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We obtain the nonequilibrium condensate of the Chern Simons density induced by a misaligned 

homogeneous coherent axion field in linear response. The Chern-Simons dynamical susceptibility is 

simply related to the axion self-energy, a result that is valid to leading order in the axion coupling but to 

all orders in the couplings of the gauge fields to other fields within or beyond the standard model except 

the axion. The induced Chern-Simons density requires renormalization which is achieved by vacuum 

subtraction. For ultralight axions of mass ma coupled to electromagnetic fields with coupling g, the 

renormalized high temperature contribution postrecombination is hE⃗ · B⃗ iðtÞ ¼ −gπ
152T4 a¯ðtÞþgm

162aπ
T 

a¯_ðtÞ with a¯ðtÞ the dynamical homogeneous axion condensate. We conjecture that emergent axionlike 

quasiparticle excitations in condensed matter systems may be harnessed to probe cosmological axions and 

the ChernSimons condensate. Furthermore, it is argued that a misaligned axion can also induce a non-

Abelian ChernSimons condensate of similar qualitative form, and can also “seed” chiral symmetry 

breaking and induce a neutral pion condensate after the QCD phase transition. 
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I. INTRODUCTION 

The strong (CP) problem in quantum chromodynamics 

(QCD) motivated the proposal of a new pseudoscalar 

particle beyond the standard model, the axion, as a possible 

solution [1–3] by elevating a CP violating angle to a 

dynamical field. Such field may be produced nonthermally 

in the early Universe, for example by a misalignment 

mechanism in which an initial axion coherent condensate 

is produced out of equilibrium and evolves toward the 

minimum of its (effective) potential. Such axion field has 

also been recognized as a potentially viable cold dark 

matter candidate [4–6]. Pseudoscalar particles with 

properties similar to the QCD axion can also be 

accommodated within suitable extensions beyond the 

standard model, collectively referred to as axion-like-

particles (ALP), which can also be dark matter candidates 

[7–11], in particular as compelling candidates for ultralight 

dark matter [12,13]. Furthermore, a dynamical misaligned 

axion coherent condensate could also be a dark energy 

candidate in the form of a quintessence field whose slow 

dynamical evolution toward an equilibrium minimum 

would induce an accelerated cosmological expansion phase 

[14]. 
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Constraints on the mass and couplings of ultralight ALP 

[9–11,15] are being established by various observations 

and experiments ranging from astrophysical phenomena to 

table-top experiments [16–18]. There are two important 

features that characterize ALP: (i) a misalignment 

mechanism results in coherent oscillations of the 

expectation value of the ALP field which gives rise to its 

contribution to the energy density as a cold dark matter 

component [4–6,9–11,19], and (ii) its pseudoscalar nature 

leads to an interaction between the ALP and photons or 

gluons via pseudoscalar composite operators of gauge 

fields, such as FμνF˜μν in the case of the ALP-photon 

interaction and Gμν;bG˜ 
μν;b in the case of gluons. We refer 

to these operators as Chern-Simons terms which are total 

surface terms. Such couplings were originally studied in 

Ref. [20] within the context of parity and Lorentz violating 

extensions of the standard model and early limits on these 
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couplings were established from birefringence effects, 

namely different dispersion relations for different 

polarizations, and the rotation of the plane of polarization 

from astrophysical sources. A telltale feature of 

birefringence from the electromagnetic coupling to axions 

is that the polarization rotation angle is frequency 

independent [21,22], which differentiates it from the more 

familiar Faraday effect resulting from the presence of 

magnetic fields in the astrophysical plasma. Optical 

properties of axion backgrounds have been discussed in 

Ref. [23], further electromagnetic signatures of axion 

electrodynamics were studied in Refs. [24,25], and photon 

production from parametric amplification of a misaligned 

axion condensate was studied in Ref. [26]. Analysis of 

evidence for parity violating effects in the Planck 2018 

polarization data of the cosmic microwave background 

(CMB) anisotropies revealed a nonvanishing cosmic 

birefringence angle at the 2.4σ level [27], and more 

recently a combined analysis of WMAP and Planck 

polarization data revealed hints of isotropic cosmic 

birefringence at the 3σ level [28–31]. These tantalizing 

hints may be a signal of cosmological axions. 

Axions may also play a role in condensed matter 

physics, possibly as emergent quasiparticles in topological 

insulators where magnetic fluctuations couple to 

electromagnetism just like axions [32–34], as axionic 

charge density waves in Weyl semimetals [35,36], or as an 

emergent axion response in multilayered metamaterials 

with tunable couplings [37] or in multiferroics [38]. The 

measurement of an emergent dynamic axion field in 

chromia has been reported in Ref. [39]; therefore, 

condensed matter systems may very well provide an 

experimental platform to test the main aspects of axion 

electrodynamics which may complement and bolster the 

case for axions in cosmology. Hence, the study of axion 

(electro) dynamics is of timely interdisciplinary relevance. 

In this article we suggest that axionlike quasiparticles in 

condensed matter systems mix with the cosmological 

axion; therefore topological insulators, Weyl semimetals, 

or metamaterials may provide experimental platforms to 

probe the cosmological axion and the ChernSimons 

condensate. 

A. Motivation and objectives 

The possibility of an axion or ALP being the dark matter 

and/or dark energy candidate with a hallmark signature of 

frequency independent cosmic birefringence motivates a 

study of its nonequilibrium evolution when coupled to 

standard model degrees of freedom. Recently, Refs. [40] 

implementedmethodsborrowedfromnonequilibriumquantu

m field theory, namely the in-in Keldysh-Schwinger 

formulation, and the theory of quantum open systems to 

study the nonequilibrium dynamics of axionlike particles 

coupled to a bath in thermal equilibrium. These studies 

focused on the damping of a coherent misaligned 

condensate as a consequence of its decay into photons from 

its coupling to electromagnetic fields via the Chern-Simons 

density, the concomitant thermalization of the axion 

fluctuations with the CMB photons yielding a mixed dark 

matter scenario, and an assessment of the timescales of 

decoherence and entropy production. The 

SchwingerKeldysh formulation of nonequilibrium 

quantum field theory is suited to obtain the causal 

equations of motion of the axion field in presence of a heat 

bath. These were obtained in Ref. [40] and shown to be 

stochastic, of the Langevin type with a Gaussian noise and 

include the retarded self-energy. The self-energy describes 

the damping of axion oscillations as a consequence of 

decay into the bath degrees of freedom (radiation reaction), 

and damping and noise are related by the quantum 

fluctuation dissipation relation, a consequence of which is 

the thermalization of axion fluctuations with the heat bath. 

An alternative method based on the quantum master 

equation confirms these 

results[40]andunequivocallyshowsthatdamping,thermaliza

tion, and decoherence are directly related and occur on 

similar timescales. 

Motivated by the confluence of interest on 

nonequilibrium axion dynamics both in cosmology and in 

condensed matter physics, in this article we study the 

emergence of a Chern-Simons (topological) condensate as 

a consequence of the nonequilibrium dynamics of a 

misaligned axion macroscopic coherent condensate. A 

Chern-Simons condensate would be manifest as a 

nonvanishing expectation value of the Abelian Chern-

Simons density E⃗ · B⃗ in the nonequilibrium density matrix 

that describes the heat bath and the dynamical misaligned 

axion condensate. This is distinctly different from the 

classical treatments of axion electrodynamics studied in 

Refs. [21,23–25], and to the best of our knowledge such 

study has not been previously undertaken. Furthermore, the 

possibility of testing axion electrodynamics in condensed 

matter systems, such as topological insulators and Weyl 

semimetals, bolsters the case for studying the emergence of 

Chern-Simons condensates as an intrinsic, fundamental 

nonequilibrium aspect of axion physics with 

interdisciplinary relevance. 

