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We study the nonequilibrium dynamics of axionlike particles (ALP) coupled to Standard Model degrees 

of freedom in thermal equilibrium. The quantum master equation (QME) for the ALP reduced density 

matrix is derived to leading order in the coupling of the ALP to the thermal bath, but to all orders of the 

bath couplings to degrees of freedom within or beyond the Standard Model other than the ALP. The QME 

describes the damped oscillation dynamics of an initial misaligned ALP condensate, thermalization with 

the bath, decoherence, and entropy production within a unifying framework. The ALP energy density EðtÞ 

features two components: a “cold” component from the misaligned condensate and a “hot” component 

from thermalization with the bath, with 
E

ðtÞ ¼ Ece−γðTÞt þEhð1−e−γðTÞtÞ thus providing a “mixed dark matter” 

scenario. Relaxation of the ALP condensate, thermalization, decoherence, and entropy production occur 

on similar timescales. An explicit example with ALP-photon coupling, valid post recombination yields a 

relaxation rate γðTÞ with a substantial enhancement from thermal emission and absorption. A misaligned 

condensate is decaying at least since recombination and on the same timescale thermalizing with the 

cosmic microwave background (CMB). Possible consequences for birefringence of the CMB and ALP 

contribution to the effective number of ultrarelativistic species and galaxy formation are discussed. 

DOI: 10.1103/PhysRevD.107.063518 

I. INTRODUCTION 

The axion, introduced in quantum chromodynamics 

(QCD) as a solution of the strong CP problem [1–3] may 

be produced nonthermally in the early Universe, for 

example by a misalignment mechanism and is recognized 

as a potentially viable cold dark matter candidate [4–6]. 

Extensions beyond the standard model can accommodate 

pseudoscalar particles with properties similar to the QCD 

axion, namely axionlike particles (ALP) which can also be 

suitable dark matter candidates [7–11], in particular as 

candidates for ultra light dark matter [12,13]. Constraints 

on the mass and couplings of ultralight ALP [9–11,14] are 

being established by various experiments [15–17]. There 

are two important features that characterize ALP, (i) a 

misalignment mechanism results in damped coherent 

oscillations of the expectation value of the ALP field which 

gives rise to the contribution to the energy density as a cold 

dark matter component [4–6,9–11,18], (ii) its pseudoscalar 

nature leads to an interaction between the ALP and photons 

or gluons via pseudoscalar composite operators of gauge 

fields, such as E⃗ · B⃗ in the case of the ALP-photon 

interaction and Gμν;bG˜ 
μν;b in the case of gluons, which 

allows an ALP to decay into two photons or gluons. The 
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effect of this decay process in the evolution of ALP 

condensates has been studied in Refs. [19–22] including 

stimulated decay in a photon background. The damping of 

an ALP condensate via a “friction” term in its equation of 

motion has been studied in Refs. [23–25], and 

thermalization of ALP has been studied in Refs. [26,27], 

these references focused on either damping via friction or 

thermalization as unrelated independent processes. A 

recent study [28] has recognized the common origin of 

these two seemingly different processes by obtaining the 

nonequilibrium effective action that determines the time 

evolution of the reduced ALP density matrix. This study 

showed that damping of a misaligned ALP condensate and 

thermalization are two complementary aspects and are 

linked by the fluctuation dissipation relation, a 

fundamental and ubiquitous property of a bath in thermal 

equilibrium. This reference also established that both 
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processes contribute to the ALP energy density, an 

important aspect if the ALP are suitable dark matter 

candidates. 

Decay and thermalization of an ALP condensate post 

recombination may have a profound impact on 

birefringence of the cosmic microwave background 

(CMB) if its origin is the electromagnetic coupling of a 

pseudoscalar ALP [29–32]. 

In Ref. [28], the nonequilibrium dynamics of ALP was 

studied to leading order in the coupling of the ALP to other 

degrees of freedom treated as a bath in thermal equilibrium 

by implementing the in-in Schwinger-Keldysh formulation 

of nonequilibrium quantum field theory to obtain the 

effective action. The equations of motion for the ALP 

obtained from the effective action are retarded and akin to 

a Langevin equation with a friction term determined by the 

retarded self-energy and a noise term related to the self 

energy via the fluctuation-dissipation relation. This 

relation is a consequence of the bath degrees of freedom 

being in thermal equilibrium. An important result of the 

Langevin nature of the effective equations of motion is a 

direct relationship between the damping of an ALP 

coherent condensate and thermalization of its fluctuations. 

This result was found to be general to leading order in the 

ALP coupling to the bath degrees of freedom but to all 

orders in the couplings of these “environmental” fields to 

any other field within or beyond the standard model other 

than the ALP and is a corollary of the fluctuation 

dissipation relation. An analysis of the coupling of ALP to 

the CMB post recombination in this article also revealed a 

substantial enhancement of the damping and 

thermalization rates if the ALP is an ultralight dark matter 

candidate as well as unexpected possible phase transitions 

and exotic new phases. 

A. Motivation and objectives 

The results in Ref. [28] and their possible cosmological 

consequences, motivate us to seek a complementary 

formulation of the nonequilibrium dynamics of ALP 

coupled to “environmental” degrees of freedom in 

equilibrium that does not rely on the in-in Schwinger-

Keldysh approach to the effective action, thereby offering 

an alternative and independent assessment of the 

nonequilibrium dynamics of ALP coupled to a thermal 

environment. 

In this article we adapt methods of quantum optics and 

quantum information to study the nonequilibrium 

dynamics of ALP fields implementing a quantum master 

equation approach ubiquitous in the treatment of quantum 

open systems [33–37]. The quantum master equation 

describes the time evolution of the ALP reduced density 

matrix, it has been implemented in particle physics [38–

44] and cosmology [45–50] and has proven to be a 

powerful and reliable method to study nonequilibrium 

dynamics. 

The main objectives of this article are: (i) to scrutinize 

the results obtained in Ref. [28] with an alternative and 

independent method, (ii) to inquire on complementary 

aspects of 

thetimeevolutionofthereduceddensitymatrix,inparticular 

the evolution of coherences, which yield supplementary 

information on thermalization and decoherence, and (iii) to 

compare the timescales of decoherence to those of 

damping of the misaligned condensate and thermalization. 

In this study we are not concerned with bounds on 

couplings and or masses of the putative ALP but focus on 

fundamental aspects of the nonequilibrium evolution of its 

density matrix including misaligned initial states. 

Furthermore, while our ultimate objective is to study the 

nonequilibrium dynamics in an expanding cosmology, we 

initiate this program as a prelude by focusing on 

Minkowski space time. 

B. Brief summary of results 

We consider an ALP field in interaction with Standard 

Model degrees of freedom which are considered to be in 

thermal equilibrium. In Sec. II, we obtain the QME for the 

reduced density matrix of the ALP up to second order in 

the coupling of the ALP to these degrees of freedom, but to 

all ordersinthecouplingofthebathdegreesoffreedomtofields 

withinorbeyondtheStandardModeldifferentfromtheALP 

underwelldefinedapproximations.TheresultingQMEisof 

the Lindblad form [33–37], it is obtained up to second 

order in the ALP coupling to Standard Model degrees of 

freedom andtoallordersinthe 

couplingsofthesedegreesoffreedom to any other field 

within or beyond the Standard Model except for the ALP, 

and includes misaligned initial conditions for the ALP 

field. The QME describes the damping of the misaligned 

condensate, thermalization with the bath and decoherence 

with a concomitant entropy production. The ALP energy 

density describes a “mixed” dark matter scenario with a 

cold component Ec from the misaligned coherent 

condensate, and a “hot” component Eh from thermalization 

with the bath, with the total energy density interpolating 

between the cold and hot components as EðtÞ ≃Ece−γðTÞt þ 

Ehð1 − e−γðTÞtÞ,wheretherelaxationrate γðTÞ also describes 

the decoherence rate. We study in detail ALP coupling to 

the CMB post recombination, if the ALP is an ultralight 

dark matter candidate there is a substantial 

enhancementoftherelaxationrate,itslongwavelengthlimit is 

given by γðTÞ ¼ g2m2
aT=16π. The results suggest that if 

γðTÞ < 1=H0 the misaligned condensate has been decaying 

at least since recombination and thermalizing with the 

CMB 
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onasimilartimescale.Therefore,ifcosmicbirefringenceisa 

consequence of the CMB coupling to a pseudoscalar ALP, 

the rotation angle since the surface of last scattering should 

feature a thermal spectrum of fluctuations. 

II. THE QUANTUM MASTER EQUATION 

We study the time evolution of the reduced density 

matrix of an axionlike field aðxÞ coupled to generic fields 

χðxÞ to which we refer as “environmental” fields via a 

pseudoscalar operator OχðxÞ, with the Lagrangian density 

½  ¼

 ð Þ ð Þ 12a2ðxÞ − gaðxÞOχðxÞ þ Lχ 

L a;a x −ma 

 2 2 

ð2:1Þ 

where Lχ is the Lagrangian density describing the 

“environmental” fields χ, these fields could be the 

electromagnetic field, fermion or gluon fields and 

themselves be coupled to other degrees of freedom within 

or beyond the Standard Model. 

