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Background: Esophageal cancer management lacks reliable response predictors to
chemotherapy. In this study we evaluated the feasibility and accuracy of Biodynamic
Imaging (BDI), a technology that employs digital holography as a rapid predictor of
chemotherapy sensitivity in locoregional esophageal adenocarcinoma.

Methods: Pre-treatment endoscopic pinch biopsies were collected from patients
with esophageal adenocarcinoma during standard staging procedures. BDI analyzed
the tumor samples and assessed in vitro chemotherapy sensitivity. BDI sensitivity
predictions were compared to patients’ pathological responses, the gold standard
for determining clinical response, in the surgically treated subset (n=18).

Result: BDI was feasible with timely tissue acquisition, collection, and processing
in all 30 enrolled patients and successful BDI analysis in 28/29 (96%) eligible. BDI
accurately predicted chemotherapy response in 13/18 (72.2%) patients using a
classifier for complete, marked, and partial/no-response. BDI technology had
100% negative predictive value for complete pathological response hence
identifying patients unlikely to respond to treatment.

Conclusion: BDI technology can potentially predict patients’ response to
platinum chemotherapy. Additionally, this technology represents a promising
step towards optimizing treatment strategies for esophageal adenocarcinoma
patients by pre-emptively identifying non-responders to conventional platinum-
based chemotherapy.
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Introduction

Esophageal adenocarcinoma (EA) is a significant health
concern worldwide. In the United States, it accounts for over
16,000 deaths annually (1). Most patients are diagnosed with
locally advanced stage II or III disease, for which the gold
standard treatment is preoperative CRT (CRT) followed by
surgery in eligible patients. Recently, adjuvant immunotherapy
was integrated into the treatment of those with residual disease at
the time of surgery (2, 3). Nonetheless, the 5-year survival rate for
locoregional EA remains below 20% (4).

Neoadjuvant CRT provides an absolute benefit of 13%
improvement in 5-year survival for locally advanced esophageal
cancer compared to surgery alone (5, 6). The benefits of
neoadjuvant chemotherapy and radiation are most pronounced
among patients with an excellent histopathological response.
However, only 23% of patients with EA display a complete
pathological response, as demonstrated by the CROSS trial (2).
Conversely, patients with a poor response to CRT are more likely to
have a poor prognosis and suffer from treatment-related toxicities
with limited benefits. Studies estimate that 40% of patients treated
with CRT suffer from toxicities while deriving limited benefit (2, 7-
12). These toxicities range from financial and emotional burdens to
physical side effects, such as fatigue, esophagitis, and bone
marrow suppression.

The ability to accurately predict chemotherapy response would
optimize treatment outcomes by identifying patients most likely to
benefit from neoadjuvant therapy. It would also support likely non-
responders by providing them with additional data for a more
informed discussion regarding their prognosis and spare them
unnecessary toxicities. Although several “Predictive Biomarkers”
have been evaluated, none have been validated for predicting the
response to platinum chemotherapy or taxanes, the standard EA
chemotherapies. Additionally, the reliability of traditional staging
imaging modalities, such as positron emission tomography (PET),
in predicting treatment response remains uncertain (13).

We investigate Biodynamic Imaging (BDI) as a potential
solution. BDI uses low-intensity light illumination to construct
three-dimensional holographic reconstructions from depths up to
one millimeter inside the tissue. These reconstructions allow it to
capture and analyze intracellular motions in living tissue and cancer
biopsies. Intracellular motions within the tissue produce signals that
were shown to be modulated by tumor therapeutic agents in the
laboratory setting. Capturing and interpreting these signals enables
BDI to measure cellular responses to applied therapeutics (14-29)
Preliminary laboratory BDI testing in ovarian cancer cell lines with
different cisplatin sensitivities, in human epithelial ovarian cancer
(30) and in canine multicentric lymphoma to predict doxorubicin
sensitivity (31) supported its potential as a chemotherapeutic
response predictor and pave the way for human trials.

