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Abstract
The NEPv approach has been increasingly used lately for optimization on the Stiefel
manifold arising frommachine learning. General speaking, the approach first turns the
first order optimality condition into a nonlinear eigenvalue problem with eigenvector
dependency (NEPv) and then solve the nonlinear problem via some variations of
the self-consistent-field (SCF) iteration. The difficulty, however, lies in designing a
proper SCF iteration so that a maximizer is found at the end. Currently, each use of the
approach is very much individualized, especially in its convergence analysis phase to
show that the approach doeswork or otherwise. Related, theNPDoapproach is recently
proposed for the sum of coupled traces and it seeks to turn the first order optimality
condition into a nonlinear polar decomposition with orthogonal factor dependency
(NPDo). In this paper, two unifying frameworks are established, one for each approach.
Each framework is built upon a basic assumption, under which globally convergence
to a stationary point is guaranteed and during the SCF iterative process that leads to
the stationary point, the objective function increases monotonically. Also the notion
of atomic function for each approach is proposed, and the atomic functions include
commonly used matrix traces of linear and quadratic forms as special ones. It is shown
that the basic assumptions of the approaches are satisfied by their respective atomic
functions and, more importantly, by convex compositions of their respective atomic
functions. Together they provide a large collection of objectives for which either one
of approaches or both are guaranteed to work, respectively.

Keywords Nonlinear eigenvalue problem with eigenvector dependency · Nonlinear
polar decomposition with orthogonal factor dependency · NEPv · NPDo · Atomic
function · Convergence · Self-consistent-field iteration · SCF
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1 Introduction

Optimization on the Stiefel and Grassmann manifold is constrained optimization with
orthogonality constraints, and optimization problems as such can be and often are
handled by the method of Lagrange multipliers. In a milestone paper, Edelman, Ari-
asz, and Smith [18] in 1999 advocated to treat orthogonality constraints from the
geometrical point of view and established a unifying framework to adapt standard
optimization techniques, such as Newton’s method and conjugate gradient methods,
for better understanding and computational efficiency. Since then, there have been a
long list of research articles on optimization on matrix manifolds seeking the bene-
fit of the view and extending most generic optimization techniques such as gradient
descent/ascent methods, trusted region methods, and many others, to optimization on
matrix manifolds [1]. Most conveniently, there are software toolboxes manopt [12]
and STOP [22, 66] for optimization onmanifolds that have beenmade available online
to allow anyone to try out.

By and large, aforementioned progresses, while successful, are about skillful adap-
tations of classical optimization techniques for optimization on Riemannianmanifolds
(see [1, 12, 18, 22, 66, 70] and references therein), following the geometrical point of
view [18]. Recently, we witnessed several optimization problems on the Stiefel and
Grassmann manifolds emerging from data science applications. Prominent examples
include the orthogonal linear discriminant analysis (OLDA) and several others that
will be listed momentarily in Table 1. In those problems, matrices of large/huge sizes
may be involved and objective functions are made from one or more matrix traces to
serve various modeling objectives for underlying applications. Apart from the trend
of adapting generic optimization techniques, efforts and progresses have been made
along a different route of designing customized optimization methods through taking
advantage of structures in objective functions and leveraging mature numerical linear
algebra (NLA) techniques and software packages so as to gain even more efficiency
(see [68, 75–78] and references therein). This new route is the NEPv approach, where
NEPv stands for nonlinear eigenvalue problem with eigenvector dependency coined
by [14], and has been successfully demonstrated on several machine learning appli-
cations in these papers, where theoretical analysis seems to be much individualized.
The goal of this paper is to establish a unifying framework that streamlines the NEPv
approach among these papers and guides new applications of the approach to emerg-
ing optimization on Riemannian manifolds from data science and other disciplines. In
addition, we will also establish another unifying framework for the NPDo approach,
where NPDo stands for nonlinear polar decomposition with orthogonal polar factor
dependency, along the line of [67].

A maximization problem on the Stiefel manifold in its generality takes the form

max
PTP=Ik

f (P), (1.1)
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Table 1 Objective functions in the literature

• tr(PTAP), the symmetric eigenvalue problem (SEP) [17, 24, 52, 57], where tr(·) is the matrix-trace function;

• tr(PT AP)

tr(PTBP)
, the orthogonal linear discriminant analysis (OLDA) [14, 21, 49, 73, 74];

• tr(PT AP)

tr(PTBP)
+ tr(PTCP), the sum of the trace ratios (SumTR) [76, 77];

• tr(PTD)√
tr(PTBP)

, the orthogonal canonical correlation analysis (OCCA) [16, 78];

• tr(PT AP+PTD)

[tr(PTBP)]θ for 0 ≤ θ ≤ 1, the θ -trace ratio problem (ΘTR) [68];

• tr(PTAP + PTD), the MAXBET subproblem (MBSub) [46, 62, 64, 67, 68, 75];

• ∑N
i=1 tr(P

T
i Ai Pi + PT

i Di ), the sum of coupled traces (SumCT) [6, 9,
10, 55, 67], where P is column-partitioned as [P1, P2, . . . , PN ];

• φ(xxx) with xxx = [tr(PTA1P), . . . , tr(PTAN P)]T, trace composition
(TrCP), where φ(xxx) is a scalar function in xxx ∈ R

n ;

• ∑N
i=1 ‖PTAi P‖2F, the uniform multidimensional scaling (UMDS) [80];

• tr(PTAP) + φ(diag(PPT)) [18], the density functional theory (DFT) of Hohenberg and
Kohn [27] and Kohn and Sham [34], where φ(xxx) is a scalar function in xxx ∈ R

n , and diag(PPT)

extracts the diagonal entries of PPT into a vector.

A, B, and all Ai are symmetric and may or may not be positive semidefinite

where P ∈ R
n×k with 1 ≤ k ≤ n (usually k � n), Ik is the k × k identity matrix,

and objective function f (P) is defined on some neighborhood of the Stiefel manifold

St(k, n) := {P ∈ R
n×k : PTP = Ik} ⊂ R

n×k (1.2)

and is differentiable in the neighborhood. Specifically, f is well defined and differen-
tiable on some neighborhood

Stδ(k, n) := {P ∈ R
n×k : ‖PTP − Ik‖ < δ} (1.3)

of St(k, n), where 0 < δ is a constant and ‖ · ‖ is some matrix norm.
Although in general objective function f can be any differentiable function that is

well-defined on Stδ(k, n), in practical applications often f is a composition of matrix
traces of linear or quadratic forms in P . A partial list of most commonly used ones in
the literature is given in Table 1, where A, B, D, all Ai and Di are constant matrices,
and A, B, and all Ai are symmetric and may or may not be positive semidefinite.
All but the last two in the table are clearly composed of one or more matrix traces
depending on P , and the last two are no exceptions! To see that, we notice

‖PTAi P‖2F = tr((PTAi P)2), [diag(PPT)](i) = tr(eeeTi P PTeeei ) = tr(PTeeeieee
T
i P),

where [diag(PPT)](i) is the i th entries of vector diag(PPT) andeeei is the i th column of
the identity matrix. TrCP is included in Table 1 to represent a broad class of objective
functions someofwhichmayhave possibly appeared in the past literature, for example,
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the monotone nonlinear eigenvector problem (mNEPv) [5]:
∑N

i=1 ψi (pppTAi ppp) where
ppp ∈ R

n and each ψi (·) is a single-variable convex function in R.
Beyond Table 1, there are matrix optimization problems that can be reduced to one

alike for numerical purposes. For example, the following least-squared minimization

min
P∈St(k,n)

‖CP − B‖2F (1.4)

can be reformulated into the MAXBET subproblem in the table with A = −CTC and
D = CTB/2. It can be found inmany real world applications including the orthogonal
least squares regression (OLSR) for feature extraction [50, 81], the multidimensional
similarity structure analysis (SSA) [11, chapter 19], and the unbalanced Procrustes
problem [15, 18, 19, 25, 30, 75, 79].

1.1 Review of the NEPv and NPDo Approach

Maximizing trace tr(PTAP), at the top of Table 1, has an explicit solution in terms
of the eigenvalues and eigenvectors of symmetric matrix A, known as Fan’s trace
maximization principle [20, 29], p. 248 (see also [43–45] for later extensions). For
that reason, it is often regarded indistinguishably as the symmetric eigenvalue problem
(SEP) that is ubiquitous throughout mathematics, science, engineering, and especially
today’s data sciences. It has been well studied theoretically and numerically in NLA
[17, 24, 41, 52, 56, 57] and often serves as the most distinguished illustrating example
for optimization on the Stiefel and Grassmann manifolds [1, 18]. For the rest of the
objective functions, the so-called NEPv approach and NPDo approach have been
investigated for numerically solving the associated optimization problems.

The basic idea of the NEPv approach [68, 75, 78] is as follows:

1. Establish an NEPv

H(P)P = PΩ, P ∈ St(k, n) (1.5)

that either is or can be made equivalent to the first order optimality condition, also
known as the KKT condition (see sect. 2 for detail), where H(P) ∈ R

n×n is a
symmetric matrix-valued function dependent of P;

2. Solve NEPv (1.5) by the self-consistent-field (SCF) iteration: given P0, iteratively

compute partial eigendecomposition H(Pi−1)P̂i = P̂iΩi associated
with the k largest (or smallest) eigenvalues of H(Pi−1) for P̂i ∈ St(k, n),
and postprocess P̂i to Pi .

(1.6)

While the idea of SCF seems rather natural, its convergence analysis is not and often
has to be done on a case-by-case basis where novelty lies [4, 14, 47, 68, 78]. In
particular, it is critical to know what part of the spectrum of H(Pi−1) whose partial
eigendecomposition in (1.6) is about so as to move the objective function f up. The
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SCF iteration (1.6) differs from the classical SCF for solving the discretized Kohn-
Sham equations in its postprocessing from P̂i to Pi , which is not needed in the classical
SCF for NEPv that is right-unitarily invariant (see Definition 2.1 in the next section).
Indiscriminately, we use SCF to refer to both the classical SCF and SCF (1.6) when
no confusion arises.

SCF, in connectionwith theNEPv approach, has been one of the defaultmethods for
solving the discretized Kohn-Sham equations in the density function theory [58, 71].
Since then, the same idea has been proven effective in several data science applications
(see Table 1): OLDA [73, 74], OCCA [78], MBSub [67, 68], and ΘTR [68]. Later,
we will show that the approach will work on UMDS [80] and TrCP, too.

Related, in [67], the NPDo approach is proposed to numerically maximize SumCT.
A similar idea appeared before in [10] where each Pi is a vector and Di = 0. The
basic idea of the NPDo approach is as follows:

1. Establish the first order optimality condition, which takes the form

H (P) = PΛ, P ∈ St(k, n), (1.7)

where H (P) ∈ R
n×k is the Euclidean gradient of f (P) and, provably, Λ is

positive semidefinite at optimality;
2. Solve NPDo (1.7) by the self-consistent-field iteration: given P0, iteratively

compute polar decomposition1 H (Pi−1) = P̂iΛi ofH (Pi−1) for P̂i ∈
St(k, n), and postprocess P̂i to Pi .

(1.8)

A key prerequisite of the NPDo approach is that, at an optimality P∗, (1.7) is a polar
decomposition ofH (P∗). This is proved in [67] for SumCT under the condition that
all Ai are positive semidefinite, and later in this paper, we will prove it for more
optimization problems, including those in Table 1 that do not appear in ratio forms.
As H (P) to be decomposed also depends on orthogonal polar factor P , we call it a
nonlinear polar decomposition with orthogonal polar factor dependency, or NPDo in
short. Polar decomposition is often computed via SVD [24] which can be viewed as
a special SEP [17]. For that reason, NPDo may also be regarded as another kind of
NEPv.

1.2 Contributions

We observe that all objective functions in Table 1 are compositions of some scalar
functions, matrix traces such as tr(PTAP) and tr(PTD) in fact. For example, in

1 Throughout this paper, a polar decomposition of B ∈ R
n×k (k ≤ n) refers to B = PΩ with P ∈ St(k, n)

and positive semidefinite Ω ∈ R
k×k . Ω = (BTB)1/2 is always unique, but P ∈ St(k, n) is unique if and

only if rank(B) = k [38]. The matrix P in the decomposition is called an orthogonal polar factor of B.
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ΘTR [68], f (P) can be expressed as a composition of three functions tr(PTBP),
tr(PTAP), and tr(PTD) by φ:

f (P) = φ ◦ T (P) with T (P) =
⎡

⎣
tr(PTBP)

tr(PTAP)

tr(PTD)

⎤

⎦ , φ(x1, x2, x3) = x2 + x3
xθ
1

,

(1.9)

i.e., it is a composition of the 3-variable functionφ with threematrix traces: tr(PTBP),
tr(PTAP), and tr(PTD). Each trace serves as a singleton unit of function in P that
does seem to be decomposable into finer units for any benefit of study and numerical
computations. For that reason, later in this paper, we shall call such a singleton unit of
function in P an atomic function. In its generality, an atomic function is defined upon
satisfying two basic conditions but may not necessarily be in a matrix trace form.

Unfortunately, φ in (1.9) is not convex in xxx , but φ2 for 0 ≤ θ ≤ 1/2 is (more
detail can be found in Remark 8.1 in sect. 8). Except for OLDA and SumTR, all
objective functions in Table 1, either themselves or squared (for OCCA and ΘTR
with 0 ≤ θ ≤ 1/2), are convex compositions of atomic functions, assuming φ for
both TrCP and DFT are convex.

Our main contributions of this paper are summarized as follows:

1. Creating two unifying frameworks of the NEPv and NPDo approaches, respec-
tively, to numerically solve (1.1) by their corresponding SCF iterations, with
guaranteed convergence to a KKT point that satisfies certain necessary conditions
to be established for a maximizer;

2. Introducing the notion of atomic functions in P with respect to both approaches,
and showing that,

[ tr((PTAP)m)]s, [tr((PTD)m)]s, (1.10)

are concrete atomic functions, where m ≥ 1 is an integer, s ≥ 1 is a scalar, and A
is symmetric but may or may not be a positive semidefinite matrix depending on
the circumstances;

3. Showing theNEPv andNPDo approacheswork on each individual atomic function
for the approach and, more importantly, any convex composition φ ◦ T of their
respective atomic functions, where φ(xxx) for xxx ∈ D ⊆ R

N is convex, each entry of
T (P) ∈ R

N is an atomic function, and the partial derivative of φ with respect to an
entry may be required nonnegative, depending on the particular atomic function
that occupies the entry.

Although the two approaches look very much parallel to each other in presentation,
there are differences in applicabilities and numerical implementations, making them
somewhat complementary to each other. A brief comparison of the two approaches is
given in sect. 9.
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1.3 Organization and Notation

After stating the KKT condition of maximization problem (1.1) in sect. 2, we divide
the rest of this paper into two parts.With maximization problem (1.1) in mind, in Part I
we focus on the NPDo approach to solve the KKT condition in three sections: sect.
3 creates a unifying NPDo framework, including the NPDo Ansatz to guarantee that
the KKT condition is an NPDo at optimality of (1.1), the global convergence of the
SCF iteration (1.8); sect. 4 develops a general theory that governs atomic functions for
NPDo and show that matrix-trace functions, tr((PTD)m) and tr((PTAP)m) and their
powers of order higher than 1, are atomic functions; finally in sect. 5, we investigate the
NPDo approach for convex compositions φ ◦ T (P) of atomic functions and elaborate
on a few T (P) ∈ R

N of common matrix-trace functions that include some of those
appearing in Table 1. In Part II, we focus on the NEPv approach for the same purpose.
It also has three sections to address the corresponding issues: a unifying framework
built upon an ansatz – the NEPv Ansatz, the global convergence of the SCF iteration
(1.6), atomic functions for NEPv, and their convex compositions φ◦T (P) alongwith a
few T (P) ∈ R

N of commonmatrix-trace functions. Both frameworks are very similar
in appearance, but there are subtle differences in requirements and ease to use, making
each have advantages over the other in circumstances. A brief comparison to highlight
the major differences between the two approaches is made in sect. 9. Concluding
remarks are drawn in sect. 10. There are two appendices at the end to supplement
necessary material. Appendix A reviews the canonical angles between subspaces of
equal dimensions; appendix B cites a couple of well known inequalities for scalars
and establishes a few new ones for matrices to serve the main body of the paper.

For notation, we follow the following convention:

• R
m×n is the set of m × n real matrices, R

n = R
n×1, and R = R

1;
• As in [1], St(k, n) in (1.2) denotes the Stiefel manifold, while Stδ(k, n) in (1.3)
is some neighborhood of it; In particular, St(k, k) contains all k-by-k orthogonal
matrices; Also frequently, given D ∈ R

n×k ,

St(k, n)D+ := {X ∈ St(k, n) : XTD � 0};

• In ∈ R
n×n is the identity matrix or simply I if its size is clear from the context,

and eee j is the j th column of I of an apt size;
• BT stands for the transpose of a matrix/vector B;
• R(B) is the column subspace of a matrix B, spanned by its columns, whose
dimension is rank(B), the rank of B;

• For B ∈ R
m×n , unless otherwise explicitly stated, its SVD refers to the one

B = UΣV T, also known as the thin SVD of B, with

Σ = diag(σ1(B), σ2(B), . . . , σs(B)) ∈ R
s×s, U ∈ St(s,m), V ∈ St(s, n),

where s = min{m, n}, the singular values σ j (B) are always arranged decreasingly
as

σ1(B) ≥ σ2(B) ≥ · · · ≥ σs(B) ≥ 0,
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and σmin(B) = σs(B); Accordingly, ‖B‖2, ‖B‖F, and ‖B‖tr are the spectral,
Frobenius, and trace norms of B:

‖B‖2 = σ1(B), ‖B‖F =
( s∑

i=1

[σi (B)]2
)1/2

, ‖B‖tr =
s∑

i=1

σi (B),

respectively; The trace norm is also known as the nuclear norm;
• For a symmetric matrix A ∈ R

n×n , eig(A) = {λi (A)}ni=1 denotes the set of its
eigenvalues (counted by multiplicities) arranged in the decreasing order:

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A),

and Sk(A) = ∑k
i=1 λi (A) and sk(A) = ∑k

i=1 λn−i+1(A), the sum of the k largest
eigenvalues and that of the k smallest eigenvalues of A, respectively;

• A matrix A 
 0 (� 0) means that it is symmetric and positive definite (semi-
definite), and accordingly A ≺ 0 (� 0) if −A 
 0 (� 0).

2 KKT Condition

Consider maximization problem (1.1) on the Stiefel manifold St(k, n) in its generality.
For P = [pi j ] ∈ Stδ(k, n) defined in (1.3), denote by

H (P) := ∂ f (P)

∂P
∈ R

n×k with its (i, j)th entry
∂ f (P)

∂ pi j
, (2.1)

the partial derivative of f (P)with respect to P as a matrix variable in R
n×k , where all

entries of P are treated as independent. It is also known as the Euclidean gradient in
recent literature. Throughout this paper, notationH (P) is reserved for the Euclidean
gradient of objective function f within the context.

As an optimization problem on the Stiefel manifold, the first order optimality con-
dition (1.1), also known as the KKT condition, is given by setting the Riemannian
gradient of f with respect to the Stiefel manifold St(k, n) at P to 0. It is well-known
that the Riemannian gradient of a smooth function f with respect to the Stiefel man-
ifold at P ∈ St(k, n) can be calculated according to (see, e.g., [1, (3.37)])

grad f|St(k,n)(P) = ΠP
(
H (P)

) = H (P) − P · sym(
PTH (P)

)
, (2.2)

where the projection ΠP (Z) := P − P sym(PTZ) with sym(PTZ) = (PTZ +
ZTP)/2. Setting grad f|St(k,n)(P) = 0 yields the first-order optimality condition:

H (P) = PΛ with ΛT = Λ ∈ R
k×k, P ∈ St(k, n), (2.3)

where Λ = sym(PTH (P)). The exact form of Λ, however, is not important, but
its symmetry is, for example, it implies that PTH (P) is symmetric at any KKT
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point P . The KKT condition (2.3) can also be inferred from treating P ∈ St(k, n)

as the orthogonality constraint PTP = Ik and then using the classical method of
Lagrange multipliers for constrained optimization [51]. Geometrically, the condition
(2.3) simply asks for that the Euclidean gradient belongs to the normal space to the
Stiefel manifold at P .

