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Abstract. In this paper, we study the stochastic collocation (SC) meth-
ods for uncertainty quantification (UQ) in hyperbolic systems of nonlin-
ear partial differential equations (PDEs). In these methods, the underly-
ing PDEs are numerically solved at a set of collocation points in random 
space. A standard SC approach is based on a generalized polynomial 
chaos (gPC) expansion, which relies on choosing the collocation points 
based on the prescribed probability distribution and approximating the 
computed solution by a linear combination of orthogonal polynomials in 
the random variable. We demonstrate that this approach struggles to 
accurately capture discontinuous solutions, often leading to oscillations 
(Gibbs phenomenon) that deviate significantly from the physical solu-
tions. We explore alternative SC methods, in which one can choose an 
arbitrary set of collocation points and employ shape-preserving splines 
to interpolate the solution in a random space. Our study demonstrates 
the effectiveness of spline-based collocation in accurately capturing and 
assessing uncertainties while suppressing oscillations. We illustrate the 
superiority of the spline-based collocation on two numerical examples, 
including the inviscid Burgers and shallow water equations. 

1 Introduction 

Numerous scientific problems encompass inherent uncertainties arising from a 
variety of factors. Within the context of partial differential equations (PDEs), 
uncertainties can be characterized using random variables. This study focuses on 
hyperbolic systems of conservation and balance laws, examining their behavior 
under uncertain conditions. In the one-dimensional (1-D) case, the formulation 
of these systems is expressed as 
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Ut + F (U)x = S(U), (1) 

where x is the spatial variable, t is time, U(x, t; ξ) ∈ Rm is an unknown vector-
function, F (U) :  Rm → Rm are the flux functions, and S(U) is a source term. 
Furthermore, we assume that ξ ∈ Ξ ⊂ R are real-valued random variable with 
(Ξ, F , ν) being the underlying probability space. Here, Ξ is a set of events, F(Ξ) 
is the σ-algebra of Borel measurable sets, and ν(ξ) :  Ξ → R+ is the probability 
density function (PDF), ν ∈ L1(Ξ). 

The system (1) emerges in various applications, such as fluid dynamics, geo-
physics, electromagnetism, meteorology, and astrophysics. It is crucial to assess 
uncertainties inherent in input quantities, as well as in the initial and boundary 
conditions resulting from empirical approximations or measurement errors. This 
quantification is vital for performing the sensitivity analysis and offers valuable 
insight to improve the accuracy of the studied model. 

This paper focuses on developing accurate and robust numerical techniques 
for quantifying uncertainties in (1). Among the various existing methods, Monte 
Carlo-type methods (see, e.g., [ 1,13]) are reliable but computationally intensive 
due to the substantial number of realizations required to approximate statisti-
cal moments accurately. Another commonly used approach is based on gener-
alized polynomial chaos (gPC) methods, in which the solution is expressed as 
a series of orthogonal polynomials with respect to the probability density in ξ 
[ 11,14]. There are two types of gPC methods: intrusive and non-intrusive. Intru-
sive approaches, such as gPC stochastic Galerkin (gPC-SG) methods, substitute 
gPC expansions into the governing equations. These expansions are then pro-
jected using a Galerkin approximation to derive a system of deterministic PDEs 
for the expansion coefficients; see, e.g., [ 17,18]. Solving these coefficient equa-
tions provides the statistical moments of the original solution of the uncertain 
problem. On the other hand, non-intrusive algorithms, such as gPC stochastic 
collocation (gPC-SC) methods, aim to satisfy the governing equations at discrete 
nodes, called collocation points, in the random space. They employ a determinis-
tic numerical solver, utilizing interpolation and quadrature rules to numerically 
evaluate the PDF and/or statistical moments [ 16,19]. 