In this phase 2 trial, we explore implementing BDI technology
in a clinical setting and its potential predictive ability for
chemotherapy response in locoregional EA by training a three-
class neural network classifier for EA clinical chemotherapy
response. The primary objective was to examine the feasibility of
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implementing the BDI technique in a clinical setting with respect to
patient enrollment, tumor tissue acquisition, sample transport
within 24 hours, sample processing, and the successful application
of BDI technology. The secondary objective was to determine the
correlation between the obtained BDI prediction and patients’
clinical response to chemotherapy, defined as the pathological
response in the subset of patients who underwent surgery.

Methods
Eligibility criteria

We enrolled patients aged > 18 years with untreated,
nonmetastatic, histologically confirmed EA who were medically
fit and willing to undergo chemoradiotherapy. The Institutional
Review Board provided ethical approval, and all participants
provided written informed consent.

Specimen collection

Participants underwent endoscopic ultrasound (EUS) for
standard disease staging, during which we collected a tumor pinch
biopsy, the only sample collected for research. The tumor samples
were sent to the laboratory for analysis, as described below.
Subsequently, the participants received standard preoperative
chemoradiotherapy followed by surgery if medically appropriate.
Treatment and management decisions, including chemotherapy
regimen selection, rested on the treating physician’s discretion and
followed the standard of care. These decisions were made
independently of the BDI results. The two main concurrent
chemotherapy regimens were carboplatin with paclitaxel or
cisplatin with 5-fluorouracil. We recorded the administered
regimen to each patient and matched it to its representative BDI
analysis arm. After completing CRT therapy, if patients underwent
esophagectomy, we recorded their pathological response and
evaluated the correlation between it and BDT’s response prediction.
Table 1 presents the criteria for assessing tumor pathological
responses. We limited the correlation with BDI to the pathological
results in the subset of patients who underwent esophagectomies, as
surgery is the gold standard for determining pathological responses in
locoregional EA. Pathological responses post CRT have been shown
to correlate with overall survival in esophageal cancer (32). EUS post-
chemoradiotherapy has limited specificity and sensitivity, and EUS
biopsies post-chemoradiotherapy are limited by sampling errors (33—
35). In addition, inflammatory changes on PET/CT limit the
interpretation and determination of treatment response using this
modality (36). BDI results from patients who did not undergo
surgical resection were classified using the neural network classifier
but were not used for training or for calculating prediction accuracy.

Radiation effects were not modeled in vitro as there is no simple
way to mimic radiotherapy in the laboratory setting. We accept this
as a potential limitation of the present study. Any adverse events
related to the study procedure were recorded and followed up. All
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TABLE 1 Criteria for assessing tumor pathological response (modified
from the College of American Pathologists guidelines).

Response Definition

No residual tumor/ Grade 0: no viable cancer cell, 0% tumor.

Complete Response

Near Complete/
Marked Response

Grade 1: single/rare groups of cancer cells, 0 -
<10% residual tumor.

Moderate/Partial Response  Grade 2: residual cancer with regression, 10-50%

residual tumor.

Poor/No definite response Grade 3: No tumor regression, >50%

residual tumor.

treating specialists were blinded to BDI prediction. Figure 1 outlines
the study’s design.

Biopsy sample processing

Tumor biopsy samples used for biodynamic imaging were
chilled (4°C) the same day and dissected into multiple pieces of
one mm®. Between 16 and 32 pieces per patient were immobilized
in 96-well plates using agarose and immersed in RPMI 1640 growth
medium. The wellplate with the biopsy samples was then mounted
onto the sample stage of the BDI system for data acquisition. After
acquisition of a 4-hour baseline, samples were treated with cisplatin,
carboplatin, 5-fluorouracil, and paclitaxel individually and with
each combination of (cisplatin + 5-fluorouracil) and (carboplatin
+ paclitaxel). The four chemotherapy agents were selected based on
their prevalent use in treating EA and their varied action
mechanisms, representing the therapeutic strategies employed in
current clinical practice. The dynamic spectra were acquired over 10
hours after the application of the treatment in vitro, capturing the
early physiological responses of the samples to the treatments likely
related to the uptake facility of small-molecule drugs by living cells
within the biopsy. The biopsy samples have been shown to fully
maintain their health during this period. Afterward, the culture

Patients with advanced
locoregional esophageal
adenocarcinoma

Initial staging procedure
| +
Sample collection
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medium was replaced with 10% neutral buffered formalin for
preservation and stored at 4°C.

