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Abstraci— Switched systems are important for modeling
biomedical control problems, where the control action can
be considered to be a switching signal to select the active
mode (e.g., a drug therapy or intervention). Practical im-
plementations impose constraints not only on the variable
maghnitudes, but also on each mode's active and inactive
times (AT and IT). To address this, a model predictive
control strategy is proposed using an enlarged model with
integer state variables to track past AT/IT for each mode.
Two biomedical applications were selected to demonstrate
the controller's effectiveness through simulations. The re-
sults highlight that our approach is suitable for biomedical
applications with intricate temporal requirements.

Index Terms— Biomedical application, model predictive
control, switched nonlinear systems, temporal constraints.

[. INTRODUCTION

N A SWITCHED system the dynamics commute between

different modes (or subsystems) according to a switching
signal, making it a type of hybrid model [1]. Mathematically,
switching is considered a discrete behavior which selects one
subsystem among a finite collection such that only one of them
is active at a time [2]. In this work we focus on switched
nonlinear autonomous systems. This means the switching
signal is the unique decision variable that externally manip-
ulates the system to achieve the control objective [3], [4].
Switched systems are particularly important for biomedical
applications, e.g., cyclic drug schedules for cancer treatment
[5] and the modeling and control of different within-host
infection diseases [6].

The most widely used temporal constraint in switched
systems is one that allows only one mode to be active at
a time. However, to improve the accuracy of the problem
description and expand its applicability, explicit consideration
of limits on active and inactive times is needed. Virtually
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all biomedical applications have some limitations in either
the min-max AT or the min-max IT of each mode. Indeed,
previous work shows the importance of handling temporal
constraints in biomedical problems [7], [8]. Furthermore, other
work addressed the problem of optimal control of switched
systems considering dwell-time constraints [9], [10]. Other
studies on the stability of switched systems can be found in
[11]-[13].

From a control perspective, the explicit fulfillment of AT/IT
limits is far from trivial. Indeed, although this work does
not focus on this particular problem, such limitations modify
the basic concept of equilibria. In a switched system to be
controlled, the equilibria (or invariant sets) of a particular
sub-model may no longer be equilibria of the whole system
because of the existence of maximal AT constraints. Simi-
larly, maximal IT constraints also indirectly alter, the system
equilibria/invariance, since they limit the AT of the current
active mode. Previous work in [14] and [8] focused on the
characterization and computation of so called “Permanence
Regions” for switched systems. These regions are extensions
of the “Control Invariant Sets” in the sense that they only
contain a subset such that, if the system starts there, it can
remain in the region by using a feasible switching signal.

In [7], an MPC for drug scheduling in viral infections was
based on a switched system with AT constraints. The authors
define lower and upper limits for each drug therapy (i.e., for
each mode or subsystem) according to their effectiveness and
toxicity, while the control objective minimizes drug resistance.
Other applications of switched systems considering — even
implicitly — the AT limits can be central for the scheduling
of evolutionary therapies [15], tailoring public health policies
[16], and the eradication of drug-resistant infections [17].

The objective of this work is to propose a general rep-
resentation of AT/IT dynamics by introducing an extended
model that is then explicitly used in an MPC formulation.
We propose a binary representation of the switching signal
to incorporate two new state variables (denoted active and
inactive memories) that account for the AT/IT history. Then,
in the MPC optimization problem (which is a mixed-integer
optimization problem), Min-Max bounds are imposed on the
new states. Although no feasibility guarantees are given in this
preliminary study, the resulting controller was tested through
the simulation of two examples: a within-host infection and a
between-host infection problem. In both simulation scenarios,
the controller seems to properly achieve the objective while



fulfilling AT/IT limits.

