
Numerical Algebra, Control and Optimization

Vol. 15, No. 4, December 2025, pp. 1321-1339
doi:10.3934/naco.2025019

FLEXIBLE MODIFIED LSMR FOR LEAST SQUARES

PROBLEMS

Mei Yang�∗1 and Gul Karaduman�2 and Ren-Cang Li�3

1Division of Data Science

University of Texas at Arlington, Arlington, TX 76019, USA

2Department of Mathematics

Karamanoglu Mehmetbey University, Karaman, 70100, Turkey

3Department of Mathematics
University of Texas at Arlington, Arlington, TX 76019-0408, USA

(Communicated by Jianlin Xia)

Abstract. LSMR is a widely recognized method for solving least squares

problems via the double QR decomposition. Various preconditioning tech-

niques have been explored to improve its efficiency. One issue that arises when
implementing these preconditioning techniques is the need to solve two linear

systems per iterative step. In this paper, to tackle this issue, among other-

s, a modified LSMR method (MLSMR), in which only one linear system per
iterative step needs to be solved instead of two, is introduced, and then it is

integrated with the idea of flexible GMRES to yield a flexible MLSMR method
(FMLSMR). Numerical examples are presented to demonstrate the efficiency

of the proposed FMLSMR method.

1. Introduction. In this paper, we present a numerical method called the flexible
modified LSMR method (FMLSMR), which is built upon our previous work [24],
for solving the least square problem

min
x
‖Ax− b‖2 , (1)

where A ∈ Rm×n, b ∈ Rm, and either m ≥ n or m < n is allowed. FMLSMR
improves the well-known LSMR method [8] which is based on the Golub-Kahan
bidiagonalization. LSMR seeks the best approximate solution in the Krylov sub-
space Kk

(
ATA,ATb

)
that minimizes ‖ATr‖2, while LSQR [18] seeks to minimize

‖r‖2 in the same Krylov subspace, where r = b − Ax. LSMR has been used for
various problems, including saddle point problems, as demonstrated in recent pub-
lications [14, 15].

To speed up the convergence of LSMR, preconditioners with some desirable prop-
erties are typically used. There are various specific preconditioners, such as incom-
plete LU [20], incomplete QR [16], and preconditioners based on perturbed QR

2020 Mathematics Subject Classification. Primary: 65F08 ; Secondary: 65F20.
Key words and phrases. LSMR, flexible GMRES, FMLSMR, preconditioner, least squares

problem, linear system.
The third author is supported in part by [NSF DMS-2407692].
∗Corresponding author: Mei Yang.

1321

http://dx.doi.org/10.3934/naco.2025019
mei.yang@uta.edu
gulk@bu.edu
rcli@uta.edu

1322 MEI YANG, GUL KARADUMAN AND REN-CANG LI

factorizations [3]. However, determining whether a given preconditioner is suitable
for a particular problem at hand is not straightforward.

In 1993, Saad proposed a flexible GMRES (FGMRES) [19] which still has an
Arnoldi-like process, like original GMRES. In FGMRES, each matrix-vector multi-
plication involves a linear system solving that can be viewed as an application of
some preconditioner that differs from one matrix-vector multiplication to another.
Accelerating techniques to generate a better search space [4, 13] for GMRES can al-
so be extended to FGMRES, resulting in variants of the method, such as in [9, 25].
These approaches aim at solving linear systems. In 2015, Morikuni and Hayami
proposed an inner-outer iterative GMRES method [17] for solving (1), where the
inner iterations are some stationary iterative methods like NR-SOR and NE-SOR
to solve normal-equation-type equations in the form of ATAv = ATp or AATv = p.

In this paper, we will combine the two ideas above to form a flexible modified
LSMR but use non-stationary methods to deal with normal-equation-type equa-
tions in the inner iteration. Previously, there are two linear systems to solve per
iterative step for the right-preconditioned least squares problems, and that can be
too demanding computationally sometimes. We adopt the concept of factorization-
free LSQR (MLSQR) from [2] and merge the two linear systems into one of the
normal-equation-type to reduce computational cost. In each iteration of FMLSMR,
we apply a non-stationary method, such as MINRES, to solve this normal-equation-
type equation, which implicitly yields a preconditioner in the Golub-Kahan bidiag-
onalization process. As the iteration goes, we obtain a different preconditioner each
time, i.e. a flexible preconditioner. Our method FMLSMR retains the benefit of
avoiding the decomposition of preconditioners, particularly in inverse problems [2].
The factorization-free strategy can be also found in genLSQR and genLSMR [7],
which is based on the generalized Golub-Kahan bidiagonalization process proposed
in [1]. In this paper, we mainly focus on accelerating LSMR rather than LSQR
because LSMR exhibits better convergence properties than LSQR. However, it’s
not difficult to apply the same strategy of our FMLSMR to create flexible modified
LSQR.

In [6], Chung and Gazzola proposed flexible LSMR (FLSMR) and flexible L-
SQR for `p regularization based on the flexible Golub-Kahan process, in which
one upper Hessenberg and one upper triangular matrices are constructed via the
Arnoldi process. Specifically, in FLSMR, two Arnoldi processes are required and
so the computational cost is high for large scale problems especially when a real-
ly long Arnoldi process is needed due to orthogonalization. However, similar to
LSMR, in our proposed FMLSMR, only one lower-bidiagonal matrix is generated
via the Golub-Kahan process, a two-term recurrence, which keeps orthogonalization
cost per step low and constant. This is a major difference between FMLSMR and
FLSMR.

The rest of this paper is organized as follows. In Section 2, we present the flexi-
ble modified LSMR method based on the modified LSMR for right-preconditioned
least squares problems and give some theoretical analysis of MLSMR and the flexible
LSMR. In Section 3, we present the framework of the flexible MLSMR with imple-
mentation. Numerical experiments are shown in Section 4. Finally, the conclusion
is drawn in Section 5.

Notation. Rm×n is the set of all m × n real matrices, Rn = Rn×1. In or I (if
its size is clear) is the n × n identity matrix, and ej is its jth column. (·)T takes
the transpose of a matrix or vector.

FLEXIBLE MODIFIED LSMR 1323

For a vector u ∈ Rn, u(i) is its ith entry, and ‖ · ‖2 is either `2-vector norm or
the matrix spectral norm:

‖u‖2 =

√∑
i

|u(i)|2, ‖B‖2 := max
v 6=0

‖Bv‖2
‖v‖2

.

The standard inner product 〈u, v〉 = uTv for vectors u and v of the same size, and
in particular 〈u, u〉 = uTu = ‖u||22. Positive definite symmetric matrix M ∈ Rn×n

induces the M -inner product 〈u, u〉M = uTMu. Finally, the kth Krylov subspace
Kk (X,u) of X ∈ Rn×n on u is defined as

Kk (X,u) = span{u,Xu,X2u, · · · , Xk−1u},
i.e., spanned by vectors u,Xu,X2u, · · · , and Xk−1u. R(X) is the column space of
X, spanned by its column vectors.