The Lagrangian density (2.1) describes several relevant 

couplings of ALP, with possible operators Oχðx⃗ Þ being 

Oχðx⃗ Þ¼E⃗ ðxÞ·B⃗ ðxÞ;Gμν;bðxÞG˜ μν;bðxÞ;Ψ¯ 

ðxÞγ;b5ΨðxÞ;b where 

E⃗ , B⃗ are the electromagnetic fields, Gμν ;G˜ μν are the 

gluon field strength tensor and its dual respectively, and 

ΨðxÞ a fermionic field. These degrees of freedom are 

assumed to be in thermal equilibrium. We will first treat 

these fields generically denoting them as χ fields, and after 

obtaining the general form of the quantum master equation 

up to Oðg2Þ, we will focus on the relevant case with Oχðx⃗ 

Þ ¼ E⃗ ðxÞ · B⃗ ðxÞ since the interaction of ALP fields with 

the CMB could have potentially observable consequences, 

such as birefringence [29–32], a rotation of the 

polarization plane which, in contrast to Faraday rotation, is 

independent of the frequency with tantalizing detection 

possibilities [30–32]. 

The interaction of ALP with photons and gluons via 

couplings of the form gaðxÞE⃗ ðxÞ · B⃗ 

ðxÞ;gsaðxÞGμν;bðxÞ× 

G˜ 
μν;bðxÞ are not renormalizable because the respective 

couplings g;gs feature dimensions 1=ðenergyÞ, an aspect 

that has important consequences [28] discussed below, that 

at the fundamental level, indicate that the Lagrangian 

density (2.1) describes an effective field theory valid below 

some cutoff scale. 

Upon evolving the total initial density matrix in time, the 

degrees of freedom χ with the generic operator Oχ are traced 

over to obtain a reduced density matrix for aðxÞ which 

obeys a quantum master equation. We obtain this equation 

in the general case valid to order g2 in the ALP coupling to 

the bath, and to all orders in the couplings of the bath 

degrees of freedom to any other degree of freedom within 

or beyond the standard model except for the ALP under a 

set of approximations that are spelled out in detail. 

Whereas our ultimate objective is to pursue this approach 

in an expanding cosmology, here we begin this program by 

first carrying it out in Minkowski space time. 

The quantum master equation in a Lindblad form [35–
38] has recently received attention in applications to high 

energy physics [39–44] and cosmology [45–49]. This 

formulation 

beginswiththetimeevolutionofaninitialdensitymatrixthat 

describes the total system of fields a, χ, which is given by 

 ρˆðtÞ ¼ e−iHtρˆð0ÞeiHt; ð2:2Þ 

with H the total Hamiltonian 

 H ¼ H0a þ Hχ þ HI ≡ H0 þ HI; ð2:3Þ 

where H0a is the free field Hamiltonian for the ALP, Hχ is 

the Hamiltonian of the χ degrees of freedom including their 

couplingstodegreesoffreedomwithinorbeyondtheStandard 

Model except the ALP, and HI¼gR d3xaðxÞOχðxÞ is the 

coupling between the ALP and the bath degrees of freedom 

obtained from the Lagrangian density (2.1). 

We consider an initial factorized density matrix 

 ρð0Þ ¼ ρað0Þ ⊗ρχð0Þ; ð2:4Þ 

where the χ fields are in thermal equilibrium at temperature 

T ¼ 1=β, namely 

e−βHχ 
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 ρχð0Þ ¼ Tre−βHχ ; ð2:5Þ 

and for the ALP field we chose an initial density matrix 

describing a “misaligned” initial condition with a 

nonvanishing expectation value of the ALP field. This is 

implemented in terms of coherent states of free fields as 

follows. Quantizing the free ALP field at the initial time t 

¼ 0 in a finite volume V as 

1 Xk 1 kffi k ik⃗ ·x⃗ b†k⃗ e−ik⃗ ·x⃗ ; 

aðx;t⃗ ¼ 0Þ ¼ pV ⃗ p2ω ½b⃗ e þ ffi 

 ½bk⃗ ;b†k⃗ 0  ¼ δk;⃗ k⃗ 0; ð2:6Þ 

and the vacuum state defined as 

 bk⃗ j0i ¼ 0: ð2:7Þ 

A coherent state is given by 

Δi ¼ Πk⃗ e−21jΔk⃗ j2e−Δk⃗ b†k⃗ j0i; ð2:8Þ 

j 

it is an eigenstate of the annihilation operator, 

 bk⃗ jΔi ¼ Δk⃗ jΔi; ð2:9Þ 

and describes a Poisson distribution of quanta of the free 

ALP field. The expectation values of the ALP field and its 

canonical momentum in this coherent state are hΔjaðx;⃗ 

0ÞjΔi ¼ a¯ðx;⃗ 0Þ 

1 ffi Xk 1 kffi k k ik⃗ ·x⃗ ; ð2:10Þ ¼ pV ⃗ p2ω 

½Δ⃗ þ Δ−⃗ e 

 hΔjπðx;⃗0ÞjΔi ¼ π¯ðx;⃗0Þ 

 −i Xk rωkffi k k ik⃗ ·x⃗ ; ð2:11Þ 

¼ pV ⃗ 2 ½Δ⃗ −Δ−⃗ e ffi 

Hence we choose the initial density matrix for the ALP 

field to describe this “misaligned” initial state, namely 

 ρað0Þ ¼ jΔihΔj; ð2:12Þ 

yielding 

 Trbk⃗ ρað0Þ ¼ Δk⃗ ; Trb†k⃗ bk⃗ ρað0Þ ¼ Nqð0Þ ¼ jΔq⃗ j2; 

Trbk⃗ b−k⃗ ρað0Þ ¼ Δk⃗ Δ−k⃗ ; etc: ð2:13Þ 

We refer to the off-diagonal ALP density matrix 

elements in the occupation number basis (eigenstates of b†⃗ 

bk⃗ ), k for example Trbk⃗ b−k⃗ ρað0Þ ¼ Δk⃗ 
Δ

−k⃗ as coherences 

[33,34]. 

A hallmark of a thermal density matrix is that these 

coherences vanish and the density matrix is diagonal in the 

occupation number basis. This observation will become 

important as a diagnosis of thermalization and its link to 

decoherence studied below. Translational invariance 

entails that 

p 

and 

1 ½π¯2 þ m2aa¯2 ¼ jΔ˜ j2:

 ð2:16Þ 2ma 

In the quantum master equation approach [33,34] the 

time evolution of the density matrix is considered in the 

interaction picture. With the full density matrix ρˆðtÞ 

given by Eq. (2.2) the density matrix in the interaction 

picture is given by ρˆIðtÞ ¼ eiH0tρˆðtÞe−iH0t; ð2:17Þ whose 

time evolution obeys ρ_ˆIðtÞ ¼ −i½HIðtÞ;ρˆIðtÞ; ð2:18Þ 

where HIðtÞ is the interaction Hamiltonian in the inter-0 0 

action picture, HIðtÞ ¼ eiH tHIe−
iH t. The formal solution of 

Eq. (2.18) is given by 

therefore 

 Δk⃗ ¼ VffiΔ˜δk;⃗ 0⃗ ; ð2:14Þ 

 
Nqð0Þ ¼ VjΔ˜ j2δq;⃗ 0⃗ ; ð2:15Þ 
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ρˆI tÞ ¼ ρˆIð0Þ − i Z dt0½HIðt0Þ;ρˆIðt0Þ:

 ð2:19Þ t 0 

This solution is inserted back into (2.18) leading to the 

iterative equation ρ_ˆIðtÞ ¼ −i½HIðtÞ;ρˆIð0Þ 

t 

−½HIðtÞ;½HIðt0Þ;ρˆIðt0Þdt0:

 ð2:20Þ 
0 

This QME cannot be solved exactly, and several 

approximations are usually invoked, based on the 

following assumptions [33–36]: 

(i) Factorization: the total density matrix factorizes into a 

direct product of the density matrix for the a field, 

ρˆIaðtÞ and that of the bath of χ fields, ρˆχ, namely, 

ρˆIðtÞ ¼ ρˆIaðtÞ ⊗ρˆχð0Þ; ð2:21Þ where 

e−βHχ 

 ρˆχð0Þ ¼ Tre−βHχ ; ð2:22Þ 

this assumption which implies that the bath degrees of 

freedom remain in thermal equilibrium, relies on that 

the bath is a reservoir with a large number of degrees 

of freedom and is not modified by its coupling to the 

system, hence the density matrix of the bath does not 

depend on time. This assumption also relies on weak 

coupling: if the initial density matrix is factorized, 

correlations between the system and the reservoir will 

build as a consequence of the interaction, therefore 

such correlations will be small for very weak coupling 

and may only contribute in higher orders. Factorization 

and its possible caveats are discussed further in Sec. 

