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Chern Simons condensate from misaligned axions
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We obtain the nonequilibrium condensate of the Chern Simons density induced by a misaligned
homogeneous coherent axion field in linear response. The Chern-Simons dynamical susceptibility is
simply related to the axion self-energy, a result that is valid to leading order in the axion coupling but to
all orders in the couplings of the gauge fields to other fields within or beyond the standard model except
the axion. The induced Chern-Simons density requires renormalization which is achieved by vacuum
subtraction. For ultralight axions of mass m, coupled to electromagnetic fields with coupling g, the
renormalized high temperature contribution postrecombination is hE~ - B” idth—34 —87;52™ a=8tPpe™; 2o,
a~_0tp with a“dtpb the dynamical homogeneous axion condensate. We conjecture that emergent axionlike
quasiparticle excitations in condensed matter systems may be harnessed to probe cosmological axions and
the ChernSimons condensate. Furthermore, it is argued that a misaligned axion can also induce a non-
Abelian ChernSimons condensate of similar qualitative form, and can also “seed” chiral symmetry
breaking and induce a neutral pion condensate after the QCD phase transition.
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[. INTRODUCTION

The strong (CP) problem in quantum chromodynamics
(QCD) motivated the proposal of a new pseudoscalar
particle beyond the standard model, the axion, as a possible
solution [1-3] by elevating a CP violating angle to a
dynamical field. Such field may be produced nonthermally
in the early Universe, for example by a misalignment
mechanism in which an initial axion coherent condensate
is produced out of equilibrium and evolves toward the
minimum of its (effective) potential. Such axion field has
also been recognized as a potentially viable cold dark
matter candidate [4-6]. Pseudoscalar particles with
properties similar to the QCD axion can also be
accommodated within suitable extensions beyond the
standard model, collectively referred to as axion-like-
particles (ALP), which can also be dark matter candidates
[7-11], in particular as compelling candidates for ultralight
dark matter [12,13]. Furthermore, a dynamical misaligned
axion coherent condensate could also be a dark energy
candidate in the form of a quintessence field whose slow
dynamical evolution toward an equilibrium minimum
would induce an accelerated cosmological expansion phase
[14].
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Constraints on the mass and couplings of ultralight ALP
[9-11,15] are being established by various observations
and experiments ranging from astrophysical phenomena to
table-top experiments [16—18]. There are two important
features that characterize ALP: (i) a misalignment
mechanism results in coherent oscillations of the
expectation value of the ALP field which gives rise to its
contribution to the energy density as a cold dark matter
component [4—6,9-11,19], and (ii) its pseudoscalar nature
leads to an interaction between the ALP and photons or
gluons via pseudoscalar composite operators of gauge
fields, such as FwF™ in the case of the ALP-photon

interaction and G*°G ; in the case of gluons. We refer

to these operators as Chern-Simons terms which are total
surface terms. Such couplings were originally studied in
Ref. [20] within the context of parity and Lorentz violating
extensions of the standard model and early limits on these
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couplings were established from birefringence effects,
namely different dispersion relations for different
polarizations, and the rotation of the plane of polarization
from astrophysical sources. A telltale feature of
birefringence from the electromagnetic coupling to axions
is that the polarization rotation angle is frequency
independent [21,22], which differentiates it from the more
familiar Faraday effect resulting from the presence of
magnetic fields in the astrophysical plasma. Optical
properties of axion backgrounds have been discussed in
Ref. [23], further electromagnetic signatures of axion
electrodynamics were studied in Refs. [24,25], and photon
production from parametric amplification of a misaligned
axion condensate was studied in Ref. [26]. Analysis of
evidence for parity violating effects in the Planck 2018
polarization data of the cosmic microwave background
(CMB) anisotropies revealed a nonvanishing cosmic
birefringence angle at the 2.40 level [27], and more
recently a combined analysis of WMAP and Planck
polarization data revealed hints of isotropic cosmic
birefringence at the 3o level [28-31]. These tantalizing
hints may be a signal of cosmological axions.

Axions may also play a role in condensed matter
physics, possibly as emergent quasiparticles in topological
insulators where magnetic fluctuations couple to
electromagnetism just like axions [32-34], as axionic
charge density waves in Weyl semimetals [35,36], or as an
emergent axion response in multilayered metamaterials
with tunable couplings [37] or in multiferroics [38]. The
measurement of an emergent dynamic axion field in
chromia has been reported in Ref. [39]; therefore,
condensed matter systems may very well provide an
experimental platform to test the main aspects of axion
electrodynamics which may complement and bolster the
case for axions in cosmology. Hence, the study of axion
(electro) dynamics is of timely interdisciplinary relevance.
In this article we suggest that axionlike quasiparticles in
condensed matter systems mix with the cosmological
axion; therefore topological insulators, Weyl semimetals,
or metamaterials may provide experimental platforms to
probe the cosmological axion and the ChernSimons
condensate.

A. Motivation and objectives

The possibility of an axion or ALP being the dark matter
and/or dark energy candidate with a hallmark signature of
frequency independent cosmic birefringence motivates a
study of its nonequilibrium evolution when coupled to
standard model degrees of freedom. Recently, Refs. [40]
implementedmethodsborrowedfromnonequilibriumquantu
m field theory, namely the in-in Keldysh-Schwinger
formulation, and the theory of quantum open systems to
study the nonequilibrium dynamics of axionlike particles
coupled to a bath in thermal equilibrium. These studies
focused on the damping of a coherent misaligned
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condensate as a consequence of its decay into photons from
its coupling to electromagnetic fields via the Chern-Simons
density, the concomitant thermalization of the axion
fluctuations with the CMB photons yielding a mixed dark
matter scenario, and an assessment of the timescales of
decoherence and entropy production. The
SchwingerKeldysh ~ formulation of nonequilibrium
quantum field theory is suited to obtain the causal
equations of motion of the axion field in presence of a heat
bath. These were obtained in Ref. [40] and shown to be
stochastic, of the Langevin type with a Gaussian noise and
include the retarded self-energy. The self-energy describes
the damping of axion oscillations as a consequence of
decay into the bath degrees of freedom (radiation reaction),
and damping and noise are related by the quantum
fluctuation dissipation relation, a consequence of which is
the thermalization of axion fluctuations with the heat bath.
An alternative method based on the quantum master
equation confirms these
results[40]andunequivocallyshowsthatdamping,thermaliza
tion, and decoherence are directly related and occur on
similar timescales.

