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Abstract

Traditional approaches for long read assembly compute overlapping reads and subsequently use that
overlap information to assemble the contigs. Inherent to this approach is the subproblem of ordering
the reads as per their (unknown) genomic positions of origin. However, existing approaches are not
designed to explicitly target computation of this true ordering during the assembly process; instead
the ordering information becomes available only after the assembly is complete. In this paper, we
posit that prior computing of a reliable read ordering, even if imperfect, can significantly reduce the
computational burden of the assembly process, preserve assembly quality, and enhance parallel scalability.
Specifically, we present Tile-X, a novel graph-theoretic vertex reordering-centric approach to compute
long read assemblies. The main idea of the approach is to efficiently compute an overlap graph first,
use the overlap graph to (re)order the reads (vertices of the graph), and use that ordering to generate
a partitioned parallel assembly. We test this idea with two classes of vertex reordering schemes: a)
one that uses standard graph vertex reordering schemes that maximize graph locality or bandwidth
measures; and b) another class where we custom define a sparsified reordering scheme that exploits
sequence characteristics of the underlying graph to reduce the memory and time-footprint for the final
assembly step. Using experiments on a combination of real-world and simulated PacBio High Fidelity
(HiFi) long reads generated from real genomes, we demonstrate that the Tile-X approach is able to
achieve substantial improvements over state-of-the-art long read assemblers, in memory efficiency and
runtime, while preserving assembly quality metrics such as NGA50 and largest alignment. On average,
across all the inputs, Tile-X achieved an NGA50 between 1.06x and 2.1x larger than state-of-the-art
assemblers we compared with, while reducing runtime by up to 3.5x and memory consumption up to
3.3%.
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1 Introduction

The recent emergence and rapid evolution of long read sequencing technologies has spawned off a new era in
the genome discovery, variant discovery, disease identification, and phylogenetic analysis [1, 2, 3, 4, 5]. Single
molecule sequencing (SMS) technologies including Oxford Nanopore Technologies (ONT) [2] and Pacific
Biosciences (PacBio) [6] are starting to provide long reads covering different length ranges and quality.
PacBio provides reads of varying length intervals (30-60 Kbp for CLR, 10-25 Kbp for HiFi) and low error
rates (5%-13% for CLR, <1% for HiFi) [3, 5]. ONT offers longer reads (10 Kbp to >100 Kbp) but with
higher error rates (8%-15%) [4, 7, 8]. Owing to the rapid evolution of the long read technology, long read
assembly remains an actively pursued problem for algorithmic development and optimization.

There are broadly two classes of long read assemblers: those that construct a de Bruijn graph [9, 10] and
those that use the overlap layout consensus (OLC) approach [11, 12, 13, 14, 15]—with a majority following
the OLC approach. In the OLC approach, overlapping reads are detected (either through alignment-based or
alignment-free) methods, and the overlap information is used to build a read graph (or string graph) where
nodes are reads and edges are between pairs of overlapping reads. Subsequently, this graph is processed
to generate contigs that constitute the output assembly. The individual assemblers typically vary in the
way they compute the overlaps and the way they process the graphs to generate contigs. For instance,
MECAT [11] leverages a pseudolinear alignment scoring algorithm to accelerate overlap detection, reducing
computational overhead substantially. Falcon [12] utilizes a hierarchical genome assembly process to produce
phased diploid assemblies that are both accurate and contiguous. Peregrine [13] employs sparse hierarchical
minimizers to streamline the overlap detection process, enabling rapid assembly of high-coverage datasets
with reduced computational resources. Tools such as HiCanu [14] and Hifiasm [15] enhance the quality
of their alignments through strategies like haplotype phasing and homopolymer compression. However,
across all these assemblers the two major phases are the computation of overlap and the use of that overlap
information to produce the assemblies.

Inherent to the OLC approach of assembly is the subproblem of ordering the reads as per their (unknown)
genomic positions of origin. In fact, if the true ordering of reads along the target genome becomes known,
then the problem of de novo assembly is significantly simplified because all that remains is to compute the
alignment between successive pairs of overlapping reads defined by that order. However, the ordering of reads
is not known a priori. Furthermore, existing assemblers are not designed to explicitly target computation
of this true ordering during the assembly process. Instead, the ordering information becomes available after
the final assembly is produced. There have been some recent works which have exploited clustering or
partitioning ideas to generate an assembly [16]. Clustering tasks can be viewed as an alternative to generate
an ordering, binning the reads into buckets, which can be independently processed for assembly. However,
generating an ordering (partial or total) has further information that can be exploited.

Contributions. In this paper, we evaluate the merits of computing an explicit ordering of reads during
the early stages of the assembly process. In particular, we posit that computing an explicit read ordering,
even if imperfect, has the potential to significantly reduce the computational burden of the assembly process,
without compromising on the assemby quality, while enhancing parallel scalability. Specifically, we present
Tile-X, a novel graph-theoretic vertex reordering-centric approach to compute long read assemblies. The
main idea of the approach is to efficiently compute an overlap graph first, use the overlap graph to (re)order
the reads (vertices of the graph), and use that ordering to generate a parallel partitioned assembly.