The application of gPC-SG and gPC-SC methods to nonlinear hyperbolic 
systems (1) poses several challenges. Although spectral-type gPC-based meth-
ods exhibit rapid convergence for solutions that depend smoothly on random 
parameters, a significant issue arises when solutions contain shock waves and 
other nonsmooth structures, which is a generic case for nonlinear hyperbolic 
PDEs (even if initial data are smooth). Despite the discontinuities manifesting 
in the spatial variable, their propagation speed can be influenced by uncertainty, 
introducing discontinuities in the random variable and causing Gibbs-type phe-
nomena [ 12]. Another unresolved matter involves representing strictly positive 
quantities, such as water depth in shallow water equations, and imposing discrete 
bound-preserving constraints [ 5, 6,15].
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In this paper, we concentrate on alternative spline-based stochastic collo-
cation (SC) methods, which are positivity-preserving and do not suffer from 
Gibbs-type oscillations. The proposed methods utilize a solution obtained by a 
deterministic numerical solver implemented repeatedly on an arbitrarily selected 
set of collocation points in the random variable ξ. Specifically, at each colloca-
tion point, we solve the corresponding deterministic PDEs by a semi-discrete 
second-order central-upwind scheme from [ 9,10]. As a result, at the final com-
putational time, for each discrete value of the spatial variable x, we obtain an 
approximation of U as a discrete function of ξ. Equipped with these point val-
ues, we employ spline-based interpolations in random space and use the obtained 
global (in ξ) solution to calculate the stochastic moments. In order to enforce the 
non-oscillatory and positivity-preserving properties of the interpolated solution, 
we use shape-preserving (SP) rational quartic splines from [ 21]. We conduct a 
comparative numerical study of the gPC-based and spline-based SC approaches 
to quantify uncertainties in (1). Our findings demonstrate the superior efficacy 
of the proposed spline-based SC methods when applied to the inviscid Burgers 
and shallow water equations. 

2 Methodology 

In this section, we describe the gPC- and spline-based SC approaches applied to 
(1). 

We start by selecting a set of collocation points ξ�, � = 1, . . . , L  and numer-
ically solving the following deterministic systems: 

Ut(x, t; ξ�) +  F (U(x, t; ξ�))x = S(U(x, t; ξ�)), � = 1, . . . , L, (2) 

until the final time T (one can use one’s favorite numerical method for solving 
(2)). Then, for each discrete node of the spatial variable denoted below by x̃, 
we use either the gPC (§2.1) or spline (§2.2) interpolation to approximate the 
numerical solution and its stochastic moments, that is, the mean and variance 
or standard deviation for each component U of U : 

Eξ[U ] :=
∫

Ξ 

U(x̃, T ; ξ)ν(ξ)dξ, 

Var[U ] :=  Eξ[U 2] − Eξ[U ]2 , σ[U ] :=
√

Var[U ]. 

(3) 

2.1 gPC Interpolation 

The gPC interpolation in random space represents the solution as a generalized 
discrete Fourier series in terms of orthonormal polynomials, {Φi(ξ)}N 

i=0, selected 
based on the  PDF:  

U(x̃, T ; ξ) ≈ U N (x̃, T ; ξ) :=  
N∑

i=0

Ûi(x̃, T ) Φi(ξ), (4)
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where Ûi(x̃, T ) are deterministic Fourier coefficients. 
It is well-known that for large values of N , the polynomial interpolation (4) 

may be very oscillatory. To minimize the oscillations, one needs to choose the 
roots of ΦN +1(ξ) as collocation points ξ�, � = 1, . . . , L  with L = N + 1.  In  
this case, the Fourier coefficients can be computed with the help of the discrete 
Fourier transform:

Ûi(x̃, T ) =  
N +1∑
�=1 

U� Φi(ξ�) ω�, i  = 0, . . . , N, (5) 

where U� :≈ U(x̃, T ; ξ�) and  ω� are the Gauss quadrature weights corresponding 
to the PDF ν(ξ). These coefficients are also used to calculate the stochastic 
moments of for each component U of the computed solution U : 

Eξ[U N ] = Û0, Var[U N ] =  
N∑

i=1

Û 2 i . 

It should be observed that the gPC interpolation (4) is exponentially accurate 
for smooth solutions but suffers from the Gibbs-type phenomenon when discon-
tinuities appear in the numerical solution, which is a generic case for nonlinear 
hyperbolic PDEs. Therefore, in the next two sections, we turn our attention to 
alternative interpolation methods that lead to non-oscillatory approximation of 
U(x̃, T ; ξ). 

2.2 Shape-Preserving (SP) Spline Interpolation 

In order to suppress Gibbs-type oscillations, one can use cubic B-splines (see, 
e.g., [ 2– 4,20]), which also retain the positivity of the interpolated data, but as we 
demonstrate in our numerical experiments below, B-spline approximations may 
oversmear shock discontinuities. Moreover, B-splines do not necessarily maintain 
the monotonicity and/or convexity of the interpolated data. 