Motivated by the confluence of interest on
nonequilibrium axion dynamics both in cosmology and in
condensed matter physics, in this article we study the
emergence of a Chern-Simons (topological) condensate as
a consequence of the nonequilibrium dynamics of a
misaligned axion macroscopic coherent condensate. A
Chern-Simons condensate would be manifest as a
nonvanishing expectation value of the Abelian Chern-
Simons density E” - B” in the nonequilibrium density matrix
that describes the heat bath and the dynamical misaligned
axion condensate. This is distinctly different from the
classical treatments of axion electrodynamics studied in
Refs. [21,23-25], and to the best of our knowledge such
study has not been previously undertaken. Furthermore, the
possibility of testing axion electrodynamics in condensed
matter systems, such as topological insulators and Weyl
semimetals, bolsters the case for studying the emergence of
Chern-Simons condensates as an intrinsic, fundamental
nonequilibrium  aspect of axion physics with
interdisciplinary relevance.

To this aim we implement the theory of linear response,
ubiquitous in many body physics [41], to obtain the
ChernSimons condensate induced by a misaligned axion
condensate. While this study is focused on studying the
emergence of a Chern-Simons condensate in Minkowski
space-time, as an initial step toward a more complete
understanding within the context of an expanding
cosmology, the basic concepts are expected to translate to
cosmology qualitatively, but with quantitative differences
in the time evolution. Such study awaits the consistent
extrapolation of the linear response treatment to the realm
of an expanding cosmology.
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This article is structured as follows: in Sec. Il we define
various models wherein an axion field is coupled to generic
composite pseudoscalar operators O describing degrees of
freedom within (or beyond) the standard model, and obtain
an exact relation between the induced condensate hOi and
the dynamical expectation value of the axion field. Linear
response theory is implemented to obtain the induced
nonequilibrium expectation value hOi to leading order in
the axion coupling, and introduce the concept of the
dynamical susceptibility, namely the response kernel that
relates hQOi to the coherent misaligned axion condensate. In
this section we establish one of the main results: the
dynamical susceptibility is directly and simply related to
the axion self-energy. In Sec. III, we apply these results to
obtain the nonequilibrium expectation value hE™ - B” i,
namely the Chern-Simons condensate, in axion
electrodynamics. In this section we show that this
condensate features ultraviolet divergences proportional to
the dynamical axion condensate, which acts as an explicit
parity-symmetry breaking term; we also obtain the high
temperature contributions to the Chern-Simons condensate
for ultralight axions. In Sec. IV we argue that axionlike
quasiparticles in condensed matter systems such as
topological insulators or Weyl semimetals mix with the
cosmological axion via correlation functions of the
ChernSimons density, and that a Chern-Simons condensate
acts as a nonequilibrium driving term coupled to the
emergent axion field. Therefore these experimentally
available systems may be harnessed to probe the
cosmological axion and the Chern-Simons condensate. In
Sec. V we discuss important caveats in the cosmological
setting, subtle renormalization aspects of the Chern-
Simons condensate, and we argue on corresponding results
for the non-Abelian case, albeit with caveats. We also
conjecture that a misaligned axion condensate may induce
a neutral pion condensate and seed chiral symmetry
breaking during the QCD phase transition. Section VI
summarizes our conclusions.

II. CONDENSATE INDUCED BY
AXIONLIKE FIELDS

In this section, we discuss a general composite
pseudoscalar operator O coupled to axionlike fields and
show that such coupling implies that a coherent condensate
of the axion field induces a macroscopic condensate of the
exact relation between the expectation value of the
axionpseudoscalar operator, namely hOi # 0. We obtain a
formal

field and that of the composite operator O. We then
implement linear response to obtain an explicit relation
between these condensates to leading order in the axion
coupling.
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A. Exact relation between the ALP condensate and hOi

composite pseudoscalar operatorWe consider an axionlike
fieldO,8axpdxof generic fieldsp coupled to a x0xp. The

Lagrangian density is

1 1
—d,a x &a x ——mj,a* x —142 5b

db 2 0 bgadxbOxdxbplLy;

L¥%sa; &

02:1b

where mga is the bare axion mass and Ly is the Lagrangian
density describing the fields x. Some examples of fields x
are electromagnetic fields with;p O,dxP % E~ &xb - B” dxp;

gluon fields with OXGXD ¥ Gy OxbG~ uv;béxp, where the tilde

stands for the dual of the gauge fields; or fermionic fields
with O,dxb % W~ dxPy>Wdxp. These fields could also be
coupled to other degrees of freedom within or beyond the
standard model, which are also all included in L.

For gauge fields, the operators O,dxp are the Chern-

Simons terms and are a total surface termdimensions, these

operators feature dimension[2(]. Inmass3 psl, and the

axionlike field adxpP features dimensiongdmasspp, which

means they couple via nonrenormalizable interactions

whose coupling strength features dimension

dgauge fields via Chern-Simons terms must be interpreted
asmasspb-1. Therefore, the axion interacting locally with

an effective field theory, whose validity is restricted to
scales below a cutoff A. Furthermore, at finite temperature
T, the validity of the effective field theory requires that A>>
T so that high energy degrees of freedom are not thermally
excited. This observation will become relevant in the
discussion of the induced Chern-Simons condensate in the
next section.

The Heisenberg equation of motion for the axion field
obtained from the Lagrangian density (2.1) is

02
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Aadx:t” b -V2adx;t’b b m20,adx;t”b % -g0,0x;t ~ b;
02:2b

where the time evolution of any operator A in the full
Heisenberg picture is

AdX;t"P % eiHot-topbAdX;t” oPe-iHot-top; 82:3p

with H % H, b Ha b Hibeing the total Hamiltonian for the x
and axion fields and their interaction. The expectation
value of any Heisenberg picture field operator A is obtained
as hAdx;t” bi % TrdAdx;t” Ppdt’pb where pdtp is the
normalized, initial density matrix. In the Heisenberg
picture the density matrix does not depend on time;
therefore, taking the expectation value of the Heisenberg
field equation (2.2) yields

1[0* _
——|==a
hOdxt'Pi% 9107 x:t'p V22 3x;t"P b m%gsa dx;t”
P;

02:4b

where a~0x;t” P is the expectation value of axionlike field
solutions of the Heisenberg equation of motion (2.2). This
is an exact relation valid for arbitrary initial conditions and
to all orders in the various couplings; however, Eq. (2.4)
by itself does not yield a closed expression for hO,dx;t” bi.
This motionis because a dx;t” b is the solution of the full
equation ofa priori and is obtained

(2.2), which is not known perturbatively in general.
The exact relation (2.4) becomes useful when the solution
a“ox;t” b is obtained.