For simple functions, f (P) = tr(PTD) or tr(PTAP), the KKT condition (2.3)
can be considered as solved. In fact, for the two functions, (2.3) becomes D = PΛ

or 2AP = PΛ, respectively, which, in consideration of (1.1), tell us that a maximizer
can be taken to be an orthogonal polar factor of D [29, 78], or an orthonormal basis
matrix of the eigenspace of A associated with its k largest eigenvalues [43–45, 59],
respectively. In both cases, the maximizer as described is considered a close form
solution to the respective problem because of the numerical maturity by existing NLA
techniques and software [2, 3, 17, 24, 41, 52].

In general, equation (2.3) is not an easy equation to solve in searching for a max-
imizer of (1.1) with guarantee. For example, in the MAXBET subproblem, simply
f (P) = tr(PTD)+ tr(PTAP), the sum of the two simple matrix-trace functions and
(2.3) becomes 2AP + D = PΛ for which there is no existing NLA technique that
yields a solution to maximize f (P) with guarantee. Having said that, we point out
that the eigenvalue-based method [75], which falls into the NEPv approach, has been
demonstrated to be numerically efficient [75] and often produces global maximizers.
The MAXBET subproblem is a special case of SumCT. As such, in [67], the NPDo
approach has also been successfully applied.

We now formally define the notion of a function being right-unitarily invariant,
originally introduced in [47]. It is an important concept that we will frequently refer to
in the rest of this paper. However, our definition here differs from [47, Definition 2.1]
slightly in that we limit the domain to some neighborhood Stδ(k, n) of the Stiefel man-
ifold St(k, n), rather than the entire space R

n×k used in [47]. Carefully going through
[47], one can see that our definition here is actually sufficient for the development in
[47] as it is here.

Definition 2.1 A function F : Stδ(k, n) → R
p×q is said right-unitarily invariant if

F(PQ) ≡ F(P) for P ∈ Stδ(k, n) and Q ∈ St(k, k).

Part I

The NPDo Approach

3 The NPDo Framework

In [67], an NPDo approach is proposed to numerically maximize the sum of coupled
traces (SumCT) in Table 1. It is an SCF iterative procedure (1.8) that solves the
KKT condition (2.3) for its solution with an eye on maximizing the sum. Our general
framework in this section is inspired by and bears similarity to the developments there,
but in more abstract terms.
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3.1 The NPDo Ansatz

The success of the NPDo approach in [67] rests on a monotonicity lemma which
motivates us to formulate the following ansatz to build our framework upon. The key
point of the assumption is the ability to generate an improved approximate maximizer
P̃ from a given one P , where both the given P and the improved P̃ may have to come
out of possibly a strict subset P of St(k, n). What P to use depends on the underlying
optimization problem (1.1) at hand, aswewill repeatedly demonstrate later by concrete
examples.
The NPDo Ansatz. Let function f be defined in some neighborhood Stδ(k, n) of
St(k, n), and denote by H (P) = ∂ f (P)

∂P . Given P ∈ P ⊆ St(k, n) and P̂ ∈ St(k, n),
if

tr(P̂TH (P)) ≥ tr(PTH (P)) + η for some η ∈ R, (3.1)

then there exists Q ∈ St(k, k) such that P̃ = P̂Q ∈ P and f (P̃) ≥ f (P) + ωη,
where ω is some positive constant, independent of P and P̂ .

For any given P ∈ St(k, n), by Lemma B.9, there is always P̂ ∈ St(k, n) such
that (3.1) holds with some η > 0, unless for that given P , (2.3) holds with Λ � 0.
In fact, we can take P̂ ∈ St(k, n) to be an orthogonal polar factor of H (P), which
also maximizes tr(XTH (P)) over X ∈ St(k, n) to ‖H (P)‖tr again by Lemma B.9.
Hence, for the purpose of solving (1.1), we may relax the ansatz to η ≥ 0. As far as
verifying this ansatz is concerned, it is the desirable aim, f (P̃) ≥ f (P) + ωη, that
needs to be checked. The necessity of also involving P, a subset of St(k, n), can be
best justified by Example 3.1 below.

Example 3.1 Consider f (P) = tr(PTAP) + tr((PTD)2) where 0 � A ∈ R
n×n and

D ∈ R
n×k . It can be verified that H (P) = 2AP + 2DPTD (see also (4.10) in the

next section). Suppose now that (3.1) holds for P, P̂ ∈ St(k, n), or equivalently,

2 tr(P̂TAP) + 2 tr(P̂TDPTD) ≥ 2 tr(PTAP) + 2 tr((PTD)2) + η. (3.2)

The right-hand side of this inequality seems relatable to f (P), but P and P̂ are coupled
together in its left-hand side. Somehow we have to separate them in order to establish
the desired inequality f (P̃) ≥ f (P)+ωη as demanded by the NPDo Ansatz. Indeed
this is what we will do next. Let X = A1/2 P̂ and Y = A1/2P where A1/2 is the unique
positive semidefinite square root of A. By Lemma B.7, we get

2 tr(P̂TAP) = 2 tr(XTY ) ≤ tr(XTX) + tr(YTY ) = tr(P̂TAP̂) + tr(PTAP), (3.3)

successfully separating P and P̂ from their coupling by tr(P̂TAP). Turning to
tr(P̂TDPTD), we assume that PTD � 0, i.e., P ∈ P = St(k, n)D+, and let
Q ∈ St(k, k) be an orthogonal polar factor of P̂TD and hence QT(P̂TD) � 0,
implying P̃ = P̂Q ∈ P. We get

2 tr(P̂TDPTD) ≤ 2‖P̂TDPTD‖tr (by Lemma B.8)
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≤ tr((QT P̂TD)2) + tr((PTD)2) (by Lemma B.6)

= tr((P̃TD)2) + tr((PTD)2). (3.4)

Combine (3.2), (3.3), and (3.4) to get f (P̃) ≥ f (P) + η upon noticing tr(P̃TAP̃) =
tr(P̂TAP̂).We observe the critical conditions: PTD � 0 and QT P̂TD � 0 that ensure
(3.4), which we use to separate P and P̂ from their coupling by tr(P̂TDPTD). The
first condition PTD � 0 can be fulfilled by simply starting with P ∈ P, while the
second condition QT P̂TD � 0 is made possible by the chosen Q and, as a byproduct,
P̃ ∈ P, too. Besides this role of making QT P̂TD � 0, Q also increases the objective
value as a result of the two inequality signs in the derivation of (3.4). In our later use
of (3.1), we begin with some P ∈ P ⊆ St(k, n) and then find some P̂ ∈ St(k, n) such
that η > 0 in (3.1), and therefore having a flexibility of judiciously choosing a proper
Q becomes a logical necessity.

Remark 3.1 A few comments on the NPDo Ansatz are in order.

i. When f (P) is right-unitarily invariant, it suffices to take Q = Ik and P̃ = P̂
because f (P̂) = f (P̃) regardless of Q. Introducing subset P of St(k, n) and
judiciously choosing Q are for generality in order to deal with the case when
f (P) is not right-unitarily invariant, e.g., the one in Example 3.1 and those from
Table 1 in sect. 1 that involve D or Di . Throughout this paper, we will assume
that P is as inclusive as necessary to allow our proving arguments to go through.
In particular, at the minimum, P should contain one or more maximizers of the
associated optimization problem (1.1).

ii. For computational purposes, it is necessary to have an efficient way to construct Q
in the ansatz. That is often the case when it comes to common concrete objective
functions f that are in use today. In our later development, either a proper P can
maximally increase the value of objective function f , e.g., when tr((PTD)m) for
m ≥ 1 is involved, or we have to have it for our theoretical proofs to go through.
In fact for tr((PTD)m), we may take P = St(k, n)D+, and let Q ∈ St(k, k)
be an orthogonal polar factor of P̂TD to ensure P̃TD = QT(P̂TD) � 0. As
a consequence, (P̃TD)m � 0 and ‖(P̃TD)m‖tr = tr((P̃TD)m) by Lemma B.8
and hence an orthogonal polar factor Q of P̂TD maximizes tr([(P̂ Z)TD]m) over
Z ∈ St(k, k). Calculating this Q via the SVD of P̂TD ∈ R

k×k is efficient since k
is usually small (in the tens or no more than a couple of hundreds).

iii. It is tempting to stipulate f (P̂) ≥ f (P) + ωη, but that is either false or just hard
to prove, e.g., for the one in Example 3.1. Often in our algorithms to solve (1.1)
iteratively, with P being the current approximate maximizer, assuming the NPDo
Ansatz, we naturally compute P̂ that maximizes tr(XTH (P)) over X ∈ St(k, n).
With that P̂ , settling whether f (P̂) ≥ f (P) + ωη or not can be a hard or even
impossible task, for example, in Example 3.1 it is not clear if f (P̂) ≥ f (P)+ωη

at all.

As to the validity of the NPDo Ansatz on the objective functions in Table 1, it
holds for all, except for those that involve quotients, under reasonable conditions on
the constantmatrices and functionφ. Table 2 details conditions under which theNPDo
Ansatz holds, where the last column points to the places for justifications. We point
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Table 2 The NPDo Ansatz on objective functions in Table 1

H (P) Conditions By

SEP 2AP A � 0 Theorem 5.2

MBSub 2AP + D A � 0 Theorem 5.2, [67]

SumCT 2[A1P1, . . . , AN PN ] + D Ai � 0 ∀i Theorem 5.2, [67]

TrCP 2
∑N

i=1 φi (xxx)Ai P Ai � 0, φi ≥ 0 ∀i Theorem 5.2

convex φ

UMDS 4
∑N

i=1 Ai P PTAi P Ai � 0 ∀i Example 5.2

DFT 2AP + 2
∑n

i=1 φi (xxx)eeeieee
T
i P A � 0, φi ≥ 0 ∀i Theorem 5.2

convex φ

φi (xxx) := ∂φ(xxx)/∂xi for xxx = [xi ]

out that we can take P = St(k, n), Q = Ik , and ω = 1 for all in Table 2 but judicious
choices of P and Q can increase the values of objective functions more than ωη as
stipulated by the NPDo Ansatz for MBSub and SumCT [67, Theorem 5.2].

The first immediate consequence of the NPDo Ansatz is the following theorem
that provides a characterization of themaximizers of the associated optimization prob-
lem (1.1).

Theorem 3.1 Let P∗ ∈ St(k, n) be a maximizer of (1.1). Suppose that the NPDo
Ansatz holds and P∗ ∈ P. Then (2.3) holds for P = P∗ andΛ = Λ∗ := PT∗ H (P∗) �
0.

Proof Anymaximizer is a KKT point, and hence (2.3) holds for P = P∗ andΛ = Λ∗.
Assume, to the contrary, that Λ∗ = PT∗ H (P∗) � 0 (which means either Λ∗ is not
symmetric or it is symmetric but indefinite or even negative semidefinite). Then by
Lemma B.9, we have tr(P̂TH (P∗)) = ‖H (P∗)‖tr ≥ tr(PT∗ H (P∗)) + η for some
η > 0, where P̂ is an orthogonal polar factor of H (P∗). By the NPDo Ansatz, we
can find P̃ = P̂Q ∈ P such that f (P̃) ≥ f (P∗) + ωη > f (P∗), contradicting that
P∗ is a maximizer. ��

What this theorem says is that at a maximizer P∗, (2.3) is a polar decomposition of
H (P∗). Hence solving (1.1) through itsKKTcondition is necessarily looking for some
P∗ so that (2.3) is a polar decomposition. Since the matrix of which we are seeking a
polar decomposition is a matrix-valued function that depends on its orthogonal polar
factor, we naturally call (2.3) a nonlinear polar decomposition with orthogonal polar
factor dependency (NPDo) of H (·).

We note thatH (P∗) has a unique polar decomposition if rank(H (P∗)) = k [38];
but it is not unique if rank(H (P∗)) < k [26, 37, 40]. However in the latter case, it
does not mean that any orthogonal polar factor ofH (P∗), other than P∗, also satisfies
(2.3), unless H (·) is right-unitarily invariant.
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Algorithm 3.1 NPDoSCF: NPDo (2.3) solved by SCF

Input: Function H (P) ≡ ∂ f (P)/∂P satisfying the NPDo Ansatz, P(0) ∈ P;
Output: an approximate maximizer of (1.1).
1: for i = 0, 1, . . . until convergence do
2: compute Hi = H (P(i)) ∈ R

n×k and its thin SVD: Hi = UiΣi V
T
i ;

3: P̂(i) = Ui V
T
i ∈ St(k, n), an orthogonal polar factor of H (P(i));

4: calculateQi ∈ St(k, k)whose existence is stipulated by theNPDoAnsatz and let P(i+1) = P̂(i)Qi ∈
P;

5: end for
6: return the last P(i).

3.2 SCF Iteration and Convergence

The second immediate consequence of the NPDoAnsatz is the global convergence of
an SCF iteration for solving optimization problem (1.1) as outlined in Algorithm 3.1.

This algorithm is similar to [67, Algorithm 3.1], but the latter has more details that
are dictated by the particularity of objective function f there. We have a few general
comments regarding the implementation of Algorithm 3.1 (NPDoSCF):

1. At Line 4 it refers to the NPDo Ansatz for the calculation of Qi . Exactly how it is
computed depends on the structure of f at hand. In Remark 3.1(ii), we commented
on the issue in the case when f (P) involves and increases with tr((PTD)m), e.g.,
the one in Example 3.1, Qi can be taken to be an orthogonal polar factor of
(P̂(i))TD. Later in sect. 5 we will elaborate on how to choose Qi for a few convex
compositions of matrix-trace functions.

2. A reasonable stopping criterion at Line 1 is

εKKT + εsym := ‖H (P) − P[PTH (P)]‖F
ξ

+
∥
∥[PTH (P)] − [PTH (P)]T‖F

ξ
≤ ε, (3.5)

where ε is a given tolerance, and ξ is some normalization quantity that should be
designed according to the underlying H (P), but generically, ξ = ‖H (P)‖F, or
any reasonable estimate of it, should work well. The significance of both εKKT and
εsym is rather self-explanatory. In fact, we will call εKKT and εsym the normalized
residual for the KKT equation (2.3) and the normalized residual for the symmetry
in Λ = PTH (P), respectively.

3. Let us investigate the computational complexity per iterative step. Since how Hi =
H (P(i)) and Qi are computed is generally problem-dependent, we will only
examine the cost for all other operations. At Line 2, the thin SVD of Hi ∈ R

n×k

is often computed in two steps: compute a thin QR decomposition Hi = WR and
then the SVD of R ∈ R

k×k followed by the product of W with the left singular
vector matrix of R. Hence the overall cost per SCF iterative step, stemming from
the SVD of R and threematrix products of an n-by-k matrix with an k-by-k matrix,
is about O(nk2 + k3) flops [24, p.493] which is linear in n for small k.
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Next, we will state our convergence theorems for Algorithm 3.1 under the NPDo
Ansatz. It is shown that as the SCF iteration progresses, the value of the objective func-
tion monotonically increases, any accumulation point of the generated approximation
sequence satisfies the necessary conditions in Theorem 3.1 for a global maximizer, and
under certain conditions, the accumulation point can be proved to be the limit point
of the entire approximation sequence. In short, the NPDo approach is guaranteed to
work.

Theorem 3.2 Suppose that the NPDo Ansatz holds, and let the sequence {P(i)}∞i=0
be generated by Algorithm 3.1. The following statements hold.

a. The sequence { f (P(i))}∞i=0 is monotonically increasing and convergent;
b. Any accumulation point P∗ of the sequence {P(i)}∞i=0 satisfies the necessary con-

ditions in Theorem 3.1 for a global maximizer, i.e., (2.3) holds for P = P∗ with
Λ∗ = PT∗ H (P∗) � 0;

c. We have two convergent series

∞∑

i=1

σmin(H (P(i)))
∥
∥ sinΘ

(R(P(i+1)),R(P(i))
)∥
∥2
F < ∞, (3.6a)

∞∑

i=1

σmin(H (P(i)))

∥
∥H (P(i)) − P(i)

([P(i)]TH (P(i))
)∥
∥2
F

∥
∥H (P(i))

∥
∥2
F

< ∞, (3.6b)

whereΘ(·, ·) is the diagonalmatrix of the canonical angles between two subspaces
(see appendix A).

Proof See [42, Appendix C]. ��
BothTheorem3.2(b,c) have useful consequences.As a corollary of Theorem3.2(b),

wefind that theNPDoAnsatz is a sufficient condition forNPDo (2.3) to have a solution
because there always exists an accumulation point P∗ of the sequence {P(i)}∞i=0 in
St(k, n).

Corollary 3.1 Under the NPDo Ansatz, NPDo (2.3) is solvable, i.e., there exists P ∈
St(k, n) such that Λ = PTH (P) � 0 and (2.3) holds.

As a corollary of Theorem 3.2(c), if σmin(H (P(i))) is eventually bounded below
away from 0 uniformly,2 then

lim
i→∞

∥
∥H (P(i)) − P(i)[P(i)]TH (P(i))

∥
∥
F∥

∥H (P(i))
∥
∥
F

= 0,

namely, increasingly H (P(i)) ≈ P(i)
([P(i)]TH (P(i))

)
towards a polar decom-

position of H (P(i)), which means that P(i) becomes a more and more accurate

2 By which we mean that there exist a constant τ > 0 and an integer K such that σmin(H (P(i))) ≥ τ for
all i ≥ K .
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approximate solution to NPDo (2.3), even in the absence of knowing whether the
entire sequence {P(i)}∞i=0 converges or not. The latter does require additional condi-
tions to establish in the next theorem.

Theorem 3.3 Suppose that the NPDo Ansatz holds, and let the sequence {P(i)}∞i=0
be generated by Algorithm 3.1 and P∗ be an accumulation point of the sequence. The
following statements hold.

a. R(P∗) is an accumulation point of the sequence {R(P(i))}∞i=0;
b. Suppose that R(P∗) is an isolated accumulation point of {R(P(i))}∞i=0. If

rank(H (P∗Q)) = k for any Q ∈ St(k, k), (3.7)

then the entire sequence {R(P(i))}∞i=0 converges toR(P∗);
c. Suppose that P∗ is an isolated accumulation point of {P(i)}∞i=0. If

rank(H (P∗)) = k, (3.8)

and if f (P∗) > f (P) for any P �= P∗ andR(P) = R(P∗), i.e., f (P) has unique
maximizer in the orbit {P∗Q : Q ∈ St(k, k)}, then the entire sequence {P(i)}∞i=0
converges to P∗.

Proof See [42, Appendix C]. ��
In the case when objective function f is right-unitarily invariant, Theorem 3.3(c) is

clearly not applicable. In such a case, computing R(P∗) is the ultimate goal because
each maximizer P∗ is really a representative from the orbit {P∗Q : Q ∈ St(k, k)}.
Given Q ∈ R

k×k , let g(P) = f (PQ). It can be verified that

∂g(P)

∂P
= ∂ f (P̂)

∂ P̂

∣
∣
∣
∣
P̂=PQ

QT = H (PQ) QT.

Thus if f is right-unitarily invariant, then g(P) ≡ f (P) and thus H (P) =
H (PQ) QT; if also Q ∈ St(k, k), then we get H (PQ) = H (P) Q and as a
result, condition (3.7) is equivalently to rank(H (P∗)) = k.

3.3 Acceleration by LOCG and Convergence

Although Algorithm 3.1, an SCF iteration for solving NPDo (2.3), is proved always
convergent to KKT points under the NPDo Ansatz, it may take many SCF iterations
to converge to a solution with desired accuracy and that can be costly for large scale
problems, even though the complexity per SCF iterative step is linear in n. In fact, for
f (P) = tr(PTAP) with A � 0, Algorithm 3.1 is simply the subspace iteration which
converges linearly at the rate of λk+1(A)/λk(A). This rate is 1 if λk+1(A) = λk(A),
indicating possible divergence, but strictly less than 1 otherwise. In the latter case,
although the convergence is guaranteed, it can be slow when λk+1(A) < λk(A) only
slightly such that λk+1(A)/λk(A) ≈ 1 [17, 24]. In [67], acceleration by a locally
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optimal conjugate gradient technique (LOCG) was demonstrated to be rather helpful
to speed things up for maximizing SumCT. The same idea can be used to speed up
Algorithm3.1, too. In this subsection,wewill explain the idea,which draws inspiration
from optimization [53, 61] and has been increasingly used in NLA for linear systems
and eigenvalue problems [7, 31, 33, 41, 72].