Here, we note that it may not be practical to compute the true ordering. In fact, under various sequence-
agnostic graph-theoretic optimization measures (evaluated in [17]), the problem of computing such an optimal
ordering is also intractable. However, it is also not necessary to compute a perfect ordering. Instead, a
cheaper approximate ordering could suffice to generate a coarse partitioning of reads, providing a two-fold
benefit: a) separation of reads from unrelated parts of the genome into different partitions (important for
reducing potential misassemblies); and b) introducing a way to process the different partitions in parallel,
thereby improving scalability.

We test this main idea of using ordering to aid long read assembly, under two classes of vertex reordering
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Figure 1: A schematic illustration of the major phases of the proposed Tile-X approach.

schemes: a) one that uses standard graph vertex reordering schemes [18, 19, 20] that maximize various graph
locality /bandwidth measures [17]; and b) another class where we custom-define a new type of sparsified
reordering scheme that exploits sequence characteristics of the underlying graph to reduce the computational
footprint for the final assembly step. Our experiments on a combination of real-world and simulated PacBio
High Fidelity (HiFi) long reads generated from real genomes demonstrate that the Tile-X approach is able
to achieve substantial improvements over state-of-the-art long read assemblies, in memory efficiency and
runtime, while preserving assembly quality metrics such as NGA50 and largest alignment. For instance, for
the full human genome, the sparsified reordering version of Tile-X (called Tile-Far) achieves an NGA50
that is 2.1x larger compared to Hifiasm, at a run-time that is 1.9x faster, while consuming only 30% of the
memory. Our results also elucidate the inherent performance-quality trade-offs among the ordering schemes.
We note that our Tile-X approach can be also viewed as a framework because it is generic enough to allow
the use of any long read assembler in the last step of contig assembly.

2 Methods

In this section, we first outline the major steps of our Tile-X workflow for long read assembly using read
ordering (Section 2.1). We then provide two problem formulations for the read ordering, and describe our
method for each of those formulations (Section 2.2). In Section 2.2.3, we present the design of our overall
Tile-X parallel implementation.

Notation: For rest of the paper, we use the following notation. Let L = {ry,ro,...,r,} denote the set of
n input long reads. Given a read r, the length of the read is denoted by |r|. We denote an overlap-based
read graph as G(V, E), where V = L (i.e., one vertex per read) and an edge (¢,j) connecting the vertices
corresponding to r; and r;. The graph is undirected. We also associate a numerical weight associated with
each edge, denoted by w; ;, to reflect the strength of overlap between the two reads.

2.1 Overview of the Tile-X workflow

As introduced and motivated in Section 1, the main idea of our approach is to compute a read ordering
from the read graph (G(V, E)) and use that ordering information to generate a genome assembly. Below, we
present a high-level summary of the major steps (Figure 1), with details presented in subsequent sections:
S1) Graph construction: Given L, construct a read graph G(V, E) as per the overlap detection method of
choice. Different assemblers choose different methods (alignment-based or alignment-free or a combina-
tion). For testing purposes, we use JEM-mapper [21, 22]—an alignment-free, distributed, and parallel
mapping tool that is both efficient and accurate. JEM-mapper employs a sketch-based approach, gener-
ating minimizer-based Jaccard sketches to identify overlaps. To further optimize the mapping process,
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we focus on mapping only the end segments of the long reads—i.e., for each read, we extract a segment
of £ base pairs (¢ = 2Kbp used in our experiments) from both ends to generate sketches. The output of
this step is a read graph G(V, E) for all the long reads.

S2) Vertex ordering: From G(V, E) with n vertices (or reads), we generate a vertex ordering 7 : V. —
{1,2,...,n}, which is a bijective mapping such that the rank of r; is represented by 7(¢). This ordering
represents a linear permutation (or a linear ordering) of the input reads. In Section 2.2, we describe
various schemes for generating an ordering.

S3) Partitioning: Next, using the linear ordering generated in 7, we partition the read set into p subsets.
Partitioning can be done in multiple ways: one approach is to identify weak links in the ordering and
use them as partition boundaries, while another approach ensures uniform partition sizes to maintain
balanced workloads in a parallel setting. In our implementation, we adopt the latter strategy to optimize
load balancing. Specifically, we divide the ordered reads into evenly sized partitions, ensuring that each
subset contains approximately the same number of reads. After partitioning, we update the subsets to
ensure the ending read of one partition say P, is replicated in its successive partition P,; if it exists
(shown as the “ghost” vertices straddling the partition boundaries of Figure 1). This is done so as to
maintain contiguity across partitions.

S4) Partitioned assembly: Next, treating each partition as an individual assembly task, we apply a long read
assembler of choice to assemble and produce contigs from each partition. In our implementation and
testing, we used Hifiasm [15]. Note that this strategy to do a partitioned assembly on each partition
generated by step S3, has two advantages: a) Even if the linear ordering detected by the vertex ordering
has imperfections, the assembly task will ignore that and treat each partition as just a collection of reads
to assemble. This makes the assembly process robust to ordering errors. b) Each partition represents
an independent task that can allow all partitions to be assembled in parallel.