B. Linear response

We now formulate the general theory of linear response
implemented to obtain a nonequilibrium expectation value
of composite pseudoscalar operators coupled to axionlike
fields as in the Lagrangian (2.1), relegating its specific
application to the electromagnetic Chern-Simons term to
the next section.

The Lagrangian density (2.1) describes several relevant

couplings of axionlike fields to generic fields x. For g % 0
these degrees of freedom are assumed to be described by a
parity even thermal equilibrium density matrix py,

consequently
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TrO,dxbpy % O:

82:5p

A misaligned axionlike condensate is described by a
classical field a dx;t” b corresponding to the expectation
value of the axionlike field in a coherent state density
matrix that describes the axion field [40]. Therefore we can
decompose adxp % a 0x;t” b p a~dxP where a~dxp
corresponds to the fluctuations of the axion field around the
con-

densate and features a vanishing expectation value in the
axion density matrix. As envisaged in cosmology, the

if it is a quintessence field driving cosmological
expansion,misaligned condensate a”x;t”
macroscopic field;

bisa

it is homogeneous within at least the Hubble scale.
Therefore, neglecting the fluctuations a~dxPp (this is a mean

field approximation) the interaction term inaxion field
results in the fields-ga 6x;t” PO,dxP; hence the
pseudoscalar coupling to they being coupled to an a(2.1) is
L%

dependence determined by the time evolution of thec-
number external source a”6x;t” b with an explicit time

misaligned condensate. In the presence of this classical
source, the total time dependent Hamiltonian for the x
fields is

H™ x8tb % Hy b Hidtb; 02:6p

where Hyis the Schroedinger picture Hamiltonian of the x
fields including coupling to other fields within or beyond
the standard model except the axion field, and

Hi0tP % g Z d3xa0x;t"PO,OX” b 82:7p

is the interaction Hamiltonian in the Schroedinger picture
of the x fields, but with a”dx;t” P playing the role of an
“external” time dependent source term. In the Schroedinger

picture the x-field density matrix evolves in time as p,dtP

083531-4
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% UOt;tobpydtoPU18t;toP; 62:8P where the unitary time

evolution operator Udt;tob obeys

— d ~
X

idtUdt;tob % H dtbUGt;tob ; Ubto;tob % 1: 02:9p

The initial density matrix pydtoP is assumed to describe an
ensemble of the x degrees of freedom in thermal
equilibrium at temperature T % 1=B, namely,

€-BHx

pxOtob % Tre-pHy; 02:10p

and therefore eiHxtopxdtoPe-iHxto ¥4 pxOtob; 82:11P
since in general %0,0x" P;p,0toP # 0 it follows that py

evolves in time out of equilibrium.

Writing

Udt;tob % e-itxUdt;toPeitxo; 62:12P we find

that Udt;teb obeys igtS UStt b % H™ %P tbUStitob ;

Ulto;tob % 1; 62:13pP

where

H™ 1oHxpOtP % eintHidtbe-it % g Z daxa™0x;t” POxaredx;t”P;

02:14pb

and

O POx;t” b Y% e tOxdx~ be Mt 82:15p

is the composite operator in the Heisenberg picture in terms
of the Hamiltonian Hy, namely in the absence of the
coupling to the axion field. The solution of Eq. (2.13) is

PHYS. REV. D 107, 083531 (2023)
Udt;tob % 1 - ig Zt' Z a~dx” %t°p0O,SH,Pax” %;t°pdtOd3x b

02:16b

The expectation value of the Schroedinger picture operator
0 0x” b in the nonequilibrium density matrix p,dtP is
hOxdx~ bidtb % Trd0xdx~ bpxdtbp

% Trd 00" ox;t PUBSt; toPp,dtobU-18t;toPP;

02:17p

where we have used Egs. (2.8), (2.12), (2.11), (2.15) and
the cyclic property of the trace. Using (2.16) up to first
order in g, and using the cyclic property of the trace, we
find hOxdx~ bidth % hOydx~ bidtob b Z d3x° Ztot 28X~ -~
0:t-t%a~dx” %topdtop;

82:18p
where
92:19p

hOxdx” biditob % TrOxdx~ bpxdtob:

The linear response kernel, namely the dynamical
susceptibility, is given by

209%™ -x_ %t-t%p%-igTro %0, 0M,Pox;t”
0:t%p,dtobP;

p;0,MPox”

t>t0; 02:20p
and a™0x;t” P is the solution of the equation of motion for
the expectation value of the axion field. We have used that
the equilibrium density matrix is space-translational
invariant, and because %Hy;pxdto—pP %to, as confirmed by
the analysisO it follows that = must be solely a function of
t

below. Assuming that pydtob is even under parity, it follows

that

hOxdx~ Pidtob % O: 82:21p
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In Sec. V we discuss the caveats associated with this choice
in cosmology.
Therefore, to leading order in the axion coupling we find

the induced nonequilibrium expectation value for t > toin

linear response: hOy x~ Pidtb %d3x°Z Z8x” - x” %t - t°%pa~6x

70,t0pdtO; ¢ g
to

02:22p

with the dynamical susceptibility =6x~ - x” %t - t°p given
by (2.20).

It is convenient to write the susceptibility = in terms of a
Lehmann (spectral) representation. This is achieved by
writing

OyshxpOX; 1P % eiteip x> Oxd0~ ;0Pe iHgeir x*; §2:23p

083531-6
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1 02:24p
TroOxsHe0X 0;toPOxsHwdX;t”PpxdtoPP Y——=BRrXe-BenjhnjOx30” ;0PjMij2€-i6En-Embt-tob€idP” n—P” mb8X” -x” ob:
Tre m;n
In terms of the spectral functions
2t
p> d b —BEn (o) 26 - - 57 - -
TrdOx 6t o b % Tre-pHXmn jnjxd  bjij 60 dm bPE  Fm PP 3 b
POy X~ ;t
PpxOtoPbP %4 -H X
-BEjhnjOx30” . . 5
p< 02nba -BEn O 26 - - 6 --
0° pPu -BHX jhjxo Pjij a8° ar mppgd " mpp d P
Tre m;n
the correlation functions (2.24) can be written as
X . Ak ksoric o o
O4p Os'e 0 op P
;0PjMij2€i6En-Embat-top€~idP” n—P~ mb-8X” -X" 0P
k;k e n 0;,0m k E E k P P 2:25
k ;k __ e n 0;0m k E E k P P 2:26
Trdy  Ox;t'byx 60X ;tbydtobP % Z d2mba dko;kbe e 82:27p
4
GSTKI;“ p=0ko; kPe e 32:28b
TrdOxsHpOX~ 0;toPOyaHedX;t~
PpxdtoPP % Z  ~ -ikost-t0p ik” -5x” |
—x_ Op
Upon relabeling m <> n in the sum in the definition (2.26) Introducing the spectral density and
recalling that O, is a Hermitian operator, we find the
Kubo-Martin-Schwinger relation [42] pdko;kP % p>Bko: kb —p<dko;kPp; 02:30pk