IV. 

The reduced density matrix for the ALP field a is 

obtained by taking the trace of the full density matrix 

over the bath degrees of freedom, which by 

assumptionremainsinthermalequilibrium,therefore 

 ρˆIaðtÞ ¼ TrχρˆIðtÞ: ð2:23Þ 

Upon taking the trace over the χ degrees of freedom 

the first term on the right-hand side of Eq. (2.20) 

vanishes under the assumption that the thermal density 

matrix of the environmental fields is 

evenunderparity,henceTrOχρˆχð0Þ ¼ 0,andwe find the 

evolution equation for the reduced density matrix for 

the ALP field a in the interaction picture, 

ρ_ˆIaðtÞ ¼ −g2 Z0t dt0 Z d3x Z d3x0faIðxÞaIðx0Þ 

× ρˆIaðt0ÞG>ðx − x0Þ þ 

ρˆIaðt0ÞaIðx0ÞaIðxÞG<ðx − x0Þ 

− aIðxÞρˆIaðt0ÞaIðx0ÞG<ðx − x0Þ 

− aIðx0ÞρˆIaðt0ÞaIðxÞG>ðx − x0Þg ð2:24Þ 

where we use the shorthand convention x ≡ ðx;t⃗ Þ; x0 

≡ ðx⃗ 0;t0Þ, and introduced the bath correlation 

functions 

 G>ðx − x0Þ ¼ Trχρˆχð0ÞOχðxÞOχðx0Þ ð2:25Þ 

 G<ðx − x0Þ ¼ Trχρˆχð0ÞOχðx0ÞOχðxÞ: ð2:26Þ 

The ALP field in the interaction picture aIðx;t⃗ Þ >ð Þ ¼ Z ðd3qÞ Z dq0 >ð Þ features free field time evolution, 

namely 
G x − x0 2π 3 2π ϱ q0;q⃗

 

 1 1 × e−iq0ðt−t0Þeiq⃗ ·ðx⃗ −x⃗ 0Þ 2:31 

 aIðx;t⃗Þ¼p ffiXk p2ω
k
ffi½bk⃗ e−iωkteik⃗ ·x⃗ þb†k⃗ eiωkteð−ik⃗ ·x⃗ ; < 3q dq0 <ð Þ ð Þ 

 V 
⃗ d 

 2:27Þ G ðx − x0Þ ¼ Z ð2πÞ3 Z2π ϱ q0;q⃗ 
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 † × e
−iq0ðt−t0Þ

e
iq⃗ ·ðx⃗ −x⃗ 0Þ

; ð
2:32

Þ 

where the operators bk⃗ ;bk⃗ do not depend on time, 

 and ωk 
¼ pk2 þ m2affi. where the spectral densities obey the relation>

 < 

(ii) Markov approximation the second approximation 

entails replacing ρIaðt0Þ →ρIaðtÞ in the time inte- ϱ ð−q0;q⃗ Þ ¼ ϱ ðq0;q⃗ Þ; ð2:33Þ gral. This is usually referred to 

as a Markov 

approximation and is justified in weak coupling, andfulfilltheKubo-Martin-Schwingercondition[51] as can be seen 

by considering the first term in (2.24) 

 as an example. It can be written as ϱ<ðq0;q⃗ Þ ¼ e−βq0ϱ>ðq0;q⃗ Þ; ð2:34Þ 

 − g2aðx;t⃗Þ Z t dKdtð0t0Þρˆ
Iað

t0Þdt0; 
which is a consequence of the fieldsthermal equilibrium. Introducing the 

spectral densityχ being in 

0 

 t
0 

> < 

Kt0≡aðx⃗ 0;t00ÞG>ðx⃗ − x⃗ 0;t − t00Þdt00 ð2:28Þ ϱðq0;q⃗ Þ ¼ ϱ ðq0;q⃗ Þ −ϱ 

ðq0;q⃗ Þ; ð2:35Þ 

0 

the Kubo-Martin-Schwinger condition (2.34) leads 

 which upon integration by parts yields to the following relations 

ÞKðtÞρˆIaðtÞþg2aðx;t⃗ Þt Kðt0ÞdρˆIaðt0Þdt0 ϱ>ðq0;q⃗ Þ ¼  −g2aðx;t⃗

½1 þ nðq0Þϱðq0;q⃗ Þð2:36Þ 

 0 dt0 

 ð2:29Þ ϱ<ðq0;q⃗ Þ ¼ nðq0Þϱðq0;q⃗ Þ ð2:37Þ 

in the second term dρˆIΦðt0Þ=dt0 ∝ g2 so this term where nðq0Þ ¼ ½eβq0 − 1−1 is the Bose-Einstein yields a 

contribution that is formally of order g4 and distribution function at temperature T ¼ 1=β. The can be neglected to 

second order. The same analysis above relations are proven in Appendix A, they are is applied to all the other terms 

in (2.24) with the general, nonperturbative and rely only on that the conclusion that in weak coupling and to leading 

reservoir is in thermal equilibrium. 

order ðg2Þ the Markovian approximation ρˆIaðt0Þ → (iii) Rotating wave approximation: in writing the prodρˆIaðtÞ 

is justified. ucts aIðx;t⃗ ÞaIðx⃗ 0;t0Þ of interaction picture field 

Therefore in the Markov approximation the quan- operators (2.27) in (2.24) there are two types of tum master 

equation becomes terms with very different time evolution. Terms of the form 

 
  

 



NONEQUILIBRIUM DYNAMICS OF AXIONLIKE PARTICLES: … PHYS. REV. D 107, 063518 (2023) 

063518-7 

 ρ_ˆIaðtÞ ¼ −g2 Z0t dt0 Z d3x Z d3x0faIðxÞaIðx0Þ b†q⃗ bq⃗ eiωqðt−t0Þ; ð2:38Þ 

× 
ρˆIaðtÞG>ðx − x

0Þ are “slow,” and terms of the form þ ρˆIaðtÞaIðx0ÞaIðxÞG<<ðx − x0Þ

 i qt i q t t 

 Ið Þ Iað Þ Ið Þ ð Þ b†q⃗ b†−q⃗ e2 ω e ω ð − 0Þ; 

 − a x ρˆ t a x0 G x − x0 

 − aIðx0ÞρˆIaðtÞaIðxÞG>ðx − x0Þg: ð2:30Þ bq⃗ b−q⃗ e−2iωqte−iωqðt−t0Þ; ð2:39Þ 

are fast, the extra rapidly varying phases e2iωqt lead 

The correlation functions G>ðx − x0Þ;G<ðx − x0Þ to rapid dephasing on timescales ≃1=ωq and do not are obtained 

in Appendix A in terms of nonpertur- yield resonant (nearly energy conserving) contribubative Lehmann 

representations to all orders in the tions. Neglecting these terms is tantamount to coupling of the environmental 

fields χ to any other neglecting nonresonant terms that average out field in thermal equilibrium except for the ALP. 

over the longer timescales of relaxation ≫ 1=ωq. 

 They are given by These terms only give perturbatively small transient 

contributions and are discussed in Sec. IV. Keeping 

only the slow terms which dominate the long time 

dynamics for t ≫ 1=ωq and neglecting the fast 

oscillatory terms defines the “rotating wave 

approximation” ubiquitous in quantum optics 

[33,34]. 

We will adopt these approximations and comment in 

Sec. IVon the corrections associated with keeping the fast 

terms as well as caveats in the factorization approximation 

and limitations of the QME. 

Implementing the Markov approximation ρˆIaðt0Þ → 

ρterms of the formˆIaðtÞ, and the rotating wave 

approximation (keeping onlyb†b;bb†) using the spectral 

representa- 

tion of the correlators (2.31), (2.32) and carrying out the 

spatial and temporal integrals we obtain the Lindblad form 

[33–38] of the quantum master equation, 

ρ_ˆIaðtÞ ¼ Xq −iΔqðtÞ½b†q⃗ bq⃗ ;ρˆIaðtÞ 

⃗ 

−Γq>2ðtÞ½b†q⃗ bq⃗ ρˆIaðtÞþρˆIaðtÞb†q⃗ bq⃗ −2bq⃗ 

ρˆIaðtÞb†q⃗  Γq<ðtÞ½bq⃗ b†q⃗ ρˆIaðtÞþρˆIaðtÞbq⃗ 

b†q⃗ −2b†q⃗ ρˆIaðtÞbq⃗ ; 

− 

2 

ð2:40Þ 

where 

ΔqðtÞ¼ 2ωq Z 2π0 ϱðq0;qÞ½1−cosðω½ðq 

ω−qq−0Þq0Þt; ð2:41Þ g2 dq 

Γq>ðtÞ ¼ ωg2qdq2π0 ϱðq0;qÞ½1 þ nðq 

Þsinð½ðωωqq−−qq0Þ0Þt; 

0 

ð2:42Þ 

Γq<ðtÞ ¼ ωq Z 2π0 

ϱðq0;qÞnðq0Þsinð½ðωωqq−−qq0Þ0Þt;

 ð2:43Þ g2 dq 
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and we introduce 

ΓqðtÞ ¼ Γ>q ðtÞ −Γ<q ðtÞ 

¼ ωq Z 2π0 

ϱðq0;qÞsinð½ðωωqq−−qq0Þ0Þt: ð2:44Þ g2 dq 

The second and third lines in (2.40) are called the 

dissipator [33], these are non-Hamiltonian, purely 

dissipative terms, however it follows from the QME (2.40) 

that the trace of the reduced density matrix is conserved. It 

is argued in Refs. [35–38] that the Eq. (2.40) is the most 

general linear evolution equation that preserves unit trace 

and Hermiticity of the density matrix. 