Biodynamic imaging

Biodynamic Imaging (BDI) is a dynamic-contrast, holographic
optical coherence tomography technique. The optical principle
behind the technique is off-axis holography; the interference of the
object and reference fields with a small offset angle creates a hologram
on the Fourier plane of the digital camera, and a numerical spatial
transform of the hologram yields a reconstruction of the object field
on the image plane. The offset between the two beams creates spatial
separation of the reconstructed components due to the spatial carrier
wave associated with the interference fringe pattern. BDI is optimized
to have high sensitivity to small-scale intracellular motions. These
motions are captured by the dynamic speckle pattern on the
hologram, which in turn is captured by the intensity fluctuations of
the reconstructed field which can be used as a surrogate observable to
examine the dynamics of the living tissue sample.

For this study, a Mach-Zehnder interferometer with short-
coherence superluminescent diode (SLD) source of A = 840nm was
used to implement the BDI technique. A schematic of the optical
system is shown in Figure 2. The low-coherence light and variable
optical path length (OPL) on the reference arm enable coherence
gating, where photons with matching OPL are coherent with respect
to the reference and form a stable interference pattern, while photons
whose OPL stretches outside the coherence length contribute only to
random noise. Coherence gating allows a consistent acquisition of
thin optical sections (~20 um) of the sample.

BDI features

BDI data consisting of high-frame-rate dynamic speckle images
were converted into fluctuation power spectra averaged over all the
sample pixels. Each power spectrum corresponds to an
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FIGURE 1
Outline of the study design. Bolded areas represent study interventions.
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A schematic diagram of the Mach-Zehnder interferometer used to perform biodynamic imaging (BDI). The reference arm contains a 180° reflector
mounted on a motorized stage to control the coherence depth for the optical sectioning. The object arm contains a series of optical Fourier
transforms with spatial filters (apertures). The object and reference beams are recombined with a slight angle offset at the beam splitter (BS3) and
projected onto the camera located on the Fourier plane, where the interferogram is recorded.

approximately 40-minute time frame. Several pre-treatment time
frames established each sample’s baseline, while post-treatment
frames captured drug-induced changes. Data aggregated from
multiple time frames for each sample were converted into a
differential spectrogram, i.e., a time-frequency representation of
the relative change in spectral power, offering the “fingerprint” of
the drug’s action on that sample (37). A visual summary of the data
processing steps is shown in Figure 3A comprehensive report on the
process and specifications of the BDI technology and other tools
used in this project are published in Hua et al. (2024) (38).

We analyzed these fingerprints using time-frequency masks to
isolate spectrogram sections previously correlated with biological
function. For instance, concurrent high and low-frequency
enhancements correlate with apoptosis. Hence, this concurrence
is used as a biomarker. Various biomarkers were assessed, including
integrated post-treatment power over the entire spectrogram,
selected frequency bands, strong inhibition occurrence, overall
spectra frequency shift, and collective fluctuation amplitude. We
utilized the strongest correlating biomarkers exclusively to generate
tumor cell survival predictive classifications presented as Complete
Response (Grade 0), Marked Response (Grade 1), and Partial/No
Response (Grade 2 or 3). Of these, the dominant treatments that
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best differentiated the responsive from the non-responsive patients
were cisplatin, paclitaxel and the combination cisplatin+5fu. The
dominant biomarkers were broad-frequency inhibition, change in
metabolic activity, and shift in intracellular speeds.