083531-7
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and the density matrix in the basis of simultaneous

eigenstates of Hy and the total momentum operator P~ ,
namely 8H;P~™ Pjni % OE,;P” .Pjni. Introducing the
resolution of the 0,37 ?dx;t” b must be a Hermitian operator
because the axionP identity in this basisym jmihmj % 1, and
recognizing that field is real and the total Hamiltonian is

Hermitian, we find

083531-8
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pdko;kp % —pO-ko;kb: 02:31pb

The dynamical susceptibility is now expressed solely in
terms of the spectral density pdko;kp as

=0x - X %t - t%p % -ig Z 82dr*kb

~ikodt-top@ik™ -8x” —x~ Op: P
2 6ko'¥be

02:32b

The Lehmann representations (2.24) and the spectral
densities (2.25), (2.26) are exact results, valid to all orders
in the couplings of the x fields to degrees of freedom
within or beyond the standard model except the axion.
Therefore the dynamical susceptibility (2.32) while linear
in the coupling g (linear response) is in principle to all
orders in all other couplings.

In Ref. [40] it was found that the expectation value of
the axion field obeys the equation of motion

32
—da

02t oxtt bp-VZaoxt Ppb maa dx;t” PpZ

Zt' 30X - X~ %t - t%pa~dx” Ot d3x°dt® % 0;
02:33p

where m?p, is the bare axion mass, and the retarded self

energy 30X - X~ ot top is given by [40]

30x” =" O;t-tOp%-ig?Tro %0, dx;t”
0:t%p,dtobP:

p;0,MPox”

02:34p

Remarkably, the dynamical susceptibility is simply
related to the axion retarded self-energy to leading order
in the axion coupling g but to all orders in the couplings of
the fields x to any other field within or beyond the standard
model except the axion [40], namely

39X - x %t -1% % g=ox_ - x” %t -t%p:  82:35p

This is one of the important results of this study, and
applies in general for any of the interactions of the form

PHYS. REV. D 107, 083531 (2023)
gadx;t” PO,dx;t” b, with important consequences explored

below.

The main result of this section is the nonequilibrium
induced expectation value of the composite operator Oy,
which in linear response is given by

—— Z902dmakbaZ 3xo0
pdko;kp d

hOydx~ bidth % —ig

X Ztot @-ikodt-top€ik” -3x” -x” op@_0X_ 0;toPdto; 82:36b
which is obtained by combining Eq. (2.22) with the
spectral representation (2.32). This expression can be
written in a more illuminating manner by recognizing that
a~0x;t” P is the solution of the equation of motion, Eq.
(2.33), with the self energy to leading order in the coupling
g given by

Eq. (2.34). Using the relation (2.35) between the dynamical
susceptibility and the self energy, and the equation of
motion (2.33), it is straightforward to confirm the result
(2.4), which has been obtained as the expectation value of
the exact Heisenberg equations of motion, to leading order
in the coupling g, namely linear response.

Note that because >« g2, it follows that

&’ _
—=da
0> " dx;t” b -V2a dx;t” b b m%p.a”0x;t” b o g% §2:37b

and the expectation value hO,0x” bidtp o< g.

C. hOi for misaligned initial conditions

We now consider the cosmologically relevant case of
misaligned initial conditions for the axion condensate,
where the axionlike fields are produced nonthermally and
undergo a damped oscillations. In Ref. [40] it is shown that
in Minkowski space-time the solution of the equation of
motion (2.33) is described by exponentially damped
oscillations, in which the frequency and decay rate are
spatial-momentum and temperature dependent. Therefore,
a general form of the axion-field amplitude is

a ox;t” Z b
%ddmskps
ik’ -x”a kotb; e
2

a kOtP % Y5 Ake-iwkdt-tob P Ak€iwkdt-tobe-k5t-top  02:38P

083531-9
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where Axis a classical complex amplitude determined by
initial conditions, wy is the renormalized frequency with
wk b 6wk % k¥ b m?a, Owk the renormalization
counterterm, and I the renormalized decay rate, both
depending on momentum and temperature. In Appendix
we provide an alternative method to solve the equation of
motion based on multitimescale analysis yielding the same
results.

Taking the spatial Fourier transform of (2.36) with the
solution (2.38) yields

Z
hOyikdtb % -ig  dk__moZwt
dtopdko;kpPe-ikest-topa kdtob: 2

02:39p

The time integrals are straightforwardly evaluated with a™«
given by Eq. (2.38), yielding

PHYS. REV. D 107, 083531 (2023)
02:42p

This result is in complete agreement with the result (2.4)
as can be seen as follows: taking the spatial Fourier
transform of Eq. (2.4), using the expression for a "\ dtp
given by Eq. (2.38), and neglecting terms of order o gt
we find

hOyikdtb % _1 dw2k — 8k2 p m2oabba™kdth p Mka™_kdth:
02:43b g

The exact frequency wy corresponds to the real part of the
pole in the propagator of the axion field; namely it is the
solution of the equation [40]

w2k % dk2 p m20ab p ZrRAWK; kP; 02:44p

h i3 b Yoo i / dko ko k @ p )g;,/ dky K

pd . 7 ko — £ Pb [ Q

bo;k
Oxkt —gAke 0 Ake -0 21T ko k p gAke-iQutoZ

= dkg Pko; kP —ikodt—to Z ~ dkg Pdko; kP ik
— - . 02:40p
s le bAe Mk b O, e ; 2:40
[ p iQkto
dt-tob

where Q% wi - iM=2.

The second line in Eq. (2.40) features oscillatory
integrals that represent transient processes due to the
sudden switch on at time t % to, and vanish fast fori t - to >
ma; therefore this contribution will be neglected.

In the first line, we use the narrow width approximation
k= 0 and the identity 1=8x i0PP % Pd1=xP + in&dxP and
obtain to leading order in g,

1
hOxiktb % _%2ZrOk;wkPa™kdth p Mka_"kdth; 62:41b g
where [40] (see also Appendix)

P 2Z Tdkop _Oko; kP g
SrOk;wib % w ok

’

g -2
2 pOwi;kpb % wil:

! Similar contributions are neglected in obtaining the solution
(2.38); see Appendix and Ref. [40] for details.

from which Eq. (2.41) follows, thereby explicitly
confirming the equivalence of the results (2.4), (2.41) in
linear response.

