i
Sefr Gp; 7t V4
t

dtoZ d3XfLo1/szb —Loyzd)_
0

b 1%bp;d-;tg; §3:24b

where 1%¢P;¢p7;t is the influence action [43,44] and is

obtained by tracing over the x degrees of freedom, namely

. nz .
eilsdp;ot - Z DXiDXioDXfZ Dxp
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XZ DXa-€iR dax%L%xp-Pa dpa 0alsxp

iR d x¥L¥ex--Pa d-a 0a¥ex-px0Xi;X0i;0P; 63:25b

xe

with the definition (3.17).

Note that in the influence action (3.25) the ¢ fields act
as background field variables, the functional and path
integrations are performed in all

fields x other than the ¢ fields. These

Fio od'xd; O, x

functional integrals are obtained by expanding the terms e
R ”% in power series and carrying the path and functional
integrals in x;xi;x:X°, yielding correlation functions of the

operators O, and reexponentiating. This is depicted in Fig.

2.

From Egs. (3.22) and (3.23) it is clear that the effective
action Ser determines the time evolution of the reduced

density matrix.

The path integral representations for both T %drdi;
¢%d%;t and IVzd)b;d)‘;t feature the boundary conditions in

(3.18)—(3.21) except that we now set xdx;t” b % xdx_ b to
p

trace over the ¥ field.

The technical steps to obtain 1%¢P;b7;t in perturbation
theory, up to second order in the operators O,, up to Odg?p

are available in Ref. [18]. We follow the steps in this

reference to find up to second order in couplings

PHYS. REV. D 109, 036038 (2024)

FIG. 2. Pictorial representation of the influence action

172dp;d-;t. The dashed lines are the (background) fieldsy fields

yielding correlation®., and the filled circles the trace over the

The second graph with two dashed lines yields the
influencefunctions of the operators O%). Each vertex carries a
coupling.

function up to second order in the couplings (3.26). We assume

that hOp;adi %-;t0.; hence, there is no first order contribution to
1%

i|1/z¢vb;¢_;t % Z d4X1d4Xzf¢ba ax” 1;t1p¢bb ox” 2P

x G

ap(X1 = X2) + g (X1, 11)y, (X, 1)
G

ap(X1 = X2) =5 (x1. 1)y (x2, 12)

-

x Gap(X1 = X2) = 5 (x1. 1)y (X2, 121

-

xGab X1~ X2 O 11 —lppg p;
83:26p

<
where and Gab X1 ~ X2 8 are given by

Gah X1 — X2 3b % hOadx1PObdx2biy;  33:27b

Gab X1 = X2 5b % hObdx2P0adx1biy;  §3:28b

and we have assumed that hOai % O (so that the first diagram

in Fig. 2 vanishes). The operators Oaare Hermitian from
which it follows that

G<ab6X1 - X2b Ya G>b36X2— X1P: 03:29p

This is the general form of the influence function up to
second order in the operators O,%Y, but to all orders in

iSef72@;R % —iZ d3xXa R, 0xPD" 20x;t % OP
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the couplings of the x fields to any other field except ¢1;».
We can obtain expectation values and correlation functions
of ¢1;2 by including sources Ja dxb with Lodpb -

Loddb J8xPdOxb and defining the generating functional Pa

aa

b iZo dtXk;a f—Raa—k;t_)

-

—Zot dity Zo dt,Xab +_RaG—k;t”

t,bDu3K” :t,7; 63:35b 2

74P % Trp'6JP;);tb
Ya
Z DDdDD0iZ Dbp
03:30p

XZ Do€is.ydb;b;0-1tpd O Pi; doi; 0P

with the boundary conditions

] Fing 1 1 . =
dba _ tf) _ 5 [sz(k; (=1 ox;t % 0P % &i;a0x
b; bpa Ox;t” P % ¢pfadx P; d-adx;t” % O0b%
boiadx_ b; ba- dx;t” b % dfadx  Pb:

03:31pb

Expectation values or correlation functions of ¢ in the
reduced density matrix are obtained as usual with
variational derivatives with respect to the sources J.

The effective action (3.24) may be written in a manner
more suitable to exhibit the equations of motion by
introducing the Keldysh [41] center of mass and relative
variables

O ox;t” b
a 1 a

% 200pdx;tT Ppd o
-ax;t’bb;

1PN 250k ;t1 - toPRyOK;t

PHYS. REV. D 109, 036038 (2024)
RadX;t'P % 8P, 8x;t7P -, Ox;t” pbb:
03:32p

The boundary conditions on the ¢ path integrals given
by (3.31) translate into the following boundary conditions
on the center of mass and relative variables:

PAD 0k;t7P b w2.0kPM,3k;t PP p D,8k;t"PJ J0-k;t” Pg

P piRG-kt™ 1P Kt -

@adx;t” % 0P % Da;i; Radx;t” % Ob % Rai; 83:33p

@adx;t"% ttb % Da;f0X b; RaOx;t” % ttb %4 0:  §3:34b

Taking the spatial Fourier transform, the effective action
(3.24) with the influence functional (3.26) becomes where

w2,0kP % k2 b m2,. To obtain the above form, we

integrated by parts in time, defined J .0xp % 8Jp, Oxp - J_2

dxpb, and kept only the sources conjugate to ®?because

we are interested in expectation values and correlation
functions of this variable only as discussed in detail
below.

The nonlocal kernels in the above effective Lagrangian
are given by [18]

N ab0k;tb b G<.pdk;t - t%b; 83:36p

SR8kt — 1P % %G”audk:t — 1P — GS,dk;t — t0pO5t — t0p

= iZap0k;t — t°POSt - tp; 03:37p

1
where G>8k;t - t°p are the spatial Fourier transforms of
the correlation functions in (3.27) and (3.28). It is clear
from these correlation functions that if hO;0;i # 0, the self-
off-diagonal matrix

energy features nonvanishing
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elements, and these are responsible for indirect mixing  generically as o< g%;N 4, g2 to emphasize the second order

between the fields ¢; and ¢,. Since each operator is  nature of these kernels.

associated with a coupling g., the self-energy and noise In the exponential of the effective action e, the

Kemels are Ot Second Order’ and we Wl“ reter to thernl quadratic term il’l the relatiVe Variables Ra can be Writtel’l as

a functional integral over a noise variable &, as follows:

€XP 5717 5,84k ;tibN 10K :t1 - t:PRyOK “3tob dt R

% C”ZDg, exp—lzz dtiZ  dtz6.8-k ;tiPN 218K sty - t2PEBK” ;tab b iZ dt€,5-k™ ;tPR.OK” ;tb; 83:38p

where C” is a normalization factor.
The time evolution of the density matrix defines an initial value problem; consequently, we seek to obtain the equations
of motion as an initial value problem rather than a boundary value problem. Since the Heisenberg equations of motion are
second order in time, an initial value problem is determined by providing the initial values of the field and its canonical
momentum. This suggests to consider the Wigner transform of the initial density matrix by writing it in terms of the initial

center of mass and relative variables @©g;and Ry;,
pddda;i;boa;i;0P =peDa;i b

2a;i ;Da;i— 2a;i;0; 03:39p

and introduce the functional Wigner transform [43,51] as a Fourier transform in the relative variable,

W% @a;i;MNa;i % Z DRie-iR dsxMa;iox” pRidx” bp¢(Da;i b — R2a;i;®a;i-R 2a;i;0; 03:40p

which allows us to write (up to a normalization factor)

R R poDa;i p 2a;i ;Da;i— 2a;i;0 Y% Z DNaieiR
daxMa;i0x” PRa;iox ” PW 5 Da;i; Ma;i; 03:41p

the variables M, are the momenta conjugate to the variable ®,, and W% ®; yields a probability distribution in “phasespace”
o, n.

Gathering these results together, we now write the generating functional (3.30) in terms of the Keldysh variables (3.32),
with the effective action in these variables given by Eq. (3.35). Implementing the Wigner transform (3.41) and using the
representation (3.38) we obtain
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Z%) % Z DO Z DRIDODMN; Z DODRDEW % D;; M x PYE x expiZ dtXie D.0k™ ;tb) .-k~ ;tp

X exp—iZ dtXk’ Ra0—k” ;tP® ,8k™ ;tP b wZ8kP®.Ok™ ;tP b Zo' 2,0k ;t — t2PDpdk;t”  OPdt®-E,8k ~;th

X expiXk* Ra;ia—k_) Dana;iak_) b-O a;iak_) pp; 03:42p

where w2,0kP % k? b m?%, and repeated field indices are summed over. The noise probability distribution function P¥¢, is

given by

P¥%&, % C™ Yk exp—lz_Z dt; Z dt,€,0-k ” ,'t1|3N_ab16k;t1 - tzpfaak_) ;tab: 03:43p

The generating functional Z%5J is the final form of the time evolved reduced density matrix after tracing over the bath) yield

the correlation functions of the Keldysh center degrees of freedom. Variational derivatives with respect to the source of
mass variables ®.

Carrying out the functional integrals over Ridk” P and Ry 8tP yields a clearer form, namely

2%4) «Z DD Z DD,;DMai Z DOLDEWHD; T % PYE X expiZ dtXak .0K™ ;tb) 13-k ;tb

X Yk 8@ 20k” ;tb b w2.0kPDLIK” ;tb p 20t Zandk;t” - t2PDLdk™ ;t0pdt0 -£,0k” ;tb

X Yaik® 6%Ma:i0k™ b - 2:3K” b: 33:44p

Obtaining expectation values and correlation functions ® a0k™ ;tPbw2a0kPMadk” ;tb pZo' Zap0k™ ;t-t°PDLOK™
from this generating functional is straightforward:
(i) The functional delta functions in (3.44) determine

;1pdt0 % §,0k” ;th: 63:45p
the field configurations that contribute to the ’ 480k

generating functional Z%J. These are the solutions

of[39] for the stochastic Langevin equation of This equation of motion is retarded as it involves the
motion ®,3k” ;tb, namely retarded self-energy, thereby defining a causal
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initial value problem. This is a distinct consequence
of the in-in formulation of time evolution.
(i) The expectation value and correlations of the

stochastic noise €8k~ ;tb are determined by the
Gaussian probability distributionnition (dP)) for
averages withP%€a. Introducing the defi-P%¢&a, the

Gaussian

stochastic noise features the following averages:

{€a0k;t™ b)) % 0;

(€.0K” ;tPELOK™ %5t0PY) % N op3k;t — 0P8y i-0: 83:46b

Since P&, is a Gaussian distribution function,
higher order correlation functions are obtained by
implementing Wick’s theorem. This averaging is a
manifestation of stochasticity, establishing a direct
relation between nonequilibrium dynamics of
quantum open systems and stochastic field theory
[52,53]. (iii)) The stochastic equation of motion
(3.45) must be solved with the initial conditions

@adk” ;t % Ob % Da;idk” b; @ adk” ;t % Ob % MNa;iok™
P;

03:47p

and these initial conditions confirm that M, are the
canonical momenta conjugate to @a;.. The solution
of

(3.45) is a functional of the variables ®a;dk”
P;M.;i0k” P, which are distributed according to the
probability distribution function W%®,;;M:i, which
in turn is determined by the initial density matrix.
This is another manifestation of stochasticity, but
now in the distribution of initial conditions.