Neural network with triplet loss

The biomarkers were narrowed down to 20, with the strongest
clinical outcome correlations. These were used as the input to a
minimal two-hidden-layer neural network (NN) model with 20
neurons in the input layer, 20 in the first hidden layer, 10 in the
second hidden layer, and 3 in the output layer. The NN was trained
with the Adam update Matlab algorithm on a triplet loss function
(39) for dimensionality reduction from D = 20 to D = 3. The three-
dimensional output of the neural net was the input to a k-means
clustering algorithm to generate the three-class classifier. The
classifier was trained and validated using a one-left-out (OLO)
approach in which each successive patient was held out of the
training and then classified by the network trained on the remaining
patients. Only patients with clinical pathology outcomes were used
for training. Each patient receives a likelihood of belonging to each
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A visual summary of the data processing steps involved in biodynamic imaging. (A) the raw hologram captured by the camera, showing the
interference fringes and speckle pattern; (B) 2D digital Fourier transform of the hologram showing the zeroth order terms (spatial autocorrelation) in
the center, the object field and its phase conjugate offset from the center; (C) an averaged power spectrum; (D) differential spectrogram showing
the change in power spectral weights over the course of the experiment for one sample.

class. A table presenting BDI predicted response to chemotherapy
and clinical pathological response to chemotherapy after surgery by
subject is available in Appendix A.

Statistical methods

Given the exploratory nature of this pilot study, our analysis is
primarily descriptive, focusing on the feasibility of the BDI
application and its predictive accuracy, which was limited to
patients with available pathological responses. In a preclinical trial
of biodynamic imaging for canine non-Hodgkin’s lymphoma
sensitivity to doxorubicin with 10 dogs, the assay had a 90%
correct classification rate (1 false case out of 10). Of the 6 dogs
that were clinical responders, 5 of 6 were classified as responders by
BDI. Of the 4 dogs that were clinical non-responders, all four were
classified as non-responders by BDL. If our true correct classification
rate in this study is 90%, with a sample size of n=15, a 95% two-
sided confidence interval around that percentage would cover
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between 75% and 100%. However, because some samples may
have quality problems (i.e., too little material, too heterogeneous
material), up to 15 additional subjects were planned to be enrolled
(n=30) to ensure 15 samples suitable for analysis, yielding an
adequate estimate of the correct classification rate at this stage of
the research. A point estimate and a 95% exact confidence interval
were calculated. Table 2 lists the pathological response and the
equivalent BDI prediction.

Results

Biodynamic imaging is feasible in the
clinical setting

We enrolled 30 patients, later withdrawing one found to have
metastatic disease, resulting in 29 subjects eligible for BDI analysis.
Among the 29 patients, 18 proceeded to surgery and had their
pathological responses documented. Among them, 6 patients
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TABLE 2 Clinical pathological response and equivalent BDI
clinical prediction.

Path Response BDI Response

Grade 0 Complete Response (Sensitive)
Grade 1 Marked Response (Mixed)
Grade 2 or 3 No Response (Resistant)

achieved a grade 0 pathological response, 6 patients had grade 1
response, 4 patients had grade 2 response, and 2 patients had grade 3
response. The remaining 11 (37.93%) underwent chemoradiotherapy
without surgery for several reasons, including poor recovery from
chemoradiotherapy, patient choice, or surgeon’s preference. Table 3
summarizes the demographics and clinical characteristics of our
complete cohort and the surgery subset.

We obtained and completed processing all 30 subjects’ biopsy
samples for BDI analysis within 24 to 72 hours. BDI analysis was
successfully performed on 28/29 eligible patients’ samples,
reflecting a 96.6% success rate. The single failure was due to one
sample lacking sufficient tissue for complete BDI analysis. Of the 29
patients on-study, we observed no study procedure or biopsy-
related complications.

Biodynamic imaging prediction correlates
with pathological response to platinum-
based chemotherapy

Table 4 presents a detailed comparison of BDI predictions to
actual pathological responses. BDI predictions using a three-class
neural network classifier (Grade 0, Grade 1, and combined Grades 2
& 3) aligned with clinical outcomes in 72.2% (13/18 patients) of
cases (noting that random odds are 33.3%). BDI correctly identified
all 6 patients with a Complete response (grade 0). For the 6 patients
with a marked pathological response (Grade 1), BDI misclassified 3
cases, overpredicting in 1 and underpredicting in 2 cases. Among
the 6 patients with limited to no pathological response (Grade 2 and
Grade 3), BDI mis-predicted by overestimating response to
treatment in 2 cases.