To this aim we implement the theory of linear response, 

ubiquitous in many body physics [41], to obtain the 

ChernSimons condensate induced by a misaligned axion 

condensate. While this study is focused on studying the 

emergence of a Chern-Simons condensate in Minkowski 

space-time, as an initial step toward a more complete 

understanding within the context of an expanding 

cosmology, the basic concepts are expected to translate to 

cosmology qualitatively, but with quantitative differences 

in the time evolution. Such study awaits the consistent 

extrapolation of the linear response treatment to the realm 

of an expanding cosmology. 
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This article is structured as follows: in Sec. II we define 

various models wherein an axion field is coupled to generic 

composite pseudoscalar operators O describing degrees of 

freedom within (or beyond) the standard model, and obtain 

an exact relation between the induced condensate hOi and 

the dynamical expectation value of the axion field. Linear 

response theory is implemented to obtain the induced 

nonequilibrium expectation value hOi to leading order in 

the axion coupling, and introduce the concept of the 

dynamical susceptibility, namely the response kernel that 

relates hOi to the coherent misaligned axion condensate. In 

this section we establish one of the main results: the 

dynamical susceptibility is directly and simply related to 

the axion self-energy. In Sec. III, we apply these results to 

obtain the nonequilibrium expectation value hE⃗ · B⃗ i, 
namely the Chern-Simons condensate, in axion 

electrodynamics. In this section we show that this 

condensate features ultraviolet divergences proportional to 

the dynamical axion condensate, which acts as an explicit 

parity-symmetry breaking term; we also obtain the high 

temperature contributions to the Chern-Simons condensate 

for ultralight axions. In Sec. IV we argue that axionlike 

quasiparticles in condensed matter systems such as 

topological insulators or Weyl semimetals mix with the 

cosmological axion via correlation functions of the 

ChernSimons density, and that a Chern-Simons condensate 

acts as a nonequilibrium driving term coupled to the 

emergent axion field. Therefore these experimentally 

available systems may be harnessed to probe the 

cosmological axion and the Chern-Simons condensate. In 

Sec. V we discuss important caveats in the cosmological 

setting, subtle renormalization aspects of the Chern-

Simons condensate, and we argue on corresponding results 

for the non-Abelian case, albeit with caveats. We also 

conjecture that a misaligned axion condensate may induce 

a neutral pion condensate and seed chiral symmetry 

breaking during the QCD phase transition. Section VI 

summarizes our conclusions. 

II. CONDENSATE INDUCED BY 

AXIONLIKE FIELDS 

In this section, we discuss a general composite 

pseudoscalar operator O coupled to axionlike fields and 

show that such coupling implies that a coherent condensate 

of the axion field induces a macroscopic condensate of the 

exact relation between the expectation value of the 

axionpseudoscalar operator, namely hOi ≠ 0. We obtain a 

formal 

field and that of the composite operator O. We then 

implement linear response to obtain an explicit relation 

between these condensates to leading order in the axion 

coupling. 

A. Exact relation between the ALP condensate and hOi 

composite pseudoscalar operatorWe consider an axionlike 

fieldOχðaxÞðxof generic fieldsÞ coupled to a χðxÞ. The 

Lagrangian density is 

L½a; ¼2 ð Þ

 ð Þ 2 ð ÞgaðxÞOχðxÞþLχ; 

ð2:1Þ 

where m0a is the bare axion mass and Lχ is the Lagrangian 

density describing the fields χ. Some examples of fields χ 

are electromagnetic fields with;b OχðxÞ ¼ E⃗ ðxÞ · B⃗ ðxÞ; 

gluon fields with OχðxÞ ¼ Gμν ðxÞG˜ μν;bðxÞ, where the tilde 

stands for the dual of the gauge fields; or fermionic fields 

with OχðxÞ ¼ iΨ¯ ðxÞγ5ΨðxÞ. These fields could also be 

coupled to other degrees of freedom within or beyond the 

standard model, which are also all included in Lχ. 

For gauge fields, the operators OχðxÞ are the Chern- 

Simons terms and are a total surface termdimensions, these 

operators feature dimension[20]. Inmass3 þ41, and the 

axionlike field aðxÞ features dimensionððmassÞÞ, which 

means they couple via nonrenormalizable interactions 

whose coupling strength features dimension 

ðgauge fields via Chern-Simons terms must be interpreted 

asmassÞ−1. Therefore, the axion interacting locally with 

an effective field theory, whose validity is restricted to 

scales below a cutoff Λ. Furthermore, at finite temperature 

T, the validity of the effective field theory requires that Λ≫ 

T so that high energy degrees of freedom are not thermally 

excited. This observation will become relevant in the 

discussion of the induced Chern-Simons condensate in the 

next section. 

The Heisenberg equation of motion for the axion field 

obtained from the Lagrangian density (2.1) is 

∂2 
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aðx;t⃗ Þ −∇2aðx;t⃗Þ þ m2
0aaðx;t⃗ Þ ¼ −gOχðx;t ⃗ Þ;

 ð2:2Þ 

where the time evolution of any operator A in the full 

Heisenberg picture is 

 Aðx;t⃗ Þ ¼ eiHðt−t0ÞAðx;t⃗ 0Þe−iHðt−t0Þ; ð2:3Þ 

with H ¼ Hχ þ Ha þ Hi being the total Hamiltonian for the χ 
and axion fields and their interaction. The expectation 

value of any Heisenberg picture field operator A is obtained 

as hAðx;t⃗ Þi ¼ TrðAðx;t⃗ Þρðt0ÞÞ where ρðt0Þ is the 

normalized, initial density matrix. In the Heisenberg 

picture the density matrix does not depend on time; 

therefore, taking the expectation value of the Heisenberg 

field equation (2.2) yields 

hOχðx;t⃗Þi ¼ ðx;t⃗Þ −∇2a¯ðx;t⃗Þ þ m2
0aa¯ðx;t⃗

 Þ; 

ð2:4Þ 

where a¯ðx;t⃗ Þ is the expectation value of axionlike field 

solutions of the Heisenberg equation of motion (2.2). This 

is an exact relation valid for arbitrary initial conditions and 

to all orders in the various couplings; however, Eq. (2.4) 

by itself does not yield a closed expression for hOχðx;t⃗ Þi. 

This motionis because a¯ðx;t⃗ Þ is the solution of the full 

equation ofa priori and is obtained 

(2.2), which is not known perturbatively in general. 

The exact relation (2.4) becomes useful when the solution 

a¯ðx;t⃗ Þ is obtained. 

B. Linear response 

We now formulate the general theory of linear response 

implemented to obtain a nonequilibrium expectation value 

of composite pseudoscalar operators coupled to axionlike 

fields as in the Lagrangian (2.1), relegating its specific 

application to the electromagnetic Chern-Simons term to 

the next section. 

The Lagrangian density (2.1) describes several relevant 

couplings of axionlike fields to generic fields χ. For g ¼ 0 

these degrees of freedom are assumed to be described by a 

parity even thermal equilibrium density matrix ρχ, 

consequently 

 TrOχðxÞρχ ¼ 0: ð2:5Þ 

A misaligned axionlike condensate is described by a 

classical field a¯ðx;t⃗ Þ corresponding to the expectation 

value of the axionlike field in a coherent state density 

matrix that describes the axion field [40]. Therefore we can 

decompose aðxÞ ¼ a¯ðx;t⃗ Þ þ a˜ðxÞ where a˜ðxÞ 

corresponds to the fluctuations of the axion field around the 

con- 

densate and features a vanishing expectation value in the 

axion density matrix. As envisaged in cosmology, the 

if it is a quintessence field driving cosmological 

expansion,misaligned condensate a¯ðx;t⃗ Þ is a 

macroscopic field; 

it is homogeneous within at least the Hubble scale. 

