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Abstract— The evolution of antibiotic resistance in bacteria
is a significant public health risk influenced by several factors.
Switched systems can abstract the evolutionary aspects driven
by antibiotic use in a given population. However, mathematical
models are not perfect, and uncertain dynamics remain. Based
on a set theory approach, our main result is the develop-
ment of an algorithm to demonstrate the stabilizability of a
robust invariant set for the uncertain switched system. The
algorithm also provides a characterization of invariant regions
for switched systems under perturbations. Our findings provide
insights into how to incorporate uncertainties in switched
systems. This paves the way for selecting antibiotics to tackle
drug-resistant infections.

I. INTRODUCTION

The increase in drug-resistant bacteria poses a serious threat
to public health, killing millions worldwide every year
[1]. Bacteria become resistant through genetic mutations or
by acquiring resistance genes from other bacteria through
horizontal gene transfer [2]. The overuse of antibiotics has
increased the prevalence of drug-resistant infections [3].

Recent biological studies have uncovered that while an-
tibiotics can promote resistance to one drug, they can also
induce sensitivity to another drug. This is known as collateral
sensitivity, and the converse is known as cross-resistance
[4]–[6]. Based on these biological observations, a founda-
tional interrogative would be developing strategies for better
treatment by alternating (“switching”) our current arsenal
of antibiotics. Addressing this question would require the
effective forecasting of bacterial evolution to personalized
therapies known as “Evolutionary Therapies” [7].

Mathematical modeling provides a platform for studying
the dynamics of drug resistance evolution in bacterial popu-
lations [8]. In particular, switched systems have been used to
abstract drug resistance to sequential antibiotic exposure [9],
[10], where the states represent different bacterial population
dynamics, and the inputs of control given by the set of antibi-
otics is the switching between systems. However, previous
models did not consider any model uncertainty. Biomedical
problems are complex, with a myriad of factors that strongly
complicate the model-building and affect its respective pre-
dictions [11]. There is a significant amount of theory de-
veloped in the last three decades in the stability analysis
and switching control design for switched linear systems
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[12]. Several studies were conducted on the robust stability
of general switched systems, in which the switching signal
is not necessarily the manipulated input but an autonomous
signal [13], [14]. These studies consider the uncertainty in the
family of possible models, e.g., uncertainty parameter [15].
However, only a few studies consider additive uncertainty,
e.g., when stochastic signals are added/subtracted directly
from state dynamics. This is important as additive noise
refers to missing mechanisms that were not included in the
model.

There arises a natural interrogative about whether one can
define measures of stabilizability robustness for switched
linear systems that can help design evolutionary therapies.
This can be formulated as a problem of robust stabilizability
of linear uncertain systems, which involves determining
stabilizing switching sequences that result in asymptotically
stable behavior in the presence of uncertainties [16]. Previous
studies in [17] presented necessary and sufficient conditions
for the existence of asymptotically stabilizing switching laws
for a class of switched linear systems with time-variant
parametric uncertainties. More recently, robust stabilizability
has been introduced for periodically switched systems [18].

Eradicating a pathogenic population would require driving
it to equilibrium at the origin. Stabilizing the origin is a
very restrictive condition and not always feasible, espe-
cially in the presence of uncertainties and in the context
of evolutionary dynamics that lead to resistance. Invariant
sets, unlike fixed equilibrium, offer a more realistic control
goal to enhance controllability by offering alternative stable
regions and providing safety zones to maintain infection
suppression. In [19], the stabilizability was provided based
on the characterization of contractive invariant sets for a
nominal switched linear system. The approach was based
on set-control theory [20], which has been previously used
for switched systems [21], [22]. These previous studies
demonstrated the complexity of characterizing invariant sets
for switched systems and their implications in biomedical
problems.

This paper proposes an extension of the strategy pre-
sented in [19] to account for uncertainties explicitly. The
resulting robust formulation, based on the results in [23]–
[25], considers restricted constraints for the uncertainty and
account for the robust stability of the system. The strategy
is illustrated through numerical simulations. Furthermore,
we exemplify the potential of the results in the problem of
bacterial resistance, in which we investigate how selecting
one drug among two affects the evolution of the drug’s
resistance.



