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We study the nonequilibrium dynamics of axionlike particles (ALP) coupled to Standard Model degrees
of freedom in thermal equilibrium. The quantum master equation (QME) for the ALP reduced density
matrix is derived to leading order in the coupling of the ALP to the thermal bath, but to all orders of the
bath couplings to degrees of freedom within or beyond the Standard Model other than the ALP. The QME
describes the damped oscillation dynamics of an initial misaligned ALP condensate, thermalization with
the bath, decoherence, and entropy production within a unifying framework. The ALP energy density Edtp
features two components: a “cold” component from the misaligned condensate and a “hot” component

from thermalization with the bath, with Estb % Ece V9Pt hELd1-e V9™ thus providing a “mixed dark matter”
scenario. Relaxation of the ALP condensate, thermalization, decoherence, and entropy production occur
on similar timescales. An explicit example with ALP-photon coupling, valid post recombination yields a
relaxation rate ydTP with a substantial enhancement from thermal emission and absorption. A misaligned
condensate is decaying at least since recombination and on the same timescale thermalizing with the
cosmic microwave background (CMB). Possible consequences for birefringence of the CMB and ALP

contribution to the effective number of ultrarelativistic species and galaxy formation are discussed.

DOI: 10.1103/PhysRevD.107.063518

I. INTRODUCTION

The axion, introduced in quantum chromodynamics
(QCD) as a solution of the strong CP problem [1-3] may
be produced nonthermally in the early Universe, for
example by a misalignment mechanism and is recognized
as a potentially viable cold dark matter candidate [4-6].
Extensions beyond the standard model can accommodate
pseudoscalar particles with properties similar to the QCD
axion, namely axionlike particles (ALP) which can also be
suitable dark matter candidates [7-11], in particular as
candidates for ultra light dark matter [12,13]. Constraints
on the mass and couplings of ultralight ALP [9-11,14] are
being established by various experiments [15-17]. There
are two important features that characterize ALP, (i) a
misalignment mechanism results in damped coherent
oscillations of the expectation value of the ALP field which
gives rise to the contribution to the energy density as a cold
dark matter component [4-6,9-11,18], (ii) its pseudoscalar
nature leads to an interaction between the ALP and photons
or gluons via pseudoscalar composite operators of gauge
fields, such as E” - B~ in the case of the ALP-photon

interaction and G¥*G . in the case of gluons, which
allows an ALP to decay into two photons or gluons. The
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effect of this decay process in the evolution of ALP
condensates has been studied in Refs. [19-22] including
stimulated decay in a photon background. The damping of
an ALP condensate via a “friction” term in its equation of
motion has been studied in Refs. [23-25], and
thermalization of ALP has been studied in Refs. [26,27],
these references focused on either damping via friction or
thermalization as unrelated independent processes. A
recent study [28] has recognized the common origin of
these two seemingly different processes by obtaining the
nonequilibrium effective action that determines the time
evolution of the reduced ALP density matrix. This study
showed that damping of a misaligned ALP condensate and
thermalization are two complementary aspects and are
linked by the fluctuation dissipation relation, a
fundamental and ubiquitous property of a bath in thermal
equilibrium. This reference also established that both
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processes contribute to the ALP energy density, an
important aspect if the ALP are suitable dark matter
candidates.

Decay and thermalization of an ALP condensate post
recombination may have a profound impact on
birefringence of the cosmic microwave background
(CMB) if its origin is the electromagnetic coupling of a
pseudoscalar ALP [29-32].

In Ref. [28], the nonequilibrium dynamics of ALP was
studied to leading order in the coupling of the ALP to other
degrees of freedom treated as a bath in thermal equilibrium
by implementing the in-in Schwinger-Keldysh formulation
of nonequilibrium quantum field theory to obtain the
effective action. The equations of motion for the ALP

2470-0010=2023=107(6)=063518(15)
obtained from the effective action are retarded and akin to
a Langevin equation with a friction term determined by the
retarded self-energy and a noise term related to the self
energy via the fluctuation-dissipation relation. This
relation is a consequence of the bath degrees of freedom
being in thermal equilibrium. An important result of the
Langevin nature of the effective equations of motion is a
direct relationship between the damping of an ALP
coherent condensate and thermalization of its fluctuations.
This result was found to be general to leading order in the
ALP coupling to the bath degrees of freedom but to all
orders in the couplings of these “environmental” fields to
any other field within or beyond the standard model other
than the ALP and is a corollary of the fluctuation
dissipation relation. An analysis of the coupling of ALP to
the CMB post recombination in this article also revealed a
substantial enhancement of the damping and
thermalization rates if the ALP is an ultralight dark matter
candidate as well as unexpected possible phase transitions
and exotic new phases.

A. Motivation and objectives

The results in Ref. [28] and their possible cosmological
consequences, motivate us to seek a complementary
formulation of the nonequilibrium dynamics of ALP
coupled to “environmental” degrees of freedom in
equilibrium that does not rely on the in-in Schwinger-
Keldysh approach to the effective action, thereby offering
an alternative and independent assessment of the
nonequilibrium dynamics of ALP coupled to a thermal
environment.

In this article we adapt methods of quantum optics and
quantum information to study the nonequilibrium
dynamics of ALP fields implementing a quantum master
equation approach ubiquitous in the treatment of quantum
open systems [33-37]. The quantum master equation
describes the time evolution of the ALP reduced density
matrix, it has been implemented in particle physics [38—
44] and cosmology [45-50] and has proven to be a
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powerful and reliable method to study nonequilibrium
dynamics.

The main objectives of this article are: (i) to scrutinize
the results obtained in Ref. [28] with an alternative and
independent method, (ii) to inquire on complementary
aspects of
thetimeevolutionofthereduceddensitymatrix,inparticular
the evolution of coherences, which yield supplementary
information on thermalization and decoherence, and (iii) to
compare the timescales of decoherence to those of
damping of the misaligned condensate and thermalization.

In this study we are not concerned with bounds on
couplings and or masses of the putative ALP but focus on
fundamental aspects of the nonequilibrium evolution of its

© 2023 American Physical Society
density matrix including misaligned initial states.
Furthermore, while our ultimate objective is to study the
nonequilibrium dynamics in an expanding cosmology, we
initiate this program as a prelude by focusing on
Minkowski space time.

B. Brief summary of results

We consider an ALP field in interaction with Standard
Model degrees of freedom which are considered to be in
thermal equilibrium. In Sec. II, we obtain the QME for the
reduced density matrix of the ALP up to second order in
the coupling of the ALP to these degrees of freedom, but to
all ordersinthecouplingofthebathdegreesoffreedomtofields
withinorbeyondtheStandardModeldifferentfromthe ALP
underwelldefinedapproximations. TheresultingQMEisof
the Lindblad form [33-37], it is obtained up to second
order in the ALP coupling to Standard Model degrees of
freedom andtoallordersinthe
couplingsofthesedegreesoffreedom to any other field
within or beyond the Standard Model except for the ALP,
and includes misaligned initial conditions for the ALP
field. The QME describes the damping of the misaligned
condensate, thermalization with the bath and decoherence
with a concomitant entropy production. The ALP energy
density describes a “mixed” dark matter scenario with a
cold component E. from the misaligned coherent
condensate, and a “hot” component E, from thermalization
with the bath, with the total energy density interpolating
between the cold and hot components as EGtP ~E.eV9™t b
End1 - e¥9™Pp wheretherelaxationrate ydTP also describes
the decoherence rate. We study in detail ALP coupling to
the CMB post recombination, if the ALP is an ultralight
dark matter candidate there is a substantial
enhancementoftherelaxationrate,itslongwavelengthlimit is
given by yoTP % g?m?,T=16m. The results suggest that if
yOTP < 1=Ho the misaligned condensate has been decaying
at least since recombination and thermalizing with the
CMB
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onasimilartimescale. Therefore,ifcosmicbirefringenceisa
consequence of the CMB coupling to a pseudoscalar ALP,
the rotation angle since the surface of last scattering should
feature a thermal spectrum of fluctuations.

II. THE QUANTUM MASTER EQUATION
We study the time evolution of the reduced density
matrix of an axionlike field adxp coupled to generic fields
x0xp to which we refer as “environmental” fields via a

pseudoscalar operator Oxdxb, with the Lagrangian density

¥ 1()‘ua x o - 1 Y
db db 12a20xpP — gadxPOxOxP p Ly
La;ax-ma
2 2
02:1p

where L, is the Lagrangian density describing the
“environmental” fields ¥, these fields could be the
electromagnetic field, fermion or gluon fields and
themselves be coupled to other degrees of freedom within
or beyond the Standard Model.

The Lagrangian density (2.1) describes several relevant
couplings of ALP, with possible operators O,x” b being

Oxax-) D%E-) 6XD'B-) 6Xp;Guv;b6XpGN uv;baxp,'w_

Oxby;bsWAXP;b where

E”, B” are the electromagnetic fields, G¥ ;G™ W are the
gluon field strength tensor and its dual respectively, and
Woxp a fermionic field. These degrees of freedom are
assumed to be in thermal equilibrium. We will first treat
these fields generically denoting them as x fields, and after
obtaining the general form of the quantum master equation
up to 08g?p, we will focus on the relevant case with O,0x”
P % E” 0xb - B” 6xb since the interaction of ALP fields with
the CMB could have potentially observable consequences,
[29-32],

polarization plane which, in contrast to Faraday rotation, is

such as birefringence a rotation of the

independent of the frequency with tantalizing detection
possibilities [30-32].
The interaction of ALP with photons and gluons via

couplings of the form gadxPE” &xP - B
dxb;gsadxPGHV:PFxbx
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G u\,;b(’ixb are not renormalizable because the respective

couplings g;gs feature dimensions 1=8energyb, an aspect
that has important consequences [28] discussed below, that
at the fundamental level, indicate that the Lagrangian
density (2.1) describes an effective field theory valid below
some cutoff scale.