2. Modified LSMR and Flexible LSMR. In this section, firstly, based on the
modified LSQR in [2], the modified LSMR method (MLSMR), mentioned in [2] but
never discussed in any published literature, for right-preconditioned least squares
problems is introduced and some theoretical analysis of MLSMR is shown. Secondly,
we review the flexible LSMR method (FLSMR) [6]. Lastly, we compare MLSMR
and FLSMR from the aspects of theoretical analysis and implementation.

2.1. Modified LSMR. The right-preconditioned least squares problem of (1) is
as follows:

min
x̂

∥∥AL−1x̂− b∥∥
2
, x = L−1x̂, (2)

where L is an invertible preconditioner. Any solution to (2) is a solution to the
split-preconditioned normal equation [5]

L−TATAL−1x̂ = L−TATb, (3)

and vice versa.
Recall the Golub-Kahan bidiagonalization process [10], also known as the Lanczos

bidiagonalization [5], for a rectangular matrix. It iteratively transforms a matrix
into a lower bidiagonal matrix. With a right-preconditioner L as in (2), the Golub-
Kahan bidiagonalization process for AL−1 on1 b, is outlined in Algorithm 1.

If Algorithm 1 is executed without any breakdown, i.e., all αk > 0 and βk > 0
for 1 ≤ k ≤ kmax, then we will have in theory

AL−1Vk = Uk+1Bk, (4a)

L−TATUk+1 = VkB
T
k + αk+1vk+1e

T
k+1, (4b)

where

Bk =


α1

β2 α2

. . .
. . .

βk αk

βk+1

,
Vk = [v1, v2, · · · , vk] ∈ Rn×k, Uk = [u1, u2, · · · , uk] ∈ Rm×k.

1Without loss of generality, we assume initial guess x0 = 0 in association with the least squares
problem (1); otherwise we can always reset b to b−Ax0.

1324 MEI YANG, GUL KARADUMAN AND REN-CANG LI

Algorithm 1: Golub-Kahan bidiagonalization for AL−1

Input: A ∈ Rm×n, L ∈ Rn×n, b ∈ Rm, and tolerance ε;
Output: Partial bidiagonalization of AL−1 ≈ Uk+1BkV

T
k .

1: β1 = ‖b‖2, u1 = b/β1;
2: solve LTû = ATu1 for û;
3: α1 = ‖û‖2, v1 = û/α1;
4: for k = 1, 2, . . . , kmax do
5: solve Lṽk = vk for ṽk;
6: w = Aṽk, q = w − αkuk, βk+1 = ‖q‖2;
7: if βk+1 ≤ ε ‖w‖2 then
8: break;
9: end if

10: uk+1 = q/βk+1;
11: solve LTû = ATuk+1 for û;
12: p = û− βk+1vk, αk+1 = ‖p‖2;
13: if αk+1 ≤ ε ‖û‖2 then
14: break;
15: end if
16: vk+1 = p/αk+1;
17: end for
18: return the last Uk+1, Bk, Vk.

Both Vk and Uk are orthonormal. Algorithm 1 reduces to the original Golub-Kahan
process when L = I.

It is clear from Algorithm 1 that there are two linear systems in the form Lv = w
and LTw = u to solve per for-loop. Our goal in what follows is to merge the two
linear systems into one in the form Mv = u, where M = LTL. This does not help
when L itself is structured such as being lower triangular for which case Mv = u is
solved directly via LTw = u followed by Lv = w, but in the case when both Lv = w
and LTw = u have to be solved iteratively, merging two linear systems into one per
for-loop can bring big savings, not to mention the situation when only M is known
but not L [7, 2].

Pre-multiplying both sides of (4b) by L−1, we get

AṼk = Uk+1Bk, (5a)

M−1ATUk+1 = ṼkB
T
k + αk+1ṽk+1e

T
k+1, (5b)

where Ṽk = L−1Vk. Notice αk+1 = ‖p‖2 =
√
〈p, p〉 at Line 12 of Algorithm 1.

It can be verified that

〈p, p〉 = 〈M−1ATuk+1 − βk+1ṽk, M
−1ATuk+1 − βk+1ṽk〉M ,

upon using M = LTL. Denote by s = M−1ATuk+1−βk+1ṽk. Then, in Algorithm 1,

βk+1uk+1 = Aṽk − αkuk, αk+1 =
√
〈s, s〉M , ṽk+1 = s/αk+1.

Define p̃k = Mṽk and s̃ = ATuk+1 − βk+1p̃k. We have

M−1s̃ = M−1ATuk+1 − βk+1M
−1p̃k

= M−1ATuk+1 − βk+1ṽk = s.

FLEXIBLE MODIFIED LSMR 1325

Hence, α2
k+1 = sTMs = sTMM−1s̃ = 〈s, s̃〉. Lines 6 - 16 can be restated as

βk+1uk+1 = Aṽk − αkuk,

s̃ = ATuk+1 − βk+1p̃k,

s = M−1s̃,

αk+1 =
√
〈s, s̃〉,

ṽk+1 = s/αk+1.

It is understood, throughout the paper, that an expression like s = M−1s̃ is really
about solving linear system Ms = s̃ for s. Since ṽk+1 = s/αk+1 and s = M−1s̃, we
have

p̃k+1 = Mṽk+1 = Ms/αk+1 = s̃/αk+1.

Therefore, a more computationally cost-effective version of the preconditioned Golub-
Kahan bidiagonalization process can be summarized as

βk+1uk+1 = Aṽk − αkuk, (6a)

p̃ = ATuk+1 − βk+1p̃k, (6b)

ṽk+1 = M−1p̃, (6c)

αk+1 =
√
〈ṽk+1, p̃〉, (6d)

ṽk+1 = ṽk+1/αk+1, (6e)

p̃k+1 = p̃/αk+1. (6f)

This new formulation has only one linear system Mṽk+1 = p̃ from (6c) to solve.

It can be seen that Uk+1 is orthonormal, while Ṽk+1 isn’t. For any x̂ ∈ R(Vk),
x̂ = Vkŷ for some ŷ ∈ Rk. Let x = L−1x̂ and recall r = b−Ax. Using (5a), we get

L−TATr = L−TAT(b−AL−1x̂) = L−TAT(b−AL−1Vkŷ)

= L−TAT(b− Uk+1Bkŷ) = L−TATb− L−TATUk+1Bkŷ

=
¯
β1v1 − Vk+1

[
BT

k Bk

¯
βk+1e

T
k

]
ŷ

= Vk+1

(
¯
β1e1 −

[
BT

k Bk

¯
βk+1e

T
k

]
ŷ

)
,

where
¯
β1 = α1β1 and

¯
βk+1 = αk+1βk+1. For the preconditioned least squares

problem (2), LSMR seeks an approximate solution x̂k ∈ R(Vk) that minimizes

‖L−TATr‖2 of the preconditioned normal equation (3) over all x ∈ R(Ṽk). Because
Vk+1 is orthonormal, for x̂ = Vkŷ we have

min
x̂∈R(Vk)

∥∥L−TATr
∥∥
2

= min
ŷ

∥∥∥∥
¯
β1e1 −

[
BT

k Bk

¯
βk+1e

T
k

]
ŷ

∥∥∥∥
2

, (7)

and hence x̂k = Vkŷk, where

ŷk = arg min
ŷ

∥∥∥∥
¯
β1e1 −

[
BT

k Bk

¯
βk+1e

T
k

]
ŷ

∥∥∥∥
2

(8)

which is a least squares problem that can be solved by the double QR factorization
as in LSMR. Finally, the solution of the original least squares problem can then be

1326 MEI YANG, GUL KARADUMAN AND REN-CANG LI

approximated by

xk = L−1x̂k = L−1Vkŷk = Ṽkŷk. (9)

Putting all together, we have established the modified LSMR (MLSMR) method
outlined in Algorithm 2. It should be noted that Lines 8 – 19 use the double QR
decomposition, taken from LSMR [8].