S5) Merge assemblies: In a final merge step, we combine the individual assemblies produced by the set of
successive partitions. This is achieved by running the assembler once again but only on the output
contigs that share long reads between two successive partitions.

2.2 Read ordering

There are broadly two categories of read ordering schemes (Figure 2) we explore in this paper. In the
first approach, we treat the read ordering problem as a graph-theoretic vertex ordering problem. This
allows us to explore various standard vertex-ordering schemes (Section 2.2.1). All these schemes produce
an ordering for the entire collection of input reads. Next, with a goal to reduce the inbound computational
workload for the downstream partitioned assembly step, we present a sparsification-based approach to the
ordering problem that can reduce the number of reads selected as part of the final ordering (Section 2.2.2).
Assembly workloads that have read sets generated with a high se-

quencing coverage are better suited to benefit from this approach. Vertex Reordering Sparsified Reordering

2.2.1 Vertex reordering schemes

Vertex ordering (or reordering) is a classical problem in graph theory |

and sparse linear algebra used widely to improve locality in com- Tile-RCMvTi'e-GTPPO'Oﬁ Tile-Metis TileFar
putation [17, 23, 24, 25]. Intuitively, given an input sparse matrix, ] =

the goal is to reorder the rows such that rows sharing nonzeroes in e \
common appear contiguously, effectively concentrating the nonzeros ' ] o 5

along the main diagonal of the reordered matrix (as shown in the
Figure 2(left)). This reordering formulation also naturally extends Figure 2: Different vertex ordering
to graphs since any graph can be represented as an adjacency ma- gchemes of Tile-X.

trix (with vertices as rows, and edges as nonzeros). Therefore, re-

ordering is equivalent to renumbering vertices of the graph such that

those with shared neighbors in common are contiguously numbered.

More formally, this is the minimum linear arrangement (MINLA) problem [23]: Given a graph G(V, E), let
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m:V = {1,2,...,]V]|} be a bijective mapping of vertices to a linear permutuation 7 (i.e., ordering). Then
the linear arrangement score is given by [26]: L(G,m) = }_(; ;) cp|m(i) —7(j)|. An optimal ordering . is one
which minimizes the linear arrangement score for the graph. This optimization problem is NP-Hard [23],
and numerous efficient heuristis are used in practice [17].

In the context of genome assembly, it should be easy to see why reordering can be helpful for ordering
the vertices of a read graph. Intuitively, because of sequencing coverage, reads that originate from the same
region of the genome are likely to share edges to one another in the corresponding read graph. Therefore
generating a linear ordering of the vertices of the graph would approximate the ordering of reads along the
target genome.

As part of the Tile-X framework, we incorporated three vertex ordering schemes that represent three
different classes of methods.

e Tile-RCM: The Reverse Cuthill-McKee (RCM) [18] ordering scheme is an efficient greedy heuristic that
tries to minimize a measure of the graph’s adjacency matrix bandwidth.

e Tile-Metis: The Metis ordering is based on a graph partitioner [20], which uses a min-cut multi-level
approach to generate a balanced partitioning of vertices (into a pre-specified number of partitions) and
subsequently a traversal by each partition to generate its ordering.

e Tile-Grappolo: The Grappolo ordering is one that uses the corresponding fast and efficient parallel
community detection algorithm [19] to generate an ordering. Intuitively, the first step clusters the
vertices into tightly-knit communities using the modularity metric [27], and then traverses the set of
vertices by each community to generate an ordering. Under community detection, the number of target
communities is determined by the algorithm based on the input (i.e., not user-specified).

While any vertex ordering scheme can be used here, our choices to incorporate and evaluate these three
schemes is based on empirical evidence that these schemes outperform other schemes for general graphs [17].
However, their application to read graphs is new in this paper.

2.2.2 Sparsified reordering (Tile-Far)

Problem: In this section, we describe a new vertex ordering heuristic called Tile-Far. This new scheme
is motivated by a goal to reduce the number of reads included in the final ordering. The underlying problem
is a variant of the classical ordering problem. Given a graph G(V, E), the goal is to generate a linear ordering
s that covers only a “minimal” subset of reads. If V/ C V denotes that subset, then 7 is a bijective mapping
s V' = {1,2,...,|V'|}. In order to compute V'’ and a corresponding g, recall that in the Tile-X approach
introduced at the start of Section 2.1, the ordering computed in step S2 is subsequently used to generate a
partitioned assembly (steps S3 through S5). Therefore, the choice of the subset V' should be such that it is as
small as possible (in the interest of performance), while importantly preserving critical overlap information
required to generate an accurate assembly. In other words, the goal is to detect a minimum subset V” from
which it is possible to generate an assembly that can match the quality of any of the non-sparsified schemes.

