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We introduce an effective field theory to study indirect mixing of two fields induced by their couplings 

to a common decay channel in a medium. The extension of the method of Lee, Oehme, and Yang, the 

cornerstone of analysis of CP violation in flavored mesons, to include the mixing of particles with different 

masses provides a guide to and benchmark for the effective field theory. The analysis reveals subtle caveats 

in the description of mixing in terms of the widely used non-Hermitian effective Hamiltonian, more acute 

in the nondegenerate case. The effective field theory describes the dynamics of field mixing where the 

common intermediate states populate a bath in thermal equilibrium, as an open quantum system. We obtain 

the effective action up to second order in the couplings, where indirect mixing is a consequence of 

offdiagonal self-energy components. We find that if only one of the mixing fields features an initial 

expectation value, indirect mixing induces an expectation value of the other field. The equal time two point 

correlation functions exhibit an asymptotic approach to a stationary thermal state, and the emergence of 

long-lived bath-induced coherence which displays quantum beats as a consequence of interference of 

quasinormal modes in the medium. The amplitudes of the quantum beats are resonantly enhanced in the 

nearly degenerate case with potential observational consequences. 
DOI: 10.1103/PhysRevD.109.036038 

I. INTRODUCTION 

The dynamics of particle mixing induced by their 

coupling to a common intermediate state or decay channel 

is of broad fundamental interest within the context of CP 
violation and/or baryogenesis. Field mixing may also be a 

consequence of “portals,” connecting standard model 

degrees of freedom to hypothetical ones via mediator 

particles beyond the standard model. Such portals may lead 

to mixing between fields on different sectors of the portal 

via the exchange of these mediators, namely a common 

intermediate state to which fields on different sides of the 

portals couple. 

Axions, CP-odd pseudoscalar particles proposed in 

extensions beyond the standard model as a possible 

solution of the strong CP problem in quantum 

chromodynamics (QCD) [1–3], could be a compelling cold 

dark matter candidate [4–6]. However, various extensions 

beyond the standard model can include axionlike particles 

with properties similar to the QCD axion which may also 

be suitable dark matter candidates [7–11]. Just as the QCD 
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axion these axionlike particles couple to photons and 

gluons via Chern-Simons terms such as E⃗ · B⃗ in the case 

of photons, or G˜ μν;bGμν;b in the case of gluons, as a 

consequence of the chiral anomaly. Their mutual coupling 

to photons and gluons entails that the various “flavors” of 

axions or axionlike particles may mix via a common 

intermediate state of photons and gluons. For example, 

processes such as A ↔γγ ↔ A0, with A, A0 being different 

axionlike particles, yield off-diagonal self-energy 

components ΣA;A0 , hence an indirect mixing via the 

common intermediate state. 

A paradigmatic example in vacuum is the mixing of K0 − 

K¯ 0 or flavored meson-antimesons as a consequence of 

common intermediate states of two or three pions (or the 

weak interaction box diagram), providing dynamical 

observational signatures of CP violation [12–17]. 
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Field mixing via a common intermediate state in a 

thermal medium has recently been studied [18] within the 

context of axion-neutral pion mixing after the QCD phase 

transition, since the neutral pion couples to two photons 

precisely via a Uð1Þ Chern-Simons term as a consequence 

of the chiral anomaly. 

Recently, it has been realized that topological materials 

and/or Weyl semimetals also feature emergent axionlike 

quasiparticles as collective excitations, which couple to 

electromagnetism via processes akin to the U(1) anomaly 

[19–28]. Therefore, these “synthetic” axions may mix with 

the cosmological axion in the same manner as pions or 

generic axionlike particles in the early universe. 

This possibility motivates the study of mixing between the 

cosmological and the synthetic axions, which may yield 

alternative experimental avenues to probe cosmological 

axions with condensed matter experiments. 

A. Motivations and objectives 

Motivated by the ubiquity of field mixing and its broad 

relevance in particle physics, cosmology, and possibly in 

condensed matter physics, we extend the preliminary study 

of Ref. [18] and develop a more general effective field 

theory framework to study mixing as a consequence of 

coupling of different fields to common intermediate states 

or decay channels. We distinguish direct mixing as a result 

of explicit mixing terms in the Lagrangian, such as 

offdiagonal mass matrices or kinetic mixing terms, from 

the indirect mixing via common intermediate states leading 

to off-diagonal self-energy components, such as flavored 

meson mixing, for example, K0 − K¯ 0. Our study is focused 

on this latter, indirect mixing case. 

The theory of K0 − K¯ 0 mixing via weak interaction 

intermediate states was advanced by Lee et al. [29] in their 

pioneering study of CP violation. It is based on the theory 

of atomic linewidths developed by Weisskopf and Wigner 

[30–33], and it is the cornerstone of the analysis of mixing 

dynamics of flavored mesons and CP violation [12–15] in 

terms of an effective non-Hermitian Hamiltonian. 

Our main focus is to develop an effective field theory 

framework to study the dynamics of indirect mixing when 

the particles in the intermediate states are components of a 

thermal bath as is the case in cosmology. An advantage of 

the effective field theory formulation of mixing is that it 

allows one to obtain correlation functions in the medium, 

to understand their approach to thermalization, and to 

observe the emergence of long-lived coherence, namely 

off-diagonal components of the two point field correlation 

function that survives in the long time limit even when 

initially the different fields are uncorrelated. 

The preliminary study of Ref. [18] focused on the 

particular case of axion-neutral pion mixing near the QCD 

phase transition where the axion was assumed to be a light 

or ultralight CP-odd scalar. In this case there is a large mass 

difference between the mixing partners leading to 

suppression of interference effects. Furthermore, axions 

and neutral pions couple to photons with the same operator 

(E⃗ · B⃗ ) but with different couplings, making this a 

particular case. 

Instead, here we contemplate more general scenarios 

including that of degenerate or nearly degenerate mixing 

fields and coupling to intermediate states with different 

operators with nonvanishing correlations in the thermal 

bath, thereby leading to mixing via off-diagonal self-

energy matrix elements. This more general situation may 

be relevant for CP violation in the early universe and yields 

far richer dynamics including nonperturbative interference 

phenomena in the form of quantum beats that plays an 

important role in the approach to thermalization and the 

dynamics of coherence, with possible observational 

consequences. 

Unlike the case of direct mixing, such as neutrino mixing 

via an off-diagonal mass matrix, or kinetic mixing, indirect 

mixing in a medium, as is relevant in cosmology, to the best 

of our knowledge has not yet been studied at a deeper level. 

Our objectives are (i) to provide a consistent effective 

field theory framework to study the dynamics of mixing via 

intermediate states in equilibrium in a medium; (ii) to apply 

this formulation to study the nonequilibrium dynamics of 

expectation values and correlation functions of the mixing 

fields; and (iii) to focus in particular on the approach to 

thermalization and the emergence and long time survival 

of coherence even when initially the mixing fields are 

uncorrelated. 

The equations of motion obtained from the effective 

field theory allow one to study the dynamical evolution of 

expectation values and correlation functions and the 

emergence and evolution of coherence, hence providing an 

approach to the study of coherence that complements the 

quantum master equation [34–36]. We also recognize that 

the effective field theory approach to mixing may also be 

extended to the case of neutrinos in the mass basis, and may 

provide an alternative framework to study the quantum 

kinetics of massive neutrinos in the medium [37]. More 

recentlyaquantumfieldtheoreticalapproachtoaBoltzmann 

equation for axions consistently including misaligned 

condensateshasbeenintroducedinRef.[38].Theformulation

of an effective field theory of mixing developed in this 

study 

mayprovideacomplementaryapproachwhendifferenttypes 

of axions mixing indirectly via a common intermediate 

state are considered. 

In this article our main objective is to develop the 

theoretical framework in general, without specifying 
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particular models or applications, which will be the subject 

of future study. 

B. Brief summary of results 

As a prelude to developing the effective field theory 

framework, in Sec. II we extend the Lee-Oehme-Yang 

(LOY) theory of mixing to the case of nondegenerate 

mixing particles and with generic couplings to intermediate 

states, and solve exactly the equations for the amplitudes, 

which goes beyond the usual approach based on a non- 

HermitianeffectiveHamiltonian[12–15].Thegeneralization 

to the nearly degenerate and nondegenerate cases provides 

an extension to analyze the dynamics of mixing relaxing 

the assumption of validity of CPT. This study serves as a 

guide and benchmark toward establishing the effective 

field theory framework, and also reveals interesting 

caveats of the usual approach with a non-Hermitian 

Hamiltonian, which become more important in the 

nondegenerate case and may be relevant in precision 

measurements of CP violation. 

Appendix A discusses the origin of some of these caveats 

in the case of a single species. 

In Sec. III we consider indirect mixing of two bosonic 

fields induced by their couplings to a common decay 

channel in the medium. These common intermediate states 

populate a bath in thermal equilibrium. 

We generalize the methods of Refs. [18,39] to obtain the 

effective action in the in-in or Schwinger-Keldysh 

formulation of nonequilibrium quantum field theory [40–
44] up to second order in couplings. This effective action 

determines the time evolution of the reduced density matrix 

upon tracing the bath degrees of freedom, and it describes 

the dynamics of mixing as an open quantum system. The 

equations of motion obtained from the effective action are 

stochastic with self-energy and noise kernels obeying a 

generalized fluctuation dissipation relation. Indirect 

mixing is a consequence of off-diagonal self-energy 

components arising from the correlations of the coupling 

operators in the bath. The solution of the equations of 

motion yield the time evolution of expectation values and 

correlation functions in terms of superpositions of 

quasinormal modes in the medium. The cases of 

nondegenerate and nearly degenerate fields are studied in 

detail. We find that if only one of the fields has an initial 

nonvanishing expectation value, indirect mixing induces 

an expectation value for the other field. Furthermore, the 

equal time two points correlation function approaches a 

stationary thermal state independent of the initial 

conditions and even when initially the fields are 

uncorrelated exhibit an emergent long-lived bath-induced 

coherence, namely off-diagonal components. Both 

diagonal and off-diagonal correlation functions display 

quantum beats, as a consequence of interference of 

quasinormal modes. The amplitudes of the quantum beats 

are resonantly enhanced in the case of nearly degenerate 

fields. In this section we establish the correspondence 

between the LOY formulation of particle mixing and the 

effective field theory of mixing. 

Several appendixes supplement technical details. 

Appendix A discusses the caveats associated with a 

nonHermitian Hamiltonian for a single species. Section IV 

summarizes the main results and conclusions. 

II. THE LEE-OEHME-YANG THEORY OF MIXING 

We begin by extending and generalizing the formulation 

of meson mixing pioneered by Lee et al. [29,30] to analyze 

CP violation in the kaon system, which is based on the 

Weisskopf-Wigner theory of atomic linewidths [30], to the 

case when particles of different masses mix via a common 

set of intermediate states, or common decay channel. Such 

a generalization will lead us to the formulation of an 

effective quantum field theory of mixing including the case 

when the particles in the intermediate states constitute a 

medium as is relevant in cosmology. 

Consider a system whose Hamiltonian H is given as a 

soluble part H0 and a perturbation HI: H ¼ H0 þ HI. 

The time evolution of states in the interaction picture of H0 

is given by 

d 

i jΨðtÞiI ¼ HIðtÞjΨðtÞiI; ð2:1Þ dt 

where the interaction Hamiltonian in the interaction picture 

is 

 HIðtÞ ¼ eiH0tHIe−iH0t; ð2:2Þ 

where HI is proportional to a set of couplings assumed to be 

small. 

Equation (2.1) has the formal solution jΨðtÞiI ¼ 

Uðt;t0ÞjΨðt0ÞiI; ð2:3Þ 

where the time evolution operator in the interaction picture 

Uðt;t0Þ obeys 

d 

idt Uðt;t0Þ ¼ HIðtÞUðt;t0Þ: ð2:4Þ Now we 

can expand jΨðtÞiI ¼ Xn CnðtÞjni; ð2:5Þ 

where jni form a complete set of orthonormal states chosen 

to be eigenfunctions of H0, namely H0jni ¼ Enjni; in the 

quantum field theory case these are many-particle Fock 
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states. From Eq. (2.1) and the expansion (2.5) one finds the 

equation of motion for the coefficients CnðtÞ, namely 

 C˙ nðtÞ ¼ −iXm CmðtÞhnjHIðtÞjmi: ð2:6Þ 

Although this equation is exact, it generates an infinite 

hierarchy of simultaneous equations when the Hilbert 

space of states spanned by fjnig is infinite dimensional. 

However, this hierarchy can be truncated by considering 

the transition between states connected by the interaction 

Hamiltonian at a given order in HI. 

Let us consider quantum states jϕ1i;jϕ2i associated with 

the meson fields ϕ1;2, respectively; these may be single 

particle momentum eigenstates of the Fock quanta of these 

fields, and focus on the case when the interaction 

Hamiltonian does not couplea I b . Instead, these states are 

connecteddirectly the states jϕ1i;jϕ2i, namely hϕ jH jϕ i ¼ 

0 

indirect coupling through the common set of 

intermediatejto a common set of intermediate statesϕ1The 

states;2i ↔ jfκgijϕ≠1ijϕand1;2ij, as depicted in Fig.ϕ2i mix 

as a consequence of thisjfκgi1by. HI, namely 

states, namely jϕ1;2i ↔ jfκgi ↔ jϕ1;2i, yielding an 

offdiagonal self-energy matrix. If HI has nonvanishing 

matrix elements hϕijHIjϕji ≠ 0, we assume that these have 

been absorbed into terms in H0 and only consider 

transitions betweenIn the subspacejϕii and other 

statesjϕ1i;jϕ2i;jfjκκigi≠the quantum state in thejϕ1;2i 

mediated by HI. 

interaction picture is given by jΨiIðtÞ ¼ C1ðtÞjϕ1i þ 

C2ðtÞjϕ2i þ Xfκg CκðtÞjκi; ð2:7Þ 

and the set of equations (2.6) becomes 

 C˙ 1ðtÞ ¼ −iXfκg hϕ1jHIðtÞjκiCκðtÞ; ð2:8Þ 

 C˙ 2ðtÞ ¼ −iXfκg hϕ2jHIðtÞjκiCκðtÞ; ð2:9Þ 

C˙κðtÞ ¼ −i½hκjHIðtÞjϕ1iC1ðtÞ þ hκjHIðtÞjϕ2iC2ðtÞ; 

ð2:10Þ 

where the time dependent transition matrix elements are 

given by hljHIðtÞjmi ¼ TlmeiðEl−EmÞt; Tlm ¼ hljHIð0Þjmi; 

ð2:11Þ 

Hermiticity of HI entails that 

 Tml ¼ Tlm: ð2:12Þ 

The set of equations (2.8)–(2.10) truncates the hierarchy 

of equations by neglecting the transitions between the 

states jfnect the statesκgi and 

jfκ0giϕ1≠;
2ijf↔κgi2jf;jκϕ0gi1;2iat a higher order in, and such 

transitions con-HI and the set of equations for the 

amplitudes, effectively reducingare neglected up toj OðHIÞ. 

Truncating the hierarchy closes 

the set of states to a closed subset in the full Hilbert space. 

As a familiar example, let us consider the case where0 ¯ 0 

mesons mixing via a common decayjϕ1;2i correspond to K 

;K 

   ϕ     ϕ    
    . 
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channel into two pions (there is also the three pion decay 

channel) so that K0 ↔ 2π ↔ K¯ 0. 

t 

Taking the normalized initial quantum state jΨðt ¼ 0Þi 

as a coherent linear superposition of the single particle 

states jϕ1;2i, it is given by jΨðt ¼ 0Þi ¼ ðC1ð0Þjϕ1i þ 

C2ð0Þjϕ2iÞ ⊗ j0κi; ð2:13Þ where j0κi is the vacuum state 

for the intermediate states jκi, corresponding to setting 

 Cκð0Þ ¼ 0; ð2:14Þ 

for the excited jκi states, and with normalization condition 

 jC1ð0Þj2 þ jC2ð0Þj2 ¼ 1: ð2:15Þ 

A. Unitarity 

The set of equations (2.8)–(2.10) describes unitary time 

evolution in the restricted Hilbert space of states jspace of 

the theory that is closed under the equationsϕ1i;jϕ2i;jκi, 

which is a subset of the full Hilbert 

of motion (2.8)–(2.10). Unitarity can be seen as follows: 

using Eqs.mjHIðtÞjli(2.8)because–(2.10)HIand noticing 

thatðtÞ is an Hermitian operator, ithljHIðtÞjmi ¼ hfollows 

that 

d
 

 dt jC1ðtÞj2 þ jC2ðtÞj2 þ Xfκg jCκðtÞj2 ¼ 0; ð2:16Þ 

and the initial conditions (2.14) and (2.15) yield jC1ðtÞj2 þ 

jC2ðtÞj2 þ Xfκg jCκðtÞj2 ¼ 1: ð2:17Þ 

This is the statement that time evolution within the sub- 

Hilbert space fjϕ1i;jϕ2iϕ; 1jκ;2igstates decay, it follows 

thatis unitary. In particular, if the jC1;2ðt ¼ ∞Þj2 ¼ 0, and 

 jCκðt ¼ ∞Þj2 ¼ 1: ð2:18Þ 

κ 

The set of equations (2.10) with the initial condition 

(2.14) can be integrated to yield 

t 

CκðtÞ¼−i0 hTκ1eiðEκ−E1Þt0C1ðt0ÞþTκ2eiðEκ−E2Þt0 

C2ðt0Þidt0; 

ð2:19Þ 

where the labels 1 and 2 correspond to ϕ1;2. Inserting the 

solution (2.19) into Eqs. (2.8) and (2.9) leads to the 

following set of equations for the coefficients C1ðtÞ;C2ðtÞ: 

C˙ 1ðtÞ ¼ −Z XnjT1κj2eið
E

1−
E

κÞð
t
−

t0ÞC1ðt0Þ þ T1κTκ2eið
E

1−
E

2Þ
teið

E
2−

E
κÞð

t
−

t0ÞC2ðt0
Þodt0; ð2:20Þ 

 0 κ 

C˙ 2ðtÞ ¼ −Z t XnT2κTκ1eiðE2−E1ÞteiðE1− 

 0 κ 

EκÞðt−t0ÞC1ðt0Þ þ jT2κj2eiðE2−EκÞðt−t0ÞC2ðt0Þodt0: ð2:21Þ 

 
This procedure of solving for the amplitudes of the 

intermediate states plays the role of “integrating out” or 

“tracing over” the κ degrees of freedom, yielding an 

effective set of equations of motion for the amplitudes of 

the single particle states jϕ1;2i. Since the interaction 

Hamiltonian HI is assumed to include a weak coupling, the 

amplitude equations (2.20) and (2.21) are exact up to 

second order in this coupling. Pictorially, this procedure is 

X 
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equivalent to joining the legs representing the χ field 

together in Fig. 1, thereby forming a loop or loops that 

yield(s) the self-energy. 