III. CHERN-SIMONS CONDENSATE

The results above are valid for any generic pseudoscalar
composite coupled to the axion field as in the Lagrangian
density (2.1). We now focus specifically on the case of the
axion field coupled to photons via the Chern-Simons term

OOXEP % E OxPB Xt b — R FW %

Lematr;

83:1p

this pseudoscalar density is a total surface term, since
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FuvF™ pv X0 pdepvapAvOaAb: 03:2b

In this case hE~ -B” idx;t” P%Z d3x%Zt'=8x” —-x~ %;t-t°pa~dx~

0-t%pdt% §3:3p

where the susceptibility is the retarded commutator of the
Chern-Simons density

-

Z8x” X %t-top%—-igTrd%oE~ B~ bHnPdx;t”
pOH..PAX” 0:t0p

p;0E” B

xpxOtoPPOJt-tob; 03:4b

to which we refer as the Chern-Simons susceptibility in
analogy with response functions in many body physics.
The superscript dHemb in the operators of the ChernSimons
density refer to the Heisenberg fields in absence of their
coupling to the axion, namely to all orders in the
electromagnetic interaction with degrees of freedom within
or beyond the standard model except for the axion field.
The Feynman diagram describing the induced condensate
(3.3) in the case of free photons is shown in Fig. 1.

We now obtain the Chern-Simons susceptibility = (3.4)
by considering free electromagnetic fields. This
approximation is valid within the cosmological setting
after recombination for the following reasons: when the
temperature (=~eV) is much smaller than the electron mass
the lepton contribution to the renormalized photon self-
energy is perturbatively small and thermally suppressed;
therefore there is no (gauge invariant) thermal mass for the
photon [43,44]. Furthermore the free electron density n
vanishes rapidly during recombination; therefore the
plasma frequency Qu Ya
paffiffiffiffiffiffiffiffiffiffiffiffffiffifhffiffifire?n=m is
vanishingly small, and the photon bath is described by
blackbody radiation, namely

x a(x’)

FIG. 1. hE” - B” i6xP in linear response (3.3) for the case of free

photons. The wavy lines correspond to the retarded correlation
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free thermal photons, as evidenced by the (nearly)
blackbody spectrum of the cosmic microwave background.
Under these conditions, the spectral density (2.30) has
been obtained in Refs. [40], and is given by

37 b % dKarbad p B2kindd —— ee—pem@dK2b p kojk
32 -Bw-

b 2n1 ~—e—pwpot-m 0 2Psigndkob; Bk 1 -

e O-K

K2 % k2o - k2 ; waip % jkoj 2 k ; wanp ¥4 k—2koj-

03:5pb

The terms with e(’Skzo - k2p arise from the processes a <>
2y, namely emission and absorption of photons with the
reverse or recombination process 2y -> a being a
consequence of the radiation bath; these processes feature
support on the axion mass shell for massive axions. The

contribution proportional to Ok - k%P only features

support below the light cone; it describes off shell
processes ya <>y and vanishes in the k - 0 limit.

Motivated by the cosmological case we now consider a
homogeneous misaligned axion condensate depending
solely on time by setting

Ak % 82mb3638k” bao; 83:6p

namely a”0tP % e-ntdaoe-imt b aoeimath;  §3:7P

from which it follows that the induced Chern-Simons
condensate is also homogeneous, and from the result
(2.39) it is given by

h i6b £ —— (kp,0)e Yoo dko-ikotZ ¢
eikotoa Otobdto: g
E"-B t —igp

- 02 P to

function (3.4), the heavy solid line to the misaligned axion
condensate a~dx°p.

03:8p From Eq. (3.5) we find
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kso1 b 2nk__osigndkob; ndwb % : 1
ePo — 1
32n 2

pdko;0P %

03:9p

Before we study the response to an oscillating coherent
misaligned a”dtb, it is illuminating to consider the case
wherein such expectation value has relaxed to a time
independent equilibrium minimum a7 at a time to and
remains constant for t > to. Such a situation emerges from
a damped oscillatory expectation value around a minimum
away from the origin, if, for example the axion potential
features such a minimum. Setting a3t - a7 for t > to,
the time integral in (3.8) becomes & sindkodt - top=2b=kgo
yielding a nonvanishing Chern-Simons condensate.
However as the time interval t — to > the time integral -
2né8kop and the induced Chern-Simons condensate
vanishes. This is consistent with the fact that the Chern-
Simons density E” - B” is a total surface term (3.2) [20], and
its space-time integral vanishes in the infinite time and
volume limit. However, the nonequilibrium result within
finite timelike hypersurfaces is nonvanishing, and as the
time integral in (3.8) makes explicit, the induced conden-
sate is proportional to the difference of a function evaluated

at the two hypersurfaces at times t and to, when the spatial
volume has been taken to infinity. Furthermore, a~dtp is
the dynamical axion condensate which is a solution of the
equation of motion (2.33) for k % 0, and we note that the
only space-time constant solution of the equation of motion
(2.33)isa” %4 0, which obviously yields a vanishing Chern-
Simons condensate as suggested in Eq. (2.4).

Within the cosmological setting, the initial time to is
approximately the time of the last scattering surface
because we are considering free photons in thermal
equilibrium in the intermediate state, and t is of theorder of
the Hubble time today so that t > toand t - to>> 1=m,;1=T.

Let us now consider a dynamical homogeneous solution
of the equation of motion (2.33) given by Eq. (3.7) where
ma is the renormalized axion mass [40], and aois a classical
complex amplitude determined by initial conditions (see
Appendix). From the general result (2.43) for k % 0 with

® 0= ma, and consistently keeping terms up to

08g:P we find

hE™ - B” i6tb % _1%8m2a— mo2aba 6tb p Fa_~dtb:
33:10p g

Furthermore, the relations (2.44) and (2.42) yield
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m2, - m20, % g2 wp ok _5 o
m, k - 2

0.0) dko_

z

ROO;m,b; 83:11P
oo 0

and [40]
I % g, 02=:0P% g642mma1 b 2nm__2a 03:12bp m

Ma

is the axion decay rate a - 2y [40] (see Appendix).
This is one of the main results of this study. For the case

of an ultralight axion witn m, SpeV and even for
temperatures of the order of the CMB temperature today
10V, it follows that T >> m,. Therefore using the spectral
density (3.9) in this high temperature limit we find [40]

M2a — Moza % T28g2/\n4ﬂ=om/\zza - gznlsﬁ 4 FTmT2a2;
03:13p where the first term is the zero temperature
contribution, for which we carried out the integral in ko in
(3.11) with an ultraviolet cutoff A>> mj;T, delimiting the
regime of validity of the effective field theory, and the
second term is the finite temperature contribution, with