If combining Algorithm 2.1 with the steps of the double-QR decomposition as in
LSMR, we can obtain LSMR method for right-preconditioned least squares prob-
lems. Theoretically, LSMR for right-preconditioned problems is equivalent to Al-
gorithm 2, but different in implementations. In LSMR for right-preconditioned
problems, two linear systems in the forms of Lv = w and LTw = u need to be
solved. However, MLSMR is more efficient because at each iteration, xk is updated
directly and only one linear system at Line 5 of Algorithm 2 is solved.

By (9), at the kth step of MLSMR we have

xk ∈ Kk(M−1ATA,M−1ATb) = L−1Kk(L−TATAL−1, L−TATb). (10)

According to the Golub-Kahan bidiagonalization process, we know Vk+1 are or-

thonormal, i.e., V T
k+1Vk+1 = Ik+1. Since Ṽk+1 = L−1Vk+1, we get

Ik+1 = V T
k+1Vk+1 = Ṽ T

k+1L
TLṼk+1 = Ṽ T

k+1MṼk+1 = 〈Ṽk+1, Ṽk+1〉M .

That implies Ṽk+1 is M -orthonormal.
When A has full column rank, (1) has a unique solution. Otherwise, there are

infinitely many solutions that yield the minimum value of ‖Ax− b‖2. For the case
that ATAx = ATb with singular ATA, it has been proved [8] that both LSQR and
LSMR return the same minimum-norm solution to the least squares problem (1) at
convergence. We state these conclusions as follows.

Theorem 2.1 ([8, Corollary 4.3]). At convergence, LSMR returns the minimum-
norm solution to (1).

Corollary 2.2. Suppose that x̂∗ is the solution to (2) obtained via MLSMR at
convergence. Then x̂∗ is the minimum-norm solution to (2) and x∗ = L−1x̂∗ is the
minimum-M-norm solution to (1).

Proof. Since x̂∗ is the solution to (2) obtained via MLSMR, x̂∗ is the minimum-
norm solution to (2) according to Theorem 2.1. Because x̂∗ = Lx∗, we have ‖x̂∗‖2 =
‖x∗‖M . This means that x∗ is the minimum-M -norm solution to (1).

Now we comment on how to develop the modified LSQR in a similar way. With
the preconditioned Golub-Kahan bidiagonalization process (6), we can obtain the
modified LSQR method (MLSQR), i.e., the factorization-free preconditioned LSQR

in [2], by minimizing ‖r‖2 over x ∈ R(Ṽk). This yields xk = Ṽkŷ
MLSQR
k , where

ŷMLSQR
k = argmin

ŷ
‖β1e1 −Bkŷ‖2. (11)

Given a nonsingular preconditioner L, x̂ = Lx is the solution to (3), where x is the
solution to the normal equation

ATAx = ATb. (12)

Theorem 2.3 ([8, Theorem 4.2]). At convergence, LSQR returns the minimum-
norm solution to (1).

FLEXIBLE MODIFIED LSMR 1327

Algorithm 2: Modified LSMR (MLSMR)

Input: A ∈ Rm×n, b ∈ Rm, M ∈ Rn×n, and tolerance ε;
Output: Approximate solution to (1).

1: β1 = ‖b‖2, u1 = b/β1, p̃ = ATu1, ṽ1 = M−1p̃, α1 = 〈ṽ1, p̃〉1/2, p̃ = p̃/α1, ṽ1 =
ṽ1/α1,

¯
α1 = α1,

¯
ξ1 = α1β1, ρ0 =

¯
ρ0 =

¯
c0 = 1,

¯
s0 = 0, h1 = ṽ1,

¯
h0 = 0, x0 = 0;

2: for k = 1, 2, . . . , kmax do
3: ûk+1 = Aṽk − αkuk, βk+1 = ‖ûk+1‖2, uk+1 = ûk+1/βk+1;
4: p̃ = ATuk+1 − βk+1p̃;
5: ṽk+1 = M−1p̃, αk+1 = 〈ṽk+1, p̃〉1/2;
6: p̃ = p̃/αk+1;
7: ṽk+1 = ṽk+1/αk+1;
8: ρk = (

¯
α2
k + β2

k+1)1/2;
9: ck =

¯
αk/ρk;

10: sk = βk+1/ρk, θk+1 = skαk;
11:

¯
αk+1 = ckαk+1;

12:
¯
θk =

¯
sk−1ρk;

13:
¯
ρk = ((

¯
ck−1ρk)2 + θ2k+1)1/2;

14:
¯
ck =

¯
ck−1ρk/

¯
ρk;

15:
¯
sk = θk+1/

¯
ρk;

16: ξk =
¯
ck

¯
ξk,

¯
ξk+1 = −

¯
sk

¯
ξk;

17:
¯
hk = hk − (

¯
θkρk/(ρk−1

¯
ρk−1))

¯
hk−1;

18: xk = xk−1 + (ξk/(ρk
¯
ρk))

¯
hk;

19: hk+1 = ṽk+1 − (θk+1/ρk)hk;
20: rk = b−Axk;
21: if ‖ATrk‖2 ≤ ε ‖A‖2(‖b‖2 + ‖A‖2‖xk‖2) then
22: break;
23: end if
24: end for
25: return the last xk.

Corollary 2.4. Suppose that x̂MLSQR
∗ is the solution to (2) via MLSQR at con-

vergence. Then x̂MLSQR
∗ is the minimum-norm solution to (2) and xMLSQR

∗ =

L−1x̂MLSQR
∗ is the minimum-M -norm solution to (1).

Proof. Since x̂MLSQR
∗ is the solution to (2) obtained via MLSQR at convergence,

x̂MLSQR
∗ is the minimum-norm solution to (2) according to Theorem 2.3. Because

x̂MLSQR
∗ = LxMLSQR

∗ , we have ‖x̂MLSQR
∗ ‖2 = ‖xMLSQR

∗ ‖M . This means that xMLSQR
∗

is the minimum-M -norm solution to (1).