B. Exact solutions 

The set of amplitude equations (2.20) and (2.21) can be 

solved exactly. For this purpose it is convenient to define 

e−iE
1
tC1ðtÞ ≡ A1ðtÞ; e−iE

2
tC2ðtÞ ≡ A2ðtÞ; ð2:22Þ and to 

introduce the spectral densities 

μabðk0Þ ¼TaκTκbδðk0 − EκÞ ¼ μba
 ðk0Þ; a;b ¼ 1;2; 

κ 

ð2:23Þ 

where the second identity follows from Eq. (2.12). The set 

of equations for the amplitudes A1;2 following from (2.20) 

and (2.21) is written more compactly by introducing the 

self-energy matrix 

∞ 

σabðt − t0Þ ¼μabðk0Þe−ik0ðt−t0Þdk0:

 ð2:24Þ −∞ 

This self-energy has an intuitive interpretation as a second 

order Feynman diagram wherein the lines representing the 

intermediate states jκi in Fig. 1 are joined into 

“propagators” yielding a (multi)loop diagram, representing 

the self-energy up to second order in HI. 

In terms of the self-energy the set of equations (2.20) and 

(2.21) becomes 

A˙ aðtÞþiEaAaðtÞþZ t dt0Xσabðt−t0ÞAbðt0Þ ¼ 0: ð2:25Þ 

 0 b 

This equation can be solved via a Laplace transform. 

Defining the Laplace transforms for ReðsÞ > 0 

∞ 

A˜ asÞ ¼e−stAaðtÞdt; 
0 

 ∞ ∞μab k0 

abðsÞ ¼e− σabðtÞdt ¼ Z þð Þdk0;

 ð2:26Þ σ˜st 

 0 −∞ s ik0 

the set of equations (2.25) leads to 

 M1121 M1222 A˜ 12ðsÞ ¼ AA12ðð00ÞÞ; 

 M M A˜ ðsÞ 

with matrix elements 

ð2:27Þ 

M11 ¼ s þ iE1 þ σ˜11ðsÞ; ð2:28Þ 

 M12 ¼ σ˜12ðsÞ; M21 ¼ σ˜21ðsÞ; ð2:29Þ 

M22 ¼ s þ iE2 þ σ˜22ðsÞ; ð2:30Þ 

where we suppressed the dependence of the matrix 

elements Mij on the Laplace variable s to simplify notation 

but it is implicit in all matrix elements. 

It proves convenient to introduce 

1 

M¯ ¼ 2ðM11 þ M22Þ; ð2:31Þ 

D ¼ ½ðM11 − M22Þ2 þ 4M12M211=2; ð2:32Þ 

M − 

α ¼ 11 M22 ; β ¼ 2 M12 ;

 γ ¼ 2 M21 ; 

 D D D 

where α, β, γ fulfill the relation 

ð2:33Þ 

α2 þ βγ ¼ 1: ð2:34Þ 

The inverse of the matrix with elements Mab yields the 

Laplace Green’s function, which is given by (see Appendix 

C for details) 

AA˜˜ 12ððssÞÞ ¼ "M¯ ðPsÞ−ð−sÞD2ðsÞ þ M¯ ðPsÞ 

þþðsÞD2ðsÞ#AA21ðð00ÞÞ; 

ð2:35Þ 

where the projector operators (see Appendix C) are given 

by 
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P ðsÞ ¼ 12ð1  RðsÞÞ; RðsÞ ¼ αγððssÞÞ 

−βαððssÞÞ:  

ð2:36Þ 

Finally, the time evolution of the amplitudes A1;2ðtÞ is 

obtained via the inverse Laplace transform, 

AA21ððttÞÞ ¼ ZC est"M¯ ðPsÞ−ð−sÞD2ðsÞ þ M¯ ðPsÞ 

þþðsÞD2ðsÞ#2dsπi 

A
 

×21ð0Þ; ð2:37Þ 

A ð0Þ 

where the Bromwich countour C runs parallel to the 

imaginary axis to the right of all the singularities in the 

complex s plane. Stability implies that the real parts of the 

singularities are negative; therefore, the contour 

corresponds to s ¼ iν þ ϵ;−∞≤ν≤∞;ϵ→ 0þ. It is convenient 

to change variables to ν ¼ −ω, in terms of which 

σ˜abðs¼ið−ω−iϵÞÞ≡iΔabðωÞ 

¼i ∞P μ ðk Þ dk −iπμ ðωÞ ; Z−∞ 

ωab−k00  0 ab  

ð2:38Þ 

where P stands for the principal part. The relation (2.23) 

implies that 

 ∞ μ 

ΔbaðωÞ ¼ Z−∞Pω− k0 dk0 − i  ð Þ: ð2:39Þ 

 
1 More precisely, the poles are in the second Riemann sheet, 

but close to the real axis in the complex ω plane. 

Upon this analytic continuation, Eq. (2.37) becomes 

A12
ðtÞ ¼ −Z−∞∞ e−iωt P−ðωðÞ Þ þ PþðωþðÞ Þ dω 

A ðtÞ 

A
 

 × A21ðð00ÞÞ; ð2:40Þ 

where 

1 

WðωÞ ¼ 2 fðE1 þ E2 þ Δ11ðωÞ þ Δ22ðωÞÞ  DðωÞg; 

ð2:41Þ 

DðωÞ ¼ ½ðE1 − E2 þ Δ11ðωÞ −Δ22ðωÞÞ2 þ 

4Δ12ðωÞΔ21ðωÞ1=2; ð2:42Þ 

s →−iωðωþÞϵare the analytic continuation of. (2.40) has a 

simplePðsÞ for and P 

The bracket inside the integral in interpretation: it is the 

Dyson (geometric) resummation of the second order self-

energy matrix, and the time evolution obtained from (2.40) 

includes this resummation of second order self-energy 

corrections. Note that as a consequence of the projector 

matrices being off-diagonal, even when one of the 

amplitudes vanishes initially, for example, if time. This 

observation will have interesting implications inA2ð0Þ ¼ 

C2ð0Þ ¼ 0, it becomes nonvanishing at a later 

the analysis of in-medium mixing in the next section. 

In the weak coupling limit we invoke the Breit-Wigner 

approximation, valid in the intermediate time regime, 

where each term in (2.40) features a complex pole in the 

lower half ω plane at1 

 ω ¼ Wð ; ð2:43Þ 

where 
ε 

are the renormalized frequencies and2
Γ

 the decay  

rates.In weakcoupling, it followsthat 
Γ

 ∝ HI ≪ E1;2, and we 
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will refer to these complex frequencies as quasinormal 

modes. For a vanishing damping rate, these are the usual 

normal modes associated with the coupling of harmonic 

oscillators, the “quasi” reflects their damping as a 

consequence of their coupling to and decay into a 

(common) continuum. 

Evaluating (2.40) by contour integration closing in the 

lower half ω plane for t > 0, and expanding near the 

complex poles WðωÞ ¼ WðωÞ þ ðω−ωÞdWðωÞ= dωjω¼ω 

þ , we obtain the final result 

A12ðtÞ ¼ ½e−iωþtZþPþðωþÞ þ e−iω−tZ−P−ðω−Þ 

A ðtÞ 

A
 

 × A21ðð00ÞÞ; ð2:44Þ 

where Z ¼ ½1 − dWðωÞ=dωjω 
−1 and  

 PðωÞ ¼ 211γ
αðωðωÞÞ 1 ∓αðωÞÞ; ð2:45Þ 

this result is general. 

The Breit-Wigner approximation relies on weak 

coupling so that the width of the state is much smaller than 

its mass and that the distance between the real part of the 

pole and the beginning of the multiparticle cuts must be 

much larger than the half-width of the particle. This entails 

that the spectral representation of the propagator can be 

well approximated by a Lorentzian centered at the real part 

of the pole with the width determined by the imaginary part 

of the self-energy at the position of the pole. Furthermore, 

this entails that the spectral density of the self-energy is 

finite and smooth near the value of the pole. This is the 

same criterion as in Fermi’s golden rule. 

It is important to highlight that the Breit-Wigner 

approximation leading to the result (2.44) is valid only 

during an intermediate time regime; it is neither valid as t 

→ 0 nor at a very long time, when power law corrections 

emerge [33,45–48]. 

As analyzed in detail in these references, the asymptotic 

late time behavior of the integral in Eq. (2.40) is 

determined by the behavior of the spectral density at the 

threshold of multiparticle cuts, which yields a power law 

that emerges when the amplitude is already perturbatively 

small (see Ref. [49] for a specific example), and the 

behavior at early times, t → 0, receives contributions from 

the full spectral density, contributing to a renormalization 

of the amplitude of the field. We refer to the intermediate 

timescale, as the scales between these two limits that 

depend specifically on the details of the spectral density of 

the self-energy. However, as is expected in the case of a 

weakly coupled theory, the intermediate timescale in which 

there is exponential decay is generically wide and is 

captured reliably by the usual Breit-Wigner approximation 

of the propagator. 

Therefore, the extrapolation to t → 0 is not consistent 

with this approximation. In fact, the wave function 

renormalization is a consequence of “dressing” and 

renormalization during an initial transient timescale 

describing the formation of a quasiparticle [50]; in 

renormalizable theories it is usually ultraviolet divergent. 

The timescale of formation of the quasiparticle is typically 

associated with the ultraviolet behavior of the spectral 

density, and it is in general much shorter than the typical 

oscillation and decay timescales of the particle [50]. 

In the following analysis we assume without loss of 

generality that E1 ≥ E2, and, consistently with perturbation 

theory, that E  . Furthermore, from the 

identity (2.34) we choose 

 αðωÞ ¼ p1 −βðωÞγðωÞffi: ð2:46Þ 

Hence, in the limit of vanishing coupling Δab → 0, it follows 

that 

ωþ → E1; ω−→ E2; α→ 1; β;γ → 0; 

 1 0 0 0 

Pþ →0 0; P−→0 1: ð2:47Þ 

Therefore, in this limit the amplitudes C1;2 do not depend 

on time as it must be the case in the absence of interactions. 

Two limits are important: (i) E1 − E2 ≫Δab, to which we refer 

as the nondegenerate case, and (ii) E1 − E2 ≲Δab, to which 

we refer as the (nearly) degenerate case. The first case 

describes, for example, the mixing between axionlike 

particles and a neutral pseudoscalar meson as studied in 

Ref. [18], such as the pion, with the pion mass much larger 

than that of the axion. The second case includes neutral 

(pseudoscalar) flavored meson-antimeson mixing, such as 

K0 − K¯ 0 under the condition of charge conjugation, parity, 

and time reversal (CPT) invariance [in which case E1 ¼ E2; 

Δ11ðsÞ ¼ Δ22ðsÞ]. This second case also applies to neutral 

meson mixing if there is a small (CPT) violation, in which 

case E1, E2 and the diagonal matrix elements Δ11, Δ22 may 



EFFECTIVE FIELD THEORY OF PARTICLE MIXING PHYS. REV. D 109, 036038 (2024) 

036038-9 

be slightly different but small compared to the individual 

energies E1;2. 

(I) Nondegenerate case: E1 − E2 ≫Δab. In this case we can 

approximate 

DðωÞ ≃ E1 − E2 þ Δ11ðωÞ −Δ22ðωÞ þ OðΔ2Þ; ð2:48Þ 

from which it follows that to leading order [OðΔÞ] WþðωÞ 

¼ E1 þΔ11ðωÞ; W−ðωÞ ¼ E2 þΔ22ðωÞ; ð2:49Þ 

and to leading order in couplings, the complex poles are at 

ωþ ¼ E1 þ Δ11ðE1Þ ¼ E1R − iΓ2þ ; E1R ¼ E1 þ ReΔ11ðE1Þ; Γþ 

¼ 2πρ11ðE1Þ; ð2:50Þ 

ω− ¼ E2 þ Δ22ðE2Þ ¼ E2R − i ; 

 E2R ¼ E2 þ ReΔ22ðE2Þ; Γ− ¼ 2πρ22ðE2Þ; ð2:51Þ 

where E1
R

;2 are the renormalized energies. Up to leading 

orderdependent amplitudes are given byOðΔÞ, it is 

straightforward to find that the time 

A1ðtÞ ¼ ZþA1ð0Þe−iωþt þ 2 12ðE1Þe−iEωþ1Rt −− 

EΔ2R12ðE2Þe−iω−tA2ð0Þ; 

1 Δ 

ð2:52Þ 

A2ðtÞ ¼ Z−A2ð0Þe−iω−t 

þ 21Δ21ðE1Þe−iEωþ1Rt −− EΔR221ðE2Þe−iω−tA1ð0Þ: 

ð2:53Þ 

The terms in brackets in (2.52) and (2.53) are 

perturbatively small in this case because Δab ≪ E1 − E2. 

Since 

 

brackets, which are already ofZ (II) (Nearly) degenerate 

case≃ 1 þ OðH2
I Þ, we neglected them in the terms in 

the:OEð1Δ;2Þ≫∝ΔHab2I;.E1 −E2 ≲Δab. 

In this case we write 

E1 þ2 E2 ≡ E¯ ≫Δab; E1 − E2 ≡δ≲OðΔÞ; ð2:54Þ 

and to leading order in Δ the complex poles are given by 

ω ¼ E þ 2ð ð Þ þ ðEÞÞ 

 ð2E¯Þ D 

¯ 

 ≡  2 ¼ 2  2 ; ð2:55Þ 

where 

 R 1 

 E¯ ¼ E¯ þ 2ðReΔ11ðE¯Þ þ ReΔ22ðE¯ÞÞ; 

 Γ¯ ¼ −12ðImΔ11ðE¯Þ þ ImΔ22ðE¯ÞÞ: ð2:56Þ 

From Eqs. (2.23) and (2.38) it follows that Γ¯ > 0. Since in 

this case δ≲Δab, we find that βðωÞ ≃γðωÞ ≃Oð1Þ; 

therefore, in this case all matrix elements of the 

proquentlyjectors P ≃Oðγ1ðÞω. However, to leading order 

inPÞ ¼ðE¯γÞð.E¯Þ;αðωÞ ¼ αðE¯Þ, and conse-Δ we find 

βðωÞ ¼PβððE¯ωÞ;Þ ¼  
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In this (nearly) degenerate case, the individual energies 

are much larger than the respective widths and the energy 

difference is smaller than or of the same order as the 

imaginary part of the self-energies evaluated at ðE1 þ E2Þ=2. 

Therefore, in this (nearly) degenerate case, the Breit-

Wigner approximation is valid, and we find to leading 

order in Δ the time dependent amplitudes 

 A ðtÞ 1 

A21ðtÞ ¼ 
2 ðZþe−iωþt þ Z−e−iω−tÞI 

þ RðE¯ÞðZþe−iωþt − Z−e−iω−tÞAA12ðð00ÞÞ; 

ð2:57Þ 

with 

 RðE¯Þ ¼ 12αγððEE¯¯ÞÞ −βαððE¯E¯ÞÞ: ð2:58Þ 

We can now compare this result with the usual result for 

flavored meson-antimeson mixing, such as K0 − K¯ 0 under 

purpose of comparison, we definethe conditions of (2 ¯; 

Δ11ðE¯Þ ¼CPTΔ22ð)E¯invariance, which impliesÞ. In this 

case, and for theE1 ¼ 

E ¼ E 

− iΓab ; mab ≡Z ∞Pμ¯ab−ðkk00Þdk0; ab ab 

Δ ðEÞ ¼ m 2 −∞ E 

 Γab ≡ 2πμabðE¯Þ; ð2:59Þ 

in terms of which we find 

 
2 See Appendix A, footnote in page 102 in Ref. [32], where it 

is explicitly stated that such a contribution was neglected but 
would modify the amplitudes. 

 DðE¯Þ ¼ 2m12 − i Γ212m12 − iΓ2121=2; ð2:60Þ 

 αðE¯Þ ¼ 0; ð2:61Þ 

 ¯ m1212 − iΓ212121=2; ð2:62Þ 

βðEÞ ¼ m − i 

m − iΓ 

 γðE¯Þ ¼ m1212 − iΓ2212121=2 ¼ βð1E¯Þ; ð2:63Þ 

yielding 

 A1ðtÞ ¼ ½fþðtÞA1ð0Þ þ βðE¯Þf−ðtÞA2ð0Þ; ð2:64Þ 

A2ðtÞ ¼ ½fþðtÞA2ð0Þ þ γðE¯Þf−ðtÞA1ð0Þ;

 ð2:65Þ with 

 fðtÞ ¼ ðZþe−iωþt  Z−e−iω−tÞ: ð2:66Þ 

Setting Z ¼ 1, the expressions (2.64) and (2.65) with  

(2.66) are the usual ones for the case of flavored 

mesonantimeson mixing with (CPT) symmetry [12–15,32]. 

In Ref. [32] the contribution from wave function 

renormalization was neglected2 but it was recognized that 

it would 

modify the amplitudes. Therefore, with Z ≃ 1 þ OðΔÞ it  
is clear that neglecting the wave function renormalizations 

affects the amplitudes at second order in the interaction. 

This perturbative correction may become relevant for 

precision measurements of flavor mixing. 

C. Markov approximation: The effective 

non-Hermitian Hamiltonian Let us write 

t0 

 XTaκTκbeiðEb−EκÞðt−t00Þdt00 ≡Wab½t;t0; Wab½t;0 ¼ 0 

0 κ 
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ð2:67Þ 

so that 

TaκTκbeiðEb−EκÞðt−t0Þ ¼ d Wab½t;t0: 

ð2:68Þ κ dt0 

Inserting this definition in (2.20) and (2.21) and integrating 

by parts 

t d 

Wab½t;t0Cbðt0Þdt0 ¼ Wab½t;tCbðtÞ 

0 dt0 

− Wab½t;t0 d Cbðt0Þdt0; t 

 0 dt0 

ð2:69Þ 

since Ta , and from the evolution equations (2.20) 

and (2.21) it follows that C˙ 
a ∝ H2

I ; therefore, the second 

term in (2.69) is of OðH4
I Þ and will be neglected to leading 

order in the interaction, namely H2
I. 