Therefore, neglecting the fluctuations a˜ðxÞ (this is a mean 

field approximation) the interaction term inaxion field 

results in the fields−ga¯ðx;t⃗ ÞOχðxÞ; hence the 

pseudoscalar coupling to theχ being coupled to an a(2.1) is 

LI ¼ 

dependence determined by the time evolution of thec-

number external source a¯ðx;t⃗ Þ with an explicit time 

misaligned condensate. In the presence of this classical 

source, the total time dependent Hamiltonian for the χ 

fields is 

 H˜ χðtÞ ¼ Hχ þ HIðtÞ; ð2:6Þ 

where Hχ is the Schroedinger picture Hamiltonian of the χ 
fields including coupling to other fields within or beyond 

the standard model except the axion field, and 

 HIðtÞ ¼ g Z d3xa¯ðx;t⃗ÞOχðx⃗ Þ ð2:7Þ 

is the interaction Hamiltonian in the Schroedinger picture 

of the χ fields, but with a¯ðx;t⃗ Þ playing the role of an 

“external” time dependent source term. In the Schroedinger 

picture the χ-field density matrix evolves in time as ρχðtÞ 
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¼ Uðt;t0Þρχðt0ÞU−1ðt;t0Þ; ð2:8Þ where the unitary time 

evolution operator Uðt;t0Þ obeys 

 d ˜ χ 

 idtUðt;t0Þ ¼ H ðtÞUðt;t0Þ ; Uðt0;t0Þ ¼ 1: ð2:9Þ 

The initial density matrix ρχðt0Þ is assumed to describe an 

ensemble of the χ degrees of freedom in thermal 

equilibrium at temperature T ¼ 1=β, namely, 

e−βHχ 

 ρχðt0Þ ¼ Tre−βHχ ; ð2:10Þ 

and therefore eiHχt0ρχðt0Þe−iHχt0 ¼ ρχðt0Þ; ð2:11Þ 

since in general ½Oχðx⃗ Þ;ρχðt0Þ ≠ 0 it follows that ρχ 

evolves in time out of equilibrium. 

Writing 

Uðt;t0Þ ¼ e−iHχtUðt;t0ÞeiHχt0; ð2:12Þ we find 

that Uðt;t0Þ obeys idt
d Uðt;t Þ ¼ H˜ I

ðHχÞ tÞUðt;t0Þ ; 

Uðt0;t0Þ ¼ 1; ð2:13Þ 

 0 ð 

where 

H˜ IðHχÞðtÞ ¼ eiHχtHIðtÞe−iHχt ¼ g Z d3xa¯ðx;t⃗ ÞOχðHχÞðx;t⃗ Þ; 

ð2:14Þ 

and 

 OχðH
χ
Þðx;t⃗ Þ ¼ eiH

χ
tOχðx⃗ Þe−iH

χ
t ð2:15Þ 

is the composite operator in the Heisenberg picture in terms 

of the Hamiltonian Hχ, namely in the absence of the 

coupling to the axion field. The solution of Eq. (2.13) is 

Uðt;t0Þ ¼ 1 − ig Zt0
t Z a¯ðx⃗ 0;t0ÞOχ

ðH
χ
Þðx⃗ 0;t0Þdt0d3x0 þ  

ð2:16Þ 

The expectation value of the Schroedinger picture operator 

Oχðx⃗ Þ in the nonequilibrium density matrix ρχðtÞ is 

hOχðx⃗ ÞiðtÞ ¼ TrðOχðx⃗ ÞρχðtÞÞ 

 ¼ TrðOð
χ
H

χ
Þðx;t⃗ÞUðt;t0Þρχðt0ÞU−1ðt;t0ÞÞ; 

ð2:17Þ 

where we have used Eqs. (2.8), (2.12), (2.11), (2.15) and 

the cyclic property of the trace. Using (2.16) up to first 

order in g, and using the cyclic property of the trace, we 

find hOχðx⃗ ÞiðtÞ ¼ hOχðx⃗ Þiðt0Þ þ Z d3x0 Zt0
t Ξðx⃗ −x⃗ 

0;t−t0Þa¯ðx⃗ 0;t0Þdt0 þ; 

ð2:18Þ 

where 

 hOχðx⃗ Þiðt0Þ ¼ TrOχðx⃗ Þρχðt0Þ: ð2:19Þ 

The linear response kernel, namely the dynamical 

susceptibility, is given by 

Ξðx⃗ −x⃗ 0;t−t0Þ¼−igTrð½Oχ
ðH

χ
Þðx;t⃗ Þ;Oχ

ðH
χ
Þðx⃗ 

0;t0Þρχðt0ÞÞ; 

 t>t0; ð2:20Þ 

and a¯ðx;t⃗ Þ is the solution of the equation of motion for 

the expectation value of the axion field. We have used that 

the equilibrium density matrix is space-translational 

invariant, and because ½Hχ;ρχðt0−Þ ¼t0, as confirmed by 

the analysis0 it follows that Ξ must be solely a function of 

t 

below. Assuming that ρχðt0Þ is even under parity, it follows 

that 

 hOχðx⃗ Þiðt0Þ ¼ 0: ð2:21Þ 
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In Sec. V we discuss the caveats associated with this choice 

in cosmology. 

Therefore, to leading order in the axion coupling we find 

the induced nonequilibrium expectation value for t > t0 in 

linear response: hOχ x⃗ ÞiðtÞ ¼d3x0 Z Ξðx⃗ − x⃗ 0;t − t0Þa¯ðx 

⃗0;t0Þdt0; t 

t0 

ð2:22Þ 

with the dynamical susceptibility Ξðx⃗ − x⃗ 0;t − t0Þ given 

by (2.20). 

It is convenient to write the susceptibility Ξ in terms of a 

Lehmann (spectral) representation. This is achieved by 

writing 

 OχðHχÞðx;t⃗Þ ¼ eiHχte−iP⃗ ·x⃗ Oχð0⃗ ;0Þe−iHχteiP⃗ ·x⃗ ; ð2:23Þ 
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 Tre χ m;n  

1 

 TrðOχðHχÞðx⃗ 0;t0ÞOχðHχÞðx;t⃗Þρχðt0ÞÞ ¼ −βHχ Xe−βEnjhnjOχð0⃗ ;0Þjmij2e−iðEn−EmÞðt−t0ÞeiðP⃗ n−P⃗ mÞðx⃗ −x⃗ 0Þ: 

 Tre m;n 

In terms of the spectral functions 

2π 4 

 ρ> ⃗ ð Þ −βEn O ⃗ 2δ − − δ ⃗ − − 

ð2:24Þ 

 ð 0 Þ ¼ Tre−βHχ Xm;n jh j χð Þj ij ð 0 ð m nÞÞ ð ð m nÞÞ 

ρ< ⃗ ð2πÞ4 −βEn O ⃗ 2δ − − δ ⃗ − − 

 ð Þ 

 ð 0 Þ ¼ −βH
χ X jh j χð Þj ij ð 0 ð n mÞÞ ð ð n mÞÞ 

 Tre m;n 

the correlation functions (2.24) can be written as 

 χ χ 
d

4
k 

> ⃗ −ik0ðt−t0Þ ik⃗ ·ðx⃗ −x⃗ 0Þ 

 O ðH 
Þ O ðH 

Þ 0 0 ρ ρ 

 ð Þ 

 TrðOχ ðx;t⃗

 ÞOχ ðx⃗ ;t 

Þρχðt0ÞÞ ¼ −βH X 

−βEnjhnjOχð0⃗ 

;0Þjmij2eiðEn−EmÞðt−t0Þe−iðP⃗ n−P⃗ mÞ·ðx⃗ −x⃗ 0Þ 

 k ;k  e n 0;0 m k E E k P P 2:25 

 k ;k  e n 0;0 m k E E k P P ; 2:26 

 Trð χ ðx;t⃗ Þ χ ðx⃗ ;t Þ χðt0ÞÞ ¼ Z ð2πÞ4 ðk0;kÞe e ð2:27Þ 

4 

 TrðOχðHχÞðx⃗ 0;t0ÞOχðHχÞðx;t⃗

 Þρχðt0ÞÞ ¼ Z ⃗ −ik0ðt−t0Þ ik⃗ ·ðx⃗ 

−x⃗ 0Þ 

Upon relabeling m ↔ n in the sum in the definition (2.26) Introducing the spectral density and 

recalling that Oχ is a Hermitian operator, we find the 

Kubo-Martin-Schwinger relation [42] ρðk0;kÞ ¼ ρ>ðk0;kÞ −ρ<ðk0;kÞ; ð2:30Þ 

 ρ<ðk0;kÞ ¼ ρ>ð−k0;kÞ ¼ e−βk0ρ>ðk0;kÞ: ð2:29Þ the relation (2.29) implies that 

  