[I. BACKGROUND AND PROBLEM FORMULATION

Consider a discrete-time, switched nonlinear system given
by

r(k+1) = fow (x(k)), )

where z(k) € X C R"" represents the system state at time
k € I>p, with X being a closed set. The switching signal
o : [0,00) — P determines which subsystem governs the
system dynamics at each time step. Here, P := {1,2,...,ns}
denotes the set of available subsystems (or modes), with ng
being the total number of switching modes (SM). The function
f X xP — X is a known switched nonlinear mapping
that determines the next state x(k + 1) based on the current
state (k) and the active subsystem o (k). Each mode ¢ € P
corresponds to a specific realization of the switching signal,
o(k) = ¢, and the system dynamics are governed by:

w(k+1) = Fy(x(k)), 2)

where Fy : X — X is the autonomous dynamics of mode /.
The switching signal o (k) is the sole control action, allowing
external manipulation to achieve a desired control objective.

A. Active and Inactive Time Constraints

In practical applications, particularly in biomedical systems,
it is essential to impose constraints not only on the state
variables but also on the active time and inactive time of each
mode. These constraints are defined as follows:

o Active Time (AT): The period of time each mode /¢
remains active. It is bounded by a minimum activation
period LY and a maximum activation period UY.

o Inactive Time (IT): the period of time each mode /
remains inactive. It is bounded by a minimum inactive
period L% and a maximum inactive period U%.

It is worth mentioning that, usually, in the switching system
literature, the concept of waiting time refers only to AT;
thus, the definitions above are necessary to differentiate this
approach from prior work.

Remark 1: By setting LYy = 0, and UY = oo, or L% =0,
and Uf = 00, the constraints on AT or IT can be relaxed,
allowing for greater flexibility in the control design as long
as for each ¢ € P the following conditions are satisfied:

LY <UY, Ly <Uf. 3)

[11. AT/IT DYNAMICS REPRESENTATION

There are several ways to express the switching signal.
To set AT/IT constraints on an MPC formulation, a binary
representation is suggested to define discrete-time variables
that account for the history of each mode.

Definition 1 (Binary Representation): 7o incorporate
AT/IT constraints into the MPC framework, the switching
signal o(k) is represented in a Binary Representation (BR)
vector form v(k) := [v}(k), v*(k),..., v™(k)]T, where

each element v'(k) € {0,1} indicates whether mode ( is
active (v'(k) = 1) or inactive (v'(k) = 0) at time k, for each
LePp.

This way, v(k) is a vector of dimension n, consisting of
a set of binary decision variables, satisfying the following
condition:

iv‘(/@) =1. 4)
=1

Condition (4) is necessary to guarantee that only one mode
is active at each time instant. To extend this concept to a
more generalized form, we introduce the notion of an active
mutually exclusive set as follows:

Definition 2 (Active Mutually Exclusive Set): Consider
a vector u containing a set of variables u’, with { € P, given
by u=[ut, u?, ..., u"]. Then vector u is called an Active
Mutually Exclusive Set (A-MES), if and only if exactly one
variable u' is active (i.e., takes a nonzero value) while all

others remain inactive (i.e., equal to zero).

To track AT history of each mode, the concept of active
memory is defined below.

Definition 3 (Active Memory): Consider the switched
system (1) with a BR of o(k) that satisfies condition (4).
The active memory of the system is then defined as the
discrete-time variable given by

ma(k+1) = (ma(h) +v(k) Ov(k), ()
where m (k) € 1™ is a vector that contain the information
of the activation period for the currently active SM-{ at each
time interval. The operator ® stand for the Hadamard product
[18]. That is, for a pair of vectors A = [a1,az,...,a,, | and
V = [v1,v9,...,0,,], the vector W = A ®V is defined as
W = [wy,ws, ..., wy,,|, where

w; = a;v;, fort=1,2,... ng,

represent the element-wise product between vectors A and V.
Lemma 1: m (k) is an A-MES, for all k € I>,.

Proof: Let V = [v1,v2,...,v,,] be a BR vector of ng
elements satisfying condition (4), i.e., there exists a unique
index j for which v; = 1, while all other elements satisfy
v; =0 for i # j. Let A = [a1,ag,...,a,,] be another vector
of ng elements. Then, the Hadamard product W = A ©V
results in a vector where all entries are zero except for w; =
Qj.