Hence, up to 
OðH2

IÞ, the evolution equations for the 

amplitudes (2.20) and (2.21) become 

C˙ 1ðtÞ ¼ −fW11½t;tC1ðtÞ þ eiðE
1
−E

2ÞtW12½t;tC2ðtÞg; 

ð2:70Þ 

C˙ 2ðtÞ ¼ −feiðE
2
−E

1ÞtW21½t;tC1ðtÞ þ W22½t;tC2ðtÞg: 

ð2:71Þ 

With the definitions (2.22) the amplitude equations become 

iA˙ 1ðtÞ ¼ E1A1 − iW11½t;tA1 − iW12½t;tA2; ð2:72Þ iA˙ 

2ðtÞ ¼ E2A2 − iW21½t;tA2 − iW22½t;tA2: ð2:73Þ 

 
3  This approximation is also implicitly implemented in Ref. 

[29]. 

With 

Wabt;t ¼TaκTκb Z t eiðEb−EκÞðt−t0Þdt0 

κ  0 t 

∞ 

 ¼Z μabðk0ÞeiðEb−k0Þðt−t0Þdk0dt0; ð2:74Þ 

0 −∞ 

where we used the definition of the spectral density, Eq. 

(2.23). We highlight that this first step in the Markov 

approximation is equivalent to the full set of equations 

consistently up to order H2
I, since the neglected terms of 

Oð  Þ . 

Because in the nearly degenerate case E1 − E2 ≲ 

 , the first stage of the Markov approximation, 

yielding Eqs. (2.72) and (2.73) is consistent with this case. 

The set of equations (2.72) and (2.73) can be written in 

terms of a time dependent Hamiltonian 

d A1ðtÞ ¼ ð ÞA1ððtÞÞ ð Þ 

iHeff t ; 2:75 dt A2ðtÞ A2 t 

where the matrix elements of HeffðtÞ are obtained from 

Eqs. (2.72) and (2.73). Unlike the case of a single species 

analyzed in detail in Appendix A, for two species mixing, 

HeffðtÞ is a 2 × 2 matrix, and ½HeffðtÞ;Heffðt0Þ ≠ 0 for t ≠ t0; 

therefore, the solution of the evolution equations is not a 

simple exponential. The usual approach, following the 

main approximation in the Weisskopf-Wigner method 

implemented in the LOY formulation [29], invokes the 

long time limit3 

t eiðEb−EκÞðt−t0Þdt0 ! iP b 1 − iπδðEb − EκÞ; 

0 t→∞ E − Eκ 

ð2:76Þ 

yielding 
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 −iWab½t;t →ΔabðEbÞ; ð2:77Þ 

where ΔabðωÞ is defined by Eq. (2.38). Taking this long 

time limit, the amplitude equations (2.75) become an 

effective Schrödinger equation with a time independent 

effective Hamiltonian i dtA21ððttÞÞ ¼ HeffAA21ððttÞÞ

 ð2:78Þ d A 

with 

 Heff ¼ E1Δ
þ

21ΔðE111
ðÞE1

Þ
E2Δþ12Δ

ðE222ðÞ
E2Þ 

H11 H12 

 ≡H21 H22  ¼ Heffð∞Þ: ð2:79Þ 

This effective Hamiltonian is not Hermitian; this is a 

manifestation that it describes the (approximate) dynamics 

of a quantum open system, namely of a subset of degrees 

of freedom which are coupled to a continuum of other 

degrees of freedom whose dynamics has been “integrated 

out.” Time evolution is not unitary in this subset, as is 

explicit from the unitarity condition (2.16) and (2.17), 

which indicates a flow of probability from the jϕ1i;jϕ2i to 

the excited intermediate statesgrated out in the equations 

of motion.jfκgi which have been inte- 

It proves convenient to rewrite Heff as 

1 

Heff ¼ 2ðE1 þ Δ11ðE1Þ þ E2 þ Δ22ðE2ÞÞI 

 1 ˜ E ;E R˜ E ;E ; 2:80 

D 

which implies that 

 R˜ 2ðE1;E2Þ ¼ I; ð2:86Þ 

therefore the matrixConsider the eigenvalue equation 

(suppressing the argu-R˜ features eigenvalues 1. 

ments E1;2), 

 R˜ p ! ¼  pq !; ð2:87Þ 

q 

the solution of which is 

 pþ ¼ Nþð1 þ α˜Þ; qþ ¼ Nþγ˜; ð2:88Þ 

 þ 2 ð 1 2Þ ð 1 2Þ 

where I is the 2 × 2 identity matrix and 

ð Þ 

D˜ ðE1;E2Þ ¼ hðE1 þ Δ11ðE1Þ − E2 −Δ22ðE2ÞÞ2 

þ 4Δ12ðE2ÞΔ21ðE1Þi1=2 

and ð2:81Þ 

R˜ ðE1;E2Þ ¼ αγ˜˜ððEE11;E;E22ÞÞ 

−β˜α˜ððEE11;E;E22ÞÞ; 

with the definitions 

ð2:82Þ 

α˜ðE1;E2Þ ¼ ðE1 þ Δ11
ð

DE˜ 

1ðÞ
E

−
1;EE22Þ−Δ22ðE2ÞÞ; 

ð2:83Þ 

β˜ðE1;E2Þ ¼ D2˜ΔðE121ð;EE22ÞÞ; γ˜ðE1;E2Þ ¼ 

D2˜ΔðE211ð;EE12ÞÞ: 

It follows from these definitions that 

ð2:84Þ 

α˜2 þ β˜ γ˜ ¼ 1; ð2:85Þ 
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 p− ¼ N−ð1 −α˜Þ; q− ¼ N−γ˜; ð2:89Þ 

with N normalization factors. These are eigenvectors of 

Heff, namely 

 p p 

λ ¼ 2 ½ðE1 þ Δ11ðE1Þ þ E ÞÞ 

  D˜ ðE  Þ i 2 ;

 ð2:91Þ 

where ε˜;Γ˜ are both real. The effective Hamiltonian can be 

diagonalized by introducing 

U−1 ¼pqþþ −pq− ; 

− 

 1 q− p− 

and the effective evolution equations for V1;2ðtÞ become idt

d V12ðtÞ ¼ λλþ−VV21ððttÞÞ⇒VV12ððttÞÞ 

V ðtÞ 

 ¼ e−iλþt −0iλ−t V12ð0Þ: ð2:95Þ 

 0 e V ð0Þ 

Using the definition (2.94) evaluated at t ¼ 0 yields the 

solution for the amplitudes 

AA21ððttÞÞ ¼ U−1e−0iλþt e−0iλ−t UAA12ðð00ÞÞ: ð2:96Þ 

With the relations (2.85), (2.88), and (2.89) it is 

straightforward to find that 

 AA21ððttÞÞ ¼ ½e−iλþtP˜ þ þ e−iλ−tP˜−AA12ðð00ÞÞ; ð2:97Þ 

with the projector operators 

 P˜ ¼ 12ðI  R˜ Þ;P˜ 2 ¼ P˜ ; ð2:98Þ 

 where R˜ is given by Eq. (2.82), 

or, alternatively 

A21ðtÞ ¼ 12 hðe−iλþt þ e−iλ−tÞ þ ðe−iλþt − e−iλ−tÞR˜i 

A ðtÞ 

A
 

 × A21ðð00ÞÞ: ð2:99Þ 

Comparing the results via Laplace transform and 

BreitWigner approximation, namely (2.44) to the solution 

of the set of equations (2.78) obtained in the infinite time 

limit, namely (2.97) and (2.99), we find several sources of 

discrepancies: (i) The wave function renormalization 

constants Z in  

Heff q ! ¼ λ q !; 

 

with eigenvalues 

1 

ð2:90Þ 

U ¼ pþq− þ qþp−qþ −pþ ; 

satisfying UU−1 ¼ U−1U ¼ I, and yielding 

ð2:92Þ 

λþ 

 UHeffU−1 ¼  0 λ0−: 

Let us define 

ð2:93Þ 

A12ðtÞ ¼ U−1VV12
ð

ðttÞÞ; A 

ðtÞ 

ð2:94Þ 
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(2.44) and (2.57) are missing in (2.97) and (2.99). 

(ii) Whereas the projector operators in (2.44) depend on 

the values of ω , namely the complex poles, those  in 

(2.97) depend on E1, E2 separately. Furthermore, the 

values of the complex frequencies ω (2.43) are  

not obviously similar to λ (2.91). 

The origin of these discrepancies can be traced to taking 

the long time limit (2.76) and (2.77) before integrating the 

set of equations (2.72) and (2.73), which is equivalent to 

the original set of equations (2.20) and (2.21) up to order 

time limits will translate into differences ofOðH2IÞ. Any 

discrepancy between the order of the longOðH2I Þ. 

In Appendix A it is shown that the discrepancy in wave 

function renormalization of amplitudes originates in this 

long time limit in the simpler case of one species. We now 

compare the results for the eigenvalues and eigenvectors of 

the Laplace transform method and the Markov 

approximation with the effective Hamiltonian. 

1. Nondegenerate case 

For E1 − E2 ≫Δab we can approximate D˜ ðE1;E2Þ, given 

by (2.81), as 

 D˜ ðE1;E2Þ ≃ E1 þ Δ11ðE1Þ − E2 −Δ22ðE2Þ; ð2:100Þ 

yielding for the eigenvalues λ, Eq. (2.91), 

E1
R − i Γþ ;  λþ ¼ E1 þ Δ11ðE1Þ

2 − 

 λ− ¼ E; ð2:101Þ 

which agree with the eigenvalues obtained from the 

Laplace transform (2.50) and (2.51). For the amplitudes we 

now find up to OðΔÞ 

A1ðtÞ ¼ A1ð0Þe−iλþt þ 1Δ12ðE2Þe−iλþRt 

−ΔR12ðE2Þe−iλ−t ð Þ 

 2 E1 − E2 A2 0 ; 

ð2:102Þ 

A2ðtÞ ¼ A2ð0Þe−iλ−t þ 1Δ21ðE1Þe−iλþRt 

−ΔR21ðE1Þe−iλ−t ð Þ 

 2 E1 − E2 A1 0 : 

ð2:103Þ 

The differences with the result from the Laplace transform, 

Eqs. (2.52) and (2.53), are noteworthy: (i) the wave 

function renormalization constants multiplying the 

diagonal terms in (2.52) and (2.53) are missing in (2.102) 

and (2.103); and (ii) the differences in the arguments of Δ12, 

Δ21 are in the brackets. Clearly the discrepancies are of 

second order in , as discussed above. 

2. (Nearly) degenerate case 

For E1;E2 ≫Δab but with E1 − E2 ≡δ≲OðΔÞ, it follows that 

λ ¼ E¯ þ 1ðΔ11ðE¯Þ þ Δ2ðE¯ÞÞ  D˜ ðE¯Þ; 

 2 2 

E¯ ¼ 1ðE1 þ E2Þ; ð2:104Þ 

2 

where D˜ ðE¯Þ corresponds to setting E1 ≃ E2 ≃ E¯ in the 

matrix elements of D˜ ðE1;E2Þ. The eigenvalues λ again 

coincide with ω given by Eq. (2.55). Furthermore, it is 

straightforward to confirm that in this case D˜ ðE1;E2Þ ¼ 

RðE¯Þ given by Eq. (2.58). Therefore, the main difference 

between the Laplace result (2.57) and that from the 

effective Hamiltonian (2.99) is the wave function 

renormalization Z multiplying the initial amplitudes in 

(2.57). 

In fact, at a fundamental level, the emergence of the 

wave function renormalization of the amplitudes of the 

quasinormal modes precludes the description of their time 

evolution intermsofaneffectivenon-

HermitianHamiltonian.Thiscan be understood from the 

following simple argument: the formal solution of the 

amplitude equation (2.78) is 

A2ðtÞ ¼ e−iHefftA
A12ðð0

0ÞÞ; ð2:105Þ A1ðtÞ 

 



EFFECTIVE FIELD THEORY OF PARTICLE MIXING PHYS. REV. D 109, 036038 (2024) 

036038-15 

which obviously does not include a wave function 

renormalization as prefactor of the quasinormal mode 

amplitudes. The wave function renormalization is an off-

shell contribution that describes the dressing by virtual 

states of the single (quasi-)particles 

onshorttimescales,andyields secondorder corrections to the 

amplitudes. While it may be finite in the case of the box 

diagram contribution to flavored neutral meson mixing, it 

is in general ultraviolet divergent in quantum field theory. 

Therefore, we conclude that the Laplace transform with 

the Breit-Wigner approximation provides a more accurate 

description of the evolution of mixing as compared to that 

obtained from the effective non-Hermitian Hamiltonian. 

3. Quantum beats 

The two orthogonal states jϕ1i;jϕ2i decaying into a 

common channel jκi lead to interference in the amplitudes 

of the decay state jκi as a consequence of “which path” 

information in the decay. This is similar to the case of 

quantum beats in “V”-shaped three level systems, in which 

two higher levels radiatively decay to the lowest level [51], 

an ubiquitous phenomenon in quantum optics. This 

interference phenomenon, or quantum beats, is featured in 

the amplitudes of the decay products described by the 

states, 

jκiThe analysis above has focused on the time evolution, 

namely the coefficients CκðtÞ. 

tudesof the amplitudesCκðtÞ of the intermediate states via 

Eq.C1;2ðtÞ, which also determine the ampli-(2.23), we 

findA(2.19)1;2ðtÞ., 

Writing these coefficients in terms of the amplitudes 

and introducing the spectral densities 

jCκðtÞj2 ¼ Z t dt1 Zdk0 

Xκ 0 

 × a;b ; 

Aaðt1Þμabðk0ÞAbðt2Þe−ik0ðt1−t2Þ: 

¼1 2 

ð2:106Þ 

It is convenient to introduce Θðt1 − t2Þ þ Θðt2 − t1Þ ¼ 1 

inside the time integrations, use the property of the spectral 

density (2.23), and include the definition of the self-energy 

(2.24) to show that 

 jCκðtÞj2 ¼ dt1Aðt1
Þ σ ðt1 −t2ÞA ðt2Þdt2 

Xκ a;bX¼1;2Z0t a Z0t1 ab b 

 þc:c:; ð2:107Þ 

the complex conjugate (c.c.) contribution arises from the 

term with Θðt2 − t1Þ upon relabeling t1 ↔ t2, a ↔ b and 

using the property (2.23). Using the amplitude equations 

(2.25) we finally find 

t 

XjCκðtÞj2 ¼ −XZ dt1 d ½Aaðt1ÞAaðt1Þ 

κ a¼1;2 0 dt1 

¼ jA1ð0Þj2 þ jA2ð0Þj2 − ½jA1ðtÞj2 þ jA2ðtÞj2; 

ð2:108Þ 

and this result is precisely the unitarity relation formally 

established by Eqs. (2.16) and (2.17) providing a 

complementary and explicit proof of unitarity exhibiting 

the role of the self-energy. 

Following LOY [29], introducing the total population of 

the ϕ1;ϕ2 states as 

NðtÞ ¼ ½jA1ðtÞj2 þ jA2ðtÞj2 ≡ ½jC1ðtÞj2 þ jC2ðtÞj2; 

ð2:109Þ 

and writing the amplitudes AaðtÞ as linear superpositions 

of the quasinormal modes, namely 

−iε 

AaðtÞ ¼ Aaþe þte−Γ2þt þ Aa−e−iε−te−Γ2−t; a ¼ 1;2; 

ð2:110Þ 

where the coefficients Aa can be read off Eq. (2.44), it 

follows that 
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NðtÞ ¼ X½jAaþj2e−Γþt þ jAa−j2e−Γ−t 

a¼1;2 

 þ 2ReðAaþAa−eið
ε

þ
−ε

−Þ
tÞe−ð

Γ
þþ

Γ
−Þ

t=2; ð2:111Þ 

the last term displays the quantum beats as a consequence 

of the interference between the quasinormal modes. With 

the normalization (2.15) the unitarity relations (2.17) and 

(2.108) yield 

 jCκðtÞj2 ¼ 1 − NðtÞ; ð2:112Þ 

κ 

displaying the quantum beats from (2.111) in the last term. 

Therefore unitarity entails that the quantum beats in the 

total population are reflected in the time evolution of the 

decay products. 

These interference terms are, of course, well known, 

originally recognized in the seminal work by LOY [29], 

and have been experimentally observed in the decays 

products of flavored neutral mesons [12–15]. We note that 

the coefficients Aa depend on the wave function 

renormalization constants Z in the solutions (2.44), an 

important  discrepancy with the usual effective non-

Hermitian Hamiltonian description of particle mixing. 

Our main objective in analyzing the dynamics of mixing 

within the framework of the LOY theory of flavored meson 

mixing is to provide a guide to and benchmark for the 

effective field theory approach to the dynamics of mixing 

in a medium studied in the next section. 

III. THE EFFECTIVE ACTION FOR 

PARTICLE MIXING 

The previous section extended and generalized the 

formulation of particle mixing, originally implemented to 

study CP violation in the neutral kaon system, to the case in 

which different particles (in general with different masses) 

mix via common intermediate states or decay channels. As 

it is clear from this analysis, such a formulation is 

applicable and generally applied to the case of an initial 

state being a pure state, and primarily, when such a state is 

a linear superposition of single particle states [29]. This 

analysis also revealed several subtleties associated with the 

time evolution of the amplitudes in terms of an effective 

Hamiltonian. It also highlighted that the nonHermiticity of 

the effective Hamiltonian is a hallmark of a quantum open 

system, namely such a Hamiltonian describes the 

nonunitary time evolution of a reduced subset of states 

which are coupled to a continuum of states that have been 

integrated out. 

Our main objective is to provide a framework to study 

the dynamics of particle mixing in a medium, as it is 

necessary within the realm of cosmology. In this case, we 

are interested in the time evolution of a density matrix, 

describing a statistical ensemble of particles, not just a pure 

state of a few particles. Furthermore, we are interested in 

obtaining the time evolution of correlation functions and 

distribution functions in the medium, in particular their 

asymptotic behavior and possible thermalization, not on 

the amplitudes of single (or a few) particle states. 

Rather than considering the most general case of mixing 

between charged bosons or fermions which necessarily add 

several technical complications, we consider the simpler 

case of real scalar or pseudoscalar bosonic fields ϕ1;ϕ2 

interacting with degrees of freedom in thermal equilibrium 

denoted collectively by χ, to establish the main framework 

and results within a simpler setting, thus paving the way to 

extrapolating to a more general case. 

