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Summary statement: Maximum heart rate can be assessed in anaesthetized fish during acute
warming to characterize cardiac thermal performance and upper thermal limits. The method is

high throughput, and broadly applicable.
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Abstract:

The thermal sensitivity of heart rate (fy) in fishes has fascinated comparative physiologists for
well over a century. We now know that elevating fy is the primary mechanism through which
fishes increase convective oxygen delivery during warming to meet the concomitant rise in tissue
oxygen consumption. Thus, limits on fy can constrain whole-animal aerobic metabolism. In this
Review, we discuss an increasingly popular methodology to study these limits, the measurement
of pharmacologically induced maximum fy (fumax) during acute warming of an anaesthetized
fish. During acute warming fumax increases exponentially over moderate temperatures (Qqo ~ 2-
3), but this response is blunted with further warming (Qo ~1-2) with fumax ultimately reaching a
peak (Qjo < 1) and the heartbeat becoming arrhythmic. Because the temperatures at which these
transitions occur commonly align with whole-animal optimum and critical temperatures (e.g.
aerobic scope and the critical thermal maximum) they can be valuable indicators of thermal
performance. The method can be performed simultaneously on multiple individuals over a few
hours and across a broad size range (<1g to >6000g) with compact equipment. This simplicity
and high throughput make it tractable in lab and field settings and enable large experimental
designs that would otherwise be impractical. As with all reductionist approaches, the method
does have limitations. Namely, it requires anesthesia and pharmacological removal of extrinsic
cardiac regulation. Nonetheless, the method has proven particularly effective in the study of
patterns and limits of thermal plasticity and holds promise for helping to predict and mitigate

outcomes of environmental change.
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Introduction

The essential response of heart rate to thermal variation

The controlling influence of temperature on heart rate (f) has fascinated comparative
physiologists for well over a century. Early interrogations of the relationship between
temperature and biological rate functions often focused on fy for practical and functional reasons
(Crozier 1926; Cyon 1866; Fry 1947; Glaser 1929; Martin 1883; Zimmer 1998). From a practical
perspective, the heartbeat could be directly observed at early life-stages in many species and in
ex-vivo preparations, or readily assessed from recordings of blood pressure, blood flow, cardiac
electrical activity and plethysmography. From a functional perspective, the vital role of fy in
meeting the oxygen requirements of aerobic metabolism and the sensitivity of fy to temperature
were well established (Fick 1870; Murlin and Greer 1914). These considerations remain highly
relevant for fishes because we now know that elevating fy is the primary mechanism through
which fishes increase convective oxygen delivery to meet the inexorable rise in oxygen demand
that occurs with acute warming. Beyond advancing basic knowledge, studying cardiac thermal
performance has become increasingly important given the pressing need to understand species-
and context-specific physiological responses to thermal variation in a rapidly changing world
(Anttila et al. 2014a; Comte and Olden 2017; Eliason and Anttila 2017; Eliason et al. 2011;
Eliason et al. 2013; Farrell 2016; Farrell et al. 2009).

When examining the mechanisms that shape an organism’s ability to match its oxygen
supply to the exponential rise in demand during warming, it is useful to consider each component

of the Fick principal for oxygen uptake (M[10,):
MO, = fH - SV - (Ca0, — Cv0,)

Where CaO,-CvO, (oxygen content of arterial and venous blood, respectively) is the amount of
oxygen extracted from circulating blood and the product of stroke volume (SV) and heart rate
(fu) is cardiac output (Q[J). Trail-breaking research in fishes and other animals ranging from
crustaceans to mammals has demonstrated that when hearts are warmed, resting and intrinsic fu
(frrest and frintinsic) 1nitially increase with temperature coefficients similar to that for whole
animal M['10, (Crozier 1926; Cyon 1866; Fry 1947; Glaser 1929; Henderson 1927; Knowlton
and Starling 1912; Martin 1883). However, at high temperatures, fyinvariably reaches a plateau

or decreases, with the heartbeat ultimately becoming arrhythmic causing a collapse in fy. In
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fishes, SV does not appreciably increase with warming and can actually decline, thus limitations
in fy also constrain Q | (Brodeur et al. 2001; Ekstrom et al. 2014; Eliason and Anttila 2017;
Eliason et al. 2013; Farrell 2009; Gamperl et al. 2011; Steinhausen et al. 2008). Furthermore, fish
can only partially offset limitations in Q[] by increasing the extraction of oxygen from the blood,
because at low CvO; oxygen diffusion into vital tissues, including the myocardium, is limited
(Ekstrom et al. 2016; Farrell and Clutterham 2003; Lannig et al. 2004). As such, the thermal
limitations of fy can impair whole animal M[10,. A heat-induced cardiac collapse has now been
documented in a broad range of fishes, including polar stenotherms like the Arctic cod
(Boreogadus saida) (Drost et al. 2016b), notable eurytherms like the goldfish (Carassius
auratus) and Atlantic killifish (Fundulus heteroclitus) (Ferreira et al. 2014; Safi et al. 2019) and
numerous species in-between (Anttila et al. 2014a; Casselman et al. 2012; Chen et al. 2015b;
Eliason and Anttila 2017; Eliason et al. 2011; Eliason et al. 2013).

Because furest increases with temperature, maintaining scope for fy above fpyrest to support
vital functions including swimming and digestion (Eliason et al. 2013; Grans et al. 2009;
Steinhausen et al. 2008) requires a proportional increase in fymax. Fry (1947) first demonstrated
that a fish can maintain or increase scope for fy by increasing fum.x With acute warming, but
only over temperatures that would be considered moderate for a given species. At warm
temperatures fumax increases to a lesser extent than fi. and scope for fy is lost before cardiac
function collapses altogether (Fig. 1)(Eliason et al. 2013; Farrell 2009; Fry 1947; Steinhausen et
al. 2008). Thus, the inability to increase fiymax With warming at high temperatures limits cardiac
scope (scope for Q[J), which constrains the aerobic metabolic scope (AS) available for functions
beyond rest (Fry 1947). Based on this relationship, characterizing the thermal response of fimax
to acute warming can reveal temperatures at which sub-lethal and lethal limitations may restrict
maximum tissue oxygen supply and AS. Such information is valuable for mechanistic predictions
of how fish distributions will be affected by a rapidly changing world (Comte and Olden 2017;
Pacifici et al. 2015).