We now introduce the notation 6P to denote
averaging over the initial conditions (3.47) with the

distribution function W%®,,; M.

PHYS. REV. D 109, 036038 (2024)
The solutions of the Langevin equation (3.45)

D,%k” ;1;€;Da; M., are functionals of the stochastic noise
variables &, and the initial conditions. Therefore correlation
functions of the original field variables ¢, in the reduced
density matrix correspond to averaging the products of the
solutions over both the initial conditions with the Wigner
distribution function W%®,;Ma;, and the noise with the
probability distribution function P%§. We denote such

averages by (dP)) where db is any functional of the initial
conditions (3.47) and &,.

These stochastic averages yield the expectation values
and correlation functions of functionals of @, obtained
from variational derivatives with respect to J .

In Appendix B we provide a nonperturbative spectral
Lehmann representation of the correlation functions G
=

ab X~ 3 yb that enter in the definitions of the self-energy
(3.37) and noise correlation function (3.36). The result is
that these nonlocal kernels can be written in a dispersive
representation as

Zabdk;t - tob % —iZ 6___dk2mobpabdko;kPe-ikest-top; 33:48P

N abdk;t — tob % 12Z ddk2ToPpabdko;kbcoth___
B2koe-ikost-top;

83:49p

Appendixwhere pabdkBo;kfor details). The
representationsP is a 2 x 2 matrix of spectral densities
(see(3.48) and

(3.49) are a manifestation of a generalized fluctuation
dissipation relation, a consequence of taking the x degrees
of freedom in thermal equilibrium.

The stochastic equation of motion (3.45) with initial
conditions (3.47) defines an initial value problem whose
solution is obtained by Laplace transform. Let us define the
Laplace transforms
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D~ .0k ;sb % Zo e st@.0k” ;tbdt; 83:50p
0 £7,0k” ;5P % Z0
est€,8k” ;thdt; 83:51p
Z —
. R 2L —e= ko " is 0
37 abdk ;sP % oee-stZabdk  ;thdt
¥ — 1 Z -opabOko;kbdk ;
03:52p

where in (3.52) we used the representation (3.48). The
Laplace transform of the Langevin equation (3.45) with
initial conditions (3.47) becomes

G-ab18k;sPD~ bk ;sb % Ma;idk” Pps®a;idk” PpE™adk™ ;sb;
03:53b where

G-ab18k;sh % 852 p w2a0kPPSabp X~ abdk” ;sb:  83:54p

The solution in real time is obtained by inverse Laplace
transform, and it is given by

®adk” ;tb % Ohadk” ;tb p ®eadk” ;tb;  83:55b

where ®n,0k™ :tP;®e.0k” ;tb are the homogeneous and

inhomogeneous solutions, respectively, namely

Ohadk” ;tP % G abBk;tPDb;idk” P b Gabdk;tbMb;idk” b;

M5,8K” ;th % Zot Gapdk;t — tOPERK™ ;t°pdt?; 83:56b and
repeated indices are summed over. Green’s function is
given by

1 st

GabOk;th Y% ___2niZc e GapOk;sbds; 03:57b

where C denotes the Bromwich contour parallel to the
imaginary axis and to the right of all the singularities of

PHYS. REV. D 109, 036038 (2024)
Gabdk;sb in the complex s plane, closing along a largesp <

0. These singularities semicircle at infinity with Red
correspond to poles and multiparticle branch cuts with

Redsp < 0; thus, the contour runs parallel to the imaginary

axis s % idv- ieb, withv %4-—eo<w,  we obtainv<ee and €->

Op. Finally, changing variables

irdw

oo

GabOk;th %4 Z- Gapdk;s %4 —iw p ePe™“_oy; 03:58p

and for t > O the integration contour is closed in the lower
half w plane. We obtain Green’s function GabOk;sP by
following the steps in Appendix C, Without loss of

. . 2 2
generality we consider m1 = 3 and define

M~ 8k;sb % s2 b _12%w218kPpw228kPpX™ 118k;sbp 2~
220k;sb;

83:59p

Dok;sb % ¥50w218kb —w220kp p 2~ 118k;sb -2~ 228k;sPb2

b 4%" 1,0k;sbX” 216k;SP1:2,' 03:60p
— 1 21 22 ~uks b
-3~ 220k;s” bb;
a~dk;sb % Dok;s” péw dkb —w 8kb p = &
03:61b

B-0k;sb % 23D” 0).570 pb;y”Ok;sh % 23D"
215):56%7°pb; 53:62p
with the property a20k;sp b

B~0k;sby dk;sb % 1 =>adk;sb
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% ql -Bok;sby ok;spffi; 33:63p

where we used the same argument leading to Eq. (2.46) for
the choice of sign for a”.

In terms of these variables, G a,*8k;sb has the same form

as Eq. (C3) in Appendix C, yielding

Gok;sbp % M~ 0Pk;s-0Pk;s—pb s2k;sp p M~ 0Pk;spdb pk;spb

52k;sh ;
1
P¥% _281 Rb; 03:64b with
o B 2 2
R¥%y -a; R % 1= Pd&k;sb % Pdk;sb:

93:65p
The analytic continuation of the self-energies is

2" ab0k;s % —iw p ep

% 2__1NZ " pabwd—ko;ko bdko— impabdw;kb:  33:66b
. k

Upon analytic continuation to w Green’s function (3.58)

becomes
k;w P_( ) ["" [
202 -
Gabdk;th % iet- @ @
3 p b -0k; b
P 20k;w2pP abe-iwtd__w; 03:67b
b 0w p iebp -Qpdk;whb 2n
with2 1 12 22 “11k;wb
QBk;wb % 2%w 5kb b w kb p 3 8
b 2™ 228k;wb Ddk;wb; 03:68p

PHYS. REV. D 109, 036038 (2024)
where the functions of w are understood as the functions of

s upon analytic continuation s % —jw p €, keeping the same
name for the functions to simplify notation.

The form of Green’s function is similar to Eq. (2.40) of
the previous section, with important differences: whereas
the denominators in Eq. (2.40) are linear in w, therefore
each term features only one pole, and the denominators in
(3.67) are quadratic in w implying that each term features
two poles. This discrepancy has a simple explanation: the
set of amplitude equations leading up to (2.40) describe the
evolution of single particle states, whereas the effective
field theory yields the time evolution of the density matrix
in the field basis, and a real scalar field describes positive
frequency particle states and negative frequency
antiparticle states. Even in the absence of perturbations, the
propagator has two poles yielding the time evolution
e TwdkPt for the amplitudes. Furthermore, the self-energies

3" a0k;wb have dimensions of energy squared, unlike

theaab in the previous section that feature dimenquantities
sions of energy.
The complex poles in Green's functions are at

w? % 02 8k;wb; 83:69p
namely
wab ¥ 0pQpdk;warp P; 53:70b
b
wab- Y% 0PO-0k;wap- b; 03:71pb

where the superscripts () denote the two roots of (3.70) and

(3.71) for each subscript label, p;— corresponding to the
signs of Q in (3.68). These roots define the complex

frequencies of the quasinormal modes.

Consistent with perturbation theory, we assume that

5 I
@iy k > Xy ko xH; 5 p g p 2 jllowing one to

implement

Breit-Wigner and narrow width approximations to the
propagators. Just as in the case discussed in the previous
section, the validity of the Breit-Wigner approximation
relies on weak coupling, in particular that the distance
between the real part of the poles and thresholds is much
larger than the half-width of the resonance. This criterion
holds for both the nondegenerate and nearly degenerate
cases, because in the latter the condition of near

. ~ 2_ 2 .
degeneracy is that w?, »I . and @1~ @2 <X, This
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approximation describes exponential relaxation valid in the
intermediate timescale as discussed above.
In these approximations, we expand around each pole in

the denominators in (3.67), namely w % wapbp p dw-wapbp

P;

Qpdk;wb % Qpok;wasppp P p Gw—wapbp P

1 d
X 3pb dwQpdk;wbjukwsesp 03:72P

2w
b

and similarly for each of the other poles. Using the pole
condition (3.69) yields the general form of Green’s
function,

GabOk;th % Gab;pdk;th b Gab;-0k;tb; 03:73b

where each term corresponds to the contribution of the
individual quasinormal modes corresponding to the
subscripts , namely

- wapb

Gab;pOk;th % i Zabpp

2Wi dbbyt Ppéwabbb Pp

Z5°p 6] b
b b2we-p PP

Pab p

e-iwapp-

Gab-0k;tb % iZopp- 2wapb- ' P-Bwapp- b

€2-(iw-o7pt P—a(.\)——bpab:
b Zs-"p 3--p 5 83:75p

3:74

—iwps-pt P Wa-p ;
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The wave function renormalization constants are given by

Va

Zspb 1-d__dwQ2p2wdk;bsp w®

wywaepp 11;

d Q-20k;wb -

Zob-%%1-d__w 2w-sp WYwab-
83:76b Green’s function for each quasinormal
mode features both positive (w®P) and negative (w®P)

frequency contributions.

This is the general result for Green’s function, again
displaying the four poles: positive and negative frequency
for each quasinormal mode, with the associated wave
function renormalization constants arising from the
residues at the poles in the Breit-Wigner approximation.

Note that while the result (2.44) features only positive
frequency components, Green’s function (3.73) features
both positive (w%?) and negative (w%P) frequency
components. As discussed above the origin of this
difference is that whereas the Weisskopf-Wigner
formulation, upon which the LOY theory is based,
describes the time evolution of single particle (positive
frequency) or antiparticle (negative frequency) amplitudes,
Green’s function in the effective field theory describes the
propagation of fields that include both positive and
negative frequencies and describe the quasinormal modes
of propagation as a consequence of mixing and decay.
Although this expression looks cumbersome in its index
structure, we clarify again: the superscripts () refer to the
positive (particle)

refer to the two (quasi)normal modes from mixing, corre-
and negative (antiparticle) frequencies, the subscripts

sponding to the in Eq. (3.68).

With the purpose of comparison with the LOY theory,
we focus on the same possible scenarios as in the previous
section.

22§
A. Nondegenerate: mi ~ ™2 > z.