Remark 2.5. MLSMR minimizes the residual of the normal equation (3) by solving
the subproblem (8). If

¯
βk+1 = 0 for some k, then αk+1 = 0 or βk+1 = 0. In this

case, (8) becomes min
ŷ
‖
¯
β1e1 − BT

k Bkŷ‖2 and BT
k Bkŷk =

¯
β1e1 because Bk has full

rank. Hence, at convergence MLSMR returns the same solution as by MLSQR.
When L = I, MLSMR reduces to LSMR.

2.2. Flexible LSMR Method. In [6], Chung and Gazzola proposed two flexible
Krylov subspace methods for `p regularization: the flexible LSQR (FLSQR) and

1328 MEI YANG, GUL KARADUMAN AND REN-CANG LI

the flexible LSMR (FLSMR). The basic idea is to apply FGMRES to construct a
flexible variant of the Golub-Kahan process (FGK). The framework of FGK is shown
in Algorithm 3, where Nk is the preconditioner at the kth iteration determined at
runtime.

Algorithm 3: Flexible Golub-Kahan Process (FGK)

Input: A ∈ Rm×n, b ∈ Rm, and tolerance ε;

Output: Zk, Ũk+1, Wk+1, Tk+1, and Pk.

1: β̃1 = ‖b‖2, ũ1 = b/β̃1, w0 = 0;
2: for k = 1, 2, . . . , kmax do
3: v = ATũk, ξ = ‖v‖2;
4: for j = 1, 2, . . . , k − 1 do
5: tj,k = vTwj ;
6: v = v − tj,kwj ;
7: end for
8: tk,k = ‖v‖2;
9: if tk,k ≤ ε ξ then

10: break;
11: end if
12: wk = v/tk,k;
13: solve Nkzk = wk for zk where Nk ∈ Rn×n is some varying preconditioner

determined at runtime;
14: v = Azk, ξ = ‖v‖2;
15: for j = 1, . . . , k do
16: pj,k = vTũj ;
17: v = v − pj,kũj ;
18: end for
19: pk+1,k = ‖v‖2;
20: if pk+1,k ≤ ε ξ then
21: break;
22: end if
23: ũk+1 = v/pk+1,k;
24: end for
25: return the last Zk, Ũk+1,Wk+1, Tk+1, Pk.

After the kth iteration, we have

AZk = Ũk+1Pk, ATŨk+1 = Wk+1Tk+1, (13)

where

Zk = [z1, z2, . . . , zk] = [N−11 w1, N
−1
2 w2, . . . , N

−1
k wk] ∈ Rn×k,

Ũk+1 = [ũ1, ũ2, . . . , ũk+1] ∈ Rm×(k+1), Wk+1 = [w1, w2, . . . , wk+1] ∈ Rn×(k+1),

Pk = [pi,j] ∈ R(k+1)×k, Tk+1 = [ti,j] ∈ R(k+1)×(k+1).

It can be seen that both Ũk+1 and Wk+1 are orthonormal, and Pk and Tk+1 are
upper Hessenberg and upper triangular matrices, respectively. The kth approximate

FLEXIBLE MODIFIED LSMR 1329

solution of FLSMR is given by xFLSMR
k = Zky

FLSMR
k , where

yFLSMR
k = argmin

y
‖β1t1,1e1 − Tk+1Pky‖2. (14)

As to the residual of the normal equation (12) at xFLSMR
k , we have

ATrk ≡ AT(b−AxFLSMR
k)

= β1t1,1w1 −ATAZky
FLSMR
k

= β1t1,1w1 −Wk+1Tk+1Pky
FLSMR
k

= Wk+1

(
β1t1,1e1 − Tk+1Pky

FLSMR
k

)
.

Similarly for FLSQR, xFLSQR
k = Zky

FLSQR
k , where

yFLSQR
k = argmin

y
‖β1e1 − Pky‖2.

It is shown [6] that xFLSQR
k obtained at the kth step minimizes the residual norm

‖b−Ax‖2 over x ∈ R(Zk), while xFLSMR
k minimizes ‖AT(b−Ax)‖2 over x ∈ R(Zk).

This is the theoretical difference between FLSQR and FLSMR. We outline FLSMR
in Algorithm 4.

Algorithm 4: Flexible LSMR

Input: A ∈ Rm×n, b ∈ Rm, Nk ∈ Rn×n for each k ≥ 1, and tolerance ε;
Output: Approximate solution xk to (1).

1: β̃1 = ‖b‖2, ũ1 = b/β̃1, w0 = 0;
2: for k = 1, 2, . . . , kmax do
3: Execute Line 3 - 23 in Algorithm 3;
4: solve for yFLSMR

k from (14)
5: xk = Zky

FLSMR
k , rk = b−Axk;

6: if ‖ATrk‖2 ≤ ε ‖A‖2(‖b‖2 + ‖A‖2‖xk‖2) then
7: break;
8: end if
9: end for

10: return the last xk.

2.3. A Brief Comparison of FLSMR and MLSMR. In this subsection, we
briefly compare FLSMR with MLSMR. At appearance, FLSMR possibly employs
different preconditioners, i.e., different Nk at Line 13 of Algorithm 3 for each k,
while MLSMR uses the same preconditioner, i.e., M in Algorithm 2. When all Nk

are taken to be the same as M , we have the following result.

Theorem 2.6. If the preconditioners Nk in Algorithm 3 are the same as the pre-
conditioner M in Algorithm 2, then the solutions by FLSMR and MLSMR satisfy

xFLSMR
k = argmin

x
‖AT(b−Ax)‖2 over x ∈ Kk(M−1ATA,M−1ATb), (15)

xMLSMR
k = argmin

x
‖AT(b−Ax)‖M−1 over x ∈ Kk(M−1ATA,M−1ATb), (16)

respectively.

1330 MEI YANG, GUL KARADUMAN AND REN-CANG LI

Proof. According to (13), we have

ATAM−1Wk = Wk+1Tk+1Pk,

where Wk is orthonormal and Tk+1Pk is upper Hessenberg. Hence, FLSMR is
exactly the same as GMRES applied to the right-preconditioned linear system

ATAM−1x̂ = ATb, x = M−1x̂.

Therefore, at the kth iteration, we have

xFLSMR
k = M−1x̂k ∈M−1Kk(ATAM−1, ATb) = Kk(M−1ATA,M−1ATb).

According to (10), both FLSMR and MLSMR search their kth approximate
solutions over

x ∈ R(Zk) = Kk(M−1ATA,M−1ATb).

This implies (15) because xFLSMR
k minimizes ‖AT(b − Ax)‖2 over R(Zk). On the

other hand, if we have M = LTL, then by (7), we know that xMLSMR
k can be

written as xMLSMR
k = L−1x̂k, where x̂k is the kth approximate solution obtained

from LSMR for the right-preconditioned least square problem, i.e., x̂k satisfies

x̂k = argmin
x̂∈Kk(L−TATAL−1,L−TATb)

‖L−TAT(b−AL−1x̂)‖2.

Since ‖L−TAT(b−AL−1x̂)‖22 = ‖AT(b−Ax)‖2M−1 and

L−1Kk(L−TATAL−1, L−TATb) = Kk(M−1ATA,M−1ATb),

we conclude

xMLSMR
k = argmin

x∈R(Zk)

‖AT(b−Ax)‖M−1 ,

as was to be shown.