Upon evolving the total initial density matrix in time, the
degrees of freedom x with the generic operator Oyare traced
over to obtain a reduced density matrix for adxp which
obeys a quantum master equation. We obtain this equation
in the general case valid to order g?in the ALP coupling to
the bath, and to all orders in the couplings of the bath
degrees of freedom to any other degree of freedom within
or beyond the standard model except for the ALP under a
set of approximations that are spelled out in detail.
Whereas our ultimate objective is to pursue this approach
in an expanding cosmology, here we begin this program by
first carrying it out in Minkowski space time.

The quantum master equation in a Lindblad form [35—
38] has recently received attention in applications to high
energy physics [39-44] and cosmology [45-49]. This
formulation
beginswiththetimeevolutionofaninitialdensitymatrixthat
describes the total system of fields a, x, which is given by

p"Otb % e-ittp~d0PeiHt; 02:2b
with H the total Hamiltonian
H%HOabHXbH|E Ho|3H|; 02:3b

where Hoa is the free field Hamiltonian for the ALP, Hyis
the Hamiltonian of the x degrees of freedom including their
couplingstodegreesoffreedomwithinorbeyondtheStandard
Model except the ALP, and H%gR d3xadxpO,dxP is the
coupling between the ALP and the bath degrees of freedom
obtained from the Lagrangian density (2.1).

We consider an initial factorized density matrix

pB0P % pad0P @ pxd0P; 32:4p

where the x fields are in thermal equilibrium at temperature
T % 1=B, namely

e-BHy
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px00P % Tre-pHy; 02:5p

and for the ALP field we chose an initial density matrix
describing a “misaligned” initial condition with a
nonvanishing expectation value of the ALP field. This is
implemented in terms of coherent states of free fields as
follows. Quantizing the free ALP field at the initial time t
% 0 in a finite volume V as

1 Xk 1 «ffi ik x* btk e-ik x”;

adx;t” % 0b % pV " p2w %b e b ffi

Vb ;bk 0 % 8k o 02:6b
and the vacuum state defined as
bk jOi % 0: 82:7p
A coherent state is given by
Ai % Nk e-2jac j2e-ac b jOI; 02:8p
j
it is an eigenstate of the annihilation operator,
bk jAi % Ak jAi; 82:9p

and describes a Poisson distribution of quanta of the free
ALP field. The expectation values of the ALP field and its
canonical momentum in this coherent state are hAjadx;

OPjAi % a~dx;” 0P

1 ffi Xk 1 «ffi kkik* x; 82:10P %4 pV " p2w

BN p A-e

hAjrdx; 0bjAi % r”dx;”0b

—i Xk rweffi K k ik’ x; 02:11p

%pV- 2¥A -N-e ffi

Hence we choose the initial density matrix for the ALP
field to describe this “misaligned” initial state, namely

PHYS. REV. D 107, 063518 (2023)
pad0oPb % jAihAj; 02:12b

yielding
Trbk® pad0b % Ak ; Trbtk” bk* pad0Pb % NqdOP % jAq” j2;

Trby b-x” pa00P % A A ; etc: 02:13p
We refer to the off-diagonal ALP density matrix
elements in the occupation number basis (eigenstates of b+

bi*), k for example Trbi” b_k* p,60P % Ay B 4+ as coherences
[33,34].

A hallmark of a thermal density matrix is that these
coherences vanish and the density matrix is diagonal in the
occupation number basis. This observation will become
important as a diagnosis of thermalization and its link to

decoherence studied below. Translational invariance
entails that
Ay Y Vfil™6k 07 ; 02:14p
therefore
Ngd0P % VjA™ j2bq;,707; 02:15pb
P
and

___1%mn2pm2aa2%jA" j2:
02:16P 2m,

In the quantum master equation approach [33,34] the
time evolution of the density matrix is considered in the
interaction picture. With the full density matrix p"dtp
given by Eq. (2.2) the density matrix in the interaction
picture is given by p"10tP % eiHotp " dtPe-iHot; 62:17P whose

time evolution obeys p_"18tp % -i%:Hidtb;p"18tb; §2:18p

where H,0tp is the interaction Hamiltonian in the inter-oo
action picture, Hidtb % e :Hie“in . The formal solution of

Eq. (2.18) is given by
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0
p 1 th % pli60P-iZ
02:19pb to

dto¥Hidtob;p"18tob:

This solution is inserted back into (2.18) leading to the
iterative equation p_"18tb % -i%sHidtb;p"160P

Z t
-%Hi0tb;%:H18tob;p " 10tobdto:

02:20p
0

This QME cannot be solved exactly, and several
approximations are usually invoked, based on the
following assumptions [33-36]:

(i) Factorization: the total density matrix factorizes into a

direct product of the density matrix for the a field,
p 1a0th and that of the bath of x fields, p”, namely,

p 10th % p 1adth @p“xd0P; 82:21p where

€-BHy

p"x00b % Tre-pry; 02:22b

this assumption which implies that the bath degrees of
freedom remain in thermal equilibrium, relies on that
the bath is a reservoir with a large number of degrees
of freedom and is not modified by its coupling to the
system, hence the density matrix of the bath does not
depend on time. This assumption also relies on weak
coupling: if the initial density matrix is factorized,
correlations between the system and the reservoir will
build as a consequence of the interaction, therefore
such correlations will be small for very weak coupling
and may only contribute in higher orders. Factorization
and its possible caveats are discussed further in Sec.
Iv.
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The reduced density matrix for the ALP field a is
obtained by taking the trace of the full density matrix
over the bath degrees of freedom, which by
assumptionremainsinthermalequilibrium,therefore

p"1a0th % Trxp"10th: 02:23b

Upon taking the trace over the x degrees of freedom
the first term on the right-hand side of Eq. (2.20)
vanishes under the assumption that the thermal density
matrix ~ of the  environmental fields s
evenunderparity,henceTrOyp"d0P % 0,andwe find the
evolution equation for the reduced density matrix for
the ALP field a in the interaction picture,

p_"1a0tb % —g? Zo' dt° Z d3x Z d3x°fa,dxPadx°p

X p"1.0t°pG>dx - x°p b
p 1a0toPaidxoPaldxPG<dx — xob
- a,0xbp”,0toPa;0xoPG<dx — xob
- aidxobp”ladtobaldxPG>0x — xobg 062:24p
where we use the shorthand convention x = dx;t” b; xo

= 0x_ ojtob, and introduced the bath correlation

functions

G>0x — xoP % Tryp"x80POx3xPOxdxob 02:25b

G<Ox — xob % Tryp“x00POxdx0obOxdxb:  §2:26b

The ALP field in the interaction picture adx;t” b >8 b % Z 8d3qP Z dqo -8 b features free field time evolution,

namely GX=X0,1 39 @ G0

aldx;t”bYp-ffiXk pzwkf—ﬁyzbk* e-iwkteik” x” pbtk” eiwted-ik” x”;

V.,

2:27b
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X . .
¥ e—iqoét—tobeiqﬁ 3% -x" op’ 62'32D
where the operators by ;b do not depend on time,
1
and wk pk2 b maaffi. where the spectral densities obey the relation>

<

(i) Markov approximation the second approximation
entails replacing p1a0t°p >pi,8tPb in the time inte- @ 8-qo;q” P % @ 6qo;q° P; 82:33b gral. This is usually referred to

as a Markov

approximation and is justified in weak coupling, andfulfilltheKubo-Martin-Schwingercondition[51] as can be seen

by considering the first term in (2.24)

as an example. It can be written as 0800;q” P % -Bp>3q0:q” b; 82:34p

- 823555 7t gKdtdotopP |36tobdt°; which is a consequence of the fieldsthermal equilibrium. Introducing the
spectral densityy being in

0

to > <
5p  Kidzadx 0,t%pG>dx” - X %t - t%pdt® 2:28pdq0;q” P % @ 8do;q” P @
80o;q” P; 32:35p
0

the Kubo-Martin-Schwinger condition (2.34) leads

which upon integration by parts yields to the following relations

z — dp”iaat
-gZadx;t” PKdtbPp . dtPpg?adx;t” ptkotopoP 250pdt®  0>8qo;q” P %
%1 b ndqobpdqo;q° P82:36b
0 dto

92:29p 0°8q0;q” b % ndaobedqo;q” P 82:37p

in the second term dp”0dt°p=dt® o« g? so this term where ndqob % %eP% - 171 is the Bose-Einstein yields a
contribution that is formally of order g*and distribution function at temperature T % 1=B. The can be neglected to
second order. The same analysis above relations are proven in Appendix A, they are is applied to all the other terms
in (2.24) with the general, nonperturbative and rely only on that the conclusion that in weak coupling and to leading
reservoir is in thermal equilibrium.

order dg?p the Markovian approximation p”a0top = (iii) Rotating wave approximation: in writing the prodp”1adtp
is justified. ucts aidx;t” Paidx” %t of interaction picture field

Therefore in the Markov approximation the quan- operators (2.27) in (2.24) there are two types of tum master
equation becomes terms with very different time evolution. Terms of the form
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p_"1a0tb % —g? Zo' dt® Z d3x Z d3x°fa,dxpadx°p btq” bg” iwast-top; 82:38p

x p“'aétbG>6X - Xob are “slow,” and terms of the form p p~ladtPaidxobaidxPG<<dx — xob

igtiqtt

10 P1ad P10 P 0] p btq’bt-g"€2we wd-ob;
-axp” taxoG x-xo

- ai0xobp 1a0tPaIdxPG>0x — xobg:  62:30p bq” b-q” e-2iwgte-iwedt-top; 02:39p

are fast, the extra rapidly varying phases e?“slead

The correlation functions G>8x — xoP;G<0x - XoP to rapid dephasing on timescales ~1=wqand do not are obtained
in Appendix A in terms of nonpertur- yield resonant (nearly energy conserving) contribubative Lehmann
representations to all orders in the tions. Neglecting these terms is tantamount to coupling of the environmental
fields x to any other neglecting nonresonant terms that average out field in thermal equilibrium except for the ALP.

over the longer timescales of relaxation >> 1=wq.