In this case it follows that

Dok;® ~w} k —wdp b
Okbp p 2™ 118k;wb -X" 228k;wb; 63:77pP
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yielding up to second order in the couplings

@ ko @5 % 6kb p 2~ 116kwb;
53:78p Q2 k@ @by skbp s

220k;wb: 63:79p

o ok;wbp = 1 p 062~ 03:80p
2P; BT w = 237 120k;wb
K

2,2
ok; b 1 Mam 1; 03:81p
2 k, ~
7 ko ~ ( ) <1 T
w
& b mi—m 53:82b

Therefore, up to second order in couplings the complex
poles are at

wobOkP % wprdkp — i p2dP;——

b 03:83p
['5b Wab-
O0kp % w-r0kb — i - kb; 03:84b
F'ab k
2

where

wprdkpP % w10kp p &pdkp; w-r0kb % w20kpb p 6-8kp

83:85p

are the renormalized frequencies of each quasinormal

mode and to leading order 6pdkp % 112wdk;16wkpP18kbp;
6-0kp % ReZ™ 222wdk;2dwkp20kpb; ReX™
03:86p

6pp Okb % dPpri2wtttddkkpPb;kb;
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['sp- Okb % Obp2282wtz2ddkkbb; kb: 03:87p

To obtain the above results we used the property
pPd-w;kp % -p*dw;kP (no sum over a) for the
diagonal(B15) in matrix elements of the spectral density
[see Eq. Appendix B]. The contributions 6dkp are
renormalizations of the bare frequencies w12, respectively.

Green'’s function (3.73) with (3.74) and (3.75) is given
to leading order in this case by

ab;p i [ —iwprt€-r2pptPpOW1P G

Ok;th % 2wp YsZspbp € r-

~Z%-peiwpte- 2tPpd—w1Pab; 63:88b
i
Gab;-0k;th % W-r ¥5Z3pb-
e—iw-rte—rzp:tP—éwzb 2
-Z5--beiw-te-L=tP_0-w2Pab; 03:89p

with the projection operators given to leading order in the
couplings by

1 1B 0k;w b ;

PpOwib % 21y dk;wib 2 0 1 03:90p

2- 1 B dk;w2b:

03:91p P-dw b % -y 0k;w b 1

Since in this nondegenerate case B7;y~ %X [see Egs. (3.81)
and (3.82)] the off-diagonal terms are perturbatively small,
for these the wave function renormalization constants can
be set Z= 1 to leading order. This result agrees with those
obtained in Ref. [18] for the case of pion-axion mixing.

2_ 2<%
B. (Nearly) degenerate: m1 "m2 ~ o
In this case, it is convenient to define

036038-27



SHUYANG CAO and DANIEL BOYANOVSKY

Q2 0k;wb % w™ 20kp p Edk;wb; 03:92p
with
1 03:93p
W 0kp % p2%w218kpP p w220kp1=2 >3~
ab;D ffi
and
1711 — k;wb p 27 220k;wb Dk;wb Kw™ 2E
Ok;wb % 2%3 0

03:94p

with 27 a5 and D of the same order. In this case the complex
poles are at

wabdkP % wprdkp — i p20P;—

03:95p
b
l'sp 03:96b
wab- 0kp % w-rokb — i -20kb;—
where
83:97pb

w r0kb % w~dkp p 68kp
F'sp k

are the renormalized (nearly degenerate) frequencies, with

6 0kb Y4 Re¥sE28wk—8kPw dkbb;

et

Fob 5kb % 3F P ZE5 5P B¥pb:  53:98p

and both are of quadratic order in the couplings.
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We assume that the decay rates %" are all positive for

stability, and further properties ofthe specific details of the

self-energiesS; "z~ ab, which in turnwill depend on

depend on the type of operators O,. In this case wpr -,

~3 , namely the difference in the quasinormal mode

frequencies are of quadratic order in the couplings. To
leading order in the couplings Green'’s functions (3.74) and
(3.75) in this nearly degenerate case are given by

— i r h
—iwr-prte-irzpptPpOwprP G 8k;th % 2wp Zsppp € b

—Z3p-peiwprte-i 2tPpd—wprbi; 03:99p

G-0k;tb % 2 Wi-r hZiapb--rte-iiwrz-—tte—ir2-pt P-O w-rp

-Z5--p€ w e- P-0-w-rbi; 03:100p

where all matrix elements of P are of Od1b.

C. Expectation values and correlation functions

We seek to obtain expectation values and correlation
functions of ¢, in the reduced density matrix. In particular,
we focus on equal time correlation functions. If
asymptotically at long time these become time
independent, this is a signal of the emergence of a
stationary state, from which
we can assess if the fields reach thermal equilibration with
the bath. Furthermore, off-diagonal equal time correlation
functions will also inform on the emergence and long time
survivability of coherence. Therefore, we must relate these
to the averages of the center of mass Keldysh fields @.. To
establish this relation, we begin with the path integral
representations for the forward and backward time
evolution operators (3.13), (3.15), and (3.16) which show
that ¢Pb,

follows that the expectation value of the fields in the fullare
associated with Udtp and ¢, with U'dtp. Hence, it
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density matrix is given by hdadx;t” Pi % Trdpa

dx;t” Pp~80P % Trp"60bd-a 6x;t” b
% Tr@adx;t”

bp 30P30P % (Dadx;t” b);

03:101p whereas
TrR.Ox;t bp~80Pb % 0: 03:102p

Similarly, correlation functions in the forward,
backward, and mixed forward-backward branches are
given by

Trpba 3k~ ;tPdpb 8k 0;tobp” 80P = TrTddadk” ;thdudk”
0;toPPp~80P;

Trdp-a 8k ;tPd-b 8k” 0;toPp 80P = Trp " 50PT~dadk”
;tPdbdk” 0;tobb;

Trpa 0k ;tbdpp 8k” %toPp 80P = Trda0k”
;tPp 80P dLdk” Otob %
Trpbdk™ 0;tobdadk”
;tbp”80P;

03:103p

where T and T~ are the time ordering and antitime ordering
symbols, respectively. Using the relations (3.103) it is
straightforward to confirm that

o |
Traox:t’pPp X', 1" p 0 =-Tr ¢g°
0 a0x;t”"PdbdX” 0;tobP

Pob 2

b $bdx” 0;tobPdadx;t” Pbp"d0b:

03:104p

Upon obtaining the functional solutions of Eq. (3.45) our
objective is to obtain the connected equal time correlation
functions hdadtbdudtbic % Trp 60PdadtPdudth

- Trp"60PadtbTrp " 80bPudth; 63:105p
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and the population for each field component of wave vector
k, namely

nadk;tb % 20la8kbTrp 30p%d" 20K

;thd 20—k 7 ;th b w2a0kPdadk”

;tb(baa—k_) th-12_

ono sum over ab: 03:106b

Establishing contact with the dynamics of the density
matrix of two level systems [51], the off-diagonal
components of the connected correlation function (3.105)
are a manifestation of coherence. If initially the fields are
uncorrelated, the off-diagonal components of the
correlation function vanish. Therefore, if upon time
evolution these are nonvanishing, these off-diagonal
correlations between the two fields are a consequence of
coherence induced by the indirect mixing through the
interactions of the field with the bath.

With the definition of the Keldysh center of mass field
variables @, (3.32) and the relations (3.101)—(3.103), we
find that the equal time connected correlation function
(3.105) is given by

hdadtbdbdtbic % (DadtbDLAPY)-(Dadtb)(Dbtb):

83:107p

To obtain the population for each field (3.106) we now
introduce

C. 8k;t;t% % Trd =, 0k™ ;tbdP, 8-k ;t°%Ppd0b;

C<a 0k;t;tob % Trdp-a 8k ;tobdpa 8-k~ ;tbpd0P; 63:108b

and the populations of the wavevector k™ component of
each field ¢, (3.106) become

1 00
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nadk;tb % dwadkPotd 7 + @ ta5kb

PHYS. REV. D 109, 036038 (2024)
Using the definition (3.32) and the relations (3.103) it is
straightforward to show that this symmetrized product
yields

nadk;tp % 2watdkPTrpd0P @ adk™ ;tP® ad-k™ ;tP p w2a0kPDadk” ;tPMad-k™;tp— 12

% 2waldkP{® a0k™ ;tP®" ad-k ;tP)) b wa20kP(Dadk” ;tPMad-k™ ;tP))- 21:

X %C, 0k;t;t%P b Ca 8k;t;t%Ptyte 2 83:109P

The corollary of this analysis is that we can obtain the
connected correlation functions and the populations of the
fields ¢1,, by obtaining the solitions of the Langevin
equation of motion (3.45) with initial conditions (3.47) and
taking the averages over—themitralcomditions and noise
described above.

Armed with the solution of the Langevin equations
(3.55) and (3.56), the above results, and the general form
for Green's function (3.73), in terms of Green’s functions
for the quasinormal modes (3.74) and (3.75), we can now
study the expectation values, connected correlation
functions (3.107), and populations (3.110). The solutions
(3.55) and (3.56) along with the averages (3.46) yield for
the spatial Fourier transform of the fields

hdadk;t’pi % G abdk;tPOb;i6k” P b Gabdk;tPMb;idk™ b:

03:111p Similarly, the connected correlation functions

(3.107) are hdadk;t” bdpd-k;t” Pic % OMok;t” POMG-k;t” P
-O",8k;t” PO"I-k;t” P p (D%0OK;t”
PD%I-k;t” b)); 83:112p

where O"and ®f are given by (3.56). These are general
results for expectation values and correlation functions,
from which we can obtain their time evolution.

D. Time evolution, thermalization, and
bath-induced coherence

93:110p

Taken together, the results (3.111) and (3.112) inform
important aspects for the time evolution of expectation
values and correlation functions:

(I)  Even when initially only one of the fields, for
exampleds, features an expectation value, the off-diagonal
components of Green’s functions determined by the
projector operators P in (3.74) and (3.75) induce a
nonvanishing

. This
expectation value for the other field, in this case
phenomenon has been noticed in Ref. [18] in the case of
axion-pion mixing. In the LOY theory discussed in the
previous section, a similar feature emerges at the level of
the amplitudes of the single particle states jd1i and jo2i: for

example, if the initial amplitudes are C160p £ 0; C250p % 0,

upon time evolution a nonvanishing amplitude C28tp is

induced as a consequence of mixing. The off-diagonal
components of Gy are a consequence of the off-diagonal
components of the self-energy matrix and a direct
manifestation of the couplings of the fields to correlated
operators of the bath degrees of freedom, namely “indirect”
mixing.

(I) A similar phenomenon emerges for the
connectedcorrelation function (3.112). Even if the fields
1,2 are initially uncorrelated, a nonvanishing correlation
emerges from the off-diagonal components of the noise
correlation function that determines the last term in
(3.112). We refer to the emergence of nonvanishing
correlations as bathinduced coherence, referring as
coherence to the offdiagonal connected correlation
functions of the field in agreement with the description of
the time evolution of a density matrix in two level systems
[51].