These observations led Casselman et al. (2012) to develop a high-throughput method
whereby pharmacologically induced fumax is monitored in anaesthetized fish during acute
warming to identify constraints on fumax (referred to throughout as ‘the method’ or ‘the fymax
method’). When the relationship between fumax and temperature was expressed on an Arrhenius

plot (natural log of the rate vs. the inverse of temperature in degrees Kelvin), they identified an
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initial breakpoint (Arrhenius breakpoint temperature; Tag), above which the slope declined. This
Tag aligned well with the optimal temperature for the scope for fiy and aerobic scope, leading to
the proposition that identifying Tap could replace more laborious whole-animal assessments of
AS in some circumstances. This fumax method, with some modifications, is being increasingly
used to study cardiac thermal performance — and heat tolerance more generally — in a broad
range of scenarios. It has now been applied in >40 studies and across >20 species as a proxy for,
or in compliment to, assessments of whole animal performances. In this Review, we provide an
overview of this method and discuss its strengths, limitations, and application to assess cardiac

thermal limits.

A method for rapidly screening maximum heart rate during acute warming

Overview of the method

As an overview, fish are placed under anaesthesia with assisted gill ventilation, fitted
with electrocardiogram (ECG) electrodes and injected with drugs to block cardiac cholinergic
tone and maximally stimulate adrenergic tone to a induce stable fumayx. Fish are then acutely
warmed until the heartbeat loses rhythmicity (Fig. 2b-g). The analysis of the response of frmax to
acute warming yields multiple metrics that characterize cardiac thermal sensitivity and heat
tolerance (Table 1; Fig.2e-g). The method was originally developed to test two fish
simultaneously (Casselman et al. 2012). However, once proficient, users can increase to as many
fish as can be practically managed. For instance, up to six fish have been assessed
simultaneously (Adams et al. 2022; Gilbert et al. 2022b; Gilbert and Farrell 2021). While the
protocol is conceptually simple, there are numerous considerations for new users, and for new

species and contexts. These considerations are highlighted below.

Anaesthesia

Fish are immersed in a water bath at the fish’s holding temperature containing an
anaesthetic concentration sufficient to induce stage III anesthesia (i.e. cessation of bodily and
opercular movement)(Coyle et al. 2004) in ~5 min. Anaesthetized fish are weighed during
transfer to a sling immersed in a bath that recirculates a lower, maintenance concentration of

anaesthetic over the gills which is continuously pumped via a mouthpiece inserted loosely into
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the mouth of the fish (using a cutoff large gauge needle, pipette tip or tubing, depending on fish
size). The temperature of the maintenance bath can be lower than the holding temperature,
particularly if multiple acclimation temperatures are being tested, so long as the temperature
difference is not so large that it impacts subsequent response to warming (pilot tests should
assess any concerns;(Gilbert and Farrell 2021; Safi et al. 2019). Tricaine methanesulfonate (also
known as TMS, Tricaine, MS-222, and Ethyl 3-aminobenzoate) is the most commonly used
anaesthetic and, as originally applied, does not appear to adversely impact the response of frmax
to warming (Casselman et al. 2012; see 'Critiques and limitations' below). Likewise, the
assumption should be that appropriate anaesthetic concentrations vary among taxa and should be
independently determined or verified in preliminary assessments. If the initial concentration is
too high, ventilation can cease before the anaesthetic has equilibrated throughout important body
compartments. The maintenance concentration of anaesthetic — typically between 50-80% the
initial concentration — may also require pilot experiments. The guiding principle is to use the
minimum concentration to prevent the resumption of opercular and body movement to ensure
fish welfare, while not having excess anaesthetic that could impair heart function or be lethal.

Some anaesthetics including TMS may require buffering of water pH.

Electrocardiogram

ECG electrodes are placed on anaesthetized fish in the holding sling. Electrode materials,
placement and method of placement can all vary based on the specific experimental requirements
and many options exist for the equipment and software to acquire ECGs. Pilot assessments are
typically needed to determine the optimal electrode placement because it can vary substantially
among species, life stages and recording modes. A precise electrode placement with less exposed
recording surface is often required for small fish or in saltwater. Thus, for small fish, a needle
electrode (e.g. MLA1213, ADInstruments, Colorado Springs, USA) affixed to a rod with only a
small portion of the electrode exposed, can be gently placed on the ventral surface of a supine
fish directly over the heart with a micromanipulator (Marchant and Farrell 2019; Safi et al.
2019). The second reference electrode can be placed more posteriorly on the body of the fish.
For larger fish, needle electrodes or inexpensive small-gauge silver plated wire (e.g. 30AWG
silver plated copper wire; R-30W-0050, Jonard Industries, Tuckahoe, NY) can be used and

gently inserted in the skin on the ventral surface. In adults salmonids, for instance, electrodes can
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be placed diagonally across the heart on the ventral surface, with the reference electrode placed
on the body or nearby in the bath as depicted by Cotter and Rodnick (2007). Recordings can be
made as differential or single-ended as needed. High ECG quality and detail is needed to perform
subsequent ECG waveform analyses and establish the exact type of arrhythmias observed at high
temperatures.

Resources on common ECG acquisition, processing and analysis practices are available
directly from equipment and software providers. Multiple amplifiers (e.g. Animal BioAmp,
ADInstruments; DP-300 series, Warner Instruments, Warner Instruments, Hamden, CT, USA)
and data acquisition platforms (e.g. PowerLab with Labchart software, ADInstruments; MP160
with AcqKnowledge software, BIOPAC Systems, Inc., Santa Barbara, CA, USA) are suitable for
this application. Modern ECG acquisition configurations will generally have options for analog
and digital filters. Analog filters are applied at the level of the amplifier and permanently modify
the input signal, whereas digital filters are applied within the acquisition software and can be
adjusted in real-time or after the signal is acquired. Most ECG information is acquired at
between 1 and 50 Hz. Analog filters can be applied conservatively around this range (~0.1 to 100
Hz) to improve the signal-to-noise ratio while preserving all useful information. A digital band-
pass filter then obtains a narrower range (~5 to 50 Hz) to reversibly improve signal quality so
that ECG waveforms can be more clearly assessed. Some amplifiers and software have an
optional 50 or 60 Hz Notch filter (or ‘mains filter’) that removes noise commonly associated
with power line interference (line frequency varies by country). Finally, excessive electrical
noise may be introduced by certain equipment in the bath or surrounding electronics. Suspected
issues can be identified by briefly turning off electronics one at a time and once identified the

equipment can be replaced or repositioned as needed.