Theorem 2.6 states that FLSMR with a fixed preconditioner and MLSMR solve
two different optimization problems over the same search space.

As we have discussed in the proof of Theorem 2.6, if M = LTL is known, the
kth approximate solution xk obtained from MLSMR satisfies

xk = L−1x̂k, x̂k = argmin
x̂∈Kk(L−TATAL−1,L−TATb)

‖L−TATr‖2, (17)

where r = b−AL−1x̂, x̂k is the kth approximate solution to (2), and

Kk(L−TATAL−1) = R(Vk)

in which Vk is orthonormal and obtained in Algorithm 1. Thus, we can always
rewrite x̂ = Vkŷ for some ŷ ∈ Rk. Based on the previous discussion about MLSMR
in Subsection 2.1, we know that

L−TATr = Vk+1

(
α1β1e1 −

[
BT

k Bk

αk+1βk+1e
T
k

]
ŷ

)
. (18)

Denote by Dk+1 =

[
BT

k Bk

αk+1βk+1e
T
k

]
. Multiplying both sides of (18) by L−1, we get

M−1AT(b−AL−1x̂) = Ṽk+1 (α1β1e1 −Dk+1ŷ) ,

where Ṽk+1 = L−1Vk+1, which is defined in Subsection 2.1. Thus,

ATr = MṼk+1 (α1β1e1 −Dk+1ŷ) . (19)

FLEXIBLE MODIFIED LSMR 1331

Let MṼk+1 = Q̌k+1Řk+1 be the QR decomposition of MṼk+1, where Q̌k+1 ∈
Rn×(k+1) is orthonormal and Řk+1 ∈ R(k+1)×(k+1) is upper triangular. We then
rewrite (19) as

ATr = Q̌k+1Řk+1 (α1β1e1 −Dk+1ŷ) .

Naturally, this leads to a new way for the original least squares problem. Namely,
instead of (17), we seek an approximation as follows:

x̃k = argmin
x∈Kk(M−1ATA,M−1ATb)

‖ATr‖2 = Ṽkẑk (20)

where

ẑk = argmin
ŷ

∥∥α1β1Řk+1e1 − Řk+1Dk+1ŷ
∥∥
2
.

Notice that α1Řk+1e1 = α1r1,1e1 = ‖ATu1‖2e1 = t1,1e1, and Řk+1Dk+1 is upper
Hessenberg, we get

ẑk = argmin
ŷ

∥∥β1t1,1e1 − Řk+1Dk+1ŷ
∥∥
2
, (21)

which takes the same form as FLSMR’s reduced problem (14). With the above
analysis, we can get a variant of MLSMR, which is the preconditioned Golub-Kahan
process (4) followed by solving (21). We can see that this new variant of MLSMR
is equivalent to FLSMR since they both minimize the same objective over the same

search space, x ∈ R(Ṽk) = R(Zk) = Kk(M−1ATA,M−1ATb).

3. Flexible modified LSMR. In MLSMR (Algorithm 2), the most extreme but
impractical preconditioner is M = ATA, with which x1 is the exact solution to the
normal equation (22). However, that is not feasible in practice for large n. Some
approximate inverse of ATA has to be used, or, equivalently, to solve approximately

ATAṽ = p̃, (22)

for ṽ at Lines 1 and 5 in Algorithm 2. By doing so, we implicitly determine some
approximations, likely unknown but exist, of (ATA)−1 in the inner iterations. Us-
ing stationary methods such as the Jacobi and SOR-type methods to solve (22)
yields preconditioners M that remains the same for each inner iteration, but ap-
plying non-stationary methods like CG or MINRES dynamically selects varying
preconditioners, i.e., M changes as p̃ changes from one iteration to the next.

The latter leads to our new approach, namely the flexible modified LSMR method
(FMLSMR), as outlined in Algorithm 5. In our numerical tests later in Section 4,
MINRES is used to solve (22) for FMLSMR.

Symbolically, we may write ṽ1 = M−11 p̃1 at Line 2 and ṽk+1 = M−1k+1p̃k+1 at Line
8, where M1 and Mk+1 are dependent of vectors p̃1 and p̃k+1, respectively, and of
computed approximations ṽ1 and ṽk+1, respectively, as well. Exactly, what these
Mk are is not important as far as executing Algorithm 5 is concerned.

After the kth step, the approximate solution xk is sought in R(Ṽk), and we have

AṼk = Uk+1Bk,

ATUk+1 = [M1ṽ1,M2ṽ2, · · · ,Mk+1ṽk+1]

[
BT

k

αk+1βk+1e
T
k+1

]
.

Let xk = Ṽkỹk. ‖ATrk‖2 can be expressed as follows:∥∥ATrk
∥∥
2

=
∥∥ATb−ATAxk

∥∥
2

=
∥∥ATb−ATUk+1Bkỹk

∥∥
2

1332 MEI YANG, GUL KARADUMAN AND REN-CANG LI

Algorithm 5: Flexible MLSMR

Input: A ∈ Rm×n, b ∈ Rm, and tolerance ε;
Output: Approximate solution to (1).

1: β1 = ‖b‖2, u1 = b/β1, p̃1 = ATu1;
2: solve ATAṽ1 = p̃1 approximately for ṽ1;
3: α1 = 〈ṽ1, p̃1〉1/2, p̂1 = p̃1/α1, ṽ1 = ṽ1/α1;
4:

¯
α1 = α1,

¯
ξ1 = α1β1, ρ0 =

¯
ρ0 =

¯
c0 = 1,

¯
s0 = 0, h1 = ṽ1,

¯
h0 = 0, x0 = 0;

5: for k = 1, 2, . . . , kmax do
6: ûk+1 = Aṽk − αkuk, βk+1 = ‖ûk+1‖2, uk+1 = ûk+1/βk+1;
7: p̃k+1 = ATuk+1 − βk+1p̂k;
8: solve ATAṽk+1 = p̃k+1 approximately for ṽk+1;
9: αk+1 = 〈ṽk+1, p̃k+1〉1/2;

10: p̂k+1 = p̃k+1/αk+1, ṽk+1 = ṽk+1/αk+1;
11: Lines 8 – 23 of Algorithm 2;
12: end for
13: return the last xk.

=

∥∥∥∥ATb− [M1ṽ1, · · · ,Mk+1ṽk+1]

[
BT

k Bk

αk+1βk+1e
T
k

]
ỹk

∥∥∥∥
2

=

∥∥∥∥[M1ṽ1, · · · ,Mk+1ṽk+1] (α1β1e1 −
[

BT
k Bk

αk+1βk+1e
T
k

]
ỹk)

∥∥∥∥
2

≤ ‖[p̂1, · · · , p̂k+1]‖2
∥∥∥∥α1β1e1 −

[
BT

k Bk

αk+1βk+1e
T
k

]
ỹk

∥∥∥∥
2

,

where

ỹk = argmin
ỹ

∥∥∥∥α1β1e1 −
[

BT
k Bk

αk+1βk+1e
T
k

]
ỹ

∥∥∥∥
2

.