(III) The off-diagonal components of the projectors P
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are perturbatively smallwhereas they are of O61pPOin the
nearly degenerate case. IndZb in the nondegenerate case,

turn, this implies that the induced expectation values and
coherence are perturbatively small in the nondegenerate

case, in agreement with the results in Ref. [18], but are of
001b in the nearly degenerate case. This expectation is
confirmed by the analysis below.

The first two terms in (3.112) decay exponentially
because Green’s functions do, and depend explicitly on the
initial conditions. The last term is independent of the initial
conditions, it is completely determined by the noise term
induced by the bath degrees of freedom, and, as we show
below, it survives in the long time limit, hence determining
the approach to a stationary state.

We now focus on this last term, which upon using the
noise correlation function (3.46) and (3.49) is given by

€a ¢ 1Z oo 3 —— dkoZ t GacOk;tPeikerdT

oo 2T

(D 3tp® 6tb)) %o

X Zot Gbddk;tPe-ikordtpcddkoPcoth

Bko
03:113p

Each of the G% in this expression is a sum of Green’s
functions of each quasinormal mode given by Eqs. (3.73)—
(3.75); therefore, each G features four terms; and hence,
there are altogether 16 terms in (3.113). Because peq is of
second order in couplings, we will focus on the terms that
are of 0d1b in these couplings, and these arise from the
terms that feature small denominators of second order in
the couplings that compensate the numerator pcq.

Each of the terms in G features exponentials of the form

e OWA=2Pt where W stands for the real part of the

quasinormal mode frequencies, the describes the positive
and negative frequency components, and I > O stands
generically for the decay rate of these modes. Therefore,
the time integral of such a typical term in the first bracket
in
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(3.113) yields t ikotwhif=?"dt g eliskoFFwpirp=2pt — 1b;

Z

03:114p

e
0 ike W ilr=2

and for the second bracket there is a similar generic
contribution but with ko --ko. Obviously as t oo these
contributions remain nonvanishing, confirming that the
noise contribution to the correlation functions and
coherences (off-diagonal) remain finite in the long time
limit. The ko integral in (3.113) is dominated by the poles
in the complex ko plane. To identify these, consider the
product of the positive frequency contribution for the first
G with the negative frequency contribution of the second G
for the same quasinormal mode, for example, that of
frequency wpr. Such a term is proportional to the product

b r-

"i0koo—wrpr 2p ir2ppPH" d—iP8koo — (Wpar — ir2p-P# eisk

~wppibpt — 1 @-idk —~wp-itpt— 1

b r-

%l b €-0pppl-ppt=2 — €i ko-wprpi 22t = €—i ko—wpr—i 2t

ko —wpr p ir2ee ko —wpr — ir2-p ;

83:115p

and we refer to these as direct terms: there are two for each
quasinormal mode. These terms feature poles at ko % Wor

i"spyielding for the integral a contribution proportional to

Ped(®r)
o 4 X 2nPpdwprPac T+ T Py(-o b-

perdal b 2n6wprbb b b

X 01 — e-arppbr-pbt=2P; 03:116p

where ndwp is the Bose-Einstein distribution function with
energy w. In this expression we kept the leading order

terms
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and neglected wave function renormalization constants.
Furthermore, pcg@wpb and cothdwb are evaluated at wpr,
namely the real part of the frequency of the quasinormal
mode, sinceimportant aspect of this contribution is that it
is ofTp are of second order in couplings. AnOd1b, because
p and I are both of second order in the couplings. Now
consider the positive (or negative) frequency contributions
of the same quasinormal modes in both brackets, for
example, for the positive frequency whose time integrals

yield a term proportional to
p p

2 eidko-wpri kbt — 1 32 €-idkopwprikpt— 1 3

4 6i ko —Whpr
b irzpp75646—ib kOb Whr — ir29p75

b b p

1 b e-2iwprte— 2kt — €idko—wprpi 2Pt — @-idkopwpr—i 2kPt
Ya

; Ko—wpr P irzp ko p wpr — iM%

93:117p
and the negative frequency contribution is obtained by wpr

—>-wpr. We refer to these as indirect terms. These 8% P

feature complex poles at ko b = i 2o, yielding terms

proportional to

1-e b
2iw r €-TpptP

Pw —Pw
ba brPac pcdzawwr P b6 rPbdd

p
b

% 81 p 2ndwprbb K 1; 03:118p
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where we have used that in the narrow width
approximation w r >IPp. These indirect terms are of second
order in the p
couplings and therefore are subleading with respect to the
direct terms.

Finally, consider the contribution of a positive frequency
of one quasinormal mode in one bracket and a negative
frequency of the other mode in the other bracket. We refer
to these as interference terms. For example, consider the
positive frequency mode w (in the first bracket in (3.113),
and the negative frequency modep -w-r in the second
bracket, where the time integrals yield a term proportional
to

T r-
M8k O = e i b_t'F_g p# M%keg;rgj‘_;_—ufg_,p# 03:119p
es-wphp—1e-6-w-p—-1

A similar analysis as for the previous terms yields the
following leading order contribution to the correlation
function:

pcddw b

Ppdesbac Yap P W T -5 B p Fp
X P-0-w Pbd¥:1 — eidwpr-w-rbt€-128Mppbr--btd1 p 2ndw~ PPb:
03:120p

These interference terms exhibit the quantum beats, an
interference phenomenon associated with the difference in
the (quasi)normal mode frequencies, similar to that in the
expression (2.112).

These results are general and highlight the perturbative
and nonperturbative contributions to the correlation
functions in the long time limit. Before we discuss the
nondegenerate and nearly degenerate cases, it is convenient
to compare the results above to the case of the equal time
correlation functions of a free field theory in thermal
equilibrium, which is given by

h 6~ PObO-k;t” Pi %
2ndwabb; 63:121P Mak;t
where we assumed uncorrelated fields, and the brackets
stand for statistical averages in a thermal ensemble of
uncorrelated fields.

It is then clear that the long time limits (3.116), (3.118),
and (3.120) all feature exponential relaxation to a
thermalized stationary state with the asymptotic long time
limit featuring the thermal factors 1 p 2ndwbp in terms of
the real parts of the frequencies of the quasinormal modes

2wbaab0kPo1 b
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(the imaginary parts yield subleading contributions). This
is one of the important results of this study.

Furthermore, all feature off-diagonal terms which we
identify as coherence because of the similarity with two
level systems [51], as discussed above. We refer to this
phenomenon as bath-induced coherence because even if
the
fieldsareinitiallyuncorrelated, theirinteractionwiththebath
inducesoff-diagonaltermsthatsurviveinthelongtimelimit.
Interference terms between the two different quasinormal
modes leads to the approach to the stationary thermal state
with quantum beats. Thermalization, the emergence of

offdiagonalcoherence inthelongtime limit,
andquantumbeats from interference between the two
different quasinormal

modesaresomeofthemainresultsofthisstudy.InSec.lIwe
highlighted that in the LOY theory, quantum beats emerged
in the time evolution of the total population (2.109) and by
unitarity in the amplitudes of intermediate states or decay
products [see Eq. (2.110)]. In the effective field theory
these interference terms are explicit in the approach to the
stationarythermalstateofthecorrelationfunctionsofthefields
, both the diagonal and off-diagonal (coherence)
components displaying the quantum beats.

1. Nondegenerate case

In the nondegenerate case, with wpr W, ~wy-wy >[ the

direct terms (3.116) are the leading ones. As shown by Egs.
(3.90) and (3.91) with (3.81) and (3.82), in the
nondegenerate case the off-diagonal components of the
projection operators are of 08g2p. Therefore, in this case,
the correlation functions exhibit thermalization albeit with
a perturbatively small coherence. Furthermore, because the
interference terms are perturbatively small since p=0w:
-wyP 3oc g2, the quantum beats in the approach to
thermalization feature small amplitudes. This is in
agreement with the results obtained in Ref. [18] for the case
of (ultralight) axion-pion mixing.
2. Nearly degenerate case In the nearly
degenerate case with w r—w_r ST both p

the direct (3.116) and the interference terms (3.120) are of
0061p, and all the matrix elements of the projector
operators are also of O81p. In this case the amplitude of the
quantum beats is large, enhanced by the near resonance,
and the timescale of these interference effects is similar to
the relaxation timescale. In this case the offdiagonal
correlations, namely the coherence, become large,
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amplified by the (near) resonant denominators, and could
potentially be observable. This situation is akin to the case
of K° - K™ % mixing where the decay products exhibit
quantum beats on the timescales comparable to the
lifetime. This is clearly the same physical process as
described by the LOY theory described in Sec. I
However, in the effective field theory approach the
quantum beats are explicit in the correlation functions of
the mixing fields in both the diagonal and the offdiagonal
components, and in the approach to the thermal stationary
state.

This large amplitude interference effect may open a
window toward observation of synthetic-cosmological
axion mixing via their (anomalous) coupling to photons
with a Chern-Simons term. This pathway is being explored
as a possible mechanism to harness synthetic axion
quasiparticles in condensed matter systems to probe the
cosmological axion [54].

E. Relation to the LOY formulation of mixing

The results of the effective field theory bear a similarity
with those obtained from the LOYtheory in Sec. I, but also
have noteworthy differences. We seek to establish a more
direct correspondence between both formulations
enlightening the reason for the similarities and the origin of
the differences.