Pharmacological interventions

Once water temperature and ECG recordings have stabilized (usually within a few
minutes), fimax 1S iInduced pharmacologically using intraperitoneal injections of the muscarinic-
acetylcholine receptor antagonist atropine sulphate (to block parasympathetic inhibition of fi),
and a P-adrenoreceptor agonist such as isoproterenol (to mimic sympathetic acceleration of fi via
B-adrenoceptors). Alternative injection methods (e.g. intramuscular or intravascular) may be

favoured in some scenarios such as with very small or very large fish, but the dosage, effect
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strength and effect duration should be verified before they are used. Under anesthesia and
without these pharmacological interventions, the measured fi cannot be considered as the
resting, routine nor maximum level. Cholinergic (via the vagus nerve) and adrenergic tone (via
circulating catecholamines and sympathetic innervation, if present) vary considerably among
fishes and with acclimation temperatures (Wood et al. 1979; Axelsson et al. 1987; Altimiras et
al. 1997; Axelsson 2005). Drug doses can vary with species, duration of the measurement period
and temperature range. If appropriate dosages are not already established for a given scenario,
pilot tests must be performed to determine these. Doses in the range of 1.2-10.0 mg kg™ for
atropine and 4.0-8.0 pg kg™ for isoproterenol have been used successfully across a broad range
of contexts (see Data availability). In some instances, isoproterenol has been omitted because it
did not change fimax after atropine injection (Anttila et al. 2014). Successful drug effects are
indicated when a second, similar dose elicits no further change in fy. Likewise, additional drug
doses can be administered at any time during pilot tests, particularly near the end, to test whether
the pharmacological effect has been maintained (Casselman et al. 2012). Alternative cardioactive
drugs, applied following the same principles, can address other mechanistic questions. For
instance, Marchant and Farrell (2019) used specific channel blockers to examine pacemaker

mechanisms for fimax under warming.

Warming rates

The original method used a warming rate 10°C h™' for ~20 g fish (Casselman et al. 2012),
applied in a stepwise manner (1°C step every 6 min). The first guiding principle was that the
thermal increments ensured sufficient resolution (e.g. >10 data points) for precise identification
of thermal limits without unduly prolonging test duration. For fish with limited warming
tolerance above the experimental starting temperature, analytical resolution can be improved by
using finer temperature increments (e.g. 0.5°C;(Drost et al. 2016b) over the same duration. The
second guiding principle was to allow the heart temperature to equilibrate with the bath
(Casselman et al. 2012), as indicated by fumax stabilizing before the end of each 1°C increment.
For ~20 g fish, Casselman et al. (2012) verified that a slower warming rate produced the same
results. For small volumes of water, a typical lab heater-chiller device (Fig. 2) can achieve this
heating rate. With larger fish, the water volume is larger, manually controlled heaters are added

and slower warming rates are needed to increase temperature equilibration times (e.g. 5-6°C h™'
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in ~0.5 to >3 kg salmonids)(Gilbert et al. 2022b; Gilbert et al. 2020). Because gills are highly
effective heat exchangers (Stevens and Sutterlin 1976) the blood supply returning to the heart
may warm it faster than more insulated or less perfused body compartments like the peritoneal
cavity where body temperature is commonly measured (e.g. Sandrelli and Gamperl 2023). The
coronary circulation present in some fish also returns warmed blood directly from the gills to a
portion of the heart. Thus, a stable fum.x may be a better indicator of cardiac temperature
equilibration than measures of core body temperature — especially in large fish with coronary
circulation. Nonetheless, future research on the topic could help refine the method and improve

our general understanding of how fish experience acute thermal variation.

Data extraction and analysis

Real-time monitoring of fumax 1s achieved through automated heartbeat or cyclic
measurement detection algorithms in data acquisition software. The fumax at each temperature
increment is reported as an average over a specific period (e.g. 1 min, 30 s or 10 beats) towards
the end of the increment. Thermal sensitivity (or dependence) of fumax can be characterized in
two ways. First, an Arrhenius breakpoint temperature (Tag) can be identified for each individual
fish using segmented regression analysis of the natural logarithm of fumax against the inverse of
temperature in kelvin (1/K)(Casselman et al. 2012)(Fig. 2F; Table 1). This regression is more
accurate if the analysis is limited to temperatures over which fmax s increasing. Tap calculations
are sensitive to the number of datapoints available and their distribution around the breakpoint.
Insufficient data can be an issue if the fish’s experimental starting temperature is close to or
above Tag. In this case, to increase the data available below Tag, the starting temperature can be
lowered (if confirmed that performance is not impaired), or a finer temperature increment can be
used (e.g. 0.5°C).

A complementary or alternative analysis of the change in thermal sensitivity involves
calculating the ‘incremental Qo’, the Qo temperature coefficient for every 1- 2°C of warming
(Fig. 2G; Table 1). This incremental Q;¢ decreases with warming as fumax approaches its peak
and the temperature at which it falls below a specified Qo threshold (Tq10; (Anttila et al. 2013a)
for the remainder of the trial can be used to summarize this decline. A Qo threshold of ~1.9-2.0

is commonly selected to indicate a decreased thermal sensitivity since physiological rate
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functions during acute temperature changes typically have Q;o values >2. The Tqio tends to be
slightly (<1°C) higher than Txp (Fig. 4C), but agreement depends on the selected Qo threshold.
With warming above Tag and Tq10, fumax reaches a plateau or a peak (Q;o<1), termed
Peak fumax, and the temperature is Tpgak (Table 1). Further warming induces cardiac arrhythmia,
at an upper thermal limit termed Tarr (Fig. 2B-E; Table 1). Arrhythmia is generally
unambiguous (Fig. S1), and identified as sudden intermittent drops in beat-to-beat fmax (an
irregular pattern of 3 or 2 heartbeats near the previous rhythmic frequency followed by a gap is
common)(Anttila et al. 2013a; Casselman et al. 2012). Atrioventricular-block type arrhythmias
are common and identified by the presence of a p-wave with a missing QRS complex if the ECG
waveforms are analyzed (Fig. S1)(Gilbert et al. 2022a; Haverinen and Vornanen 2020; Vornanen

2020).