Denote [p̂1, · · · , p̂k+1] by Gk+1. Hence, if ‖Gk+1‖2 is not too large, xk can be
a good approximate solution to the original least squares problem (1). Because
Gk+1 is not orthonormal, the residuals by FMLSMR may not be monotonically
decreasing, unlike in FLSMR. However, the computation cost of FMLSMR is less
than that of FLSMR because in FLSMR, a Gram-Schmit orthogonalization step is
conducted twice at Lines 4 – 7 and Lines 15 – 18 of Algorithm 3.

As discussed before, we can choose any non-stationary method to solve (22), and
it’s not easy to find some general theoretical bound on ‖Gk+1‖2. We leave this
problem for the future research but show some numerical results in the next section
to demonstrate that ‖Gk+1‖2 is usually modest.

In numerical experiments, at each iteration of our method, the inner solver is
MINRES with the `-step Lanczos, where ` is a small number compared to the size
of coefficient matrix. The number in Lanczos iterations can be adjusted based on
some tolerance setting for the inner iteration. But it may take many inner iterations
and have stagnation [21] if the tolerance is not appropriately set. From [21] and
[11], we know that the inner-outer iteration method often converges for fairly large
thresholds in the inner iteration. Ideally, ` should be varied for best performance,
but finding a best strategy is difficult. For the moment, we simply choose a small
fixed ` in our implementation.

FLEXIBLE MODIFIED LSMR 1333

4. Numerical experiments. In this section, we perform numerical tests to demon-
strate the advantage of our proposed method FMLSMR.

Firstly, we compare the computational cost of LSMR, FLSMR, and FMSLMR.
Table 1 lists the numbers of flops of all methods where the `-step MINRES is used
in the inner solver for both FLSMR and FMLSMR. The symbol “MV” denotes the
number of flops required for a single matrix-vector multiplication with A ∈ Rm×n,
which is taken to be twice the number of nonzero entries in A. Only the dominant
terms are included in flops in each iteration, which are matrix-vector multiplica-
tions, solutions of the inner linear systems and vector-vector operations. Both the
computational costs of FLSMR and FMLSMR are more than LSMR because of
their inner iterations, and at the same time, for the same inner solver, the compu-
tational cost of FMLSMR is less than that of FLSMR. Later we will also report
CPU times for all examples.

Table 1. Flops of LSMR Variants

k-step of LSMR (3k)(MV) + (8n+ 2m)k

k-step of FLSMR(`) (5 + 2`)k(MV) + 2/3(n+m)k3 + (n2 +m2)k2+

(13n/3 +m/3)k + 6n`k + 4`2k

k-step of FMLSMR (`) (5 + 2`)k(MV) + (12n+ 2m)k + 6n`k + 4`2k

Secondly, we compare the storage requirements for the three methods after the
kth iteration in Table 2. In the table, the 2nd and 3rd columns show the numbers
of stored vectors at the kth iteration. The last column displays the stored matrices
for each methods. FLSMR is the only one requiring matrix storage, which increases
quadratically in k. However, FMLSMR consumes the same amount of storage as
LSMR, which is far less than that of FLSMR. The results of our numerical examples
will confirm this advantage of FMLSMR over FLSMR.

Table 2. Storage of LSMR Variants (besides A and b)

of vectors in Rm # of vectors in Rn Matrices

k-step of LSMR 3 5

k-step of FLSMR k + 4 k + 3 Tk+1, Pk+1

k-step of FMLSMR 3 7

Third, we report our numerical results on 8 testing problems which are drawn
from the SuiteSparse Matrix Collection2 and Matrix Market3.

Among the problems, biplane-9 comes with a right-hand side b. A random
vector b is generated by rand for each of the rest of problems. Table 3 lists some
of their important characteristics, including the matrix size m and n, the number
nnz of nonzero entries in A, and the sparsity nnz/(mn). These are representatives
of many other problems from the collections we have tested. All tests are done by
MATLAB (version R2020b) on a Mac PC with 2.7 GHz Intel Core i7 and 16GB
memory.

2https://sparse.tamu.edu/
3https://math.nist.gov/MatrixMarket

1334 MEI YANG, GUL KARADUMAN AND REN-CANG LI

Table 3. Testing Matrices

ID matrix m n nnz sparsity

1 well1850 1850 712 8755 1.45× 10−2

2 cat ears 3 4 13271 5226 39592 5.7087× 10−4

3 delaunay n16 65536 65536 393150 9.1537× 10−5

4 biplane-9 21701 21701 84076 1.7853× 10−4

5 flower 7 4 67593 27693 202218 1.0803× 10−4

6 crack 10240 10240 60760 5.7936× 10−4

7 fe body 45087 45087 327468 1.6109× 10−4

8 stufe-10 24010 24010 92828 1.6103× 10−4

The stopping criteria are either

NRes =
‖AT(Ax− b)‖2

‖A‖1(‖A‖1‖x‖2 + ‖b‖2)
≤ 10−12, (23)

on normalized residual (NRes) or the number of iterations reaches 105, where using
matrix `1-norm ‖A‖1 is for its easiness in computation. Another assessment is the
backward error for an approximate least squares solution x, which measures the
perturbation to A that would make x an exact least squares solution to a perturbed
least squares problem:

µ(x) ≡ min
E
‖E‖F s.t. (A+ E)T(A+ E)x = (A+ E)Tb, (24)

Waldén [23] et al. and Higham [12] proved that the backward error µ(x) is the
smallest singular value of the matrix[

A ‖r‖2
‖x‖2

(
I − rrT

‖r‖22

)]
.

In our numerical experiments, we use the following easily computable estimate of
backward error in Stewart [22],

Ê = −rr
TA

‖r‖22
, ‖Ê‖2 =

‖ATr‖2
‖r‖2

, (25)

which satisfies the constraint in (24) but does not achieve the minimum there.
Backward error is widely used to estimate the accuracy and stability of a method
for least squares problems. It is usually accepted that the smaller the backward
error is, the more accurate the approximate solution is.

Table 4 collects the numbers of iterations by the methods on the eight problems,
where the best results appear in boldface and for the places marked with “–” it
means that a method fails to solve a corresponding problem, i.e., satisfying (23)
within 105 iterations. Once again the parameter ` in Table 4 indicates that the `-
step Lanczos method is used with MINRES to solve (22) in FLSMR and FMLSMR.
NRes and backward errors are displayed in Figures 1 and 2 for six of the eight
problems. The total CPU times for each example are shown in Table 5.

In Table 6, we display the estimates of ‖Gk+1‖2. We observe that for sever-
al different random right-side vectors, for the fixed ` = 10 for crack, the norms
of all Gk+1 are around 34.8. For the other examples, such as cat ears 3 4 and

FLEXIBLE MODIFIED LSMR 1335

Table 4. Number of Iterations

ID matrix ` LSMR FLSMR FMLSMR

1 well1850 8 463 167 117

2 cat ears 3 4 8 163 26 25

3 delaunay n16 30 – – 14571

4 biplane-9 15 – – 24611

5 flower 7 4 8 195 29 28

6 crack 10 54015 – 7400

7 fe body 30 – – 11200

8 stufe-10 10 28047 – 3297

Table 5. CPU Time (sec.)