     
ρ            2  28  
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and the density matrix in the basis of simultaneous 

eigenstates of Hχ and the total momentum operator P⃗ , 

namely ðHχ;P⃗ Þjni ¼ ðEn;P⃗ nÞjni. Introducing the 

resolution of the Oχ
ðH Þðx;t⃗ Þ must be a Hermitian operator 

because the axionP identity in this basisχ m jmihmj ¼ 1, and 

recognizing that field is real and the total Hamiltonian is 

Hermitian, we find  
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 ρðk0;kÞ ¼ −ρð−k0;kÞ: ð2:31Þ 

The dynamical susceptibility is now expressed solely in 

terms of the spectral density ρðk0;kÞ as 

Z ð2dπ4kÞΞðx⃗ − x⃗ 0;t − t0Þ ¼ −ig 

 −ik0ðt−t0Þeik⃗ ·ðx⃗ −x⃗ 0Þ: ρ 

4 ðk0
;kÞe 

ð2:32Þ 

The Lehmann representations (2.24) and the spectral 

densities (2.25), (2.26) are exact results, valid to all orders 

in the couplings of the χ fields to degrees of freedom 

within or beyond the standard model except the axion. 

Therefore the dynamical susceptibility (2.32) while linear 

in the coupling g (linear response) is in principle to all 

orders in all other couplings. 

In Ref. [40] it was found that the expectation value of 

the axion field obeys the equation of motion 

t ðx;t⃗ Þ −∇2a¯ðx;t⃗ Þ þ m2
0aa¯ðx;t⃗ Þ þ Z

 Zt0
t Σðx⃗ − x⃗ 0;t − t0Þa¯ðx⃗ 0;t0Þd3x0dt0 ¼ 0;

 ð2:33Þ 

where m2
0a is the bare axion mass, and the retarded self 

energy Σðx⃗ − x⃗ 0;t − t0Þ is given by [40] 

Σðx⃗ −x⃗ 0;t−t0Þ¼−ig2Trð½Oχ
ðH

χ
Þðx;t⃗ Þ;Oχ

ðH
χ
Þðx⃗ 

0;t0Þρχðt0ÞÞ: 

ð2:34Þ 

Remarkably, the dynamical susceptibility is simply 

related to the axion retarded self-energy to leading order 

in the axion coupling g but to all orders in the couplings of 

the fields χ to any other field within or beyond the standard 

model except the axion [40], namely 

 Σðx⃗ − x⃗ 0;t − t0Þ ¼ gΞðx⃗ − x⃗ 0;t − t0Þ: ð2:35Þ 

This is one of the important results of this study, and 

applies in general for any of the interactions of the form 

gaðx;t⃗ ÞOχðx;t⃗ Þ, with important consequences explored 

below. 

The main result of this section is the nonequilibrium 

induced expectation value of the composite operator Oχ, 

which in linear response is given by 

hOχðx⃗ ÞiðtÞ ¼ −ig Z ð2dπ4kÞ4 Z 3x0 

 ρðk0;kÞ d 

 × Zt0t e−ik0ðt−t0Þeik⃗ ·ðx⃗ −x⃗ 0Þa¯ðx⃗ 0;t0Þdt0; ð2:36Þ 

which is obtained by combining Eq. (2.22) with the 

spectral representation (2.32). This expression can be 

written in a more illuminating manner by recognizing that 

a¯ðx;t⃗ Þ is the solution of the equation of motion, Eq. 

(2.33), with the self energy to leading order in the coupling 

g given by 

Eq. (2.34). Using the relation (2.35) between the dynamical 

susceptibility and the self energy, and the equation of 

motion (2.33), it is straightforward to confirm the result 

(2.4), which has been obtained as the expectation value of 

the exact Heisenberg equations of motion, to leading order 

in the coupling g, namely linear response. 

Note that because Σ∝ g2, it follows that 

ðx;t⃗ Þ −∇2a¯ðx;t⃗ Þ þ m2
0aa¯ðx;t⃗ Þ ∝ g2; ð2:37Þ 

and the expectation value hOχðx⃗ ÞiðtÞ ∝ g. 

C. hOi for misaligned initial conditions 

We now consider the cosmologically relevant case of 

misaligned initial conditions for the axion condensate, 

where the axionlike fields are produced nonthermally and 

undergo a damped oscillations. In Ref. [40] it is shown that 

in Minkowski space-time the solution of the equation of 

motion (2.33) is described by exponentially damped 

oscillations, in which the frequency and decay rate are 

spatial-momentum and temperature dependent. Therefore, 

a general form of the axion-field amplitude is 

a¯ðx;t⃗  Þ 

¼ðdπ3kÞ3

 ik⃗ ·x⃗ a¯kðtÞ; e 

2 

 a¯kðtÞ ¼ ½Ake−iωkðt−t0Þ þ Akeiωkðt−t0Þe−Γ2kðt−t0Þ ð2:38Þ 

 



SHUYANG CAO and DANIEL BOYANOVSKY PHYS. REV. D 107, 083531 (2023) 

083531-10 

where Ak is a classical complex amplitude determined by 

initial conditions, ωk is the renormalized frequency with 

ω2
k þ δω2

k ¼ k2 þ m2
0a, δωk the renormalization 

counterterm, and Γk the renormalized decay rate, both 

depending on momentum and temperature. In Appendix 

we provide an alternative method to solve the equation of 

motion based on multitimescale analysis yielding the same 

results. 

Taking the spatial Fourier transform of (2.36) with the 

solution (2.38) yields 

−ig dk π0 Zt0
t hOχikðtÞ ¼ 

dt0ρðk0;kÞe−ik0ðt−t0Þa¯kðt0Þ: 2 

ð2:39Þ 

The time integrals are straightforwardly evaluated with a¯k 

given by Eq. (2.38), yielding 

where Ωk ¼ ωk − iΓk=2. 

The second line in Eq. (2.40) features oscillatory 

integrals that represent transient processes due to the 

sudden switch on at time t ¼ t0, and vanish fast for1 t − t0 ≫ 

ma; therefore this contribution will be neglected. 

In the first line, we use the narrow width approximation 

Γk → 0 and the identity 1=ðx  i0þÞ ¼ Pð1=xÞ ∓ iπδðxÞ and 

obtain to leading order in g, 

1 

hOχikðtÞ ¼ ½ΣRðk;ωkÞa¯kðtÞ þ Γka_¯kðtÞ; ð2:41Þ g 

where [40] (see also Appendix) 

ρ 

g −∞ 2 k − 0ΣRðk;ωkÞ ¼ 

 2 ρðωk;kÞ ¼ ωkΓk: 

 
1 Similar contributions are neglected in obtaining the solution 

(2.38); see Appendix and Ref. [40] for details. 

ð2:42Þ 

This result is in complete agreement with the result (2.4) 

as can be seen as follows: taking the spatial Fourier 

transform of Eq. (2.4), using the expression for a¯kðtÞ 

given by Eq. (2.38), and neglecting terms of order  

we find 

hOχikðtÞ ¼ 1 ðω2k − ðk2 þ m20aÞÞa¯kðtÞ þ Γka¯_kðtÞ: 
ð2:43Þ g 

The exact frequency ωk corresponds to the real part of the 

pole in the propagator of the axion field; namely it is the 

solution of the equation [40] 

 ω2k ¼ ðk2 þ m20aÞ þ ΣRðωk;kÞ; ð2:44Þ 

from which Eq. (2.41) follows, thereby explicitly 

confirming the equivalence of the results (2.4), (2.41) in 

linear response. 