They are given by These terms only give perturbatively small transient
contributions and are discussed in Sec. [V. Keeping -Tgs20th¥btq” by p 1adtPpp 1adtPbtg” by -2bg”

only the slow terms which dominate the long time
dynamics for t > 1l=wq and neglecting the fast —_
oscillatory terms defines the “rotating wave
approximation” ubiquitous in quantum optics
[33,34].
We will adopt these approximations and comment in
Sec. I'Von the corrections associated with keeping the fast
terms as well as caveats in the factorization approximation
and limitations of the QME.
Implementing the Markov approximation p”.0toP - -

p 1a0tbbtq” [q<0tP¥bq” btq” p 1adtPpp 1adtPbg”

btq”—2btq” p1a0tPbg”;

2
pterms of the form",6tP, and the rotating wave 02:40p
approximation (keeping onlyb+tb;bb+) using the spectral
representa- where
NqOtb% _ 2wqZ 2mo pdqo;qb¥1-cosdw0q
tion of the correlators (2.31), (2.32) and carrying out the w-qq-obqobt; 2:41b g2 dq
spatial and temporal integrals we obtain the Lindblad form
[33-38] of the quantum master equation, [g>0tb _z__ % wg2qdg2m0 pdqogP YT b nd—
Psind¥%0wwaqq——qgqobobt;
0
p_"1a0tph % Xq-iAq0tbYsbtq” bg™;p " 120tP
. 02:42p
M<0thb % __wqZ 2m10
08q0;gbPndqoPsind¥%dwwaqq——qgobobt;

02:43b g2 dqg
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and we introduce

[q0tb % >q 0tb —[<q OtP
Ya__  __wqZ2mo
080q0;qPsind’sdwwqq——qgobobt: §2:44b g2 dq

The second and third lines in (2.40) are called the
dissipator [33], these are non-Hamiltonian, purely
dissipative terms, however it follows from the QME (2.40)
that the trace of the reduced density matrix is conserved. It
is argued in Refs. [35-38] that the Eq. (2.40) is the most
general linear evolution equation that preserves unit trace
and Hermiticity of the density matrix.

Expectation values of ALP operators in the interaction
picture are obtained by taking the trace of such operators
with the reduced density matrix, for example
haidx;t Pi%Tradx;t Pp a0th

>X<X— q 1
q -iwgtbt-q” i0tPeiwqteiq” x;

%2Vw ¥:hb~idtPe ph " p ffi

02:45p

where

hbqg”idtp % Trobg” p~1adtbb;
+

hb-gidtp % Trdbt-q” p"1adtpbp: 82:46b

For any interaction picture operator A associated with the
ALP field

— d _p°

dthAi % TrafA 120tb p Ap_"1a0tbg; 02:47p

where the average hdbi % Tr.0Pp”,0tP. Because by ;b'q
are time independent in the interaction picture, the time
derivative of their expectation value is given solely by the
second term on the right-hand side of Eq. (2.47), hence the
expectation value of the number operator

Ngdtb % Trap”1adtbbtq” bq” §2:48b obeys

the quantum kinetic equation

PHYS. REV. D 107, 063518 (2023)
UNdtqdtPX%Trafbtg” bg” p_"1adtbgla—TqdtPNgOtbplq<dth:
02:49p

Similarly, we also find the evolution equation for the

averages dtd hbk”idtb % —-iAkdtp [k2dtPhbk" idth

dthidb% b  2hiidb 6 b
and for the off-diagonal coherences,
d

-A-T

d b+t iA t -TkOtp btt; 2:50
dthbk’ b-k*i0tb % % 2i kdth  k8tPhbk” b-k i0tP
d bt
dthbk” -k i0thb % ¥%:2iAk6tP -TkdtPhbtk* bt-k* idtP: 02:51p

From the evolution equations (2.50), (2.51) it is clear that
ABtb is a time dependent renormalization of the frequency
wk. To obtain the solutions of the above equations in the

long time limit we need the following integrals

Zt

a0 gy t_girlz = _Pdqo; gP 1- sindwq —qoPt dy
(.L)q - q (.L)q - q t I
AOtP %
0 20 -0 ob 0 ob 02 b
> ety 02:52p
where

- Y4820 p800;qP dgo 8 b SweZ

PG P;2:53

2Wwq o> wg-qo 21
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is a renormalization of the frequency wqand P stands for Z4~ E A P 3 — 2:58q-
the principal part, and qo
7t 2 foc P (1T, (¢)df' = g @ (go-q) s the wave function renormalization.

q T —ay ! > Ifthe initial averages hbyid0b % 0; hby b-¢

P - cos¥%dq° -wibt

0 W -2 do
ERRLY ~dey g P 8
bt q—qoz; 2:54
where
Va % Fq0oob % 2gw2q pOwg;qb; 02:55p

is the decay rate in agreement with Fermi’s golden rule. In
the long time limit, the solution of Egs. (2.50), (2.51) are

hbk‘ |6tp % Ze—i&wqte—vzqth bk‘ |60p,

t _k 02:56b
hb”idtb % Zeiswste-2thbtk” id0Pb;
hbk” b-k* i0tbP % Z2e-2iswqte-yqthbk” b-k” id0Pb; 02:57b

Tt

hb” b-k* i0tb % Z2e2iswte-yathbtk” b-tk* i60P;
k

where to leading order in the coupling,

2 p

vaq

g Z dq &0qoqgbb b

i00P % 0 such values remain as fixed points of the evolution
equations. However for a “misaligned” initial condition
(2.12), (2.9) yielding the initial averages (2.13), it follows
that in the long time limit the solutions of Egs. (2.50),
(2.51) are,

respectively

hbg i0tb ¥ Ze-iswite-_y2qtAg”; 02:59p

hbg” b-q>i10tb % Z2e-2iswqte-yatAq” A-q”; 02:60p

along with their Hermitian conjugates.

Absorbing dwqinto the renormalization of the frequency
and with the initial expectation values given by (2.10),
(2.11), (2.14) we find that the expectation value of the ALP
field is given by
haidtb % e-yata”60Pcosdmartbpre=d0bsindmartPpOdg2b;

Mar
02:61pb

where maris now the renormalized ALP mass and we have
neglected (nonsecular) terms of order g? associated with the
wave function and mass renormalizations. Equations
(2.59), (2.60), (2.61) indicate that the expectation values
and off-diagonal coherences decay in time, leading to a
reduced density matrix diagonal in the number
representation, this is the hallmark of decoherence. These
results imply that the damping of the ALP condensate is
directly linked to decoherence.

Neglecting perturbatively small nonsecular terms of

008g?p in the long time limit yields in this limit hbtq” bg”
i0tb = Nqdtb % Nqd0bPe-yat p Ndwgbd1 — e-yqth;

NadOP % jAq’j2;  ndwab % el — Iq 82:62p
which describes thermalization, and an exponential
approach to the thermal fixed point of the quantum kinetic

equation.
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Taken together, the results given by (2.59)-(2.62)
summarize some of the main results from the QME:
damping of the ALP condensate, decoherence and
thermalization are all related, the decoherence rate is the
same as the thermalization rate as well as the damping rate
of the misaligned component to the energy density. For t >>
1=yqthe density matrix becomes diagonal in the occupation
number basis and the misaligned condensate has relaxed to
zero. The ALP has reached thermal equilibration with the
bath.

From Egs. (2.62), (2.15), and (2.16) we obtain the time
evolution of the ALP energy density neglecting a time
independent zero point contribution, it is given by

_ 1
V X
EtP %NgOthPwq

N

q

3

- %l1%2p
m2aa 2e Yot TU
2
C— bddsgb® & o%;)
-yatP: 02:63P wgn wq
l-e
21

The first term in (2.63) describes the decay of the
condensate from the misaligned initial state, whereas the
second term describes the thermalization of the ALP
degrees of freedom.

This analysis highlights that the contribution from a
misaligned condensate to the energy density,
thermalization with the bath and decoherence as described
by the decay of the off-diagonal components in the ALP
occupation number pointer basis, all occur on similar
timescales, which is completely determined by the
relaxation rate yq.

The results (2.61), (2.63) are in complete agreement with
those of Ref. [28] which were obtained with a very
different approach based on the nonequilibrium
Schwinger-Keldysh effective action. Furthermore, the
general expression for the frequency renormalization
(2.53) and wave function renormalization (2.58) are also in
agreement with the general results found in Ref. [28] in the
strict perturbative regime, although they cannot reproduce
nonperturbative aspects which are revealed by the effective
action and are discussed in section IV.