A Variant of LOCG for Acceleration

Without loss of generality, let P(−1) ∈ St(k, n) be the approximate maximizer of
(1.1) from the very previous iterative step, and P ∈ St(k, n) the current approximate
maximizer. We are now looking for the next approximate maximizer P(1), along the
line of LOCG, according to

P(1) = arg max
Y∈St(k,n)

f (Y ), s.t. R(Y ) ⊆ R([P,R(P), P(−1)]), (3.9)

where

R(P) := grad f|St(k,n)(P) = H (P) − P · 1
2

[
PTH (P) + H (P)TP

]
(3.10)

by (2.2). Initially for the first iteration, we don’t have P(−1) and it is understood that
P(−1) is absent from (3.9), i.e., simplyR(Y ) ⊆ R([P,R(P)]).

We still have to numerically solve (3.9). For that purpose, let W ∈ St(m, n) be an
orthonormal basis matrix of subspaceR([P,R(P), P(−1)]). Generically,m = 3k but
m < 3k can happen. It can be implemented by the Gram-Schmidt orthogonalization
process, starting with orthogonalizing the columns of R(P) against P since P ∈
St(k, n) already. In MATLAB, to fully take advantage of its optimized functions, we
simply set W = [R(P), P(−1)] (or W = R(P) for the first iteration) and then do

W=W-P*(P’*W); W=orth(W); W=W-P*(P’*W); W=orth(W);
W=[P,W];

where the first line performs the classical Gram-Schmidt orthogonalization twice to
almost ensure that the resulting columns of W are fully orthogonal to the columns of
P at the end of the first line, and orth is a MATLAB function for orthogonalization.
It is important to note that the first k columns of the final W are the same as those of
P .

Now it follows fromR(Y ) ⊆ R([P,R(P), P(−1)]) = R(W ) that in (3.9)

Y = WZ for Z ∈ St(k,m). (3.11a)

Problem (3.9) becomes

Zopt = arg max
Z∈St(k,m)

f̃ (Z) with f̃ (Z) := f (WZ), (3.11b)
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Algorithm 3.2 NPDoLOCG: NPDo (2.3) solved by LOCG

Input: Function H (P) ≡ ∂ f (P)/∂P satisfying the NPDo Ansatz, P(0) ∈ P;
Output: an approximate maximizer of (1.1).
1: P(−1) = [ ]; % null matrix
2: for i = 0, 1, . . . until convergence do
3: compute W ∈ St(m, n) such that R(W ) = R([P(i),R(P(i)), P(i−1)]) and P(i) occupies the first

k columns of W ;
4: solve (3.11b) via NPDo (3.12) for Zopt by Algorithm 3.1 with initially Z (0) being the first k columns

of Im , or approximately such that f̃ (Zopt) ≥ f̃ (Z (0)) + ωη for some η > 0;

5: P(i+1) = WZopt;
6: end for
7: return the last P(i).

and P(1) = WZopt for (3.9). It can verified that

H̃ (Z) := ∂ f̃ (Z)

∂Z
= WT ∂ f (P)

∂P

∣
∣
∣
∣
P=WZ

= WTH (WZ), (3.12a)

and the first order optimality condition for (3.11b) is

H̃ (Z) = ZΛ̃ with Λ̃T = Λ̃ ∈ R
k×k, Z ∈ St(k,m). (3.12b)

Lemma 3.1 Suppose that the NPDo Ansatz holds for f , and let Z := WT
P ⊆

St(k,m). If WZ ⊆ P, then the NPDo Ansatz holds for f̃ defined in (3.11b).

Proof Let Z ∈ Z and Ẑ ∈ St(k,m) such that

tr(ẐTH̃ (Z)) ≥ tr(ZTH̃ (Z)) + η for some η ∈ R. (3.13)

Set P = WZ ∈ P (because of WZ ⊆ P) and P̂ = W Ẑ ∈ St(k, n). Noticing
that H̃ (Z)) = WTH (WZ), we have (3.1) from (3.13). By the NPDo Ansatz for
f , there exists Q ∈ St(k, k) such that P̃ = P̂Q = W (Ẑ Q) =: W Z̃ ∈ P and
f (P̃) ≥ f (P) + ωη. Hence,

f̃ (Z̃) = f̃ (Ẑ Q) = f (P̃) ≥ f (P) + ωη = f (WZ) + ωη = f̃ (Z) + ωη.

Note also Z̃ = WT P̃ ∈ Z. Hence the NPDo Ansatz holds for f̃ . ��
As a consequence of this lemma and the results in subsects. 3.1 and 3.2, Algo-

rithm 3.1 is applicable to compute Zopt of (3.11b) via NPDo (3.12b). We outline
the resulting method in Algorithm 3.2, which is an inner-outer iterative scheme for
(1.1), where at Line 4 any other method, if known, can also be inserted to replace
Algorithm 3.1 to solve (3.11b).

Remark 3.2 A few comments regarding Algorithm 3.2 are in order.

i. It is important to compute W at Line 4 in such a way, as explained moments ago,
that its first k columns are exactly the same as those of P(i). As P(i) converges,
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conceivably P(i+1) changes little from P(i) and hence Zopt is increasingly close
to the first k columns of Im . This explains the choice of Z (0) at Line 4.

ii. Another area of improvement is to solve (3.11b) with an accuracy, comparable but
fractionally better than the current P(i) as an approximate solution of (1.1). Specif-
ically, if we use (3.5) at Line 2 to stop the for-loop: Lines 2–6 of Algorithm 3.2,
with tolerance ε, then instead of using the same ε for Algorithm 3.1 at its line 1, we
can use a fraction, say 1/4, of εKKT + εsym evaluated at the current approximation
P = P(i) as stopping tolerance, when Algorithm 3.1 is called upon at Line 4 of
Algorithm 3.2.

Whether Algorithm 3.2 speeds up Algorithm 3.1 depends on two factors at the
runtime: 1) it takes significantly fewer the number of outer iterative steps than the
number of SCF iterative steps by Algorithm 3.1 as it does without acceleration, and
2) the cost per SCF step on NPDo (3.12) is significantly less than that on NPDo (2.3).
Both factors are materialized for SumCT (see [67, Example 4.1]).

Convergence Analysis

We will perform a convergence analysis for Algorithm 3.2, considering an ideal sit-
uation that at its Line 4, Zopt is computed to be an exact maximizer of (3.11) for
simplicity. We point out that the seemingly ideal situation is not completely unreal-
istic. In actual computation, as we explained in Remark 3.2(ii), the computed Zopt

should be sufficiently more accurate as an approximate solution for (3.11) than P(i)

as an approximate solution for the original problem (1.1) at that moment.

Theorem 3.4 Suppose that the NPDo Ansatz holds, and let sequence {P(i)}∞i=0 be
generated by Algorithm 3.2 in which, it is assumed that Zopt is an exact maximizer of
(3.11) in each outer iterative step. The following statements hold.

a. (P(i))TH (P(i)) � 0 for i ≥ 1;
b. The sequence { f (P(i))}∞i=0 is monotonically increasing and convergent;
c. Any accumulation point P∗ of the sequence {P(i)}∞i=0 is a KKT point of (1.1) and

satisfies the necessary conditions in Theorem 3.1 for a global maximizer, i.e., (2.3)
holds for P = P∗ and Λ = Λ∗ := PT∗ H (P∗) � 0.

Proof Consider iterative step i . By the assumption that Zopt is an exact maximizer of
(3.11), we have at the end of Line 4

0 � ZT
optH̃ (Zopt) = ZT

optW
TH (WZopt) = (P(i+1))TH (P(i+1)),

proving item (a). Let Z be the first k columns of Im . Then f̃ (Z) = f (P(i)) in (3.11),
and thus

f (P(i+1)) = f (WZopt) = f̃ (Zopt) ≥ f̃ (Z) = f (P(i)).

This proves item (b).
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Next, we prove item (c). Let {P(i)}i∈I be a subsequence that converges to P∗.
Letting I � i → ∞ in the inequalities in item (a) immediately yields PT∗ H (P∗) � 0.
It remains to show H (P∗) = P∗Λ∗, where Λ∗ = PT∗ H (P∗). The proof of [67,
Theorem 4.1(c)] essentially works here. ��

4 Atomic Functions for NPDo

Armed with the general theoretical framework for the NPDo approach in sect. 3, in
this section, we introduce the notion of atomic functions for NPDo, which serves as
a singleton unit of function on Stδ(k, n) for which the NPDo Ansatz holds and thus
the NPDo approach is guaranteed to work for solving (1.1), and more importantly, the
NPDo approach works on any convex composition of atomic functions.

In what follows, we will first formulate two conditions that define atomic functions
and explain why the NPDo approach will work on the atomic functions, and then we
give concrete examples of atomic functions that encompass nearly all practical ones
that are in use today. We leave the investigation of how the NPDo approach works
on convex compositions of atomic functions to sect. 5, along with a few convex
compositions of our concrete atomic functions to guide the use of the general result.

Combining the results in this section and the next sectionwill yield a large collection
of objective functions, including those in Table 2, for which the NPDo Ansatz holds
and therefore the NPDo framework as laid out in sect. 3 works on them.

4.1 Conditions on Atomic Functions

We are interested in functions f defined on some neighborhood Stδ(k, n) of the Stiefel
manifold St(k, n) that satisfy

tr

(

PT ∂ f (P)

∂P

)

= γ f (P) for P ∈ P ⊆ St(k, n), (4.1a)

and given P ∈ P and P̂ ∈ St(k, n), there exists Q ∈ St(k, k) such that P̃ = P̂ Q ∈ P

and

tr

(

P̂T ∂ f (P)

∂P

)

≤ α f (P̃) + β f (P), (4.1b)

where α > 0, β ≥ 0, and γ = α + β are constants that are dependent of f . Some
subset P of St(k, n) is also involved and, as we commented in Remark 3.1(i) for the
NPDo Ansatz, P should be sufficiently inclusive to serve the purpose of solving (1.1)
with the function as objective, and for the case of P = St(k, n), Q can be taken to be
Ik . More comments on this are in Remark 4.1(ii) below.

Definition 4.1 A function f defined on some neighborhood Stδ(k, n) of St(k, n) is an
atomic function for NPDo if there are constants α > 0, β ≥ 0, and γ = α + β such
that both conditions in (4.1) hold.
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The constants in the definition may vary with the atomic function in question.
The descriptive word “atomic” is used here to loosely suggest that such a function
is somehow “unbreakable”, such as the concrete ones in the next subsection. Having
said that, we also find that for two atomic functions f1 and f2, if they share the same P,
the same constants α, β, γ , and the same Q for (4.1b), then any linear combination
f := c1 f1 + c2 f2 with c1, c2 ≥ 0 but c1 + c2 > 0 also satisfies (4.1), and hence
an atomic function as well. Evidently, f = c1 f1 + c2 f2 is “breakable”. Nonetheless,
“atomic” still seems to be suitably descriptive despite of what we just discussed.

Throughout this paper, we actually define two types of atomic functions. One type
is what we just defined in Definition 4.1. It is for the NPDo approach. The other type
will come in Part II later for the NEPv approach.

Remark 4.1 There are two comments regarding Definition 4.1.

i. Theoretically, each of the two conditions in (4.1) has interest of its own. For
example, equation (4.1a) is a partial differential equation (PDE) in its own right. In
that regard, a natural question arises: does it have a close formsolution, givenγ ∈ R

(that is not necessarily nonnegative)? In this paper, we group the two together
because later we need both to show that together they imply the NPDo Ansatz
for an atomic function and thus the NPDo approach works. Also importantly, we
need γ = α + β.

ii. How inclusive should P as a subset of St(k, n) be? Often certain necessary con-
ditions for the maximizers of (1.1) with given atomic function as objective can
be derived to limit the extent of searching. For example, as has been extensively
exploited in [47, 67, 68, 75, 78], any maximizer P∗ must satisfy PT∗ D � 0 in the
case where f (P) contains tr(PTD) and increases as tr(PTD) does. In such a case,
searching a maximizer can be naturally limited among those P ∈ St(k, n) such
that PTD � 0, i.e., P ∈ P = St(k, n)D+. As a result, it suffices to just require
that the equality and inequality in (4.1) hold for all P, P̃ ∈ P = St(k, n)D+.
In our later concrete examples in subsect. 4.2, equation (4.1a) even holds for all
P ∈ R

n×k for some atomic functions.

The next theorem shows that if f is an atomic function for NPDo, then so is any of
its positive powers of order higher than 1, if well-defined, andmoreover the α-constant
does not change but the β-constant will.

Theorem 4.1 Given function f satisfying (4.1), suppose that f (P) ≥ 0 for P ∈ P.
Let g(P) = c[ f (P)]s where c > 0 and s > 1. Then

tr

(

PT ∂g(P)

∂P

)

= sγ g(P) for P ∈ P ⊆ St(k, n), (4.2a)

and given P ∈ P and P̂ ∈ St(k, n), there exists Q ∈ St(k, k) such that P̃ = P̂ Q ∈ P

and

tr

(

P̂T ∂g(P)

∂P

)

≤ αg(P̃) + (sγ − α)g(P). (4.2b)
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Proof It can be seen that ∂g(P)
∂P = c s[ f (P)]s−1 ∂ f (P)

∂P , and thus

tr

(

PT ∂g(P)

∂P

)

= c s[ f (P)]s−1 tr

(

PT ∂ f (P)

∂P

)

= c s[ f (P)]s−1γ f (P) = sγ g(P),

yielding (4.2a). On the other hand, for P ∈ P and P̂ ∈ St(k, n), we have

tr

(

P̂T ∂g(P)

∂P

)

= cs [ f (P)]s−1 tr

(

P̂T ∂ f (P)

∂P

)

≤ cs [ f (P)]s−1
{
α[ f (P̃)] + β[ f (P)]

}
(by (4.1b))

= csα [ f (P̃)][ f (P)]s−1 + βsc[ f (P)]s

≤ csα

{
1

s
[ f (P̃)]s + s − 1

s
[ f (P)]s

}

+ βsg(P)

= αg(P̃) + α(s − 1)g(P) + βsg(P)

= αg(P̃) + [α(s − 1) + βs]g(P), (4.3)

yielding (4.2b), where we have used Lemma B.2 on [ f (P̃)][ f (P)]s−1 to get (4.3). ��
In Theorem4.1, g(P) = h( f (P))where h(t) = cts , i.e., g = h◦ f is a composition

function. It turns out that this is the only composition function that satisfies the same
type of PDE as f does in (4.1a) [42, Remark 4.2].

Theorem 4.2 The NPDo Ansatz holds with ω = 1/α for atomic function f that
satisfies the conditions in (4.1).

Proof Given P ∈ P ⊆ St(k, n) and P̂ ∈ St(k, n), suppose that (3.1) holds, i.e.,
tr(P̂TH (P)) ≥ tr(PTH (P)) + η. We have by (4.1)

η + γ f (P) = η + tr(PTH (P)) ≤ tr(P̂TH (P)) ≤ α f (P̃) + β f (P)

yielding η/α + f (P) ≤ f (P̃), as was to be shown. ��
As a corollary of Theorem 4.2, the NPDo approach as laid out in sect. 3 works on

any atomic function for NPDo.

4.2 Concrete Atomic Functions

We will show that

[ tr((PTD)m)]s, [tr((PTAP)m)]s for integer m ≥ 1, s ≥ 1, and A � 0 (4.4)

satisfy (4.1) and hence are atomic functions for NPDo. Therefore, by Theorem 4.2,
the NPDo Ansatz holds for them. We point out that the results we will prove in this
subsection are actually for more general P , P̂ and P̃ than required in Definition 4.1.

We start by considering tr((PTD)m) and its power.
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Theorem 4.3 Let D ∈ R
n×k , and let m ≥ 1 be an integer.

a. For P ∈ R
n×k , we have

tr

(

PT ∂ tr((PTD)m)

∂P

)

= m tr((PTD)m). (4.5)

b. Let P, P̂ ∈ R
n×k .

i. For m = 1, we have

tr

(

P̂T ∂ tr(PTD)

∂P

)

= tr(P̂TD); (4.6)

ii. For m > 1, if PTD � 0, then

tr

(

P̂T ∂ tr((PTD)m)

∂P

)

≤ tr((P̃TD)m) + (m − 1) tr((PTD)m), (4.7)

where P̃ = P̂Q for Q ∈ St(k, k) such that P̃TD � 0.

In particular, the conditions in (4.1) hold with P = St(k, n)D+, α = 1 and β = m−1,
and thus tr((PTD)m) is an atomic function for NPDo.

Just for the case m = 1, we can also take P = St(k, n) and P̃ = P̂ in (4.1), and
then (4.1b) becomes an equality. Therefore, tr(PTD) is also an atomic function for
NPDo with P = St(k, n) and Q = Ik in the definition.

Proof Consider perturbing P ∈ R
n×k to P+E where E ∈ R

n×k with ‖E‖ sufficiently
tiny. We have

[(P + E)TD]m = [PTD + ETD]m

= (PTD)m +
m−1∑

i=0

(PTD)i ETD(PTD)m−1−i + O(‖E‖2),
(4.8)

tr([(P + E)TD]m) = tr((PTD)m) + m tr(ETD(PTD)m−1) + O(‖E‖2). (4.9)

Immediately, it follows from (4.9) that

∂ tr((PTD)m)

∂P
= m D(PTD)m−1. (4.10)

Equation (4.5) is a direct consequence of (4.10). This proves item (a).
Now, we prove item (b). Equation (4.6) which is for m = 1 is easily verified. In

general, for m > 1, noticing the assumption PTD � 0 and P̃TD = QT(P̂TD) � 0
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for the case, we have, by Lemma B.6,

tr

(

P̂T ∂ tr((PTD)m)

∂P

)

= m tr(P̂TD(PTD)m−1)

≤ tr((P̃TD)m) + (m − 1) tr((PTD)m), (4.11)

which is (4.7). ��
Remark 4.2 In obtaining (4.11) by LemmaB.6, it is needed that PTD � 0 and P̃TD =
QT(P̂TD) � 0. This explains the necessity of having a strict subset P of St(k, n) and
aligning P̂ to P̃ ∈ P by some Q in (4.1) for defining atomic function for NPDo in
general. For the purpose ofmaximizing tr((PTD)m), given P ∈ P = St(k, n)D+ being
the current approximation, to compute the next andhopefully improved approximation,

the NPDo approach will seek P̂ to maximize tr
(
XT ∂ tr((PTD)m )

∂P

)
, or equivalently,

tr(XTD(PTD)m−1), over X ∈ St(k, n), and hence P̂ is taken to be an orthogonal
polar factor of D(PTD)m−1. For that P̂ , likely P̂TD � 0, and hence necessarily P̂
needs to be aligned to P̃ = P̂ Q ∈ P so that P̃TD � 0.

For any s > 1, f (P) = [tr((PTD)m)]s is well-defined for any P ∈ R
n×k such that

tr((PTD)m) ≥ 0. In particular, [tr((PTD)m)]s is well-defined for

P ∈ R
n×k
D+ := {X ∈ R

n×k : XTD � 0}.

With Theorem 4.3, a minor modification to the proof of Theorem 4.1 leads to

Corollary 4.1 Let D ∈ R
n×k , integer m ≥ 1, s > 1, g(P) = [tr((PTD)m)]s .

a. For P ∈ R
n×k at which g(P) is well defined, we have

tr

(

PT ∂[tr((PTD)m)]s
∂P

)

= sm [tr((PTD)m)]s;
(4.12a)

b. Let P ∈ R
n×k
D+ , P̂ ∈ R

n×k , and let P̃ = P̂ Q, where Q ∈ St(k, k) is an orthogonal

polar factor of P̂TD. We have P̃ ∈ R
n×k
D+ and

tr

(

P̂T ∂[tr((PTD)m)]s
∂P

)

≤ [tr((P̃TD)m)]s + (sm − 1)[tr((PTD)m)]s .
(4.12b)

In particular, the conditions in (4.1) hold withP = St(k, n)D+,α = 1 andβ = sm−1,
and thus [tr((PTD)m)]s for s > 1 is an atomic function for NPDo.