Fo__mA22; % 1 p 4mA22; pmA4azinmA2a2 b 83:14p

FT __mT2a2 % 1 p 24151tm2T2a2 — 3215mtm2Tass InmTa p :
03:15p

The dots stand for higher orders in ma,=A and m,=T
respectively, and to leading order in the high temperature
limit we find

gamaaT

% 165 : 03:16b

The ultraviolet divergence of the Chern-Simons
condensate resulting from the first term in (3.13) is not
unexpected. The Chern-Simons density is an operator of
mass dimension four, just like E” 2and B~ 2; however, unlike
these operators whose vacuum expectation values yield the
zero point energy, the expectation value of E” - B” vanishes
if the state is invariant under parity. In other words, the
expectation value of the Chern-Simons density is protected
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from ultraviolet divergences by parity. However, an
expectation value of the pseudoscalar axion breaks parity,
therefore, in the presence of this parity-symmetry breaking
term the ultraviolet divergence of E” - B” becomes explicit,
and as exhibited by Eq. (3.10) is proportional to the
symmetry breaking term in linear response. We choose to
renormalize the Chern-Simons condensate by subtracting
the T % O (vacuum) contribution; subtle aspects of
renormalization are discussed in more detail in Sec. V.
Keeping the leading order term in the high temperature
expansion, the renormalized expectation value is given by

hE” - B” i%R°gtp

Y% —-grm2Tad b b
gma2aT a~_0th p O0m2a=T2b; a" t

15 16m

03:17p

with a”dtb the (spatially homogeneous) solution of the
equation of motion (2.33). This is another of the main
results of this study.

We can obtain an estimate of the energy density stored
in the Chern-Simons condensate as compared with that in
the cosmic microwave background today, poy % m?T%,=15,
by using the following estimates:

222 =podM %4 pocQdDM ; g% C ; 03:18p

Ma fa

where C < 1 is a dimensionless constant and f, the axion
decay constant, and using the values, Qpm =~ 0.23;h =~ 0.7
and the temperature of the cosmic microwave background
today To, % 2.37 x 10™*eV, we find

10 - - .
oP ~c 107 G~ - B~ jsredit
a —_peV 3

poy f Mma

x 1-2.2x 109__Ma x 3 x1071%:
peV
83:19p

This analysis suggests that low mass axions with m, <
peV yield larger contributions to the energy density stored
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in the Chern Simons condensate, perhaps leading to an
observational avenue.

IV. PROBING THE CHERN-SIMONS
CONDENSATE WITH EMERGENT AXION
QUASIPARTICLES

The analysis above unambiguously implies that a
macroscopic axion condensate will induce a macroscopic
ChernSimons condensate, leading to the question of what
are the observational consequences of such a topological
condensate. While it is possible that a cosmological imprint
of this condensate may be observable in the polarization
signal of the CMB in a manner yet to be understood and
studied further, here we suggest that the emergent axionlike
quasiparticles in topological insulators [33-35], Weyl
semimetals [36], multilayered metamaterials [37], or
magnetoelectric insulators [39] may be harnessed to probe
both the cosmological axion and the Chern-Simons
condensate. In these materials, an axionlike collective
quasiparticle excitation ©d8x;t” b couples to the
electromagnetic fields [32-36,39] with

Lo % a®dx;t"PE” 8x;t°P - B” dx;t” b;
04:1b

with o the electromagnetic fine structure constant. In
multilayered metamaterials, instead of a the effective
coupling can be tuned making these platforms more
flexible [37]. This coupling brings two important
consequences, both relevant to probing cosmological
axions:

(i) The emergent axionlike quasiparticles described
bythe effective field O6x;t” P mix with the
cosmological axion adx;t” P via a common two-
photon intermediate state. This is depicted in Fig. 2 by
the photon loop connecting the external fields @dx;t”
P and adx;t” b resulting in off diagonal components of
the propagators in the material. An important aspect
of this mixing is that the off diagonal matrix elements
of the propagator are of order ga. This aspect
combined with coherence of the axion field in the
form of a macroscopic condensate may yield
observational effects at leading order in g, which
results in an enhancement in detection efficiency over
other possible processes such

o(7,1)

FIG.2. Mixing between the emergent axion field ©8x;t” b and

083531-13



SHUYANG CAO and DANIEL BOYANOVSKY

the cosmological axion fieldcorrelation function. The wavy lines
correspond to the correlationadx;t” b via the Chern-Simons
function (3.4), the heavy solid line to the axion field adx°p, and
the double solid line to the emergent axion quasiparticle field

Odx;t” b.

as “axion shining through walls” with a transition
probability of order g*.
(i) As discussed above, in

misaligned(cosmological) axion condensate, adx;t” b

presence of a

% a dx;t” P b a~dx;t” b where a dx;t” P is a classical
field describing a macroscopic condensate. Replacing
adx;t” b > a“0x;t” P inthe externallegof the mixed
propagatorinFig. 2, the photon loop and the external
c-number external leg a dx;t” b yield the Chern-
Simons condensate (see Fig. 1) hE” - B” idx;t” b which

acts as an external time dependent c-number source
term, namely a@d6x;t” phE> . B~ idx;t” P > a@dx;t”
Phdx;t” b, as depicted in Fig. 3.

Such an external source term, linearly coupled to @dx;t”
P results in an effective external time dependent driving
term displacing the quasiparticle field off equilibrium with
an oscillatory behavior corresponding to the time
dependence of the cosmological axion. For a homogeneous
axion condensate, this driving term induces an oscillatory
macroscopic condensate of the emergent axionlike field in
the material, namely a coherent state of the quasiparticle
degrees of freedom, which in principle could be measured
along the lines of the experimental setup in Ref. [39], and
perhaps with enhanced tunability of the coupling in the
case of multilayered metamaterials [37], thereby directly
probing the Chern-Simons condensate and, indirectly, the
cosmological axion condensate. However a recent analysis
of the signal to noise ratio in multiferroics suggests that the
coupling between axion dark matter and ferroic orders in
multiferroics [38] may not yield an observable signal of
dark matter axions. However, the possibility of harnessing
other materials for detection, in particular via the coupling
to the Chern Simons condensate remains to be explored.