The mixing between ϕ1 and ϕ2 is indirect and a 

consequence of a coupling to a common set of intermediate 

states yielding a self-energy with off-diagonal elements in 

the space of ϕ1;2 similar to the cases studied in the previous 

section. 

The general Lagrangian density describing this situation 

is given by 

 L½ϕ1;ϕ2;χ ¼ Lϕ þ Lχ þ LI; ð3:1Þ 

where 

L  ¼ X; ½ð∂ϕaÞ2 − m2aϕ2a; 2 a¼1 2 

LI ¼ −ϕ1O1½χ −ϕ2O2½χ; ð3:2Þ 

where Lχ is the Lagrangian of the χ fields. These are 

assumed to describe degrees of freedom in thermal 

equilibrium including interactions among these fields, and 

O1;2½χ are (composite) operators associated with the χ 

degrees of freedom. These operators include couplings g1;2 

assumed to be small. Indirect field mixing is a consequence 

of nonvanishing correlations hO1O2i in the medium 

yielding off-diagonal self-energy matrix elements. 

Let us consider the initial density matrix at a time t ¼ 0 

to be of the form ρˆð0Þ ¼ ρˆϕð0Þ ⊗ρˆχð0Þ: ð3:3Þ 

The initial density matrix ρˆϕð0Þ is normalized so that 

Trϕρˆϕð0Þ ¼ 1 and that of the χ fields will be taken to 

describe a statistical ensemble in thermal equilibrium at a 

temperature T ¼ 1=β, namely 

X 
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e−βHχ 

 ρˆχð0Þ ¼ Trχe−βHχ ; ð3:4Þ 

where Hχ is the total Hamiltonian for the fields χ and may 

include other fields to which χ is coupled other than the 

fields ϕ1;2. The χ vacuum is obtained in the limit β →∞. 

For example, for the discussion of the previous section 

the initial density matrix is given by 

 ρˆð0Þ ¼ jΨðt ¼ 0ÞihΨðt ¼ 0Þj; ð3:5Þ 

where jΨðt ¼ 0Þi is the state (2.13). 

The factorization of the initial density matrix is an 

assumption often explicitly or implicitly made in the 

literature, it can be relaxed by including initial correlations 

among the various fields at the expense of daunting 

technical complications. In this study we will not consider 

this important case, assuming the factorization as in (3.4). 

In what follows we will refer to the set of fields ϕ1;2 

collectively simply as ϕ≡ fϕ1;ϕ2g to simplify notation. 

The main concept that anchors the framework developed 

below is the following: the time evolution of the full 

density matrix in the Schrödinger picture is given by 

 ρˆðtÞ ¼ e−iHtρˆð0ÞeiHt; ð3:6Þ 

where H is the total Hamiltonian 

 H ¼ H0ϕ þ Hχ 
þ Z d3xX; ϕaOaðχÞ; ð3:7Þ 

a¼1 2 

where H0ϕ and Hχ are the Hamiltonians for the respective 

fields. We will assume that the composite operators Oa 

include weak couplings so as to define a perturbative 

expansion, and second order terms in Oa imply second 

order in couplings, which we will denote as Oðg2Þ with g a 

generic coupling. 

The reduced density matrix for the ϕ1;2 degrees of 

freedom is obtained by tracing over the χ degrees of 

freedom, namely 

 ρˆϕr ðtÞ ¼ TrχρˆðtÞ: ð3:8Þ 

This reduced density matrix does not evolve unitarily in 

time, its time evolution is determined by a time nonlocal 

effective action [35,40–44]. One of our main objectives is 

to obtain this effective action. 

It is convenient to write the density matrix in the field 

basis which facilitates a path integral representation of the 

nonequilibrium reduced density matrix [35,40–44]. 

In the field basis the matrix elements of ρˆϕð0Þ and 

ρˆχð0Þ are given by 

hϕjρˆϕð0Þjϕ0i ¼ ρϕ;0ðϕ;ϕ0Þ; hχjρˆχð0Þjχ0i ¼ ρχ;0ðχ;χ0Þ; 

ð3:9Þ 

and this is a functional density matrix as the fields feature 

spatial arguments. ρˆϕð0Þ represents either a pure state, 

such as a coherent state, or more generally an initial 

statistical ensemble, whereas ρˆχð0Þ is assumed to describe 

a thermal ensemble and is given by Eq. (3.4). 

To obtain the effective action, we follow the procedure 

described above: evolve the initial density matrix in time, 

trace over the χ degrees of freedom thereby obtaining the 

reduced density matrix for the ϕ fields, and determine the 

effective action from its time evolution. Including source 

terms for the fields ϕ, we can compute expectation values 

and correlation functions as a function of time from 

variational derivatives as usual. 

We now follow the main methods and results of Refs. 

[18,39], summarizing here the main aspects pertinent to the 

case of mixing for consistency of presentation. The reduced 

density matrix is given by 

ρϕr ðtÞ ¼ TrχUðtÞρˆð0ÞU−1ðtÞ; UðtÞ ¼ e−iHt: ð3:10Þ 

In field space, 

ρðϕf;χf;ϕ0f;χ0f;tÞ ¼ hϕf;χfjUðtÞρˆð0ÞU−1ðtÞjϕ0f;χ0fi; 

ð3:11Þ 

from which the reduced density matrix elements are 

obtained by taking the trace on χ, namely setting χ0
f ¼ χf and 

carrying out the functional integral in χf, ρrðϕf;ϕ0f;;t
Þ ¼ Z 

Dχfhϕf;χfjUðtÞρˆð0ÞU−1ðtÞjϕ0f;χfi: 
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ð3:12Þ 

With the functional integral representation 

hϕf;χfjUðtÞρˆð0ÞU−1ðtÞjϕ0f;χ0fi 

¼ Z DϕiDχiDϕ0iDχ0ihϕf;χfjUðtÞjϕi;χiiρϕ;0ðϕi;ϕ0iÞ 

⊗ρχ;0ðχi;χ0iÞhϕ0i;χ0ijU−1ðtÞjϕ0f;χ0fi; ð3:13Þ it 

follows that the reduced density matrix elements are 

ρrðϕf;ϕ0f;;t
Þ ¼ Z Dχf Z DϕiDχiDϕ0iDχ0i 

× hϕf;χfjUðtÞjϕi;χiiρϕ;0ðϕi;ϕ0iÞ 

⊗ρχ;0ðχi;χ0iÞhϕ0i;χ0ijU−1ðtÞjϕ0f;χfi: 

ð3:14

Þ The Dϕ, etc., are functional integrals where the spatial 

argument has been suppressed. The matrix elements of 

theR time evolution forward and backward can be written 

as path integrals, namely hϕf;χfjUðtÞjϕi;χii ¼ Z DϕþDχþeiR 

d4xL½ϕþ;χþ; ð3:15Þ 

hϕ0i;χ0ijU−1ðtÞjϕ0f;χ0fi ¼ Z Dϕ−Dχ−e−iR d3xL½ϕ−;χ−; 

ð3:16Þ 

where we use the shorthand notation 

 d4x ≡Z t dtZ d3x: ð3:17Þ 

0 

L½ϕ;χ is given by (3.1) and (3.2) and the boundary 

conditions on the path integrals are 

ϕþðx;t⃗¼ 0Þ ¼ ϕiðx⃗ Þ; ϕþðx;t⃗ Þ ¼ ϕfðx⃗ Þ; ð3:18Þ 

χþðx;t⃗ ¼ 0Þ ¼ χiðx⃗ Þ; χþðx;t⃗ Þ ¼ χfðx⃗ Þ; ð3:19Þ 

ϕ−ðx;t⃗¼ 0Þ ¼ ϕ0iðx⃗ Þ; 
ϕ−ðx;t⃗ Þ ¼ ϕ0fðx⃗ Þ; ð3:20Þ 

χ−ðx;t⃗ ¼ 0Þ ¼ χ0iðx⃗ Þ; χ−ðx;t⃗ Þ ¼ χ0fðx⃗ Þ: ð3:21Þ 

The field variables ϕ and χ along the forward (þ) and 

backward (−) evolution branches are recognized as those 

necessary for the in-in or Schwinger-Keldysh [40–43] 

closed time path approach to the time evolution of a density 

matrix. 

The reduced density matrix for the fields ϕa (3.14) can 

be written as 

ρrðϕf;ϕ0f;t
Þ ¼ Z DϕiDϕ0iT ½ϕf;ϕf0;ϕi;ϕi0;tρϕðϕi;ϕ0i;0Þ; 

ð3:22Þ 

where the time evolution kernel is given by 

T ½ϕf;ϕi;ϕ0f;ϕ0i;t ¼ Z Dϕþ Z Dϕ−eiSeff½ϕþ;ϕ−;t; ð3:23Þ 

from which the in-in effective action out of equilibrium is 

identified as 

Seff ϕþ;ϕ−;t ¼  dt0 Z d3xfL0½ϕþ −L0½ϕ− 
t 

0 

 þ I½ϕþ;ϕ−;tg; ð3:24Þ 

where I½ϕþ;ϕ−;t is the influence action [43,44] and is 

obtained by tracing over the χ degrees of freedom, namely 

eiI½ϕþ;ϕ−;t 
¼ Z DχiDχi0Dχf Z Dχþ 
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×Z Dχ4−eiR d4x½L½χþ−Pa ϕþa Oa½χþ 

−iR d x½L½χ−−Pa ϕ−a Oa½χ−ρχðχi;χ0i;0Þ; ð3:25Þ 

×e 

with the definition (3.17). 

Note that in the influence action (3.25) the ϕ fields act 

as background field variables, the functional and path 

integrations are performed in all 

fields χ other than the ϕ fields. These 

functional integrals are obtained by expanding the terms e 

R ½  in power series and carrying the path and functional 

integrals in χ;χi;χf;χ0, yielding correlation functions of the 

operators Oa and reexponentiating. This is depicted in Fig. 

2. 

From Eqs. (3.22) and (3.23) it is clear that the effective 

action Seff determines the time evolution of the reduced 

density matrix. 

The path integral representations for both T ½ϕf;ϕi; 

ϕ0
f;ϕ0

i;t and 
I½ϕþ;ϕ−;t feature the boundary conditions in 

(3.18)–(3.21) except that we now set χðx;t⃗ Þ ¼ χfðx⃗ Þ to 

trace over the χ field. 

The technical steps to obtain I½ϕþ;ϕ−;t in perturbation 

theory, up to second order in the operators Oa, up to Oðg2Þ 

are available in Ref. [18]. We follow the steps in this 

reference to find up to second order in couplings 

 

 

 

FIG. 2. Pictorial representation of the influence action 

I½ϕþ;ϕ−;t. The dashed lines are the (background) fieldsχ fields 

yielding correlationϕa , and the filled circles the trace over the 

The second graph with two dashed lines yields the 

influencefunctions of the operators O½χ. Each vertex carries a 

coupling. 

function up to second order in the couplings (3.26). We assume 

that hOþ;aϕi ¼−;t0.; hence, there is no first order contribution to 

I½ϕ 

iI½ϕþ;ϕ−;t ¼ −Z d4x1d4x2fϕþ
a ðx⃗ 1;t1Þϕþ

b ðx⃗ 2;t2Þ 

× G
 ⃗

 ⃗ × G
 ⃗

 ⃗ 

 × G ⃗

 ⃗ 

 × G ðÞg ð Þ;

 ð3:26Þ 

where and G  ðÞ are given by 

 G  ðÞ ¼ hOaðx1ÞObðx2Þiχ; ð3:27Þ 

 G  ðÞ ¼ hObðx2ÞOaðx1Þiχ; ð3:28Þ 

and we have assumed that hOai ¼ 0 (so that the first diagram 

in Fig. 2 vanishes). The operators Oa are Hermitian from 

which it follows that 

 G<
abðx1 − x2Þ ¼ G>

baðx2 − x1Þ: ð3:29Þ 

This is the general form of the influence function up to 

second order in the operators Oa½χ, but to all orders in 

 

iSeff½Φ;R ¼ −iZ d3xXa Ra;iðxÞΦ˙ aðx;t ¼ 0Þ 

t 
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the couplings of the χ fields to any other field except ϕ1;2. 

We can obtain expectation values and correlation functions 

of ϕ1;2 by including sources Ja ðxÞ with L0ðϕÞ → 

L0ðϕÞ  JðxÞϕðxÞ and defining the generating functional Pa 

a a 

Z½Jþ;J− ¼ TrρrðJþ;J−;tÞ 

¼ Z DϕfDϕiDϕ0i Z Dϕþ 

 ×Z Dϕ−eiSeff½ϕþ;Jþ;ϕ−;J−;tρϕðϕi;ϕ0i;0Þ ð3:30Þ 

with the boundary conditions 

ϕþa ðx;t⃗ ¼ 0Þ ¼ ϕi;aðx⃗ 

Þ; ϕþa ðx;t⃗ Þ ¼ ϕf;aðx⃗ Þ; ϕ−a ðx;t⃗ ¼ 0Þ ¼ 

ϕ0i;aðx⃗ Þ; ϕa− ðx;t⃗ Þ ¼ ϕf;aðx⃗ Þ:

 ð3:31Þ 

Expectation values or correlation functions of ϕ in the 

reduced density matrix are obtained as usual with 

variational derivatives with respect to the sources J. 

The effective action (3.24) may be written in a manner 

more suitable to exhibit the equations of motion by 

introducing the Keldysh [41] center of mass and relative 

variables 

 Φ ðx;t⃗ Þ ¼ 2ðϕþðx;t⃗ Þ þ ϕ ð 

 a 1 a −a x;t⃗ÞÞ; 

 Raðx;t⃗Þ ¼ ðϕþ
a ðx;t⃗Þ −ϕ−

a ðx;t⃗ ÞÞ:

 ð3:32Þ 

The boundary conditions on the ϕ path integrals given 

by (3.31) translate into the following boundary conditions 

on the center of mass and relative variables: 

 Φaðx;t⃗ ¼ 0Þ ¼ Φa;i; Raðx;t⃗ ¼ 0Þ ¼ Ra;i; ð3:33Þ 

Φaðx;t⃗ ¼ tfÞ ¼ Φa;fðx⃗ Þ; Raðx;t⃗ ¼ tfÞ ¼ 0: ð3:34Þ 

Taking the spatial Fourier transform, the effective action 

(3.24) with the influence functional (3.26) becomes where 

ω2aðkÞ ¼ k2 þ m2a. To obtain the above form, we 

integrated by parts in time, defined J aðxÞ ¼ ðJþa ðxÞ − J−
a 

ðxÞÞ, and kept only the sources conjugate to Φa 
because 

we are interested in expectation values and correlation 

functions of this variable only as discussed in detail 

below. 

The nonlocal kernels in the above effective Lagrangian 

are given by [18] 

N abðk;tÞ þ G<
abðk;t − t0Þ; ð3:36Þ 

iΣR
abðk;t − t0Þ ¼ ½G>

abðk;t − t0Þ − G<
abðk;t − t0ÞΘðt − t0Þ 

 ≡ iΣabðk;t − t0ÞΘðt − t0Þ; ð3:37Þ 

1 

where G<;>ðk;t − t0Þ are the spatial Fourier transforms of 

the correlation functions in (3.27) and (3.28). It is clear 

from these correlation functions that if hO1O2i ≠ 0, the self-

energy features nonvanishing off-diagonal matrix 

þ iZ0 dtXk;a f−Rað−k;t⃗ ÞðΦ̈ aðk;t⃗Þ þ ω2
aðkÞΦaðk;t⃗ÞÞ þ Φaðk;t⃗ÞJ að−k;t⃗ Þg 

⃗ 

−Z0t dt1 Z0t dt2Xab 
1 Rað−k;t⃗ 1ÞN abðk⃗ ;t1 − t2ÞRbðk;t ⃗ 2Þ þ iRað−k;t⃗ 1ÞΣab

R ðk⃗ ;t1 − 

t2ÞΦbðk⃗ ;t2
Þ; ð3:35Þ 2 
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elements, and these are responsible for indirect mixing 

between the fields ϕ1 and ϕ2. Since each operator is 

associated with a coupling ga, the self-energy and noise 

kernels are of second order, and we will refer to them 

generically as Σ∝ g2;N ab ∝ g2 to emphasize the second order 

nature of these kernels. 

In the exponential of the effective action eiSeff , the 

quadratic term in the relative variables Ra can be written as 

a functional integral over a noise variable ξa as follows: 

 2Z 1 Z 2 að−k⃗ ;t1ÞN abðk⃗ ;t1 − t2ÞRbðk ⃗;t2Þ dt R 

 ¼ C˜ Z Dξa exp−1
2Z dt1 Z dt2ξað−k⃗ ;t1ÞN−

ab
1ðk⃗ ;t1 − t2Þξbðk⃗ ;t2Þ þ iZ dtξað−k⃗ ;tÞRaðk⃗ ;tÞ; ð3:38Þ 

where C˜ is a normalization factor. 

The time evolution of the density matrix defines an initial value problem; consequently, we seek to obtain the equations 

of motion as an initial value problem rather than a boundary value problem. Since the Heisenberg equations of motion are 

second order in time, an initial value problem is determined by providing the initial values of the field and its canonical 

momentum. This suggests to consider the Wigner transform of the initial density matrix by writing it in terms of the initial 

center of mass and relative variables Φa;i and Ra;i, 

 R R 

the variables Πa are the momenta conjugate to the variable Φa, and W½Φ;Π yields a probability distribution in “phasespace” 

Φ, Π. 