A. Decoherence and entropy production

PHYS. REV.D 107, 063518 (2023)

The evolution equations (2.59), (2.60) describe the
decay of the coherences, in other words, the emergence of
decoherence, whereby the density matrix becomes
diagonal in the pointer basis of the eigenstates of the
occupation number operator btgbg for t > 1=y,
Furthermore, the timescale of decoherence is similar to the
relaxation rate of the misaligned component of the energy
density and that of thermalization. Decoherence and the
evolution towards a diagonal reduced density matrix in the
occupation number basis, in turn imply entropy production.
At long time when the off diagonal terms are negligible,
and the reduced density matrix becomes diagonal in the
occupation number basis, with thermal populations, the
total entropy becomes

>

S8oob%fd1pndwqbPInd1lpndwePP-ndwqPInndwqPg:
q02:64b

Since the initial ALP density matrix (2.12) describes a pure
state, hence vanishing entropy, Sde<b > 0 implies entropy
production for the ALP as a consequence of
environmentinduced decoherence [52]. This is an
important bonus of the QME which unambiguously
describes decoherence via the decay of the coherences
(2.59), (2.60), over the usual Boltzmann equation approach
to thermalization, wherein entropy production is inferred
via Boltzmann’s H-theorem from the time evolution of a
classical Hatp function which inputs solely the occupation
number evolution but which does not have any information
on off-diagonal coherence.

III. ALP-PHOTON INTERACTIONS

The results obtained in the previous section are general
up to 08g?P and to all orders in the couplings of the bath
field x to any other field except for the ALP. Whereas our
study addresses the nonequilibrium dynamics of ALP
fields, the results also apply to any field with an interaction
of the form (2.1) and initial conditions that allow for the
evolution of a coherent condensate [18]. However,
although the results are generic, the relaxation rate yq,
frequency and wave function renormalizations depend on
the spectral properties of the bath correlations.

In this section we focus on ALP interaction with photons
via the coupling

L % —gadxPE” dxb - B~ dxb: d3:1p
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We consider the thermal bath of CMB blackbody
radiation of free massless photons, neglecting
electromagnetic interactions with charged leptons and
quarks. This restricts the validity of our treatment to
temperatures well below the masses of these other degrees
of freedom and under conditions when the electron density
in particular is vanishingly small, therefore there is no
(gauge invariant) thermal mass or plasma frequency for the
photons. These conditions are certainly fulfilled in
cosmology after recombination at temperatures T =~ eV
when the free electron density vanishes rapidly and the
distribution functions of quarks and charged leptons are
thermally suppressed at these temperatures.

Ref.The spectral density[28] and summarized in
Appendixpdao;q” b has been obtained inB for consistency

of presentation, it is given by

0 4Q2b21 p B2girdl —ee—pwpuwp-OdQ2P
pdq;q” b % 32n

2 1- e-Bwpll 2
Fﬁqlnl - e-Buwli- 00-Q bsignéqob; 03:2p
where
jqjq; ws P q
Q2 %q20-q2; wiP% 02 % j2qoj: 63:3p

andFrom Eq.B % 1=T(2.55)with Twe obtain the relaxation
ratethe temperature of the radiation bath.

i 1 - e-BunyqdTh %

quODl b th’ll — €-Bw-1q0%4wq;

g2ma,

vad0Pb % 64 Wgq : 03:4pb

The zero temperature contribution y,80Pb is recognized as

the ALP decay rate into two photons [9], whereas the finite
temperature contribution is a consequence of stimulated

PHYS. REV.D 107, 063518 (2023)

emission and absorption processes in the radiation bath. In
the long-wavelength limit we find

g2m3a Ma
vadTP % 64m1p2n__2; 33:5p
which in the high temperature limit T >> m,yields
gamsa T
Va0 TP 7 167t Ma: 03:6b

For example, if T corresponds to the temperature of the
cosmic microwave background today T = 10™*¢V the finite
temperature correction yields a very large enhancement
over the zero temperature rate if the ALP is an ultralight
candidate with m, < 10722 eV. A substantial relaxation rate
of the ALP post recombination may yield important
cosmological consequences, for example in birefringence
if it is caused by the coupling of CMB photons to a
pseudoscalar ALP [29-32] (see discussion below).

From the results of Appendix B, the frequency
renormalization given by Eq. (2.53) is found to be

Swq % dwasqop p SwaqTk; 03:7p

spectral densitywhere 6w?,% is obtained from the(3.2) and
by introducing an ultravioletT % O contribution to the

cutoff A, it is given by

5w % - —1288r%2wq 124 b 2ma2A2 b dma2ab2

InA____ ?me2a®2

03:8p

In Appendix C the finite temperature contribution in the
high temperature limit T »>wqis found to be

SwqaTh Y4-g30zmw2Ta4 Th2415mtm2T2a2 pOOM4aa=Tabh:
03:9p
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The frequency renormalization (3.7) is identified as a
temperature dependent mass renormalization by writing

the renormalized frequency Qq% wqp Swqup to Oégzb as

Qq % qqz2 b m2rATPffi %4 qw2q b Am20TPffi wq b

AmM2w205TP P =wqp dwg; 83:10p %

from which we find the finite temperature renormalized
mass up to 0dg?p

M2RATP % m2rO0P1-TT__44c;

/\ P
m2r30P % maz2 =64gn>— 1 4

2m2a/\2 pdm2ab2 In\’me2a32;

22 b
83:11p

where

Te = 1.11smrA0Qbff; 83:12p

g

and we kept the leading order in the high temperature limit
T=m, > 1 in the finite temperature correction. The result
(3.11) agrees with Ref. [28] which obtained a similar finite
temperature mass from the nonequilibrium effective
action, and indicates that m%dTP becomes negative for T >
T. suggesting a long wavelength instability and the
possibility of an inverted phase transition as discussed in
Ref. [28]. However, within the context of the quantum
master equation there is a caveat on this interpretation
because the result for the frequency renormalization has
been obtained in strict perturbation theory and the
renormalized frequency wq p Owg does not yield any
instability. This caveat is discussed in more detail in Sec.
Iv.

IV. DISCUSSION AND CAVEATS

A. Counterrotating terms

PHYS. REV.D 107, 063518 (2023)
In the derivation of the quantum master equation (2.40)
we neglected terms of the form

ba” b-g” e-2iwdteiwedt-top; btq” b-tq” €2iwgte-iwgdt-top: 04:1P

The time integral over t°can be carried out following the
steps leading to Eq. (2.40) yielding contributions of the
form bqb-g- e 2p=aqo;qPp"1.0tP etc. The contribution of
these terms to the equations of motion for linear or bilinear
forms of b;b" are straightforward to obtain, they do not
yield terms that grow secularly in time because the rapid
dephasing of the oscillatory terms average out in the time
integrals. These are nonresonant terms and yield
perturbatively small subleading contributions of the form
Swg=wq K 1; yg=wq K 1 in weak coupling, as compared to
those obtained from Eq. (2.40) which captures the secular
growth in time because of the resonances and describes the
leading behavior in the long time dynamics.

B. Factorization

Factorization of the full density matrix (2.21) is one of
the main assumptions in the derivation of the Lindblad
form of the quantum master equation [33,34]. This
assumption neglects correlations between ALP field and
the thermal bath as discussed above, it may be justified for
weak coupling: assuming an initial factorization,
correlations will
build up upon time evolution but will remain perturbatively
small, hence they may be neglected to leading order in the
coupling g. The assumption that the total density matrix
remains factorized with the bath in thermal equilibrium
which remains unaffected by the coupling to the ALP at all
times is consistent with the interpretation of the bath as a
reservoir. However, as the ALP population builds up as a
consequence of thermalization, it is plausible that
correlations between the ALP and the bath become
stronger as the ALP population reaches a thermal state,
leading up to a possible breakdown of the factorization
assumption. Such a scenario merits deeper scrutiny which
is beyond the scope of this study.

C. Nonequilibrium effective actionvs quantum
master equation

In Ref. [28] the time evolution of an initial density
matrix was studied by implementing the in-in Schwinger-
Keldysh formulation of nonequilibrium field theory. In this
formulation the time evolution is described by the in-in
effective action that leads to a Langevin equation of motion
for the ALP field in terms of the retarded self-energy  and
a noise term both related by the fluctuation dissipation
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relation. The solution of the Langevin equation of motion
inputs the full propagator including the self-energy
correction, and the (complex) poles in the propagator at
w2rdgb % w2dqb p 26wrdqgb;qb; 04:2p
determine the frequency and lifetime of ALP oscillations.
The finite temperature effective mass is obtained from the

real part of the solution of the Eq. (4.2) for g % 0, namely
m20Th % ReYsw2rdq % 0.

In the case of ALP-photon interaction with the coupling
(3.1), after absorbing the zero temperature, ultraviolet
divergent contributions into a definition of the zero
temperature
renormalizedmassmag,thesolutionofthepoleequation(4.2)
at g % 0 yields precisely the result (3.11) to leading order in
the high temperature expansion T > ma. The finite
temperature mass, as properly defined by the position of
the pole in thepropagator at zeromomentum, indicates
thepossibility of an instability and an inverted phase
transition for T > T.as advocated in Ref. [28], a conclusion
that does not rely on an expansion near the bare frequency.

In contrast, the quantum master equation approach
yields a perturbative correction to the bare frequency in the
form wq p Swq with a real dwq which obviously does not
entail any instability. The main reason for this discrepancy
between the effective action and the quantum master
equation can be traced to the fact that in the latter approach
the time integrals in (2.30), convolve the spectral
representations (2.31), (2.32) with the time dependence
(2.38) featuring the external ALP frequency wq. Therefore,
the rates (2.41)—(2.43) in the Lindblad QME (2.40), are
effectively evaluated at the frequencies wqyielding strictly
perturbative corrections for the frequency and wave
function renormalizations. At heart, this is a consequence
of the perturbative nature of the QME in interaction
picture.