Thermal limits and performance metrics: interpretation and associations

The four thermal limits commonly identified using the fumax method, in the order that
they occur during warming, are Tag or Tqio, Treak, and Tarr (Table 1, Figs. 2, 4 and 5). These
thermal limits represent transitions at which fumax (Tpeak, and Tagrr) or the response of frmax to
warming (Tag and Tq10) become limited and are thus also called ‘transition temperatures’. These
metrics have ecological relevance to cardiac thermal performance, sensitivity, and tolerance and
their definitions and suggested interpretations are summarized in Table 1. Below Tag, for
example, fumax increases proportionally or to a greater extent with warming than fies (Fig. 1A).
Thus, scope for fy can be maintained to around Tag but declines above Tap (Fig. 1B). Also, Tag
can correspond with the optimal or upper pejus temperature for aerobic scope (Anttila et al.
2013b; Casselman et al. 2012; Chen et al. 2015b), although this is not always the case (Ferreira
et al. 2014; Kraskura et al. 2023). Why these relationships vary among species and contexts is a
natural avenue for future research.

Scope for fi; declines beyond Tap and is low or negligible but Tppak. Thus, despite
occurring at peak fi;. Tppak does not correspond to the optimal temperature for performance.
Rather Tpgak lies beyond the optimal window for cardiac and aerobic capacity performance and
is a temperature when fish are far more likely to be experiencing limitation of their maximal
oxygen supply (Table 1). For this reason, and because of its close association with Tagrr (Fig 4

and 5) some studies end recordings at Tpeax (Chen and Narum 2021). The difference between

10
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the fumax at the acclimation temperature or the initial test temperature and peak fmax is termed
Afumax and provides information on the ability to increase fumax (Fig. S3), helping to maintain a
scope for fy during acute warming, (i.e. the total thermal safety margin for fymax; Fig. S3). Use
of the term Afumax 1s preferable because ‘scope’ is more commonly defined as the difference
between fumax and furest. The final limit above Tppak is Tarr Which indicates a thermal limit for
imminent cardiac failure and is beyond functional thermal limits of a fish.

The thermal limits values for fumaxare all positively correlated with the critical thermal
maxima (CTwmax ; Fig 4A), the upper temperature at which fish lose equilibrium. Understanding
such relationships is useful because CTyax is the most commonly used metric to characterize
whole-animal heat tolerance (Desforges et al. 2023). When CTyax and fumax values compiled
from available studies (see ‘Data availability’) were compared we found that Tarr was 11%
below CTmax, Treak wWas 7% below Targ, and Tqioand Tag were ~25% lower than Tpgak (Fig.
5). CTwmax is, however, commonly assessed using higher warming rates (typically 0.3°C min™),
which can affect such comparisons. Nonetheless, Tarr is generally similar to or slightly below
CTwmax. The other thermal limit metrics for fumax are typically well below CTyax (Fig 5B and
6D; see Data Availability) and at temperatures that are inherently encountered more often in the
wild, thereby improving their direct ecological relevance. Conversely, temperatures as high as
CTwmax or Tarr are acutely lethal which has required species to evolve behavioural avoidance
strategies and occupy biogeographical distributions that make exposure to such temperatures rare
(Payne et al. 2016). Below these critical temperatures, the Tpeak and Tqip and Tag are generally
sub-lethal temperatures, and indicate a form of fymax limitation that that can impair or impose
trade-offs on the performance of fitness related functions (e.g. swimming performance and
feeding) (Table 1). While limits to fumax such as Tpeax may be important in many contexts, other
vital processes (e.g. feeding or digestion rate) may independently become constrained at lower
temperatures and over different time-scales, all of which should be considered when making

inferences about the effects of temperature on whole-animal performance.

Strengths
A crucial requirement to make predictions for how a warmer future might affect the

distribution and success of fish populations is reliably characterizing their upper thermal limits

11
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over varied timescales (Comte and Olden 2017; Desforges et al. 2023). Whole-animal CTyax
has a long history and is technically simple to perform (Desforges et al. 2023). Hence CTmax
data are widely available, facilitating impactful examinations of biogeographical patterns of
thermal tolerance and important comparisons of upper thermal limits among and within species
(e.g., Comte and Olden 2017; Sunday et al. 2011). Yet, the direct ecological relevance of CTymax
continues to be debated, outside the context of relatively rare acute warming events that can
cause mass mortality (Desforges et al. 2023). In contrast, characterizations of thermal
performance curves for traits like growth rate and aerobic scope have strong ecological relevance
and have been used to set water temperature criteria by fisheries managers (Eliason et al. 2024).
However, these measurements are technically more challenging and far more time-consuming
than determining CTyax, making them challenging to perform over broad ranges of species, life
stages and environmental contexts. With the rapid rate of ongoing environmental change and
over 32,000 species of fishes, the fumsx method provides an intermediate between more detailed,
laborious approaches (Aerobic scope) and coarser high-throughput methods (CTmax) while still
providing valuable information relevant to thermal tolerance and limits to cardiorespiratory
performance. Ultimately, effective conservation and management practices (e.g. setting water
quality targets) are rarely based on single studies or narrow lines of evidence. Rather, multiple
lines of evidence are weighed and synthesized to frame conservation challenges and potential
interventions (Mayer et al. 2023). To this end, we recommend the fym.x method as part of the
toolbox.

The fumax method is a high-throughput assessment of a several ecologically relevant
thermal limits and specific information on cardiorespiratory thermal performance. Depending on
the warming rate and temperature range, 12 fish can be comfortably assessed in a day with an
entire protocol taking ~2-5 h for 2-6 fish. The method’s other advantages include that it is simple
to perform, highly mobile and amenable for field studies in remote locations (Drost et al. 2014;
Gilbert et al. 2020; Hansen et al. 2016). Indeed, field-based ECG recordings and data presented
here (Fig. 2b-g, Fig. S1) demonstrate the ability to obtain laboratory quality data in remote
settings (Gilbert et al. 2022a). Drost et al. (2014) directly compared fish tested in a field and
laboratory setting and obtained similar quality data and typical responses in both cases.
However, thermal acclimation conditions differed between the field and lab precluding direct

comparison of absolute values. The method’s strengths enable studies with large or complex

12
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designs (see Applications section) or have tight time constraints (e.g. a brief field trip or window
of fish availability). Successful applications also include a broad range of species, life-stages and
body masses (e.g. ~0.5 g Zebrafish to >3 kg adult Arctic char) (Gilbert et al. 2022a; Marchant
and Farrell 2019)(see ‘Data availability’). Note that a study of Arctic cod (Boreogadus saida),
demonstrated the potential for the method to be applied with larvae but required significant
methodological adjustments (Drost et al. 2016a) and so further validation of TMS effects and
pharmacological interventions are needed before widespread with such early life stages.