The main ingredient to obtain the time evolution of
expectation values and correlation functions is Green’s
function (3.67), which is completely determined by the
solutions of the Langevin equation (3.45) for the
homogeneous case &, = 0, namely

@ a0k” ;tb p w2a0kbMadk” ;tp
Z t

t = tOP L0k~ ;t°Pdt® % O:
0

bZab0k™ 83:122p

In the absence of the self-energy, the solutions are the usual
free field positive and negative frequency components with
constant amplitudes. Since the self-energy is o< g? (with g a
generic coupling), we write

Dadk” ;tb =Cadk” ;tPe-iwaokpt p Cadk™ ;tbeiwaskpt; 63:123b

where the amplitudes C.0k™ ;tP;C,8k™ ;tb are slowly

varying, namely C-;,;C-a ocsoc g2, The equations of motion
(3.122) become

e-iwaokptC adk;t"P — 2iwadkbC adk;t’P p e-idwsdkp-wadkppt Zot ZabOk ™ ;t — toPeiwsdkpat-topCbdk ~;tobdto
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b eiwaskptC adk;t”P b 2iwadkbCadk;t”P b eiswsdkb-wadkppt Zot TabdK ™ ;t — toPe-iwsdkpat-topCodk ™ ;tobdto %4 0;  §3:124b

where in the last terms the sum over b is implicit. Because the terms inside the brackets are slowly varying and of 0dg?p,

each bracket must vanish independently, yielding

C abk;t"p — 2iwadkPC adk;t”P b e-iswbskb-wadkptp Zot Tabdk ™ ;t — tobeiwbskpst-tobChOK™~ ;toPdto %4 0;  §3:125b

and the equation for Cis obtained from (3.125) by replacing was > -wa;b. Let us neglect € in (3.125) for a moment; we will
show below that it is subleading in the long time limit. We introduce

abaiZto — ab_;t - tooPeiwsskpdt-toordtoo; Wab¥st;0 % 0; 63:126b W %t;to % 2w 6kb o ¥

ok

in terms of which (3.125) becomes

C'abk;t”b % —e-idwbdkp-wadkppt Zotdt__do WabYst;toCbdk™ ;toPdto: 83:127p

Upon integration by parts and the use of the initial condition in (3.126), the integral becomes
Zo'dto WabYst;toCbdk Pdt®% Wap¥st;tCodk™ ;th —Zot _ Waszt;tOPdtdo Co0k™ ;t°Pdt;
53:128p 9 ;10

because Woc g2 and C aso g?the second term in Eq. (3.128) is of O8g*p and will be neglected to leading order, yielding

C'18k;t°P % —fW11%t;tC18k” ;tP b eiswiskp-waskpptW12%4t;tC28k” ;thg; 83:129p
C20k;t”P % —feiswaskp-wiskpptW21%5t;tC18K” ;th b W22l4t;tC26k” ;tbg; 83:130p
where
~dk p
Wabst;t % tZO0____ obab8akdo;kPPeiswbskb-kopdt-topdto: 83:131b
VA
0-0 2T 2W k

Comparing the amplitude equations for the positive frequency components (3.129) and (3.130) with the amplitude
equations in the LOY formulation, Eqgs. (2.70) and (2.71) with Wap’st;t given by Eq. (2.74), we see that they are exactly
the same with the identifications ab} ab% ab0 b pabdko; kb ;=;0pP 0

p
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Wtt=W tt;

pko=ad b; E12
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wizk: 3:132

Anw k

Furthermore, this analysis clarifies that the amplitudes C, for the negative frequency components are also present in the
effective field theory framework, but not in the LOY theory. Invoking the long time limit

t €idwbdkb—kobdt-topdto i P

0 t=>loo
yields

—-iWab¥st;t > AabdwbdkpPb; 03:134p

where Aa,0wP is given by Eq. (2.39) with the identification
(3.132). Since in the long time limit Wapst;t -

Aapdwipdkpbb, it follows from the amplitude equations (2.70)
and (2.71) that C , < g*and can be consistently neglected,
thus justifying neglecting € in Eq. (3.125). The equations
for the amplitudes (3.129) and (3.130) become exactly the
same as the set of equations (2.70) and (2.71) in the LOY
theory; therefore, the positive frequency components of
Green’s function Gap0k;tP, Eq. (3.73), is equivalent to the
bracket in Eq. (2.44), explaining the similar projector
operators. However, full Green’s function (3.73) includes
the negative frequency components, because (3.73)
describes the time evolution of fields rather than single
particle amplitudes.

The solutions of the Langevin equation that determine
the expectation values and correlation functions in the
effective field theory, namely (3.55), feature two terms.
The homogeneous term [@M,0k” ;tP] in (3.56) depends on
the initial conditions and corresponds to the solution (2.44)
in the LOY theory, which also depends on the initial
conditions. However, the inhomogeneous term [D%,3k” ;tP]
in (3.56) is independent of initial conditions and is
determined by the noise. It is this inhomogeneous term that
determines the asymptotic behavior of the correlation
functions and exhibits the approach to a thermal stationary
state in the long time limit, while the homogeneous term
decays exponentially at long time, in the same manner as

the amplitudes in the LOY theory. This is one of the major

dw,dkP — kb

— inbdw, kP ~ kob 03:133p

differences between the effective field theory and LOY
theory of mixing.

This analysis highlights the similarities and differences
between the LOY theory and the effective field theory, the
differences are noteworthy: (i) the effective field theory
describes the evolution of fields, including both positive
and negative frequency components of the quasinormal
modes. (i1) The effective field theory description yields the
correlation functions, describes the approach to a thermal
steady state, as well as the emergence and long time
survival of coherence, aspects that are not captured by the
LOY theory. Another important difference is that in the
effective field theory, the quantum beats are manifest in the
approach to thermalization of the correlation function as a
consequence interference of quasinormal modes, in both
the diagonal (populations) and the off-diagonal
(coherence) components of the correlation functions. (iii)
Since the LOY method describes the evolution of the
amplitudes of pure, single particle states, it cannot describe
correlation functions.

IV. SUMMARY OF RESULTS AND CONCLUSIONS

A. Summary of results

We generalized the seminal theory of particle mixing
pioneered by Lee, Ochme, and Yang to study CP violation

in K° - K° mixing. This theory is the cornerstone of all
analysis of CP violation in flavored meson mixing in terms
of an effective non-Hermitian Hamiltonian.

We extend this theory in two ways: (i) to include the
cases in which the mixing degrees of freedom are not mass
degenerate in the absence of perturbations, thereby
relaxing the assumption of CPT invariance, and (ii) to treat
the time evolution without resorting to the approximation
of a time independent non-Hermitian effective
Hamiltonian, and discuss the caveats resulting from this
approximation, which become more important in the
nondegenerate case. The LOY theory is only valid for pure
single (or few) particle states and does not directly allow
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one to obtain correlation functions of the mixing fields, nor
the time evolution of multiparticle states, such as coherent
states, or statistical ensembles. However, its generalization
and extension provide a useful guide to and benchmark for
the effective field theory which we introduce to describe
indirect particle mixing as a consequence of their coupling
to a common set of intermediate states or decay channels
populated in a medium.

The effective action determines the time evolution of the
reduced density matrix after tracing over the degrees of
freedom in the medium described as a bath in thermal
equilibrium. Therefore, it describes the dynamics of field
mixing as a quantum open system. Indirect mixing is a
result of nonvanishing correlations of the operators that
couple the mixing partners to the intermediate states in the
medium, and is manifest in off-diagonal components of the
self-energy. The dynamics of field mixing is determined by
a Langevin-like equation of motion with a dissipative
selfenergy kernel and stochastic noise obeying a
generalized fluctuation dissipation relation. The solution of
the equations of motion determines the dynamics of
expectation values and correlation functions in terms of a
superposition of quasinormal modes in the medium. The
off-diagonal elements of the self-energy and noise kernels
lead to indirect mixing and the emergence of long-lived
coherence, namely off-diagonal components of the two
point correlation functions, even when initially the mixing
fields are uncorrelated. We refer to this phenomenon as
bath-induced coherence. We analyze in detail the cases in
which the masses of the mixing particles are widely
different, namely the nondegenerate case, and when they
are nearly degenerate, which may describe small violations
of CPT. In both cases even if one of the fields features an
initial expectation value and the other does not, the latter
develops an expectation value as a consequence of indirect
mixing. We find the remarkable result that the equal time
two point correlation functions of the fields approach a
thermal stationary state and feature quantum beats as a
consequence of the interference of the quasinormal modes.
In the nondegenerate case these interference effects feature
perturbatively small amplitudes; however, in the
nondegenerate case the amplitude of the quantum beats is
resonantly enhanced and nonperturbative. These
interference effects may provide an observational avenue
to probe cosmological axions in condensed matter systems.

We establish a direct relation between the effective field
theory and the LOY theory of mixing, and highlight
important differences, in particular that the effective field
theory describes emergent, bath-induced long-lived
coherence independent of the initial conditions that
approach asymptotically a stationary thermal state.

B. Conclusions

PHYS. REV. D 109, 036038 (2024)

Indirect field mixing as a consequence of common
intermediate states or decay channels is of great importance
in particle physics, cosmology, and possibly condensed
matter physics. In particle physics indirect field mixing is
at the heart of flavor meson mixing and CP violation in the
standard model. Beyond the standard model it may be a
consequence of intermediate messengers connecting
standard model particles to degrees of freedom beyond
through portals. In cosmology various axionlike particles
may mix through common decay channels into photons
and/or gluons, and in condensed matter synthetic axions,
emergent quasiparticles in materials that feature parity
breaking, such as topological insulators and Weyl
semimetals, may hybridize (mix) with cosmological
axions, thereby offering a way to probe the latter by
exciting the former. Thus, the interdisciplinary relevance of
field mixing motivates the study in this article. An
important result of this study is that the equal time
correlation functions feature quantum beats, as a
consequence of interference of the quasinormal modes in
the medium.

As demonstrated within the LOY theory, quantum beats
are also manifest in the time evolution of the decay
products, which may provide an observational signature of
field mixing. This could be of particular relevance in the
case of axion mixing.

The phenomena revealed by this study, such as
bathinduced emergent coherence, induced condensates,
and quantum beats, are all qualitatively general
independent of the particular couplings or degrees of
freedom in the medium. However, the quantitative form of
the quasinormal modes, the projection operators, and the
amplitudes of the quantum beats clearly will depend on the
particular models and the parameters that define them.

Although we focused on field mixing in the case of
bosonic fields, the general approach is also suitable to
study indirect mixing for fermionic or gauge degrees of
freedom. In the case of fermions the derivation of the
effective field theory would require the extension of the
current study to Grassman fields. One possible avenue
would be to study neutrino mixing in the mass basis, where
the weak interaction vertices feature flavor off-diagonal
terms after diagonalizing a mass matrix in the free part of
the
Lagrangian. An effective field theory description of
indirect mixing (of the mass eigenstates) in a medium in
which vector bosons and charged leptons are in thermal
equilibrium may be a suitable application of the concepts
developed in this study that may be worthwhile to study
further. The effective field theory approach may
complement the study of neutrinos [37] and axions in a
medium including condensates [38] with kinetic or
Boltzman equations and allow one to obtain off-diagonal
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correlation functions, namely coherences, not just
populations. We expect many features of the results found
in this study to be common to other field-mixing scenarios;
for example, we conjecture that the emergence of the long-
lived coherence (off-diagonal correlation functions)
approach to thermalization and quantum beats, as a result
of the interference between (quasi)normal modes in the
medium, is a robust consequence of field mixing that may
yield to novel phenomena, and plausible observational
consequences, worthy of further exploration.