Gathering these results together, we now write the generating functional (3.30) in terms of the Keldysh variables (3.32), 

with the effective action in these variables given by Eq. (3.35). Implementing the Wigner transform (3.41) and using the 

representation (3.38) we obtain 

 ρϕðϕa;i;ϕ0a;i;0Þ ≡ρϕΦa;i þ 2a;i ;Φa;i − 2a;i ;0; 

and introduce the functional Wigner transform [43,51] as a Fourier transform in the relative variable, 

ð3:39Þ 

W½Φa;i;Πa;i ¼ Z DRie−iR d3xΠa;iðx⃗ ÞRiðx⃗ ÞρϕΦa;i þ R2a;i ;Φa;i −R 2a;i ;0; 

which allows us to write (up to a normalization factor) 

ð3:40Þ 

R R ρϕΦa;i þ 2a;i ;Φa;i − 2a;i ;0 ¼ Z DΠa;ieiR 

d3xΠa;iðx⃗ ÞRa;iðx ⃗ ÞW½Φa;i;Πa;i; ð3:41Þ 
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Z½J ¼ Z DΦf Z DRiDΦiDΠi Z DΦDRDξW½Φi;Πi × P½ξ × expiZ dtXk⃗ Φaðk⃗ ;tÞJ að−k⃗ ;tÞ 

 × exp−iZ dtXk⃗ Rað−k⃗ ;tÞΦ̈ aðk⃗ ;tÞ þ ω2
aðkÞΦaðk⃗ ;tÞ þ Z0t Σabðk⃗ ;t − t0ÞΦbðk;t⃗ 0Þdt0 −ξaðk ⃗;tÞ 

 × expiXk⃗ Ra;ið−k⃗ ÞðΠa;iðk⃗ Þ −Φ˙ a;iðk⃗ ÞÞ; ð3:42Þ 

where ω2
aðkÞ ¼ k2 þ m2

a and repeated field indices are summed over. The noise probability distribution function P½ξa is 

given by 

 P½ξa ¼ C˜ Yk⃗ exp−1
2 Z dt1 Z dt2ξað−k ⃗ ;t1ÞN−

ab
1ðk;t1 − t2Þξaðk⃗ ;t2Þ: ð3:43Þ 

The generating functional Z½J is the final form of the time evolved reduced density matrix after tracing over the bathJ yield 

the correlation functions of the Keldysh center degrees of freedom. Variational derivatives with respect to the source of 

mass variables Φ. 

Carrying out the functional integrals over Riðk⃗ Þ and Rk⃗ ðtÞ yields a clearer form, namely 

Z½J ∝Z DΦa;f Z DΦa;iDΠa;i Z DΦaDξaW½Φi;Πi × P½ξ × expiZ dtXa;k⃗ Φaðk⃗ ;tÞJ að−k⃗ ;tÞ 

× Yk⃗ δΦ ̈aðk⃗ ;tÞ þ ω2
aðkÞΦaðk⃗ ;tÞ þ Z0t Σabðk;t⃗ − t0ÞΦbðk⃗ ;t0Þdt0 −ξaðk⃗ ;tÞ 

 × Ya;k⃗ δ½Πa;iðk⃗ Þ −Φ˙ a;iðk⃗ Þ: ð3:44Þ 

 
Obtaining expectation values and correlation functions 

from this generating functional is straightforward: 

(i) The functional delta functions in (3.44) determine 

the field configurations that contribute to the 

generating functional Z½J. These are the solutions 

of[39] for the stochastic Langevin equation of 

motion Φaðk⃗ ;tÞ, namely 

Φ̈ aðk⃗ ;tÞþω2aðkÞΦaðk⃗ ;tÞ þZ0t Σabðk⃗ ;t−t0ÞΦbðk⃗ 

;t0Þdt0 ¼ ξaðk⃗ ;tÞ: ð3:45Þ 

This equation of motion is retarded as it involves the 

retarded self-energy, thereby defining a causal 
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initial value problem. This is a distinct consequence 

of the in-in formulation of time evolution. 

(ii) The expectation value and correlations of the 

stochastic noise ξaðk⃗ ;tÞ are determined by the 

Gaussian probability distributionnition ⟪ðÞ⟫ for 

averages withP½ξa. Introducing the defi-P½ξa, the 

Gaussian 

stochastic noise features the following averages: 

⟪ξaðk;t⃗ Þ⟫ ¼ 0; 

 ⟪ξaðk⃗ ;tÞξbðk⃗ 0;t0Þ⟫ ¼ N abðk;t − t0Þδk;⃗ −k⃗ 0 : ð3:46Þ 

Since P½ξa is a Gaussian distribution function, 

higher order correlation functions are obtained by 

implementing Wick’s theorem. This averaging is a 

manifestation of stochasticity, establishing a direct 

relation between nonequilibrium dynamics of 

quantum open systems and stochastic field theory 

[52,53]. (iii) The stochastic equation of motion 

(3.45) must be solved with the initial conditions 

Φaðk⃗ ;t ¼ 0Þ ¼ Φa;iðk⃗ Þ; Φ˙ aðk⃗ ;t ¼ 0Þ ¼ Πa;iðk⃗ 

Þ; 

ð3:47Þ 

and these initial conditions confirm that Πa;i are the 

canonical momenta conjugate to Φa;i. The solution 

of 

(3.45) is a functional of the variables Φa;iðk⃗ 

Þ;Πa;iðk⃗ Þ, which are distributed according to the 

probability distribution function W½Φa;i;Πa;i, which 

in turn is determined by the initial density matrix. 

This is another manifestation of stochasticity, but 

now in the distribution of initial conditions. 

 

We now introduce the notation ðÞ to denote 

averaging over the initial conditions (3.47) with the 

distribution function W½Φa;i;Πa;i. 

 The solutions of the Langevin equation (3.45) 

Φa½k⃗ ;t;ξ;Φa;i;Πa;i are functionals of the stochastic noise 

variables ξa and the initial conditions. Therefore correlation 

functions of the original field variables ϕa in the reduced 

density matrix correspond to averaging the products of the 

solutions over both the initial conditions with the Wigner 

distribution function W½Φa;i;Πa;i, and the noise with the 

probability distribution function P½ξ. We denote such 

 

averages by ⟪ðÞ⟫ where ðÞ is any functional of the initial 

conditions (3.47) and ξa. 

These stochastic averages yield the expectation values 

and correlation functions of functionals of Φa obtained 

from variational derivatives with respect to J a. 

In Appendix B we provide a nonperturbative spectral 

Lehmann representation of the correlation functions G

 ð yÞ that enter in the definitions of the self-energy 

(3.37) and noise correlation function (3.36). The result is 

that these nonlocal kernels can be written in a dispersive 

representation as 

 Σabðk;t − t0Þ ¼ −iZ ð dk2π0Þρabðk0;kÞe−ik0ðt−t0Þ; ð3:48Þ 

N abðk;t − t0Þ ¼ 12Z ðdk2π0Þρabðk0;kÞcoth

β2k0e−ik0ðt−t0Þ; 

ð3:49Þ 

Appendixwhere ρabðkB0;kfor details). The 

representationsÞ is a 2 × 2 matrix of spectral densities 

(see(3.48) and 

(3.49) are a manifestation of a generalized fluctuation 

dissipation relation, a consequence of taking the χ degrees 

of freedom in thermal equilibrium. 

The stochastic equation of motion (3.45) with initial 

conditions (3.47) defines an initial value problem whose 

solution is obtained by Laplace transform. Let us define the 

Laplace transforms 

∞ 
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 Φ˜ aðk⃗ ;sÞ ¼ Z0 e−stΦaðk⃗ ;tÞdt; ð3:50Þ 

∞ ξ˜aðk⃗ ;sÞ ¼ Z0

 e−stξaðk⃗ ;tÞdt; ð3:51Þ 

Σ˜ abðk⃗ ;sÞ ¼ 0∞e−stΣabðk⃗ ;tÞdt 

¼ − 1 Z ∞ρabðk0;kÞdk ; 

ð3:52Þ 

where in (3.52) we used the representation (3.48). The 

Laplace transform of the Langevin equation (3.45) with 

initial conditions (3.47) becomes 

G−ab1ðk;sÞΦ˜ bðk⃗ ;sÞ ¼ Πa;iðk⃗ ÞþsΦa;iðk⃗ Þþξ˜aðk⃗ ;sÞ; 

ð3:53Þ where 

 G−ab1ðk;sÞ ¼ ðs2 þ ω2aðkÞÞδab þ Σ˜ abðk⃗ ;sÞ: ð3:54Þ 

The solution in real time is obtained by inverse Laplace 

transform, and it is given by 

 Φaðk⃗ ;tÞ ¼ Φhaðk⃗ ;tÞ þ Φξaðk⃗ ;tÞ; ð3:55Þ 

where Φhaðk⃗ ;tÞ;Φξaðk⃗ ;tÞ are the homogeneous and 

inhomogeneous solutions, respectively, namely 

Φhaðk⃗ ;tÞ ¼ G˙ abðk;tÞΦb;iðk⃗ Þ þ Gabðk;tÞΠb;iðk⃗ Þ; 

Φξ
aðk⃗ ;tÞ ¼ Z0t Gabðk;t − t0Þξbðk⃗ ;t0Þdt0; ð3:56Þ and 

repeated indices are summed over. Green’s function is 

given by 

 1 st 

 Gabðk;tÞ ¼ 2πiZC e Gabðk;sÞds; ð3:57Þ 

where C denotes the Bromwich contour parallel to the 

imaginary axis and to the right of all the singularities of 

Gabðk;sÞ in the complex s plane, closing along a largesÞ < 

0. These singularities semicircle at infinity with Reð 

correspond to poles and multiparticle branch cuts with 

ReðsÞ < 0; thus, the contour runs parallel to the imaginary 

axis s ¼ iðν− iϵÞ, withν ¼−−∞≤ω, we obtainν≤∞ and ϵ→ 

0þ. Finally, changing variables 

 ∞ i t dω
 

 Gabðk;tÞ ¼ Z−∞ Gabðk;s ¼ −iω þ ϵÞe− ω 2π ; ð3:58Þ 

and for t > 0 the integration contour is closed in the lower 

half ω plane. We obtain Green’s function Gabðk;sÞ by 

following the steps in Appendix C. Without loss of 

generality we consider m  and define 

M¯ ðk;sÞ ¼ s2 þ 12½ω21ðkÞþω22ðkÞþΣ˜ 11ðk;sÞþ Σ˜ 

22ðk;sÞ; 

ð3:59Þ 

Dðk;sÞ ¼ ½ðω21ðkÞ −ω22ðkÞ þ Σ˜ 11ðk;sÞ −Σ˜ 22ðk;sÞÞ2 

 þ 4Σ˜ 12ðk;sÞΣ˜ 21ðk;sÞ1=2; ð3:60Þ 

 1 21 22 ˜ 11 k;s⃗ Þ 

−Σ˜ 22ðk;s⃗ ÞÞ; 

α¯ðk;sÞ ¼ Dðk;s⃗ Þðω ðkÞ −ω ðkÞ þ Σ ð 

ð3:61Þ 

β¯ðk;sÞ ¼ 2ΣD˜ 12ðk;s⃗ð
k;sÞÞ;γ¯ðk;sÞ ¼ 2ΣD˜ 

21ðk;sðk;sÞÞ; ð3:62Þ 

with the property α¯2ðk;sÞ þ 

β¯ðk;sÞγ¯ðk;sÞ ¼ 1 ⇒αðk;sÞ 
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 ¼ q1 −β¯ðk;sÞγ¯ðk;sÞffi; ð3:63Þ 

where we used the same argument leading to Eq. (2.46) for 

the choice of sign for α¯. 

In terms of these variables, G−
ab

1ðk;sÞ has the same form 

as Eq. (C3) in Appendix C, yielding 

Gðk;sÞ ¼ M¯ ðPk;s−ðÞk;s−DÞ ð2k;sÞ þ M¯ ðPk;sþðÞ þk;sDÞ 

ð2k;sÞ ; 

1 

P ¼ 2ð1  RÞ; ð3:64Þ with 

 α¯ β¯ 2 2 

R ¼ γ¯ −α¯ ; R ¼ 1⇒ Pðk;sÞ ¼ Pðk;sÞ: 

ð3:65Þ 

The analytic continuation of the self-energies is 

Σ˜ abðk;s ¼ −iω þ ϵÞ 

 ¼ 2 1πZ ∞Pρabωð−k0;k0 Þdk0 − iπρabðω;kÞ: ð3:66Þ 

 −∞ k 

Upon analytic continuation to ω Green’s function (3.58) 

becomes 

k;ω 

Gabðk;tÞ ¼

 −∞ ð þ Þ −ðk; Þ 

 P 2ðk;ω2Þ abe−iωt d ω; ð3:67Þ 

 þ ðω þ iϵÞþ −Ωþðk;ωÞ 2π 

with 2 1 12 22 ˜ 11 k;ωÞ 

Ωðk;ωÞ ¼ 2½ω ðkÞ þ ω ðkÞ þ Σ ð 

 þ Σ˜ 22ðk;ωÞ  Dðk;ωÞ; ð3:68Þ 

where the functions of ω are understood as the functions of 

s upon analytic continuation s ¼ −iω þ ϵ, keeping the same 

name for the functions to simplify notation. 

The form of Green’s function is similar to Eq. (2.40) of 

the previous section, with important differences: whereas 

the denominators in Eq. (2.40) are linear in ω, therefore 

each term features only one pole, and the denominators in 

(3.67) are quadratic in ω implying that each term features 

two poles. This discrepancy has a simple explanation: the 

set of amplitude equations leading up to (2.40) describe the 

evolution of single particle states, whereas the effective 

field theory yields the time evolution of the density matrix 

in the field basis, and a real scalar field describes positive 

frequency particle states and negative frequency 

antiparticle states. Even in the absence of perturbations, the 

propagator has two poles yielding the time evolution 

e∓iωðkÞt for the amplitudes. Furthermore, the self-energies 

Σ˜ abðk;ωÞ have dimensions of energy squared, unlike 

theΔab in the previous section that feature dimenquantities 

sions of energy. 

The complex poles in Green’s functions are at 

namely 

ω2 ¼ Ω2 ðk;ωÞ;  ð3:69Þ 

 ωðÞ ¼ ðÞΩþðk;ωðÞþ Þ; 
þ 

ð3:70Þ 

 ωðÞ− ¼ ðÞΩ−ðk;ωðÞ− Þ; ð3:71Þ 

where the superscripts () denote the two roots of (3.70) and 

(3.71) for each subscript label2 þ;− corresponding to the 

signs of Ω in (3.68). These roots define the complex 

frequencies of the quasinormal modes. 

Consistent with perturbation theory, we assume that 

 ð Þ ð Þ 2 allowing one to 

implement 

Breit-Wigner and narrow width approximations to the 

propagators. Just as in the case discussed in the previous 

section, the validity of the Breit-Wigner approximation 

relies on weak coupling, in particular that the distance 

between the real part of the poles and thresholds is much 

larger than the half-width of the resonance. This criterion 

holds for both the nondegenerate and nearly degenerate 

cases, because in the latter the condition of near 

degeneracy is that ω2
a ≫Σ˜ 

ab and  ab. This 
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approximation describes exponential relaxation valid in the 

intermediate timescale as discussed above. 

In these approximations, we expand around each pole in 

the denominators in (3.67), namely ω ¼ ωðþÞþ þ ðω−ωðþÞþ 

Þ; 

Ωþðk;ωÞ ¼ Ωþðk;ωðþÞþ Þ þ ðω−ωðþÞþ Þ 

 1 d 2 

 × ðþÞ dωΩþðk;ωÞjω¼ωðþÞþ þ  ð3:72Þ 

2ω 
þ 

and similarly for each of the other poles. Using the pole 

condition (3.69) yields the general form of Green’s 

function, 

 Gabðk;tÞ ¼ Gab;þðk;tÞ þ Gab;−ðk;tÞ; ð3:73Þ 

where each term corresponds to the contribution of the 

individual quasinormal modes corresponding to the 

subscripts , namely 

e− ωðþÞ 

i ZðþÞþ Gab;þðk;tÞ ¼ 

2ωi ðþÞþ t 
P

þðωðþÞþ Þ þ 

 Zð
−

Þ 

e

−iωþð−Þt P ωð−Þ ; 3:74 

The wave function renormalization constants are given by 

 ZðÞþ 
¼ 1 − d dωΩ2þ2ωðk;þðÞ ωÞ  

  ω¼ωðÞþ 
−11; 

 d Ω−2 ðk;ωÞ − : 

ZðÞ− ¼ 1 − d ω 2ω−ðÞ    ω¼ωðÞ−

 ð3:76Þ Green’s function for each quasinormal 

mode features both positive (ωðþÞ) and negative (ωð−Þ) 

frequency contributions. 

This is the general result for Green’s function, again 

displaying the four poles: positive and negative frequency 

for each quasinormal mode, with the associated wave 

function renormalization constants arising from the 

residues at the poles in the Breit-Wigner approximation. 

Note that while the result (2.44) features only positive 

frequency components, Green’s function (3.73) features 

both positive (ωðþÞ) and negative (ωð−Þ) frequency 

components. As discussed above the origin of this 

difference is that whereas the Weisskopf-Wigner 

formulation, upon which the LOY theory is based, 

describes the time evolution of single particle (positive 

frequency) or antiparticle (negative frequency) amplitudes, 

Green’s function in the effective field theory describes the 

propagation of fields that include both positive and 

negative frequencies and describe the quasinormal modes 

of propagation as a consequence of mixing and decay. 

Although this expression looks cumbersome in its index 

structure, we clarify again: the superscripts () refer to the 

positive (particle) 

refer to the two (quasi)normal modes from mixing, corre-

and negative (antiparticle) frequencies, the subscripts  

sponding to the  in Eq. (3.68). 

With the purpose of comparison with the LOY theory, 

we focus on the same possible scenarios as in the previous 

section. 

A. Nondegenerate: m ab 

In this case it follows that 

Dðk; Þ ð Þ

ðkÞ þ Σ˜ 11ðk;ωÞ −Σ˜ 22ðk;ωÞ; ð3:77Þ 

þ þ 2ωð−Þ 
þð þ 

Þab þ 

ð Þ 

e−iωðþÞ− 

Gab;−ðk;tÞ ¼ iZðþÞ− 2ωðþÞ− 
t P−ðωðþÞ− Þ 

e2−ωiω−ð−Þt P−ðω−−
ÞÞ

ab: 

 þ Zð−
−

Þ  ð−−Þ ð ð3:75Þ 
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yielding up to second order in the couplings 

þð Þ ¼ ðkÞ þ Σ˜ 11ðk;ωÞ; 

ð3:78Þ ð Þ ¼ ðkÞ þ Σ˜ 

22ðk;ωÞ: ð3:79Þ 

 ðk; Þ m 1; ð3:81Þ 

 Σ˜ 21

 ω 

 ð Þ m  : ð3:82Þ 

Therefore, up to second order in couplings the complex 

poles are at 

ΓðÞ k 

2 

where 

ωþrðkÞ ¼ ω1ðkÞ þ δþðkÞ; ω−rðkÞ ¼ ω2ðkÞ þ δ−ðkÞ 

ð3:85Þ 

are the renormalized frequencies of each quasinormal 

mode and to leading order δþðkÞ ¼ 112ωðk;1ðωkÞ1ðkÞÞ; 

δ−ðkÞ ¼ ReΣ˜ 222ωðk;2ðωkÞ2ðkÞÞ; ReΣ˜ 

ð3:86Þ 

ΓðÞþ ðkÞ ¼ ðÞρ11ð2ωω11ððkkÞÞ;kÞ; 

 ΓðÞ− ðkÞ ¼ ðÞρ22ð2ωω22ððkkÞÞ;kÞ: ð3:87Þ 

To obtain the above results we used the property 

ρaað−ω;kÞ ¼ −ρaaðω;kÞ (no sum over a) for the 

diagonal(B15) in matrix elements of the spectral density 

[see Eq. Appendix B]. The contributions δðkÞ are 

renormalizations of the bare frequencies ω1;2, respectively. 