Expectation values of ALP operators in the interaction 

picture are obtained by taking the trace of such operators 

with the reduced density matrix, for example 

haIðx;t⃗Þi¼TraIðx;t⃗ÞρˆIaðtÞ 

 q 1 q

 q −iωqtb†−q⃗ iðtÞeiωqteiq⃗ ·x⃗ ; 

¼2Vω ½hb⃗ iðtÞe þh ⃗ p ffi 

ð2:45Þ 

where 

hbq⃗ iðtÞ ¼ Trðbq⃗ ρˆIaðtÞÞ; 

† 

 hb−q⃗ iðtÞ ¼ Trðb†−q⃗ ρˆIaðtÞÞ: ð2:46Þ 

For any interaction picture operator A associated with the 

ALP field 

 d _ ρˆ 

 dthAi ¼ TrafA IaðtÞ þ Aρ_ˆIaðtÞg; ð2:47Þ 

where the average hðÞi ¼ TraðÞρˆIaðtÞ. Because bq⃗ ;b†
q⃗ 

are time independent in the interaction picture, the time 

derivative of their expectation value is given solely by the 

second term on the right-hand side of Eq. (2.47), hence the 

expectation value of the number operator 

NqðtÞ ¼ TraρˆIaðtÞb†q⃗ bq⃗ ð2:48Þ obeys 

the quantum kinetic equation 

dNdtqðtÞ¼Trafb†q⃗ bq⃗ ρ_ˆIaðtÞg¼−ΓqðtÞNqðtÞþΓq<ðtÞ: 

ð2:49Þ 

Similarly, we also find the evolution equation for the 

averages dtd hbk⃗ iðtÞ ¼ −iΔkðtÞ Γk2ðtÞhbk⃗ iðtÞ 

− 

 d b† t iΔ t −ΓkðtÞ b† t ; 2:50 

dthbk⃗ b−k⃗ iðtÞ ¼ ½ 2i kðtÞ kðtÞhbk⃗ b−k⃗ iðtÞ 

d †b† 

dthbk⃗ −k⃗ iðtÞ ¼ ½2iΔkðtÞ −ΓkðtÞhb†k⃗ b†−k⃗ iðtÞ: ð2:51Þ 

From the evolution equations (2.50), (2.51) it is clear that 

ΔkðtÞ is a time dependent renormalization of the frequency 

ωk. To obtain the solutions of the above equations in the 

long time limit we need the following integrals 

Z t q qZ  sinðωq −q0Þt dq 

 Δ ðt Þ ¼ 

0 2ω −∞ð 0Þ ð 0Þ ð2 Þ 

 t→!∞tδωq ð2:52Þ 

where 

¼ g2 ∞ ρðq0;qÞ  dq0 ð Þ δωqZ 

Pð Þ ; 2:53 

 2ωq −∞ ωq − q0 2π 

 dth k⃗ ið Þ ¼  kð Þ 2 h k⃗ ið Þ 

and for the off-diagonal coherences, 

d 

− Δ −Γ 

ð Þ 
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  is a renormalization of the frequency ωq and P stands for 

the principal part, and 

t 

 ð

 Þ − cos½ðq0 −ωqÞt 

0 ω −∞ 2 q0 

g2 Z ∞dq ðρðq0;qÞÞ ð

 Þ t q −q0 2 ; 2:54 

where 

 γq ¼ Γqð∞Þ ¼ 2gω2q ρðωq;qÞ; ð2:55Þ 

is the decay rate in agreement with Fermi’s golden rule. In 

the long time limit, the solution of Eqs. (2.50), (2.51) are 

hbk⃗ iðtÞ ¼ Ze−iδωqte−γ2qthbk⃗ ið0Þ; 

γq 

 g Z dq ð ðq0;qÞÞ ð Þ 

Z ¼ 2 q 2 2:58 q −∞

 q0 

is the wave function renormalization. 

If the initial averages hbk⃗ ið0Þ ¼ 0; hbk⃗ b−k⃗ 

ið0Þ ¼ 0 such values remain as fixed points of the evolution 

equations. However for a “misaligned” initial condition 

(2.12), (2.9) yielding the initial averages (2.13), it follows 

that in the long time limit the solutions of Eqs. (2.50), 

(2.51) are, 

respectively 

 hbq⃗ iðtÞ ¼ Ze−iδωqte− γ2qtΔq⃗ ; ð2:59Þ 

 hbq⃗ b−q⃗ iðtÞ ¼ Z2e−2iδωqte−γqtΔq⃗ Δ−q⃗ ; ð2:60Þ 

along with their Hermitian conjugates. 

Absorbing δωq into the renormalization of the frequency 

and with the initial expectation values given by (2.10), 

(2.11), (2.14) we find that the expectation value of the ALP 

field is given by 

haiðtÞ ¼ e−γ20ta¯ð0ÞcosðmaRtÞþπ¯ð0ÞsinðmaRtÞþOðg2Þ; 

maR 

ð2:61Þ 

where maR is now the renormalized ALP mass and we have 

neglected (nonsecular) terms of order g2 associated with the 

wave function and mass renormalizations. Equations 

(2.59), (2.60), (2.61) indicate that the expectation values 

and off-diagonal coherences decay in time, leading to a 

reduced density matrix diagonal in the number 

representation, this is the hallmark of decoherence. These 

results imply that the damping of the ALP condensate is 

directly linked to decoherence. 

Neglecting perturbatively small nonsecular terms of 

Oðg2Þ in the long time limit yields in this limit hb†q⃗ bq⃗ 

iðtÞ ≡ NqðtÞ ¼ Nqð0Þe−γqt þ nðωqÞð1 − e−γqtÞ; 

 Nqð0Þ ¼ jΔq⃗ j2; nðωqÞ ¼ q ð2:62Þ 

which describes thermalization, and an exponential 

approach to the thermal fixed point of the quantum kinetic 

equation. 

† k 

hb⃗ iðtÞ ¼ Zeiδωqte−2 thb†k⃗ ið0Þ; 

ð2:56Þ 

hbk⃗ b−k⃗ iðtÞ ¼ Z2e−2iδωqte−γqthbk⃗ b−k⃗ ið0Þ; 

† † 

hb⃗ b−k⃗ iðtÞ ¼ Z2e2iδωqte−γqthb†k⃗ b−†k⃗ ið0Þ; 
k 

where to leading order in the coupling, 

ð2:57Þ 

 2 ∞ ρ 
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Taken together, the results given by (2.59)–(2.62) 

summarize some of the main results from the QME: 

damping of the ALP condensate, decoherence and 

thermalization are all related, the decoherence rate is the 

same as the thermalization rate as well as the damping rate 

of the misaligned component to the energy density. For t ≫ 

1=γq the density matrix becomes diagonal in the occupation 

number basis and the misaligned condensate has relaxed to 

zero. The ALP has reached thermal equilibration with the 

bath. 

From Eqs. (2.62), (2.15), and (2.16) we obtain the time 

evolution of the ALP energy density neglecting a time 

independent zero point contribution, it is given by 

1 

V X 

EtÞ ¼NqðtÞωq 

q⃗ 

¼ 1½ 2 þ 

m2aa¯2e−γ
0t π¯ 

2 

þðd3qÞ3 ð Þð

 −γqtÞ: ð2:63Þ ωqn ωq

 1 − e 

2π 

The first term in (2.63) describes the decay of the 

condensate from the misaligned initial state, whereas the 

second term describes the thermalization of the ALP 

degrees of freedom. 

This analysis highlights that the contribution from a 

misaligned condensate to the energy density, 

thermalization with the bath and decoherence as described 

by the decay of the off-diagonal components in the ALP 

occupation number pointer basis, all occur on similar 

timescales, which is completely determined by the 

relaxation rate γq. 

The results (2.61), (2.63) are in complete agreement with 

those of Ref. [28] which were obtained with a very 

different approach based on the nonequilibrium 

Schwinger-Keldysh effective action. Furthermore, the 

general expression for the frequency renormalization 

(2.53) and wave function renormalization (2.58) are also in 

agreement with the general results found in Ref. [28] in the 

strict perturbative regime, although they cannot reproduce 

nonperturbative aspects which are revealed by the effective 

action and are discussed in section IV. 