The use of pharmacological interventions and anesthesia give rise to some benefits but
also have some limitations (see ‘Critiques and limitations’). Anaesthetized fish provide a
minimally invasive alternative to more invasive methods that assess cardiorespiratory
performance, a marked benefit for fish welfare. Also, fewer fish are needed to generate
equivalent data using the fumax method. In non-anaesthetized fish, 10 acute exposure temperature
challenges with a typical sample size of 8 requires either 80 fish, or repeatedly exposing,
exercising and recovering the same 8 fish each 10 times, which raises additional fish welfare
concerns. In contrast, eight anaesthetized fish can generate similar data in a single day using the
framax method (see ‘Overview’ section; e.g., Gilbert and Farrell 2021 and Hardison et al 2023) .

Furthermore, anesthesia eliminates behavioural responses to warming, limiting the
associated variation in fy and ECG quality. Likewise, variation in the autonomic regulation of
fu, (Casselman et al. 2012) is eliminated by artificial stimulation of fumax. These pharmacological
interventions also mean that fish can be assessed without a prolonged recovery after capture — an
important consideration for field studies. The information gained from the fuma.x method can
subsequently help streamline studies of other aspects of cardiorespiratory function. Together
these strengths make the fumax method highly useful for both basic and applied research on the

thermal limits to cardiorespiratory performance.

Critiques and Limitations

All reductionist approaches have limitations, some of which affect how useful the results
are for understanding whole-animal function. Such methods, however, are most useful when
users recognize these limitations and apply the methods for suitable purposes (Treberg et al.
2020). The fumax method focuses specifically on fuma.x because of the central role of fyin

supporting whole-animal aerobic capacity and the cardiovascular response to acute warming
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(Casselman et al. 2012; Eliason et al. 2013). The fumax method reveals the upper limits for fy
during acute warming. It does not, nor is it intended to, reflect the response of fi.st to acute
warming, except perhaps at high temperatures where the two responses converge (Fig. 1). This
explicit intent has been overlooked in some critique of the approach (Porter and Gamperl 2023;
Sandrelli and Gamperl 2023). Alternate methods exist to measure fyest, but measuring fryrest may
not distinguish between a vagal slowing of fpest, Which may be a protective mechanism (Eliason
et al. 2013) from cardiac impairment due to arrhythmia.

Anaesthesia impairing fumax (and its response to warming) is a concern, as examined
experimentally and discussed by Casselman et a/ (2012). Certainly, frrest is commonly affected
by anaesthesia (Cotter and Rodnick 2006), but such studies rarely distinguish between direct
effects of anaesthetics on fy or cardiac function (Haverinen et al. 2018) and indirect effects.
Indirect effects arise from the partial blockade of vagal tone by some anaesthetics, a release of
catecholamines (Lochowitz et al. 1974; Randall 1962) or hypoxemia driven by the decrease in
ventilation which then triggers vagal slowing of fu. These indirect effects are not a factor when
using the fumax method because vagal tone is blocked and the gills are artificially ventilated with
well oxygenated water. All the same, the usual anesthetic used (TMS) is a sodium channel
antagonist and can impair cardiac sodium currents at sufficient concentrations (Haverinen et al.
2018). In zebrafish cardiomyocytes, Haverinen et al. (2018), found a reduction in sodium current
at TMS concentrations >168 mg L "' but none below ~100 mg L. This higher TMS
concentration is above the maintenance concentration commonly used for the fimax method and
available evidence for salmonids suggests minimal if any effect of a maintenance concentration
of TMS on fumax (Casselman et al. 2012). Not surprisingly then, the response of fy in non-
anaesthetized atropinized rainbow trout to acute warming (Gilbert et al. 2019) was nearly
identical to that for the fum.x method (Fig. 3). Nonetheless, researchers should use a minimal
TMS maintenance concentration to avoid untoward effects (as above). Unfortunately, equivalent
data are unavailable for other species.

A related concern is that anesthesia abates any stress responses and associated additional
metabolic demands that normally arise at high temperature. The fish’s internal milieu may
constrain fumax perhaps through cardiac oxygen or substrate limitations that do not occur to the
same extent ex vivo, in fish at rest or while under anesthesia (Eliason et al. 2013). Indeed, while

fumax Was indistinguishable for non-anaesthetized and TMS-anaesthetized fish over intermediate
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temperatures, fum.x tended to be lower in non-anaesthetized fish forced to exercise near their
upper thermal limits (Casselman et al. (2012). In non-anaesthetized sockeye salmon
(Oncorhynchus nerka) at high temperatures, fumax during exercise fell below the fyyest of non-
exercising fish (Eliason et al. 2013). Also, peak fumax 1S substantially reduced under hypoxia
(Schwieterman et al. 2023). Thus, the fumax method may produce a ‘best case scenario’ for the
response to acute warming. Congruently, warming induced peak fy in non-exercised, non-
anaesthetized rainbow trout (Oncorhynchus mykiss) and Arctic char (Salvelinus alpinus) is
highly similar to that from the fum.x method (Fig. 3). Nonetheless, Tarr is generally less than —
or occasionally similar — to CTyax (Fig. 3) with the other thermal limits falling below Tagg, sO

the method still provides a series of conservative estimates of acute heat tolerance.