A. Notation

- We denote the set of integers Nq := {1, · · · , q}.
- Given a constant a ∈ R, a constant function w(t) = a,

for all t ≥ 0 is denoted by w(t) ≡ a.
- Minkowski addition: A⊕ B = {a+ b | a ∈ A, b ∈ B}.
- Minkowski subtraction: A ⊖ B = {a | a + b ∈
A, for all b ∈ B}.

- Euclidean distance: d(x, y) := [(x− y)t(x− y)]1/2.
- Closed ball: B(x, ε) := {y ∈ Rn | d(x, y) ≤ ε}.
- Set interior: x is an interior point of Ω if the there exist
ε > 0 such that B(x, ε) ⊆ Ω. The interior of Ω is given
by all interior points of Ω and denoted by int(Ω).

- Star-convex set: A set Ω is star-convex if there exists
x0 ∈ Ω such that every convex combination of x ∈ Ω
and x0 belongs to Ω, i.e. αx0 + (1 − α)x ∈ Ω for all
α ∈ [0, 1].

- C∗-set: A set Ω with the origin in its interior is a C∗-
set if it is compact and star-convex with respect to the
origin.

- Set subtraction: A \ B = {a | a ∈ A and a /∈ B}.
- Cartesian product: Given a set W ⊆ Rn, we denote the

set WN = W× · · · ×W︸ ︷︷ ︸
N times

.

II. PRELIMINARIES

The dynamics of the (additive) uncertain switched system
can be described by the following equation:

x(k + 1) = Aσ(k)x(k) + w(k), (1)

where x(k) ∈ X ⊂ Rn is the state of the system, w(k) ∈
W ⊂ Rn is the current disturbance, Aσ(·) is the transition
matrix, and σ(k) ∈ Nq is the switching law that selects the
mode σ(k), at time k ∈ N, among q > 1 possible values.
The set X is closed and W is a compact convex set that
contains the origin in their interior.

Given an initial state x0 ∈ X and a switching law σN :=
{σ(1), · · · , σ(N)}, for N ∈ {1, · · · ,∞}, we denote with
ϕ(x0;σN , wN ), all the states at time k = N , by applying
the switching law σN to the initial state x0, corresponding
to all admissible disturbances realization wN ∈ WN . Also,
the state of the nominal system (i.e., w(k) ≡ 0) is denoted by
ϕ(x0;σN ), which is the state at time k = N , by applying the
switching law σN to initial state x0, without uncertainties.

Let us recall some properties of the Minkowski addition
and subtraction that we will utilize in the next section.

Property 1: Given a C∗-set Ω and a convex set W , it
follows that (Ω⊖W)⊕W ⊆ Ω. Moreover, if 0 ∈ W , then
Ω⊖W ⊆ Ω.
Set-control theory studies regions in the state space where
the system can feasibly remain over time, known as control
invariant sets, which play a pivotal role in the stability
properties of the dynamical system. Thus, a robust control
invariant set, for system (1), can be defined as follows.

Definition 1 (Robust Control Invariant Set): A set Ω ⊂ X
is said to be a robust control invariant set of switched
system (1), if for every state x(k) ∈ Ω there is a mode

σ(k) ∈ Nq such that the next state follows the condition
x(k + 1) ∈ Ω, for all w(k) ∈ W.

A. Global Lyapunov function: Nominal approach

Necessary and sufficient conditions for the stabilizability
of a nominal switched system (i.e., w ≡ 0), and the concept
of a global control Lyapunov function within a set-control
framework were introduced by [19]:

Definition 2: A positive definite continuous function V :
Rn → R is a global Lyapunov function for the nominal
system if there exist a positive N ∈ N and a switching law
σ∞, such that V is non-increasing in one step and decreasing
after N steps, for all x ∈ X, i.e. V (ϕ(x;σ(1)) ≤ V (x) and
V (ϕ(x;σ(k)) < V (x), for all k ≥ N , and for all x ∈ X.