In order to compute such a minimal subset V' for sparse ordering, we first observe that a read subset V'
that corresponds to a small fixed coverage (e.g., 2x or 3x) of the target genome should contain sufficient
overlap information for assembly. However, the read graph is built using all reads which typically would
represent a higher coverage used during sequencing (typically > 10x). This problem goal is similar to the
classical Minimum Tiling Path [28] which was used in the early 2000s to generate a minimal physical map
for sequencing experiments.

Approach: A potential strategy to generate a sparsified ordering 7 is to follow a two-step process of first
sparsifying the input graph (from G(V, E) to G'(V', E’)) and then generating a linear ordering for the V”/ in
G’. However, this would mean added computational overhead for graph sparsification, which is related to
other known NP-Hard problems such as minimum vertex cover [29] and edge cover [30]. Instead of such a
two-step process, we present here an efficient algorithm, Tile-Far, that directly generates 75 from G(V, E).

Given read graph G(V, F) and starting from an empty ordering, the Tile-Far algorithm incrementally
grows its ordering by visiting a subset of vertices in V in a certain order and appending them to the
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current ordering. Initially this traversal starts at a vertex of degree one. In rare instances of a connected
component of a graph with no single degree vertices, then the list of all smallest degree vertices in that
component are marked as potential “starts” for a traversal. For convenience, we refer to the set of all
such start vertices in the entire graph where traversals could start as Vs (i.e., Vs C V). Let r; be an
arbitrary vertex being visited by the algorithm at any given time. Let N(r;) denote the neighbors of
ri—i.e., N(r;) = {r;|(¢,j) € E}. From r;, Tile-Far tries to greedily find the “farthest” neighbor of r;
from N(r;) and append it to m;. More formally, let r; and r; be two reads which share a good end-
to-end overlap (i.e., semi-global alignment), with the length of their alignment denoted as Span(r;,r;).

Definition 2.1. The farthest neighbor of
a read r; is another read Tfor € N(T3)  Genome . ".' ‘
to which r; has the mazrimum span—i.e., long . rir,,l \ RN
Tfar = arg max; Span(r;,r;). reads ri+3|+2rj r,

In other words, selecting such a far- SNy
thest neighbor maximizes the ordering’s (@) )

span over the target genome in the region

corresponding to the two reads. Notably, it Figure 3: Tile-Far: (a) Long reads i, 7it1, Tit2, Tits, T,
has the advantage of skipping over other and r, spanning overlapping genomic regions; (b) Read graph
reads that may lie along the way which ghowing the selection of r; as the farthest neighbor of r; (skip-
also oyerlap with r; due to the depth of Se- ping all other reads along the way).

quencing coverage (C')—thereby generating

a sparsification ordering. This idea is illus-

trated in Figure 3.

In order to find a farthest neighbor of a given read, without computing alignments and directly from the
graph G(V, E), we start by focusing on maximal cliques within the graph. Let M (r;,r;) denote a subgraph of
G(V, E) that is also a maximal clique that contains both r; and r;. By definition, each read within M (r;, ;)
shares overlaps with every other read in that clique. The Tile-Far heuristic identifies a successor r; for read
r; by maximizing the following structural gain function:

U(ri) = arg max ([N(r;) \ M(ri,r;)|) (1)
ri €N (r;)

Note that N(r;) D M(r;,r;) for any vertex r;. Intuitively, the above structural gain function is a measure
of the number of new reads that r; can access through a candidate neighbor 7;, that are not already in within
its reach in M (r;,7;). The more such new reads, the higher the utility of candidate r; to r; in extending the
contig assembly on the target genome.

While we have posed this approach based on maximal cliques, our algorithm does not explicitly compute
these cliques as clique computation is hard and expensive in practice [31]. In fact, we can observe from Eqn. 1
we only need to estimate the cardinality of the maximal clique size for each (7;,7;) pair in Eqn. 1. Assuming
all edges in the input read graph G(V, E) are “correct”—i.e., true to overlapping reads on the genome—our
estimation function is given by |M(r;,r;)| = |N(r;) N N(r;)|. This correctness assumption is not restrictive
in practice as argued below. To save runtime further, when our algorithm reaches a vertex r;, our algorithm
lazily calculates this intersection cardinality for each of r;’s neighbors at that time, and applies the arg max
operation to obtain t(r;). Algorithm 1 summarizes the main steps of our Tile-Far algorithm.

As noted above, the structural gain function objective assumes that the edges in the read graph are “true”,
i.e., the reads connected via an edge are truly overlapping on the target genome. However, this depends on
the precision accuracy of the mapping procedure (step S1), and there is always a risk of placing a chimeric
edge between two reads (belonging to two different parts of the genome). To mitigate the risk of creating
a chimeric merge as part of the sparsified ordering, we introduce an additional condition to check before
identifying the farthest neighbor v (r;). If the maximum choice neighbor has a |M(r;,r;)| below a certain
threshold 7, then we instead select the next best choice of neighbor (if one exists) that satisfies this threshold
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7. This reduces the chance of exposing an unreliable farthest neighbor and alleviates the risk of creating
false merges in the subsequent assembly step. If the read sequencing coverage is C, then we set 7 = % in

our experiments.