Therefore, in this paper, we use (provably) SP rational quartic interpolation 
splines from [ 21], specifically designed to preserve the shape of positive, mono-
tonic, and convex solutions. These SP splines also ensure C2 continuity of the 
constructed interpolant. 

Let us describe the SP spline for a certain component U of U . We denote by 
Δξ� := ξ�+1 − ξ�, � = 1, . . . , L  − 1, and introduce the following quantities: 

δ� := 1 
Δξ� + Δξ�−1

(
U�+1 − U�

Δξ�
− U� − U�−1 

Δξ�−1

)
, 

A1 := Δξ1δ2, A� := Δξ�δ�, 
B�−1 := Δξ�−1δ�, BL−1 := ΔξL−1δL−1,

� = 2, . . . , L  − 1.
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For each subinterval [ξ�, ξ�+1], � = 1, 2, . . .  , L  − 1, the computed solution is 
interpolated by the spline given by 

U(x̃, T ; ξ) ≈ S (x̃, T ; ξ) := (1  − τ�)U� + τ�U�+1 

− 
Δξ�(1 − τ�)τ�

[
(1 − τ�)2 A� + λ�(1 − τ�)τ�A�B� + τ 2� B�

]
Q�

, 

where 

Q� = 1  +  (1  − τ�)τ�

[
(1 − τ�)(B�λ� + μ�) +  τ�(A�λ� + μ�+1)

]
, 

where τ� := (ξ − ξ�)/Δξ�, and  λ� and μ� are two local tension shape parameters. 
Note that specific choices of λ� and μ� guarantee the preservation of monotonic-
ity, positivity, and convexity of the interpolation spline; see [ 21]. 

Once the spline function is constructed, one can use one’s favorite quadrature 
rule to numerically approximate the stochastic moments in (3). 

3 Numerical Examples 

In this section, we illustrate the performance of the gPC and spline-based SC 
approaches on numerical examples for the inviscid Burgers and shallow water 
equations. We consider a random variable ξ uniformly distributed on the interval 
[−1, 1] (ξ ∈ U [−1, 1]), which induces the usage of the Legendre polynomials 
Φi(ξ) in the generalized Fourier expansion (4) and Gauss-Legendre quadratures 
for computing the gPC coefficients in (5). For the spline interpolation, we take 
equally-spaced collocation nodes ξ�, but note that in principle, they can be chosen 
arbitrarily since, unlike the gPC interpolation, the spline one can be efficiently 
conducted on any set of nodes. Recall that the SP splines require a specific choice 
of the local tension parameters λ� and μ� to guarantee the shape-preserving 
properties of the constructed interpolant; see [ 21, Formulae (12), (19), (24), and 
(28)] for details. 

In this work, we use semi-discrete second-order central-upwind schemes from 
[ 9,10] to numerically solve the deterministic systems (2). The semi-discretization 
results in the system of ODEs, which is integrated in time using the three-stage 
third-order strong stability preserving (SSP) Runge-Kutta method (see, e.g., 
[ 7, 8]) with the time step chosen according to the CFL number 0.45. The central-
upwind scheme employs the generalized minmod limiter with parameter θ = 1.3; 
see [ 9,10] for details. 

Example 1—Burgers Equation 

We start with the inviscid Burgers equation, 

Ut +
(

U 2 

2

)
x 

= 0, (6)
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considered subject to the following stochastic initial data: 

U(x, 0; ξ) =

{
2, x  >  0.1ξ, 
1, x  <  0.1ξ. 

(7) 

The problem is numerically solved in the physical domain x ∈ [−1, 1] with free 
boundary conditions. 

To numerically solve the problem (6)–(7), we choose L = 16 collocation points 
and perform deterministic simulations on a uniform spatial mesh consisting of 
cells of size Δx = 1/800 until the final time T = 0.5. In Fig. 1, we plot the 
solution U(x, 0.5; ξ) obtained by interpolating the computed data in the random 
variable ξ by the gPC and spline-based approaches. For the latter, we present 
results produced by both the B-splines and SP splines. As one can see, the gPC 
approach exhibits Gibbs-type oscillations near the discontinuity, whereas both 
spline-based approximations are oscillation-free. Figure 2a additionally shows the 
profile of U(0.734, 0.5; ξ) to provide more evidence that the shock propagates 
from the physical space to the random space. From this figure, one can also 
observe that B-splines smear the discontinuity compared to the SP splines. The 
mean and variance values obtained with all three approaches appear similar, as 
demonstrated in Fig. 2b and  2c. 