Another important difference with the nonequilibrium
effective action, is that as found in Ref. [28], the zero
temperature contribution to the real part of the self energy
is

YoropOW;qP Y% =64gm27z12Aap 2Q2A2 p 8Q2b2InA______
j2Qe23j=2;

Qz% wz—qz; 04:3p
where the logarithmic divergence multiplying 8Q2p?

implies that the renormalized effective action requires a
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0

new higher derivative term %5 H9,p2a%dxPp to absorb the

logarithmic divergence from the self-energy. This is a
consequence of the nonrenormalizable interaction (3.1)

since the coupling g has dimensions of denergyb™.

In contrast, the QME yields the frequency
renormalization §w%° (3.8), which is proportional to the
real part of the self-energy (4.3) evaluated on the (bare)
mass shell, namely for Q* % m?. Again this is a
consequence of the time integrals leading to the QME in
Lindblad form, and can be traced to the interaction picture
representation of the density matrix.

Therefore, the QME confirms the damping of the
misaligned ALP condensate, thermalization, and that the
ALP energy density features a mixture of a “cold”
component from the damped misaligned condensate and a
“hot” component from thermalization, and that damping of
the cold and thermalization of the hot components and
decoherence occur on similar timescales.

An instability and possible phase transition cannot be
captured by the QME which relies on a perturbative
expansion in interaction picture field theory, assuming a
well-defined mass shell and stable oscillations of the
various degrees of freedom. An instability will lead to a
breakdown of most approximations: certainly the Markov
and rotating wave approximations, since the former relies
on a wide separation of timescales and the second on well
defined mass shells associated with the oscillation
frequencies. Therefore, an instability associated with a
possible phase transition and novel phases for T > T.is well
beyond the realm of validity of the QME and should not be
expected to be described reliably by it.

While the QME cannot directly confirm the possibility
of an inverted phase transition and the emergence of exotic
phases both described by the Schwinger-Keldysh effective
action and truly nonperturbative aspects, it does allow to
understand the sources of these discrepancies in strict
perturbation theory.

An important advantage of the QME is that it allows to
obtain the time evolution of coherences and populations in
a more direct manner thereby establishing that
thermalization and decoherence with the concomitant
entropy production occur on similar timescales.

D. On the similarity of timescales

An important result is that the timescales of damping of
the condensate (2.61), decoherence (2.60), and
thermalization (2.62) are all very similar and simply
related. This similarity originates in the form of the
Lindblad QME, Eq. (2.40), which solely inputs bilinears of
the form b'4bq (one annihilation and one creation operator),
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and this form of the QME unequivocally leads to the
quantum kinetic equations (2.49)—(2.51) whose solutions
display the timescales of damping, decoherence, and
thermalization in terms of the same function dtpb. In turn,
the particular form of the Lindblad QME is a consequence
of the linear coupling of the axion to the composite
operators Oy as described by the Lagrangian density (2.1).
Although we have not studied nonlinear axion couplings, it
is quite possible that in the case of nonlinear couplings the
timescales could be quite different. Investigating this
possibility would merit further study beyond the scope of
our objectives.

E. Possible cosmological consequences

Although we have studied the nonequilibrium dynamics
of ALP’s in Minkowski space time, the results allow us to
provide a preliminary extrapolation to cosmology.

A pseudoscalar ALP coupled to photons as in Eq. (3.1)
leads to cosmic birefringence, namely a frequency
independent rotation (in contrast to Faraday rotation) in the
polarization angle W between the surface of last scattering
and today [29-32]. For a homogeneous misaligned
condensate slowly varying in time haidtp such a change is
given by [29]

AW % _gdhaidtissh - haidtobb:
2

34:4p

The amplitude of the misaligned condensate decays as a
consequence of the ALP interaction with the CMB photons,
therefore the condensate is decaying during the
cosmological expansion since recombination, and as
described above the ALP fluctuations are thermalizing with
the radiation bath on similar timescales. This hitherto

unappreciated fact has important consequences.

If the lifetime 1=y0TP <« 1=Ho the amplitude of the
condensate haidtop =~ 0, however, the ALP thermalizes on
the same timescale as the condensate decays, therefore, if
the misaligned condensate has completely decayed
between the surface of last scattering and today, we
conjecture that the fluctuations of W would feature a
thermal power spectrum as a consequence of
thermalization of axion fluctuations with the CMB.

This conjecture is motivated precisely by the similarity
of the condensate damping and thermalization timescales
revealed by the Lindblad QME. The arguments in Ref. [29]
leading up to the result (4.4) hinge on the change in the
photon frequency for the different polarizations as a
consequence of the coupling to the axion condensate,
namely the expectation value of the axion field. However,
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as the solution from the Lindblad QME shows, the
fluctuations of the axion thermalize on the same timescale
as damping of the condensate, therefore we expect that the
polarization angle will feature thermal fluctuations, since it
is modified by the axion field. Rather than focusing solely
on the change in frequency for the different polarization as
a consequence of the dynamical axion condensate, the
dynamics of the polarization post recombination should be
described by the Stokes parameters which involve
combinations of the transverse components of the electric
field squared. At the quantum level the electric field is
associated with a quantum operator, whose Heisenberg
equation of motion involves the full axion field [29-32]
both its expectation value as well as the fluctuating
component. Therefore we conjecture that the square of the
electric field operator will depend on the square of the
axion field which includes the fluctuations of the axion
field. As described by the Lindblad QME the fluctuations
thermalize with the CMB on the same timescale as the
mean-field (expectation value) decays. Hence, this
reasoning leads us to expect that fluctuations in the Stokes
parameters, which describe the polarization field, should
feature a thermal spectrum. At this stage, this remains as a
plausible conjecture which merits deeper scrutiny on its
own, which, however, is well beyond the original scope of
this article.

If the ALP lifetime is much shorter and the misaligned
condensate decays prior to the last scattering surface, then
it has reached full thermalization with the CMB and if it is
an ultralightdarkmatter candidate itcontributesto the
effective
numberofultrarelativisticdegreesoffreedom.Ifthelifetime is
of the order of 1=Hothen the ALP contributes as “mixed”

dark matter, with a cold component with weight g vTP=Ho

and a hot (thermal) component with weight §1 - e v8™P=top,
This latter possibility opens a window to an interesting
scenario, where the cold dark matter component would
dominate at earlier time during galaxy formation and the
hot component would dominate later, with a larger velocity
dispersion, hence a larger free streaming length, featuring
a crossover between cold and hot components on
timescales that depend on the coupling and ALP mass. This
scenario brings interesting and hitherto unexplored
consequences for galaxy formation that merit further study.

V. CONCLUSIONS AND FURTHER QUESTIONS

We studied the nonequilibrium dynamics of ALP’s
motivated by the possibility that these particles belonging
to a sector beyond the Standard Model may be suitable dark
matter candidates. A hallmark of ALP’s is their coupling to
pseudoscalar composite operators associated with Standard
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Model degrees of freedom, and in particular their coupling
to electromagnetism may lead to cosmic birefringence,
namely the rotation of the plane of polarization of the CMB
with tantalizing possibilities of detection. In this article we
consider generic couplings of the ALP field [adxP] of the
form gadxpPOydxP where O,dxb are pseudoscalar composite
operators of Standard Model degrees of freedom ()
assumed to be a bath in thermal equilibrium, and derive a
quantum master equation that describes the time evolution
of the ALP reduced density matrix upon tracing the x
degrees of freedom. The QME is obtained up to 08g?p but
to all orders in the coupling of the x (Standard Model)
degrees of freedom to any other degree of freedom within
or beyond the Standard Model except for the ALP. The
initial ALP density matrix allows for a misaligned
condensate. The QME describes the damping of the
misaligned condensate, thermalization with the bath and
decoherence, namely the damping of the off-diagonal
reduced density matrix elements in the occupation number
basis within a unified framework.

The ALP time dependent energy density EStp features
two components: a cold (¢) component from the misaligned
condensate and a hot (h) component from thermalization

with the bath,with E6tb ~E.e¥™ b E,d1 - e¥™tb where

the relaxation rate ydTb also describes the decoherence
rate. Therefore,the damping of the misaligned condensate
energy density, the approach to thermalization with the
bath and decoherence all occur on the same timescales. We
focus on the particular example of the ALP coupling to
electromagnetism where O,0xp % E” 6xp - B” 8xP where the
radiation field describes the CMB post recombination. The
long wavelength relaxation rate is enhanced by emission
and absorption in the photon bath and at high temperature
T > msand

in the long wavelength limit is given by yoTp % %mﬁ-l—
featuring a substantial enhancement over the zero
temperature rate. These results are in agreement with those
of Ref. [28] but obtained with an independent method.
Thetimedependenceoftheenergydensitysuggeststhatif
the ALP is a dark matter candidate and interacts with
Standard Model degrees of freedom in (local) thermal
equilibrium, it provides a “mixed” dark matter scenario
where the “warmth” depends on time: at earlier times it
describesacolddarkmattercomponentandatlatetimesahot
component, with potentially profound implications on
galaxyformation.IftheALPisanultralightcandidate,andifthe
misaligned condensate has completely decayed prior to the
last scattering surface the thermal component contributes
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to
theeffectivenumberorultrarelativisticdegreesoffreedom.If
its lifetime is smaller than the Hubble time, ydTP < 1=Ho,
the misaligned condensate is decaying at least since after
recombination and thermalizing with the CMB on similar
timescales. Therefore, if cosmic birefringence is a
consequenceofthecouplingofphotonstoapseudoscalarALP,t
he rotation angle since the last scattering surface should
include thermal features in its fluctuation spectrum.