A. Decoherence and entropy production 

The evolution equations (2.59), (2.60) describe the 

decay of the coherences, in other words, the emergence of 

decoherence, whereby the density matrix becomes 

diagonal in the pointer basis of the eigenstates of the 

occupation number operator b†qbq for t ≫ 1=γq. 

Furthermore, the timescale of decoherence is similar to the 

relaxation rate of the misaligned component of the energy 

density and that of thermalization. Decoherence and the 

evolution towards a diagonal reduced density matrix in the 

occupation number basis, in turn imply entropy production. 

At long time when the off diagonal terms are negligible, 

and the reduced density matrix becomes diagonal in the 

occupation number basis, with thermal populations, the 

total entropy becomes 

Sð∞Þ¼fð1þnðωqÞÞlnð1þnðωqÞÞ−nðωqÞlnnðωqÞg: 

q ð2:64Þ 

Since the initial ALP density matrix (2.12) describes a pure 

state, hence vanishing entropy, Sð∞Þ > 0 implies entropy 

production for the ALP as a consequence of 

environmentinduced decoherence [52]. This is an 

important bonus of the QME which unambiguously 

describes decoherence via the decay of the coherences 

(2.59), (2.60), over the usual Boltzmann equation approach 

to thermalization, wherein entropy production is inferred 

via Boltzmann’s H-theorem from the time evolution of a 

classical HðtÞ function which inputs solely the occupation 

number evolution but which does not have any information 

on off-diagonal coherence. 

III. ALP-PHOTON INTERACTIONS 

The results obtained in the previous section are general 

up to Oðg2Þ and to all orders in the couplings of the bath 

field χ to any other field except for the ALP. Whereas our 

study addresses the nonequilibrium dynamics of ALP 

fields, the results also apply to any field with an interaction 

of the form (2.1) and initial conditions that allow for the 

evolution of a coherent condensate [18]. However, 

although the results are generic, the relaxation rate γq, 

frequency and wave function renormalizations depend on 

the spectral properties of the bath correlations. 

In this section we focus on ALP interaction with photons 

via the coupling 

 LI ¼ −gaðxÞE⃗ ðxÞ · B⃗ ðxÞ: ð3:1Þ 

 

 

 



NONEQUILIBRIUM DYNAMICS OF AXIONLIKE PARTICLES: … PHYS. REV. D 107, 063518 (2023) 

063518-11 

We consider the thermal bath of CMB blackbody 

radiation of free massless photons, neglecting 

electromagnetic interactions with charged leptons and 

quarks. This restricts the validity of our treatment to 

temperatures well below the masses of these other degrees 

of freedom and under conditions when the electron density 

in particular is vanishingly small, therefore there is no 

(gauge invariant) thermal mass or plasma frequency for the 

photons. These conditions are certainly fulfilled in 

cosmology after recombination at temperatures T ≃ eV 

when the free electron density vanishes rapidly and the 

distribution functions of quarks and charged leptons are 

thermally suppressed at these temperatures. 

Ref.The spectral density[28] and summarized in 

Appendixρðq0;q⃗ Þ has been obtained inB for consistency 

of presentation, it is given by 

 0 ðQ2Þ2 1 þ β2qln11 −− ee−−βωβωþII−ΘðQ2Þ 

ρðq ;q⃗ Þ ¼ 32π 

 2 1 − e−βωþII 2 

 þ βqln1 − e−βωII− Θð−Q Þsignðq0Þ; ð3:2Þ 

where 

 jq jq; ωð Þ q 

Q2 ¼q20 −q2; ωðIÞ ¼ 02 II ¼ j2q0j: ð3:3Þ 

andFrom Eq.β ¼ 1=T(2.55)with Twe obtain the relaxation 

ratethe temperature of the radiation bath. 

2 1 − e−βωþI γqðTÞ ¼ 

γqð0Þ1 þ βqln1 − e−βω−Iq0¼ωq; 

g2m4a 

γqð0Þ ¼ 64 πωq : ð3:4Þ 

The zero temperature contribution γqð0Þ is recognized as 

the ALP decay rate into two photons [9], whereas the finite 

temperature contribution is a consequence of stimulated 

emission and absorption processes in the radiation bath. In 

the long-wavelength limit we find 

 g2m3a ma 

 γqðTÞ ¼ 64π 1 þ 2n  2 ; ð3:5Þ 

which in the high temperature limit T ≫ ma yields 

 g2m3a T 

 γqðTÞ ¼ 16π ma: ð3:6Þ 

For example, if T corresponds to the temperature of the 

cosmic microwave background today T ≃ 10−4 eV the finite 

temperature correction yields a very large enhancement 

over the zero temperature rate if the ALP is an ultralight 

candidate with ma ≲ 10−22 eV. A substantial relaxation rate 

of the ALP post recombination may yield important 

cosmological consequences, for example in birefringence 

if it is caused by the coupling of CMB photons to a 

pseudoscalar ALP [29–32] (see discussion below). 

From the results of Appendix B, the frequency 

renormalization given by Eq. (2.53) is found to be 

 δωq ¼ δωðq0Þ þ δωðqTÞ; ð3:7Þ 

spectral densitywhere δωð
q

0Þ is obtained from the(3.2) and 

by introducing an ultravioletT ¼ 0 contribution to the 

cutoff Λ, it is given by 

δωðq0Þ ¼ − 128gπ22ωq 12Λ4 þ 2ma2Λ2 þ ðm2aÞ2 

lnΛ 2me2a3=2: 

ð3:8Þ 

In Appendix C the finite temperature contribution in the 

high temperature limit T ≫ωq is found to be 

δωqðTÞ ¼−g302πω2Tq4 1þ2415πm2T2a2 þOðm4a=T4Þþ:

 ð3:9Þ 



SHUYANG CAO and DANIEL BOYANOVSKY PHYS. REV. D 107, 063518 (2023) 

063518-12 

The frequency renormalization (3.7) is identified as a 

temperature dependent mass renormalization by writing 

the renormalized frequency Ωq ¼ ωq þ δωq up to 
Oðg2Þ as 

Ωq ¼ qq2 þ m2RðTÞffi ¼ qω2q þ Δm2ðTÞffi ωq þ 

Δm2ω2ðqTÞ þ  ≡ωq þ δωq; ð3:10Þ ¼ 

from which we find the finite temperature renormalized 

mass up to Oðg2Þ 

m2RðTÞ ¼ m2Rð0Þ1−TT 44c; 

Λ 

m2Rð0Þ ¼ ma2 −64gπ2 1 4

 2m2aΛ2 þðm2aÞ2 lnΛ2me2a3=2; 

 2 2 þ 

ð3:11Þ 

g 

and we kept the leading order in the high temperature limit 

T=ma ≫ 1 in the finite temperature correction. The result 

(3.11) agrees with Ref. [28] which obtained a similar finite 

temperature mass from the nonequilibrium effective 

action, and indicates that m2
RðTÞ becomes negative for T > 

Tc suggesting a long wavelength instability and the 

possibility of an inverted phase transition as discussed in 

Ref. [28]. However, within the context of the quantum 

master equation there is a caveat on this interpretation 

because the result for the frequency renormalization has 

been obtained in strict perturbation theory and the 

renormalized frequency ωq þ δωq does not yield any 

instability. This caveat is discussed in more detail in Sec. 

IV. 

IV. DISCUSSION AND CAVEATS 

A. Counterrotating terms 

In the derivation of the quantum master equation (2.40) 

we neglected terms of the form 

 bq⃗ b−q⃗ e−2iωqteiωqðt−t0Þ; b†q⃗ b−†q⃗ e2iωqte−iωqðt−t0Þ: ð4:1Þ 

The time integral over t0 can be carried out following the 

steps leading to Eq. (2.40) yielding contributions of the 

form bq⃗ b−q⃗ e−2iωqtρ≶ðq0;qÞρˆIaðtÞ etc. The contribution of 

these terms to the equations of motion for linear or bilinear 

forms of b;b† are straightforward to obtain, they do not 

yield terms that grow secularly in time because the rapid 

dephasing of the oscillatory terms average out in the time 

integrals. These are nonresonant terms and yield 

perturbatively small subleading contributions of the form 

δωq=ωq ≪ 1; γq=ωq ≪ 1 in weak coupling, as compared to 

those obtained from Eq. (2.40) which captures the secular 

growth in time because of the resonances and describes the 

leading behavior in the long time dynamics. 

B. Factorization 

Factorization of the full density matrix (2.21) is one of 

the main assumptions in the derivation of the Lindblad 

form of the quantum master equation [33,34]. This 

assumption neglects correlations between ALP field and 

the thermal bath as discussed above, it may be justified for 

weak coupling: assuming an initial factorization, 

correlations will 

build up upon time evolution but will remain perturbatively 

small, hence they may be neglected to leading order in the 

coupling g. The assumption that the total density matrix 

remains factorized with the bath in thermal equilibrium 

which remains unaffected by the coupling to the ALP at all 

times is consistent with the interpretation of the bath as a 

reservoir. However, as the ALP population builds up as a 

consequence of thermalization, it is plausible that 

correlations between the ALP and the bath become 

stronger as the ALP population reaches a thermal state, 

leading up to a possible breakdown of the factorization 

assumption. Such a scenario merits deeper scrutiny which 

is beyond the scope of this study. 