Next we consider tr((PTAP)m) and its power.

Theorem 4.4 Let symmetric A ∈ R
n×n, and let m ≥ 1 be an integer.
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a. For P ∈ R
n×k , we have

tr

(

PT ∂ tr((PTAP)m)

∂P

)

= 2m tr((PTAP)m). (4.13)

b. For P, P̂ ∈ R
n×k , if A � 0, then

tr

(

P̂T ∂ tr((PTAP)m)

∂P

)

≤ tr((P̂TAP̂)m) + (2m − 1) tr((PTAP)m).

(4.14)

In particular, the conditions in (4.1) hold with P = St(k, n), Q = Ik and P̃ = P̂,
α = 1 and β = 2m − 1, and thus tr((PTAP)m) is an atomic function for NPDo.

Proof Consider perturbing P ∈ R
n×k to P+E where E ∈ R

n×k with ‖E‖ sufficiently
tiny. We have

[(P + E)TA(P + E)]m = [PTAP + ETAP + PTAE + ETAE]m

= (PTAP)m +
m−1∑

i=0

(PTAP)i (ETAP + PTAE)(PTAP)m−1−i

+ O(‖E‖2), (4.15)

tr([(P + E)TA(P + E)]m ) = tr((PTAP)m ) + m tr(ETAP(PTAP)m−1)

+ m tr((PTAP)m−1PTAE) + O(‖E‖2)
= tr((PTAP)m ) + 2m tr(ETAP(PTAP)m−1) + O(‖E‖2). (4.16)

Immediately, it follows from (4.16) that

∂ tr((PTAP)m)

∂P
= 2m AP(PTAP)m−1. (4.17)

Equation (4.13) is a direct consequence of (4.17). This proves item (a).
Next we prove item (b). Let X = A1/2 P̂ and Y = A1/2P ., where A1/2 is the unique

positive semidefinite square root of A. We have

tr

(

P̂T ∂ tr((PTAP)m)

∂P

)

= 2m tr(P̂TAP(PTAP)m−1)

= 2m tr(XTY (Y TY )m−1)

≤ tr((XTX)m) + (2m − 1) tr((Y TY )m) (by Lemma B.7)

= tr((P̂TAP̂)m) + (2m − 1) tr((PTAP)m),

which is (4.14). ��
With Theorem 4.4, a minor modification to the proof of Theorem 4.1 leads to
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Corollary 4.2 Let symmetric A ∈ R
n×n, and let m ≥ 1 be an integer and s > 1. For

P, P̃ ∈ R
n×k , if A � 0, then

tr

(

PT ∂[tr((PTAP)m)]s
∂P

)

= 2sm [tr((PTAP)m)]s, (4.18a)

tr

(

P̃T ∂[tr((PTAP)m)]s
∂P

)

≤ [tr((P̃TAP̃)m)]s + (2sm − 1)[tr((PTAP)m)]s .
(4.18b)

In particular, the conditions in (4.1) hold with P = St(k, n), Q = Ik , α = 1 and
β = 2sm − 1, and thus [tr((PTAP)m)]s for s > 1 is an atomic function for NPDo.

5 Convex Composition

The concrete atomic functions forNPDo in (4.4) provides a limited collection of objec-
tive functions for which the NPDo approach provably works. In this section, we will
vastly expand the collection to include any convex composition of atomic functions,
provided that some of the partial derivatives of the composing convex function are
nonnegative.

Specifically, we are interested in a special case of optimization problem (1.1) on
the Stiefel manifold St(k, n) where f is a convex composition of atomic functions for
NPDo, namely,

max
P∈St(k,n)

f (P) with f (P) := (φ ◦ T )(P) ≡ φ(T (P)), (5.1)

where T : P ∈ St(k, n) → T (P) ∈ D ⊆ R
N whose components are atomic

functions dependent of just a few or all columns of P , and φ : D → R is con-
vex and differentiable. Denote the partial derivatives of φ with respect to xxx =
[x1, x2, . . . , xN ]T ∈ D ⊆ R

N by

φi (xxx) = ∂φ(xxx)

∂xi
for 1 ≤ i ≤ N . (5.2)

Our goal is to solve (5.1) by Algorithm 3.1 and its accelerating variation in Algo-
rithm 3.2 with convergence guarantee. To that end, we will have to place consistency
conditions upon all components of T (P). Let

T (P) =

⎡

⎢
⎢
⎢
⎣

f1(P1)
f2(P2)

...

fN (PN )

⎤

⎥
⎥
⎥
⎦

, (5.3)

where each Pi is a submatrix of P , consisting of a few or all columns of P . We point
out that it is possible that some of Pi may share common column(s) of P , different
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from the situation in SumCT in Table 1. Alternatively, we can write Pi = P Ji where
Ji ∈ R

k×ki is submatrices of Ik , taking the columns of Ik with the same column indices
as Pi to P . Each Ji acts as a column selector.

The KKT condition (2.3) for (5.1) becomes

H (P) := ∂ f (P)

∂P
=

N∑

i=1

φi (T (P))
∂ fi (Pi )

∂Pi
JTi = PΛ, (5.4a)

with ΛT = Λ ∈ R
k×k, P ∈ St(k, n). (5.4b)

The consistency conditions on atomic functions fi (Pi ) for 1 ≤ i ≤ N are

tr

(

PT
i

∂ fi (Pi )

∂Pi

)

= γi fi (Pi ) for P ∈ P ⊆ St(k, n), (5.5a)

and given P ∈ P and P̂ ∈ St(k, n), there exists Q ∈ St(k, k) such that P̃ = P̂ Q ∈ P

and

tr

(

P̂T
i

∂ fi (Pi )

∂Pi

)

≤ α fi (P̃i ) + βi fi (Pi ), (5.5b)

where α > 0, βi ≥ 0, and γi = α + βi are constants, P̂i and P̃i are the submatrices
of P̂ and P̃ , respectively, with the same column indices as Pi to P . It is important to
keep in mind that some of the inequalities in (5.5b) may actually be equalities, e.g.,
for fi (Pi ) = tr(PT

i Di ) it is an equality by Theorem 4.3.
On the surface, it looks like that each fi is simply an atomic function for NPDo,

but there are three built-in consistency requirements in (5.5) among all components
fi (Pi ): 1) the same P for all; 2) the same α for all, and 3) the same Q to give P̃ = P̂Q
for all.

Theorem 5.1 Consider f = φ ◦ T , where T (·) takes the form in (5.3) satisfying (5.5)
and φ is convex and differentiable with partial derivatives denoted by φi as in (5.2).
If φi (xxx) ≥ 0 for those i for which (5.5b) does not become an equality, then the NPDo
Ansatz holds with ω = 1/α.

Proof Given P ∈ P ⊆ St(k, n) and P̂ ∈ St(k, n), suppose that (3.1) holds, i.e.,
tr(P̂TH (P)) ≥ tr(PTH (P)) + η. Write

xxx = T (P) ≡ [x1, x2, . . . , xN ]T, x̃xx = T (P̃) ≡ [̃x1, x̃2, . . . , x̃N ]T,

i.e., xi = fi (Pi ) and x̃i = fi (P̃i ). Noticing H (P) in (5.4), we have

tr(PTH (P)) =
N∑

i=1

φi (xxx) tr

(

PT ∂ fi (Pi )

∂Pi
JTi

)

=
N∑

i=1

φi (xxx) tr

(

PT
i

∂ fi (Pi )

∂Pi

)

123



Foundations of Computational Mathematics

=
N∑

i=1

γiφi (xxx) xi , (by (5.5a))

tr(P̂TH (P)) =
N∑

i=1

φi (xxx) tr

(

P̂T
i

∂ fi (Pi )

∂Pi

)

≤
N∑

i=1

φi (xxx) (α x̃i + βi xi ),

where the last inequality is due to φi ≥ 0 when the corresponding (5.5b) does not
become an equality. Plug them into (3.1) and simplify the resulting inequality with
the help of γi = α + βi to get

η/α + ∇φ(xxx)Txxx = η/α +
N∑

i=1

φi (xxx) xi ≤
N∑

i=1

φi (xxx) x̃i = ∇φ(xxx)Tx̃xx .

Finally apply Lemma B.3 to yield f (P̃) ≥ f (P) + η/α. ��
With Theorem 5.1 come the general results established in sect. 3. In particular,

Algorithm 3.1 (NPDoSCF) and its accelerating variation in Algorithm 3.2 can be
applied to find a maximizer of (5.1), except that the calculation of Qi at Line 4 of
Algorithm 3.1 remains to be specified. This missing detail is in general dependent of
the particularity of the mapping T and the convex function φ, to which we shall return
after we showcase a few concrete mappings of T , where Ai ∈ R

n×n for 1 ≤ i ≤ �

are at least symmetric and Di ∈ R
n×ki with 1 ≤ ki ≤ k for 1 ≤ i ≤ t .

Example 5.1 Consider the first concrete mapping of T :

T1 : P ∈ St(k, n) → T1(P) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

tr(PT
1 A1P1)

...

tr(PT
� A�P�)

tr(PT
�+1D1)
...

tr(PT
�+t Dt )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
�+t . (5.6)

Either � = 0 or t = 0 (i.e., TrCP in Table 1) is allowed. If all Ai � 0, then the
consistency conditions in (5.5) are satisfied with P = St(k, n), Q = Ik , α = 1, βi = 1
for 1 ≤ i ≤ � and β�+ j = 0 for 1 ≤ j ≤ t , by Theorems 4.3 and 4.4. In particular,
now (5.5b) for � + 1 ≤ i ≤ � + t are equalities. Thus Theorem 5.1 applies, assuming
φ j (xxx) ≥ 0 for 1 ≤ j ≤ �. Two existing special cases of T1 are

1. � = t , Pi = P�+i for 1 ≤ i ≤ �, P = [P1, P2, . . . P�], and φ(xxx) = ∑�+t
i=1 xi ,

which gives SumCT investigated by [67] (see also Table 1), and
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2. t = 0, k = 1, Pi = ppp (a unit vector) for 1 ≤ i ≤ �, which gives the main problem
of [5] (in the paper, φ(xxx) = ∑�

i=1 ψi (xi ) for xxx = [x1, x2, . . . , x�]T with each ψi

being a convex function of a single-variable).

Despite thatwe can takeP = St(k, n) andQ = Ik here,with favorable compositions
of Pi as submatrices of P , we can find a better Q, other than Ik , so that the objective
value increases more than the NPDo Ansatz suggests. Here are two of them:

a. JT�+i J�+ j = 0 for i �= j , which means that P�+i and P�+ j share no
common column of P;

b. For 1 ≤ i ≤ �, 1 ≤ j ≤ t , either JT�+ j Ji = 0 or no row of JT�+ j Ji is
0, which means either Pi and P�+ j share no common column of P
or P�+ j is a submatrix of Pi .

(5.7)

a. either JT�+i J�+ j = 0 or JT�+i J�+ j = I for any i �= j , which means
that P�+i and P�+ j either share no common column of P , or P�+i =
P�+ j , i.e., the same submatrix of P;

b. the same as item (b) in (5.7).

(5.8)

For (5.7), we determine Q implicitly by P̃�+ j = P̂�+ j S j where S j is an orthogonal
polar factor of φ�+ j (T1(P))P̂T

�+ j D j for 1 ≤ j ≤ t . In the case of (5.8), J�+ j for
1 ≤ j ≤ t can be divided into no more than t groups, and within each group all J�+ j

are the same and two J�+ j from different groups share no common column of P at
all. For ease of presentation, let us say the set of indices {1, 2, . . . , t} is divided into τ

exclusive subsets Iq for 1 ≤ q ≤ τ such that

∪τ
j=1I j = {1, 2, . . . , t}, Ii ∩ I j = ∅ for i �= j, and J�+i = J�+ j if i, j

belong to the same Iq but JT�+i J�+ j = 0 otherwise.

Now determine Q implicitly by taking just one index j from each Iq for 1 ≤ q ≤ τ

and letting P̃�+ j = P̂�+ j Sq where Sq is an orthogonal polar factor of

P̂T
�+ j

[∑

i∈Iq
φ�+i (T1(P)) Di

]
. (5.9)

Example 5.2 The second concrete mapping of T is

T2 : P ∈ St(k, n) → T2(P) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

‖PT
1 A1P1‖2F

...

‖PT
� A�P�‖2F‖PT
�+1D1‖2F

...

‖PT
�+t Dt‖2F

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
�+t . (5.10)
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Either � = 0 or t = 0 is allowed. To use Theorem 4.4, we notice that

‖PT
i Ai Pi‖2F = tr((PT

i Ai Pi )
2), ‖PT

�+ j D j‖2F = tr(PT
�+ j D j D

T
j P�+ j ).

Hence if all Ai � 0, then the consistency conditions in (5.5) are satisfied with P =
St(k, n), Q = Ik , α = 1, βi = 3 for 1 ≤ i ≤ �, and β�+ j = 1 for 1 ≤ j ≤ t .
Theorem 5.1 applies, assuming φ j (xxx) ≥ 0 for 1 ≤ j ≤ � + t .

A special case of T2 is t = 0 and Pi = P for 1 ≤ i ≤ �, for which (5.1) with
T = T2 gives the key optimization problem in the uniform multidimensional scaling
(UMDS) [80] (see also Table 1).

Example 5.3 More generally, the third concrete mapping of T is

T3 : P ∈ St(k, n) → T3(P) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

tr((PT
1 A1P1)m1)

...

tr((PT
� A�P�)

m� )

tr((PT
�+1D1)

m�+1)
...

tr((PT
�+t Dt )

m�+t )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
�+t , (5.11)

where integer mi ≥ 1 for all 1 ≤ i ≤ � + t . It reduces to Example 5.1 if mi = 1 for
all 1 ≤ i ≤ � + t . Either � = 0 or t = 0 is allowed. Suppose all Ai � 0. Suppose all
Pi together have the properties in (5.7). Then the consistency conditions in (5.5) are
satisfied with

P = {P ∈ St(k, n) : PT
�+ j D j � 0 for 1 ≤ j ≤ t}, (5.12)

α = 1, βi = 2mi − 1 for 1 ≤ i ≤ � and β�+ j = m�+ j − 1 for 1 ≤ j ≤ t , by
Theorems 4.3 and 4.4. Theorem 5.1 applies, assuming φ j (xxx) ≥ 0 for 1 ≤ j ≤ �

and for each j ∈ {� + 1, . . . , � + t} with m j ≥ 2. Q is implicitly determined by
P̃�+ j = P̂�+ j S j where S j is an orthogonal polar factor of P̂T

�+ j D j for 1 ≤ j ≤ t .

We pointed out in Example 5.1 that judiciously choosing Q to go from P̂ to P̃ in
(5.5) can increase the objective function value more than Theorem 5.1 suggests. To
further strengthen this point,we consider a special case of T1: Pi = P for 1 ≤ i ≤ �+t .
For ease of future reference, denote the special T1 by

T1a : P ∈ St(k, n) → T1a(P) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

tr(PTA1P)
...

tr(PTA�P)

tr(PTD1)
...

tr(PTDt )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
�+t . (5.13)
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Theorem 5.2 Consider f = φ◦T1a where φ is convex and differentiable with φ j (xxx) ≥
0 for1 ≤ j ≤ �, and suppose Ai � 0 for1 ≤ i ≤ �.Given P̂ ∈ St(k, n), P ∈ St(k, n),
let P̃ = P̂ Q where Q is an orthogonal polar factor of P̂TD(P) with

D(P) =
t∑

j=1

φ�+ j (T1a(P)) Dj . (5.14)

If tr(P̂TH (P)) ≥ tr(PTH (P)) + η, then f (P̃) ≥ f (P) + η + δ, where δ =
‖P̂TD(P)‖tr − tr(P̂TD(P)). In particular, the NPDo Ansatz holds with ω = 1.

Proof Along the lines in the proof of Theorem 5.1, here we will have

tr(PTH (P)) = 2
�∑

i=1

φi (xxx) xi +
t∑

j=1

φ�+ j (xxx) x�+ j ,

‖P̂TD(P)‖tr = tr(P̃TD(P)) (since P̃TD(P) = QT[P̂TD(P)] � 0)

=
t∑

j=1

φ�+ j (xxx) x̃�+ j ,

tr(P̂TH (P)) = 2
�∑

i=1

φi (xxx) tr(P̂
TAi P) +

t∑

j=1

φ�+ j (xxx) tr(P̂
TDj )

≤
�∑

i=1

φi (xxx)
[
tr(P̂TAi P̂) + tr(PTAi P)

]
+ tr(P̂TD(P))

=
�∑

i=1

φi (xxx)
[
x̃i + xi

]
+ ‖P̂TD(P)‖tr − δ

=
�∑

i=1

φi (xxx)
[
x̃i + xi

]
+

t∑

j=1

φ�+ j (xxx) x̃�+ j − δ.

Plug them into η + tr(PTH (P) ≤ tr(P̂TH (P) and simplify the resulting inequality
to get η + δ + ∇φ(xxx)Txxx ≤ ∇φ(xxx)Tx̃xx, and then apply Lemma B.3 to conclude the
proof. ��

Theorem 5.2 improves Theorem 5.1 when it comes to T = T1a : the objective
value increases additional δ more. We notice, by Lemma B.9, that δ ≥ 0 always and
it is strict unless P̂TD(P) � 0. Also note P̃ satisfies P̃TD(P) � 0. As a result
of Theorem 5.2, along the same line of the proof of Theorem 3.1, we have another
necessary condition on amaximizer P∗ of (5.1) with T = T1a in Corollary 5.1, beyond
the ones in Theorem 3.1.

Corollary 5.1 Suppose Ai � 0 for 1 ≤ i ≤ � and that φ is convex and differentiable
withφ j (xxx) ≥ 0 for 1 ≤ j ≤ �. If P∗ is a maximizer of (5.1) with T = T1a, then we have
not only (2.3) for P = P∗ with Λ = Λ∗ := PT∗ H (P∗) � 0 but also PT∗ D(P∗) � 0.
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Table 3 Condition on φ j and choice of Qi at Line 4 of Algorithm 3.1

T1 and T1a φ j ≥ 0 for 1 ≤ j ≤ �, Qi = Ik .

T1 with (5.7) and t ≥ 1 φ j ≥ 0 for 1 ≤ j ≤ �, Qi is implicitly determined by

P̃(i+1)
�+ j = P̂(i)

�+ j S j where S j is an orthogonal polar

factor of φ�+ j (T1(P))
[
P̂(i)
�+ j

]TDj for 1 ≤ j ≤ t .

T1 with (5.8) and t ≥ 1 φ j ≥ 0 for 1 ≤ j ≤ �, Qi is implicitly determined by:
for just one element j from each Iq (1 ≤ q ≤ τ ),

P̃(i+1)
�+ j = P̂(i)

�+ j Sq where Sq is an orthogonal polar

factor of
[
P̂(i)
�+ j

]T[∑
p∈Iq φ�+p(T1(P))Dp

]
for

1 ≤ q ≤ τ .

T1a with t ≥ 1 φ j ≥ 0 for 1 ≤ j ≤ �, Qi is an orthogonal polar factor

of
[
P̂(i)]TD(P(i)).

T2 φ j ≥ 0 for 1 ≤ j ≤ � + t , Qi = Ik .

T3 with t = 0 φ j ≥ 0 for 1 ≤ j ≤ �, Qi = Ik .

T3 with (5.7) and t ≥ 1 φ j ≥ 0 for 1 ≤ j ≤ � and for each
j ∈ {� + 1, . . . , � + t} with m j ≥ 2, Qi is implicitly

determined by P̃(i+1)
�+ j = P̂(i)

�+ j S j where S j is an

orthogonal polar factor of
[
P̂(i)
�+ j

]TDj for 1 ≤ j ≤ t .