These extrapolations to the cosmological setting must be
taken as indicative based on the results in Minkowski space
time. The next step of the program is to include
cosmological expansion and assess if and how it modifies
the conclusions above, we expect to report on this aspect in
forthcoming studies.
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APPENDIX A: ENVIRONMENTAL
CORRELATION FUNCTIONS: LEHMANN AND
SPECTRAL REPRESENTATIONS

The dynamics and dissipative processes depend on the
correlation functions G= of the environment in

Egs. (2.24)—(2.26).
Because the bath is in thermal equilibrium, its initial

density matrix is p,00P % e Ph=TreP"which is spacetime
translationally invariant, and the Heisenberg picture
operators associated with the bath are given by O,dx;t” b %

eiHtOxOx;” Obe-iHt We can write

G>0x” - x_ %t - t% % hOdx;t"POdX” %tOPiy

Z
% 0 2dm*kbs p>0k;k oPe-ikedt-topeik” -6x”
—x_ Op

dA1P

GOx_ - x_ %t - t% % hO,dx” %t°PO,dx;t”  Pix

Z 1
A 5 dik p<dkik®

obe-ikodt-topeik” -6x” -x~0p:
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2nib, 8A2Pp These representations are obtained by

writing 0,0x;t” b % einxte-ir” x* Oxd0~ ;0be-iHgeir” x* and
introducing a complete set of simultaneous eigenstates of

Hx and the total momentum operator P~ , 8Hy;P~ bjni %
OEn;P” wbjni, from which we obtain the following Lehmann

representations,

p>0ko;k” b %4 T2m=pPH4  Xe-EnjhnjOx30” ;0bjmij2

Tre m;n

x §0ko — OEm — EnPP&SK™ — 6Pm— PnPb  JA3D

p<8ko;k” b Vi 21t=pPHa Xe-EjhmjOxd0~ ;0Pjnij2
Tre m;n

x 88ko— En— EmPP&SK™ — 8Pn— PmbP: §A4b

Upon relabeling m <= n in the sum in the definition (A4)
and recalling that Oy is a Hermitian operator, we find the
Kubo-Martin-Schwinger relation [51] p<dkokP %

p*3-ko;kb % e~P&p*ko;kb: SASP

The spectral density is defined as p8ko;kb % p”dko;kp

—p<6ko;kb Ya p>6ko,'k|31/21 - e Pk,

dA6b
therefore
p>0ko;kp % pdko;kb%1 p ndkob;
p<0ko;kP % pdko;kbndkoP; dA7p
where
L
ndkob % ef* — 1o JA8D
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Furthermore, from the first equality in (AS5) it follows

that pd—ko;kb % —pdko;kP; AP pdke; kb >

0 for ko> 0: 3A10p

We emphasize that these are exact relations, the
“environmental” fields x may be coupled to other fields, for
example, in the case of the ALP interaction with the
electromagnetic fields, the gauge field also interacts with
electrons, charged leptons, and quarks. The Lehmann
representations (A3), (A4) are nonperturbative and
unambiguously yield the relations (A5)—(A10) which are
general, nonperturbative statements relying on thermal
equilibrium and space-time translational invariance and do
not depend on these couplings.

APPENDIX B: SPECTRAL DENSITY FOR E” - B”
CORRELATION FUNCTIONS

We begin with the quantization of the gauge field within
a volume V eventually taken to infinity,

A’ 8xb % plVffi k Xnu1;2 pe’k 2akffi Yadk;” Ae-ik-x b di;t Aeik-x;
oB1b

N

where € ;") are the transverse polarizaton vectors chosen

to be real. From Eqs. (A1) and (A2) we need the
correlation functions

G>0x - yb % hE” &xp - B” 8xPE~ 8yb - B” dybi; B2b
G<0x-ybP%hE~ 8yb-B” 8ybE” dxb-B” dxPi%G>8y-xPp; 6B3p

where we now refer to hdbi as averages in the thermal

density matrix of free field photons.
In the thermal ensemble the expectation value hE™ 6xp -

OB” EOXPi %4~ correlation function becomes0 by parity
invariance. Using Wick’s theorem, the

-
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|

3 2
1_|_<._
k
dk ” q - k" hE” 6xb - B” 8xPE” 8yb - B” dybi

% Xi; fhEidxPEj0yPihBidXxPBjdyPpi

n
2

b hEidxPB;dyPihBidxPEjdybig: dB4p

A straightforward calculation yields hEidxpPEjdypi

% hBidxpPBjdybi

— 11Xk i kTP

% 2V kdd -k

-

x %01 p ndkbbe-ik-6x-yp p ndkbPeik-ox-yp;

dBsp

p>0qo;qb % Z82mbskjg” - k7 j

PHYS. REV. D 107, 063518 (2023)
xf401pndkbbe-ik-sx-yb pndkpPeik-ox-yp

x%81pndpPbbe-ip-5x-yb pndpPbeip-sx-ybg: IB7P

Expanding the product, we perform the following change
of variables in the various terms:

(1) in the term ndkPndpb: k™ >-k;"p” >-p”;
R(3)(2)3 in the term within the term withmb3s we obtain

nd18kpPdn18pkPPnndpdpbbb:: kp”” >->-1-=|p "V ;b
Pa-—>

Taking the infinite volume limit with & d

q=02

iq” - k7 j %81 b ndkbbd1 b ndjq” - k” jpp8dqo-k - jq” -k~ jp

b ndkbndjg” -k~ jp6dqop kpjg -k jpp1bkk. 7 -qq” --kk” 7 j2%61 b ndkbbndjq” - k”

jip&8qo-kpjg -k’ jpj

b ndkPd1 b ndjg” - k™ jpp8dqop k - jg~ -k~ jb:
similarly hEidxPB;dyPpi %

—-hBidxPE;jOyPpi

Ya-2___ 1V Xk kO€™ik;> 1€"k;j " 2 —€”ik;” 2€"jk;” 1P

-

x %01 b ndkbbe-ik-6x-yp p ndkbPeik-6x-yp; IBO6P
(whereB ndkp % 1=8eP*- 1p. Combining the two terms in
4) we find

> 12Xk Xp 7 p~ b2

G 0x-ybX4vy kpd1-k

dBop

GoOx - yP % Zdg___ 21102 3d27:3%bs

p”800;gbPe-igedt-tpeiq” ax” -y” p; B8P

where
Writing

GOXx-yPUZ__  __ daanoZ 8dar9ps

p<B800;qPe-igidt-topeiq™ 8x” -y’ b;

0B10pP

and using the relation (B3) we find that p<8qo;q” P %
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psated by>0-qo;-k” q”—>b, however the sign change in-k~
inside the k-integral with the final resultq” can be compen-

p“0q0;q” P % p*6-qo;q” b; 8B11p

using the various delta functions in the definition
offurthermore, using the identity 61 p ndwbp %

ePYndwpbsandye

find

p<8qo;q° P % e-pqop>dqo;q_ b; dB12b

which is the Kubo-Martin-Schwinger relation [51], thereby
confirming the general results (AS5). The spectral density is

given by [see Eq. (A6)] p6ao;qP % p*6do;qP -p*0do;aP with
kwpk -k
péqo;qb%nzz 02dmskpskwl fd 2
7 -q "b2%41pndkbPpndwb
x36000 -k-wb-638q0 pkpwbb pbdkw-k2
bk™ -q” P28ndwb-ndkbb x388qo
-kpwb-83qo0 pk-wbbg;
wijq” -k j: 0B13p

The spectral density is calculated by implementing the
following steps:

z dk < dk

2
8__m%zok 348 0an5  §pb;

w % jq~ - k7 j % qg? b k? - 2kqcosdoPpffi;

ddecosdBbb % —dwkq: 0Bl4bw

Carrying out the integrations, which are facilitated by the
delta function constraints we find

pdq0;q” b % 6Q322rtP2 1 p B2gInll — ee——pwpwpi-03Q2P

PHYS. REV. D 107, 063518 (2023)
2 1- e-Bwpll 2

b Bqln1 - e-pur- 05-Q Psigndaop;  GB15b

where

Q2 %q20 —-q2; walb Y4jgoj2-er-toste ¥aqj2qoj: —6B16P
APPENDIX C: FINITE TEMPERATURE
CONTRIBUTION TO 6wq

12
Sw 6474457 15b; wh

g 2qo

oC1p

“0g5 ~g’P
3qTp 4 641g22TqWwq P Z°= g — o 2 In1T—€€e—pwpws-dqo

Since the argument of the logarithm is odd under qo =>-qp,
it follows that | can be written as

10gP % P Zo 2qoqdgzo- q2P21nl — e 5 baajpdqo: 6C2P

oo Jgt)— U.)é 1— e—%ﬁqo
Using the results
7 =
0 Xnln%1 — e-oxpypdx % —'dn p 1PLi2pnde-yb aC3p
Z0  xnln¥1 - e-jx-yjdx
% 0-1bnldn p 1PLinp28e-yp
-2 %20 2ni 01 p n-2i; 0C4p

2ibZ02 b 2iby » where Li

is the polylogarithm, along with the identities

dx |
700 ——e” -

oCsbp

nxy 1 _nay_szia—nZP
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POPPYnexbzn

PZkdx —Tg-nok-yp

oxhz n

Y% —nle-ndypzp¥s—EidNnzP p Eidndy p zPP  6C6P
Z dx — e_n(x_ oo 1 nkz
P kb P % _ne 9PPEI§-ndy b zbb; x
z n
oC7p

and the representation of the exponential integral function

°o yn

Eidxb Y%y p Indjxjp p Xn1nn___l; aC8p

where y is Euler’s constant, we find in the high temperature
limit T > wq

SwaqTp Ya—g307mmw2Ta4 H2415mm2Ta22 pOOmaa=Tabp:dCOP

[1] R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440
(1977); Phys. Rev. D 16, 1791 (1977).

