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Abstract
The present paper establishes a local well-posed result for piecewise regular solutions
with single shock of scalar balance laws with singular integral of convolution type kernels.
In a neighborhood of the shock curve, a detailed description of the solution is provided for

a general class of initial data.

Keyword. Piecewise smooth solutions, scalar balance law, singular kernels, shock

AMS Mathematics Subject Classification. 35B65, 76B15.

1 Introduction

We consider a scalar balance law in one space dimension with a singular source term
u+ f(u)y = Glul, (1.1)
where u : [0,00[xR — R is the state variable, f : R — R is a C* strictly convex flux, i.e.,
0-flx1)+(1—0)- f(x2) > f(O-21+(1—=0)-22), 0€]0,1], z2F# x1, (1.2)

and G is a singular integral of convolution type defined by convolution with a kernel K that
is locally integrable on R\{0}, in the sense that

Glgl(z) = lim - K(z—y) - gly) dy. (1.3)
y—zx|>e

Here we work under the following assumptions on K, as it is typically done in applications:

(H1) The kernel K € C2(R\{0}) takes the form of
K = K1 +K, with K, e LYR),
and the singular part K7 is odd;
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(H2) There exist a constant C' > 0 such that

< C
= |afit

‘K(i)(x)‘ for all i = 0,1, 2. (1.4)
The conditions (H1)-(H2) ensure that the Fourier transform of K is essentially bounded.
Thus, G : L2(R) — L2(R) is a bounded operator [15], i.e.,

IG@) 2@y < IGls - lglizwy), 9 € L*(R).

Equation (1.1) has an interesting structure since the scalar conservation law generates a con-
tractive semigroup on L!(R), but the operator G may be discontinuous and unbounded as an
operator on L!(R). In the archetypal case when

equation (1.1) is well-known as the Burger-Hilbert equation which was introduced by Biello
and Hunter in [1] as a model for surface waves with constant frequency. A lower bound on
the maximal time of existence for smooth solutions was studied in [1, 12, 13], the formation
of singularities [6] and the local asymptotic behavior of a solution up to the time when a
new shock is formed in finite time was investigated in [17], and the global existence of entropy
weak solutions was proved in [3], together with a partial uniqueness result. Recently, piecewise
regular solutions with a single shock for the “well-prepared” initial data have been constructed
in [4, 16]. To complete an asymptotic description of a solution to the Burgers-Hilbert equation
in a neighborhood of a point yy where two shocks interact in [5], the result was extended to a
bigger class of initial data

u(0,2) = w(r —yo) + (61 "X +oep x]y07+oo[) Y(z = yo),

}—oo,yo[

for some w € H?(R\{0}), constants c1,c2 € R, and (x) € C®(R\{0}) being a fixed even
function with compact support, smooth outside the origin and satisfying

2
P(x) = — - |z|In|z] for all |z| <1.
s

In the present article, we study the unique piecewise regular solution with a single shock of
(1.1) with a general class of initial data of the form

u(0,2) = w(x —yo) + v(x — yo), w € H*R\{0}), (1.5)

with for some 3/4 < a < 1,

o(z) € Xy = {UGCS(R)0C4(R\{O}):sup 21" v (2)] < 400, 1<i<4y.

z#0 1+ |x‘i—o¢

(1.6)

Intuitively, X, is the space of functions that have an arbitrarily large derivative as x — 0+

and grow like |z|*. However, this does not lead to the formation of additional shocks. Indeed,

one expects that characteristics fall into the large shock before the blow-up of the gradient.

As in [4, 5], the solutions are more regular than the usual weak entropy solutions and can be

determined by integrating along characteristics. These correspond to the “broad solutions”
considered in [2, 14].

Below we recall the notion of piecewise regular solutions for scalar balance laws.



Definition 1.1 A function u : [0,7] x R — R is called a piecewise regular solution of
(1.1) if there exist finitely many shock curves yi(t),...,yn(t) such that the following holds.