φ j (xxx) := ∂φ(xxx)/∂x j for xxx = [x j ]

In Table 3, we list conditions on partial derivatives φ j and the best choices of Qi at
Line 4 of Algorithm 3.1 that, when it is not Ik , can increase the objective value even
more per SCF iterative step than the NPDo Ansatz suggests. Having said that, we
notice that P(i) as i varies may belong to different subsets P of St(k, n). For example,
with T = T1a , if Qi is calculated according to Theorem 5.2, i.e., Qi is an orthogonal
polar factor of

[
P̂(i)

]T
D(P(i)), then P(i+1) ∈ Pi := {X ∈ St(k, n) : XTD(P(i)) �

0} that varies from one iterative step to the next. Eventually,Pi approachesP∗ := {X ∈
St(k, n) : XTD(P∗) � 0} by Corollary 5.1. Similar comments can be said about T1
with (5.7) or (5.8) that we discussed towards the end of Example 5.1. Numerically,
such variations in P does not pose any problem for Algorithm 3.1 to compute an
approximate maximizer for the maximization problem (5.1).

Remark 5.1 We conclude this section by commenting on the applicability of the results
of this section to the objective functions in Table 1 via convex compositions of atomic
functions for NPDo. Essentially our results are applicable to all of those that are not in
the quotient form, i.e., SEP, MBSub, SumCT, TrCP, UMDS, and DFT, assuming that
matrices A and Ai are positive semidefinite. SEP is simply about the atomic function
tr(PTAP). For OLDA and SumTR, the corresponding composing functions φ are
x2/x1 and x2/x1 + x3, respectively, but both are non-convex. The composing function
for OCCA is φ0(xxx) = x2/

√
x1 where xxx = [x1, x2]T, which is not convex but whose

square φ(xxx) := [φ0(xxx)]2 = x22/x1 is convex for x2 ≥ 0 and x1 > 0. Unfortunately, the
atomic function associated with x1 is tr(PTBP), for which φ1(xxx) := ∂φ(xxx)/∂x1 =
−(x2/x1)2 ≤ 0, violating the conditions of Theorems 5.1 and 5.2. A similar argument
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applies to ΘTR. So the NPDo approach does not work for OLDA, OCCA, and ΘTR.
But, fortunately, the NEPv approach next will.

Part II

The NEPv Approach

6 The NEPv Framework

There are cases for which

H (P) := ∂ f (P)

∂P
≡ H(P)P (6.1)

for P ∈ St(k, n) (or even R
n×k), where H(P) ∈ R

n×n is a symmetric matrix-valued

function dependent of P , e.g., for f (P) = tr(PTAP)

tr(PTBP)
+ tr(PTCP) from the sum of

trace ratios (SumTR) [76, 77], which includes SEP and OLDA as special cases,

H (P) = 2

[
1

tr(PTBP)

(

A − tr(PTAP)

tr(PTBP)
B

)

+ C

]

P ≡ H(P)P (6.2)

for P ∈ R
n×k , where H(P) is easily identified. In fact, Lu and Li [47, Lemma 2.1]

show that (6.1) always hold for some symmetric and right-unitarily invariant H(P) if
f is right-unitarily invariant. As a result of (6.1), the KKT condition (2.3) is an NEPv:

H(P)P = PΩ, P ∈ St(k, n). (6.3)

Necessarily Ω = PTH(P)P ∈ R
k×k is symmetric.

But not allH (P) = ∂ f (P)/∂P take the form H(P)P , and in the latter, we can still
construct some H(P) to turn the KKT condition (2.3) equivalently into an NEPv in the

form of (6.3) under some mild condition. For example, for f (P) = tr(PTAP+PTD)

[tr(PTBP)]θ of
the θ -trace ratio problem (ΘTR)which includesOCCAand theMAXBETsubproblem
as special cases, the authors of [68] used

H(P) = 2

[tr(PTBP)]θ
(

A + DPT + PDT

2
− θ

tr(PTAP + PTD)

tr(PTBP)
B

)

. (6.4)

In general, we can always take

H(P) := [H (P)]PT + P[H (P)]T =
[
∂ f (P)

∂P

]

PT + P

[
∂ f (P)

∂P

]T
. (6.5)

In the case when H (P) ≡ H0(P)P , this H(P) becomes 2 H0(P) for P ∈ St(k, n).
Why H(P) in (6.4) and (6.5) work for ΘTR and in general, respectively, can be

best explained by the next theorem.
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Theorem 6.1 Let H(P) ∈ R
n×n be a symmetric matrix-valued function satisfying

H(P)P − ∂ f (P)

∂P
= PM (P) for P ∈ St(k, n), (6.6)

where M (P) ∈ R
k×k is some matrix-valued function. P ∈ St(k, n) is a solution to

the KKT condition (2.3) if and only if it is a solution to NEPv (6.3) and M (P) is
symmetric.

Proof If P is a solution to the KKT condition (2.3), i.e.,H (P) = PΛ, P ∈ St(k, n),
and Λ = ΛT. Then, by (6.6),

H(P)P = PΛ + PM (P) = P(Λ + M (P)) =: PΩ,

where Ω = Λ + M (P) is symmetric because alternatively Ω = PTH(P)P which
is symmetric, and henceM (P) = Ω − Λ is also symmetric. On the other hand, if P
is a solution to NEPv (6.3) such that M (P) is symmetric, then again by (6.6)

H (P) = PΩ − PM (P) = P
(
Ω − M (P)

) =: PΛ,

where Λ = Ω − M (P) is symmetric because M (P) is assumed symmetric. ��

According to Theorem 6.1, to solve the KKT condition (2.3) via solving NEPv
(6.3) with an H(P) that satisfies (6.6), we need to limit the solutions to those of the
NEPv such thatM (P) is symmetric. Return to the concrete H(P) given by (6.4) and
(6.5). It can be verified that, for H(P) in (6.4) for ΘTR,

H(P)P − H (P) = P

(
1

[tr(PTBP)]θ DTP

)

,

and hence any solution to the resulting NEPv (6.3) such that DTP is symmetric is a
KKT point of ΘTR and vice versa. Similarly, for H(P) in (6.5) in general,

H(P)P − H (P) = P([H (P)]TP)

and hence any solution to the resulting NEPv (6.3) such that [H (P)]TP is symmetric
is a KKT point and vice versa.

We note that (6.6) is a guiding equation for H(P), and satisfying (6.6) yields a
candidate H(P) and the resulting NEPv (6.3). In general, given H (P), there are
infinitely many H(P) that satisfy (6.6).

Our goal in this part is still the same as in Part I, namely establishing conditions
underwhichSCF (1.6) onNEPv (6.3) is provably convergent, except that the conditions
will be imposed on H(P), instead ofH (P) earlier. The developments in this section
follow the lines of [68, 78], but in more abstract terms.
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6.1 The NEPv Ansatz

The successes of the NEPv approach used in [68, 78] for solving OCCA and ΘTR
relies on certainmonotonicity lemmaswhich inspire us tomake the following ansatz to
build our framework upon. It also requires a sufficiently inclusive subset P of St(k, n)

as in the NPDo framework in Part I.
The NEPv Ansatz. For function f defined in some neighborhood Stδ(k, n) of the
Stiefel manifold St(k, n), there is a symmetric matrix-valued function H(P) ∈ R

n×n

such that for P̂ ∈ St(k, n), P ∈ P ⊆ St(k, n), if

tr(P̂TH(P)P̂) ≥ tr(PTH(P)P) + η for some η ∈ R, (6.7)

then there exists Q ∈ St(k, k) such that P̃ = P̂Q ∈ P and f (P̃) ≥ f (P) + ωη,
where ω is some positive constant, independent of P and P̂ .

For any P ∈ St(k, n), there is always P̂ ∈ St(k, n) such that (6.7) holds with
some η > 0, unless for that given P , H(P)P = PΩ holds and the eigenvalues of Ω

consist of the k largest eigenvalues of H(P). In fact, we can take P̂ ∈ St(k, n) to be
an orthonormal basis matrix of the eigenspace of H(P) associated with its k largest
eigenvalues, which also maximizes tr(XTH(P)X) over X ∈ St(k, n) [20]. For the
purpose of solving (1.1), we may relax the ansatz to η ≥ 0 only. In general, it is the
desirable aim, f (P̃) ≥ f (P) + ωη, in the NEPv Ansatz that needs to be verified
before the general theory of this section can be applied. Below we will use the same
objective function in Example 3.1 to rationalize this ansatz.

Example 6.1 Consider f (P) = tr(PTAP) + tr((PTD)2) where A ∈ R
n×n is sym-

metric and D ∈ R
n×k . Note now no longer A is required to be positive semidefinite

as it had to be in Example 3.1. Since H (P) = 2AP + 2DPTD, no longer there
exists a symmetric H(P) such that (6.1) holds. Our discussion above leads us to use
H(P) = 2A + 2(DPTDPT + PDTPDT) for which

H(P)P − H (P) = P
[
2(DTP)2

]
) for P ∈ St(k, n),

satisfying (6.6). To achieve equivalency between the KKT condition (2.3) and
NEPv (6.3), according to Theorem 6.1 we should limit the scope to those P ∈ St(k, n)

such that (DTP)2 is symmetric. Actually we will further limit the scope to P ∈ P =
St(k, n)D+. Suppose now that (6.7) holds for P ∈ St(k, n)D+ and P̂ ∈ St(k, n), or
equivalently,

2 tr(P̂TAP̂) + 4 tr(P̂TDPTDPT P̂) ≥ 2 tr(PTAP) + 4 tr((PTD)2) + η. (6.8)

Next let Q ∈ St(k, k) be an orthogonal polar factor of P̂TD and let P̃ = P̂Q ∈ P.
We find that tr(P̃TAP̃) = tr(P̂TAP̂), but it remains to break the second term in the
left-hand side of (6.8) apart so that P and P̂ are detached. For that purpose, we note

2 tr(P̂TDPTDPT P̂) ≤ 2‖P̂TDPTDPT P̂‖tr (by Lemma B.8)

≤ 2‖P̂TDPTD‖tr‖PT P̂‖2
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≤ 2‖P̂TDPTD‖tr (since ‖PT P̂‖2 ≤ 1)

≤ tr((QT P̂TD)2) + tr((PTD)2) (by Lemma B.6)

= tr((P̃TD)2) + tr((PTD)2). (6.9)

Combine (6.8) and (6.9) to get f (P̃) ≥ f (P) + η/2 upon noticing tr(P̃TAP̃) =
tr(P̂TAP̂). As in Example 3.1, we observe the critical conditions: PTD � 0 and
P̃TD � 0 (i.e., P, P̃ ∈ P), that we used to derive (6.9), where P̃TD = QT P̂TD � 0
is again made possible by the chosen Q.

Remark 6.1 A few comments on the NEPv Ansatz are in order.

i. TheNEPvAnsatz critically involves a symmetricmatrix-valued function H(P) ∈
R
n×n that has to be constructed. In Theorem 6.1, we provide a guiding equa-

tion (6.6) for the purpose so that the KKT condition (2.3) and NEPv (6.3) are
equivalent as far as solving the associated optimization problem (1.1) is con-
cerned. It is fulfilled naturally when H (P) ≡ H(P)P for P ∈ St(k, n) exactly
(e.g., for OLDA, SumTR, TrCP, UMDS, and DFT), but at other times, we will
have to construct H(P) individually based on the particularity of H as in [78]
for OCCA, [68] for ΘTR, [75] for MAXBET and Example 6.1, or we simply use
the generic (6.5). The ansatz does not demand any explicit association of H(P)

with H (P), but conceivably they should be highly related, such as the relation
imposed by (6.6).

ii. One may argue that the ansatz might be made unnecessarily complicated. After all
tr(P̂TH(P)P̂) = tr(P̃TH(P)P̃). Should we get rid of P̂ in the ansatz altogether?
One possibility is to require that

tr(P̃TH(P)P̃) ≥ tr(PTH(P)P) + η for P, P̃ ∈ P implies
f (P̃) ≥ f (P) + ωη.

(6.10)

This is a stronger version, however, assuming that for any P̂ ∈ St(k, n), there exists
Q ∈ St(k, k) such that P̃ = P̂Q ∈ P. Here is why. Suppose that (6.10) holds.
Given P̂ ∈ St(k, n), P ∈ P ⊆ St(k, n), let P̃ = P̂ Q ∈ P for some Q ∈ St(k, k).
If (6.7) holds, then

tr(P̃TH(P)P̃) = tr(P̂TH(P)P̂) ≥ tr(PTH(P)P) + η,

which, under (6.10), yields f (P̃) ≥ f (P)+ωη, proving the desired inequality of
the NEPv Ansatz.

iii. When f (P) is right-unitarily invariant, H(P) always exists such that (6.1) holds
and can be taken to be right-unitarily invariant, too [47, Lemma 2.1]. In such a case,
the ansatz can be simplified to: Q = Ik and P̃ = P̂ always because f (P̂) = f (P̃)

regardless of Q. Also often P = St(k, n).
iv. Introducing a subset P of St(k, n) and judiciously choosing Q are for generality

to deal with the case when f (P) is not right-unitarily invariant, e.g., the one in
Example 6.1 and those in Table 1 in sect. 1 that involve D or Di . Suitable Q can
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also increase the objective value more than ωη. For example, for ΘTR with H(P)

given by (6.4), the NEPv Ansatz holds with taking Q to be an orthogonal polar
factor of P̂TD. In fact, along the line of the proof of [68, Lemma 2.1], assuming
B � 0, rank(B) > n− k, and tr(PTAP + PTD) ≥ 0 in the case of 0 < θ < 1 but
otherwise no need to impose nonnegativity on tr(PTAP + PTD) for θ ∈ {0, 1},
we can improve the conclusion of [68, Theorem 2.2] to (in the current notation):
if tr(P̂TH(P)P̂) − tr(PTH(P)P) ≥ 0, then

f (P̃) ≥ f (P) + 1

2

(
sk(B)

Sk(B)

)θ [
tr(P̂TH(P)P̂) − tr(PTH(P)P)

]

+ [Sk(B)]−θ
[
‖P̂TD‖tr − tr(P̂TDPT P̂)

]
, (6.11)

where 0 ≤ θ ≤ 1. The last term is contributed by the selection of Q as described.
A proof of (6.11) can be found in [42, appendix F].
The comments in Remark 3.1(ii) on P apply here, too.

v. It is tempting to stipulate f (P̂) ≥ f (P) + ωη, but that is either false or just hard
to prove for the one in Example 6.1 and some of those in Table 1 that involve
D. Often in our algorithms to solve (1.1) iteratively, with P being the current
approximate maximizer, assuming the NEPv Ansatz, we naturally compute P̂
that maximizes tr(XTH(P)X) over X ∈ St(k, n). With that P̂ , settling whether
f (P̂) ≥ f (P)+ωη or not can be a hard task, as in Example 6.1where the objective
function involves tr((PTD)2).

As to the validity of the NEPvAnsatz on the objective functions in Table 1, it holds
for all, except SumTR, under mild conditions on the constant matrices and function φ.
Table 4 provides the details on H(P) and conditions under which the NEPv Ansatz
holds, where the last column refers to places for justifications. We leave P unspecified
for SumCT but refer it to [67] because it is more complicated to fit the space in the
table. In fact, it is required that each Pi falls in {X ∈ St(ki , n) : XTDi � 0}. In [42,
sect. 8.2], it is argued that for SumCT it would be more efficient to go for the NPDo
approach in Part I. For SumTR with H(P) given by (6.2), P = St(k, n) and Q = Ik
and the NEPv Ansatz does not hold. This can be drawn from the counterexample,
[77, Example 4.1], for which SCF diverges, but later we will show, under the NEPv
Ansatz, SCF is guaranteed to converge!

Comparing Table 2 for NPDo with Table 4 for NEPv here, we find that, among
those in Table 1, the NEPv Ansatz provably holds for three more of them, which are
OLDA, OCCA, and ΘTR (all involving ratios), than the NPDo Ansatz does. This
observation that the NEPv Ansatz is satisfied more often than the NPDo Ansatz
among those in Table 1 is not an accident. In fact the NPDo Ansatz is stronger than
the NEPv Ansatz with the generic H(P) in (6.5), as shown by the next theorem.

Theorem 6.2 Let function f be defined on some neighborhood Stδ(k, n) of St(k, n)

and let H(P) be as in (6.5). Then the NPDo Ansatz implies the NEPv Ansatz.

Proof Suppose that the NPDo Ansatz holds. Given P̂ ∈ St(k, n), P ∈ P ⊆ St(k, n)

such that (6.7) holds, letW ∈ St(k, k) be an orthogonal polar factor of P̂TH (P), and
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set P̌ = P̂W1. Then P̌
T
H (P) = WT

1 [P̂TH (P)] � 0, and thus by Lemma B.8

tr(P̌
T
H (P)) = ‖P̌T

H (P)‖tr = ‖P̂TH (P)‖tr ≥ tr(P̂TH (P)). (6.12)

Recalling (6.5), we have

tr(P̂TH(P)P̂) = 2 tr(P̂TH (P)PT P̂)

≤ 2‖P̂TH (P)PT P̂‖tr (by Lemma B.8)

≤ 2‖P̂TH (P)‖tr‖PT P̂‖2
≤ 2‖P̂TH (P)‖tr (since ‖PT P̂‖2 ≤ 1)

≤ 2 tr(P̌
T
H (P)). (by (6.12))

Now noticing that tr(PTH(P)P) = 2 tr(PTH (P)), we get from inequality (6.7) that

tr(P̌
T
H (P)) ≥ tr(PTH (P)) + η/2.

By the NPDoAnsatz, there existsW2 ∈ St(k, k) such that P̃ = ˇPW 2 = P̂(W1W2) ∈
P and f (P̃) ≥ f (P) + (ω/2)η, verifying the NEPv Ansatz. ��

The first immediate consequence of the NEPv Ansatz is the following theorem
that provides a characterization of themaximizers of the associated optimization prob-
lem (1.1).

Theorem 6.3 Let P∗ ∈ St(k, n) be a maximizer of (1.1). Suppose that the NEPv
Ansatz holds and P∗ ∈ P. Then NEPv (6.3) holds for P = P∗ and the eigenvalues of
Ω = Ω∗ := PT∗ H(P∗)P∗ consist of the first k largest eigenvalues of H(P∗).

Proof Consider

max
P∈St(k,n)

tr(PTH(P∗)P). (6.13)

We claim P∗ is a maximizer of (6.13); otherwise there would be some P̂ ∈ St(k, n)

such that

tr(P̂TH(P∗)P̂) ≥ tr(PT∗ H(P∗)P∗) + η

for some η > 0. Invoking the NEPv Ansatz, we can find P̃ = P̂ Q ∈ P such that
f (P̃) ≥ f (P∗) + ωη > f (P∗), contradicting that P∗ is a maximizer. Thus P∗ is a
maximizer of (6.13) whose KKT condition is H(P∗)P = PΩ which P∗ will have to
satisfy, i.e., H(P∗)P∗ = P∗Ω∗, whereΩ∗ = PT∗ H(P∗)P∗ whose eigenvalues consists
of the k largest ones of H(P∗). ��
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Algorithm 6.1 NEPvSCF: NEPv (6.3) solved by SCF

Input: Symmetric matrix-valued function H(P) satisfying the NEPv Ansatz, P(0) ∈ P;
Output: an approximate maximizer of (1.1).
1: for i = 0, 1, . . . until convergence do
2: compute Hi = H(P(i)) ∈ R

n×n ;
3: solve SEP Hi P̂

(i) = P̂(i)Ωi for P̂(i) ∈ St(k, n), an orthonormal basis matrix of the eigenspace
associated with the first k largest eigenvalues of Hi ;

4: calculate Qi ∈ St(k, k) and let P(i+1) = P̂(i)Qi ∈ P, according to the NEPv Ansatz;
5: end for
6: return the last P(i).

6.2 SCF Iteration and Convergence

The second immediate consequence of the NEPv Ansatz is the global convergence of
an SCF iteration for solving optimization problem (1.1) as outlined in Algorithm 6.1.