Algorithmic properties: Even though the
Tile-Far algorithm is a heuristic, there are sev-
eral provable properties of the algorithm. Col- Algorithm 1 Tile-Far Heuristic
lectively these properties serve to highlight the
algorithm’s advantages and limitations.

Input: G(V,E): Long read graph; 7: Minimum sup-
port threshold
Lemma 2.1. The farthest neighbor relationship Output: Ordered subset of reads 7,

¥(.) (as defined in Eqn. 1) is not symmetric. 1w+ {}
Proof. Consider two reads 7; and r; which share 2 Vs < single-degree nodes in V; if empty, set to
an edge in G(V, E). The choice for the farthest smallest-degree nodes
neighbor in Eqn. 1 depends on the degree of the 3 for each unvisited 7; € Vs in parallel do
destination vertex, which may be different for the 4 Append 7; to my and mark r; as visited
two vertices. Therefore, there is no guarantee 5 N' « {r; € N(ri) | [M(rirj)|] = 7,
that if 7; = (r;) then r; = (r;). O and r; is not visited yet}

6 while N’ # () do
Lemma 2.2. Fach read will feature in exactly 7. Tfar 4 argmax,, e nv (| N (1) = [M(rs,75)])
one of the orderings reported by Tile-Far. 8 Append 7, to 7, and mark r; as visited
Proof. The lemma holds because of the visit 9 Update 7; ¢ 7gar
flag maintained at each vertex by the algorithm. 10 Update N’ for r; (same as line #5 above)

o 1L end while
12: end for

The implications of the above two lemmas is  13. return
that the Tile-Far heuristic is non-deterministic
and can potentially generate different output or-
derings from the same input.

Next we show an important property, about
the degree of sparsity that can be expected of Tile-Far.

Definition 2.2. An ordering of m reads m = [r1,72,...Tm] is referred to as a true ordering if the reads
cover a contiguous stretch of the target genome, with every successive pair of reads in the ordering truly
overlapping.

Lemma 2.3. Consider a true ordering of reads my : [Ti, i41, Ti+2, - - - » Tisths Tjs Te] Such that r; overlaps with
r; but there exists no overlap between reads (r;, 7). Then, if the Tile-Far algorithm visits r; then it is likely
to identify r; as its farthest neighbor.

Proof. Given that m; is a true ordering and given that r; and 7; share an overlap, we can expect that all
the intermediate reads ;11 through ;4 also share overlaps with one another and with r; and r;—thereby
forming a clique in the read graph G(V, E) (as illustrated in Fig. 3). Furthermore, since read r; does not
overlap with 7, the collection {r;,r;41,7i12,...,ritk,r;} form a maximal clique for the vertex pair (r;, r;),
with size |[M (r;, ;)| = k+2. This also implies that |M (r;,r;)| = |M(r;,ry)| for i+1 < f < i+k. Therefore,
when the Tile-Far algorithm considers which of its neighbors from r;1; through r; can be considered
farthest, the choice is determined by which of those candidate reads r. maximizes |N(c) \ M(r;,r.)| (by
Eqn. 1)—which is same as the read that maximizes |N(r.)| (since all | M (r;, r.)| are the same relative to r;).
We observe here that |[N(r;)| > |N(rc)|, over all candidates c¢. By contradiction, if there were to be an
intermediate read r¢, where ¢ +1 < f < i+ k, that has a larger vertex degree that would imply that there
has to be at least one additional read (such as r.) to the right of ry that it overlaps with. But if that is the
case, then 7;, which is further right of ry in the true ordering would also have to overlap with 7. thereby

ensuring that |N(r;)| > |N(rc)|. Therefore, the Tile-Far algorithm would select r; as 1 (r;).
O
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The implication of Lemma 2.3 is that the algorithm is likely to skip all the intermediate reads [r; i1, 712,
..., Titk], which corresponds to a significant saving in ordering retention as k increases.

2.2.3 Parallel implementation

We have implemented the Tile-X framework including Tile-RCM, Tile-Grappolo, Tile-Metis, and Tile-Far
in C/C++ and using the MPI message passing library for communication under the distributed mem-

ory model, and OpenMP for shared memory multithreaded parallelism. Owing to space limitations, we

skip the inner details of the parallel implementation. Our code is available as open source at https:

//github.com/0Oieswarya/Tile-X.