Among further questions that remain to be addressed in
future studies are the issues of renormalizability; in
particular, if the off-diagonal matrix elements of the self-
energy
featuredivergences,renormalizingthemmaynecessitateoftdi
agonal counterterms in the bare Lagrangian. This would
call for direct mixing terms (such as an off-diagonal mass
matrix) to be included in the bare Lagrangian. These
aspects must be studied on a model dependent basis, since
the renormalization aspects are directly related to the type
of operators Oa’zx. Furthermore, we have assumed that

ho%xi % 0; however, a nonvanishing expectation value of
this operator in the medium would require introducing
tadpole terms that may lead to condensates of the fields ¢a.
All of these questions, while interesting in their own right,
remain for further study.
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APPENDIX A: SINGLE SPECIES

In this appendix we gather the results of the
WeisskopfWigner approximation in the simpler case of one
species to highlight the main aspects associated with the
fulfillment of unitarity and the differences between the
exact results via Laplace transform and the Markov
approximation. For a single species ¢ we have

C'o8th % —iXx hdjHIBtPjKICtP; INE

C'«8th % —iCodtPhkjHI3tPjdi; 3A2P

where the sum over Kk is over all the intermediate states
coupled to jdi via H,.
Consider the initial value problem in which at time t % 0

the state of the system JW0t % 0Pi % jdi, i.e.,

PHYS. REV. D 109, 036038 (2024)

Co00P % 1; Cxd0b % O: 0A3p

We can solve Eq. (A2) and then use the solution in Eq. (A1)
to find

CkOtpb % —iZo hkjHidtoPjdiCedtobdto; 0A4p
C $0tb % —Z0' 06t — t°PCy0tOPdtY; dA5b
where
00t - tob % Xk jhdjHijkij2eisEs-Ecbdt-top
t
oo A ’
= M(k )e_’(kll_Enﬁ)(r_"
j-m 0 Pdky;  BAGP
and we introduced the spectral density
pdkob % X« jhdjHijkij2868ko — Exp: 0A7pP

Inserting the solution for C¢dtb into Eq. (A4) one obtains

the time evolution of amplitudes, Cdtb from which we can

computeThe set of equationsjC(dtbj , namely the time
dependent probability toki. (A1) and (A2), together with
the populate the state j

Hermiticity of the interaction Hamiltonian H,, yields
__dtjCodtPj2 b X« jCkdtPj2 % 0; 8A8P d

which along with the initial conditions (A3) leads to the

unitarity relation

jCo0tPj2 b X« jCkOtbj2 %4 1: dA9p
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1. Exact solution of Eq. (A5)

The integro-differential equation (A5) for C4dtb can be
solved by Laplace transform. Introducing the Laplace
variable s and the Laplace transform of Cydtb as CydsP,
with the initial condition C¢0t % 0P % 1, we find

Co0sP % s p Z-oo- dko s piiOkokooo—P Eob-1  JA10P
with solution
jopeds  Z
CopOth % i 2__ mjCodsbest; 0Al1lp

oope
where €> 0P determines the Bromwich contour in the
complex s plane parallel to the imaginary axis to the right
of all the singularities. Writing s % i6-w- iebP we find

o dw e-iwt

CopOth Y4 —Z-c0 21ihW—R-c000 dWO Exppuwd~kekbapic p i€i: GA12P

The integral is carried out by closing the contour in the
lower half w plane. In the free case where pudkob % 0, the

pole is located atperturbation theory there is a complex pole

very neary % —je—> 0, leading to a constantyCe%. Ing

that can be obtained directly by expanding the integral in
the denominator near w % 0. We find

- HokoP r
Ao B ez it
7w Es b
kopi=E 2; 0A13b
where
o k
d(Uf #( U)
AE Y4 PZ- E - o 0¢
kob; 0A14p
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['p % 2nudEeP; 0A15p

Z=0 0Al6p

—pokebos ;

26 % P - dk 6Ep -k P

and P stands for the principal part. The term AEg is
recognized as the energy shift while Iy is seen to be the
decay rate as found from Fermi’s golden rule. The long
time limit of C4dtP is determined by this complex pole near
the origin leading to the asymptotic behavior to leading
order in the coupling

. I,
Cé I =~ Zd)(,’_IAE'l"I(:‘_f dp

0A17p
where
1 d
ZI—Z¢:—[E¢+A
Zo%u 1l % o, bEs  3AI8P

is the wave function renormalization constant.

2. Markov approximation

The time evolution of C4dtbP determined by Eq. (A5) is
slow in the sense that the timescale is determined by a weak

. 2 . .
coupling kernel @ & H7_ This suggests to use a Markovian
approximation in terms of a consistent expansion in
derivatives of Co. For this purpose, let us define

Y

oP %

Wot;t Zo o0t — t90pdto° dA19p
so that
d
odt - t% % __dtoWat;t%p;  Wat;0b % O: dA20p

Integrating by parts in Eq. (A5) we obtain
Zo 60t — t°pCy,0t°pdt0 %4 Wot;tPCy,Oth

d

-Zo'Wot;t%pdt_ 0 Co0t°pdt®: 3A21P
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The second term on the right-hand side is formally of

fourth

. " ~Hj} o1 ~Hj
fore, it can be neglected to
leading orderorder in H,because Wot;t b and C' gobP

gH'2 . Up to; there-(A5) leading order in this Markovian

approximation Eq. becomes

C'¢0tbP p Wodt;tPCodtb % 0O; 0A22b
with the solution
CoOtb % e 'Rt Edtopdto Edth % -iWOt;tp:  JA23pP

we findNote that in general Edtp is complex. To leading
order in H%

ESth % —iZo' o6t — tOpdt®

MokoP

%7 dkoBEs —kob1 e PElt  GA24b

so that

—0o0

o0

Zt z° UlkoP sindko ~ E¢Pt
Eofbdt’ %t~ dk -
0 OaEzb— koP dko ~ EoPt
Z HikoP
i dko—— > 51~ coshiko ~ E4Pt :

—oo Eo " ko

)

P 0A25p

Asymptotically as t -, these integrals approach

5 b b
7 o dkoprke—— 1~ —sindko=—Fe

bt
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—oo O0E¢  kob 0ko Eo¢

S 2 dko @ﬁiﬁ PP; 8A26p
_ MOk . _
Z-dko8Ee — koP2'1 ~ codo T Egbt
0
- 7w 0T - 3 uskPo

0A27p

—TUUOEGP p P - dk OE4 k P

oo

Using these results we find that in the long time limit
Ly
2 dA28p

Z t
—>—iAEpt —t - z¢4;
0

—-iE8tpdt?

where AEg;l¢;z¢ are given by Eqgs. (A14)—(A16) and (A18).
From this we read off
r

CoOthb % Zpe-inEste- 2t; 0A29p

where we approximated e~ 1 - z4 % Z¢ up to second order
in perturbation theory. This is in complete agreement with
the asymptotic result from the exact solution Eq. (A17)

obtained via the Laplace transform.

3. Taking the long time limit before integration
We now compare the results obtained above with those
obtained with yet another approximation: taking the long
time limit in Wot;th in (A22) before integrating this
evolution equation:

0
—_—

#(ko) f
Wot;th! = J—co 0 e-idko-Eeprdtdko 4Z P & pdkob
Pdko— imudEep;  SA30PI
—oo E¢ - ko

therefore, under this approximation the solution of (A22)
is

o
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CopOth % e-inEste-at: 0A31pP

Obviously, the main difference with the solutions (A17)
and (A22) is the lack of wave function renormalization in
(A31). Therefore, we conclude that the Markov
approximation leading to (A22) reproduces the exact result
obtained from Laplace transform; however, the further
approximation of replacing Wat;tb by its infinite time limit
(A30) in the Markovian equation (A22) misses the wave
function renormalization.

4. Unitarity

Because of the exponential decay of the amplitude of the
initial state, the unitarity condition (A9) entails that in the
long time limit

jCkdoobj2 % 1 3A32p

K

We now address how this constraint is fulfilled. The
coefficients Cdtb are given by Eq. (A4).
Introducing the leading order result (A31) [since Zy % 1

b 08H? p] into Eq. (A4) for the coefficients Cy, we find to

leading order

. K.H d)zi.

h
[Cedioobja Y 15T ERVA B BLAEST hOE — E b2 b i GA33b This
R

¢ o« 7

expression can be interpreted as follows. Ifresonant with

the statekijpwithi, areEx ~“populatedEgr, i.c., those
nearlyly centered at” jwith andi is an unstable state, the

states j

amplitude o« 1=l within a band of width Eg®.

Furthermore,
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jCdooP2 % Zh i ;

E, - ko -
0A34b &
P b«
where we have written
1 1 Mo
2. I,
hE¢r—kob2p 2 a%d3E¢R— kob2p rai;  GA35P
0
and in the narrow width limit ', - 0 we replace
Mo R
- 2nddE4 — kob 0A36b

r
hE¢r — kob2 p #t

and used the result (A15) to obtain (A34). Unitarity entails
a probability flow from the initial toward the final excited
states.

APPENDIX B: LEHMANN REPRESENTATION OF
CORRELATION FUNCTIONS

The correlation functions G>2°dx - yb;G<**dx - yb can be

written in an exact Lehmann (spectral) representation that

is useful to include in the equations of motion:

G>abOx — yb % 7__1 Tre-gH,QadxPObdybP;  O6BI1P
X
— 1 -0
G<abOx - yP % ZxTre Hx bAYyPOalXxPp; 0B2p

where Zx % Tre-pHyand Oadx;t” b % eikgte-ip” -x "0ad0PX eip”
X" e-iHg. In terms of a complete set of simultaneous
eigenstates of Hy;P”, namely 8Hy;P~ Pjni % 6Eq; P~ nPjni, and

by inserting the identity in this basis, we find
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1 _
= e BEne
2phnjOad0PjmihmjObd0Pjni;

ZX Xn;m

m G>abOX1 — X2P Y4i6En-E pt1-t2p€-i6P” n—P” mb-6x” 1-x
0B3p

G<abOX1 = X2P Y4 __ e-BEn €-i6En-Emp3ti-t2p€idP” n-P” mb-3x” 1-x" 2phNjObA0PjmMihmj0ad0Pjni: Z,

Xn;m

These representations may be written in terms of spectral densities, by introducing

p> ~ 02mba -gen 0

abg 0 P%  zyXnm

p< 7 0O2mba 860 O
GO pY
Z, Xnim

in terms of which

ab0 1
1
k ;k ____ e n
k ;k __ e n
G x X

0] 6- - 857 -"-"
hj20 bjihjb3pjio® ™ bp 5 am  pp
0] 6-- 57 -"-"
hj°5 bjihj6 pjid° "  m™pb 3 " mpb
d4k p> -) —ikodti—t2b ik” -8x” 1-x" 2b

2b % 7062mba abGo0 P

d k

4 < ” —iko8ti—t2P ik -8X” 1-x" 2P P

k;ke e
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B8

GabOx1 x2bp %4 Z 021P4ab0ko; kPe e : o b

Relabeling n <> m and using the kodelta function in (B6), we find the generalized Kubo-Martin-Schwinger condition [55]
p<abOko;k” P % e-kop>abdko;k” b: dB9p