Now, considering the active memory equation (5), it follows
that m4(k + 1) has the same structure as W with A =
my (k) + v(k) = [a1,a2,...,a,,], where each a; represents
the corresponding component of the sum. Since W was shown
to have only one nonzero entry, m4(k + 1) inherits this
property. Therefore, by definition, m4(k + 1) is an A-MES
forall kel™. 1

Now, let us define the complementary vector form of the BR
as v(k) =1 — v(k). Thus, v(k) € B™ represents the modes



that remain inactive at each time step. Since v (k) satisfy (4),
then vector v satisfies the following condition:

Z@Z(k) =ns— 1.
=1

By construction, v(k) has exactly one zero entry, while all
others are non-zero. To generalize this idea, we introduce the
notion of an inactive mutually exclusive set as follows:

(6)

Definition 4 (Inactive Mutually Exclusive Set):
Consider a vector u containing a set of variables u’,
with € P, given by u = [ul, u?, ..., u™]. The vector u
is called an Inactive Mutually Exclusive Set (I-MES) if and
only if exactly one variable u’ is inactive (i.e., equal to zero)
while all others remain active (i.e., take a nonzero value).

Similarly, to track the IT history of each mode, the concept
of inactive memory is defined below.

Definition 5 (Inactive Memory): Consider the switched
system (1), with a BR of o(k) that satisfies condition (4). The
inactive memory of the system is defined as the discrete-time
variable given by

mI(k =+ 1) = (mI 7

where mz(k) € ™= is a vector that contains the information
of the inactive periods for all the SM-{ that remain inactive
at each time interval.

(k) +v(k) ©v(k),

Lemma 2: mgz(k) is I-MES, for all k € I>.

Proof: Similar to the steps in the proof of Lemma 1, it
can be seen that quation (7) has the same structure as W
with A = (mz(k) 4+ v(k)). Let V be a complementary BR
vector of ng elements satisfying condition (6). Then, it can
be shown that for this case W has only one entry equal to
zero; hence, mz(k + 1) inherits this property. Therefore, by
definition, mz(k + 1) is an I-MES for all k € I"=. &

With Definitions 3 and 5, and Lemmas 1 and 2 previously
introduced, we are now able to consider AT/IT constraints.
Formally, given an switched system (1) with a BR of o (k) ful-
filling condition (4), its active and inactive memory variables
provide an AT/IT representation of the system, as defined in
Definitions 3 and 5, respectively. Moreover, these variables
adhere to the constraints given in equation (3) for each SM-/,
allowing the active and inactive time constraints representation
of the switched system (1) as follows:

Ly < my(k) < Uy, Lz < mz(k) < Uz,  (8)
for k € I>o, where the vectors L4 = [L}4,Lf4,...7LZS]T
and Uy = [UY,U%,...,U%]" define the AT bounds,

while the vectors Ly = [L,12,...,12]" and Us =

[UL,U2,...,U2]" define the IT bounds.

IV. SWITCHING NMPC FORMULATION

In this section, an NMPC formulation that considers (8)
is presented. The objective is to minimize the following cost

function at each time step k:

th

where IV denotes the control horizon. The stage cost V; and the
final cost V are positive weighted functions. The system state
at time k is represented by x(k), while the predicted control
sequence, which is subject to optimization, is given by v(j) =
W1(),v2(5), - -, 0" (7)] with j € To,y_1) and v'(j) € B,
¢ € P. Then, for any current state = and vectors v, m 4,,
and mz, at time k, the optimization problem to be solved is
formulated as follows: Pppc (%, Vo, M4, Mz, ; V) :

(7)) + Vi (z(N)), ©)

min JIn(z;v)
s.t.
2(0) =z, v(0) =vo,v(0) =1—vo
mu(0) = m 4, mz(0) = mz,,
2(j +1) = Fyejy(2(4)), (10)
z(j) € X, vi(j) € B,

v(j),
v(5)s

ma(j+1) = (ma(j )+V(J))
mz(j +1) = (mz(j) + ¥(j)) ©
La<myu(j) < Uy,
Lz <mz(j) < Ug,

with j € T y—1), and £ € P. Once the optimal solution is
computed, the first optimal control action v is applied to the
system, the discrete time is shifted forward (i.e., kK — k + 1),
and the iteration continues with a new solution of the optimiza-
tion problem, resulting in a receding horizon control policy.