C. Nonequilibrium effective actionvs quantum 

master equation 

In Ref. [28] the time evolution of an initial density 

matrix was studied by implementing the in-in Schwinger-

Keldysh formulation of nonequilibrium field theory. In this 

formulation the time evolution is described by the in-in 

effective action that leads to a Langevin equation of motion 

for the ALP field in terms of the retarded self-energy Σ and 

a noise term both related by the fluctuation dissipation 

where   

 

Tc ≃ 1.11smRð0Þffi; ð3:12Þ 
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relation. The solution of the Langevin equation of motion 

inputs the full propagator including the self-energy 

correction, and the (complex) poles in the propagator at 

 ω2PðqÞ ¼ ω2ðqÞ þ ΣðωPðqÞ;qÞ; ð4:2Þ 

determine the frequency and lifetime of ALP oscillations. 

The finite temperature effective mass is obtained from the 

real part of the solution of the Eq. (4.2) for q ¼ 0, namely 

m2ðTÞ ¼ Re½ω2Pðq ¼ 0Þ. 

In the case of ALP-photon interaction with the coupling 

(3.1), after absorbing the zero temperature, ultraviolet 

divergent contributions into a definition of the zero 

temperature 

renormalizedmassmaR,thesolutionofthepoleequation(4.2) 

at q ¼ 0 yields precisely the result (3.11) to leading order in 

the high temperature expansion T ≫ maR. The finite 

temperature mass, as properly defined by the position of 

the pole in thepropagator at zeromomentum, indicates 

thepossibility of an instability and an inverted phase 

transition for T > Tc as advocated in Ref. [28], a conclusion 

that does not rely on an expansion near the bare frequency. 

In contrast, the quantum master equation approach 

yields a perturbative correction to the bare frequency in the 

form ωq þ δωq with a real δωq which obviously does not 

entail any instability. The main reason for this discrepancy 

between the effective action and the quantum master 

equation can be traced to the fact that in the latter approach 

the time integrals in (2.30), convolve the spectral 

representations (2.31), (2.32) with the time dependence 

(2.38) featuring the external ALP frequency ωq. Therefore, 

the rates (2.41)–(2.43) in the Lindblad QME (2.40), are 

effectively evaluated at the frequencies ωq yielding strictly 

perturbative corrections for the frequency and wave 

function renormalizations. At heart, this is a consequence 

of the perturbative nature of the QME in interaction 

picture. 

Another important difference with the nonequilibrium 

effective action, is that as found in Ref. [28], the zero 

temperature contribution to the real part of the self energy 

is 

ΣðR0Þðω;qÞ ¼ −64gπ2 2 12Λ4 þ 2Q2Λ2 þ ðQ2Þ2 lnΛ

j2Qe23j=2; 

 Q2 ¼ ω2 − q2; ð4:3Þ 

where the logarithmic divergence multiplying ðQ2Þ2 

implies that the renormalized effective action requires a 

new higher derivative term 
∝ ð∂μ∂μÞ2a2ðxÞ to absorb the 

logarithmic divergence from the self-energy. This is a 

consequence of the nonrenormalizable interaction (3.1) 

since the coupling g has dimensions of ðenergyÞ−1. 

In contrast, the QME yields the frequency 

renormalization δωð
q

0Þ (3.8), which is proportional to the 

real part of the self-energy (4.3) evaluated on the (bare) 

mass shell, namely for Q2 ¼ m2
a. Again this is a 

consequence of the time integrals leading to the QME in 

Lindblad form, and can be traced to the interaction picture 

representation of the density matrix. 

Therefore, the QME confirms the damping of the 

misaligned ALP condensate, thermalization, and that the 

ALP energy density features a mixture of a “cold” 
component from the damped misaligned condensate and a 

“hot” component from thermalization, and that damping of 

the cold and thermalization of the hot components and 

decoherence occur on similar timescales. 

An instability and possible phase transition cannot be 

captured by the QME which relies on a perturbative 

expansion in interaction picture field theory, assuming a 

well-defined mass shell and stable oscillations of the 

various degrees of freedom. An instability will lead to a 

breakdown of most approximations: certainly the Markov 

and rotating wave approximations, since the former relies 

on a wide separation of timescales and the second on well 

defined mass shells associated with the oscillation 

frequencies. Therefore, an instability associated with a 

possible phase transition and novel phases for T > Tc is well 

beyond the realm of validity of the QME and should not be 

expected to be described reliably by it. 

While the QME cannot directly confirm the possibility 

of an inverted phase transition and the emergence of exotic 

phases both described by the Schwinger-Keldysh effective 

action and truly nonperturbative aspects, it does allow to 

understand the sources of these discrepancies in strict 

perturbation theory. 

An important advantage of the QME is that it allows to 

obtain the time evolution of coherences and populations in 

a more direct manner thereby establishing that 

thermalization and decoherence with the concomitant 

entropy production occur on similar timescales. 

D. On the similarity of timescales 

An important result is that the timescales of damping of 

the condensate (2.61), decoherence (2.60), and 

thermalization (2.62) are all very similar and simply 

related. This similarity originates in the form of the 

Lindblad QME, Eq. (2.40), which solely inputs bilinears of 

the form b†
qbq (one annihilation and one creation operator), 
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and this form of the QME unequivocally leads to the 

quantum kinetic equations (2.49)–(2.51) whose solutions 

display the timescales of damping, decoherence, and 

thermalization in terms of the same function ΓkðtÞ. In turn, 

the particular form of the Lindblad QME is a consequence 

of the linear coupling of the axion to the composite 

operators Oχ as described by the Lagrangian density (2.1). 

Although we have not studied nonlinear axion couplings, it 

is quite possible that in the case of nonlinear couplings the 

timescales could be quite different. Investigating this 

possibility would merit further study beyond the scope of 

our objectives. 

E. Possible cosmological consequences 

Although we have studied the nonequilibrium dynamics 

of ALP’s in Minkowski space time, the results allow us to 

provide a preliminary extrapolation to cosmology. 

A pseudoscalar ALP coupled to photons as in Eq. (3.1) 

leads to cosmic birefringence, namely a frequency 

independent rotation (in contrast to Faraday rotation) in the 

polarization angle Ψ between the surface of last scattering 

and today [29–32]. For a homogeneous misaligned 

condensate slowly varying in time haiðtÞ such a change is 

given by [29] 

ΔΨ ¼ gðhaiðtLSSÞ − haiðt0ÞÞ: ð4:4Þ 

2 

The amplitude of the misaligned condensate decays as a 

consequence of the ALP interaction with the CMB photons, 

therefore the condensate is decaying during the 

cosmological expansion since recombination, and as 

described above the ALP fluctuations are thermalizing with 

the radiation bath on similar timescales. This hitherto 

unappreciated fact has important consequences. 

If the lifetime 1=γðTÞ ≪ 1=H0 the amplitude of the 

condensate haiðt0Þ ≃ 0, however, the ALP thermalizes on 

the same timescale as the condensate decays, therefore, if 

the misaligned condensate has completely decayed 

between the surface of last scattering and today, we 

conjecture that the fluctuations of Ψ would feature a 

thermal power spectrum as a consequence of 

thermalization of axion fluctuations with the CMB. 

This conjecture is motivated precisely by the similarity 

of the condensate damping and thermalization timescales 

revealed by the Lindblad QME. The arguments in Ref. [29] 

leading up to the result (4.4) hinge on the change in the 

photon frequency for the different polarizations as a 

consequence of the coupling to the axion condensate, 

namely the expectation value of the axion field. However, 

as the solution from the Lindblad QME shows, the 

fluctuations of the axion thermalize on the same timescale 

as damping of the condensate, therefore we expect that the 

polarization angle will feature thermal fluctuations, since it 

is modified by the axion field. Rather than focusing solely 

on the change in frequency for the different polarization as 

a consequence of the dynamical axion condensate, the 

dynamics of the polarization post recombination should be 

described by the Stokes parameters which involve 

combinations of the transverse components of the electric 

field squared. At the quantum level the electric field is 

associated with a quantum operator, whose Heisenberg 

equation of motion involves the full axion field [29–32] 

both its expectation value as well as the fluctuating 

component. Therefore we conjecture that the square of the 

electric field operator will depend on the square of the 

axion field which includes the fluctuations of the axion 

field. As described by the Lindblad QME the fluctuations 

thermalize with the CMB on the same timescale as the 

mean-field (expectation value) decays. Hence, this 

reasoning leads us to expect that fluctuations in the Stokes 

parameters, which describe the polarization field, should 

feature a thermal spectrum. At this stage, this remains as a 

plausible conjecture which merits deeper scrutiny on its 

own, which, however, is well beyond the original scope of 

this article. 