Based on the former concept, [19] proved that the nom-
inal system is stabilizable by showing that the Minkowsky
function

ΨΩ(x) = min
α≥0

{α ∈ R : x ∈ αΩ}, (2)

where Ω is a C∗-set, is a Lyapunov function. We will
demonstrate next that the Minkowsky function can be utilized
to establish the decreasing property of a global Lyapunov
function for the uncertain system as well.

B. Global Lyapunov function: Robust approach

Based on concepts presented in [26] to tackle uncertain
systems, we propose the following robust extension for the
Lyapunov function. A function V (·) is a robust control
Lyapunov function for the uncertain system (1), and for
a given set Ω ⊂ X, if there is a switching law σN =
{σ(1), · · · , σ(N)} such that

sup
z∈ϕ(x;σ(1),w)

V (z) ≤ V (x) (3)

for all w ∈ W and x ∈ X and

sup
z∈ϕ(x;σN ,wN )

V (z) < V (x). (4)

for all wN ∈ WN and for all x ̸∈ Ω.

III. STABILIZABILITY OF UNCERTAIN SWITCHED
SYSTEMS

We propose the following algorithm to compute the
robust stabilizability of the uncertain switched system (1):

Algorithm 1: Stabilizability of the uncertain switched
system (1).

• Initialization: Given the disturbance set W ⊂ Rn and
a C∗- set Ω ⊆ X such that Ω⊖W ̸= ∅. Define Ω0 = Ω
and k = 0;

• Iteration for k ≥ 0:

Ωi
k+1 = A−1

i (Ωk ⊖W), ∀i ∈ Nq ,

Ωk+1 =
⋃

i∈Nq

Ωi
k+1;



• Stop if Ω ⊆ int
(⋃

j∈Nk+1
Ωj

)
; denote N̂ = k + 1 and

Ω̂ =
N̂⋃
j=1

Ωj .

Algorithm 1 can be used to construct a switching law σ(·)
for the uncertain system (1), such that it drives every x0 ∈ Ω̂
to the set Ω in a finite number of time steps, as formalized
in the following property.

Property 2: If Algorithm 1 ends in finite steps N̂ , then
for every x0 ∈ Ω̂ there is a switching law σN̂+1 such that
ϕ(x0;σN̂+1, wN̂+1) ∈ Ω for all wN̂+1 ∈ WN̂+1.

Proof: Consider x(0) := x0 ∈ Ω̂ :=
N̂⋃
j=1

Ωj . Then there

is jN̂ ∈ {1, · · · , N̂} such that

x(0) ∈ ΩjN̂
:=

⋃
i∈Nq

Ωi
jN̂

w.l.o.g. we assume that x(0) ∈ Ωi0
jN̂

for some i0 ∈ Nq . Then,

x(0) ∈ Ωi0
jN̂

:= A−1
i0

(
ΩjN̂−1 ⊖W

)
,

or, Ai0x(0) ∈ ΩjN̂−1 ⊖W, then:

Ai0x(0) + w ∈ ΩjN̂−1, for all w ∈ W,

or the same, ϕ(x0; i0, w) ∈ ΩjN̂−1. Let assume the stochastic
event at time k = 0 is w(0) ∈ W, and define x(1) =
Ai0x(0) + w(0) ∈ ΩjN̂−1. Now, we repeat the procedure:

x(1) ∈ ΩjN̂−1 =
⋃
i∈Nq

Ωi
jN̂−1

w.l.o.g. we assume that x(1) ∈ Ωi1
jN̂−1 for some i1 ∈ Nq .

Then,
x(1) ∈ Ωi1

jN̂−1 := A−1
i1

(
ΩjN̂−2 ⊖W

)
,

or, Ai1x(1) ∈ ΩjN̂−2 ⊖W, then:

Ai1x(1) + w ∈ ΩjN̂−2, for all w ∈ W.

or the same, ϕ(x0; {i0, i1}, w2) ∈ ΩjN̂−2, for all w2 ∈ W2.
By the same procedure, we can find a switching signal

σN̂+1 := {i0, i1, · · · , ijN̂ } such that

ϕ(x0;σN̂+1, wN̂+1) ∈ Ω0 = Ω,

for all wN̂+1 ∈ WN̂+1.
The last proves that the sequence σN̂+1 :=

{i0, i1, · · · , ijN̂ } drives the initial state x0 ∈ Ω̂ to the
set Ω in N̂ + 1 steps.