Green’s function (3.73) with (3.74) and (3.75) is given 

to leading order in this case by 

ab;þ i r  −iωþrte−Γ2þþtPþðω1Þ G 

ðk;tÞ ¼ 2ωþ ½ZðþÞþ e Γ− 

−Zðþ−Þeiωþrte− 2þtPþð−ω1Þab; 

i 

Gab;−ðk;tÞ ¼ ω−r ½ZðþÞ− 

e−iω−rte−Γ2þ−tP−ðω2Þ 2 

ð3:88Þ 

−Zð−−Þeiω−rte−Γ2−−tP−ð−ω2Þab; ð3:89Þ 

with the projection operators given to leading order in the 

couplings by 

1 1 β¯ðk;ω Þ ; 

 Pþðω1Þ ¼  21 γ¯ðk;ω1Þ 2 0 1  ð3:90Þ 

2  12 0 2 − 12 β¯ðk;ω2Þ:

 ð3:91Þ P−ðω Þ ¼ − γ¯ðk;ω Þ 1 

Since in this nondegenerate case β¯;γ¯ ∝Σ [see Eqs. (3.81) 

and (3.82)] the off-diagonal terms are perturbatively small, 

for these the wave function renormalization constants can 

be set Z≃ 1 to leading order. This result agrees with those 

obtained in Ref. [18] for the case of pion-axion mixing. 

B. (Nearly) degenerate: m m ab 

In this case, it is convenient to define 

α¯ðk;ωÞ ≃ 1 þ OðΣ˜ 

2Þ; β¯ ω ≃ 2Σ˜ 12ðk;ωÞ 

≪ 

ð3:80Þ 

ωðÞðkÞ ¼ ωþrðkÞ − i þ2ð Þ; 
þ ð3:83Þ 

ΓðÞ ωðÞ− 

ðkÞ ¼ ω−rðkÞ − i − ðkÞ; ð3:84Þ 
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Ω2 ðk;ωÞ ¼ ω¯ 2ðkÞ þ Eðk;ωÞ; 

with 

ð3:92Þ 

1 

ω¯ðkÞ ¼ p2½ω21ðkÞ þ ω22ðkÞ1=2 ≫Σ˜ 
ab;D ffi 

and 

ð3:93Þ 

 1 ˜ 11 k;ωÞ þ Σ˜ 22ðk;ωÞ  Dðk;ωÞ ≪ω¯ 2 E 

ðk;ωÞ ¼ 2½Σ ð 

ð3:94Þ 

with Σ˜ ab and D of the same order. In this case the complex 

poles are at 

ΓðÞ k 

are the renormalized (nearly degenerate) frequencies, with 

δ ðkÞ ¼ Re½E2ðωk;¯ðkÞω¯ðkÞÞ; 

 

 ΓðÞ ðkÞ ¼ ð∓Þ
Im

½Eðω¯
k;ðkÞω¯ðkÞÞ; ð3:98Þ 

and both are of quadratic order in the couplings. 

 We assume that the decay rates ΓðÞ are all positive for 

stability, and further properties ofthe specific details of the 

self-energiesδ;ΓðÞΣ˜ ab, which in turnwill depend on 

depend on the type of operators Oa. In this case ωþr −
ω

−r 

≃Σ˜
, namely the difference in the quasinormal mode 

frequencies are of quadratic order in the couplings. To 

leading order in the couplings Green’s functions (3.74) and 

(3.75) in this nearly degenerate case are given by 

i r h 

−iωΓ−þrte−iΓ2þþtPþðωþrÞ G ðk;tÞ ¼ 2ωþ ZðþÞþ e þ 

 −Zðþ−Þeiωþrte−i 2þtPþð−ωþrÞi; ð3:99Þ 

G−ðk;tÞ ¼ 2 ωi−r hZiðþÞ−−rte−iiωΓ2−−−rtte−iΓ2−þtP−ðω−rÞ 

 −Zð−−Þe ω e− P−ð−ω−rÞi; ð3:100Þ 

where all matrix elements of P are of Oð1Þ. 

C. Expectation values and correlation functions 

We seek to obtain expectation values and correlation 

functions of ϕa in the reduced density matrix. In particular, 

we focus on equal time correlation functions. If 

asymptotically at long time these become time 

independent, this is a signal of the emergence of a 

stationary state, from which 

we can assess if the fields reach thermal equilibration with 

the bath. Furthermore, off-diagonal equal time correlation 

functions will also inform on the emergence and long time 

survivability of coherence. Therefore, we must relate these 

to the averages of the center of mass Keldysh fields Φa. To 

establish this relation, we begin with the path integral 

representations for the forward and backward time 

evolution operators (3.13), (3.15), and (3.16) which show 

that ϕþ
a 

follows that the expectation value of the fields in the fullare 

associated with UðtÞ and ϕ−
a with U−1ðtÞ. Hence, it 

ωðÞðkÞ ¼ ωþrðkÞ − i þ2ð Þ; 
þ 

ð3:95Þ 

ΓðÞ 

ωðÞ− ðkÞ ¼ ω−rðkÞ − i −2ðkÞ; 

where 

ð3:96Þ 

ω rðkÞ ¼ ω¯ðkÞ þ δðkÞ  
ð3:97Þ 



EFFECTIVE FIELD THEORY OF PARTICLE MIXING PHYS. REV. D 109, 036038 (2024) 

036038-29 

density matrix is given by hϕaðx;t⃗ Þi ¼ Trϕþa 

ðx;t⃗ Þρˆð0Þ ¼ Trρˆð0Þϕ−a ðx;t⃗ Þ 

¼ TrΦaðx;t⃗ Þρˆð0Þð0Þ ¼ ⟪Φaðx;t⃗ Þ⟫;

 ð3:101Þ whereas 

 TrRaðx;t⃗Þρˆð0Þ ¼ 0: ð3:102Þ 

Similarly, correlation functions in the forward, 

backward, and mixed forward-backward branches are 

given by 

Trϕþa ðk⃗ ;tÞϕþb ðk⃗ 0;t0Þρˆð0Þ ≡ TrTðϕaðk⃗ ;tÞϕbðk⃗ 

0;t0ÞÞρˆð0Þ; 

Trϕ−a ðk⃗ ;tÞϕ−b ðk⃗ 0;t0Þρˆð0Þ ≡ Trρˆð0ÞT˜ðϕaðk⃗ 

;tÞϕbðk⃗ 0;t0ÞÞ; 

Trϕþa ðk⃗ ;tÞϕ−
b ðk⃗ 0;t0Þρˆð0Þ ≡ Trϕaðk⃗ 

;tÞρˆð0Þϕbðk⃗ 0;t0Þ ¼ 

Trϕbðk⃗ 0;t0Þϕaðk⃗ 

;tÞρˆð0Þ; 

ð3:103Þ 

where T and T˜ are the time ordering and antitime ordering 

symbols, respectively. Using the relations (3.103) it is 

straightforward to confirm that 

TrΦaðx;t⃗Þ ð⃗ Þ ð Þ 2

 ð aðx;t⃗Þϕbðx⃗ 0;t0Þ 

 þ ϕbðx⃗ 0;t0Þϕaðx;t⃗ÞÞρˆð0Þ: 

ð3:104Þ 

Upon obtaining the functional solutions of Eq. (3.45) our 

objective is to obtain the connected equal time correlation 

functions hϕaðtÞϕbðtÞic ¼ Trρˆð0ÞϕaðtÞϕbðtÞ 

 − Trρˆð0ÞϕaðtÞTrρˆð0ÞϕbðtÞ; ð3:105Þ 

and the population for each field component of wave vector 

k, namely 

naðk;tÞ ¼ 2ω1
aðkÞTrρˆð0Þ½ϕ˙ aðk⃗ 

;tÞϕ˙ að−k ⃗ ;tÞ þ ω2aðkÞϕaðk⃗ 

;tÞϕað−k⃗ ;tÞ − 12  

 ðno sum over aÞ: ð3:106Þ 

Establishing contact with the dynamics of the density 

matrix of two level systems [51], the off-diagonal 

components of the connected correlation function (3.105) 

are a manifestation of coherence. If initially the fields are 

uncorrelated, the off-diagonal components of the 

correlation function vanish. Therefore, if upon time 

evolution these are nonvanishing, these off-diagonal 

correlations between the two fields are a consequence of 

coherence induced by the indirect mixing through the 

interactions of the field with the bath. 

With the definition of the Keldysh center of mass field 

variables Φa (3.32) and the relations (3.101)–(3.103), we 

find that the equal time connected correlation function 

(3.105) is given by 

hϕaðtÞϕbðtÞic ¼ ⟪ΦaðtÞΦbðtÞ⟫−⟪ΦaðtÞ⟫⟪ΦbðtÞ⟫: 

ð3:107Þ 

To obtain the population for each field (3.106) we now 

introduce 

C>
a ðk;t;t0Þ ¼ Trϕ−

a ðk⃗ ;tÞϕþ
a ð−k⃗ ;t0Þρð0Þ; 

 C<a ðk;t;t0Þ ¼ Trϕ−a ðk⃗ ;t0Þϕþa ð−k⃗ ;tÞρð0Þ; ð3:108Þ 

and the populations of the wavevector k⃗ component of 

each field ϕa (3.106) become 

 1 ∂ ∂ 
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naðk;tÞ ¼ 4ωaðkÞ∂t∂ t aðkÞ 

 > < 1 

 × ½Ca ðk;t;t0Þ þ Ca ðk;t;t0Þt¼t0 
− 

2 : ð3:109Þ 

Using the definition (3.32) and the relations (3.103) it is 

straightforward to show that this symmetrized product 

yields 

The corollary of this analysis is that we can obtain the 

connected correlation functions and the populations of the 

fields ϕ1;2 by obtaining the solutions of the Langevin 

equation of motion (3.45) with initial conditions (3.47) and 

taking the averages over the initial conditions and noise 

described above. 

Armed with the solution of the Langevin equations 

(3.55) and (3.56), the above results, and the general form 

for Green’s function (3.73), in terms of Green’s functions 

for the quasinormal modes (3.74) and (3.75), we can now 

study the expectation values, connected correlation 

functions (3.107), and populations (3.110). The solutions 

(3.55) and (3.56) along with the averages (3.46) yield for 

the spatial Fourier transform of the fields 

 

hϕaðk;t⃗ Þi ¼ G˙abðk;tÞΦb;iðk⃗ Þ þ Gabðk;tÞΠb;iðk⃗ Þ:

 ð3:111Þ Similarly, the connected correlation functions 

(3.107) are hϕaðk;t⃗ Þϕbð−k;t⃗ Þic ¼ Φh
aðk;t⃗ ÞΦh

bð−k;t⃗ Þ 

−Φh
aðk;t⃗ ÞΦh

bð−k;t⃗ Þ þ ⟪Φξ
aðk;t⃗ 

ÞΦξ
bð−k;t⃗ Þ⟫; ð3:112Þ 

where Φh and Φξ are given by (3.56). These are general 

results for expectation values and correlation functions, 

from which we can obtain their time evolution. 

D. Time evolution, thermalization, and 

bath-induced coherence 

Taken together, the results (3.111) and (3.112) inform 

important aspects for the time evolution of expectation 

values and correlation functions: 

(I) Even when initially only one of the fields, for 

exampleϕ1, features an expectation value, the off-diagonal 

components of Green’s functions determined by the 

projector operators P in (3.74) and (3.75) induce a 

nonvanishing 

  ϕ2. This 

expectation value for the other field, in this case 

phenomenon has been noticed in Ref. [18] in the case of 

axion-pion mixing. In the LOY theory discussed in the 

previous section, a similar feature emerges at the level of 

the amplitudes of the single particle states jϕ1i and jϕ2i: for 

example, if the initial amplitudes are C1ð0Þ ≠ 0; C2ð0Þ ¼ 0, 

upon time evolution a nonvanishing amplitude C2ðtÞ is 

induced as a consequence of mixing. The off-diagonal 

components of Gab are a consequence of the off-diagonal 

components of the self-energy matrix and a direct 

manifestation of the couplings of the fields to correlated 

operators of the bath degrees of freedom, namely “indirect” 
mixing. 

(II) A similar phenomenon emerges for the 

connectedcorrelation function (3.112). Even if the fields 

ϕ1;2 are initially uncorrelated, a nonvanishing correlation 

emerges from the off-diagonal components of the noise 

correlation function that determines the last term in 

(3.112). We refer to the emergence of nonvanishing 

correlations as bathinduced coherence, referring as 

coherence to the offdiagonal connected correlation 

functions of the field in agreement with the description of 

the time evolution of a density matrix in two level systems 

[51]. 

(III) The off-diagonal components of the projectors P 

 

naðk;tÞ ¼ 2ωa1ðkÞTrρð0Þ Φ˙ aðk⃗ ;tÞΦ˙ að−k⃗ ;tÞ þ ω2aðkÞΦaðk⃗ ;tÞΦað−k⃗ ;tÞ− 12 

 ¼ 2ωa1ðkÞ⟪Φ˙ aðk⃗ ;tÞΦ˙ að−k⃗ ;tÞ⟫ þ ωa2ðkÞ⟪Φaðk⃗ ;tÞΦað−k⃗ ;tÞ⟫− 21: ð3:110Þ 
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are perturbatively smallwhereas they are of Oð1ÞOin the 

nearly degenerate case. InðΣÞ in the nondegenerate case, 

turn, this implies that the induced expectation values and 

coherence are perturbatively small in the nondegenerate 

case, in agreement with the results in Ref. [18], but are of 

Oð1Þ in the nearly degenerate case. This expectation is 

confirmed by the analysis below. 

The first two terms in (3.112) decay exponentially 

because Green’s functions do, and depend explicitly on the 

initial conditions. The last term is independent of the initial 

conditions, it is completely determined by the noise term 

induced by the bath degrees of freedom, and, as we show 

below, it survives in the long time limit, hence determining 

the approach to a stationary state. 

We now focus on this last term, which upon using the 

noise correlation function (3.46) and (3.49) is given by 

 ξa ξb 1Z ∞ dk0 Z t Gacðk;τÞeik0τdτ 

⟪Φ ðtÞΦ ðtÞ⟫ ¼0 

× Z0t Gbdðk;τÞe−ik0τdτρcdðk0Þcoth 

βk0 

 ×  2 : ð3:113Þ 

Each of the G0s in this expression is a sum of Green’s 

functions of each quasinormal mode given by Eqs. (3.73)– 

(3.75); therefore, each G features four terms; and hence, 

there are altogether 16 terms in (3.113). Because ρcd is of 

second order in couplings, we will focus on the terms that 

are of Oð1Þ in these couplings, and these arise from the 

terms that feature small denominators of second order in 

the couplings that compensate the numerator ρcd. 

Each of the terms in G features exponentials of the form 

e−iðW−iΓ=2Þt where W stands for the real part of the 

quasinormal mode frequencies, the  describes the positive 

and negative frequency components, and Γ > 0 stands 

generically for the decay rate of these modes. Therefore, 

the time integral of such a typical term in the first bracket 

in 

(3.113) yields t iðk0
∓WþiΓ=2Þτdτ ¼ eðiðk0∓∓WþiΓþ=2Þt − 1Þ; 

ð3:114Þ 

e 

 0 i k0 W iΓ=2 

and for the second bracket there is a similar generic 

contribution but with k0 →−k0. Obviously as t →∞ these 

contributions remain nonvanishing, confirming that the 

noise contribution to the correlation functions and 

coherences (off-diagonal) remain finite in the long time 

limit. The k0 integral in (3.113) is dominated by the poles 

in the complex k0 plane. To identify these, consider the 

product of the positive frequency contribution for the first 

G with the negative frequency contribution of the second G 
for the same quasinormal mode, for example, that of 

frequency ωþr. Such a term is proportional to the product 

 Γþ Γ− 

"iðk00−ωrþr 2þ iΓ2þþÞ#"ð−iÞðk00 − rωþ2r − iΓ2þ−Þ# eiðk 

−ωþ þi þÞt − 1 e−iðk −ωþ −i þÞt − 1 
 Γþ Γ− 

¼ 1 þ e−ðΓþþþΓ−þÞt=2 − ei k0−ωþrþi 2þt − e−i k0−ωþr−i 2þt 

  k0 −ωþr þ iΓ2þþ k0 −ωþr − iΓ2−þ ; 

ð3:115Þ 

and we refer to these as direct terms: there are two for each 

quasinormal mode. These terms feature poles at k0 ¼ ωþr  

iΓ2þþ yielding for the integral a contribution proportional to 

∝ 4 × 2πPþðωþrÞac  þ −

 þrÞbdð1 þ 2nðωþrÞÞ þ þ 

 × ð1 − e−ðΓþþþΓ−þÞt=2Þ; ð3:116Þ 

where nðωÞ is the Bose-Einstein distribution function with 

energy ω. In this expression we kept the leading order 

terms 
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and neglected wave function renormalization constants. 

Furthermore, ρcdðωÞ and cothðωÞ are evaluated at ωþr, 

namely the real part of the frequency of the quasinormal 

mode, sinceimportant aspect of this contribution is that it 

is ofΓþ are of second order in couplings. AnOð1Þ, because 

ρ and Γ are both of second order in the couplings. Now 

consider the positive (or negative) frequency contributions 

of the same quasinormal modes in both brackets, for 

example, for the positive frequency whose time integrals 

yield a term proportional to 

Γþ Γþ 

2 eiðk0−ωþrþi 2þÞt − 1 32 e−iðk0þωþr−i 2þÞt − 1 3 

6i k0 −ωþr 

þ iΓ2þþ7564ð−iÞ k0 þ ωþr − iΓ2þþ75 

 Γþ Γþ Γþ 

1 þ e−2iωþrte− 2þt − eiðk0−ωþrþi 2þÞt − e−iðk0þωþr−i 2þÞt 

¼ 

; k0 −ωþr þ iΓ2þþ k0 þ ωþr − iΓ2þþ 

ð3:117Þ 

and the negative frequency contribution is obtained by ωþr 

→−ωþr. We refer to these as indirect terms. These¼ ðω 
r ΓþÞ 

feature complex poles at k0 þ − i 2þ , yielding terms 

proportional to 

P ω þ P ω 1 − e þ 

þð þrÞac ρcd2ðωωr rÞ þð rÞbdð 2iω r e−ΓþþtÞ 
þ 

þ 

 × ð1 þ 2nðωþrÞÞ ≪ 1; ð3:118Þ 

where we have used that in the narrow width 

approximation ω r ≫Γþþ. These indirect terms are of second 

order in the þ 

couplings and therefore are subleading with respect to the 

direct terms. 