Remark 2: The optimization problem in (10) is posed as a
nonconvex mixed-integer nonlinear optimization problem. This
is more difficult to solve than a QP derived from traditional
MPC. Despite this, our approach enables the integration of
AT/IT dynamics variables into the optimal control problem.
Here, an intuitive and standardized framework is provided for
designing and implementing MPC in switching systems while
accounting for AT/IT limits, independently of the programming
language.

Remark 3: Incorporating time constraints in switched sys-
tems involves addressing potential feasibility issues within the
MPC formulation. Although a detailed analysis of recursive
feasibility is beyond the scope of this paper, it is worth
mentioning that AT/IT bounds should fulfill two key conditions
to avoid infeasibility. The first condition is:

Ui>Ly, Y0ieP, i,

and it ensures that once the max AT is reached and the system
can no longer remain in a given SM, there is another SM
available for switching. The second condition is:

LY <UL, VU0ieP, i,

and it guarantees that the min AT is satisfied before any
max IT constraint forces the system to return to a specific
SM. Enforcing these conditions for all SM combinations is
related to the controllability of the time-constrained switched
system. Furthermore, the aforementioned conditions ensure the
recursive feasibility of the MPC for the case X = R", or



when the system is far from the boundary of X. To establish
necessary and sufficient conditions for recursive feasibility
when X is bounded, control invariant sets for switched systems
with AT/IT (imposing conditions on the behavior of Fy, { € P,
on the boundary of X) should be defined and characterized.

V. APPLICATION TO BIOMEDICAL SYSTEMS

The AT/IT dynamic representation is useful to propose MPC
formulations for a broad spectrum of biomedical problems.
The applicability is shown through two applications: in-host
and between-host scenarios.

A. Scheduling Evolutionary Therapies

Consider the equations of a dynamical pathogen mutation
model with n, different pathogen strains, z € R"», and
with n, possible drug therapies that can be administered,
represented by o(t) € P [17].

i1(0) =7 o) (1= Z22) o
(11)
+u Y miWa(t),
j=1

where each strain population is represented with z;. The
growth rate of the strain ¢ under drug therapy o(¢) is rep-
resented by pf(t). The clearance and mutation rate are defined
by the fixed parameters § and p, respectively, for all strains.
The genetic connections between strains are represented by
m;; € B, that is, m;; = 1 represents the mutation that
occurs from strain j to 7, m; ; = 0 otherwise. We consider this
mutation matrix change under different drug therapies, ngt).

Typically there are limiting factors for pathogen replication
rate, which is considered in excess (K = oo) [7], [17].
Therefore, the first nonlinear term in (11) can be simplified

n

to obtain a linear model since (1 — ZZ:T”E ~ 1). Here, we
keep the nonlinear term to represent competition effects. The
pathogen mutation model (11) could be directly represented
in its switched system form described by (1), such that the
switching signal o changes a subset of parameters (p; and
m;{j), to obtain a finite set of modes. The switch signal for
drug therapy o(t) follows a BR, which means that each drug
therapy can be represented by a binary variable v’(k), with
{ € P. By satisfying condition (4) for the BR vector, discrete-
time memory variables can be established to characterize the
active and inactive time dynamics of the pathogen mutation
model (11). Thus, the NMPC formulation in (10) can be
applied.

For numerical simulations, we consider the scenario of ten
pathogen strains, n, = 10, and five possible drug therapies,
ns = 5. All model parameters were taken from [17] in which
the pathogen clearance rate is § = 0.25 day !, mutation rate is
about 10™#, and carrying capacity is K = 10°. The initial state
is set as x1(0) = 103, and z4(0) = 10, all other pathogens
initialize to zero, as in [17]. Replication rates and mutation
matrices under each therapy are set as in [17].