Next, we will demonstrate that the set to which the
algorithm converges is a robust invariant control set for the
uncertain switched system.

Lemma 3: If Algorithm 1 ends in finite steps N̂ , then the
set Ω̂ is a robust control invariant for the switched system (1).

Proof: The conclusion of Property 2 and the fact that
Ω ⊆ int(Ω̂) lead to the result.

Now, we will show that the Minkowski function (2) is a
proper candidate for the robust Lyapunov function introduced
in Equations (3) and (4).

Theorem 4: If Algorithm 1 ends with finite N̂ , then
equation (4) holds, i.e.

sup
z∈ϕ(x;σN̂ ,wN̂ )

V (z) < V (x).

for wN̂ ∈ WN̂ and for all x ̸∈ Ω.
Proof: Let x ∈ Ω̂\Ω, by Property 2 there exists a signal

σN̂ such that ϕ(x;σN̂ , wN̂ ) ∈ Ω. Also, note that Ω ⊂ λΩ̂

for some λ < 1, since Ω ⊂ int(Ω̂). This means that there is
σN̂ such that,

ΨΩ̂(ϕ(x;σN̂ , wN̂ )) ≤ λΨΩ̂(x)

for all wN̂ ∈ WN̂ , then

sup
z∈ϕ(x;σN̂ ,wN̂ )

ΨΩ̂(z) < ΨΩ̂(x),

for all wN̂ ∈ WN̂ , which proves Equation (4) for all x ∈
Ω̂\Ω. Finally, by the homogeneity of the Minkowski function
and the linearity of the switched system, the inequality holds
for all x ∈ X.

Conjecture 5: If Algorithm 1 ends with finite N̂ . Then
equation (3) holds, i.e.

sup
z∈ϕ(x;σ(1),w)

V (z) ≤ V (x)

for all w ∈ W and for all x ∈ X.
The proof of this last result is left for future work.

A. Numerical example

The next numerical example is taken from [19], where the
stability of the origin for the nominal switched system was
studied. We will conduct the same analysis as performed by
[19] and compare the results with those obtained from our
algorithm.

Given the following subsystems

A1 =

(
0 −1.01
1 −1

)
, A2 =

(
0 −1.01
1 −0.5

)
We applied the proposed algorithm for the nominal case,

that is, for a W = ∅, and the initial set

Ω = {(x1, x2) : x2
1 + x2

2 ≤ 1}.

The algorithm converges after 3 iterations. The result is
shown in Figure 1A. Given that the initial conditions con-
sidered are the same, we obtained the same results as
[19] experiments. For the case of the uncertain switched
system (1), we consider an uncertainty bounded by the set

W = {(w1, w2) ∈ R2 : −0.04 ≤ wi ≤ 0.04, i = 1, 2}.

In Figure 1B, we observe the initial set Ω, represented by
the unit circle centered at zero, followed by the set Ω⊖W,
obtained by the Minkowski subtraction. The algorithm ends
for this W after 5 iterations, demonstrating that the uncertain
switched system (1) can be robustly stabilized.

It is noteworthy that Property 2 establishes that for any
initial state within Ω̂, there exists a robust switching law
that drives the states of the nominal system to the set
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Fig. 1: Stabilizability of the nominal switched system is
shown in Panel (A). Panel (B) shows the stabilizability of
nominal systems vs the uncertain switched system. The initial
set is given by Ω, the disturbance set is W, and the solution
is the robust control invariant denoted by the set Ω̂.

Ω ⊖W. Consequently, leveraging Property 1, the uncertain
model cannot escape from Ω. This illustrates the algorithm
design, which establishes a robust strategy by constraining
the uncertain system evolution around the nominal state.