III. CHERN-SIMONS CONDENSATE 

The results above are valid for any generic pseudoscalar 

composite coupled to the axion field as in the Lagrangian 

density (2.1). We now focus specifically on the case of the 

axion field coupled to photons via the Chern-Simons term 

Oχðx;t⃗Þ ¼ E⃗ ðx;t⃗Þ·B⃗ ðx;t⃗ Þ ¼ −1 FμνF˜μν ; F˜μν ¼ 

1εμναβFαβ; 

 4 2 

ð3:1Þ 

 
this pseudoscalar density is a total surface term, since 

h i ð Þ ¼∞

 ρð  Þ þ i

 þ0;k  

Oχ k t −gAke −∞ 
2 Ake −∞ 2π k0 k þ gAke−iΩkt0 Z

 Þ  iΩkt0

 ðt−t0Þ 
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 FμνF˜μν ∝∂μðεμναβAν∂αAβÞ: ð3:2Þ 

In this case hE⃗ ·B⃗ iðx;t⃗ Þ¼Z d3x0Zt0
tΞðx⃗ −x⃗ 0;t−t0Þa¯ðx⃗ 

0;t0Þdt0; ð3:3Þ 

where the susceptibility is the retarded commutator of the 

Chern-Simons density 

Ξðx⃗ −x⃗ 0;t−t0Þ¼−igTrð½ðE⃗ ·B⃗ ÞðH
em

Þðx;t⃗ Þ;ðE⃗ ·B⃗ 

ÞðH
em

Þðx⃗ 0;t0Þ 

 ×ρχðt0ÞÞΘðt−t0Þ; ð3:4Þ 

to which we refer as the Chern-Simons susceptibility in 

analogy with response functions in many body physics. 

The superscript ðHemÞ in the operators of the ChernSimons 

density refer to the Heisenberg fields in absence of their 

coupling to the axion, namely to all orders in the 

electromagnetic interaction with degrees of freedom within 

or beyond the standard model except for the axion field. 

The Feynman diagram describing the induced condensate 

(3.3) in the case of free photons is shown in Fig. 1. 

We now obtain the Chern-Simons susceptibility Ξ (3.4) 

by considering free electromagnetic fields. This 

approximation is valid within the cosmological setting 

after recombination for the following reasons: when the 

temperature (≃eV) is much smaller than the electron mass 

the lepton contribution to the renormalized photon self-

energy is perturbatively small and thermally suppressed; 

therefore there is no (gauge invariant) thermal mass for the 

photon [43,44]. Furthermore the free electron density n 
vanishes rapidly during recombination; therefore the 

plasma frequency Ωpl ¼ 

p4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiπe2n=m is 

vanishingly small, and the photon bath is described by 

blackbody radiation, namely 

 

FIG. 1. hE⃗ · B⃗ iðxÞ in linear response (3.3) for the case of free 

photons. The wavy lines correspond to the retarded correlation 

free thermal photons, as evidenced by the (nearly) 

blackbody spectrum of the cosmic microwave background. 

Under these conditions, the spectral density (2.30) has 

been obtained in Refs. [40], and is given by 

ð ⃗ Þ ¼ ðK2πÞ2 1 þ β2kln11 −− ee−βωþII ΘðK2Þ ρ k0;k 

32 −βω− 

þ 2 ln1 − e−−βωβωþ−IIII ð 2Þsignðk0Þ; βk 1 − 

e Θ−K 

 K2 ¼ k20 − k2 ; ωðIÞ ¼ jk0j 2 k ; ωðIIÞ ¼ k  j2k0j: 

ð3:5Þ 

The terms with 
Θðk2

0 − k2Þ arise from the processes a ↔ 

2γ, namely emission and absorption of photons with the 

reverse or recombination process 2γ → a being a 

consequence of the radiation bath; these processes feature 

support on the axion mass shell for massive axions. The 

contribution proportional to 
Θðk2 − k2

0Þ only features 

support below the light cone; it describes off shell 

processes γa ↔γ and vanishes in the k → 0 limit. 

Motivated by the cosmological case we now consider a 

homogeneous misaligned axion condensate depending 

solely on time by setting 

 Ak ¼ ð2πÞ3δ3ðk⃗ Þa0; ð3:6Þ 

namely a¯ðtÞ ¼ e−Γ2tða0e−imat þ a0eimatÞ; ð3:7Þ 

from which it follows that the induced Chern-Simons 

condensate is also homogeneous, and from the result 

(2.39) it is given by 

h ið Þ ¼∞ dk0−ik0t Z t 

eik0t0a¯ðt0Þdt0: 

E⃗ · B⃗ t −igρ 

 −∞ ð2 Þ t0 

ð3:8Þ From Eq. (3.5) we find 

function (3.4), the heavy solid line to the misaligned axion 

condensate a¯ðx0Þ. 
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ρðk0;0Þ ¼ k40 1 þ 2nk 0signðk0Þ; nðωÞ ¼ : 

 32π 2 

ð3:9Þ 

Before we study the response to an oscillating coherent 

misaligned a¯ðtÞ, it is illuminating to consider the case 

wherein such expectation value has relaxed to a time 

independent equilibrium minimum a¯0 at a time t0 and 

remains constant for t > t0. Such a situation emerges from 

a damped oscillatory expectation value around a minimum 

away from the origin, if, for example the axion potential 

features such a minimum. Setting a¯ðt0Þ → a¯0 for t > t0, 

the time integral in (3.8) becomes ∝ sinðk0ðt − t0Þ=2Þ=k0 

yielding a nonvanishing Chern-Simons condensate. 

However as the time interval t − t0 →∞ the time integral → 

2πδðk0Þ and the induced Chern-Simons condensate 

vanishes. This is consistent with the fact that the Chern- 

Simons density E⃗ · B⃗ is a total surface term (3.2) [20], and 

its space-time integral vanishes in the infinite time and 

volume limit. However, the nonequilibrium result within 

finite timelike hypersurfaces is nonvanishing, and as the 

time integral in (3.8) makes explicit, the induced conden- 

sate is proportional to the difference of a function evaluated 

at the two hypersurfaces at times t and t0, when the spatial 

volume has been taken to infinity. Furthermore, a¯ðtÞ is 

the dynamical axion condensate which is a solution of the 

equation of motion (2.33) for k ¼ 0, and we note that the 

only space-time constant solution of the equation of motion 

(2.33) is a¯ ¼ 0, which obviously yields a vanishing Chern-

Simons condensate as suggested in Eq. (2.4). 

Within the cosmological setting, the initial time t0 is 

approximately the time of the last scattering surface 

because we are considering free photons in thermal 

equilibrium in the intermediate state, and t is of theorder of 

the Hubble time today so that t ≫ t0 and t − t0 ≫ 1=ma;1=T. 

Let us now consider a dynamical homogeneous solution 

of the equation of motion (2.33) given by Eq. (3.7) where 

ma is the renormalized axion mass [40], and a0 is a classical 

complex amplitude determined by initial conditions (see 

Appendix). From the general result (2.43) for k ¼ 0 with 

ω
k¼0 ≡ ma, and consistently keeping terms up to 

Oðg2Þ we find 

hE⃗ · B⃗ iðtÞ ¼ 1½ðm2a − m02aÞa¯ðtÞ þ Γa_¯ðtÞ:

 ð3:10Þ g 

Furthermore, the relations (2.44) and (2.42) yield 

m2
a − m2

0a ¼ g2 Z

 π

 Rð0;maÞ; ð3:11Þ 

 −∞ 0 

and [40] 

Γ ¼ g2 ð2 a;0Þ ¼ g642mπ3a 1 þ 2nm 2a ð3:12Þ ρ m 

ma 

is the axion decay rate a → 2γ [40] (see Appendix). 