3 Results and Discussion

3.1 Experimental setup

Test inputs: For our experi— Input genome ‘ L: Long read statistics (HiFi reads)
ments, we used genome inputs Genome Genome No. long Total length Read length
downloaded from the NCBI Gen- length (bp) reads (m) (bp) (avg.tstd.dev)
Bank [32], as summarized in Ta- D. busckii 118,492,362 | 123,781 1,258,903,798 10,170 =+ 3,406
ble 1. We used the Sim-it PacBio C. septempunctata 398,868,586 ‘ 390,797 3,981,681,897 10,188 + 3,398
HiFi simulator [33], with a de- B. splendens 441,388,503 | 432,230  4,404,143,269 10,189 + 3,396
fault 10x coverage and read length H. aestivaria 501,713,186 | 491,533  5,005,317,758 10,183 = 3,397
median of 10Kbp. In addition P. sinus 2,371,540,524 | 2,323,801  23,677,646,469 10,189 + 3,398
to simulated reads, we also used H. sapiens 3,298,430,637 | 3,083,048  31,292,504,943 10,149 + 3,434
two real-world HiFi squencing N. coibor (620 Mbp est.) | 1,919,461  29,259,679,568 15,243 + 2,736
datasets, both generated usime the H. magnus (1.2 Gbp est.) | 2,436,589  28,013,062,204 11,496 + 720

PacBio Sequel II system: a caddis-
fly genome (H. magnus) [34], and a
drumfish genome (N. coibor) [35].
Test platform: All experiments
were conducted on a distributed memory cluster with 9 compute nodes, each with 64 AMD Opteron™
(2.3GHz) cores and 128 GB DRAM. The nodes are interconnected using 10Gbps Ethernet and share 190TB
of ZFS storage. The distributed executions of Tile-X were performed using MPI with up to p = 64 processes
(4 compute nodes, each running 16 processes, with 1 thread per process), while the multithreaded executions
used 64 threads on a single node of the cluster. For all other the state-of-the-art assemblers, we ran them in
their multithreaded mode on 64 threads (mapped to 64 cores) on a single node of the cluster. For all runs,
we ran Tile-X with a batch size of 16,384 in the batch assembly step.

Table 1: Input datasets used in our experiments. All genome inputs
were downloaded from NCBI GenBank [32].

3.2 Qualitative evaluation

We compare the Tile-X methods against other state-of-the-art assemblers including Hifiasm [15], HiCanu
[14], HiFlye [36], and GoldRush [10]. All the quality results for are shown in Table 2. Our results show that
for all inputs Tile-X methods produce comparable or better assembly contiguity (NGA50, NG50, largest
alignment) compared to standard tools. This is achieved while maintaining near perfect genome coverage
and duplication ratio, and reduced misassemblies (effect of ordering and partitioning in Tile-X).

As the genome size increases, Tile-Grappolo generally outperformed the other methods across most of
the metrics. For instance, for H. sapiens, Tile-Grappolo achieved an NGAS50 of 34.5Mbp which is 2.1x
longer than Hifiasm. The better results observed for Tile-Grappolo (relative to other vertex ordering
schemes) is consistent with the relative performance reported on generic graphs in [17]. Largely this is owing
to the rigorous optimization function of modularity that it internally uses, without bounding the sizes or
number of communities prior to generation of the ordering. However, it is notable that Tile-Far, despite
sparsifying on the read space, still produced quality comparable to the other Tile-X methods.
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Input Method NG50 (bp) NGA50 (bp) Aligﬁrarfgﬁst(bp) ng?g;e% Missassemblies Du[;{l;ctzia:;lon

D. busckii Hifiasm 22,693,369 19,728,036 23,746,987 97.27 0 1.01
HiCanu 20,183,616 2,871,978 16,143,642 96.22 10 1.02

HiFlye 3,148,326 2,272,279 11,856,880 96.52 13 1

GoldRush 384,908 214,606 3,377,501 93.64 196 1.02

Tile-RCM 21,869,280 19,728,036 23,746,987 98.07 3 1

Tile-Grappolo 21,368,778 15,337,361 19,786,141 98.63 1 1.01

Tile-Metis 22,188,920 14,158,464 23,381,868 98.32 1 1.01

Tile-Far 20,579,109 19,712,910 21,656,591 96.01 0 1

C. septempunctata Hifiasm 24,570,398 23,996,732 45,042,839 99.92 23 1
HiCanu 24,175,769 24,170,029 43,942,865 99.87 9 1.01