Fig. 1. Example 1: U (x, 0.5; ξ) obtained using (a) gPC expansion, (b) B-splines, and 
(c) SP splines.
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Fig. 2. Example 1: U (0.734, 0.5; ξ), (a) mean, and (b) standard deviation obtained 
using the gPC expansion and splines. Panels (b) and (c) contain a zoom at the areas 
of interest. 

Example 2—Shallow Water Equations 

In this example, we consider the Saint-Venant system of shallow water equations 
given by (1) with 

U = (h, hu)�, F (U) =
(
hu, hu2 + g 

2 
h2

)�
, S = (0, −ghZx)�, 

where h(x, t; ξ) is the water depth, u(x, t; ξ) is the velocity, Z(x; ξ) is the bottom 
topography, and g is the constant acceleration due to gravity (we take g = 1). 

The Saint-Venant system is considered in the physical domain x ∈ [−1, 1] 
subject to free boundary condition, deterministic initial data for the water sur-
face w = h + Z and velocity u, 

w(x, 0; ξ) =

{
1, x  <  0, 
0.5, x  >  0, 

u(x, 0; ξ) ≡ 0, 

and stochastic bottom topography 

Z(x) =

{
0.125ξ + 0.125(cos(5πx) + 2), |x| < 0.2, 
0.125ξ + 0.125, otherwise. 

We numerically solve the deterministic systems (2) on a uniform mesh con-
sisting of cells of size Δx = 1/400 until the final time T = 0.8 on a set of  
collocation points. Here, we examine the performance of the proposed methods 
with the number of collation points set to either L = 16  or  L = 32. 

In Fig. 3, we plot the water surface w(x, 0.8; ξ). It is evident that the gPC solu-
tion exhibits oscillations near the discontinuity location (x ≈ 0.694). These oscil-
lations become less pronounced as the number of collocation points increases, 
indicating an improvement in capturing of the stochastic behavior with increased 
resolution. When a spline interpolation is employed, these oscillations are sup-
pressed. Note that the oscillations visible near x ≈ 0 in Fig. 3b and  3c appear 
in the solution (not a feature of the interpolation). Similar results are obtained
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Fig. 3. Example 2: w(x, 0.8; ξ) obtained using (a) gPC expansion, (b) B-splines, and 
(c) SP splines with different number of collocation points L. 

Fig. 4. Example 2: (a) w(0.694, 0.8; ξ), (b) mean, and (c) standard deviation obtained 
using the gPC expansion and splines. Panels in columns (b) and (c) contain a zoom at 
the areas of interest. 

for water discharge hu (not shown for the sake of brevity). We additionally plot 
w(0.694, 0.8; ξ) in Fig. 4 to provide a more clear picture. The expected value and 
standard deviation are also shown in Fig. 4: for all approaches, similar results 
are observed.
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4 Conclusions 

In this paper, we have studied the stochastic collocation (SC) methods for uncer-
tainty quantification (UQ) in hyperbolic systems of nonlinear PDEs. We have 
numerically solved the underlying PDEs at a set of collocation points in random 
space. Then, we have used a standard SC approach based on a gPC expan-
sion, which relied on choosing the collocation points based on the prescribed 
probability distribution and approximating the computed solution by a linear 
combination of orthogonal polynomials. We have illustrated that this approach 
struggles to accurately capture discontinuous solutions, leading to oscillations 
(Gibbs-type phenomenon) that significantly deviate from the exact solutions. 
We have explored alternative SC methods using uniformly distributed colloca-
tion points and employing spline interpolations in a random space. Our study 
has demonstrated the effectiveness of spline-based collocation in accurately cap-
turing and assessing uncertainties while suppressing oscillations. We have illus-
trated the superiority of the spline-based collocation on two numerical examples, 
including the inviscid Burgers and shallow water equations. The future work will 
include higher-dimensional extensions of spline-based SC methods. 
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