This algorithm is similar to [78, Algorithm 2], [68, Algorithm 4.1], but the latter
two have more details that are dictated by the particularity of f there. A reasonable
stopping criterion at Line 1 is

εNEPv := ‖H(P)P − P[PTH(P)P]‖F
ξ

≤ ε, (6.14)

where ε is a given tolerance, and ξ is some normalization quantity that should be
designed according to the underlying H(P), but generically, ξ = ‖H(P)‖F, or any
reasonable estimate of it, should work well.

The cost of a full eigendecomposition of Hi at Line 3 is 4n3/3 flops [24, p.463]
which is too expensive for large or even modest n, since we have to do it at every SCF
iterative step. Fortunately, we do not need the full eigendecomposition but the top k
eigenvalues and their associate eigenvectors. Since k is usually small such as a few
tens or smaller, a better option is some iterative methods geared for extreme eigenpairs
[23, 33, 41, 54]. Furthermore, as far as always moving the objective value up is
concerned, it suffices to calculate P̂(i) just well enough such that tr([P̂(i)]THi P̂(i)) >

tr([P(i)]THi P(i)). This observation can become very useful when the kth and (k+1)st
eigenvalues of Hi are very close, in which case convergence to the kth eigenvector by
an iterative method is often very slow.

At Line 4 it refers to the NEPv Ansatz for the calculation of Qi . Exactly how it is
computed depends on the structure of f at hand. We commented on the similar issue
for Algorithm 3.1 earlier. In the case of Example 6.1, Qi is taken to be an orthogonal
polar factor of (P̂(i))TD to make P(i+1) ∈ St(k, n)D+.

In Algorithm 6.1, we explicitly state that it is for H(P) that satisfies the NEPv
Ansatz, without which we cannot guarantee convergence as stated in the theorems in
the rest of this section, but numerically the body of the algorithm can still be imple-
mented. There is a level-shifting technique that can help achieve local convergence
[4, 47].

Theorem 6.4 Suppose that the NEPv Ansatz holds, and let the sequence {P(i)}∞i=0
be generated by Algorithm 6.1. The following statements hold.
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a. The sequence { f (P(i))}∞i=0 is monotonically increasing and convergent.
b. Any accumulation point P∗ of the sequence {P(i)}∞i=0 satisfies the necessary con-

ditions in Theorem 6.3 for a global maximizer, i.e., (6.3) holds for P = P∗ and
the eigenvalues of Ω∗ = PT∗ H(P∗)P∗ consist of the first k largest eigenvalues of
H(P∗). Furthermore in the casewhen H(P) satisfies (6.6), ifM (P∗) is symmetric,
then P∗ is a KKT point.

c. We have two convergent series

∞∑

i=1

δi
∥
∥ sinΘ

(R(P(i+1)),R(P(i))
)∥
∥2
F < ∞, (6.15a)

∞∑

i=1

δi

∥
∥H(P(i))P(i) − P(i)Λi

∥
∥2
F

∥
∥H(P(i))

∥
∥2
F

< ∞, (6.15b)

where δi = λk(H(P(i))) − λk+1(H(P(i))) and Λi = [P(i)]TH(P(i))P(i).

Proof See [42, Appendix D]. ��
As a corollary of Theorem 6.4(b), we establish a sufficient condition for NEPv (6.3)

to have a solution.

Corollary 6.1 Under the NEPv Ansatz, NEPv (6.3) is solvable, i.e., there exists P ∈
St(k, n) such that (6.3) holds and the eigenvalues ofΩ = PTH(P)P are the k largest
ones of H(P).

As a corollary of Theorem 6.4(c), if δi = λk(H(P(i))) − λk+1(H(P(i))) is even-
tually bounded below away from 0 uniformly, then

lim
i→∞

∥
∥H(P(i))P(i) − P(i)Λi

∥
∥
F∥

∥H(P(i))
∥
∥
F

= 0,

namely, increasingly H(P(i))P(i) ≈ P(i)Λi = P(i)
([P(i)]TH(P(i))P(i)

)
, which

means that P(i) becomes a more and more accurate approximate solution to NEPv
(6.3), even in the absence of knowing whether the entire sequence {P(i)}∞i=0 converges
or not. The latter does require additional condition to establish in the next theorem.

Theorem 6.5 Suppose that the NEPv Ansatz holds, and let the sequence {P(i)}∞i=0
be generated by Algorithm 6.1 and P∗ be an accumulation point of the sequence.

a. R(P∗) is an accumulation point of the sequence {R(P(i))}∞i=0.
b. Suppose that R(P∗) is an isolated accumulation point of {R(P(i))}∞i=0. If

λk(H(P∗Q)) − λk+1(H(P∗Q)) > 0 for any Q ∈ St(k, k), (6.16)

then the entire sequence {R(P(i))}∞i=0 converges toR(P∗).
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c. Suppose that P∗ is an isolated accumulation point of {P(i)}∞i=0. If

λk(H(P∗)) − λk+1(H(P∗)) > 0 (6.17)

and if f (P∗) > f (P) for any P �= P∗ andR(P) = R(P∗), i.e., f (P) has unique
maximizer in the orbit {P∗Q : Q ∈ St(k, k)}, then the entire sequence {P(i)}∞i=0
converges to P∗.

Proof See [42, Appendix D]. ��

6.3 Acceleration by LOCG

At Line 3 of Algorithm 6.1, an n × n SEP is involved and that can be expensive for
large/huge n. As in subsect. 3.3, the same idea for acceleration can be applied here to
speed things up. It has in fact been partially demonstrated in [67, sect. 5] on MBSub.

With the same setup at the beginning of subsect. 3.3 up to (3.12), herewewill need a
symmetric matrix-valued function H̃(Z) for the dimensionally reduced maximization
problem (3.11) so that the NEPv Ansatz can be passed on from f with H to f̃ with
H̃ . It turns out that the right choice is

H̃(Z) = WTH(WZ)W . (6.18)

Built upon this H̃(Z), a variant of LOCG acceleration over Algorithm 6.1 can be
obtained along the line of subsect. 3.3. The reader is referred to [42, subsect. 6.3] for
more detail.

7 Atomic Functions for NEPv

In this section, we introduce the notion of atomic functions for NEPv, which serves as
a singleton unit of function on Stδ(k, n) for which the NEPv approach is guaranteed
to work for solving (1.1), and more importantly, the NEPv approach works on any
convex composition of atomic functions, provided that some of the partial derivatives
of the composing convex function are nonnegative.

In what follows, we first formulate two conditions that define atomic function and
prove why the NEPv approach will work on the atomic functions, and then we give
concrete examples of atomic functions that encompass nearly all practical ones that
are in use today, and we leave investigating how the NEPv approach will work on
convex compositions of these atomic functions to sect. 8.

Combining the results in this section and the next sectionwill yield a large collection
of objective functions, including those in Table 4, for which the NEPv Ansatz holds.

7.1 Conditions on Atomic Functions

Suppose that, for function f defined on some neighborhood Stδ(k, n) of the Stiefel
manifold St(k, n), we have already constructed an associated symmetricmatrix-valued
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function H(P) ∈ R
n×n . We are interested in those that satisfy

tr(PTH(P)P) =
¯
γ f (P) for P ∈ P ⊆ St(k, n), (7.1a)

and given P ∈ P and P̂ ∈ St(k, n), there exists Q ∈ St(k, k) such that P̃ = P̂ Q ∈ P

and

tr(P̂TH(P)P̂) ≤ ¯α f (P̃) +
¯
β f (P), (7.1b)

where ¯α > 0,
¯
β ≥ 0, and

¯
γ = ¯α +

¯
β are constants. Here a subset P ⊆ St(k, n) is also

involved.

Definition 7.1 A function f defined on some neighborhood Stδ(k, n) of St(k, n) is an
atomic function for NEPv if there are a symmetric matrix-valued function H(P) ∈
R
n×n for P ∈ St(k, n) and constants ¯α > 0,

¯
β ≥ 0, and

¯
γ = ¯α +

¯
β such that both

conditions in (7.1) hold.

An atomic function according to Definition 7.1 is of the second type in this paper
and is for the NEPv approach, in contrast to the first type that is defined in subsect. 4.1
of Part I for the NPDo approach. As in subsect. 4.1, here it also can be verified that
for two atomic functions f1 and f2 with H1 and H2, respectively, that share the same
P, the same constants ¯α,

¯
β,

¯
γ , and the same Q for (7.1b), any linear combination

f := c1 f1 + c2 f2 with c1H1 + c2H2 for c1, c2 > 0 satisfies (7.1), and hence is an
atomic function for NEPv as well.

Remark 7.1 An alternative to (7.1b) is

tr(P̃TH(P)P̃) ≤ ¯α f (P̃) +
¯
β f (P) for P, P̃ ∈ P ⊆ St(k, n), (7.1b′)

without referring to an intermediate P̂ . We claim that (7.1b′) is stronger than (7.1b),
assuming for any P̂ ∈ St(k, n), there exists Q ∈ St(k, k) such that P̃ = P̂ Q ∈ P.
Here is why. Suppose (7.1b′) holds. Given any P̂ ∈ St(k, n), let P̃ = P̂Q ∈ P for
some Q ∈ St(k, k). Then by (7.1b′) we have for any P ∈ P

tr(P̂TH(P)P̂) = tr(P̃TH(P)P̃) ≤ ¯α f (P̃) +
¯
β f (P),

yielding (7.1b). In view of this observation, in our later developments, we may verify
(7.1b′) directly if it can be verified.

In relating H (P) to H(P) via, e.g., (6.6) when (6.1) does not hold, H(P) in
general is not unique [47]. As a result, satisfying (7.1) may depend on both f and the
choice of H(P). In other words, it is possible that the conditions in (7.1) are satisfied
for one choice of H(P) but may not for another.

Remark 7.2 Previously, (4.1a) appears explicitly as a partial differential equation
(PDE), but (7.1a) here does not. Nonetheless, it is likely a PDE in disguise, espe-
cially when H(P)P is related toH (P) := ∂ f (P)/∂P through condition (6.6).
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The next theorem basically says that the conditions in (4.1) that define the atomic
function for NPDo are stronger than the ones in (7.1) for NEPv with the generic H(P)

given by (6.5).

Theorem 7.1 Let H(P) be as in (6.5).

a. Equation (4.1a) implies (7.1a) with
¯
γ = 2γ .

b. Inequality (4.1b) implies (7.1b) with ¯α = 2α,
¯
β = 2β, and

¯
γ = ¯α +

¯
β = 2γ .

Proof Assuming (4.1a), for H(P) as given in (6.5), we have for P ∈ P ⊆ St(k, n)

tr(PTH(P)P) = 2 tr
(
PTH (P)

)
= 2γ f (P),

as was to be shown. Assume (4.1b). Let P̂ ∈ St(k, n), P ∈ P and let W1 ∈ St(k, k)
be an orthogonal polar factor of P̂TH (P) and P̌ = P̂W1. Then we again have (6.12)
and

tr(P̂TH(P)P̂) = 2 tr
(
P̂TH (P)PT P̂

)

≤ 2
∥
∥
∥P̂TH (P)PT P̂

∥
∥
∥
tr

(by Lemma B.8)

≤ 2
∥
∥
∥P̂TH (P)

∥
∥
∥
tr
‖PT P̂‖2

≤ 2
∥
∥
∥P̂TH (P)

∥
∥
∥
tr

(since ‖PT P̂‖2 ≤ 1)

= 2 tr
(
P̌
T
H (P)

)
(by (6.12)). (7.2)

Now use (4.1b) to conclude that there is W2 ∈ St(k, k) such that P̃ = ˇPW 2 =
P̂(W1W2) ∈ P and

2 tr
(
P̌
T
H (P)

)
≤ 2α f (P̃) + 2β f (P). (7.3)

Combine (7.2) and (7.3) to get (7.1b) with ¯α = 2α,
¯
β = 2β, and

¯
γ = ¯α +

¯
β = 2γ . ��

Theorem 7.2 Given function f defined on Stδ(k, n) and its associated symmetric
H(P) that satisfy (7.1), suppose f (P) ≥ 0 for P ∈ P. Let g(P) = c[ f (P)]s
where c > 0, s > 1, and let its associated symmetric matrix-valued function be
Hg(P) = cs [ f (P)]s−1H(P). Then

tr(PTHg(P)P) = s
¯
γ g(P) for P ∈ P ⊆ St(k, n), (7.4a)

and given P ∈ P and P̂ ∈ St(k, n), there exists Q ∈ St(k, k) such that P̃ = P̂ Q ∈ P

and

tr(P̂THg(P)P̂) ≤ ¯αg(P̃) + (s
¯
γ − ¯α)g(P), (7.4b)

where ¯α, ¯
β and

¯
γ = ¯α +

¯
β are as in (7.1b).
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Proof We have

tr(PTHg(P)P) = cs [ f (P)]s−1 tr(PTH(P)P)

= cs [ f (P)]s−1

¯
γ f (P) (by (7.1a))

= s
¯
γ g(P),

tr(P̂THg(P)P̂) = cs [ f (P)]s−1 tr(P̂TH(P)P̂)

≤ cs [ f (P)]s−1
[

¯α f (P̃) +
¯
β [ f (P)

]
(by (7.1b))

= cs ¯α f (P̃) [ f (P)]s−1 +
¯
βsc [ f (P)]s

≤ cs ¯α
{
1

s
[ f (P̃)]s + s − 1

s
[ f (P)]s

}

+
¯
βsg(P) (by Lemma B.2)

= ¯αg(P̃) + ¯α(s − 1)g(P) +
¯
βsg(P)

= ¯αg(P̃) + [¯α(s − 1) +
¯
βs]g(P),

as expected. ��
Finally, we show that the NEPv Ansatz holds for atomic functions for NEPv. As a

corollary, the NEPv approach as laid out in sect. 6 works on any atomic function for
NEPv.

Theorem 7.3 The NEPv Ansatz holds with ω = 1/¯α for atomic function f with a
symmetric matrix-valued function H(P) ∈ R

n×n satisfying the conditions in (7.1).

Proof Given P ∈ P ⊆ St(k, n) and P̂ ∈ St(k, n), suppose that (6.7) holds, i.e.,
tr(P̂TH(P)P̂) ≥ tr(PTH(P)P) + η. We have by (7.1)

η +
¯
γ f (P) = η + tr(PTH(P)P) ≤ tr(P̂TH(P)P̂) ≤ ¯α f (P̃) +

¯
β f (P)

yielding η/¯α + f (P) ≤ f (P̃), as was to be shown. ��

7.2 Concrete Atomic Functions

We will show that

[tr((PTD)m)]s , [tr((PTAP)m)]s for integer m ≥ 1, s ≥ 1, and also
A � 0 in the case of m ≥ 2 or s > 1,

(7.5)

with proper symmetric H(P) to be given in the theorems and corollaries below, satisfy
(7.1) and hence are atomic functions for NEPv. Therefore, by Theorem 7.3, the NEPv
Ansatz holds for them. These atomic functions are the same in form as the ones in
subsect. 4.2 but there are differences as detailed in Table 5. When inequality (4.1b)
or (7.1b) become an equality, there is an important implication when it comes to
verify the corresponding ansatz for the composition of atomic functions by a convex
function φ, namely, for equality (4.1b) or (7.1b), the corresponding partial derivative
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φ j (xxx) := ∂φ(xxx)/∂x j can be of any sign but in general is required to be nonnegative
otherwise. We have seen this in Theorem 5.1 and will see it again in Theorem 8.1 later.

Theorem 7.4 Let D ∈ R
n×k , integer m ≥ 1 and f (P) = tr((PTD)m) for which we

use

H(P) = m
[
D(PTD)m−1PT + P(DTP)m−1DT

]
, (7.6)

and thus H(P)P − H (P) ≡ P
[
m(DTP)m

]
for P ∈ St(k, n). Then we have

tr(PTH(P)P) = 2m tr((PTD)m) for P ∈ St(k, n); (7.7a)

tr(P̃TH(P)P̃) ≤ 2 tr((P̃TD)m) + 2(m − 1) tr((PTD)m) for P, P̃ ∈ P, (7.7b)

where P = St(k, n)D+. They, as argued in Remark 7.1, imply that (7.1) holds with

¯α = 2 and
¯
β = 2(m − 1), and thus f (P) = tr((PTD)m) is an atomic function

for NEPv. Furthermore, any solution P to NEPv (6.3) with H(P) in (7.6) such that
(PTD)m is symmetric is a solution to the KKT condition (2.3) and vice versa.

Proof H(P) in the theorem is in fact the generic one in (6.5) for the case and in the
notation of Theorem 6.1, M (P) = m(PTD)m . Hence any solution P to NEPv (6.3)
such that (PTD)m is symmetric is a solution to the KKT condition (2.3) and vice
versa.

Equation (7.7a) can be straightforwardly verified. Now we prove (7.7b). Inequality
(7.7b) for m = 1 in fact holds for all P ∈ St(k, n). To see this, for m = 1 and
P ∈ St(k, n), since P̃TD � 0,

tr(P̃TH(P)P̃) = 2 tr(P̃TDPT P̃) ≤ 2‖P̃TDPT P̃‖tr ≤ 2‖P̃TD‖tr = 2 tr(P̃TD)

by Lemma B.8, as expected. In general for m > 1, suppose both PTD � 0 and
P̃TD � 0. Then

tr(P̃TH(P)P̃) = 2m tr(P̃TD(PTD)m−1PT P̃)

≤ 2m
∥
∥
∥P̃TD(PTD)m−1PT P̃

∥
∥
∥
tr

(by Lemma B.8)

≤ 2m
∥
∥
∥P̃TD(PTD)m−1

∥
∥
∥
tr
‖PT P̃‖2

≤ 2m
∥
∥
∥P̃TD(PTD)m−1

∥
∥
∥
tr

(since ‖PT P̃‖2 ≤ 1)

≤ 2 tr((P̃TD)m) + 2(m − 1) tr((PTD)m),

where the last inequality is due to Lemma B.5.
Finally (7.7) implies (7.1), as argued in Remark 7.1. ��
For any s > 1, [tr((PTD)m)]s is well-defined for any P ∈ R

n×k such that
tr((PTD)m) ≥ 0. In particular, [tr((PTD)m)]s is well-defined for P ∈ St(k, n)D+.
Combining Theorems 7.2 and 7.4, we obtain the following corollary.
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Corollary 7.1 Let D ∈ R
n×k , integer m ≥ 1, s > 1, g(P) = [tr((PTD)m)]s , and

P = St(k, n)D+. Let H(P) be as in (7.6) and Hg(P) = s [tr((PTD)m)]s−1H(P) for
which Hg(P)P − ∂g(P)/∂P ≡ P

[
sm [tr((PTD)m)]s−1 (DTP)m

]
. Then

tr(PTHg(P)P) = 2sm [tr((PTD)m)]s for P ∈ P, (7.8a)

tr(P̃THg(P)P̃) ≤ 2[tr((P̃TD)m)]s + 2(sm − 1)[tr((PTD)m)]s for P, P̃ ∈ P.

(7.8b)

They, as argued in Remark 7.1, imply that (7.1) holds with ¯α = 2 and
¯
β = 2(sm − 1),

and thus g(P) = [tr((PTD)m)]s for s > 1 is an atomic function for NEPv.

Next we consider tr((PTAP)m) and its power.

Theorem 7.5 Let symmetric A ∈ R
n×n, integer m ≥ 1, and f (P) = tr((PTAP)m)

for which we use

H(P) := 2m A(PPTA)m−1 (7.9)

and thus H (P) ≡ H(P)P for P ∈ R
n×k .

a. For P ∈ R
n×k , we have

tr(PTH(P)P) = 2m f (P) ≡ 2m tr((PTAP)m). (7.10a)

b. Let P, P̃ ∈ R
n×k .

i. For m = 1, we always have

tr(P̃TH(P)P̃) = 2 tr(P̃TAP̃); (7.10b)

ii. For m > 1, if A � 0, then

tr(P̃TH(P)P̃) ≤ 2 tr((P̃TAP̃)m) + 2(m − 1) tr((PTAP)m). (7.10c)

They, as argued in Remark 7.1, imply that (7.1) holds with ¯α = 2 and
¯
β = 2(m − 1),

and P = St(k, n), and thus f (P) = tr((PTAP)m) is an atomic function for NEPv.