IV. CONTROL INVARIANT SET TO CHARACTERIZE
BACTERIAL POPULATIONS

The proposed theory to characterize robust control invari-
ant sets in the previous section can provide a framework
for defining the limitations of antibiotics given a bacterial
population. To this end, we considered previous work by
[10], [27] that presents a mathematical model to represent the
bacterial population in two states: sensitive and resistant. The
dynamics of the population are governed by the following
uncertain switched linear system,

ẋi = ρi,σ(t)xi(t)− δxi(t) + µ

n∑
j ̸=i

mij,σxj(t) + wc(t), (5)

where the state of the bacteria population is represented
by xi for the different genotypes i at every given time

t, with the control σ(t) (antibiotic regimen), and wc an
uncertainty of the switched system. The uncertainty accounts
for unmodeled components in the biological system. The
parameter ρi,σ is the proliferation rate, which depends on the
antibiotic used (σ(t)). The death rate is represented by δ. We
assume that the antibiotic used only affects the proliferation
rate.

A mutation term to account for the evolution towards
resistance or sensitivity is represented with the mutation
network mij,σ(t) ∈ {0, 1}. This term also depends on the
antibiotic used to represent the genetic connections between
genotypes, that is, mi,j = 1 if and only if genotype xj can
mutate into genotype xi. The mutation rate is represented by
µ. Equation (5) can be written in the vector form as

ẋ(t) = ∆Gσ(t)x(t) + µMσ(t)x(t) + wc(t), (6)

where Mσ(t) := [mij,σ(t)] ∈ Rn×n, which defines the
observed mutations based on the therapy (σ(t)) in use at time
t. The matrix ∆G = diag{ρi,σ(t)}−δI , where diag{ρi,σ(t)}
is the diagonal matrix with the proliferation rate for the
different genotypes i, and I is the identity matrix.

A. Two bacterial population case study

Focusing on two populations can provide us with valuable
insights from the control invariant sets. Assuming two an-
tibiotics X and Y , the population x1 = XRYS is resistant
to drug X and sensitive to drug Y , and the population
x2 = XSYR that is resistant to drug Y and sensitive to drug
X . The switching represents the administration of different
antibiotics (X and Y ). Figure 2 presents a scheme of the
proposed example.

XRYS XSYR

Y

X

YX

Fig. 2: An evolutionary network system showing the inter-
action between antibiotics X and Y , and strains XRYS and
XSYR.

For the applicability of the algorithms proposed in the
previous section, we consider the following qualitative cases
for the example presented in Figure 2:

Case 1: Each population is sensitive to one drug

∆Gσ=1 =

(
+ 0
0 −

)
, ∆Gσ=2 =

(
− 0
0 +

)
Case 2: One population is resistant to both drugs

∆Gσ=1 =

(
+ 0
0 +

)
, ∆Gσ=2 =

(
− 0
0 +

)
Remark 1 (Sign in ∆Gσ(t)): The positive sign in matri-

ces ∆Gσ=1 and ∆Gσ=2 can be understood that the bacterial
population growth is larger than the respective death. There-
fore, it would be an expansion of that population given an
antibiotic σ(t). Vice versa, the negative sign would imply



the proliferation is less than the death, thus would be a
contraction of that population given an antibiotic σ(t). We
adopt this nomenclature to generalize examples independent
on the values of the parameters.

Remark 2 (On the nominal system framework): Mutation
rates (µ) in microbes range from 10−6 to 10−11 [28].
Considering the system (6), the matrix ∥∆G∥ >> µ∥M∥,
therefore, the stability of the system (6) will be governed by
the eigenvalues in the diagonal matrix of ∆G. Case 1 can
be stabilizable under switching as the diagonal matrix ∆G
changes the directions of the eigenvalues from positive to
negative. Case 2 is not stabilizable as the second eigenvalue
is positive independently of the switching law.