Overall, BDI showed a moderate correlation with actual clinical
outcomes. For complete responses, the prediction accuracy was
100% (6 out of 6). For marked responses, the accuracy was 50% (3
out of 6). For non-responders, the accuracy was 66.6% (4 out of 6).
The sensitivity for complete pathological response was 100% (6 out
of 6). Its specificity was 83.3% (10 out of 12), positive predictive
value (PPV) 75% (6 out of 8), and negative predictive value (NPV)
was 100% (10 out of 10). It incorrectly predicted 25% (2 of 8 cases)
as having a complete pathological response when they did not.

Figure 4 shows the likelihood for belonging to one of the three
classes for all patients, grouped according to the pathological
response (Grades 2&3, Grade 1 and Grade 0). The dominant
likelihood is taken as the patient prediction for correlation to
clinical outcomes, as in Table 4.
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TABLE 3 Demographics and baseline clinical characteristics of all
participants and those receiving surgery.

Characteristic Enrolled Sub- Surgery Recipi-
jects (n=30) ents (n=18)
Age at Enrollment, 66.0 (13.2) 60.9 (10.3)
mean (SD)
Sex
Female, n(%) 6 (20.0) 2 (11.1)
Male, n(%) 24 (80.0) 16 (88.9)
Race
White, n(%) 29 (96.7) 17 (94.4)
Unknown, n(%) 1(3.3) 1(5.6)
Ethnicity
Non-Hispanic, n(%) 27 (90.0) 16 (88.9)
Unknown, n(%) 3 (10.0) 2 (11.1)
Disease Stage at Specimen Collection
1B, n(%) 4(13.3) 2 (11.1)
1B, n(%) 5(16.7) 4(22.2)
1A, n(%) 1(3.3) 0 (00.0)
IIIA, n(%) 13 (43.3) 8 (44.4)
I1IB, n(%) 2 (6.7) 1(5.6)
IIIC, n(%) 1(3.3) 0 (00.0)
Unknown, n(%) 3 (10.0) 2 (11.1)
Missing, n(%) 1(3.3) 1(5.6)
TMN Stage at Specimen Collection
TIN2MO, n(%) 1(3.3) 0 (00.0)
T2NOMO, n(%) 3 (10.0) 0 (00.0)
T2NOMX, n(%) 2(6.7) 2 (11.1)
T2N1MO, n(%) 3 (10.0) 3 (16.7)
T2N2MX, n(%) 1(3.3) 0 (00.0)
T3NOMO, n(%) 2 (6.7) 1(5.6)
T3NO0 MX, n(%) 1(3.3) 1(5.6)
T3N1 MO, n(%) 8 (26.7) 1(5.6)
T3NIMX, n(%) 3 (10.0) 5(27.8)
T3 N2 MO, n(%) 2 (6.7) 1(5.6)
T3N2MX, n(%) 2(6.7) 1(5.6)
T3N3MO, n(%) 1(3.3) 2 (11.1)
Missing, n(%) 1(3.3) 1(11.1)
Chemotherapy Regimen
Carbotaxol, n(%) 22 (73.3) 10 (55.6)
Cisplatin + 5-FU, n(%) 6 (20.0) 6 (33.3)
5FU, n(%) 1(3.3) 1(5.6)
FOLFOX, n(%) 1(3.3) 1(5.6)
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TABLE 4 BDI response prediction compared to patients’ pathological
(clinical) response.