ID matrix ` LSMR FLSMR FMLSMR

1 well1850 8 0.0321 0.4880 0.0518
2 cat ears 3 4 8 0.2999 0.4761 0.1220
3 delaunay n16 30 – – 1306.3191
4 biplane-9 15 – – 452.9867
5 flower 7 4 8 0.4535 1.0227 0.4042
6 crack 10 30.8903 – 28.7795
7 fe body 30 – – 517.2462
8 stufe-10 10 23.8165 – 23.0792

flower 7 4, we also have similar observations that for a given `, ‖Gk+1‖2 is mod-
erate.

Table 6. ‖Gk+1‖2

ID matrix ` # of Columns ‖Gk+1‖2
1 well1850 8 117 4.0758
2 cat ears 3 4 8 25 3.1714
3 delaunay n16 30 12599 36.2201
4 biplane-9 15 24504 27.1250
5 flower 7 4 8 28 3.1924
6 crack 10 7424 34.8286
7 fe body 30 9301 28.2897
8 stufe-10 10 3297 11.9839

We have the following observations from Table 4, 5, 6 and Figures 1 and 2.

• The FMLSMR can solve all eight problems while LSMR succeeds on five of
them and FLSMR on only three. Overall, FMLSMR has the best performance
in terms of iteration numbers and CPU times, except for well11850 on which
both FLSMR and FMLSMR are fast while FLSMR holds an edge. Specifically,
for well11850 and stufe-10, LSMR and FMLSMR have comparable perfor-
mance in computational time. For cat ears 3 4 and flower 7 4, FMLSMR

1336 MEI YANG, GUL KARADUMAN AND REN-CANG LI

0 50 100 150 200 250 300 350 400 450 500

iterations

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

N
R

e
s

well1850 with l=8 for MINRES

LSMR

FLSMR

FMLSMR

0 50 100 150 200 250 300 350 400 450 500

iterations

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

N
R

e
s

well1850 with l=8 for MINRES

LSMR

FLSMR

FMLSMR

0 20 40 60 80 100 120 140 160 180

iterations

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

N
R

e
s

cat_ears_3_4 with l=8 for MINRES

LSMR

FLSMR

FMLSMR

0 20 40 60 80 100 120 140 160 180

iterations

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

N
R

e
s

cat_ears_3_4 with l=8 for MINRES

LSMR

FLSMR

FMLSMR

0 20 40 60 80 100 120 140 160 180 200

iterations

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

N
R

e
s

flower_7_4 with l=8 for MINRES

LSMR

FLSMR

FMLSMR

0 20 40 60 80 100 120 140 160 180 200

iterations

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

N
o

rm
a

li
z
e

d
 B

a
c
k
w

a
rd

 E
rr

o
r

flower_7_4 with l=8 for MINRES

LSMR

FLSMR

FMLSMR

Figure 1. NRes (left panel) and normalized backward er-

ror ‖Ê‖2/‖A‖1 (right panel) for well1850, cat ears 3 4, and
flower 7 4.

is better than LSMR in terms of the number of iterations and CPU time. On
delaunay n16, biplane-9, fe body, brack2, and stufe-10, FLSMR fails to
satisfy the stopping criteria even for hours. According to Table 2, as the num-
ber of iterations increase, FLSMR uses much more storage and spends more

FLEXIBLE MODIFIED LSMR 1337

0 1 2 3 4 5 6

iterations 10
4

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

N
R

e
s

crack with l=10 for MINRES

LSMR

FMLSMR

0 1 2 3 4 5 6

iterations 10
4

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

N
o

rm
a

li
z
e

d
 B

a
c
k
w

a
rd

 E
rr

o
r

crack with l=10 for MINRES

LSMR

FMLSMR

0 1 2 3 4 5 6 7 8 9 10

iterations 10
4

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

N
R

e
s

biplane-9 with l=15 for MINRES

LSMR

FMLSMR

0 1 2 3 4 5 6 7 8 9 10

iterations 10
4

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
a

c
k
w

a
rd

 E
rr

o
r

biplane-9 with l=15 for MINRES

LSMR

FMLSMR

0 0.5 1 1.5 2 2.5 3

iterations 10
4

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

N
R

e
s

stufe-10 with l=10 for MINRES

LSMR

FMLSMR

0 0.5 1 1.5 2 2.5 3

iterations 10
4

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

N
o

rm
a

li
z
e

d
 B

a
c
k
w

a
rd

 E
rr

o
r

stufe-10 with l=10 for MINRES

LSMR

FMLSMR

Figure 2. NRes (left panel) and normalized backward error

‖Ê‖2/‖A‖1 (right panel) for crack, biplane-9, and stufe-10.

on orthogonalization. The plots in left column of Figures 1 and 2 demon-
strate a consistent decrease in relative residual across all methods. Notably,
FMLSMR exhibits the fastest convergence among all. Therefore, considering
the storage advantage of FMLSMR and its simple implementation, we can say

1338 MEI YANG, GUL KARADUMAN AND REN-CANG LI

that FMLSMR is a very good choice, especially for difficult problems, over
FLSMR and LSMR.
• The plots in the right column of Figures 1 and 2 show backward errors (25) for

selective problems, and they display very similar patterns to that of NRes (23).

Both ‖ÊFMLSMR‖ and ‖ÊFLSMR‖ are less than ‖ÊLSMR‖, which indicates that
FMLSMR and FLSMR compute more accurate solutions than LSMR does for
the same number of iterations.
• The norms of Gk+1 in Table 6 are modest. This indicates that the solutions

obtained by FMLSMR are good approximates of solutions to the original least
square problem (1) as we discussed in Section 3.

5. Conclusion. In this paper, we present a new method, the Flexible Modified
LSMR (FMLSMR), which integrates the key ideas from the Modified LSMR and
Flexible GMRES algorithms. We conduct a theoretical analysis of the Modified
LSMR and compare it with the Flexible LSMR (FLSMR) when using a given
fixed preconditioner. Through numerical experiments, we illustrate the efficien-
cy of FMLSMR from various angles. The advantages of our method in terms of
storage and computational cost position it as a promising numerical method for
tackling challenging problems in practical applications.

Acknowledgment. The authors wish to thank anonymous referees for their con-
structive comments that improve the presentation considerably.

REFERENCES

[1] M. Arioli, Generalized Golub-Kahan bidiagonalization and stopping criteria, SIAM. J. Matrix
Anal. Appl., 34 (2013), 571-592.

[2] S. R. Arridge, M. M. Betcke and L. Harhanen, Iterated preconditioned LSQR method for

inverse problems on unstructured grids, Inverse Problems , 30 (2014), 1-27.
[3] H. Avron, E. Ng and S. Toledo, Using perturbed QR factorizations to solve linear least squares

problems, SIAM J. Matrix Anal. Appl., 31 (2009), 674-693.