Then the NMPC with AT/IT constraints, as given in (10),
is designed to minimize

N
In(ziv)=Y_ le()IG + llz(N)I[3,

Jj=0

=

(12)

where N = 3, Q = 1076, P = 102, We simulate a period of
400 days, for sake of comparison with respect to the results
presented in [17], with a sampling time 7, = 10 days; thus,
the predicted horizon N accounts for 30 days of prediction.
Here, the switching modes are represented by ¢ € P, with
P = {1,2,3,4,5}. The AT bounds are set as LY = 20 days
and UfA = 60 days for all £ € P. Similarly, the IT bounds
are defined as L& = 20 days for all £ € P. On the IT no
upper limit is imposed, meaning that U4 = oo, for all £ € P.
In this way, each drug therapy must be administered for at
least 20 days and no more than 2 months. If a drug therapy
is interrupted, it cannot be used again for the next 20 days.

The temporal evolution of the total pathogen load under
the drug therapies proposed by the NMPC is shown in Fig. 1
(top graph, solid lines). Black dots in the control sequence
graphs represent the sampling instants, ensuring AT/IT limits
compliance. A standard switching NMPC, which does not
consider AT/IT, was also simulated, see the total pathogen load
(top graph, dotted lines), and the control sequence (middle
graph). As observed, total pathogen load exhibits a decreas-
ing dynamic. This shows that our formulation is capable of
achieving pathogen eradication, even when the scheduling of
drug therapies must comply with AT/IT limits, ensuring that no
treatment is applied for less than 20 days and no more than 2
month. The sequence of modes applied by NMPC formulation
in (10) is shown in the bottom graph.

As expected, the MPC without AT/IT limits achieves lower
total pathogen load. However, it presents rapid switching
between modes, making it inadequate for real applications.
Moreover, the decrease of the total pathogen population xr
through time presented no significant differences between both
control strategies. Indeed, for both strategies x is lower than
10~!. Thus, the MPC formulation in (10) maintains good
performance even when AT/IT limits are considered.

In contrast to the results presented in [17], our proposal
achieves similar performance regarding to maintain a lower
total pathogen load. However, the sub-optimal switching type
1 and 2 presented in [17] does not have additional temporal
constraints.

B. Designing Public Health Policies

Consider the case of a dynamical model of virus spread
in which the earliest control action to reduce disease spread
is by means of social distancing measures (SD). Thus, the
following SIDARTHE compartmental epidemic model serves
to explain the spread of the virus between the population,
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Fig. 1. NMPC (10) for pathogen mutation. Pathogen temporal dynamics
(top), =T stands for total pathogen population, dotted and solid lines
represent the temporal evolution for the switching control sequence
without AT/IT (middle) and with AT/IT (bottom), respectively.

originally presented in [19],

S = —S(al + 3D +~A + BR),
I=S(al+pBD+~A+BR) — (e+ ¢+ M,
D =el —(¢C+A\)D,
A=CI—(0+p+r)A,

R=(D+0A— (u+K)R,

T = pA+ uR — (o + 1T,

H =M +\D+rkA+ kR + 0T,

E=7T,

13)

where Susceptible (S), Infected (I), Diagnosed (D), Ailing
(A), Recognized (R), Threatened (T), Healed (H), and Extinct
(E) are the system state variables and represent the fraction
of the population in each stage. A detailed model parameter
description could be found in [19]. The reproduction number,
R(t), of the SIDARTHE model is given by,
B¢

RO = 5 (a0 + g (00 + 25)).

where parameters o and vy are the ones affected by SD
measures. Instead of a continuous control action variable, real
government social distancing measures are better represented
by a finite set of SD, from the hardest one (lockdown), to more
relaxed ones (face mask-wearing), to the complete absence of

measures. Thus, to represent this control action characteristic
as a switching signal, the reproduction number is expressed as

R7(t) = R — o(t)AR, with AR = M7
n

(14)
where R = 3.4 and R = 0.4 represent the maximum R
(reproduction number in the absence of interventions) and
the minimum R (maximal effectiveness of SD measures, it
is assumed greater than zero) respectively. The finite number
of SD measures is represented by n, this way o (t) € Ijp.p,). As
one can see in (14), 0 = 0 corresponds to no SD measures,
while ¢ = n corresponds to the hardest SD measure.