While eliciting frumax pharmacologically has the concern that it precludes normal CNS
integration to warming, the benefits of autonomic control of fto both cardiac and whole-animal
thermal tolerance have been explored in non-anaesthetized fish (Ekstrom et al. 2021; Gilbert et
al. 2019). Stimulation of cardiac f-adrenergic receptors can improve heat tolerance and increase
peak fu (Ekstrom et al. 2021; Gilbert et al. 2019); the fumax method achieves this by injection of
isoproterenol rather than a CNS-induced increase in sympathetic output to the heart. Blocking
muscarinic acetylcholine receptors with atropine, however, can prevent the increase Tpeax
(Gilbert et al. 2019), but does not always (Ekstrém et al. 2014; Ekstrom et al. 2021). Even if
fumax values from anaesthetized fish are generally consistent with available literature values (see
(Anttila et al. 2013a; Casselman et al. 2012), further direct investigations comparing
pharmacologically and activity induced fumax in anesthetized and non-anaesthetized fish
respectively, would help quantify effects of anesthesia. To this end, Sandrelli and Gamperl
(2023) compared fyresponses to acute warming in anaesthetized fish, non-anaesthetized fish
confined in a respirometer and free-swimming fish. They discovered multiple differences in fy
and cardiac heat tolerance among the different methods. They applied pharmacological
treatments similar to those discussed here in anaesthetized fish, however fum.x was not measured
in non-anaesthetized. Other differences precluded direct evaluation of the fum.x method
including an invasive surgical implantation of ECG loggers, high initial anesthetic concentration,
caudal vein injections of the cardioactive drugs, a warming rate that the authors determined was

too fast for the large fish used in the study, and a continuous warming ramp or large warming
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increment, although the specific details are not presented. Furthermore, intermittent ECG
recordings precluded the identification of Tarr. Nevertheless, future studies aiming to evaluate
and refine the fumax method or complementary high-throughput methods are welcome given the

urgent need to expand our knowledge of species- and context-specific aspects of thermal

physiology.

Applications of the measurement of fumax in anaesthetized fish
Characterization of cardiac thermal performance and heat tolerance

The initial proposed application of the fimax method was to rapidly assess Tap as a proxy
for the optimal temperature for AS because of their numerical associations (Anttila et al. 2013a;
Casselman et al. 2012). It continues to be applied in that regard, but its use has quickly expanded
to include assessments of upper thermal limits and the general study of cardiac thermal responses
to acute warming. It has been used to study cardiac thermal performance in data-poor-species
(Hansen et al. 2016) (Drost et al. 2014) (Skeeles et al. 2020), to determine how that performance
relates to environmental exposures under current and climate change scenarios (Gilbert et al.
2020) (Van Der Walt et al. 2021) and to examine associations among physiological functions
across levels of organization (Anttila et al. 2013a) Strowbridge et al. 2024)(Adams et al. 2022).

Examining intra- and interspecific diversity of thermal physiology

As the application the fium.x method expands to a broader range of species and contexts,
opportunities emerge for broadscale examinations of phylogenetic and biogeographical patterns
in cardiac thermal performance as previously explored for AS and CTyax (Comte and Olden
2017; Payne et al. 2016; Sunday et al. 2019; Sunday et al. 2011). While outside the specific
scope of this Review, the compiled data (‘Data availability; Fig. S2) demonstrates that
sufficient data are already available to allow for interspecific comparisons of thermal physiology
among species or other levels of classification. However, such interspecific comparisons within a
single study are currently uncommon. One study did identify differences in cardiac thermal
tolerance among closely related Danio species (Sidhu et al. (2014). More studies have applied
the method to examine intraspecific variation in thermal physiology among genetic crosses, and
strains within multiple salmonid species (Anttila et al. 2014a; Chen et al. 2013; Chen et al.
2018a; Chen et al. 2018b; Chen and Narum 2021; Chen et al. 2015b; Gradil et al. 2016; Mufioz
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et al. 2014a; Muioz et al. 2014b); Strowbridge et al. 2024). For instance, (Chen et al. 2018b)
found that even when reared in a common environment, redband trout (Oncorhynchus mykiss)
from populations obtained from cool montane habitats had a lower peak fymax than a population
obtained from a hot desert environment. This difference corresponded with population

differences in aerobic thermal performance and gene expression.

Examining context dependence of cardiac thermal performance and heat tolerance

The method has also been used to examine the effect of numerous other factors on
cardiac thermal performance with both basic science and conservation motives. Kraskura et al.
(2023) found that, as expected, fiimax decreased as body mass increased (mass scaling exponent: -
0.05), whereas cardiac thermal limits increased with body mass. Others have found that the
specific nutrients and dietary compounds (e.g. taurine and fucoidan) can affect peak fimax and
cardiac thermal performance (Baker et al. 2023; Dixon et al. 2023; Papadopoulou et al. 2022), as
with diet more generally (Hardison et al. 2021; Hardison et al. 2023). Researchers have also
examined associations with swimming performance (Anttila et al. 2014b) and identified
improved cardiac heat tolerance following exercise training in some contexts (e.g., intermediate
exercise intensity)(Papadopoulou et al. 2022; Pettinau et al. 2022b). Other factors examined have
included contaminant exposures (Anttila et al. 2017), genetic modification (Chen et al. 2015a),
induction of triploidy (Verhille et al. 2013), varied life-history tactics (Mottola et al. 2020),
hypoxia and hyperkalemia (Schwieterman et al. 2023), ocean acidification (Crespel et al. 2019),
and thermal history (Eliason and Anttila 2017). Among these, the method has been most widely
and effectively applied in the study of patterns and limits in cardiac plasticity in response to

varied thermal histories.

Cardiac thermal plasticity

Studies of thermal physiology often struggle to separate the consequences of temperature
acclimation from the direct effect of thermal variation. A principal strength of the fimax method is
that this separation can be made straightforward by examining the cardiac effects of acute
thermal change in fish from multiple acclimation temperatures. Thermal acclimation can reset
the intrinsic cardiac pacemaker rate (through changes in membrane/ion channels and pumps) and

change the level of autonomic control of heart rate (Gamperl and Farrell 2004; Sutcliffe et al.
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2020; Vornanen et al. 2002a; Vornanen et al. 2002b). Such changes are revealed in the fimax
method through various changes in cardiac thermal limits (Tarr, Treax, Tos, Tas), peak fimax and
frmax at common test temperatures (Marchant and Farrell, 2019; Eliason and Anttila, 2017; Fig.
6). These changes are both species-specific and context dependent. For example, at common,
moderate test temperatures, cold-acclimated Atlantic salmon (Salmo salar) had a higher fimax,
along with lower thermal limits and peak fiimax than their warm-acclimated counterparts (Anttila
et al. 2014a). While several species display the same classic thermal compensation response of
fumax — being higher over moderate temperatures after cold acclimation (Anttila et al. 2014a;
Adams et al. 2022; Drost et al. 2016b; Gilbert and Farrell, 2021; Fig. 6) — this is not universal.
For example, in killifish (Fundulus heteroclitus), an acclimation temperature of 15°C produced
the highest fiimax at a common temperature when compared to both cold (5°C) and warm (33°C)
acclimation (Safi et al. 2019). Yet, peak fumax and the thermal limits still increased with
acclimation temperature (Safi et al. 2019). Thus, the method can be used to explore the diversity
in cardiac thermal plasticity among fishes.