Introducing the spectral density

pabOKko;K” b % psabBko;k” b —p<abdko:k” b % psabdko;K” PI1 - e-piob; 8B10P

it follows that

D Bko; " b % 31 b ndkoPbpasBko; < b; pasdko;” b % ndkobpasdko; < b; 6B11P

where
1

ndkob % e — 1o: dB12p

Therefore, the spatial Fourier transform of the self-energy matrix (3.37) and the noise kernel (3.36) can be written as

ZabOk;t - tob % —iZ ____ddk2mobpabdko;kPe-ikost-tob; 0B13p

N abdk;t — tob % 12Z ddk2mobpabdko;kbcothB___2koe-ikost-top: 0B14p

This is the general relation between the self-energy and the noise correlation function commonly determined by the spectral
density pandko;kpP, a direct consequence of the fluctuation-dissipation relation as a result of the bath being in thermal
equilibrium. spectral density Assuming rotational invariance implies that pasdko;k” P % pandko; kP, in particular the diagonal
matrix elements of the

paaéko;kb % & Zxba Xn;m e—BEnjhnjOaGODJmijz%Séko - 0Em — EnPb —88ko— 8En— EmPb838k™ — 8P” m— P~ nbb
2n
Y% —paa0d-ko;kP;  no sum over a: dB15p

The assumption of rotational invariance also applies to APPENDIX C: LAPLACE GREEN’S FUNCTION
correlation functions of pseudoscalar operators (relevant
for axions) in a thermal equilibrium density matrix that is
invariant under rotations because these are bilinear in the
operators and, hence, are invariant under k™ >-k” . M 7 Mi121

Consider the matrix
M M aCl1p

M2212;
We note that because the operators O, are Hermitian, it

follows thatab 0 3pPab k(}baééko;k;kbbb, % Pha K03 ;kp and, whose (right and left) inverse is

consequently, p Ok ;kP % M_1% det 1%M-MM2221 -MM1112

oC2p
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In terms of the variables (2.31)—(2.33) it follows that

M % M~ pp2yp2a M~ p2—Pp2 a;

det’sM % M~ - _D2M™ p D__2; oC3p

where we used the relation (2.34).
Therefore, the inverse of the matrix (C1) is given by

o0C4p

M-1¥adet_____1%BMM™ 1- _D2 ay —Ba:

Writing

PHYS. REV. D 109, 036038 (2024)

D% M” pD2M™ -D2M"~ 1-p2- M~ 1p p2

yields
M-1% M —p2p M PppD2; 1 oC5p
P P%2_81 Rp;
with
a
B R?% 1;
RV -, 3C6b

where the last equality follows from the identity (2.34).
Therefore, the matrices P are projectors, namely

P2%P; oC7p

hence, their eigenvalues are 0,1.

M- %12.M b P2 p Lom - Dy

[1] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440
(1977); Phys. Rev. D 16, 1791 (1977).

[2] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).

[3] F. Wilczek, Phys. Rev. Lett. 40,279 (1978).

[4] J. Preskill, M. B. Wise, and F. Wilczek, Phys. Lett. 120B,
127 (1983).

[5] L.F. Abbott and P. Sikivie, Phys. Lett. 120B, 133 (1983).

[6] M. Dine and W. Fischler, Phys. Lett. 120B, 137 (1983).

[7] T.Banks and M. Dine, Nucl. Phys. B479, 173 (1996).

[8] A. Ringwald, Phys. Dark Universe 1, 116 (2012).

[9] D.J. E. Marsh, Phys. Rep. 643, 1 (2016); F. Chadha-Day, J.
Ellis, and D. J. E. Marsh, Sci. Adv. 8, abj3618 (2022); D. J.
E. Marsh, arXiv:1712.03018; A. Diez-Tjedor and D. J. E.
Marsh, arXiv:1702.02116; J. E. Kim and D. J. E. Marsh,
Phys. Rev. D 93, 025027 (2016).

[10] P. Sikivie, Rev. Mod. Phys. 93, 015004 (2021).

[11] P. Sikivie, Lect. Notes Phys. 741, 19 (2008).

[12] I. I. Bigi and A. 1. Sanda, CP Violation (Cambridge
University Press, Cambridge UK, 2009).

[13] G. C. Branco, L. Lavoura, and J. P. Silva, CP Violation
(Oxford University Press, Oxford, UK, 1999).

[14] U. Nierste, arXiv:0904.1869.

[15] See the reviews on D°-D~ °mixing by D. M. Asner and A.
J. Schwartz, CP Violation in the Quark Sector by T. Gershon
and Y. Nir, in The review of particle physics, R. L. Workman
et al. (Particle Data Group), Prog. Theor. Exp.

Phys. 2022, 083C01 (2022).

[16] A. Pilaftsis, Nucl. Phys. B504, 61 (1997).

[17] O. Kittel and A. Pilaftsis, Nucl.
B856, 682
(2012).

[18] S. Cao, W. Huang, and D. Boyanovsky, Phys. Rev. D 108,
025012 (2023).

[19] F. Wilczek, Phys. Rev. Lett. 58, 1799 (1987); Nature
(London) 458, 129 (2009).

[20] R. Li, J. Wang, X.-L. Qi, and S.-C. Zhang, Nat. Phys. 6, 284
(2010); X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev.
B 78, 195424 (2008).

[21] D. M. Nenno, C. A. C. Garcia, J. Gooth, C. Felser, and P.
Narang, Nat. Rev. Phys. 2, 682 (2020).

[22] A. Sekine and K. Nomura, J. Appl. Phys. 129, 141101
(2021).

[23] J. Gooth et al., Nature (London) 575, 315 (2019).

[24] J. Yu, B.J. Wieder, and C.-X. Liu, Phys. Rev. B 104, 174406
(2021).

[25] L. Shaposhnikov, M. Mazanov, D. A. Bobylev, F. Wilczek,
and M. A. Gorlach, Phys. Rev. B 108, 115101 (2023).

[26] H. S. Reising, B. Fraser, S. M. Griffin, S. Bandyopadhyay,
A. Mabhabir, S.-Wo. Cheong, and Al. V. Balatsky, Phys. Rev.
Res. 3, 033236 (2021), A. Balatsky and B. Fraser,
arXiv:2302.02174.

Phys.

036038-43


https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0550-3213(96)00457-9
https://doi.org/10.1016/0550-3213(96)00457-9
https://doi.org/10.1016/0550-3213(96)00457-9
https://doi.org/10.1016/j.dark.2012.10.008
https://doi.org/10.1016/j.dark.2012.10.008
https://doi.org/10.1016/j.dark.2012.10.008
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1126/sciadv.abj3618
https://doi.org/10.1126/sciadv.abj3618
https://doi.org/10.1126/sciadv.abj3618
https://arxiv.org/abs/1712.03018
https://arxiv.org/abs/1702.02116
https://doi.org/10.1103/PhysRevD.93.025027
https://doi.org/10.1103/PhysRevD.93.025027
https://doi.org/10.1103/PhysRevD.93.025027
https://doi.org/10.1103/PhysRevD.93.025027
https://doi.org/10.1103/RevModPhys.93.015004
https://doi.org/10.1103/RevModPhys.93.015004
https://doi.org/10.1103/RevModPhys.93.015004
https://doi.org/10.1007/978-3-540-73518-2
https://doi.org/10.1007/978-3-540-73518-2
https://doi.org/10.1007/978-3-540-73518-2
https://arxiv.org/abs/0904.1869
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1016/S0550-3213(97)00469-0
https://doi.org/10.1016/S0550-3213(97)00469-0
https://doi.org/10.1016/S0550-3213(97)00469-0
https://doi.org/10.1016/S0550-3213(97)00469-0
https://doi.org/10.1016/j.nuclphysb.2011.11.022
https://doi.org/10.1016/j.nuclphysb.2011.11.022
https://doi.org/10.1016/j.nuclphysb.2011.11.022
https://doi.org/10.1016/j.nuclphysb.2011.11.022
https://doi.org/10.1016/j.nuclphysb.2011.11.022
https://doi.org/10.1103/PhysRevD.108.025012
https://doi.org/10.1103/PhysRevD.108.025012
https://doi.org/10.1103/PhysRevD.108.025012
https://doi.org/10.1103/PhysRevD.108.025012
https://doi.org/10.1103/PhysRevD.108.025012
https://doi.org/10.1103/PhysRevD.108.025012
https://doi.org/10.1103/PhysRevLett.58.1799
https://doi.org/10.1103/PhysRevLett.58.1799
https://doi.org/10.1103/PhysRevLett.58.1799
https://doi.org/10.1038/458129d
https://doi.org/10.1038/458129d
https://doi.org/10.1038/458129d
https://doi.org/10.1038/458129d
https://doi.org/10.1038/458129d
https://doi.org/10.1038/nphys1534
https://doi.org/10.1038/nphys1534
https://doi.org/10.1038/nphys1534
https://doi.org/10.1038/nphys1534
https://doi.org/10.1038/nphys1534
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1103/PhysRevB.78.195424
https://doi.org/10.1038/s42254-020-0240-2
https://doi.org/10.1038/s42254-020-0240-2
https://doi.org/10.1038/s42254-020-0240-2
https://doi.org/10.1063/5.0038804
https://doi.org/10.1063/5.0038804
https://doi.org/10.1063/5.0038804
https://doi.org/10.1063/5.0038804
https://doi.org/10.1063/5.0038804
https://doi.org/10.1038/s41586-019-1630-4
https://doi.org/10.1038/s41586-019-1630-4
https://doi.org/10.1038/s41586-019-1630-4
https://doi.org/10.1038/s41586-019-1630-4
https://doi.org/10.1103/PhysRevB.104.174406
https://doi.org/10.1103/PhysRevB.104.174406
https://doi.org/10.1103/PhysRevB.104.174406
https://doi.org/10.1103/PhysRevB.104.174406
https://doi.org/10.1103/PhysRevB.104.174406
https://doi.org/10.1103/PhysRevB.104.174406
https://doi.org/10.1103/PhysRevB.104.174406
https://doi.org/10.1103/PhysRevB.108.115101
https://doi.org/10.1103/PhysRevB.108.115101
https://doi.org/10.1103/PhysRevB.108.115101
https://doi.org/10.1103/PhysRevB.108.115101
https://doi.org/10.1103/PhysRevResearch.3.033236
https://doi.org/10.1103/PhysRevResearch.3.033236
https://doi.org/10.1103/PhysRevResearch.3.033236
https://doi.org/10.1103/PhysRevResearch.3.033236
https://doi.org/10.1103/PhysRevResearch.3.033236
https://arxiv.org/abs/2302.02174

SHUYANG CAO and DANIEL BOYANOVSKY

[27] J. Wang, C. Lei, A. H. MacDonald, and C.
Binek, arXiv:1901.08536.