[4] A. H. Baker, E. R. Jessup and T. Manteuffel, A technique for accelerating the convergence of
restarted GMRES, SIAM J. Matrix Anal. Appl., 26 (2005), 962-984.

[5] Å. Björck, Numerical Methods for Least Squares Problems , SIAM, Philadephia, 1996.

[6] J. Chung and S. Gazzola, Flexible Krylov methods for `p regularization, SIAM J. Sci. Com-
put., 41 (2019), S149-S171.

[7] J. Chung and A. K. Saibaba, Generalized hybrid iterative methods for large-scale Bayesian
inverse problems, SIAM J. Sci. Comput., 39 (2017), S24-S46.

[8] D. C.-L. Fong and M. Saunders, LSMR: an iterative algorithm for sparse least-squares prob-

lems, SIAM J. Sci. Comput., 33 (2011), 2950-2971.
[9] L. Giraud, S. Gratton, X. Pinel and X. Vasseur, Flexible GMRES with deflated restarting,

SIAM J. Sci. Comput., 32 (2010), 1858-1878.

[10] G. Golub and W. Kahan, Calculating the singular values and pseduo-inverse of a matrix,
SIAM J. Numer. Anal. Ser. B , 2 (1965), 205-224.

[11] G. Golub and Q. Ye, Inexact preconditioned conjugate gradient method with inner-outer

iteration, SIAM J. Sci. Comput., 21 (1999), 1305-1320.
[12] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edition, SIAM, Philade-

phia, 2002.

[13] A. Imakura, R.-C. Li and S. L. Zhang, Locally optimal and heavy ball GMRES methods,
Jpn. J. Ind. Appl. Math., 33 (2016), 471-499.

[14] G. Karaduman and M. Yang, An alternative method for SPP with full rank (2, 1)-block
matrix and nonzero right-hand side vector, Turk. J. Math., 46 (2022), 1330-1341.

[15] G. Karaduman, M. Yang and R.-C. Li, A least squares approach for saddle point problems,

Jpn. J. Ind. Appl. Math., 40 (2023), 95-107.
[16] N. Li and Y. Saad, MIQR: A mutilevel incomplete QR preconditioner for large sparse least-

squares problems, SIAM J. Matrix Anal. Appl., 28 (2006), 524-550.

http://mathscinet.ams.org/mathscinet-getitem?mr=MR3055239&return=pdf
http://dx.doi.org/10.1137/120866543
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3233022&return=pdf
http://dx.doi.org/10.1088/0266-5611/30/7/075009
http://dx.doi.org/10.1088/0266-5611/30/7/075009
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2530271&return=pdf
http://dx.doi.org/10.1137/070698725
http://dx.doi.org/10.1137/070698725
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2178207&return=pdf
http://dx.doi.org/10.1137/S0895479803422014
http://dx.doi.org/10.1137/S0895479803422014
http://dx.doi.org/10.1137/1.9781611971484
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4024756&return=pdf
http://dx.doi.org/10.1137/18M1194456
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3716558&return=pdf
http://dx.doi.org/10.1137/16M1081968
http://dx.doi.org/10.1137/16M1081968
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2861656&return=pdf
http://dx.doi.org/10.1137/10079687X
http://dx.doi.org/10.1137/10079687X
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2678082&return=pdf
http://dx.doi.org/10.1137/080741847
http://mathscinet.ams.org/mathscinet-getitem?mr=MR183105&return=pdf
http://dx.doi.org/10.1137/0702016
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1740397&return=pdf
http://dx.doi.org/10.1137/S1064827597323415
http://dx.doi.org/10.1137/S1064827597323415
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1927606&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR3518714&return=pdf
http://dx.doi.org/10.1007/s13160-016-0220-1
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4456947&return=pdf
http://dx.doi.org/10.55730/1300-0098.3163
http://dx.doi.org/10.55730/1300-0098.3163
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4528981&return=pdf
http://dx.doi.org/10.1007/s13160-022-00509-y
http://mathscinet.ams.org/mathscinet-getitem?mr=MR2255341&return=pdf
http://dx.doi.org/10.1137/050633032
http://dx.doi.org/10.1137/050633032

FLEXIBLE MODIFIED LSMR 1339

[17] K. Morikuni and K. Hayami, Convergence of inner-iteration GMRES methods for rank-
deficient least squares problems, SIAM J. Sci. Comput., 36 (2015), 225-250.

[18] C. C. Paige and M. A. Saunders, LSQR: An algorithm for sparse linear equations and sparse

least squares, ACM Trans. Math. Software, 8 (1982), 43-71.
[19] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput.,

14 (1993), 461-469.
[20] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition, SIAM, Philadelphia, 2003.

[21] V. Simoncini and D. B. Szyld, Flexible inner-outer Krylov subspace methods, SIAM J. Numer.

Anal., 40 (2002), 2219-2239.
[22] G. W. Stewart, Research, development, and LINPACK, in Mathematical Software, Academic

Press, New York, (1977), 1-14.

[23] B. Waldén, R. Karlson, and J.-G. Sun, Optimal backward perturbation bounds for the linear
least squares problem, Numer. Linear Algebra Appl., 2 (1995), 271-286.

[24] M. Yang, Optimizing Krylov Subspace Methods for Linear Systems and Least Squares Prob-

lems, Ph.D. thesis, University of Texas at Arlington, 2018.
[25] M. Yang and R.-C. Li, Heavy ball flexible GMRES method for nonsymmetric linear systems,

J. Comput. Math., 40 (2022), 711-727.

Received September 2024; 1st revision March 2025; final revision June 2025; early
access July 2025.

http://mathscinet.ams.org/mathscinet-getitem?mr=MR3317782&return=pdf
http://dx.doi.org/10.1137/130946009
http://dx.doi.org/10.1137/130946009
http://mathscinet.ams.org/mathscinet-getitem?mr=MR661121&return=pdf
http://dx.doi.org/10.1145/355984.355989
http://dx.doi.org/10.1145/355984.355989
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1204241&return=pdf
http://dx.doi.org/10.1137/0914028
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1990645&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1974182&return=pdf
http://dx.doi.org/10.1137/S0036142902401074
http://mathscinet.ams.org/mathscinet-getitem?mr=MR474681&return=pdf
http://dx.doi.org/10.1016/B978-0-12-587260-7.50005-4
http://mathscinet.ams.org/mathscinet-getitem?mr=MR1332715&return=pdf
http://dx.doi.org/10.1002/nla.1680020308
http://dx.doi.org/10.1002/nla.1680020308
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4051387&return=pdf
http://mathscinet.ams.org/mathscinet-getitem?mr=MR4448613&return=pdf
http://dx.doi.org/10.4208/jcm.2101-m2019-0243

	1. Introduction
	2. Modified LSMR and Flexible LSMR
	2.1. Modified LSMR
	2.2. Flexible LSMR Method
	2.3. A Brief Comparison of FLSMR and MLSMR

	3. Flexible modified LSMR
	4. Numerical experiments
	5. Conclusion
	Acknowledgment
	REFERENCES