Actual Pathological

Response
BDI Pathological Grade Grade Grade
Response Prediction (0] 2/3
Grade 0 6 1 1
Grade 1 0 3 1
Grade 2/3 0 2 4

The three-class likelihoods can be combined into two-class
classifiers to generate receiver operator curves (ROCs) for several
combinations. The ROCs for these comparisons plot true positive
rate against false positive rate and are shown in Figure 5A for three
cases: Grades 2&3 versus Grade 0, Grades 1&2&S3 versus Grade 0,
and Grades 2&3 versus Grades 0&1. The first case ignores the
marked (but not complete) responders (AUC = 85%). The second
case compares Grade 0 (complete pathological response) against all
others (AUC = 92%). The third case compares the non-responders
to the complete and marked responders (AUC = 74%). The
diagonal in the figure represents 50/50 likelihood for a random
relationship. The area under the curve (AUC) is a measure of assay
reliability with a maximum 1.00 for a “perfect” assay and 0.50 for a
random relationship. Figure 5B shows the probability distribution
functions for the first case that compares the least responsive to the
most responsive patients for which the AUC = 85%.

10.3389/fonc.2024.1429343

Discussion

The application of BDI provides evidence of the feasibility of its
implementation in a clinical setting. All samples were successfully
collected, transported, and processed within hours, confirming
BDI’s suitability for routine clinical use. We also obtained BDI
results for 28 of the 29 examined samples without any biopsy-
related complications.

Crucially, BDI’s preclinically observed predictive capability
appears to translate to the human model of EA. Our study
demonstrated that BDI predicts chemotherapy responses with
72.2% accuracy for a three-class classifier (33% random
performance), a moderate yet promising success rate. This rate is
comparable to the 84% accuracy for the two-class classifier (50%
random performance) noted in preclinical trials (31). It is important
to acknowledge the complex and heterogeneous nature of human
tumors and the influence of host factors on drug responses. These
factors may not have been fully captured in preclinical models, as
they were trained on a limited number of canine rather than
human samples.

Additionally, the underprediction in 2 cases may be attributed
to the synergistic effect of radiotherapy in clinical practice, which
has been shown to improve local-regional control of esophageal
cancers, helping achieve a complete pathological response; however,
the radiation effect was not replicated for the BDI analysis (40). It
must be kept in mind that accuracy may improve with broader BDI
implementation. Utilizing larger human datasets and markers
would help refine biomarker selection prior to training the neural
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(+1). Respectively, Grade O signifies tissue sensitivity to chemotherapy and Complete Response clinically, Grade 1 signifies a mixed response to
chemotherapy and a Marked Response clinically, finally Grade 2 or 3 signify Partial/No Response to chemotherapy as in the tissue is resistant to

chemotherapy and tumor regression is not expect clinically.

network, reducing training epochs and the size of the hidden
neuron layers to decrease the possibility of overfitting.

Notably, BDI had a 100% accuracy in predicting all 6 patients
with clinical complete response (grade 0). Nonetheless, it mis
predicted 2 other patients as achieving grade 0. With its high
sensitivity (100%), specificity (83.3%), and 100% negative
predictive value, BDI has the potential to identify the subset of
patients less likely to have a complete pathological response to
treatment. The BDI technique shows promising implications for
personalized cancer treatment. Theoretically, BDI could enable
clinicians to predict tumor responses to chemotherapy prior to
treatment by identifying those unlikely to respond to
chemotherapy. It may also permit physicians to compare the
potential impact of different regimens in tumors without cross-
resistance to the available regimens, subsequently choosing the ideal
treatment. Tailoring the most effective individual regimen would
improve patient outcomes and minimize unnecessary toxicities.

BDI's advantages over other
predictive tools

A key BDI strength is providing real-time tumor response data
before chemotherapy initiation. These data were obtained rapidly
within 24-72 hours from a tumor biopsy, avoiding any treatment
delays compared to gene expression profiling methods that can
take weeks.

Although BDI requires a fresh biopsy, its ability to functionally
assess living tumor tissue within its native 3D microenvironment
promises more accurate predictions than solely genomic,
proteomic, or even 2D culture methods. Unlike surface imaging
techniques, BDI can probe into tissues, providing a comprehensive