PHYS. REV. D 107, 083531 (2023)

FIG. 3. Replacing the axion field by the misaligned axion

which acts as an external sourceidentified with the Chern-
Simons condensatecondensate a"dx;t” p the photon loop

withhdOx;t a"das the external leg isx;t”P % hE"p - B7i (" see
Fig.linearlyl),
coupled to the quasiparticle axion field h

"BIiE

V. DISCUSSION

A. Renormalization of the Chern-Simons condensate

As discussed above, for a nonvanishing dynamical
expectation value of the axion field, the induced
ChernSimons condensate features ultraviolet divergences
and it must be renormalized. The first term in (3.10) and
the function Fogiven by (3.14) are obtained by imposing an
ultravioletcutoffAintheko  integralofthespectraldensityin
Eq.(3.11).Thiscutoffisinterpretedasthescalebelowwhich
the effective field theory described by the local Lagrangian
density(2.1)isvalid. Evenwhenthisscaleisfinite,theresult
(3.10) implies a strong sensitivity to this scale. There does
not seem to be an obvious manner to renormalize the
ChernSimons condensate since it depends explicitly on
time through the dynamical expectation value of the axion
field. Therefore, we proceed to renormalize it simply by
subtracting the vacuum contribution, yielding the leading
order renormalized condensate in the high temperature
limit T > m, given by the result (3.17). The vacuum
subtraction is motivated by the subtraction of the zero point
contributions to hE” 2i and hB~ %4, namely the subtraction of
the zero point energy, since these operators are also of mass
dimensionfourandfeaturethesametypeofultravioletdiverge
nces xA* as the Chern-Simons condensate. However,
unlike the vacuumsubtractionforhE~ 2i-hB”
%ithesubtractionforhE™ - B~ i is proportional to the
misaligned axion condensate which depends explicitly on
time. It remains to be explored further if there is a suitable
and more rigorous renormalization scheme for hE~™ - B”
i0th, beyond a vacuum subtraction or subtracting solely the
ultraviolet sensitive terms.

B. Cosmological caveats

Our ultimate objective is to understand the cosmological
implications of the nonequilibrium dynamics of axions (or
axionlike particles) in cosmology. To this aim, the results
obtained above in Minkowski space-time serve as a
prelude, and a “proof of principle” of the application of the
concepts
behindlinearresponsetoextracttheinducedparityviolating
Chern-Simons condensate. There are several obvious
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differences between the dynamics in Minkowski
spacetime, and in cosmology: Hubble expansion modifies
the time evolution of the axion condensate including a
damping term in the equation of motion proportional to the
Hubble rate of expansion; axion decay into photons, or
other processes that lead to damping of the condensate will
also add to the damping dynamics but through a self-energy
correction that must be obtained from field quantization in
the expanding cosmology. However, by dimensional
analysis, linear response, and under the assumption that the
axion condensate undergoes damped oscillations, the
general form (3.10) qualitatively describes the
ChernSimons condensate, albeit with a different functional
form of I and the function Frin Eq. (3.15) since the high

temperature behavior of ma — Mo, Xg2T* on dimensional
grounds, and both must include the effect of Hubble
expansion.

These aspects notwithstanding, the results in Minkowski
space-time indicate that the qualitative aspects and main
conclusion, namely a dynamical misaligned coherent axion
condensate will induce a macroscopic condensate of the
composite operator(s) coupled to the axion as in Eq. (2.1),
will remain. Therefore, the calculation in Minkowski
spacetime with the approximation of free photons in the
ChernSimons susceptibility provides a “proof of principle”
of the main concepts and the qualitative form of the
condensate.

Furthermore, the potential observational consequences
of such a condensate in topological or metamaterials as
discussed in the previous section are reliably described by
the Chern-Simons susceptibility calculated with free
photons as such possible experiments would be carried out
today when the radiation bath to which the cosmological
axion is coupled is the cosmic microwave background.

C. Neutral pion condensate from misaligned axions

The axion is a quasi-Nambu-Goldstone boson, and as
such it couples directly to other matter fields via a
derivative coupling to a pseudovector current. However,
the axion couples indirectly to the neutral pion via an
intermediate state of two photons as can be understood
with the following argument. The neutral pion decays into
two photons, with an effective coupling of the form

a 0 oy 0 -
' F, " ~g'E- .
f v snr B asaconsequence of the chiral

anomaly, with oa=nf, = 0.025 GeV™!, with a the fine
structure constant, and fr the pion decay constant. This
implies the process ° <> 2y <> a, described by a Feynman
diagram similar to that in Fig. 2 but replacing ©->1°. This
process entails that the axion and the neutral pion can mix
via a common intermediate state of two photons; this is an
off diagonal self-energy diagram that is completely
determined by the Chern-Simons dynamical susceptibility
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(3.4); therefore we expect this “mixing” to be of order
ga=fr x T4, We are currently exploring this phenomenon.

D. Non-Abelian Chern-Simons condensate

An axion coupling of the form gadxPGuv;sG™ ** where

Guv;p is the gluon gauge field strength tensor and G W its

dual, would yield a non-Abelian Chern-Simons condensate
hGv;,G™ WPidtp in the same way as that for the Abelian
gauge theory. In this case the dynamical susceptibility is
the retarded commutator (2.20) but with Oy % Guv,,G™ Vb
While in principle a calculation similar to that of the
Abelian case yields the dynamical susceptibility (and the
quark-gluon contribution to the axion self energy) there are
several important differences with the Abelian case that
would lead to daunting technical aspects. Not only does the
non-Abelian nature of the gauge field introduce new
vertices, but also below the QCD temperature gluons and
quarks are confined to mesons and baryons involving
nonperturbative physics. Furthermore for temperatures
above the QCD scale, which is larger than the masses of all
but the top quark, these degrees of freedom are
ultrarelativistic and yield self-energy corrections to the
gluon propagators in the form of hard thermal loops both
from gluons and quarks which cannot be neglected [43,44].

On dimensional grounds (Guv;;G *“® has mass dimension

four) we expect ultraviolet divergences, or rather
sensitivity to a cutoff A delimiting the validity of the
effective field theory description similar to the Abelian
case. Furthermore, we also expect that the non-Abelian
Chern-Simons condensate will be proportional to
a“dtb;a_"dtb; hence an ambiguity in the renormalization of
this condensate should arise in much the same way as for
the Abelian case. From the general results (2.4), (3.7)) and
just on dimensional grounds we expect that after
high
temperature limit of the finite temperature contribution is

subtracting the vacuum term altogether, the

of the form

hGuv;bG™ wv;bidth % gCaTsa™dtP b D__c [Tha_~otp;
05:1b g

where 9TP is the relaxation rate of the misaligned axion
condensate, and Cg, Dg will be functions of the ratios of the
various scales, such as the axion mass and quark masses to
the temperature. Notwithstanding these quantitative and
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technical aspects, the general results (2.4), (3.7) imply that
a misaligned axion will induce a condensate of the
nonAbelian Chern-Simons density.