HiFlye 6,648,376 5,174,157 23,429,030 99.4 39 1

GoldRush 170,757 119,368 2,253,577 93.17 2,359 1.06

Tile-RCM 24,794,358 22,235,685 45,395,728 99.86 27 1

Tile-Grappolo 23,550,052 22,444,820 44,305,992 98.28 24 1.02

Tile-Metis 24,468,228 23,340,794 45,717,144 98.39 29 1.03

Tile-Far 22,547,226 21,782,109 42,131,400 95.99 12 1.01

B. splendens Hifiasm 21,120,348 18,975,512 31,128,741 99.81 9 1
HiCanu 16,455,974 16,376,159 30,447,679 99.94 4 1.01

HiFlye 7,930,210 6,929,909 16,878,361 99.75 27 1

GoldRush 985,709 428,741 4,032,706 86.88 1,547 1.04

Tile-RCM 22,007,903 19,027,819 31,013,819 99.91 12 1

Tile-Grappolo 22,931,409 20,017,118 32,016,347 99.97 19 1.02

Tile-Metis 21,206,524 19,904,359 31,099,593 99.65 17 1.01

Tile-Far 21,519,307 19,501,247 30,917,929 97.75 7 1

H. aestivaria Hifiasm 16,455,206 14,179,235 23,606,427 99.79 30 1
HiCanu 9,684,529 9,527,310 19,870,691 99.78 19 1.01

HiFlye 3,649,110 3,587,406 12,184,746 99.67 37 1

GoldRush 981,340 891,984 4,891,356 95.47 3,060 1.06

Tile-RCM 16,692,012 14,012,623 23,920,915 99.56 33 1

Tile-Grappolo 16,641,000 14,420,742 23,155,106 99.73 24 1.02

Tile-Metis 16,269,941 14,182,253 21,773,172 99.64 35 1.03

Tile-Far 15,509,218 15,095,617 22,987,650 97.02 18 1

P. sinus Hifiasm 34,868,980 30,793,594 106,204,927 99.95 31 1
HiCanu 29,026,402 28,555,362 106,304,599 99.21 11 1

HiFlye 7,913,536 7,236,626 23,809,618 99.92 158 1

GoldRush 311,084 251,897 4,602,755 96.19 5,318 1.05

Tile-RCM 33,120,931 29,599,521 89,574,833 99.91 36 1

Tile-Grappolo 37,652,310 31,409,787 106,612,091 99.97 31 1

Tile-Metis 37,509,812 31,331,039 106,309,871 99.91 40 1.02

Tile-Far 35,194,862 28,759,505 104,535,207 97.67 17 1

H. sapiens Hifiasm 69,854,747 16,425,105 88,218,226 95.12 636 1
HiCanu * * * * * *

HiFlye - - - - - -

GoldRush 790,972 578,309 5,891,649 92.09 6,017 1.03

Tile-RCM 28,961,876 23,870,466 42,476,955 96.43 622 1

Tile-Grappolo 71,239,019 34,532,198 89,107,341 97.61 541 1

Tile-Metis 69,712,303 33,614,371 89,880,020 97.07 597 1

Tile-Far 66,895,385 30,920,014 87,616,749 97.54 411 1

Table 2: Qualitative comparison of the output contigs generated by the different tools on the different inputs.
Symbol * indicates that the corresponding runs did not complete within 6 hours; symbol — indicates that
the corresponding runs required more than 256 GB of memory which was the system maximum memory.
Bold face values show the best results for each input.
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In general, despite the minor deviations in Time Taken Peak Memory

quality, all Tile-X schemes performed compa- Input Method (in mins) (in GB)
rably, and in many cases also outperformed H. aestivaria  Hifiasm 81.98 48.07
HiCanu 94.05 79.23
th(.e s:tate of-the-art as§embler§. Among the HiFiye 11338 8355
existing assemblers, Hifiasm in general pro- GoldRush 159.35 76.28
duced the best outputs. However, in almost Tile-RCM o733 2919
o . R Tile-Grappolo 53.09 27.3
all cases (except D. busckii), the Tile-X im- Tile-Metis 54.41 29.5
plementations produce better quality com- Tile-Far 35.33 18.25
pared to Hifiasm, demonstrating the posi- P. sinus Hifiasm 130.54 54.62
. . . > HiCanu 166.25 231.03
tive effect of ordering prior to using a stan- HiFlye 313.29 107.40
dalone assembler. The Tile-X methods also GoldRush 210.02 92.27
i T . Tile-RCH 107.05 27.08
produced less misassemblies in multiple cases, Tile-Grappolo 103.54 29.09
demonstrating the value of partitioning after Tile-Metis 101.39 29.11
. ¢ e Tile-Far 81.21 20.25

ordering, which would reduce ambiguity in

h b o d bl H. sapiens Hifiasm 364.94 71.02
the subsequent partitioned assembly step. HiCanu * *
HiFlye - -
. GoldRush 409.12 108.07
3.3 Performance evaluation Tile-RCH 22851 129
Tile-Grappolo 220.34 42.21
. . Tile-Metis 222.13 41.26
Table 3 shows the parallel performance for Tile Fur 19131 21.45

three of the largest inputs comparing all the
tools (results for all inputs is provided in the Table 3: Performance comparison of the output contigs gen-

supplementary materials in Table S1). We erated by the different tools on the three larger inputs (sim-
see that Tile-X consistently demonstrates ulated). Symbol x indicates that the corresponding runs did
significant speedups over the state-of-the-art not complete within 6 hours; symbol — indicates that the
assemblers, and among the Tile-X tools, corresponding runs required more than 252GB of memory
Tile-Far is the fastest, demonstrating the Wwhich was the system maximum memory. Bold face values
value of sparsification even for a small cov- show the best results for each input.

erage inputs (10x). For instance for H. sapi-

ens, Tile-Far is 1.9x faster than Hifiasm.