Proof With H(P) as in (7.9), equation (7.10a) is straightforwardly verified.
For m = 1, H(P) = 2A and hence immediately we have (7.10b).
Considerm > 1 and suppose A � 0. Let X = A1/2 P̃ and Y = A1/2P , where A1/2

is the positive semidefinite square root of A. We have

P̃TH(P)P̃ = 2m P̃TAP(PTAP)m−2PTAP̃

= 2m XTY (Y TY )m−2Y TX

= 2m XT(YY T)m−1X ,

tr(P̃TH(P)P̃) = 2m tr(XT(YY T)m−1X)

123



Foundations of Computational Mathematics

= 2m tr(XXT(YY T)m−1)

≤ 2 tr((XXT)m) + 2(m − 1) tr((YY T)m) (by Lemma B.5)

= 2 tr((XTX)m) + 2(m − 1) tr((Y TY )m)

= 2 tr((P̃TAP̃)m) + 2(m − 1) tr((PTAP)m),

which is (7.10c). ��
We emphasize that (7.10a), (7.10b), and (7.10c) actually holds for any P, P̃ ∈

R
n×k , broader than what the conditions in (7.1) entail. With Theorem 7.5 and using a

similar proof to that of Theorem 7.2, we get the following corollary that is valid for
all P, P̃ ∈ R

n×k , broader than simply combining Theorems 7.2 with 7.5.

Corollary 7.2 Let symmetric A ∈ R
n×n be positive semidefinite, integer m ≥ 1, s > 1,

g(P) = [tr((PTAP)m)]s , and let Hg(P) = s [tr((PTAP)m)]s−1H(P) for which
∂g(P)/∂P ≡ Hg(P)P for P ∈ R

n×k , where H(P) is as in (7.9). For P, P̃ ∈ R
n×k ,

we have

tr(PTHg(P)P) = 2sm [tr((PTAP)m)]s, (7.11a)

tr(P̃THg(P)P̃) ≤ 2[tr((P̃TAP̃)m)]s + 2(sm − 1)[tr((PTAP)m)]s . (7.11b)

They, as argued in Remark 7.1, imply that (7.1) holds with ¯α = 2 and
¯
β = 2(sm − 1),

and P = St(k, n), and thus g(P) = [tr((PTAP)m)]s for s > 1 is an atomic function
for NEPv.

8 Convex Composition

We are interested in solving the same optimization problem on the Stiefel manifold
St(k, n) as in (5.1) by Algorithm 6.1 and its accelerating variation [42, Algorithm 6.2]
with convergence guarantee. In that regard, we stick to the initial setup at the beginning
of sect. 5 up to the paragraph containing (5.3). We then go along a different path –
the path of the NEPv approach. To that end, we will have to specify what H(P), a
symmetric matrix-valued function, to use for a given objective function f = φ ◦ T in
(5.1), assuming that a symmetric matrix-valued function has already been constructed
for each component of T (P).

In its generality, each component fi (Pi ) of T (P) in (5.3) may involve a few but
not necessarily all columns of P . It turns out that, for the case when not all Pi = P ,
we do not have a feasible way to construct a symmetric matrix-valued function H(P)

for f (P) = φ ◦ T (P) out of those for the components of T (P). That leaves us the
only option of using the generic H(P) in (6.5):

H(P) := [H (P)]PT + P[H (P)]T ≡
[
∂ f (P)

∂P

]

PT + P

[
∂ f (P)

∂P

]T
,

completely ignoring the symmetric matrix-valued functions for the components of
T (P) already known. Furthermore, with this generic H(P), in order to fulfill the
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NEPv Ansatz, we will have to assume the components of T (P) are atomic func-
tions for NPDo satisfying (5.5), which means that the NPDo Ansatz will hold for
f . Consequently, our previous NPDo approach in Part I will work on such function
f in the first place, making it unnecessary resort to the NEPv approach for solving
the optimization problem (5.1). More detail can be found in [42, sect. 8.2]. Besides
explaining the extra complexity that not all Pi = P may bring, in [42, sect. 8.2] it is
also demonstrated that the NEPv approach can still be made to work with the generic
H(P), just that the approach may not be as effective as the NPDo approach in Part I.

Our primary focus is on the case when all Pi = P , i.e., each component fi (Pi ) =
fi (P). Specifically, we will consider a special case of T (P) in (5.3):

T0(P) =

⎡

⎢
⎢
⎢
⎣

f1(P)

f2(P)
...

fN (P)

⎤

⎥
⎥
⎥
⎦

, (8.1)

where fi for 1 ≤ i ≤ N are atomic functions for NEPv, whose associated symmetric
matrix-valued functions are Hi (P) ∈ R

n×n for 1 ≤ i ≤ N , respectively.
Our first task is to create a proper symmetric matrix-valued function H(P) ∈ R

n×n

to gowith f = φ◦T0 from Hi (P) for 1 ≤ i ≤ N . Aswe commented in Remark 6.1(i),
the NEPv Ansatz does not impose any explicit relation betweenH (P) and H(P)P ,
e.g., through condition (6.6), but in order to figure out what H(P) should be for the
circumstance, let us assume (6.6) holds for each fi with Hi , namely,

Hi (P)P − ∂ fi (P)

∂P
= PMi (P) for 1 ≤ i ≤ N , (8.2)

and then show that the newly created H(P) can serve the purpose for us as far as
inheriting the NEPv Ansatz from fi with Hi for 1 ≤ i ≤ N is concerned, without
the need to assume (8.2) anymore. Recall notation φi (xxx) in (5.2) for the i th partial
derivative of φ(xxx). For f = φ ◦ T0, we have

H (P) := ∂ f (P)

∂P
=

N∑

i=1

φi (T0(P))
∂ fi (P)

∂P
,

and hence naturally, we may choose

H(P) =
N∑

i=1

φi (T0(P)) Hi (P), (8.3)

for which, with (8.2), we find

H(P)P − ∂ f (P)

∂P
=

N∑

i=1

φi (T0(P))

(

Hi (P)P − ∂ fi (P)

∂P

)
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= P
N∑

i=1

φi (T0(P))Mi (P)

=: PM (P). (8.4)

Therefore the symmetric H(P) ∈ R
n×n in (8.3) fits the one suggested by Theorem 6.1.

In particular, any solution P∗ toNEPv (6.3)with H(P) given by (8.3) satisfies theKKT
condition (2.3) if M (P∗) defined in (8.4) is symmetric and vice versa, as guaranteed
by Theorem 6.1.

Next we will show that f = φ ◦ T0 with H(P) in (8.3) inherits the NEPv Ansatz
from fi with Hi for 1 ≤ i ≤ N without assuming (8.2). To that end, we place
some consistency conditions upon all components of T0(P) in (8.1) as follows: for
1 ≤ i ≤ N

tr(PTHi (P)P) =
¯
γi fi (P) for P ∈ P ⊆ St(k, n), (8.5a)

and given P̂ ∈ St(k, n) and P ∈ P, there exists Q ∈ St(k, k) such that P̃ = P̂ Q ∈ P

and

tr(P̂THi (P)P̂) ≤ ¯α fi (P̃) +
¯
βi fi (P), (8.5b)

where ¯α > 0,
¯
βi ≥ 0, and

¯
γi = ¯α +

¯
βi are constants. It is important to keep

in mind that some of the inequalities in (8.5b) may actually be equalities, e.g., for
fi (P) = tr(PTAi P) it is an equality by Theorem 4.3.
On the surface, it looks like that each fi is simply an atomic function for NEPv, but

there are three built-in consistency requirements in (8.5) among all fi : 1) the same P

for all; 2) the same ¯α for all, and 3) the same Q to give P̃ = P̂ Q for all.

Theorem 8.1 Consider f = φ ◦T0, where T0(·) takes the form in (8.1) and φ is convex
and differentiable with partial derivatives denoted by φi as in (5.2). Let H(P) be given
by (8.3) with Hi (P) for 1 ≤ i ≤ N satisfying (8.5). If φi (xxx) ≥ 0 for those i for which
(8.5b) does not become an equality, then the NEPv Ansatz with ω = 1/¯α holds for
f = φ ◦ T0 with H.

Proof Given P ∈ P ⊆ St(k, n) and P̂ ∈ St(k, n), suppose that (6.7) holds, i.e.,
tr(P̂TH(P)P̂) ≥ tr(PTH(P)P) + η. Write

xxx = T0(P) ≡ [x1, x2, . . . , xN ]T, x̃xx = T0(P̃) ≡ [̃x1, x̃2, . . . , x̃N ]T,

i.e., xi = fi (P) and x̃i = fi (P̃). Noticing H(P) in (8.3), we have by (8.5)

tr(PTH(P)P) =
N∑

i=1

φi (xxx) tr(P
THi (P)P)

=
N∑

i=1 ¯
γiφi (xxx) xi , (by (8.5a))
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tr(P̂TH(P)P̂) =
N∑

i=1

φi (xxx) tr(P̂
THi (P)P̂)

≤
N∑

i=1

φi (xxx) (¯α x̃i +
¯
βi xi ),

where the last inequality is due to φi ≥ 0 when the corresponding (8.5b) does not
become an equality. Plug them into η+ tr(PTH(P)P) ≤ tr(P̂TH(P)P̂) and simplify
the resulting inequality with the help of

¯
γi = ¯α +

¯
βi to get

η/¯α + ∇φ(xxx)Txxx = η/¯α +
N∑

i=1

φi (xxx) xi ≤
N∑

i=1

φi (xxx) x̃i = ∇φ(xxx)Tx̃xx .

Finally apply Lemma B.3 to yield f (P̃) ≥ f (P) + η/¯α. ��
With Theorem 8.1 come the general results established in sect. 6. In particular,

Algorithm 6.1 (NEPvSCF) and its accelerating variation [42, Algorithm 6.2] can be
applied to find a maximizer of (5.1), except that the calculation of Qi at Line 4 of
Algorithm 6.1 remains to be specified. This missing detail is in general dependent of
the particularity of the mapping T0 and the convex function φ. What we will do in
Examples 8.1 and 8.3 below provides some ideas on this matter.

In the rest of this section, Ai ∈ R
n×n for 1 ≤ i ≤ � are at least symmetric and

Di ∈ R
n×k for 1 ≤ i ≤ t .

Example 8.1 Consider T1a in (5.13), as a special case of T0, and optimization problem
(5.1) with f = φ ◦ T1a . For this example, we will use

H(P) =
�∑

i=1

φi (T1a(P)) 2Ai︸︷︷︸
=:Hi (P)

+
t∑

j=1

φ�+ j (T1a(P))
(
Dj P

T + PDT
j

)

︸ ︷︷ ︸
=:H�+ j (P)

, (8.6)

for which H(P)P − H (P) ≡ P
[
D(P)TP

]
for P ∈ St(k, n), where, as in (5.14),

D(P) =
t∑

j=1

φ�+ j (T1a(P)) Dj .

Any solution P to NEPv (6.3) with H(P) in (8.6) such that [D(P)]TP is symmetric
is a solution to the KKT condition (2.3) and vice versa. It can be seen that (8.5b) is an
equality for 1 ≤ i ≤ � and hence it does not need to require φi ≥ 0 for 1 ≤ i ≤ �. In
addition to this, instead of treating each H�+ j (P) separately, we can treat H�+ j (P)

for 1 ≤ j ≤ t collectively all at once through D(P), as we did in (5.2), making
all φ�+ j ≥ 0 unnecessary as well. A much more improved version of Theorem 8.1 is
stated as Theorem8.2 below, according towhich, the best Qi at Line 4 ofAlgorithm6.1
when applied to φ ◦ T1a is an orthogonal polar factor of [P̂(i)]TD(P(i)). A special
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case of T1a is: t = 0, k = 1, Pi = ppp (a unit vector) for 1 ≤ i ≤ �, which gives the
main problem of [5] (in the paper, φ(xxx) = ∑�

i=1 ψi (xi ) for xxx = [x1, x2, . . . , x�]T
with each ψi being a convex function of a single-variable).

Theorem 8.2 Consider f = φ ◦ T1a, and let D(P) be as in (5.14) and H(P) as in
(8.6). Given P̂ ∈ St(k, n), P ∈ St(k, n), let P̃ = P̂Q where Q is an orthogonal polar
factor of P̂TD(P). If

tr(P̂TH(P)P̂) ≥ tr(PTH(P)P) + η,

then f (P̃) ≥ f (P) + 1
2η + δ, where δ = ‖P̂TD(P)‖tr − tr(P̂TD(P)PT P̂). In

particular, the NEPv Ansatz holds with ω = 1/2.

Proof Along the lines of the proof of Theorem 8.1, here we will have

tr(PTH(P)P) = 2
�∑

i=1

φi (xxx) xi + 2
t∑

i=1

φ�+i (xxx) x�+i ,

‖P̂TD(P)‖tr = tr(P̃TD(P)) (since P̃TD(P) = QT[P̂TD(P)] � 0)

=
t∑

i=1

φ�+i (xxx) x̃�+i ,

tr(P̂TH(P)P̂) = 2
�∑

i=1

φi (xxx) tr(P̂
TAi P̂) + 2

t∑

i=1

φ�+i (xxx) tr(P̂
TDi P

T P̂)

= 2
�∑

i=1

φi (xxx) tr(P̃
TAi P̃) + 2 tr(P̂TD(P)PT P̂)

= 2
�∑

i=1

φi (xxx) x̃i + 2‖P̂TD(P)‖tr − 2δ

= 2
�∑

i=1

φi (xxx) x̃i + 2
t∑

i=1

φ�+i (xxx) x̃�+i − 2δ, (8.7)

where the last equality is due to (8.7). Plug them into η + tr(PTH(P)P) ≤
tr(P̂TH(P)P̂) and simplify the resulting inequality to get 1

2η + δ + ∇φ(xxx)Txxx ≤
∇φ(xxx)Tx̃xx, and then apply Lemma B.3 to conclude the proof. ��

Theorem 8.2 improves Theorem 8.1 in that the objective value increases additional
δ more. We notice, by Lemma B.8, that

tr(P̂TD(P)PT P̂) ≤ ‖P̂TD(P)PT P̂‖tr ≤ ‖P̂TD(P)‖tr‖PT P̂‖2 ≤ ‖P̂TD(P)‖tr
and hence δ ≥ 0 and it is strict when any one of the inequalities above is strict.
Theorem 8.2 compares favorably against Theorem 5.2. Both are about mapping T1a ,
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but Theorem 8.2 puts no condition on symmetric matrices Ai and no condition on the
partial derivatives, whereas Theorem 5.2 requires all Ai � 0 and φi ≥ 0 for 1 ≤ i ≤ �.

Also note that, in Theorem 8.2, P̃ satisfies P̃TD(P) � 0. Along the same line of
the proof of Theorem 6.3, we establish another necessary condition in Corollary 8.1
for any maximizer P∗ of (5.1) with T = T1a , besides the ones in Theorem 6.3.

Corollary 8.1 Consider (5.1) with T = T1a and let H(P) be as in (8.6). If P∗ is
a maximizer of (5.1), then we have not only NEPv (6.3) satisfied by P = P∗ and
Ω = Ω∗ := PT∗ H(P∗)P∗ whose eigenvalues consist of the k largest ones of H(P∗),
but also PT∗ D(P∗) � 0.

Example 8.2 Consider T2a , a special case of T2 in (5.10),

T2a : P ∈ St(k, n) → T2a(P) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

‖PTA1P‖2F
...

‖PTA�P‖2F‖PTD1‖2F
...

‖PTDt‖2F

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
�+t . (8.8)

Either � = 0 or t = 0 is allowed. Notice that

‖PTAi P‖2F = tr((PTAi P)2), ‖PTDj‖2F = tr(PTDj D
T
j P).

For optimization problem (5.1) with f = φ ◦ T2a , we will use

H(P) =
�∑

i=1

φi (T2a(P)) 4Ai P PTAi︸ ︷︷ ︸
=:Hi (P)

+
t∑

j=1

φ�+ j (T2a(P)) Dj D
T
j

︸ ︷︷ ︸
=:H�+ j (P)

, (8.9)

for which H (P) ≡ H(P)P for P ∈ R
n×k . If all Ai � 0, then, by Theorem 7.5,

the consistency conditions in (8.5) are satisfied with P = St(k, n), Q = Ik , ¯α = 2,

¯
βi = 2 for 1 ≤ i ≤ � and

¯
β�+ j = 0 for 1 ≤ j ≤ t . Note, for the example, (8.5b) for

�+ 1 ≤ i ≤ �+ t are equalities and hence Theorem 8.1 requires φi ≥ 0 for 1 ≤ i ≤ �

only. Optimization problem (5.1) with T = T2a for t = 0 and φ(xxx) = ∑�
i=1 xi

gives the key optimization problem in the uniform multidimensional scaling (UMDS)
method [80].

Comparing the conclusion here and that of Example 5.2 (for all Pi = P), we don’t
require φ�+ j ≥ 0 for 1 ≤ j ≤ t here, everything else being equal. In particular,
both require Ai � 0 for all i . Next, we explain how to make the NEPv approach
work on f = φ ◦ T2a even if some Ai � 0, yielding yet another example for which
the NEPv approach works but the NPDo approach may not. Let δi ∈ R such that
Âi = Ai − δi I � 0 for 1 ≤ i ≤ �. This is always possible by letting δi be some lower
bound of the eigenvalues of Ai , and numerically, δi can be estimated cheaply [82].
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Notice that

tr((PTAi P)2) = tr((PT Âi P)2) + 2δi tr(P
T Âi P) + kδ2i .

Define

T̂2a : P ∈ St(k, n) → T̂2a(P) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

tr((PT Â1P)2)
...

tr((PT Â�P)2)

tr(PT Â1P)
...

tr(PT Â�P)

‖PTD1‖2F
...

‖PTDt‖2F

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
2�+t , (8.10)

and an affine transformation: A : x̂xx ∈ R
2�+t → xxx ∈ R

�+t by

xxx = A (x̂xx) =
[
x̂xx (1:�) + 2Δ x̂xx (�+1:2�)) + kddd

x̂xx (2�+1:2�+t))

]

,

where x̂xx (i : j) is the sub-vector of x̂xx from its i th entry to j th entry, Δ =
diag(δ1, . . . , δ�) ∈ R

�×�, and dddT = [δ21, . . . , δ2� ]. Finally, f (P) = φ̂ ◦ T̂2a(P) where
φ̂(x̂xx) = φ(xxx) ≡ φ(A (x̂xx)) is convex in x̂xx [13, p.79]. It can be verified that

φ̂i (x̂xx) := ∂φ̂(x̂xx)

∂ x̂ i
=

⎧
⎪⎨

⎪⎩

φi (xxx), for 1 ≤ i ≤ �,

2δi−�φi−�(xxx), for � + 1 ≤ i ≤ 2�,

φi−�(xxx), for 2� + 1 ≤ i ≤ 2� + t .

Theorem 8.1 is now applicable to f (P) = φ̂ ◦ T̂2a(P), but requiring only φi ≥ 0 for
1 ≤ i ≤ � and without requiring any of Ai � 0.

Example 8.3 Consider T3a , a special case of T3 in (5.11),

T3a : P ∈ St(k, n) → T3a(P) :=

⎡

⎢
⎢
⎢
⎣

tr((PTA1P)m1)
...

tr((PTA�P)m� )

tr((PTD)m�+1)

⎤

⎥
⎥
⎥
⎦

∈ R
�+1, (8.11)

where integer mi ≥ 1 for all 1 ≤ i ≤ �+ 1 and D ∈ R
n×k . It reduces to an even more

special case of Example 8.1 if all mi = 1 for 1 ≤ i ≤ � + 1. Either � = 0 or without
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the last component tr((PTD)m�+1) is allowed. For optimization problem (5.1) with
f = φ ◦ T3a , we will use

H(P) =
�∑

i=1

φi (T3a(P)) 2mi Ai (PPTAi )
mi−1

︸ ︷︷ ︸
=:Hi (P)

+φ�+1(T3a(P)) m�+1
[
D(PTD)m�+1−1PT + P(DTP)m�+1−1DT]

︸ ︷︷ ︸
=:H�+1(P)

,

(8.12)

for which H(P)P −H (P) ≡ P
[
φ�+1(T3a(P))m�+1 (DTP)m�+1

]
for P ∈ St(k, n).