Frontiers in Oncology

view of tumor dynamics in naturally hypoxic conditions far from
tissue surfaces. Distinguishing itself from tools that merely quantify
static gene or protein levels, BDI offers dynamic insights into
functional tumor responses like intracellular motions and viability
after drug exposure. It captures crucial phenotypic information
beyond genomics, such as accurate drug delivery and response
kinetics and provides superior biological context. The large number
of extracted biodynamic features allows for comprehensive analysis
capturing tumor heterogeneity, hence predicting the regimen with
the best potential response for most tumor volume. BDI bridges the
best attributes of in vitro sensitivity assays and modern Artificial
Intelligence (AI) and Machine Learning (ML) Models while
sidestepping their limitations. The success of AI and ML models
depends on the quality and quantity of the training data. These
models can be “black boxes,” making it difficult to interpret their
predictions. BDI circumvents these issues by generating a large
amount of high-quality data and translating it into specific, reliable,
and easily interpreted response fingerprints and outcomes.
Among the strengths of this study is the novelty of BDI
technology, which offers real-time insights into chemotherapeutic
response. The high rate of successful biopsy sample collection and
processing further contributes to the reliability of the results.
Nonetheless, several limitations warrant discussion, such as the
small number of patients who underwent surgery, limiting the
training set for the neural network. The pilot nature of this study
limits the generalizability of our findings. The study does not
account for the effects of radiotherapy, a standard treatment for
locoregional EA received by all participants, that is synergistic with
chemotherapy contributing to the pathological response.
Furthermore, the classification of drug response derived from
previous preclinical work may only partially translate to human
tumors. Finally, the study population, while reflecting the sex
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demographics of esophageal adenocarcinoma patients, lacked
diversity, being predominantly white, limiting generalizability
across other populations. Further large-scale blinded studies in
diverse cohorts are needed to substantiate BDI’s predictive
accuracy before clinical implementation. The inherent spatial
heterogeneity of tumors and the potential non-representativeness
of a single fine needle biopsy sample may explain some
discrepancies between BDI’s predictions and clinical outcomes
and must be addressed in subsequent research.

Conclusion

Biodynamic Imaging has demonstrated high feasibility for clinical
application and promising efficacy in predicting chemotherapy
response in locoregional esophageal adenocarcinoma, especially
among poor responders. The technology’s rapid-response capability
and maintenance of the biopsy’s 3D architecture are key strengths
supporting its potential use in personalized treatment strategies.
Integrating BDI with other predictive modalities could yield a more
robust and multidimensional approach to treatment planning.
Exploring the applicability of BDI to other malignancies and
treatment modalities, such as radiotherapy and immunotherapy,
could further establish its versatility as a predictive tool. After
additional validation, BDI may guide treatment prospectively when
deciding between different regimens. Furthermore, with its predictive
ability, BDI may hold promise as a tool to test the development and
efficacy of new cancer treatments.
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Appendix A

BDI predicted response to chemotherapy and clinical pathological
response to chemotherapy after surgery by subject.

BDI Grade BDI Grade BDI Grades Pathological Clinical

0 1 2or Grade pathological
probability | probability 3 from BDI Grade from
probability surgery,

collapsing
Grade 2
and 3

2 0.567 0.270 0.163 Grade 0 Grade 0

4 0.513 0.352 0.135 Grade 0 Grade 1

7 0.214 0.490 0.296 Grade 1 Grade 1

9 0.214 0.329 0.457 Grade 2/3 Grade 2/3

11 0.769 0.136 0.095 Grade 0 Grade 0

12 0.146 0.077 0.777 Grade 2/3 Grade 2/3

13 0.453 0.300 0.246 Grade 0 Grade 2/3

14 0.440 0.410 0.150 Grade 0 Grade 0

18 0.227 0.695 0.078 Grade 1 Grade 1

19 0.619 0.205 0.176 Grade 0 Grade 0

20 0.160 0.079 0.761 Grade 2/3 Grade 2/3

22 0.394 0.242 0.364 Grade 0 Grade 0

24 0.385 0.194 0421 Grade 2/3 Grade 2/3

26 0.571 0.178 0.251 Grade 0 Grade 0

29 0.377 0.244 0.379 Grade 2/3 Grade 1

32 0.326 0.386 0.288 Grade 1 Grade 1

33 0.114 0.403 0.483 Grade 2/3 Grade 1

34 0.297 0.651 0.052 Grade 1 Grade 2/3
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