This is one of the main results of this study. For the case 

of an ultralight axion witn ma ≲μeV and even for 

temperatures of the order of the CMB temperature today 

10−4 eV, it follows that T ≫ ma. Therefore using the spectral 

density (3.9) in this high temperature limit we find [40] 

m2a − m02a ¼ −128g2
Λ

π42 F0mΛ22a − g2π152T4 FTmT2a2; 

ð3:13Þ where the first term is the zero temperature 

contribution, for which we carried out the integral in k0 in 

(3.11) with an ultraviolet cutoff Λ≫ ma;T, delimiting the 

regime of validity of the effective field theory, and the 

second term is the finite temperature contribution, with 

 F0 mΛ22a ¼ 1 þ 4mΛ22a þ mΛ4a4 lnmΛ2a2 þ  ð3:14Þ 

FT mT2a2 ¼ 1 þ 2415πm2T2a2 − 3215πm2Ta44 lnmTa þ :

 ð3:15Þ 

The dots stand for higher orders in ma=Λ and ma=T 
respectively, and to leading order in the high temperature 

limit we find 

g2m2aT 

 Γ ¼ 16π : ð3:16Þ 

The ultraviolet divergence of the Chern-Simons 

condensate resulting from the first term in (3.13) is not 

unexpected. The Chern-Simons density is an operator of 

mass dimension four, just like E⃗ 2 and B⃗ 2; however, unlike 

these operators whose vacuum expectation values yield the 

zero point energy, the expectation value of E⃗ · B⃗ vanishes 

if the state is invariant under parity. In other words, the 

expectation value of the Chern-Simons density is protected 

 



CHERN SIMONS CONDENSATE FROM MISALIGNED AXIONS PHYS. REV. D 107, 083531 (2023) 

083531-13 

  
  

   

from ultraviolet divergences by parity. However, an 

expectation value of the pseudoscalar axion breaks parity, 

therefore, in the presence of this parity-symmetry breaking 

term the ultraviolet divergence of E⃗ · B⃗ becomes explicit, 

and as exhibited by Eq. (3.10) is proportional to the 

symmetry breaking term in linear response. We choose to 

renormalize the Chern-Simons condensate by subtracting 

the T ¼ 0 (vacuum) contribution; subtle aspects of 

renormalization are discussed in more detail in Sec. V. 

Keeping the leading order term in the high temperature 

expansion, the renormalized expectation value is given by 

hE⃗ · B⃗ iðRÞðtÞ ¼ −gπ2T4 ð Þ þ 

gm2aT a¯_ðtÞ þ Oðm2a=T2Þ; a¯ t 

 15 16π 

ð3:17Þ 

with a¯ðtÞ the (spatially homogeneous) solution of the 

equation of motion (2.33). This is another of the main 

results of this study. 

We can obtain an estimate of the energy density stored 

in the Chern-Simons condensate as compared with that in 

the cosmic microwave background today, ρ0γ ¼ π2T4
0γ=15, 

by using the following estimates: 

 2a2 ≃ρ0DM ¼ ρ0cΩDM ; g ¼ C ;  ð3:18Þ 

ma fa 

where C < 1 is a dimensionless constant and fa the axion 

decay constant, and using the values, ΩDM ≃ 0.23;h ≃ 0.7 

and the temperature of the cosmic microwave background 

today T0γ ¼ 2.37 × 10−4 eV, we find 

    hE⃗ · B⃗ iðRÞðt  

   a μeV 3 

 ρ0γ f ma 

× 1−2.2× 10−9  ma   × 3 ×10−19: 

μeV 

ð3:19Þ 

This analysis suggests that low mass axions with ma ≪ 

μeV yield larger contributions to the energy density stored 

in the Chern Simons condensate, perhaps leading to an 

observational avenue. 

IV. PROBING THE CHERN-SIMONS 

CONDENSATE WITH EMERGENT AXION 

QUASIPARTICLES 

The analysis above unambiguously implies that a 

macroscopic axion condensate will induce a macroscopic 

ChernSimons condensate, leading to the question of what 

are the observational consequences of such a topological 

condensate. While it is possible that a cosmological imprint 

of this condensate may be observable in the polarization 

signal of the CMB in a manner yet to be understood and 

studied further, here we suggest that the emergent axionlike 

quasiparticles in topological insulators [33–35], Weyl 

semimetals [36], multilayered metamaterials [37], or 

magnetoelectric insulators [39] may be harnessed to probe 

both the cosmological axion and the Chern-Simons 

condensate. In these materials, an axionlike collective 

quasiparticle excitation Θðx;t⃗ Þ couples to the 

electromagnetic fields [32–36,39] with 

 LΘ ¼ αΘðx;t⃗ÞE⃗ ðx;t⃗Þ · B⃗ ðx;t⃗ Þ;

 ð4:1Þ 

with α the electromagnetic fine structure constant. In 

multilayered metamaterials, instead of α the effective 

coupling can be tuned making these platforms more 

flexible [37]. This coupling brings two important 

consequences, both relevant to probing cosmological 

axions: 

(i) The emergent axionlike quasiparticles described 

bythe effective field Θðx;t⃗ Þ mix with the 

cosmological axion aðx;t⃗ Þ via a common two-

photon intermediate state. This is depicted in Fig. 2 by 

the photon loop connecting the external fields Θðx;t⃗ 

Þ and aðx;t⃗ Þ resulting in off diagonal components of 

the propagators in the material. An important aspect 

of this mixing is that the off diagonal matrix elements 

of the propagator are of order gα. This aspect 

combined with coherence of the axion field in the 

form of a macroscopic condensate may yield 

observational effects at leading order in g, which 

results in an enhancement in detection efficiency over 

other possible processes such 

 

FIG. 2. Mixing between the emergent axion field Θðx;t⃗ Þ and 
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the cosmological axion fieldcorrelation function. The wavy lines 

correspond to the correlationaðx;t⃗ Þ via the Chern-Simons 

function (3.4), the heavy solid line to the axion field aðx0Þ, and 

the double solid line to the emergent axion quasiparticle field 

Θðx;t⃗ Þ. 

as “axion shining through walls” with a transition 

probability of order g4. 

(ii) As discussed above, in presence of a 

misaligned(cosmological) axion condensate, aðx;t⃗ Þ 

¼ a¯ðx;t⃗ Þ þ a˜ðx;t⃗ Þ where a¯ðx;t⃗ Þ is a classical 

field describing a macroscopic condensate. Replacing 

aðx;t⃗ Þ → a¯ðx;t⃗ Þ inthe externallegof the mixed 

propagatorinFig. 2, the photon loop and the external 

c-number external leg a¯ðx;t⃗ Þ yield the Chern-

Simons condensate (see Fig. 1) hE⃗ · B⃗ iðx;t⃗ Þ which 

acts as an external time dependent c-number source 

term, namely αΘðx;t⃗ ÞhE⃗ · B⃗ iðx;t⃗ Þ → αΘðx;t⃗ 

Þhðx;t⃗ Þ, as depicted in Fig. 3. 

Such an external source term, linearly coupled to Θðx;t⃗ 

Þ results in an effective external time dependent driving 

term displacing the quasiparticle field off equilibrium with 

an oscillatory behavior corresponding to the time 

dependence of the cosmological axion. For a homogeneous 

axion condensate, this driving term induces an oscillatory 

macroscopic condensate of the emergent axionlike field in 

the material, namely a coherent state of the quasiparticle 

degrees of freedom, which in principle could be measured 

along the lines of the experimental setup in Ref. [39], and 

perhaps with enhanced tunability of the coupling in the 

case of multilayered metamaterials [37], thereby directly 

probing the Chern-Simons condensate and, indirectly, the 

cosmological axion condensate. However a recent analysis 

of the signal to noise ratio in multiferroics suggests that the 

coupling between axion dark matter and ferroic orders in 

multiferroics [38] may not yield an observable signal of 

dark matter axions. However, the possibility of harnessing 

other materials for detection, in particular via the coupling 

to the Chern Simons condensate remains to be explored. 

 

FIG. 3. Replacing the axion field by the misaligned axion 

which acts as an external sourceidentified with the Chern-

Simons condensatecondensate a¯ðx;t⃗ Þ the photon loop 

withhðΘx;t⃗a¯ðas the external leg isx;t⃗Þ ¼ hE⃗Þ · B⃗ i (⃗ see 

Fig.linearly1), 

coupled to the quasiparticle axion field h

 

⃗ · Bi E 

. 