Any solution P to NEPv (6.3) with H(P) in (8.12) such that (DTP)m�+1 is symmetric
is a solution to the KKT condition (2.3). Suppose all Ai � 0 and let P = St(k, n)D+.
Then the consistency conditions in (8.5) are satisfied with ¯α = 2,

¯
βi = 2(mi − 1) for

1 ≤ i ≤ � + 1, by Theorems 7.4 and 7.5. In applying Theorem 8.1 with T0 = T3a we
need φi ≥ 0 for 1 ≤ i ≤ � + 1 because now we are not sure if any of the inequalities
in (8.5b) is an equality. Lastly, the best Qi at Line 4 of Algorithm 6.1 when applied
to φ ◦ T3a is an orthogonal polar factor of [P̂(i)]TD and vice versa.

Remark 8.1 We conclude this section by commenting on the applicability of the results
of this section to the objective functions in Table 1 via convex compositions of atomic
functions forNEPv. Essentially our results are applicable to all but OLDAand SumTR,
for which the corresponding composing functions φ are x2/x1 and x2/x1+ x3, respec-
tively. Both are non-convex, and yet the NEPv Ansatz still holds for OLDA but does
not for SumTR.With the generic H(P) as in (6.5), SumCT can be handled too through
the convex composition of atomic functions but the resulting NEPv approach may not
be competitive to the NPDo approach (see [42, sect. 8.2]). The composing function for
OCCA is x2/

√
x1, which is not convex but whose square x22/x1 is convex for x2 ≥ 0

and x1 > 0. For ΘTR, the theory in this section can only handle 0 ≤ θ ≤ 1/2 and
also on the objective function squared, however:

[ f (P)]2 = φ ◦ T (P) with T (P) =
⎡

⎣
tr(PTBP)

tr(PTAP)

tr(PTD)

⎤

⎦ , φ(xxx) = (x2 + x3)2

x2θ1
,

(8.13)

where xxx ≡ [x1, x2, x3]T. This T has the form of T1a of Example 8.1 and it can be
verified that the associated symmetric matrix-valued function H(P) by (8.6) differs
from the one in (6.4) [68] by a scalar factor only. We claim that φ is convex for x1 > 0
and x2 + x3 ≥ 0, provided 0 ≤ θ ≤ 1/2, and, since also φ3(xxx) := ∂φ(xxx)/∂x3 ≥ 0 for
x1 > 0 and x2 + x3 ≥ 0, Theorem 8.2 applies. We note that φ0(x, y) = y2/x2θ for
x > 0 and y ≥ 0 is convex if 0 ≤ θ ≤ 1/2 but is not convex if θ > 1/2. In fact, the
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Hessian matrix of φ0 is

[
2θ(2θ + 1)y2/x2θ+2 −4θ y/x2θ+1

−4θ y/x2θ+1 2/x2θ

]

= 2

x2θ

[
y/x

1

] [
θ(2θ + 1) −2θ

−2θ 1

] [
y/x

1

]

which is positive semidefinite for x > 0 and y ≥ 0 if and only if 0 ≤ θ ≤ 1/2. This
implies φ(xxx) ≡ φ0(x1, x2 + x3) is convex for x1 > 0 and x2 + x3 ≥ 0, provided
0 ≤ θ ≤ 1/2. However, the results in [68] says that the NEPv approach works on
f for ΘTR for 0 ≤ θ ≤ 1, much bigger range for θ than what Theorem 8.2 for f 2

implies. Theorem 8.2 also yields an inequality on how much the objective function
squared, f 2, increases, in contrast to the previous (6.11) which is for the original
objective function, f , for 0 ≤ θ ≤ 1 and OCCA. In any case, the best Qi at Line 4
of Algorithm 6.1 when applied to ΘTR is an orthogonal polar factor of [P̂(i)]TD and
P = St(k, n)D+.

9 A Brief Comparison of the NPDo and NEPv Approaches

The developments of the frameworks for both NPDo and NEPv follow the same pat-
tern: an ansatz that implies the global convergence of their respective SCF iterations,
the definition of atomic functions for an approach, and the fulfillment of the ansatz by
the atomic functions for the approach and their convex compositions. Subtly, between
the two approaches, there are differences in applicabilities and numerical implementa-
tions, making them somewhat complementary to each other. We outline some notable
differences below.

The NEPv approach requires weaker conditions. We have demonstrated that
the NDPo Ansatz demands more on an objective function than the NEPv Ansatz,
and hence the NEPv approach provably works on a wider collection of maximization
problems (1.1) on the Stiefel manifold than the NPDo approach.

i. The NPDo approach requires that the KKT condition H (P) ≡ ∂ f (P)/∂P =
PΛ is a polar decomposition at optimality, in order for the approach to be even
considered, whereas the NEPv approach does not impose that the KKT condition
must be an NPDo at optimality;

ii. The NPDo Ansatz implies the NEPv Ansatzwith the generic symmetric matrix-
valued function H(P) in (6.5) (see Theorem 6.2);

iii. Atomic functions for NPDo are also atomic functions for NEPv with the generic
symmetric matrix-valued function H(P) in (6.5) (see Theorem 7.1);

iv. Among those in Table 1, the NEPv approach is guaranteed to work for three more
than the NPDo approach does (Table 2 vs. Table 4);

v. When it comes to the concrete atomic functions [tr((PTAP)m)]s where integer
m ≥ 1 and scalar s ≥ 1, it is required that A � 0 always for the NPDo approach,
whereas for the NEPv approach A being symmetric suffices for m ∈ {1, 2} and
s = 1 (see Examples 8.1 and 8.2);

vi. As a further demonstration, in Table 6, we summarize what are required by both
approaches on three convex compositions of matrix-trace functions, and it clearly
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indicates that NEPv requires weaker conditions than NPDo does for both φ ◦ T1a
and φ ◦ T2a .

The NPDo approach is easier to use. The NPDo approach, if it provably works,
is easier to implement and more flexible to use.

a. The NPDo approach relies on SVDs of tall and skinny matrices [17, 24] dur-
ing its SCF iterations, whereas the NEPv approach needs solutions to potentially
large scale eigenvalue problems [3, 36, 41, 52, 57], not to mention that the NEPv
approach requires constructing a symmetric matrix-valued function H(P).

b. In general for theNPDoapproach, the atomic functions in a convex composition are
allowed to be of submatrices of P consisting of a few, not necessarily all, columns
of P , such as Pi in tr(PT

i Ai Pi ) of SumCT in Table 1, but, more generally, different
Pi can share common columns of P , whereas no Pi in SumCT share common
columns of P; For the NEPv approach, allowing such flexibility in the involved
atomic functions in the convex composition forces us to use the generic symmetric
matrix-valued function H(P) in (6.5) and ask for the same conditions as the NPDo
approach requires, and hence we may as well go for the NPDo approach in the
first place (see [42, sect. 8.2]).

10 Concluding Remarks

The first order optimality condition, also known as the KKT condition, for optimizing
a function f over the Stiefel manifold takes the form

H (P) := ∂ f (P)

∂P
= PΛ with ΛT = Λ ∈ R

k×k, PTP = Ik . (10.1)

This is an n × k matrix equation in P on the Stiefel manifold, upon noticing Λ =
[PTH (P) + H (P)TP]/2. Any maximizer is a solution. Except for very special
objective functions such as tr(PTAP) or tr(PTD), solving this equation rightly and
efficiently for a maximizer is a challenging task. For example, it often has infinitely
many solutions and maximizers hide among them. Hence we need to not only solve
the nonlinear equation of the KKT condition but also find the right ones. Inspired by
recent works [67, 68, 75–78], in this paper, we establish two unifying frameworks,
one for the NEPv approach and the other for the NPDo approach, for optimization
on the Stiefel manifold. Our frameworks are built upon two fundamental ansatzes,
the NPDo Ansatz and the NEPv Ansatz. When a respective ansatz is satisfied, the
corresponding approach, the NPDo or NEPv approach, is guaranteed to work in the
sense of global convergence from any given initial point. To expand the applicability
of the approaches, we propose the theories of atomic functions for each approach
and show that any convex composition φ ◦ T of atomic functions for any of the
two approaches satisfies the corresponding ansatz under some mild conditions. It is
demonstrated that the commonly used matrix-trace functions

[ tr((PTAP)m)]s, [tr((PTD)m)]s for integer m ≥ 1 and real scalar s ≥ 1
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are concrete atomic functions for both approaches (A may be required to be positive
semidefinite depending on circumstances), and that nearly all optimization problems
on the Stiefelmanifold recently investigated in the literature for variousmachine learn-
ing applications are about some compositions of these concretematrix-trace functions.
Although not all of them are convex compositions, some may still satisfy the NEPv
Ansatz. These concrete atomic functions in combination with convex compositions
lead to a large collection of objective functions on which one of or both approaches
work.

However when an ansatz fails to hold for a given objective function, the conclusions
fromour global convergence analysiswill likely fail. In the case for theNEPvapproach,
a remedy via the level-shifting SCF exists to ensure locally linear convergence when
f (P) is right-unitarily invariant [4] orwhen f (P) contains and increaseswith tr(PTD)

[47], where sharp estimations of linear convergence rate are obtained. But there are
more works to do, especially for the NPDo approach for which a remedy remains to
be found. In [63], it is investigated how tr(PTD) may help determine a particular P
among all orthonormal basis matrices of a subspace.

Not all objective functions (or their simple transformations like f 2 for ΘTR as
explained in Remark 8.1) that satisfy the ansatz(es) take the form of some convex
compositions of atomic functions, even for some of those in Table 1. For example, in

the case of OLDA, f (P) = φ◦T (P)whereφ(xxx) = x1/x2 and T (P) =
[
tr(PTAP)

tr(PTBP)

]

.

Although this f (P) is not a convex composition of tr(PTAP) and tr(PTBP), it still
satisfies the NEPv Ansatz. In fact, OLDA is a special case of ΘTR: θ = 1 and
D = 0, and inequality (6.11) applies and yields, for OLDA, that if tr(P̂TH(P)P̂) −
tr(PTH(P)P) ≥ 0, then

f (P̃) ≥ f (P) + 1

2
· sk(B)

Sk(B)

[
tr(P̂TH(P)P̂) − tr(PTH(P)P)

]
,

assuming B � 0 and rank(B) > n − k, where P̃ = P̂ and H(P) is given by (6.4)
upon setting θ = 1 and D = 0.

Numerical demonstrations on the performances of the NEPv approach and the
NPDo approach on various machine learning applications have been well documented
by the author and his collaborators in their recent works [67, 68, 75, 78]. We expect
more to come as the unifying frameworks in this paper have significantly expanded
the domains on which the approaches provably work.

Throughout the article, we limit ourselves to the Stiefel manifold in the standard
inner product 〈xxx, yyy〉 = yyyTxxx for xxx, yyy ∈ R

n and to the field of real numbers, because that
is where most optimization on the Stiefel manifold frommachine learning dominantly
falls into. But our developments can be extended to the field of complex numbers and
other inner-products, separately and combined. For the case of the field of complex
numbers, minor modifications suffice: replacing transpose (·)T with conjugate trans-
pose (·)H and tr((PTD)m) with "(tr((PHD)m)) (where "(·) takes the real part of a
complex number). However, extending to the case of the M-inner product requires
additional algebraic manipulations and analysis. An outline on how to proceed is
explained in [42, appendix E].
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A Canonical Angles

We introduce a metric on Grassmann manifold Gk(R
n), the collection of all k-

dimensional subspaces in R
n . Let X = R(X) and Y = R(Y ) be two points in

Gk(R
n), where X , Y ∈ St(k, n). The canonical angles θ1(X ,Y) ≥ · · · ≥ θk(X ,Y)

between X and Y are defined by [59]

0 ≤ θi (X ,Y) := arccos σi (X
TY ) ≤ π

2
for 1 ≤ i ≤ k,

and accordingly, the diagonal matrix of the canonical angles between X and Y is

Θ(X ,Y) = diag(θ1(X ,Y), . . . , θk(X ,Y)) ∈ R
k×k .

It is known that

dist2(X ,Y) := ‖ sinΘ(X ,Y)‖2 = sin θ1(X ,Y), (A.1)

distF(X ,Y) := ‖ sinΘ(X ,Y)‖F =
[ k∑

i=1

sin2 θi (X ,Y)
]1/2

(A.2)

are two unitarily invariant metrics on the Grassmann manifold Gk(R
n) [60, p.99].

B Preliminary Lemmas

In this section, we collect a few results, some known and some likely new, that we
need in our proofs.Wewill point out an earliest reference, if known, to each one. Some
likely appear before but we are not aware of any reference to. For completeness, we
will provide proofs for those we cannot find references.

Lemma B.1 (Young’s Inequality)Given a, b ≥ 0, and p, q ≥ 1 such that 1
p + 1

q = 1,
we have

a1/pb1/q ≤ 1

p
a + 1

q
b.

In particular for p = q = 2, it becomes 2
√
ab ≤ a + b.

Lemma B.2 For a, b ≥ 0, and μ, ν ≥ 0 such that μ + ν ≥ 1, we have

aμbν ≤ μ

μ + ν
aμ+ν + ν

μ + ν
bμ+ν .

Proof Let τ := μ + ν ≥ 1. Then μ/τ + ν/τ = 1. Using Young’s Inequality, we get

aμbν = (
aμ/τbν/τ

)τ ≤
(μ

τ
a + ν

τ
b
)τ ≤ μ

τ
aτ + ν

τ
bτ ,
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as was to be shown, where the last inequality follows from that fact that xτ with τ ≥ 1
is convex on [0,∞). ��
Lemma B.3 Let φ : D ⊆ R

N → R be convex and differentiable and let xxx, x̃xx ∈ D,
where D is a convex domain in R

N . If

∇φ(xxx)Tx̃xx ≥ ∇φ(xxx)Txxx + η,

then φ(̃xxx) ≥ φ(xxx) + η.

Proof Likely, the result of this lemma is known, and it has a short proof. Since φ is
convex, we have

φ(̃xxx) ≥ φ(xxx) + [∇φ(xxx)]T (̃xxx − xxx)

= [∇φ(xxx)]Tx̃xx + φ(xxx) − [∇φ(xxx)]Txxx
≥ [∇φ(xxx)]Txxx + η + φ(xxx) − [∇φ(xxx)]Txxx
= φ(xxx) + η,

as was to be shown. ��
Lemma B.4 (von Neumann’s trace inequality [65], [28, p.183]) For B, C ∈ R

n×k ,
we have

| tr(BTC)| ≤
k∑

i=1

σi (B) σi (C).

In the next four lemmas, any arbitrary nonnegative power of a positive semidefinite
matrix B is understood as Bμ = UΛμUT for any μ ≥ 0, where B = UΛUT is
the eigendecomposition of B, and Λμ is obtained by taking the μth power of every
diagonal entry of Λ.

Lemma B.5 For B, C ∈ R
k×k that are positive semidefinite, and μ, ν ≥ 0 such that

μ + ν ≥ 1, we have

tr(BμCν) ≤ ‖BμCν‖tr ≤ μ

μ + ν
tr(Bμ+ν) + ν

μ + ν
tr(Cμ+ν).

Proof That tr(BμCν) ≤ ‖BμCν‖tr is a corollary ofWeyl’smajorant theorem [8, p.42].
Let Q ∈ St(k, k) such that QTBμCν � 0, which yields ‖BμCν‖tr = tr(QTBμCν).
Note that B � 0 and thus (QTBμ)T(QTBμ) = B2μ, implying the singular values
of QTBμ are given by {[σi (B)]μ}ki=1. Since C � 0, the singular values of Cν are
{[σi (C)]ν}ki=1. Hence by Lemma B.4 and then by Lemma B.2, we get

‖BμCν‖tr = tr([QTBμ]Cν) (B.1)

≤
k∑

i=1

[σi (B)]μ [σi (C)]ν

123



Foundations of Computational Mathematics

≤
k∑

i=1

(
μ

μ + ν
[σi (B)]μ+ν + ν

μ + ν
[σi (C)]μ+ν

)

= μ

μ + ν
tr(Bμ+ν) + ν

μ + ν
tr(Cμ+ν), (B.2)

as expected. ��
Lemma B.6 For B, C ∈ R

k×k where C is positive semidefinite, and ν ≥ 0, we have

tr(BCν) ≤ ‖BCν‖tr ≤ 1

1 + ν
tr((QTB)1+ν) + ν

1 + ν
tr(C1+ν),

where Q ∈ St(k, k) such that QTB � 0.

Proof Again tr(BCν) ≤ ‖BCν‖tr is a corollary of Weyl’s majorant theorem. Despite
that B may not be positive semidefinite (possibly not even symmetric), we still have
(B.1) with μ = 1 so long as QTBCν � 0. Also note (QTB)T(QTB) = BTB and
hence the singular values of QTB are given by {σi (B)}ki=1. So we still get (B.2) with
μ = 1. The proof is completed upon noticing the eigenvalues of QTB are the same as
the singular values of B. ��
Lemma B.7 For X , Y ∈ R

n×k and μ, ν ≥ 0, we have

tr((XTX)μXTY (Y TY )ν)

≤ 1 + 2μ

2(μ + ν + 1)
tr((XTX)μ+ν+1) + 1 + 2ν

2(μ + ν + 1)
tr((Y TY )μ+ν+1).

Proof The singular values of (XTX)μXT and Y (Y TY )ν are {[σi (X)]1+2μ}ki=1 and
{[σi (Y )]1+2ν}ki=1, respectively. Hence by Lemma B.4 and then by Lemma B.2, we get

tr((XTX)μXTY (Y TY )ν)

≤
k∑

i=1

[σi (X)]1+2μ[σi (Y )]1+2ν

≤
k∑

i=1

(
1 + 2μ

2(μ + ν + 1)
[σi (X)]2(μ+ν+1) + 1 + 2ν

2(μ + ν + 1)
[σi (Y )]2(μ+ν+1)

)

= 1 + 2μ

2(μ + ν + 1)
tr((XTX)μ+ν+1) + 1 + 2ν

2(μ + ν + 1)
tr((Y TY )μ+ν+1),

as was to be shown. ��
Lemma B.8 ([78, Lemma 3]) For H ∈ R

k×k , we have | tr(H)| ≤ ‖H‖tr. If | tr(H)| =
‖H‖tr, then H is symmetric and is either positive semi-definite when tr(H) ≥ 0, or
negative semi-definite when tr(H) ≤ 0.
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Remark B.1 ([67]) As a corollary of Lemma B.8, for any H ∈ R
k×k , if H � 0

(which means either H is not symmetric or H is symmetric but indefinite or even
negative semidefinite), then tr(H) < ‖H‖tr . Now let H = UΣV T be the SVD of
H [24] where Σ ∈ R

k×k and set Q = UV T, an orthogonal polar factor of H . Then
QTH = VΣV T � 0 and tr(QTH) = ‖H‖tr > tr(H).

The next lemma are likely well-known. For example, they are implied in the dis-
cussion in [67] before [67, Lemma 3.2] there.

Lemma B.9 Let B ∈ R
n×k .

a. tr(PTB) ≤ ‖B‖tr for any P ∈ St(k, n);
b. tr(PTB) = ‖B‖tr where P ∈ St(k, n) if and only if B = PΛ with Λ � 0;
c. We have

max
P∈St(k,n)

tr(PTB) = ‖B‖tr

and the optimal value ‖B‖tr is achieved by any orthogonal polar factor P∗ of B.

Lemma B.9 says that tr(PTB) is bounded above by ‖B‖tr always and the upper
bound ‖B‖tr is achieved by any orthogonal polar factor P∗ of B and also anymaximizer
of tr(PTB) over P ∈ St(k, n) is an orthogonal polar factor of B. For numerical
computation, an orthogonal polar factor of B can be constructed from the thin SVD
B = UΣV T as P∗ = UV T of B.

Acknowledgements The author wishes to thank the anonymous referees for their constructive comments
and suggestions that significantly improve the presentation of the paper.
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