[2] S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).

[3] F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).

[4] J. Preskill, M. B. Wise, and F. Wilczek, Phys. Lett. 120B,
127 (1983).

[51 L.F. Abbott and P. Sikivie, Phys. Lett. 120B, 133 (1983).

[6] M. Dine and W. Fischler, Phys. Lett. 120B, 137 (1983).

[71 T. Banks and M. Dine, Nucl. Phys. B479, 173 (1996).

[8] A.Ringwald, Phys. Dark Universe 1, 116 (2012).

[9] D.J. E. Marsh, Phys. Rep. 643, 1 (2016); F. Chadha-Day,
J. Ellis, and D. J. E. Marsh, Sci. Adv. 8, abj3618 (2022); D.
J. E. Marsh, arXiv:1712.03018; A. Diez-Tejedor and D. J.
E. Marsh, arXiv:1702.02116; J. E. Kim and D. J. E. Marsh,
Phys. Rev. D 93, 025027 (2016).

[10] P. Sikivie, Rev. Mod. Phys. 93, 015004 (2021).

[11] P. Sikivie, Lect. Notes Phys. 741, 19 (2008).

[12] W. Hu, R. Barkana, and A. Gruzinov, Phys. Rev. Lett. 85,
1158 (2000).

[13] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Phys. Rev.
D 95, 043541 (2017).

PHYS. REV. D 107, 063518 (2023)

[14] N. Banik, A. J. Christopherson, P. Sikivie, and E. M.
Todarello, Phys. Rev. D 95, 043542 (2017).

[15] CAST Collaboration, Nat. Phys. 13, 584 (2017).

[16] ADMX Collaboration, Phys. Rev. Lett. 127, 261803
(2021).

[17] P. W. Graham, 1. G. Irastorza, S. K. Lamoreaux, A. Lindner,
and K. A. van Bibber, Annu. Rev. Nucl. Part. Sci. 65, 485
(2015).

[18] M. S. Turner, Phys. Rev. D 28, 1243 (1983); 33, 889
(1986).

[19] Z. G. Berezhiani, M. Yu. Khlopov, and R. R. Khomeriki,
Sov. J. Nucl. Phys. 52, 65 (1990); Z. G. Berezhiani, A. S.
Sakharov, and M. Yu. Khlopov, Sov. J. Nucl. Phys. 55, 1063
(1992).

[20] P. Carenza, A. Mirizzi, and G. Sigl, Phys. Rev. D 101,
103016 (2020).

[21] A. Arza, T. Schwetz, and E. Todarello, J. Cosmol. Astropart.
Phys. 10 (2020) 013.

[22] D. S. Lee and K-W.Ng, Phys. Rev. D 61, 085003 (2000).

[23] L. D. McLerran, E. Mottola, and M. E. Shaposhnikov, Phys.
Rev. D 43,2027 (1991).

[24] A. Papageorgiou, P. Quilez, and K. Schmitz, J. High Energy
Phys. 01 (2023) 169.

[25] K. Choi, S. H. Im, H. J. Kim, and H. Seong, J. High Energy
Phys. 02 (2023) 180.

[26] M. Bolz, A. Brandenburg, and W. Buchmuller, Nucl. Phys.
B606, 518 (2001); B790, 336(E) (2008).

[27] E. Masso, F. Rota, and G. Zsembinszki, Phys. Rev. D 66,
023004 (2002).

[28] S. Cao and D. Boyanovsky, Phys. Rev. D 106, 123503
(2022).

[29] D. Harari and P. Sikivie, Phys. Lett. B 289, 67 (1992).

[30] E. Komatsu, Nat. Rev. Phys. 4, 452 (2022).

[31] Y. Minami and E. Komatsu, Phys. Rev. Lett. 125, 221301
(2020).

[32] P. Diego-Palazuelos et al., J. Cosmol. Astropart. Phys. 01
(2023) 044; arXiv:2203.04830.

[33] N. P. Breuer and F. Petruccione, The Theory of Open
Quantum Systems (Oxford University Press, Oxford, 2007).

[34] C. Gardiner and P. Zoeller, Quantum Noise (SpringerVerlag,
Berlin, 2010).

[35] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).

[36] V. Gorini, A. Kossakowski, and E. C. D. Sudarshan, J. Math.
Phys. (N.Y.) 17, 821 (1976).

[37] G. Pearle, Eur. J. Phys. 33, 805 (2012).

[38] S. Weinberg, Phys. Rev. A 90, 042102 (2014); S. Weinberg,
Phys. Rev. A 93, 032124 (2016); S. Weinberg, Phys. Rev. A
94, 042117 (2016).

[39] T. Banks, L. Susskind, and M. Peskin, Nucl. Phys. B244,
125 (1984).

[40] C. Burrage, C. Kiding, P. Millington, and J. Minar,” Phys.
Rev. D 100, 076003 (2019).

[41] Y. Akamatsu, Prog. Part. Nucl. Phys. 123, 103932 (2022);
91, 056002 (2015).

[42] X. Yao, Int. J. Mod. Phys. A 36, 2130010 (2021).