While cardiac thermal limits generally increase with warm acclimation, there is a
‘thermal ceiling’ for cardiac plasticity, much like for other measures of acute heat tolerance (i.e.
LT50, CTmax). In fact, acclimation close to this thermal ceiling can even lower thermal limits
and reduce peak fiumax (Adams et al. 2022; Gilbert and Farrell, 2021; Pettinau et al. 2022a;
Marchant and Farrell, 2019; Strowbridge et al. 2024; Fig.6C). For instance, Adams et al. (2022)
performed the method on rainbow trout acclimated to six temperatures from 15 to 25°C. They
found that thermal limits increased with acclimation temperature up to 23°C but that these limits
and the peak fimax achieved during warming all decreased with a further increase in acclimation
temperature to 25°C. The fumax test can be rapidly assessed across acclimation temperatures to
identify this ceiling for species of conservation concern.

Thermal plasticity is time dependent. In CTyax acclimation rate trials, for example, CTyax
increases logarithmically with time when moved from cold to warm (Fangue et al. 2014). The
same principle applies to cardiac plasticity. By studying fimax throughout an acclimation (Gilbert
et al. 2022b; Hardison et al. 2023) or during fluctuating temperature treatments (Schwieterman et
al. 2022), researchers can (1) assess how rapidly the animals can acclimate, (2) better model
performance and thermal limits of species in response to environmentally relevant temperature

exposures, and (3) examine mechanisms of heart rate resetting across species and in response to
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secondary stressors. Examining this time-course has revealed varied results in a few studies. In
rainbow trout, only Tq¢ increased while Tpeak and Tarr Were unaffected when acclimation
temperature was increased from 10 to 18°C (Gilbert et al. 2022b). In the same study, fiimax OvVer
moderate temperatures was rapidly (~72h) reset to a lower level while peak fimax rapidly
increased, but then subsided after 2 weeks of acclimation to 18°C. In opaleye (Girella nigricans),
the fish’s thermal limits and peak fimax increased when warmed from 12 to 20°C for two weeks,
but only after being fed a carnivorous or omnivorous diet (Hardison et al. 2023). When the fish
were fed an herbivorous diet, their thermal limits still increased, but their peak fimax did not.
Notably, differences in fumax Were related to the fatty acid composition of the heart, which was
affected by the fish’s diet. Future research should investigate how mechanisms of cardiac
pacemaker resetting and autonomic control are influenced by thermal exposure time and
extrinsic factors — like diet — to understand the relative contributions of these factors make to
changes in fimax in wild and farmed fishes. The fimax method is a valuable assay for examining

these mechanisms more closely across taxa, timescales and environments.

Emerging applications and future directions

Several emerging applications and future directions have the potential to expand the utility of
the fiimax method. Given the high-throughput nature of the method, it can be used to study
diversity in the plasticity and drivers of cardiac thermal performance across fish taxa. For
instance, mechanisms of cardiac failure may differ among species and life-stages based on the
extent to which they rely on coronary circulation for cardiac oxygen supply, or based on the
relative composition (e.g., spongy vs. compact) of their myocardium (Ekstrom et al. 2021;
Ekstrom et al. 2023). High quality ECG measurements permit detailed ECG waveform analyses
and the application of well-established interpretations of the relationships among waveforms to
understand changes in the cardiac cycle that underly changes in heart rate and function (e.g.
(Badr et al. 2016). This potential has been largely unexploited so far with the fim.x method
(Pettinau et al. 2022a). Additional or alternative pharmacological interventions can target other
specific ion channels or regulatory mechanisms. There is substantial room for growth in this
regard in addition to the study of pace making mechanisms by Marchant and Farrell (2019), and
on-going studies which use non-selective adrenergic antagonists to study intrinsic fy and the

thermal plasticity of adrenergic sensitivity. Lastly, Doppler echocardiography can be used,

19



567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
5901
592
593
594
595
596

instead of ECG electrodes, to record cardiac blood flow holistically (Q as function of SV and
fumax) and reveal additional information regarding the collapse of cardiac function at high
temperatures (Muir et al. 2022; Muir et al. 2021). However, how SV and Q in the fimax
preparation relates to that which occurs under routine or elevated workloads (e.g. exercise and

digestion) has not been established.

Conclusions

In summary, the assessment of fimax in pharmacologically stimulated, anaesthetized fish,
is an effective high throughput method for the study of cardiac thermal performance during acute
warming and the quantification of upper thermal limits. The resulting f;; and thermal performance
metrics are valuable for the basic study of cardiac function and in an applied context for
understanding how rapid, ongoing environmental change may impact fishes. While these metrics
are valuable on their own, the method also provides an excellent starting point for studying
mechanisms that underly temperature effects on cardiac and cardiorespiratory performance at
lower levels of organization (e.g. isolated myocytes, mitochondria, and ion channels) and
integrated outcomes at the whole animal level. For instance, subsequent targeted molecular
studies or whole-animal performance assessments can be performed at the specific temperatures
that were identified as limiting (i.e. Tap, Tprak, and Tagrr) in the fimax method without having to
generate full thermal performance curves for traits that are far more time consuming to assess.
Such studies are more urgent now than ever as a thorough understanding of the causes and
consequences of physiological responses to variable thermal regimes will assist in predicting and

mitigating outcomes of global environmental change.