Finally, consider the contribution of a positive frequency 

of one quasinormal mode in one bracket and a negative 

frequency of the other mode in the other bracket. We refer 

to these as interference terms. For example, consider the 

positive frequency mode ω r in the first bracket in (3.113), 

and the negative frequency modeþ −ω−r in the second 

bracket, where the time integrals yield a term proportional 

to 

Γþ 

"iðikk00−ωrþir 2þtiΓ2þþÞ#"ð−iÞði kk00 −rωi−r −t iΓ2−−Þ#: ð3:119Þ 

e ð −ωþ þ þÞ − 1 e− ð −ω− − Þ − 1 

A similar analysis as for the previous terms yields the 

following leading order contribution to the correlation 

function: 

ρcdðω¯Þ 

PþðωÞac ½ þ ð þ þ −−Þ 

× P−ð−ω¯Þbd½1 − eiðωþr−ω−rÞte−12ðΓþþþΓ−−Þtð1 þ 2nðω¯ÞÞ: 

ð3:120Þ 

These interference terms exhibit the quantum beats, an 

interference phenomenon associated with the difference in 

the (quasi)normal mode frequencies, similar to that in the 

expression (2.112). 

These results are general and highlight the perturbative 

and nonperturbative contributions to the correlation 

functions in the long time limit. Before we discuss the 

nondegenerate and nearly degenerate cases, it is convenient 

to compare the results above to the case of the equal time 

correlation functions of a free field theory in thermal 

equilibrium, which is given by 

h ð⃗ ÞΦbð−k;t⃗ Þi ¼ 2ωδaabðkÞð1 þ 

2nðωaÞÞ; ð3:121Þ Φa k;t 

where we assumed uncorrelated fields, and the brackets 

stand for statistical averages in a thermal ensemble of 

uncorrelated fields. 

It is then clear that the long time limits (3.116), (3.118), 

and (3.120) all feature exponential relaxation to a 

thermalized stationary state with the asymptotic long time 

limit featuring the thermal factors 1 þ 2nðωÞ in terms of 

the real parts of the frequencies of the quasinormal modes 
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(the imaginary parts yield subleading contributions). This 

is one of the important results of this study. 

Furthermore, all feature off-diagonal terms which we 

identify as coherence because of the similarity with two 

level systems [51], as discussed above. We refer to this 

phenomenon as bath-induced coherence because even if 

the 

fieldsareinitiallyuncorrelated,theirinteractionwiththebath 

inducesoff-diagonaltermsthatsurviveinthelongtimelimit. 

Interference terms between the two different quasinormal 

modes leads to the approach to the stationary thermal state 

with quantum beats. Thermalization, the emergence of 

offdiagonalcoherence inthelongtime limit, 

andquantumbeats from interference between the two 

different quasinormal 

modesaresomeofthemainresultsofthisstudy.InSec.IIwe 

highlighted that in the LOY theory, quantum beats emerged 

in the time evolution of the total population (2.109) and by 

unitarity in the amplitudes of intermediate states or decay 

products [see Eq. (2.110)]. In the effective field theory 

these interference terms are explicit in the approach to the 

stationarythermalstateofthecorrelationfunctionsofthefields

, both the diagonal and off-diagonal (coherence) 

components displaying the quantum beats. 

1. Nondegenerate case 

In the nondegenerate case, with ωþr −
ω

−r ≃ω1 −ω2 ≫Γ the 

direct terms (3.116) are the leading ones. As shown by Eqs. 

(3.90) and (3.91) with (3.81) and (3.82), in the 

nondegenerate case the off-diagonal components of the 

projection operators are of Oðg2Þ. Therefore, in this case, 

the correlation functions exhibit thermalization albeit with 

a perturbatively small coherence. Furthermore, because the 

interference terms are perturbatively small since ρ=ðω1 

−ω2Þ ∝Σ∝ g2, the quantum beats in the approach to 

thermalization feature small amplitudes. This is in 

agreement with the results obtained in Ref. [18] for the case 

of (ultralight) axion-pion mixing. 

2. Nearly degenerate case In the nearly 

degenerate case with ω r −ω−r ≲Γ both þ 

the direct (3.116) and the interference terms (3.120) are of 

Oð1Þ, and all the matrix elements of the projector 

operators are also of Oð1Þ. In this case the amplitude of the 

quantum beats is large, enhanced by the near resonance, 

and the timescale of these interference effects is similar to 

the relaxation timescale. In this case the offdiagonal 

correlations, namely the coherence, become large, 

amplified by the (near) resonant denominators, and could 

potentially be observable. This situation is akin to the case 

of K0 − K¯ ð0Þ mixing where the decay products exhibit 

quantum beats on the timescales comparable to the 

lifetime. This is clearly the same physical process as 

described by the LOY theory described in Sec. II. 

However, in the effective field theory approach the 

quantum beats are explicit in the correlation functions of 

the mixing fields in both the diagonal and the offdiagonal 

components, and in the approach to the thermal stationary 

state. 

This large amplitude interference effect may open a 

window toward observation of synthetic-cosmological 

axion mixing via their (anomalous) coupling to photons 

with a Chern-Simons term. This pathway is being explored 

as a possible mechanism to harness synthetic axion 

quasiparticles in condensed matter systems to probe the 

cosmological axion [54]. 

 
E. Relation to the LOY formulation of mixing 

The results of the effective field theory bear a similarity 

with those obtained from the LOYtheory in Sec. II, but also 

have noteworthy differences. We seek to establish a more 

direct correspondence between both formulations 

enlightening the reason for the similarities and the origin of 

the differences. 

The main ingredient to obtain the time evolution of 

expectation values and correlation functions is Green’s 

function (3.67), which is completely determined by the 

solutions of the Langevin equation (3.45) for the 

homogeneous case ξa ≡ 0, namely 

Φ̈ aðk⃗ ;tÞ þ ω2aðkÞΦaðk⃗ ;tÞ 

t 

 þΣabðk⃗ ;t − t0ÞΦbðk⃗ ;t0Þdt0 ¼ 0: ð3:122Þ 
0 

In the absence of the self-energy, the solutions are the usual 

free field positive and negative frequency components with 

constant amplitudes. Since the self-energy is ∝ g2 (with g a 

generic coupling), we write 

 Φaðk⃗ ;tÞ ≡Caðk⃗ ;tÞe−iωaðkÞt þ Caðk⃗ ;tÞeiωaðkÞt; ð3:123Þ 

where the amplitudes Caðk⃗ ;tÞ;Caðk⃗ ;tÞ are slowly 

varying, namely C˙
a;C

˙
a ∝Σ∝ g2. The equations of motion 

(3.122) become 

 e−iωaðkÞtC ̈aðk;t⃗Þ − 2iωaðkÞC˙aðk;t⃗Þ þ e−iðωbðkÞ−ωaðkÞÞt Z0t Σabðk⃗ ;t − t0ÞeiωbðkÞðt−t0ÞCbðk ⃗;t0Þdt0 
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 þ eiωaðkÞtC̈ aðk;t⃗Þ þ 2iωaðkÞC˙aðk;t⃗Þ þ eiðωbðkÞ−ωaðkÞÞt Z0t Σabðk⃗ ;t − t0Þe−iωbðkÞðt−t0ÞCbðk⃗ ;t0Þdt0 ¼ 0; ð3:124Þ 

where in the last terms the sum over b is implicit. Because the terms inside the brackets are slowly varying and of Oðg2Þ, 

each bracket must vanish independently, yielding 

 C̈ aðk;t⃗Þ − 2iωaðkÞC˙aðk;t⃗Þ þ e−iðωbðkÞ−ωaðkÞtÞ Z0t Σabðk⃗ ;t − t0ÞeiωbðkÞðt−t0ÞCbðk⃗ ;t0Þdt0 ¼ 0; ð3:125Þ 

and the equation for C is obtained from (3.125) by replacing ωa;b →−ωa;b. Let us neglect C̈ in (3.125) for a moment; we will 

show below that it is subleading in the long time limit. We introduce 

ab ai Z t0 ab ⃗ ;t − t00ÞeiωbðkÞðt−t00Þdt00; Wab½t;0 ¼ 0; ð3:126Þ W ½t;t0 ¼ 2ω ðkÞ 0 Σ 

ðk 

in terms of which (3.125) becomes 

 C˙aðk;t⃗Þ ¼ −e−iðωbðkÞ−ωaðkÞÞt Z0tdt d0 Wab½t;t0Cbðk⃗ ;t0Þdt0: ð3:127Þ 

Upon integration by parts and the use of the initial condition in (3.126), the integral becomes 

Z0tdt0 Wab½t;t0Cbðk Þdt0 ¼ Wab½t;tCbðk⃗ ;tÞ −Z0t Wab½t;t0Þdt
d

0 Cbðk⃗ ;t0Þdt0; 

ð3:128Þ d ⃗  ;t0 

because W∝ g2 and C˙ ∝Σ∝ g2 the second term in Eq. (3.128) is of Oðg4Þ and will be neglected to leading order, yielding 

 C˙1ðk;t⃗Þ ¼ −fW11½t;tC1ðk⃗ ;tÞ þ eiðω1ðkÞ−ω2ðkÞÞtW12½t;tC2ðk⃗ ;tÞg; ð3:129Þ 

 C˙2ðk;t⃗Þ ¼ −feiðω2ðkÞ−ω1ðkÞÞtW21½t;tC1ðk⃗ ;tÞ þ W22½t;tC2ðk⃗ ;tÞg; 

where 

ð3:130Þ 

∞ dk ρ 

t Z ð 0Þ abðakð0;kÞÞeiðωbðkÞ−k0Þðt−t0Þdt0:  Wab½t;t ¼

0 −∞ 2π 2ω k 

ð3:131Þ 

Comparing the amplitude equations for the positive frequency components (3.129) and (3.130) with the amplitude 

equations in the LOY formulation, Eqs. (2.70) and (2.71) with Wab½t;t given by Eq. (2.74), we see that they are exactly 

the same with the identifications ab½  ab½  abð Þ ρabðk0;kÞ ; ≡ ; ð Þ ð

 Þ 
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 W t;t ≡ W t;t ; μ k0 ≡ að Þ ; E1 2 ω1 2 k : 3:132 

4πω k 

Furthermore, this analysis clarifies that the amplitudes Ca for the negative frequency components are also present in the 

effective field theory framework, but not in the LOY theory. Invoking the long time limit 

t eiðωbðkÞ−k0Þðt−t0Þdt0 i P

 1 

 0 t→!∞  

yields 

 −iWab½t;t →ΔabðωbðkÞÞ; ð3:134Þ 

where ΔabðωÞ is given by Eq. (2.39) with the identification 

(3.132). Since in the long time limit Wab½t;t → 

ΔabðωbðkÞÞ, it follows from the amplitude equations (2.70) 

and (2.71) that C̈ a ∝ g4 and can be consistently neglected, 

thus justifying neglecting C̈ in Eq. (3.125). The equations 

for the amplitudes (3.129) and (3.130) become exactly the 

same as the set of equations (2.70) and (2.71) in the LOY 

theory; therefore, the positive frequency components of 

Green’s function Gabðk;tÞ, Eq. (3.73), is equivalent to the 

bracket in Eq. (2.44), explaining the similar projector 

operators. However, full Green’s function (3.73) includes 

the negative frequency components, because (3.73) 

describes the time evolution of fields rather than single 

particle amplitudes. 

The solutions of the Langevin equation that determine 

the expectation values and correlation functions in the 

effective field theory, namely (3.55), feature two terms. 

The homogeneous term [Φh
aðk⃗ ;tÞ] in (3.56) depends on 

the initial conditions and corresponds to the solution (2.44) 

in the LOY theory, which also depends on the initial 

conditions. However, the inhomogeneous term [Φξ
aðk⃗ ;tÞ] 

in (3.56) is independent of initial conditions and is 

determined by the noise. It is this inhomogeneous term that 

determines the asymptotic behavior of the correlation 

functions and exhibits the approach to a thermal stationary 

state in the long time limit, while the homogeneous term 

decays exponentially at long time, in the same manner as 

the amplitudes in the LOY theory. This is one of the major 

differences between the effective field theory and LOY 

theory of mixing. 

This analysis highlights the similarities and differences 

between the LOY theory and the effective field theory, the 

differences are noteworthy: (i) the effective field theory 

describes the evolution of fields, including both positive 

and negative frequency components of the quasinormal 

modes. (ii) The effective field theory description yields the 

correlation functions, describes the approach to a thermal 

steady state, as well as the emergence and long time 

survival of coherence, aspects that are not captured by the 

LOY theory. Another important difference is that in the 

effective field theory, the quantum beats are manifest in the 

approach to thermalization of the correlation function as a 

consequence interference of quasinormal modes, in both 

the diagonal (populations) and the off-diagonal 

(coherence) components of the correlation functions. (iii) 

Since the LOY method describes the evolution of the 

amplitudes of pure, single particle states, it cannot describe 

correlation functions. 

IV. SUMMARY OF RESULTS AND CONCLUSIONS 

A. Summary of results 

We generalized the seminal theory of particle mixing 

pioneered by Lee, Oehme, and Yang to study CP violation 

 
in K0 − K0 mixing. This theory is the cornerstone of all 

analysis of CP violation in flavored meson mixing in terms 

of an effective non-Hermitian Hamiltonian. 

We extend this theory in two ways: (i) to include the 

cases in which the mixing degrees of freedom are not mass 

degenerate in the absence of perturbations, thereby 

relaxing the assumption of CPT invariance, and (ii) to treat 

the time evolution without resorting to the approximation 

of a time independent non-Hermitian effective 

Hamiltonian, and discuss the caveats resulting from this 

approximation, which become more important in the 

nondegenerate case. The LOY theory is only valid for pure 

single (or few) particle states and does not directly allow 

          

 
             

 
 3    
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one to obtain correlation functions of the mixing fields, nor 

the time evolution of multiparticle states, such as coherent 

states, or statistical ensembles. However, its generalization 

and extension provide a useful guide to and benchmark for 

the effective field theory which we introduce to describe 

indirect particle mixing as a consequence of their coupling 

to a common set of intermediate states or decay channels 

populated in a medium. 

The effective action determines the time evolution of the 

reduced density matrix after tracing over the degrees of 

freedom in the medium described as a bath in thermal 

equilibrium. Therefore, it describes the dynamics of field 

mixing as a quantum open system. Indirect mixing is a 

result of nonvanishing correlations of the operators that 

couple the mixing partners to the intermediate states in the 

medium, and is manifest in off-diagonal components of the 

self-energy. The dynamics of field mixing is determined by 

a Langevin-like equation of motion with a dissipative 

selfenergy kernel and stochastic noise obeying a 

generalized fluctuation dissipation relation. The solution of 

the equations of motion determines the dynamics of 

expectation values and correlation functions in terms of a 

superposition of quasinormal modes in the medium. The 

off-diagonal elements of the self-energy and noise kernels 

lead to indirect mixing and the emergence of long-lived 

coherence, namely off-diagonal components of the two 

point correlation functions, even when initially the mixing 

fields are uncorrelated. We refer to this phenomenon as 

bath-induced coherence. We analyze in detail the cases in 

which the masses of the mixing particles are widely 

different, namely the nondegenerate case, and when they 

are nearly degenerate, which may describe small violations 

of CPT. In both cases even if one of the fields features an 

initial expectation value and the other does not, the latter 

develops an expectation value as a consequence of indirect 

mixing. We find the remarkable result that the equal time 

two point correlation functions of the fields approach a 

thermal stationary state and feature quantum beats as a 

consequence of the interference of the quasinormal modes. 

In the nondegenerate case these interference effects feature 

perturbatively small amplitudes; however, in the 

nondegenerate case the amplitude of the quantum beats is 

resonantly enhanced and nonperturbative. These 

interference effects may provide an observational avenue 

to probe cosmological axions in condensed matter systems. 

We establish a direct relation between the effective field 

theory and the LOY theory of mixing, and highlight 

important differences, in particular that the effective field 

theory describes emergent, bath-induced long-lived 

coherence independent of the initial conditions that 

approach asymptotically a stationary thermal state. 

B. Conclusions 

Indirect field mixing as a consequence of common 

intermediate states or decay channels is of great importance 

in particle physics, cosmology, and possibly condensed 

matter physics. In particle physics indirect field mixing is 

at the heart of flavor meson mixing and CP violation in the 

standard model. Beyond the standard model it may be a 

consequence of intermediate messengers connecting 

standard model particles to degrees of freedom beyond 

through portals. In cosmology various axionlike particles 

may mix through common decay channels into photons 

and/or gluons, and in condensed matter synthetic axions, 

emergent quasiparticles in materials that feature parity 

breaking, such as topological insulators and Weyl 

semimetals, may hybridize (mix) with cosmological 

axions, thereby offering a way to probe the latter by 

exciting the former. Thus, the interdisciplinary relevance of 

field mixing motivates the study in this article. An 

important result of this study is that the equal time 

correlation functions feature quantum beats, as a 

consequence of interference of the quasinormal modes in 

the medium. 

As demonstrated within the LOY theory, quantum beats 

are also manifest in the time evolution of the decay 

products, which may provide an observational signature of 

field mixing. This could be of particular relevance in the 

case of axion mixing. 

The phenomena revealed by this study, such as 

bathinduced emergent coherence, induced condensates, 

and quantum beats, are all qualitatively general 

independent of the particular couplings or degrees of 

freedom in the medium. However, the quantitative form of 

the quasinormal modes, the projection operators, and the 

amplitudes of the quantum beats clearly will depend on the 

particular models and the parameters that define them. 