B. Numerical results

We must first show that the continuous model (6) is
equivalent to a discrete model, as in Equation (1). To do
this, we need to demonstrate that bounded disturbances of
the continuous system will also be bounded in the discrete
system; this way, we can characterize the sets in Algorithm 1.
Note that in practice, measurements are considered for a
fixed interval ∆t, where it can be assumed the treatment
σ(t) is fixed. If we use k ∈ N to denote the discrete intervals,
then,

x(k + 1) = e(∆Gσ(k)+µMσ(k))∆tx(k) (7)

+

∫ ∆t

0

e(∆Gσ(k)+µMσ(k))(∆t−τ)wc(k)dτ

= Aσ(k)x(k) + w(k)

where x(k) is sampled state, Aσ(k) := e(∆Gσ(k)+µMσ(k))∆t,
and w(k) is given by the integration term. In order to bound
w(k), for all k ≥ 0, note that for a given norm ∥·∥ we have:∥∥∥∥∥
∫ ∆t

0

eĀσ(k)(∆t−τ)wc(k)dτ

∥∥∥∥∥ ≤
∥∥∥eĀσ(k)∆t

∥∥∥ · ∥wc(k)∥ ·∆t

where Āσ(k) := (∆Gσ(k) + µMσ(k)). So, ∥w(k)∥ can be
bounded if we take the upper bound of

∥∥∥eĀσ(k)∆t
∥∥∥ for all σ ∈

Nq , and we assume that the disturbance of the continuous
system, wc(t), is bounded for all t ≥ 0.

1) Invariance analysis on bacterial escape: For the qual-
itative analysis, let us first consider Case 1. In this scenario,
both matrices are non-Hurwitz, implying that the system
cannot be stabilized by a constant σ(t) for all t > 0. In
biological terms, it is necessary to apply both antibiotics to
prevent population escape due to resistance. This is known
as evolutionary rescue [29], a phenomenon in which the use
of a single antibiotic leads to population escape due to the
emergence of resistance. In other words, if the population is
exposed to single-antibiotic over time, the sensitive strain is
eradicated. However, the emergent resistant strain escapes
the monotherapy, and this occurs for any positive initial
condition (i.e., xi > 0, for some i = 1, 2). Consequently, at
least two antibiotics must be considered in this framework.

As we mentioned in Remark 2, Case 1 can be stabilized
for a nominal switched system (i.e., without uncertainty).

0 0.2 0.4 0.6 0.8 1 1.2
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0.2
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1.2 Close-up

x1

x 2

Fig. 3: Limiting Bacterial resistance evolution. The initial
condition for Algorithm 1 is given by set Ω, the solution
of the algorithm is a robust control invariant set, Ω̂, for the
uncertain switched system. The close-up indicates the stop
condition of Algorithm 1 is fulfilled, i.e., Ω ⊂ int(Ω̂).

Here, we show in this case that we can still be stabilized
for the uncertain system. Algorithm 1 was implemented
using MATLAB, leveraging the MPT3 toolbox [30]. In this
instance, Algorithm 1 converges within two iterations for an
uncertainty set W ̸= ∅, and for an initial set Ω, given by the
unit circle in the positive octant, see Figure 3. We observe
in the close-up window of Figure (3) that Ω ⊂ int(Ω̂),
showing that the algorithm stops and suggesting that using
sequential therapies with synergistic drugs could prevent
infection escape in evolutionary rescue context.

Note that we construct a bounded robust control invariant
set, Ω̂, of system (1). Therefore, we can ensure that the
population (x1(k), x2(k)) ∈ Ω̂ for all k ≥ 0, given any
initial condition (x1(0), x2(0)) ∈ Ω̂.

Remark 3: Let us assume two bacterial populations, x1

and x2, satisfying the condition (x1, x2) ∈ Ω̂. Thus, the
synergy between the two drugs is sufficient to prevent this
population from escaping due to the evolutionary rescue
curve.

Finally, Case 2 cannot be stabilized for the nominal
system, as described in Remark 2. Since we assume 0 ∈ W,
it is also not possible to stabilize it for the uncertain system.
Algorithm 1 does not converge in this case. This shows that
bacterial population in Case 2 cannot be contained with these
antibiotics.

V. CONCLUSION

In this study, we achieved stabilizability for the uncertain
switched linear system through a robust control invariant
set characterization. This approach guarantees that once the
states of the nominal system reach certain regions, the un-
certain states will remain bounded. These findings were then
leveraged to investigate the dynamics of antibiotic resistance
in bacterial populations. Our approach has the potential to
assess the selection of antibiotics and evaluate their potential
to eradicate a bacterial population.
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