063518-19


https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevD.16.1791
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.223
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1103/PhysRevLett.40.279
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90637-8
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90638-X
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0370-2693(83)90639-1
https://doi.org/10.1016/0550-3213(96)00457-9
https://doi.org/10.1016/0550-3213(96)00457-9
https://doi.org/10.1016/0550-3213(96)00457-9
https://doi.org/10.1016/j.dark.2012.10.008
https://doi.org/10.1016/j.dark.2012.10.008
https://doi.org/10.1016/j.dark.2012.10.008
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1126/sciadv.abj3618
https://doi.org/10.1126/sciadv.abj3618
https://doi.org/10.1126/sciadv.abj3618
https://arxiv.org/abs/1712.03018
https://arxiv.org/abs/1702.02116
https://doi.org/10.1103/PhysRevD.93.025027
https://doi.org/10.1103/PhysRevD.93.025027
https://doi.org/10.1103/PhysRevD.93.025027
https://doi.org/10.1103/PhysRevD.93.025027
https://doi.org/10.1103/RevModPhys.93.015004
https://doi.org/10.1103/RevModPhys.93.015004
https://doi.org/10.1103/RevModPhys.93.015004
https://doi.org/10.1007/978-3-540-73518-2
https://doi.org/10.1007/978-3-540-73518-2
https://doi.org/10.1007/978-3-540-73518-2
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1103/PhysRevLett.85.1158
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevD.95.043542
https://doi.org/10.1103/PhysRevD.95.043542
https://doi.org/10.1103/PhysRevD.95.043542
https://doi.org/10.1103/PhysRevD.95.043542
https://doi.org/10.1038/nphys4109
https://doi.org/10.1038/nphys4109
https://doi.org/10.1038/nphys4109
https://doi.org/10.1103/PhysRevLett.127.261803
https://doi.org/10.1103/PhysRevLett.127.261803
https://doi.org/10.1103/PhysRevLett.127.261803
https://doi.org/10.1103/PhysRevLett.127.261803
https://doi.org/10.1103/PhysRevLett.127.261803
https://doi.org/10.1146/annurev-nucl-102014-022120
https://doi.org/10.1146/annurev-nucl-102014-022120
https://doi.org/10.1146/annurev-nucl-102014-022120
https://doi.org/10.1146/annurev-nucl-102014-022120
https://doi.org/10.1146/annurev-nucl-102014-022120
https://doi.org/10.1103/PhysRevD.28.1243
https://doi.org/10.1103/PhysRevD.28.1243
https://doi.org/10.1103/PhysRevD.28.1243
https://doi.org/10.1103/PhysRevD.28.1243
https://doi.org/10.1103/PhysRevD.28.1243
https://doi.org/10.1103/PhysRevD.33.889
https://doi.org/10.1103/PhysRevD.33.889
https://doi.org/10.1103/PhysRevD.33.889
https://doi.org/10.1103/PhysRevD.33.889
https://doi.org/10.1103/PhysRevD.101.103016
https://doi.org/10.1103/PhysRevD.101.103016
https://doi.org/10.1103/PhysRevD.101.103016
https://doi.org/10.1103/PhysRevD.101.103016
https://doi.org/10.1103/PhysRevD.101.103016
https://doi.org/10.1103/PhysRevD.101.103016
https://doi.org/10.1103/PhysRevD.101.103016
https://doi.org/10.1088/1475-7516/2020/10/013
https://doi.org/10.1088/1475-7516/2020/10/013
https://doi.org/10.1103/PhysRevD.61.085003
https://doi.org/10.1103/PhysRevD.61.085003
https://doi.org/10.1103/PhysRevD.61.085003
https://doi.org/10.1103/PhysRevD.61.085003
https://doi.org/10.1103/PhysRevD.43.2027
https://doi.org/10.1103/PhysRevD.43.2027
https://doi.org/10.1103/PhysRevD.43.2027
https://doi.org/10.1103/PhysRevD.43.2027
https://doi.org/10.1103/PhysRevD.43.2027
https://doi.org/10.1103/PhysRevD.43.2027
https://doi.org/10.1007/JHEP01(2023)169
https://doi.org/10.1007/JHEP01(2023)169
https://doi.org/10.1007/JHEP01(2023)169
https://doi.org/10.1007/JHEP02(2023)180
https://doi.org/10.1007/JHEP02(2023)180
https://doi.org/10.1007/JHEP02(2023)180
https://doi.org/10.1016/S0550-3213(01)00132-8
https://doi.org/10.1016/S0550-3213(01)00132-8
https://doi.org/10.1016/S0550-3213(01)00132-8
https://doi.org/10.1016/S0550-3213(01)00132-8
https://doi.org/10.1103/PhysRevD.66.023004
https://doi.org/10.1103/PhysRevD.66.023004
https://doi.org/10.1103/PhysRevD.66.023004
https://doi.org/10.1103/PhysRevD.66.023004
https://doi.org/10.1103/PhysRevD.66.023004
https://doi.org/10.1103/PhysRevD.66.023004
https://doi.org/10.1103/PhysRevD.106.123503
https://doi.org/10.1103/PhysRevD.106.123503
https://doi.org/10.1103/PhysRevD.106.123503
https://doi.org/10.1103/PhysRevD.106.123503
https://doi.org/10.1103/PhysRevD.106.123503
https://doi.org/10.1103/PhysRevD.106.123503
https://doi.org/10.1016/0370-2693(92)91363-E
https://doi.org/10.1016/0370-2693(92)91363-E
https://doi.org/10.1016/0370-2693(92)91363-E
https://doi.org/10.1016/0370-2693(92)91363-E
https://doi.org/10.1038/s42254-022-00452-4
https://doi.org/10.1038/s42254-022-00452-4
https://doi.org/10.1038/s42254-022-00452-4
https://doi.org/10.1103/PhysRevLett.125.221301
https://doi.org/10.1103/PhysRevLett.125.221301
https://doi.org/10.1103/PhysRevLett.125.221301
https://doi.org/10.1103/PhysRevLett.125.221301
https://doi.org/10.1103/PhysRevLett.125.221301
https://doi.org/10.1088/1475-7516/2023/01/044
https://doi.org/10.1088/1475-7516/2023/01/044
https://doi.org/10.1088/1475-7516/2023/01/044
https://arxiv.org/abs/2203.04830
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1007/BF01608499
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1063/1.522979
https://doi.org/10.1088/0143-0807/33/4/805
https://doi.org/10.1088/0143-0807/33/4/805
https://doi.org/10.1088/0143-0807/33/4/805
https://doi.org/10.1088/0143-0807/33/4/805
https://doi.org/10.1103/PhysRevA.90.042102
https://doi.org/10.1103/PhysRevA.90.042102
https://doi.org/10.1103/PhysRevA.90.042102
https://doi.org/10.1103/PhysRevA.90.042102
https://doi.org/10.1103/PhysRevA.93.032124
https://doi.org/10.1103/PhysRevA.93.032124
https://doi.org/10.1103/PhysRevA.93.032124
https://doi.org/10.1103/PhysRevA.93.032124
https://doi.org/10.1103/PhysRevA.93.032124
https://doi.org/10.1103/PhysRevA.94.042117
https://doi.org/10.1103/PhysRevA.94.042117
https://doi.org/10.1103/PhysRevA.94.042117
https://doi.org/10.1103/PhysRevA.94.042117
https://doi.org/10.1103/PhysRevA.94.042117
https://doi.org/10.1103/PhysRevA.94.042117
https://doi.org/10.1016/0550-3213(84)90184-6
https://doi.org/10.1016/0550-3213(84)90184-6
https://doi.org/10.1016/0550-3213(84)90184-6
https://doi.org/10.1016/0550-3213(84)90184-6
https://doi.org/10.1016/0550-3213(84)90184-6
https://doi.org/10.1103/PhysRevD.100.076003
https://doi.org/10.1103/PhysRevD.100.076003
https://doi.org/10.1103/PhysRevD.100.076003
https://doi.org/10.1103/PhysRevD.100.076003
https://doi.org/10.1103/PhysRevD.100.076003
https://doi.org/10.1103/PhysRevD.100.076003
https://doi.org/10.1103/PhysRevD.100.076003
https://doi.org/10.1016/j.ppnp.2021.103932
https://doi.org/10.1016/j.ppnp.2021.103932
https://doi.org/10.1016/j.ppnp.2021.103932
https://doi.org/10.1016/j.ppnp.2021.103932
https://doi.org/10.1016/j.ppnp.2021.103932
https://doi.org/10.1142/S0217751X21300106
https://doi.org/10.1142/S0217751X21300106
https://doi.org/10.1142/S0217751X21300106
https://doi.org/10.1142/S0217751X21300106

SHUYANG CAO and DANIEL BOYANOVSKY PHYS. REV. D 107, 063518 (2023)

[43] Y. Akamatsu and T. Miura, EPJ Web Conf. 258, 01006
(2022).

[44] N. Brambilla, M. A. Escobedo, J. Soto, and A. Vairo, Phys.
Rev. D 96, 034021 (2017); N. Brambilla, M. A. Escobedo,
J. Soto, and A. Vairo, Phys. Rev. D 97, 074009 (2018).

[45] D. Boyanovsky, New J. Phys. 17,063017 (2015); Phys. Rev.
D 106, 045019 (2022); 92, 023527 (2015).

[46] T. J. Hollowood and J. I. McDonald, Phys. Rev. D 95,
103521 (2017).

[47] S. Shandera, N. Agarwal, and A. Kamal, Phys. Rev. D 98,
083535 (2018).

[48] S. Brahma, A. Berera, and J. Calderon-Figueroa, J. High
Energy Phys. 08 (2022) 225.

[49] T. Colas, J. Grain, and V. Vennin, Eur. Phys. J. C 82, 1085
(2022).

[50] A. D. Hammou and N. Bartolo, arXiv:2211.07598.

[51] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957); P. C. Martin and
J. Schwinger, Phys. Rev. 115, 1342 (1959).

[52] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003); Ann. Phys.
(Leipzig) 9, 855 (2000).

063518-20


https://doi.org/10.1051/epjconf/202225801006
https://doi.org/10.1051/epjconf/202225801006
https://doi.org/10.1051/epjconf/202225801006
https://doi.org/10.1051/epjconf/202225801006
https://doi.org/10.1051/epjconf/202225801006
https://doi.org/10.1103/PhysRevD.96.034021
https://doi.org/10.1103/PhysRevD.96.034021
https://doi.org/10.1103/PhysRevD.96.034021
https://doi.org/10.1103/PhysRevD.96.034021
https://doi.org/10.1103/PhysRevD.96.034021
https://doi.org/10.1103/PhysRevD.96.034021
https://doi.org/10.1103/PhysRevD.96.034021
https://doi.org/10.1103/PhysRevD.97.074009
https://doi.org/10.1103/PhysRevD.97.074009
https://doi.org/10.1103/PhysRevD.97.074009
https://doi.org/10.1103/PhysRevD.97.074009
https://doi.org/10.1088/1367-2630/17/6/063017
https://doi.org/10.1088/1367-2630/17/6/063017
https://doi.org/10.1088/1367-2630/17/6/063017
https://doi.org/10.1103/PhysRevD.106.045019
https://doi.org/10.1103/PhysRevD.106.045019
https://doi.org/10.1103/PhysRevD.106.045019
https://doi.org/10.1103/PhysRevD.106.045019
https://doi.org/10.1103/PhysRevD.106.045019
https://doi.org/10.1103/PhysRevD.92.023527
https://doi.org/10.1103/PhysRevD.92.023527
https://doi.org/10.1103/PhysRevD.95.103521
https://doi.org/10.1103/PhysRevD.95.103521
https://doi.org/10.1103/PhysRevD.95.103521
https://doi.org/10.1103/PhysRevD.95.103521
https://doi.org/10.1103/PhysRevD.95.103521
https://doi.org/10.1103/PhysRevD.95.103521
https://doi.org/10.1103/PhysRevD.98.083535
https://doi.org/10.1103/PhysRevD.98.083535
https://doi.org/10.1103/PhysRevD.98.083535
https://doi.org/10.1103/PhysRevD.98.083535
https://doi.org/10.1103/PhysRevD.98.083535
https://doi.org/10.1103/PhysRevD.98.083535
https://doi.org/10.1007/JHEP08(2022)225
https://doi.org/10.1007/JHEP08(2022)225
https://doi.org/10.1007/JHEP08(2022)225
https://doi.org/10.1140/epjc/s10052-022-11047-9
https://doi.org/10.1140/epjc/s10052-022-11047-9
https://doi.org/10.1140/epjc/s10052-022-11047-9
https://doi.org/10.1140/epjc/s10052-022-11047-9
https://doi.org/10.1140/epjc/s10052-022-11047-9
https://doi.org/10.1140/epjc/s10052-022-11047-9
https://doi.org/10.1140/epjc/s10052-022-11047-9
https://arxiv.org/abs/2211.07598
https://arxiv.org/abs/2211.07598
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1103/PhysRev.115.1342
https://doi.org/10.1103/PhysRev.115.1342
https://doi.org/10.1103/PhysRev.115.1342
https://doi.org/10.1103/PhysRev.115.1342
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1103/RevModPhys.75.715
https://doi.org/10.1002/andp.200051211-1204
https://doi.org/10.1002/andp.200051211-1204
https://doi.org/10.1002/andp.200051211-1204
https://doi.org/10.1002/andp.200051211-1204
https://doi.org/10.1002/andp.200051211-1204
https://doi.org/10.1002/andp.200051211-1204