If the ALP lifetime is much shorter and the misaligned 

condensate decays prior to the last scattering surface, then 

it has reached full thermalization with the CMB and if it is 

an ultralightdarkmatter candidate itcontributesto the 

effective 

numberofultrarelativisticdegreesoffreedom.Ifthelifetime is 

of the order of 1=H0 then the ALP contributes as “mixed” 

dark matter, with a cold component with weight e−γðTÞ=H0 

and a hot (thermal) component with weight ð1 − e−γðTÞ=H0Þ. 

This latter possibility opens a window to an interesting 

scenario, where the cold dark matter component would 

dominate at earlier time during galaxy formation and the 

hot component would dominate later, with a larger velocity 

dispersion, hence a larger free streaming length, featuring 

a crossover between cold and hot components on 

timescales that depend on the coupling and ALP mass. This 

scenario brings interesting and hitherto unexplored 

consequences for galaxy formation that merit further study. 

V. CONCLUSIONS AND FURTHER QUESTIONS 

We studied the nonequilibrium dynamics of ALP’s 
motivated by the possibility that these particles belonging 

to a sector beyond the Standard Model may be suitable dark 

matter candidates. A hallmark of ALP’s is their coupling to 

pseudoscalar composite operators associated with Standard 
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Model degrees of freedom, and in particular their coupling 

to electromagnetism may lead to cosmic birefringence, 

namely the rotation of the plane of polarization of the CMB 

with tantalizing possibilities of detection. In this article we 

consider generic couplings of the ALP field [aðxÞ] of the 

form gaðxÞOχðxÞ where OχðxÞ are pseudoscalar composite 

operators of Standard Model degrees of freedom (χ) 

assumed to be a bath in thermal equilibrium, and derive a 

quantum master equation that describes the time evolution 

of the ALP reduced density matrix upon tracing the χ 

degrees of freedom. The QME is obtained up to Oðg2Þ but 

to all orders in the coupling of the χ (Standard Model) 

degrees of freedom to any other degree of freedom within 

or beyond the Standard Model except for the ALP. The 

initial ALP density matrix allows for a misaligned 

condensate. The QME describes the damping of the 

misaligned condensate, thermalization with the bath and 

decoherence, namely the damping of the off-diagonal 

reduced density matrix elements in the occupation number 

basis within a unified framework. 

The ALP time dependent energy density EðtÞ features 

two components: a cold (c) component from the misaligned 

condensate and a hot (h) component from thermalization 

with the bath,with 
EðtÞ ≃Ece−γðTÞt þ Ehð1 − e−γðTÞtÞ where 

the relaxation rate γðTÞ also describes the decoherence 

rate. Therefore,the damping of the misaligned condensate 

energy density, the approach to thermalization with the 

bath and decoherence all occur on the same timescales. We 

focus on the particular example of the ALP coupling to 

electromagnetism where OχðxÞ ¼ E⃗ ðxÞ · B⃗ ðxÞ where the 

radiation field describes the CMB post recombination. The 

long wavelength relaxation rate is enhanced by emission 

and absorption in the photon bath and at high temperature 

T ≫ ma and 

in the long wavelength limit is given by γðTÞ ¼  T 
featuring a substantial enhancement over the zero 

temperature rate. These results are in agreement with those 

of Ref. [28] but obtained with an independent method. 

Thetimedependenceoftheenergydensitysuggeststhatif 

the ALP is a dark matter candidate and interacts with 

Standard Model degrees of freedom in (local) thermal 

equilibrium, it provides a “mixed” dark matter scenario 

where the “warmth” depends on time: at earlier times it 

describesacolddarkmattercomponentandatlatetimesahot 

component, with potentially profound implications on 

galaxyformation.IftheALPisanultralightcandidate,andifthe 

misaligned condensate has completely decayed prior to the 

last scattering surface the thermal component contributes 

to 

theeffectivenumberorultrarelativisticdegreesoffreedom.If 

its lifetime is smaller than the Hubble time, γðTÞ ≪ 1=H0, 

the misaligned condensate is decaying at least since after 

recombination and thermalizing with the CMB on similar 

timescales. Therefore, if cosmic birefringence is a 

consequenceofthecouplingofphotonstoapseudoscalarALP,t

he rotation angle since the last scattering surface should 

include thermal features in its fluctuation spectrum. 

These extrapolations to the cosmological setting must be 

taken as indicative based on the results in Minkowski space 

time. The next step of the program is to include 

cosmological expansion and assess if and how it modifies 

the conclusions above, we expect to report on this aspect in 

forthcoming studies. 
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APPENDIX A: ENVIRONMENTAL 

CORRELATION FUNCTIONS: LEHMANN AND 

SPECTRAL REPRESENTATIONS 

The dynamics and dissipative processes depend on the 

correlation functions G≶ of the environment in 

Eqs. (2.24)–(2.26). 

Because the bath is in thermal equilibrium, its initial 

density matrix is ρχð0Þ ¼ e−βHχ=Tre−βHχ which is spacetime 

translationally invariant, and the Heisenberg picture 

operators associated with the bath are given by Oχðx;t⃗ Þ ¼ 

eiHχtOχðx;⃗ 0Þe−iHχt we can write 

G>ðx⃗ − x⃗ 0;t − t0Þ ¼ hOχðx;t⃗ÞOχðx⃗ 0;t0Þiχ 

 ¼  ð 2dπ4kÞ4 ρ>ðk;k⃗0Þe−ik0ðt−t0Þeik⃗ ·ðx⃗ 

−x⃗ 0Þ 

ðA1Þ 

G<ðx⃗ − x⃗ 0;t − t0Þ ¼ hOχðx⃗ 0;t0ÞOχðx;t⃗ Þiχ 

 ¼ ð d4k ρ<ðk;k⃗

 0Þe−ik0ðt−t0Þeik⃗ ·ðx⃗ −x ⃗ 0Þ: 

 

 



SHUYANG CAO and DANIEL BOYANOVSKY PHYS. REV. D 107, 063518 (2023) 

063518-16 

2πÞ4 ðA2Þ These representations are obtained by 

writing Oχðx;t⃗ Þ ¼ eiHχte−iP⃗ ·x⃗ Oχð0⃗ ;0Þe−iHχteiP⃗ ·x⃗ and 

introducing a complete set of simultaneous eigenstates of 

Hχ and the total momentum operator P⃗ , ðHχ;P⃗ Þjni ¼ 

ðEn;P⃗ nÞjni, from which we obtain the following Lehmann 

representations, 

ρ>ðk0;k⃗ Þ ¼ ð2π−βÞH4 χ Xe−βEnjhnjOχð0⃗ ;0Þjmij2 

 Tre m;n 

 × δðk0 − ðEm − EnÞÞδðk⃗ − ðPm − PnÞÞ ðA3Þ 

ρ<ðk0;k⃗ Þ ¼ ð2π−βÞH4 χ Xe−βEnjhmjOχð0⃗ ;0Þjnij2 

 Tre m;n 

× δðk0 − ðEn − EmÞÞδðk⃗ − ðPn − PmÞÞ: ðA4Þ 

Upon relabeling m ↔ n in the sum in the definition (A4) 

and recalling that Oχ is a Hermitian operator, we find the 

Kubo-Martin-Schwinger relation [51] ρ<ðk0;kÞ ¼ 

ρ>ð−k0;kÞ ¼ e−βk
0ρ>ðk0;kÞ: ðA5Þ 

The spectral density is defined as ρðk0;kÞ ¼ ρ>ðk0;kÞ 

−ρ<ðk0;kÞ ¼ ρ>ðk0;kÞ½1 − e−βk
0 

ðA6Þ 

therefore 

ρ>ðk0;kÞ ¼ ρðk0;kÞ½1 þ nðk0Þ; 

 ρ<ðk0;kÞ ¼ ρðk0;kÞnðk0Þ; ðA7Þ 

where 

 nðk0Þ ¼ 0 : ðA8Þ 

Furthermore, from the first equality in (A5) it follows 

that ρð−k0;kÞ ¼ −ρðk0;kÞ; ðA9Þ ρðk0;kÞ > 

0 for k0 > 0: ðA10Þ 

We emphasize that these are exact relations, the 

“environmental” fields χ may be coupled to other fields, for 

example, in the case of the ALP interaction with the 

electromagnetic fields, the gauge field also interacts with 

electrons, charged leptons, and quarks. The Lehmann 

representations (A3), (A4) are nonperturbative and 

unambiguously yield the relations (A5)–(A10) which are 

general, nonperturbative statements relying on thermal 

equilibrium and space-time translational invariance and do 

not depend on these couplings. 