VI. CONCLUSIONS

The nonequilibrium dynamics of axions is of an
interdisciplinary interest both in cosmology, as a possible
candidate for dark matter, and/or dark energy as well as in
condensed matter physics where axionlike excitations may
emerge as
collectivequasiparticlesinparityviolatingtopologicalinsulat
ors, density waves in Weyl semimetals, or in
metamaterials. In this article we study hitherto unexplored
nonequilibrium aspects of axions in Minkowski space-time
as a stepping stone toward a more comprehensive treatment
in cosmology with potential observable consequences
harnessing emergent axionic quasiparticles in condensed
matter systems.

The main objective is to study how a misaligned
coherent axion condensate induces a macroscopic
condensate of a composite pseudoscalar operator O
coupled to the axion as gadx;t” POdx;t” b. To this aim we
implement the method of linear response ubiquitous in
many body physics. We obtain the macroscopic condensate
of such a pseudoscalar operator
toleadingorderinthecouplinggbutinprincipletoallorders of
the couplings of the degrees offreedom described by O to
any other degree of freedom within or beyond the standard
model, except the axion.

We focused in particular on a macroscopic condensate
of the Chern-Simons density E° - B~ in axion
electrodynamics and introduced the dynamical
susceptibility, which is a response function that relates the
induced Chern-Simons condensate to the axion
condensate. This susceptibility is simply related to the
axion self-energy a relation that holds to all orders in the
couplings of photons to other degrees of freedom within or
beyond the standard model except the axion. The induced
Chern-Simons condensate is strongly sensitive to the cutoff
scale of the effective field theory and requires subtle
renormalization. Subtracting the vacuum contribution and
in the high temperature limit T >> m, we find

hE” -B” i5tbY-greTaa OtbpgmzaT _~5tPpOdma2=T2b
36:1p a
15 16m

with a”dtp the dynamical homogeneous axion condensate
solution of the equations of motion including the
selfenergy.

We have argued that the Chern-Simons condensate can
be probed by harnessing axionlike collective quasiparticles
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in condensed matter systems such as topological insulators,
Weyl semimetals, magnetoelectric insulators, or
multilayered metamaterials which provide realizations of
axion electrodynamics. A homogeneous cosmological
axion condensate induces a macroscopic topological
ChernSimons condensate that acts like an external source
driving a nonequilibrium macroscopic emergent axionlike
condensate in these systems, which oscillates with the
same frequency as the cosmological axion. Furthermore,
we also conjectured that a misaligned axion condensate
also induces a non-Abelian Chern-Simons condensate and
mixes with neutral pion degrees of freedom thereby
inducing a neutral pion condensate and chiral symmetry
breaking during or after the QCD phase transition.

The next stage of the study will include cosmological
expansion which requires extending the linear response

t
formulation to the realm of a Friedmann-Robertson-Walker
cosmology; we expect to report on these studies in a future
article.
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APPENDIX: SOLUTION OF (2.33) VIA
MULTITIMESCALE ANALY SIS

Let us consider the spatial Fourier transform of the
equation of motion (2.33), which we write as

a7k0th p Ysw2k p dwaka kdtb p Z t 2k;t — toPa kdtobdto % O;
toaAl p

where anticipating renormalization, w?c is the finite
temperature renormalized frequency describing the in-
medium dispersion relation, and the counterterm &w?
accounts for renormalization and is defined so that k? p

m20a ¥ w’ b dw?, and

Y0k;t — tob % —ig2 Z dk__2mo pdko; kpPe-ikost-top: S A2P
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. ¢ 2 2 .
Since S g2, we expect that 9%k X 9" Let us write the
solution of (A1) as a’k” 0t % Ak’ dtPe-iwkt p Ak” dtPeiwk;

dA3p

where e*“tare fast varying and A" 8tb is a slowly varying

amplitude, so that A_ « Otb; A 6tb o g?;. The equation for
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Wit;to % O; 0A7b
with
Yo U — 2dko pdko;kb Z t7to e-igko-wibrdT:
0A8P
W t;t -ig

21 0

e-iwdtA k"= 2iwkA_ k" b Sw2kAk” b Z 28k;t - toPeiwdt-topAk” Stobdto

to

b eiwdtA " p 2iwkA_ k" b Swk2Ak”
k

z

Since the fast varying phases are independent and the

b Z ot Z0k;t — toPe-iwat-topAk” GtoPdto % O:

dA4p

brackets are ofbracket vanishes individually, yieldingO8g2p or A «* b2iwkA_ k* pdwk2Ak” pZ ot28k;t-tobe-iwist-tobAk” dtobdto

higher, we request that each

%0:

dA6P

b btot & P widt-topAk” Stobdto %0; wLet us focus on Eq.k >-wk. (A5) since (A6) is obtained from it by A k”-2iwkA_

k> Sw2kAK’Z k;t-to ei

54p

the slowly varying amplitudes Ai* 3tP;Ai” becomes

an expansion in derivatives proportional to powers of g2,
we write

>0k;t — tobeiwst-top ¥4 __d
Z
Wst;to; dtto

h
W t;to %

to

20k;t — toobPeiwkst-toopdto0;

The derivatives A_ ;A  are written as an expansion in g2

since Ay is a slowly varying amplitude. In order to generate

Integrating by parts the last term in (A5) yields

A - 2iwA_ ¢ b SwAAC b Wt tAC 5th

Z d

- o W¥t;t%dt__ "0 A "0t%Pdt® % 0; AP ¢

t

since W¥t;t° o« gZand dA 8tb=dt o g?the last term in (A9)

083531-17



SHUYANG CAO and DANIEL BOYANOVSKY

is of O8g*P and will be neglected since we only keep terms
up to and including O8g?p. Hence to 08g?p the Eq. (A9)

simplifies to
Ak - 2iwkA_ Kk b ¥%Swak b Whit;tAk 8tb % 0: 6A10p
Writing

Ak 0tb % elatp ; [kOtP % g2lokipOtb p galskardtpb p 0AllP

and keeping only the leading Oag2p terms, 19" obeys the

simple equation
“lok1pdth — 2iwkl_skipdth % —g__12 ¥56wak p Wist;t: SA12P

At early times t - to = 1=m,;1=T transient effects are
expected, but we are interested in the intermediate and long
time asymptotics t — to >> 1=m,;1=T; in this limit we
replace

Z t-to” 3 079PTdT >-iP 1 p n68ke—w-P; e ik
0 ko—ukk
0A13p
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