[28] E. Mottola, A. V. Sadofyev, and A. Stergiou, arXiv:2310
.08629.

[29] T. D. Lee, R. Oehme, and C. N. Yang, Phys. Rev. 106, 340
(1957).

[30] V. Weisskopf and E. Wigner, Z. Phys. 63, 54 (1930); 65, 18
(1930).

[31] R. G. Sachs, Ann. Phys. (N.Y.) 22, 239 (1963).

[32] P. K. Kabir, The CP Puzzle (Academic Press, London,
1968).

[33] C. B. Chiu and E. C. G. Sudarshan, Phys. Rev. D 42, 3712
(1990).

[34] D. Karamitros, T. McKelvey, and A. Pilaftsis, Phys. Rev. D
108, 016006 (2023).

[35] C. Kading and M. Pitschmann, Phys. Rev. D 107, 016005
(2023); Universe 8, 601 (2022).

[36] S. Cao and D. Boyanovsky, Phys. Rev. D 107, 063518
(2023).

[37] K. Kainulainen and H. Parkkinen, arXiv:2309.00881;
arXiv:2310.07776.

[38] W.-Y. Ai, A. Beniwal, A. Maggi, and D. J. E. Marsh, J. High
Energy Phys. 02 (2024) 122.

[39] S. Cao and D. Boyanovsky, Phys. Rev. D 106, 123503
(2022). [40] J. Schwinger, J. Math. Phys. (N.Y.) 2, 407
(1961).

[41] L. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964), https://
inspirehep.net/literature/3567.

[42] P. M. Bakshi and K. T. Mahanthappa, J. Math. Phys. (N.Y.)
4,1(1963); 4, 12 (1963).

[43] E. Calzetta and B.-L. Hu, Nonequilibrium Quantum Field
Theory, Cambridge Monographs on Mathematical Physics
(Cambridge University Press, Cambridge, England, 2008).

[44] R. P Feynman and F. L. Vernon, Ann. Phys. (N.Y.) 24, 118
(1963).

[45] L. Fonda, G. C. Ghirardi, and A. Rimini, Rep. Prog. Phys.
41, 587 (1978).

[46] L. Maiani and M. Testa, Ann. Phys. (N.Y.) 263, 353 (1998);
C. Bernardini, L. Maiani, and M. Testa, Phys. Rev. Lett. 71,
2687 (1993).

[47] B. Misra and E. C. G. Sudarshan, J. Math. Phys. (N.Y.) 18,
756 (1977); C. B. Chiu, B. Misra, and E. C. G. Sudarshan,
Phys. Rev. D 16, 520 (1977); Phys. Lett. 117B, 34
(1982).

[48] H. Nakazato, M. Namiki, and S. Pascazio, Int. J. Mod. Phys.
B 10, 247 (1996).

[49] D. Boyanovsky, M. D’attanasio, H. J. de Vega, R. Holman,
and D.-S. Lee, Phys. Rev. D 52, 6805 (1995).

[50] D. Boyanovsky, Ann. Phys. (N.Y.) 405, 176 (2019).

[51] M. O. Scully and M.S.  Zubairy,

QuantumOptics
(Cambridge University Press, Cambridge, UK, 1997).

[52] E. Calzetta, A. Roura, and E. Verdaguer, Physica

(Amsterdam) 319A, 188 (2003).

PHYS. REV. D 109, 036038 (2024)
[53] P. C. Martin, E. D. Siggia, and H. A. Rose, Phys. Rev. A 8,
423 (1973).
[54] S. Cao (to be published).
[55] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957); P. C. Martin and
J. Schwinger, Phys. Rev. 115, 1342 (1959).

036038-44


https://arxiv.org/abs/1901.08536
https://arxiv.org/abs/2310.08629
https://arxiv.org/abs/2310.08629
https://arxiv.org/abs/2310.08629
https://doi.org/10.1103/PhysRev.106.340
https://doi.org/10.1103/PhysRev.106.340
https://doi.org/10.1103/PhysRev.106.340
https://doi.org/10.1103/PhysRev.106.340
https://doi.org/10.1007/BF01336768
https://doi.org/10.1007/BF01336768
https://doi.org/10.1007/BF01336768
https://doi.org/10.1007/BF01397406
https://doi.org/10.1007/BF01397406
https://doi.org/10.1007/BF01397406
https://doi.org/10.1007/BF01397406
https://doi.org/10.1016/0003-4916(63)90055-1
https://doi.org/10.1016/0003-4916(63)90055-1
https://doi.org/10.1016/0003-4916(63)90055-1
https://doi.org/10.1103/PhysRevD.42.3712
https://doi.org/10.1103/PhysRevD.42.3712
https://doi.org/10.1103/PhysRevD.42.3712
https://doi.org/10.1103/PhysRevD.42.3712
https://doi.org/10.1103/PhysRevD.42.3712
https://doi.org/10.1103/PhysRevD.108.016006
https://doi.org/10.1103/PhysRevD.108.016006
https://doi.org/10.1103/PhysRevD.108.016006
https://doi.org/10.1103/PhysRevD.108.016006
https://doi.org/10.1103/PhysRevD.108.016006
https://doi.org/10.1103/PhysRevD.107.016005
https://doi.org/10.1103/PhysRevD.107.016005
https://doi.org/10.1103/PhysRevD.107.016005
https://doi.org/10.1103/PhysRevD.107.016005
https://doi.org/10.1103/PhysRevD.107.016005
https://doi.org/10.1103/PhysRevD.107.016005
https://doi.org/10.3390/universe8110601
https://doi.org/10.3390/universe8110601
https://doi.org/10.3390/universe8110601
https://doi.org/10.1103/PhysRevD.107.063518
https://doi.org/10.1103/PhysRevD.107.063518
https://doi.org/10.1103/PhysRevD.107.063518
https://doi.org/10.1103/PhysRevD.107.063518
https://doi.org/10.1103/PhysRevD.107.063518
https://doi.org/10.1103/PhysRevD.107.063518
https://arxiv.org/abs/2309.00881
https://arxiv.org/abs/2309.00881
https://arxiv.org/abs/2309.00881
https://arxiv.org/abs/2310.07776
https://doi.org/10.1007/JHEP02(2024)122
https://doi.org/10.1007/JHEP02(2024)122
https://doi.org/10.1007/JHEP02(2024)122
https://doi.org/10.1103/PhysRevD.106.123503
https://doi.org/10.1103/PhysRevD.106.123503
https://doi.org/10.1103/PhysRevD.106.123503
https://doi.org/10.1103/PhysRevD.106.123503
https://doi.org/10.1103/PhysRevD.106.123503
https://doi.org/10.1103/PhysRevD.106.123503
https://doi.org/10.1063/1.1703727
https://doi.org/10.1063/1.1703727
https://doi.org/10.1063/1.1703727
https://doi.org/10.1063/1.1703727
https://doi.org/10.1063/1.1703727
https://inspirehep.net/literature/3567
https://inspirehep.net/literature/3567
https://inspirehep.net/literature/3567
https://inspirehep.net/literature/3567
https://doi.org/10.1063/1.1703883
https://doi.org/10.1063/1.1703883
https://doi.org/10.1063/1.1703883
https://doi.org/10.1063/1.1703883
https://doi.org/10.1063/1.1703883
https://doi.org/10.1063/1.1703879
https://doi.org/10.1063/1.1703879
https://doi.org/10.1063/1.1703879
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1088/0034-4885/41/4/003
https://doi.org/10.1088/0034-4885/41/4/003
https://doi.org/10.1088/0034-4885/41/4/003
https://doi.org/10.1088/0034-4885/41/4/003
https://doi.org/10.1088/0034-4885/41/4/003
https://doi.org/10.1006/aphy.1997.5762
https://doi.org/10.1006/aphy.1997.5762
https://doi.org/10.1006/aphy.1997.5762
https://doi.org/10.1006/aphy.1997.5762
https://doi.org/10.1006/aphy.1997.5762
https://doi.org/10.1103/PhysRevLett.71.2687
https://doi.org/10.1103/PhysRevLett.71.2687
https://doi.org/10.1103/PhysRevLett.71.2687
https://doi.org/10.1103/PhysRevLett.71.2687
https://doi.org/10.1103/PhysRevLett.71.2687
https://doi.org/10.1103/PhysRevLett.71.2687
https://doi.org/10.1063/1.523304
https://doi.org/10.1063/1.523304
https://doi.org/10.1063/1.523304
https://doi.org/10.1063/1.523304
https://doi.org/10.1063/1.523304
https://doi.org/10.1063/1.523304
https://doi.org/10.1103/PhysRevD.16.520
https://doi.org/10.1103/PhysRevD.16.520
https://doi.org/10.1103/PhysRevD.16.520
https://doi.org/10.1103/PhysRevD.16.520
https://doi.org/10.1103/PhysRevD.16.520
https://doi.org/10.1016/0370-2693(82)90868-1
https://doi.org/10.1016/0370-2693(82)90868-1
https://doi.org/10.1016/0370-2693(82)90868-1
https://doi.org/10.1016/0370-2693(82)90868-1
https://doi.org/10.1142/S0217979296000118
https://doi.org/10.1142/S0217979296000118
https://doi.org/10.1142/S0217979296000118
https://doi.org/10.1142/S0217979296000118
https://doi.org/10.1142/S0217979296000118
https://doi.org/10.1103/PhysRevD.52.6805
https://doi.org/10.1103/PhysRevD.52.6805
https://doi.org/10.1103/PhysRevD.52.6805
https://doi.org/10.1103/PhysRevD.52.6805
https://doi.org/10.1016/j.aop.2019.03.012
https://doi.org/10.1016/j.aop.2019.03.012
https://doi.org/10.1016/j.aop.2019.03.012
https://doi.org/10.1016/j.aop.2019.03.012
https://doi.org/10.1016/S0378-4371(02)01521-2
https://doi.org/10.1016/S0378-4371(02)01521-2
https://doi.org/10.1016/S0378-4371(02)01521-2
https://doi.org/10.1016/S0378-4371(02)01521-2
https://doi.org/10.1016/S0378-4371(02)01521-2
https://doi.org/10.1103/PhysRevA.8.423
https://doi.org/10.1103/PhysRevA.8.423
https://doi.org/10.1103/PhysRevA.8.423
https://doi.org/10.1103/PhysRevA.8.423
https://doi.org/10.1103/PhysRevA.8.423
https://doi.org/10.1103/PhysRevA.8.423
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1103/PhysRev.115.1342
https://doi.org/10.1103/PhysRev.115.1342
https://doi.org/10.1103/PhysRev.115.1342
https://doi.org/10.1103/PhysRev.115.1342