APPENDIX B: SPECTRAL DENSITY FOR E⃗ · B⃗ 

CORRELATION FUNCTIONS 

We begin with the quantization of the gauge field within 

a volume V eventually taken to infinity, 

A⃗ ðxÞ ¼ p1Vffi k;⃗ Xλ¼1;2 pϵˆk;⃗2λkffi ½dk;⃗ λe−ik·x þ dk;†⃗ λeik·x;

 ðB1Þ 

where ϵˆ
k;⃗ λ are the transverse polarizaton vectors chosen 

to be real. From Eqs. (A1) and (A2) we need the 

correlation functions 

G>ðx − yÞ ¼ hE⃗ ðxÞ · B⃗ ðxÞE⃗ ðyÞ · B⃗ ðyÞi; ðB2Þ 

G<ðx−yÞ¼hE⃗ ðyÞ·B⃗ ðyÞE⃗ ðxÞ·B⃗ ðxÞi¼G>ðy−xÞ; ðB3Þ 

where we now refer to hðÞi as averages in the thermal 

density matrix of free field photons. 

In the thermal ensemble the expectation value hE⃗ ðxÞ · 

ðB⃗ EðxÞi ¼⃗ correlation function becomes0 by parity 

invariance. Using Wick’s theorem, the 

⃗ · BÞ 
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d k ⃗ q⃗ − k⃗ hE⃗ ðxÞ · B⃗ ðxÞE⃗ ðyÞ · B⃗ ðyÞi 

¼ Xi;j fhEiðxÞEjðyÞihBiðxÞBjðyÞi 

þ hEiðxÞBjðyÞihBiðxÞEjðyÞig: ðB4Þ 

A straightforward calculation yields hEiðxÞEjðyÞi 

¼ hBiðxÞBjðyÞi 

 1 Xk ij ⃗ˆik⃗ˆjÞ 

 ¼ 2V kðδ − k 
⃗ 

× ½ð1 þ nðkÞÞe−ik·ðx−yÞ þ nðkÞeik·ðx−yÞ; 

ðB5Þ 

similarly hEiðxÞBjðyÞi ¼ 

−hBiðxÞEjðyÞi 

¼ −2 1V Xk kðϵˆik;⃗ 1ϵˆk;j ⃗ 2 −ϵˆik;⃗ 2ϵˆjk;⃗ 1Þ 

⃗ 

× ½ð1 þ nðkÞÞe−ik·ðx−yÞ þ nðkÞeik·ðx−yÞ; ðB6Þ 

(whereB nðkÞ ¼ 1=ðeβk − 1Þ. Combining the two terms in 

4) we find 

 1 2 Xk Xp 
ˆ⃗ ·pˆ⃗ Þ2 >

G ðx−yÞ¼4V kpð1−k 

 ⃗ ⃗ 

×f½ð1þnðkÞÞe−ik·ðx−yÞ þnðkÞeik·ðx−yÞ 

×½ð1þnðpÞÞe−ip·ðx−yÞ þnðpÞeip·ðx−yÞg: ðB7Þ 

Expanding the product, we perform the following change 

of variables in the various terms: 

 (1) in the term nðkÞnðpÞ: k⃗ →−k;⃗ p⃗ →−p⃗ ; 

R (3)(2)3 in the term within the term withπÞ3 we obtain 

nð1ðkþÞðn1ðþkÞÞnnðpðpÞÞÞ:: kp⃗⃗ →→−1−=k⃗p⃗V.;Þ 

Pq⃗ → 

Taking the infinite volume limit with ð d 

q=ð2 

G>ðx − yÞ ¼ Z dq 2π0 Z ðd2π3qÞ3 

ρ>ðq0;qÞe−iq0ðt−t0Þeiq⃗ 
·
ðx⃗ −y⃗ Þ; ðB8Þ 

where 

Writing 

G<ðx − yÞ ¼ Z dq2π0 Z ðd2π3qÞ3 

ρ<ðq0;qÞe−iq0ðt−t0Þeiq⃗ 
·
ðx⃗ −y⃗ Þ; 

ðB10Þ 

and using the relation (B3) we find that ρ<ðq0;q⃗ Þ ¼ 

ρ>ðq0;qÞ ¼ Z ð2πÞ3 kjq⃗ − k⃗ j jq⃗ − k⃗ j ½ð1 þ nðkÞÞð1 þ nðjq⃗ − k⃗ jÞÞδðq0 − k − jq⃗ − k⃗ jÞ 

þ nðkÞnðjq⃗ − k⃗ jÞδðq0 þ k þ jq⃗ − k ⃗ jÞ þ 1 þ kk ⃗ · qq⃗⃗  −− kk⃗ ⃗ j2½ð1 þ nðkÞÞnðjq⃗ − k⃗ 

jÞδðq0 − k þ jq⃗ − k⃗ jÞ j 

 þ nðkÞð1 þ nðjq⃗ − k⃗ jÞÞδðq0 þ k − jq⃗ − k⃗ jÞ: ðB9Þ 
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ρsated by>ð−q0;−k⃗ q⃗→Þ, however the sign change in−k⃗ 

inside the k-integral with the final resultq⃗ can be compen- 

 ρ<ðq0;q⃗ Þ ¼ ρ>ð−q0;q⃗ Þ; ðB11Þ 

using the various delta functions in the definition 

offurthermore, using the identity ð1 þ nðwÞÞ ¼ 

eβwnðwρÞ>andwe 

find 

 ρ<ðq0;q⃗ Þ ¼ e−βq0ρ>ðq0;q⃗ Þ; ðB12Þ 

which is the Kubo-Martin-Schwinger relation [51], thereby 

confirming the general results (A5). The spectral density is 

given by [see Eq. (A6)] ρðq0;qÞ ¼ ρ>ðq0;qÞ −ρ<ðq0;qÞ with 

kwþk −k 

ρðq
0
;qÞ¼π2Z ð2dπ3kÞ3kw1 fð 2

 ⃗ ·q ⃗Þ2½1þnðkÞþnðwÞ 

×ðδðq0 −k−wÞ−δðq0 þkþwÞÞ þðkw−k2 

þk⃗ ·q⃗ Þ2ðnðwÞ−nðkÞÞ ×ðδðq0 

−kþwÞ−δðq0 þk−wÞÞg; 

 w¼jq⃗ −k⃗ j: ðB13Þ 

The spectral density is calculated by implementing the 

following steps: 

d3k ∞ dk 

8 π3 ¼ Z0k  4π ð ð ÞÞ; 

w ¼ jq⃗ − k⃗ j ¼ qq2 þ k2 − 2kqcosðθÞffi; 

dðcosðθÞÞ ¼ −dwkq : ðB14Þ w 

Carrying out the integrations, which are facilitated by the 

delta function constraints we find 

ρðq0;q⃗ Þ ¼ ðQ322πÞ2 1 þ β2qln11 −− ee−−βωβωþII−ΘðQ2Þ 

 2 1 − e−βωþII 2 

 þ βqln1 − e−βωII− Θð−Q Þsignðq0Þ; ðB15Þ 

where 

Q2 ¼q20 −q2; ωðIÞ ¼jq0j2 q; ωðIIÞ ¼qj2q0j: ðB16Þ 

APPENDIX C: FINITE TEMPERATURE 

CONTRIBUTION TO δωq 

δω g2T IðqÞ; ω ¼ 

   q 2q0   

 : ðC1Þ 

ðqTÞ ¼ 64πg22Tqωq P Z−∞ ωq − q0 2 ln11 −− ee−−βωβωþ−dq0 

Since the argument of the logarithm is odd under q0 →−q0, 

it follows that I can be written as 

IðqÞ ¼ P Z0 2q0qðq20 − q2Þ2 ln1 − e 2j þqqjÞdq0: ðC2Þ 

∞  

Using the results 

∞ 

0 xn ln½1 − e−ðxþyÞdx ¼ −Γðn þ 1ÞLi2þnðe−yÞ ðC3Þ 

∞ 

 Z0 xn ln½1 − e−jx−yjdx 

¼ ð−1ÞnΓðn þ 1ÞLinþ2ðe−yÞ 

− 2 i½n20  2ni Γð1 þ n−2i; ðC4Þ 

2iÞζð2 þ 2iÞy ¼ where Li 

is the polylogarithm, along with the identities 

 Z0∞  n x y  1 −nðy−zÞEið−nzÞ 

 ðC5Þ 
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Pð þ Þ ¼ ne x þ z n 

P Z k dx −1e−nðk−yÞ 

 0 x þ z n 

 ¼ −n1e−nðyþzÞ½−EiðnzÞ þ Eiðnðy þ zÞÞ ðC6Þ 

 ∞y 1 n k z 

P k þ  Þ ¼ ne ð þ ÞEið−nðy þ zÞÞ; x

 z n 

ðC7Þ 

and the representation of the exponential integral function 

∞ xn 

EiðxÞ ¼ γ þ lnðjxjÞ þ Xn 1 nn !; ðC8Þ 

¼ 

where γ is Euler’s constant, we find in the high temperature 

limit T ≫ωq 

δωðqTÞ ¼−g302πω2Tq4 1þ2415πm2Ta22 þOðm4a=T4Þþ:ðC9Þ 
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