On average Tile-Far was 1.9x to 3.5x faster

than fastest state-of-the-art tool for any input. The factor improvements with Tile-Far correlate to the
sparsification factors achieved by Tile-Far (data not shown due to space).

Table 3 also shows the memory consumption of all the tools. Here again, Tile-X outperforms the other
tools, demonstrating the value of breaking down the input through ordering into partitions. Furthermore,
among the Tile-X schemes, Tile-Far consumes the least memory, i.e., between 2.6x and 3.3x less than
Hifiasm—demonstrating the value of sparsification. We note that both the runtime and memory performance
of the Tile-X implementations can further improve as we increase the number of processors (due to their
distributed memory implementation).

Impact of sparsification on high coverage inputs: We note here that the true space saving impact
of the sparsification idea in Tile-Far can be realized when we start increasing the sequencing coverage. To
demonstrate this point, we ran Tile-Far over inputs obtained using increasing coverage, ranging from 4x
to 30x on the H. aestivaria input. Results are shown in Table 4. The results show that the qualitative gains
plateau out after 10x coverage. However, neither the runtime nor the memory increases with Tile-Far
beyond the 9x coverage setting. In fact, with increasing coverage, the sparsification rate only improves
(i.e., fraction of vertices retained decreases). These results show the effectiveness of sparsification to reduce
redundancy as shown in the property of Lemma 2.3.

3.4 Real-world dataset evaluation

We evaluated the performance of Tile-X on two real-world HiFi sequencing datasets as shown in Table 5. In
terms of assembly quality, Tile-X showed significant improvements over state-of-the-art assemblers. For the

10
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Coverage . Largest NG50 Misassemblies Tifne ’I:aken Peal.c Memory . Ve.rtex
of Long Reads  Alignment (bp) (bp) (in mins) (in GB) Sparsification Rate (%)
4% 481,930 402,703 8 30.08 7.82 80.9
8% 14,656,993 8,125,479 13 34.02 16.55 73.6
9x 19,869,512 10,157,859 18 35.05 18.01 66.3
10 % 22,987,650 15,509,218 19 35.33 19.25 60.1
15 % 23,011,491 16,530,172 18 35.49 19.75 40.8
20 x 23,121,575 16,893,046 19 35.57 20.73 30.7
25 % 23,121,575 16,901,010 19 35.54 20.73 24.6
30 % 23,121,575 16,901,010 19 35.50 20.73 20.5

Table 4: Quality and performance evaluation of running Tile-Far with different coverages of long reads
on input H. aestivaria. Vertex sparsification rate is measured as the percentage of reads retained in the
sparsified ordering relative to the total input. Bold face values show the best results for each metric.

H. magnus dataset, Tile-RCM achieved a 1.2x improvement in N50 over Hifiasm, and a 18.1x improvement
over HiFlye. For the input N. coibor, Tile-Grappolo outperformed Hifiasm by 1.3x in N50. These
results highlight the quality improvements that Tile-X provides in real-world applications, demonstrating
its potential as a powerful tool for large-scale genome assembly.

: N50 Largest
4 Conclusion Input Method o) ormnmest
. .. H. magnus Hifiasm 6,502,997 33,054,362
In this paper, we revisited the long read assembly HiCanu _ _
problem through the lens of read reordering. We HiFlye 430,185 6,380,266
. . . GoldRush 617,847 3,329,001
presented Tile-X, a suite of algorithms that use Tilo-RCN 7794, 770 32.497.893
various ordering schemes, to achieve both perfor- Tile-Grappolo 7,192,748 33,817,123
- . Tile-Metis 7,891,847 33,577,259
mance and quahtatlve gains. We also proposed Tile-Far 7,324,908 32,051,281
a new variant of ordering that uses sparsification. N. coibor  Hifiasm 5,332,494 20,352,343
Our findings indicate that (a) ordering helps re- HiCanu - -
d th tational burd ¢ blv f HiFlye 841,948 14,523,053
uce the computational burden of assembly for ColdRush 2,539,805 14,671,319
state-of-the-art assemblers; and (b) sparsified or- Tile-RCH 6,547,021 21,162,077
deri deli onifi ¢ f . hil Tile-Grappolo 6,682,924 22,011,830
ering delivers significant performance gains while Tile_Metis 6,591,415 21,038,206
preserving quality. Our current work does not Tile-Far 5,829,753 21,329,752

harness the full potential of ordering yet—i.e., as-

sembly performance can be improved if we use Table 5: Real-world long read inputs analysis: Quality
the pairwise ordering information to output the comparison of the output contigs generated by the differ-
assembly without using a third party assembler— ent tools on two real-world inputs. Symbol — indicates
a direction that is of immediate future interest. that the corresponding runs required more than 252GB
Other future directions include: a) introducing a ©of memory, which was the system maximum memory.
way to control sparsification rate and thereby as- Boldface values show the best results for the given in-
sociated trade-offs; b) providing qualitative guar- Put.

antees with ordering for repetitive regions; and ¢)

applying Tile-X on long read data sets obtained through a range of sequencing technologies.
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