V. DISCUSSION 

A. Renormalization of the Chern-Simons condensate 

As discussed above, for a nonvanishing dynamical 

expectation value of the axion field, the induced 

ChernSimons condensate features ultraviolet divergences 

and it must be renormalized. The first term in (3.10) and 

the function F0 given by (3.14) are obtained by imposing an 

ultravioletcutoffΛinthek0 integralofthespectraldensityin 

Eq.(3.11).Thiscutoffisinterpretedasthescalebelowwhich 

the effective field theory described by the local Lagrangian 

density(2.1)isvalid.Evenwhenthisscaleisfinite,theresult 

(3.10) implies a strong sensitivity to this scale. There does 

not seem to be an obvious manner to renormalize the 

ChernSimons condensate since it depends explicitly on 

time through the dynamical expectation value of the axion 

field. Therefore, we proceed to renormalize it simply by 

subtracting the vacuum contribution, yielding the leading 

order renormalized condensate in the high temperature 

limit T ≫ ma given by the result (3.17). The vacuum 

subtraction is motivated by the subtraction of the zero point 

contributions to hE⃗ 2i and hB⃗ 2i, namely the subtraction of 

the zero point energy, since these operators are also of mass 

dimensionfourandfeaturethesametypeofultravioletdiverge

nces ∝Λ4 as the Chern-Simons condensate. However, 

unlike the vacuumsubtractionforhE⃗ 2i;hB⃗ 
2ithesubtractionforhE⃗ · B⃗ i is proportional to the 

misaligned axion condensate which depends explicitly on 

time. It remains to be explored further if there is a suitable 

and more rigorous renormalization scheme for hE⃗ · B⃗ 

iðtÞ, beyond a vacuum subtraction or subtracting solely the 

ultraviolet sensitive terms. 

B. Cosmological caveats 

Our ultimate objective is to understand the cosmological 

implications of the nonequilibrium dynamics of axions (or 

axionlike particles) in cosmology. To this aim, the results 

obtained above in Minkowski space-time serve as a 

prelude, and a “proof of principle” of the application of the 

concepts 

behindlinearresponsetoextracttheinducedparityviolating 

Chern-Simons condensate. There are several obvious 
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differences between the dynamics in Minkowski 

spacetime, and in cosmology: Hubble expansion modifies 

the time evolution of the axion condensate including a 

damping term in the equation of motion proportional to the 

Hubble rate of expansion; axion decay into photons, or 

other processes that lead to damping of the condensate will 

also add to the damping dynamics but through a self-energy 

correction that must be obtained from field quantization in 

the expanding cosmology. However, by dimensional 

analysis, linear response, and under the assumption that the 

axion condensate undergoes damped oscillations, the 

general form (3.10) qualitatively describes the 

ChernSimons condensate, albeit with a different functional 

form of Γ and the function FT in Eq. (3.15) since the high 

temperature behavior of m  g2T4 on dimensional 

grounds, and both must include the effect of Hubble 

expansion. 

These aspects notwithstanding, the results in Minkowski 

space-time indicate that the qualitative aspects and main 

conclusion, namely a dynamical misaligned coherent axion 

condensate will induce a macroscopic condensate of the 

composite operator(s) coupled to the axion as in Eq. (2.1), 

will remain. Therefore, the calculation in Minkowski 

spacetime with the approximation of free photons in the 

ChernSimons susceptibility provides a “proof of principle” 
of the main concepts and the qualitative form of the 

condensate. 

Furthermore, the potential observational consequences 

of such a condensate in topological or metamaterials as 

discussed in the previous section are reliably described by 

the Chern-Simons susceptibility calculated with free 

photons as such possible experiments would be carried out 

today when the radiation bath to which the cosmological 

axion is coupled is the cosmic microwave background. 

C. Neutral pion condensate from misaligned axions 

The axion is a quasi-Nambu-Goldstone boson, and as 

such it couples directly to other matter fields via a 

derivative coupling to a pseudovector current. However, 

the axion couples indirectly to the neutral pion via an 

intermediate state of two photons as can be understood 

with the following argument. The neutral pion decays into 

two photons, with an effective coupling of the form 

8π π ⃗ B⃗ as a consequence of the chiral 

anomaly, with α=πfπ ≃ 0.025 GeV−1, with α the fine 

structure constant, and fπ the pion decay constant. This 

implies the process π0 ↔ 2γ ↔ a, described by a Feynman 

diagram similar to that in Fig. 2 but replacing Θ→π0. This 

process entails that the axion and the neutral pion can mix 

via a common intermediate state of two photons; this is an 

off diagonal self-energy diagram that is completely 

determined by the Chern-Simons dynamical susceptibility 

(3.4); therefore we expect this “mixing” to be of order 

gα=fπ × T4. We are currently exploring this phenomenon. 

D. Non-Abelian Chern-Simons condensate 

An axion coupling of the form gaðxÞGμν;bG˜ μν;b where 

Gμν;b is the gluon gauge field strength tensor and G˜ μν;b its 

dual, would yield a non-Abelian Chern-Simons condensate 

hGμν;bG˜ μν;biðtÞ in the same way as that for the Abelian 

gauge theory. In this case the dynamical susceptibility is 

the retarded commutator (2.20) but with Oχ ¼ Gμν;bG˜ μν;b. 

While in principle a calculation similar to that of the 

Abelian case yields the dynamical susceptibility (and the 

quark-gluon contribution to the axion self energy) there are 

several important differences with the Abelian case that 

would lead to daunting technical aspects. Not only does the 

non-Abelian nature of the gauge field introduce new 

vertices, but also below the QCD temperature gluons and 

quarks are confined to mesons and baryons involving 

nonperturbative physics. Furthermore for temperatures 

above the QCD scale, which is larger than the masses of all 

but the top quark, these degrees of freedom are 

ultrarelativistic and yield self-energy corrections to the 

gluon propagators in the form of hard thermal loops both 

from gluons and quarks which cannot be neglected [43,44]. 

On dimensional grounds (Gμν;bG˜ μν;b has mass dimension 

four) we expect ultraviolet divergences, or rather 

sensitivity to a cutoff Λ delimiting the validity of the 

effective field theory description similar to the Abelian 

case. Furthermore, we also expect that the non-Abelian 

Chern-Simons condensate will be proportional to 

a¯ðtÞ;a_¯ðtÞ; hence an ambiguity in the renormalization of 

this condensate should arise in much the same way as for 

the Abelian case. From the general results (2.4), (3.7)) and 

just on dimensional grounds we expect that after 

subtracting the vacuum term altogether, the high 

temperature limit of the finite temperature contribution is 

of the form 

hGμν;bG˜ μν;biðtÞ ¼ gCGT4a¯ðtÞ þ D G ΓðTÞa_¯ðtÞ;

 ð5:1Þ g 

where ΓðTÞ is the relaxation rate of the misaligned axion 

condensate, and CG, DG will be functions of the ratios of the 

various scales, such as the axion mass and quark masses to 

the temperature. Notwithstanding these quantitative and 
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technical aspects, the general results (2.4), (3.7) imply that 

a misaligned axion will induce a condensate of the 

nonAbelian Chern-Simons density. 

VI. CONCLUSIONS 

The nonequilibrium dynamics of axions is of an 

interdisciplinary interest both in cosmology, as a possible 

candidate for dark matter, and/or dark energy as well as in 

condensed matter physics where axionlike excitations may 

emerge as 

collectivequasiparticlesinparityviolatingtopologicalinsulat

ors, density waves in Weyl semimetals, or in 

metamaterials. In this article we study hitherto unexplored 

nonequilibrium aspects of axions in Minkowski space-time 

as a stepping stone toward a more comprehensive treatment 

in cosmology with potential observable consequences 

harnessing emergent axionic quasiparticles in condensed 

matter systems. 

The main objective is to study how a misaligned 

coherent axion condensate induces a macroscopic 

condensate of a composite pseudoscalar operator O 

coupled to the axion as gaðx;t⃗ ÞOðx;t⃗ Þ. To this aim we 

implement the method of linear response ubiquitous in 

many body physics. We obtain the macroscopic condensate 

of such a pseudoscalar operator 

toleadingorderinthecouplinggbutinprincipletoallorders of 

the couplings of the degrees offreedom described by O to 

any other degree of freedom within or beyond the standard 

model, except the axion. 