Virus spread model (13) can be represented in the switched
system form as described in (1). In this framework, the
switching signal ¢ modifies the parameters, o and ~y, thereby
adjusting the reproduction number and encoding a finite set of
SD measures as a discrete set of values. This switching signal
o(t) follows a BR, where each SD measure is represented by
a binary variable v*(k), with £ € P.

In this specific case, for £ = 1, the variable v'(k) cor-
responds to the absence of SD measures (0 = () and the
total number of modes is given by ns = n + 1. Since
v(k) satisfies condition (4) it is possible to establish the
discrete-time memory variables to represent the AT/IT of the
epidemic model (13). This enables the application of the
NMPC formulation (10). For the numerical simulations, we
consider a time period of 250 days, with a sampling time
Ts = 5 days. The system parameters are taken from [20],
where four different SD measures are modeled (n = 4),
resulting in five different SM (ng = 5).

In accordance with the epidemic control objectives pre-
sented in [21], the NMPC with AT/IT limits formulated as (10)
aims to minimize:

N-1
In(@;v) =Y V() = v*IIR, + I1SG) — 57113
=0

+[IS(N) — S*|1%, (15)

where the first term encourages the removal of social distanc-
ing (SD) measures once S* is achieved. The second and third
terms aim to steer the susceptible population towards the herd
immunity value S* = 1/%. For this case N = 10, R, = 1079,
Q = 1073, and P = 1072, Threatened individuals are
constrained not to exceed T,,,x = 0.01. The AT bounds are
set as LY = 15 days and U = 30 days for all ¢ # 1, while
for £ = 1 (no SD measures case), the bounds are L}A =T
and Uil = oo. For IT bounds, L% = 5 days for all £ # 5, and
for £ = 5 (the hardest SD measure), it is considered L% =15
days. The only max IT bound is U} = 90 days.

The temporal evolution of the virus spread model under
the SD measures proposed by the NMPC (10) is shown in
Fig. 2 (top graph, solid lines). Black dots in the control
sequence graphs denote sampling instants, ensuring AT/IT
limits compliance. A standard switching NMPC which does
not consider AT/IT was also simulated, temporal evolution (top
graph, dotted lines), and control sequence (middle graph). The
NMPC achieves epidemic objectives by steering the suscep-
tible population toward S* while maintaining the threatened



advances with wide-ranging applications in both theoretical
and applied domains. Future work will focus on a formal
analysis of recursive feasibility and asymptotic stability for
this type of formulation.
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Fig. 2. NMPC (10) for viral spread between hosts. Susceptible (left
y-axis) and Threatened population (right y-axis) (top), dotted and solid
lines represent the temporal evolution for the switching control sequence
without AT/IT (middle) and with AT/IT (bottom), respectively.

population below the predefined threshold. Fast commutations
between the hardest SD measure and no SD measure mode
are observed after 100 days for the standard switching NMPC,
even though it meets the epidemic objectives. The sequence
of SD measures proposed by the NMPC formulation in (10)
is displayed in the bottom graph. As shown, the control
objectives are achieved while satisfying the AT/IT limits.
Specifically, each SD measure must be applied for no less than
15 days and no longer than 1 month. After the strictest SD
measure ends, it cannot be reapplied for at least 15 days (due
to L3 = 15). Within 3 months the control system must remove
all SD measures and switch back to SM-1 (as U% = 90).

VI. CONCLUSIONS

This paper introduces a model representation of AT/IT
inherent to switched systems, enabling an MPC formulation
capable of handling AT/IT limits. The proposal was success-
fully applied to two biomedical problems, with numerical re-
sults demonstrating its effectiveness and applicability. Further
applications could find a place in tailoring therapies at different
scales [22], and in artificial pancreas devices where temporal
logic restrictions have been shown to prevent dysglycemia
[23].

The developed technique opens a new paradigm in the
MPC field, and offers transformative potential for long-term
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