Data availability

To assess thermal acclimation responses, relationships between thermal limits and trends
across studies, we compiled data from all studies that cited the study first proposing the method
(Casselman et al. 2012), and in which animals were held under their treatment temperature
conditions for >1 week before testing. The compiled data includes ‘control’ treatments (i.e. no
co-occurring stressor effects) and treatments that represent natural sources of variation within a

population (i.e. size, life stage, diet). The data include mean values for metrics from the fiimax
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assessment and additional relevant metadata. They are available in the following public

repository: https://doi.org/10.6084/m9.figshare.25661178.v1
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Tables:

Table 1. Definitions and suggested interpretation for transition temperatures or thermal limits

identified through the assessment of maximum heart rate (fum.x) during acute warming.

Temperature Definition Suggested Interpretation
Above Tapthe increase in fymay is generally
Arrhenius breakpoint temperature above  limited relative to fp.s resulting in a loss of scope
Tap which the slope of fymx vs. temperature  for fy; Commonly, corresponds with optimal or
on an Arrhenius plot is distinctly limited  pejus temperatures around peak aerobic capacity
(Casselman et al. 2012)
Temperature at which the incremental Similar to Tap, above Tq1o, the increase in frmax
Qo temperature coefficient is limited to ~ with further warming is limited relative to what is
To1o values below the selected threshold, typical for fu.esr and routine oxygen which can in
commonly 1.9 or 2.0 for the remainder turn constrain the fyand aerobic scope for vital
of the acute warming challenge. functions (Fig. 1).
fumax cannot increase any further and so fy scope
and thus aerobic scope become critically limited
T Temperature at peak f.x during as fhrest rises while fimax does not (Fig.1). Whole-
PEAK warming animal performance is vulnerable to oxygen
limitation under elevated aerobic workloads.
fucannot be sustained and cardiac collapse has
. occurred or is imminent. Whole-animal
Temperature at the onset of cardiac . . o
Tarr performance and survival are time-limited in

arrhythmia

agreement with the common proximity to CTyax
(Fig. 4)
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Figure captions:

Figure 1. The effect of temperature on A) maximum and resting heart rate (fi; solid lines) and
oxygen uptake (M JO,; dashed lines) with B) the resulting changes in fi and aerobic scope in

adult sockeye salmon (Oncorhynchus nerka). Equations are adapted from (Eliason et al. 2013).

Figure 2. A common laboratory configuration for the assessment of fimax during acute warming
(A) with representative ECG recordings (B-D) and resulting data (E-G). ECG recordings are
from large (3.2kg) anadromous Arctic char (Salvelinus alpinus) at 15°C (B), Tpak (C), and Tarr
(D) and were recorded in a remote Arctic field setting (Gilbert et al. 2022a). The mean (dark blue
connected points, shaded area is SEM) fimax response to acute warming (E) is shown with
representative individual data (light blue lines; n=8 for display purposes) from the same study,
along with the resulting Arrhenius breakpoint (F) and incremental Qo (G) analysis. Labeled

arrows indicate the mean thermal limits and peak fimax.

Figure 3. Heart rates (fu; mean £SEM) during acute warming in anaesthetized (tricaine
methanesulfonate; TMS) or non-anaesthetized (No TMS) rainbow trout (Oncorhynchus mykiss;
A) and Arctic char (Salvelinus alpinus; B) with or without treatment with atropine and
isoproterenol. The mean (+SEM) peak fy achieved during acute warming are shown with grey
background. Data for non-anaesthetized rainbow trout are from Gilbert et al. 2019, with data for
anaesthetized rainbow trout (unpublished data, M. Gilbert) collected on the same cohort of fish
during the same time frame (n=6). Data for captive saltwater acclimated non-anaesthetized and
wild upriver-migrating anaesthetized Arctic char are from Penney et al. (2014) and Gilbert et al.
(2020) respectively. Arctic char from these two studies are presumed to have similar acclimation
temperatures (~10°C; Gilbert et al. 2020 examined wild fish so the precise acclimation
temperature was unknown), were of similar size, had an identical peak fy during acute warming
(115bpm) and had an identical critical thermal maximum (23°C). The horizontal line indicates
temperatures during acute warming at which fumax in anaesthetized fish was significantly greater
(p<0.05; holm adjust pairwise t-tests) than routine fy in non-anaesthetized fish indicating a

positive scope for heart rate, which deteriorates at high temperatures as the responses converged.
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Figure 4. Data in the figure is from studies compiled as part of the data synthesis (see Data
Availability). Panel A shows a plot of the various thermal limits calculated in the fimax test in
relation to CTyax. Color indicates the thermal limit, with individual points indicating means
from various studies and solid line indicating the line of best fit. Dashed line indicates a 1:1
relationship. B) Shows the relationship between Tpeax and Tarr and C) shows Tag and Tqo.
Simple best fit lines are added along with the equation and fit. Each point is from a different

mean value. The dashed line indicates 1:1.

Figure S. The differences between and progression of thermal limits identified from the
assessment of maximum heart rate (fumax) during acute warming in anaesthetized fish.
Differences are within individual treatments in a study and are shown for all data included in the
the data synthesis (A). The progression of thermal limits (B) in a treatment group are shown for
the subset of studies in which Tq0, Treak, Tarr and CTyax were all available. In both plots,

colors indicate the acclimation temperature. See ‘Data Availability’.

Figure 6. Plasticity in the response of maximum heart rate (fimax) to acute warming and
associated change in cardiac thermal limits. The fimax (A) and resulting incremental Qo values
(B) during acute warming are shown (mean £SEM) for lab reared Arctic char (472g; Salvelinus
alpinus) acclimated to 2,6,10 and 14°C (modified from Gilbert and Farrell 2021). The arrows (A
and B) highlight the thermal compensation of fiumax and an increase in peak fimax and cardiac
thermal limits, which are common (but not universal) aspects of cardiac thermal plasticity. The
corresponding thermal limits including temperatures at the Q1o threshold (Tq10), peak fiimax
(Tpeak), and the onset of cardiac arrhythmia (Tagrr) as well as the critical thermal maximum
(CTmax) are shown (C) including for fish acclimated to 18°C, a temperature at which mortality
was elevated and feeding had ceased. The same thermal limits (excluding CTpax) and the
Arrhenius breakpoint temperatures (Tag) are shown (D) for all studies examined in our data
synthesis (see ‘data availability’), with simple lines of best fit (+ 95% confidence intervals) for
each thermal limit over acclimation temperature (R2 Tarr: 0.57, Tpeak: 0.66, Tqio: 0.68, Tag:

0.58). Error bars or shading are encompassed by the symbol or line if not visible.
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