We focused in particular on a macroscopic condensate 

of the Chern-Simons density E⃗ · B⃗ in axion 

electrodynamics and introduced the dynamical 

susceptibility, which is a response function that relates the 

induced Chern-Simons condensate to the axion 

condensate. This susceptibility is simply related to the 

axion self-energy a relation that holds to all orders in the 

couplings of photons to other degrees of freedom within or 

beyond the standard model except the axion. The induced 

Chern-Simons condensate is strongly sensitive to the cutoff 

scale of the effective field theory and requires subtle 

renormalization. Subtracting the vacuum contribution and 

in the high temperature limit T ≫ ma we find 

hE⃗ ·B⃗ iðtÞ¼−gπ2T4a¯ðtÞþgm2aT _¯ðtÞþOðma2=T2Þ

 ð6:1Þ a 

 15 16π 

with a¯ðtÞ the dynamical homogeneous axion condensate 

solution of the equations of motion including the 

selfenergy. 

We have argued that the Chern-Simons condensate can 

be probed by harnessing axionlike collective quasiparticles 

in condensed matter systems such as topological insulators, 

Weyl semimetals, magnetoelectric insulators, or 

multilayered metamaterials which provide realizations of 

axion electrodynamics. A homogeneous cosmological 

axion condensate induces a macroscopic topological 

ChernSimons condensate that acts like an external source 

driving a nonequilibrium macroscopic emergent axionlike 

condensate in these systems, which oscillates with the 

same frequency as the cosmological axion. Furthermore, 

we also conjectured that a misaligned axion condensate 

also induces a non-Abelian Chern-Simons condensate and 

mixes with neutral pion degrees of freedom thereby 

inducing a neutral pion condensate and chiral symmetry 

breaking during or after the QCD phase transition. 

The next stage of the study will include cosmological 

expansion which requires extending the linear response 

 

t 

formulation to the realm of a Friedmann-Robertson-Walker 

cosmology; we expect to report on these studies in a future 

article. 
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APPENDIX: SOLUTION OF (2.33) VIA 

MULTITIMESCALE ANALYSIS 

Let us consider the spatial Fourier transform of the 

equation of motion (2.33), which we write as 

ä¯kðtÞ þ ½ω2k þ δω2ka¯kðtÞ þ Z t Σðk;t − t0Þa¯kðt0Þdt0 ¼ 0; 

t0 ðA1Þ 

where anticipating renormalization, ω2
k is the finite 

temperature renormalized frequency describing the in-

medium dispersion relation, and the counterterm δω2
k 

accounts for renormalization and is defined so that k2 þ 

m2
0a ¼ ω2

k þ δω2
k, and 

 Σðk;t − t0Þ ¼ −ig2 Z dk 2π0 ρðk0;kÞe−ik0ðt−t0Þ: ðA2Þ 
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Since Σ∝ g2, we expect that  . Let us write the 

solution of (A1) as a¯k⃗ ðtÞ ¼ Ak⃗ ðtÞe−iωkt þ Ak⃗ ðtÞeiωkt; 

ðA3Þ 

where e∓iωkt are fast varying and Ak⃗ ðtÞ is a slowly varying 

amplitude, so that 
A_ k⃗ ðtÞ;Ä k⃗ ðtÞ ∝ g2;. The equation for 

the slowly varying amplitudes Ak⃗ ðtÞ;Ak⃗ becomes 

an expansion in derivatives proportional to powers of g2, 

we write 

Σðk;t − t0Þeiωkðt−t0Þ ¼ d 

W½t;t0; dt0 t0 

 W t;t0 ¼ Σðk;t − t00Þeiωkðt−t00Þdt00; 
t0 

 W½t;t0 ¼ 0; ðA7Þ 

with 

 ½  ¼ 2dk0 ρðk0;kÞ Z t−t0 e−iðk0−ωkÞτdτ:

ðA8Þ 

W t;t −ig 

 2π 0 

Integrating by parts the last term in (A5) yields 

Ä 
k⃗ − 2iωkA_ k⃗ þ δω2

kAk⃗ þ W½t;tAk⃗ ðtÞ 

− 0 W½t;t0dt d
0 Ak ⃗ðt0Þdt0 ¼ 0; ðA9Þ t 

t 

since W½t;t0 ∝ g2 and dAk⃗ ðtÞ=dt ∝ g2 the last term in (A9) 

e−iωktÄ k⃗ − 2iωkA_ k⃗ þ δω2kAk⃗ þ Z Σðk;t − t0Þeiωkðt−t0ÞAk⃗ ðt0Þdt0 

t0 

 þ eiωktÄ ⃗ þ 2iωkA_ k⃗ þ δωk2Ak⃗ þ Z 0t Σðk;t − t0Þe−iωkðt−t0ÞAk⃗ ðt0Þdt0 ¼ 0: ðA4Þ 
k 

t 

 

Since the fast varying phases are independent and the  

brackets are ofbracket vanishes individually, yieldingOðg2Þ or 

higher, we request that each 

Ä k⃗ þ2iωkA_ k⃗ þδωk2Ak⃗ þZ 0tΣðk;t−t0Þe−iωkðt−t0ÞAk⃗ ðt0Þdt0 

¼0: 

t 

ðA6Þ 

þ þt0t ð Þ ωkðt−t0ÞAk⃗ ðt0Þdt0 ¼0; ωLet us focus on Eq.k →−ωk. (A5) since (A6) is obtained from it by Ä k⃗ −2iωkA_ 

k⃗ δω2kAk⃗Σ k;t−t0 ei 

The derivatives A_ k⃗ ;Ä
 
k⃗ are written as an expansion in g2 

 ð
A5

Þ since Ak⃗ is a slowly varying amplitude. In order to generate 
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is of Oðg4Þ and will be neglected since we only keep terms 

up to and including Oðg2Þ. Hence to Oðg2Þ the Eq. (A9) 

simplifies to 

Ä k⃗ − 2iωkA_ k⃗ þ ½δω2k þ W½t;tAk⃗ ðtÞ ¼ 0: ðA10Þ 

Writing 

Ak⃗ ðtÞ ¼ eIkðtÞ ; IkðtÞ ¼ g2Iðk1ÞðtÞ þ g4Iðk2ÞðtÞ þ  ðA11Þ 

and keeping only the leading 
Oðg2Þ terms, Ið

k
1Þ obeys the 

simple equation 

 ̈Iðk1ÞðtÞ − 2iωkI_ðk1ÞðtÞ ¼ −g 12 ½δω2k þ W½t;t: ðA12Þ 

At early times t − t0 ≃ 1=ma;1=T transient effects are 

expected, but we are interested in the intermediate and long 

time asymptotics t − t0 ≫ 1=ma;1=T; in this limit we 

replace 

Z t−t0 
− ð 

0
−ω

k
Þτdτ →−iP 1  þ πδðk0 −ω Þ; e i k 

0 k0 −ωk k 

ðA13Þ 

for which W½t;t becomes a constant, and choosing the 

counterterm 

2 ¼ −g2Pρðk0;kÞ dk0 ; ðA14Þ δωkω − k0 2π 

k 

the solution of Eq. (A10) is 

−Γ t 

 AkðtÞ ¼ Akð0Þe 2k ; ðA15Þ 

where 

¼ 2 ρðωk;kÞ: ðA16Þ Γk g 2ωk 

The finite temperature renormalized mass is defined as 

the long wavelength limit of the dispersion relation, 

namely ma ¼ ωk¼0; therefore it follows that δω2
k¼0 ¼ m2

0a − 

m2
a, yielding 

g2Pmρðk−0;0k
Þ

0 dk2π0 ; 2 − m20a ¼ 

 ðA17Þ 

ma 
a 

and the damping rate of the misaligned axion condensate is 

the long wavelength limit of (A16), i.e., 

 ¼ 2 ρðma;0Þ; ðA18Þ 

Γ g 

2ma 

which are the results (3.7)–(3.12). 
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