Although we focused on field mixing in the case of 

bosonic fields, the general approach is also suitable to 

study indirect mixing for fermionic or gauge degrees of 

freedom. In the case of fermions the derivation of the 

effective field theory would require the extension of the 

current study to Grassman fields. One possible avenue 

would be to study neutrino mixing in the mass basis, where 

the weak interaction vertices feature flavor off-diagonal 

terms after diagonalizing a mass matrix in the free part of 

the 

Lagrangian. An effective field theory description of 

indirect mixing (of the mass eigenstates) in a medium in 

which vector bosons and charged leptons are in thermal 

equilibrium may be a suitable application of the concepts 

developed in this study that may be worthwhile to study 

further. The effective field theory approach may 

complement the study of neutrinos [37] and axions in a 

medium including condensates [38] with kinetic or 

Boltzman equations and allow one to obtain off-diagonal 
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correlation functions, namely coherences, not just 

populations. We expect many features of the results found 

in this study to be common to other field-mixing scenarios; 

for example, we conjecture that the emergence of the long-

lived coherence (off-diagonal correlation functions) 

approach to thermalization and quantum beats, as a result 

of the interference between (quasi)normal modes in the 

medium, is a robust consequence of field mixing that may 

yield to novel phenomena, and plausible observational 

consequences, worthy of further exploration. 

Among further questions that remain to be addressed in 

future studies are the issues of renormalizability; in 

particular, if the off-diagonal matrix elements of the self-

energy 

featuredivergences,renormalizingthemmaynecessitateoffdi

agonal counterterms in the bare Lagrangian. This would 

call for direct mixing terms (such as an off-diagonal mass 

matrix) to be included in the bare Lagrangian. These 

aspects must be studied on a model dependent basis, since 

the renormalization aspects are directly related to the type 

of operators Oa½χ. Furthermore, we have assumed that 

hO½χi ¼ 0; however, a nonvanishing expectation value of 

this operator in the medium would require introducing 

tadpole terms that may lead to condensates of the fields ϕa. 

All of these questions, while interesting in their own right, 

remain for further study. 
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APPENDIX A: SINGLE SPECIES 

In this appendix we gather the results of the 

WeisskopfWigner approximation in the simpler case of one 

species to highlight the main aspects associated with the 

fulfillment of unitarity and the differences between the 

exact results via Laplace transform and the Markov 

approximation. For a single species ϕ we have 

C˙ϕðtÞ ¼ −iXκ hϕjHIðtÞjκiCκðtÞ; ðA1Þ 

C˙κðtÞ ¼ −iCϕðtÞhκjHIðtÞjϕi; ðA2Þ 

where the sum over κ is over all the intermediate states 

coupled to jϕi via HI. 

Consider the initial value problem in which at time t ¼ 0 

the state of the system jΨðt ¼ 0Þi ¼ jϕi, i.e., 

 Cϕð0Þ ¼ 1; Cκð0Þ ¼ 0: ðA3Þ 

We can solve Eq. (A2) and then use the solution in Eq. (A1) 

to find 

t 

 Þdk0; ðA6Þ 

and we introduced the spectral density  

μðk0Þ ¼ Xκ jhϕjHIjκij2δðk0 − EκÞ: ðA7Þ 

Inserting the solution for CϕðtÞ into Eq. (A4) one obtains 

the time evolution of amplitudes2 CκðtÞ from which we can 

computeThe set of equationsjCκðtÞj , namely the time 

dependent probability toκi. (A1) and (A2), together with 

the populate the state j 

Hermiticity of the interaction Hamiltonian HI, yields 

dtjCϕðtÞj2 þ Xκ jCκðtÞj2 ¼ 0; ðA8Þ d 

which along with the initial conditions (A3) leads to the 

unitarity relation 

 jCϕðtÞj2 þ Xκ jCκðtÞj2 ¼ 1: ðA9Þ 

 
CκðtÞ ¼ −iZ0 hκjHIðt0ÞjϕiCϕðt0Þdt0; ðA4Þ 

where 

C˙ϕðtÞ ¼ −Z0t σðt − t0ÞCϕðt0Þdt0; 

σðt − t0Þ ¼ Xκ jhϕjHIjκij2eiðEϕ−EκÞðt−t0Þ 

ðA5Þ 
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1. Exact solution of Eq. (A5) 

The integro-differential equation (A5) for CϕðtÞ can be 

solved by Laplace transform. Introducing the Laplace 

variable s and the Laplace transform of CϕðtÞ as CϕðsÞ, 

with the initial condition Cϕðt ¼ 0Þ ¼ 1, we find 

 CϕðsÞ ¼ s þ Z−∞∞ dk0 s þ iμðkðk000−Þ EϕÞ−1 ðA10Þ 

with solution 

i∞þϵ ds 

 2 πiCϕðsÞest; ðA11Þ  CϕðtÞ ¼ −i

∞þϵ 

where ϵ→ 0þ determines the Bromwich contour in the 

complex s plane parallel to the imaginary axis to the right 

of all the singularities. Writing s ¼ ið−ω− iϵÞ we find 

 ∞ dω e−iωt 

CϕðtÞ ¼ −Z−∞ 2πihω−R−∞∞ dω0 Eϕþμωð−k0kÞ0þiϵ þ iϵi: ðA12Þ 

The integral is carried out by closing the contour in the 

lower half ω plane. In the free case where μðk0Þ ¼ 0, the 

pole is located atperturbation theory there is a complex pole 

very nearω ¼ −iϵ→ 0, leading to a constantωCϕ¼. In0 

that can be obtained directly by expanding the integral in 

the denominator near ω ¼ 0. We find 

Z−∞  Eϕ þ

 k0 þ i ≃ E 2 ; ðA13Þ 

where 

 ΔEϕ ¼ PZ− ∞ ð ϕ

 k0Þ; ðA14Þ 

 Γϕ ¼ 2πμðEϕÞ; ðA15Þ 

Z ∞ 0 μðk0Þ0 2 ; ðA16Þ 

zϕ ¼ P −∞ dk ðEϕ − k Þ 

and P stands for the principal part. The term ΔEϕ is 

recognized as the energy shift while Γϕ is seen to be the 

decay rate as found from Fermi’s golden rule. The long 

time limit of CϕðtÞ is determined by this complex pole near 

the origin leading to the asymptotic behavior to leading 

order in the coupling 

 C  ð Þ t;

 ðA17Þ 

where 

 Zϕ ¼ þEϕ ðA18Þ 

is the wave function renormalization constant. 

2. Markov approximation 

The time evolution of CϕðtÞ determined by Eq. (A5) is 

slow in the sense that the timescale is determined by a weak 

coupling kernel . This suggests to use a Markovian 

approximation in terms of a consistent expansion in 

derivatives of Cϕ. For this purpose, let us define 

t
0 

 Wðt;t0Þ ¼ Z0 σðt − t00Þdt00 ðA19Þ 

so that 

d 

 σðt − t0Þ ¼ dt0 Wðt;t0Þ; Wðt;0Þ ¼ 0: ðA20Þ 

Integrating by parts in Eq. (A5) we obtain 

Z0 σðt − t0ÞCϕðt0Þdt0 ¼ Wðt;tÞCϕðtÞ t 

−Z0t Wðt;t0Þdt
d

0 Cϕðt0Þdt0: ðA21Þ 

 
 
 
 

     

   
 ϕ   ϕ    

 ϕ 
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The second term on the right-hand side is formally of 

fourth 

fore, it can be neglected to 

leading orderorder in HI because Wðt;t Þ and C˙ ðOÞ 

ðHI2 Þ. Up to; there-(A5) leading order in this Markovian 

approximation Eq. becomes 

 C˙ϕðtÞ þ W0ðt;tÞCϕðtÞ ¼ 0; ðA22Þ 

with the solution 

 CϕðtÞ ¼ e−iR0t Eðt0Þdt0; EðtÞ ¼ −iWðt;tÞ: ðA23Þ 

we findNote that in general EðtÞ is complex. To leading 

order in H2
I 

EðtÞ ¼ −iZ0t σðt − t0Þdt0 

∞ 

 ¼ Z−∞ dk0 ðEϕ 0Þ 1 e−iðk0
−Eϕ

Þt ðA24Þ 

so that 

ð

 Þ ðA25Þ 

Asymptotically as t →∞, these integrals approach 

 Z ∞ dk0 μ k0 1 sin
ðk0 − Eϕ  

 −∞ ðEϕ k0Þ ðk0 Eϕ 

 Z ∞ ð μðk Þ Þ; ðA26Þ 

∞ 

 Z−∞ dk0 ðEϕ k0Þ2 1 cos k0 EϕÞt 

 μðk Þ
0 t→ Z ∞

 : ðA27Þ 

 ⟶πtμðEϕÞ þ P −∞ dk ðEϕ k Þ 

∞ 

Using these results we find that in the long time limit 

t 

 −iEðt0Þdt0 →−iΔEϕt −t − zϕ;  ðA28Þ 

0 

where ΔEϕ;Γϕ;zϕ are given by Eqs. (A14)–(A16) and (A18). 

From this we read off 

Γϕ 

 CϕðtÞ ¼ Zϕe−iΔEϕte− 2 t; ðA29Þ 

where we approximated e−zϕ ≃ 1 − zϕ ¼ Zϕ up to second order 

in perturbation theory. This is in complete agreement with 

the asymptotic result from the exact solution Eq. (A17) 

obtained via the Laplace transform. 

3. Taking the long time limit before integration 

We now compare the results obtained above with those 

obtained with yet another approximation: taking the long 

time limit in Wðt;tÞ in (A22) before integrating this 

evolution equation: 

Wðt;tÞ e−iðk0−EϕÞτdτdk0 ¼Z ∞P ð μðk0Þ 

Þdk0 − iπμðEϕÞ; ðA30Þ i 

 −∞ Eϕ − k0 

therefore, under this approximation the solution of (A22) 

is 

Γϕ 

  

 
   

   
   

  

  
     

  ϕ     

 
  

      ϕ   

     ϕ   

 

  
 

  
  

     

 ϕ    
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ϕ  

  

 

  
ϕ  ϕ 

  
ϕ 

 CϕðtÞ ¼ e−iΔEϕte− 2 t: ðA31Þ 

Obviously, the main difference with the solutions (A17) 

and (A22) is the lack of wave function renormalization in 

(A31). Therefore, we conclude that the Markov 

approximation leading to (A22) reproduces the exact result 

obtained from Laplace transform; however, the further 

approximation of replacing Wðt;tÞ by its infinite time limit 

(A30) in the Markovian equation (A22) misses the wave 

function renormalization. 

4. Unitarity 

Because of the exponential decay of the amplitude of the 

initial state, the unitarity condition (A9) entails that in the 

long time limit 

 jCκð∞Þj2 ¼ 1: ðA32Þ 

κ 

We now address how this constraint is fulfilled. The 

coefficients CκðtÞ are given by Eq. (A4). 

Introducing the leading order result (A31) [since Zϕ ¼ 1 

þ OðH2
I Þ] into Eq. (A4) for the coefficients Cκ, we find to 

leading order 

κ H ϕ 2 

jCκð∞Þj2 ¼ I ϕ ; EϕR ¼ Eϕ þ ΔEϕ: hðE − E Þ2 þ i ðA33Þ This 

expression can be interpreted as follows. Ifresonant with 

the stateκijϕwithi, areEκ ∼“populatedEϕR, i.e., those 

nearlyΓϕ centered at” jwith anϕi is an unstable state, the 

states j 

amplitude ∝ 1=Γϕ within a band of width Eϕ
R. 

Furthermore, 

jCκð∞Þj2 ¼ Z h  i ;

 ðA34Þ ð

 Þ þ κ 

where we have written 

 1 1 Γϕ 

h EϕR − k0Þ2 þ 4¼ hðEϕR − k0Þ2 þ Γ42ϕi; ðA35Þ 

ð 

and in the narrow width limit Γϕ → 0 we replace 

 Γϕ R 

 → 2πδðEϕ − k0Þ ðA36Þ 

hðEϕR − k0Þ2 þ 4 i 

and used the result (A15) to obtain (A34). Unitarity entails 

a probability flow from the initial toward the final excited 

states. 

APPENDIX B: LEHMANN REPRESENTATION OF 

CORRELATION FUNCTIONS 

The correlation functions G>abðx − yÞ;G<abðx − yÞ can be 

written in an exact Lehmann (spectral) representation that 

is useful to include in the equations of motion: 

 G>abðx − yÞ ¼ Z 1 Tre−βHχOaðxÞObðyÞ; ðB1Þ 

χ 

 1 −β O 

 G<abðx − yÞ ¼ Zχ Tre Hχ bðyÞOaðxÞ; ðB2Þ 

where Zχ ¼ Tre−βHχ and Oaðx;t⃗ Þ ¼ eiHχte−iP⃗ ·x ⃗Oað0Þ× eiP⃗ 

·x⃗ e−iHχt. In terms of a complete set of simultaneous 

eigenstates of Hχ;P⃗ , namely ðHχ;P⃗ Þjni ¼ ðEn;P⃗ nÞjni, and 

by inserting the identity in this basis, we find 

X 
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G>abðx1 − x2Þ ¼iðEn−E Þðt1−t2Þe−iðP⃗ n−P⃗ mÞ·ðx⃗ 1−x⃗ 

2ÞhnjOað0ÞjmihmjObð0Þjni; ðB3Þ 

Zχ Xn;m 

1 

 k ;k  e n 0 m m 0 n k E E k P P ; B5 

 k ;k  e n 0 m m 0 n k E E k P P ; B6 

 G x x  k ;k e e ; B7
 

G<abðx1 − x2Þ ¼  e−βEn e−iðEn−EmÞðt1−t2ÞeiðP⃗ n−P⃗ mÞ·ðx⃗ 1−x⃗ 2ÞhnjObð0ÞjmihmjOað0Þjni: Zχ 

Xn;m 

These representations may be written in terms of spectral densities, by introducing 

 ρ> ⃗ ð2πÞ4 −βEn O O δ − − δ3 ⃗ − ⃗ − ⃗ 

ðB4Þ 

abð 0 Þ ¼ Zχ Xn;m h j að Þj ih j bð Þj i ð 0 ð m nÞÞ ð ð m nÞÞ 

ρ< ⃗ ð2πÞ4 −βEn O O δ − − δ3 ⃗ − ⃗ − ⃗ 

ð Þ 

 abð 0 Þ ¼ h j bð Þj ih j að Þj i ð 0 ð n mÞÞ ð ð n mÞÞ 

Zχ Xn;m 

in terms of which 

 > − 
d

4
k ρ> ⃗ −ik0ðt1−t2Þ ik⃗ ·ðx⃗ 1−x⃗ 2Þ 

ð Þ 

abð 1 2Þ ¼ Z ð2πÞ4 abð 0 Þ  ð Þ 

< − 
d

4
k 

< ⃗ −ik0ðt1−t2Þ ik⃗ ·ðx⃗ 1−x⃗ 2Þ ρ 
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 Gabðx1 x2Þ ¼ Z ð2πÞ4abðk0;kÞe e : ð
B8

Þ 

Relabeling n ↔ m and using the k0 delta function in (B6), we find the generalized Kubo-Martin-Schwinger condition [55] 

ρ<abðk0;k⃗ Þ ¼ e−βk0ρ>abðk0;k⃗ Þ: 

Introducing the spectral density 

ðB9Þ 

ρabðk0;k⃗ Þ ¼ ρ>abðk0;k⃗ Þ −ρ<abðk0;k⃗ Þ ¼ ρ>abðk0;k⃗ Þð1 − e−βk0Þ; 

it follows that 

ðB10Þ 

ρab
> ðk0;k⃗ Þ ¼ ð1 þ nðk0ÞÞρabðk0;k⃗ Þ; ρ<

abðk0;k⃗ Þ ¼ nðk0Þρabðk0;k⃗ Þ; 

where 

ðB11Þ 

 nðk0Þ ¼ 0 : ðB12Þ 

Therefore, the spatial Fourier transform of the self-energy matrix (3.37) and the noise kernel (3.36) can be written as 

 Σabðk;t − t0Þ ¼ −iZ ðdk2π0Þρabðk0;kÞe−ik0ðt−t0Þ; ðB13Þ 

 N abðk;t − t0Þ ¼ 12Z ðdk2π0Þρabðk0;kÞcothβ 2k0e−ik0ðt−t0Þ: ðB14Þ 

This is the general relation between the self-energy and the noise correlation function commonly determined by the spectral 

density ρabðk0;kÞ, a direct consequence of the fluctuation-dissipation relation as a result of the bath being in thermal 

equilibrium. spectral densityAssuming rotational invariance implies that ρabðk0;k⃗ Þ ¼ ρabðk0;kÞ, in particular the diagonal 

matrix elements of the 

ρaaðk0;kÞ ¼ ð ZχÞ4 Xn;m e−βEnjhnjOað0Þjmij2½δðk0 − ðEm − EnÞÞ −δðk0 − ðEn − EmÞÞδ3ðk⃗ − ðP⃗ m − P⃗ nÞÞ 

2π 

 ¼ −ρaað−k0;kÞ; no sum over a: ðB15Þ 

The assumption of rotational invariance also applies to 

correlation functions of pseudoscalar operators (relevant 

for axions) in a thermal equilibrium density matrix that is 

invariant under rotations because these are bilinear in the 

operators and, hence, are invariant under k⃗ →−k⃗ . 

We note that because the operators Oa are Hermitian, it 

follows thatab 0 ðρ baððk0;k;kÞÞÞ. 
 ¼ ð ;kÞ and, 

consequently, ρ ðk ;kÞ ¼ 

APPENDIX C: LAPLACE GREEN’S FUNCTION 

Consider the matrix 

 M M 

 M ¼ M1121 M2212 ; 

whose (right and left) inverse is 

ðC1Þ 

M−1 ¼ det 1½M−MM2221 −MM1112 

: 
ðC2Þ 
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In terms of the variables (2.31)–(2.33) it follows that 

M ¼ M¯ Dþ2 γD2 α M¯ D2−βD2 α; 

 det½M ¼ M¯ − D2M¯ þ D 2; ðC3Þ 

where we used the relation (2.34). 

Therefore, the inverse of the matrix (C1) is given by 

 M−1 ¼ det 1½MM¯ 1− D2 αγ −βα: ðC4Þ 

Writing 

M¯ ¼ 12 M¯ þ D2 þ 12M¯ − D2; 

D ¼ M¯ þ D2M¯ − D2M¯ 1− D2 − M¯ 1þ D2 

yields   

M−1 ¼ M −− D2 þ M¯Pþþ D2 ; 
P 

¯ 

with 

1 

P ¼ 2 ð1  RÞ; 

ðC5Þ 

 α β 

R ¼ γ −α; 
R2 ¼ 1; 

ðC6Þ 

where the last equality follows from the identity (2.34). 

Therefore, the matrices P are projectors, namely  

 P2 ¼ P; ðC7Þ 

hence, their eigenvalues are 0,1. 
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