(i) The map t — u(t,-) € H*R\{y1(t),...,yn(t)}) N HE (R\{y1(t),...,yn(t)}) satisfies

sup (Hu(ta‘)HHl(R\{yl(t),..-,yn(t)}) + [Ju(t, ')HH?(R\(UL[m(t)—avyi(t)w]») <00
te[0,7

for every 6 > 0 sufficiently small.
(ii) For each i =1,...,n, the Rankine-Hugoniot conditions hold:
u (1) = ult,yi(t)-) > ult,yu)+) = uf(0), (1.7)
flui (8) = f(uf ()

vi(t) = () =t (1) (1.8)
(iii) Along every characteristic curve t — x(t) such that z(t) = f'(u(t,x(t))), one has
Gt x(1) = GR((n). (1.9)

We note that in the above definition, as well as throughout the sequel, the upper dot denotes
a derivative with respect to time.

The remainder of the paper is structured as follows. Our main theorem is presented in Section
2, along with the main steps of the proof. Section 3 develops various key a priori estimates
on the source term which are necessary in the remaining steps of the proof. In Section
4 we construct the unique local piecewise regular solution to [(1.1),(1.5)] as the limit of a
convergent sequence of approximations. We conclude with an Appendix which contains some
basic estimates on the singular kernel, the corrector term, and related functions.

2 Main result

We establish the local existence and uniqueness of a piecewise regular solution with a single
shock to the general scalar balance law with nonlocal singular sources (1.1) for a large class
of initial data defined in (1.5)-(1.6):

ut + f(u)e = Glul,
u(0,2) = w(r —yo) +0(z —yo), withw € H?*(R\{0}), and v € AX,.
Our main theorem is presented below.

Theorem 2.1 Given yo € R and v € X, with a € (3/4,1), for every w € H?*(R\{0})
such that w(0—) > w(0+), the Cauchy problem (1.1) with initial data (1.5) admits a unique
piecewise reqular solution u with a single shock yi(-) defined for t € [0,T], for some T > 0
sufficiently small. Moreover, the map t — wu(t,y1(t)%) is locally Lipchitz and satisfies

[a(t,y1(t)+)| < 20> ae. t €0, 7], (2.1)

for some constant I'y > 0.



Remark 2.1 The local existence and uniqueness result can be extended to the case of solutions
with finitely many non-interacting shocks. Moreover, our result can be applied to both Fornberg-
Whitham equation [9] and Burgers-Possion equation [8, 10, 11].

Remark 2.2 We point out that the lower bound 3/4 on the constant « in the definition of X,
18 somehow sharp within our analysis. The best lower bound on « remains an open question.

The main steps in the proof of our main theorem are introduced below, while the details are
provided in the subsequent sections.

2.1 New coordinate system for solutions with one shock

The first step in the proof of our main theorem consists in transferring the equation (1.1) to a
new coordinate system so that the location of the shock of the constructed piecewise regular
solution always remains at the origin. The details for the change of coordinates are included
below.

Assume that u is a piecewise regular solution of the balance law (1.1), with one single shock.
By the Rankine-Hugoniot condition in (1.8), the location y(¢) of the shock at time ¢ satisfies

Y (U (UG

()t (D) ) = ulbe).

y(t) =
As in [4, 5], we shift the space coordinate, by replacing = with z — y(¢), so that in the new
coordinate system the shock is always located at the origin. In these new coordinates, the
Cauchy problem [(1.1), (1.5)] becomes

wt (5w - LRI o — e 22)

with initial data of the form
uw(0,z) = w(zr)+ v(x), w e H*(R\{0}), veX,. (2.3)
Let n € C*°(R) be an even cut-off function which is nonincreasing on [0, oo[ and satisfies
supp(n) € [-2,2], n(x) =1 for all z € [-1,1]. (2.4)

Without loss of generality, we can assume 9(0) = 0 with supp(v) C [-2,2]. This assumption
is justified due to the fact that (2.3) can be rearranged as

W+ = [wﬂ?— (@—@(0)) -n} + (73—@(0)) n € H*R\{0}) + A,

2.2 Structure of piecewise regular solution

The key idea in proving a local existence result for the Cauchy problem (2.2)-(2.3) is to look
for solutions of the form

u(t,z) = w(t,z) + ™ (¢t z), (2.5)



where w(t,-) belongs to H?(R\{0}) for ¢+ > 0 and the corrector term () depends explicitly
on time t such that ¢(®)(t,0) = 0 for all ¢ > 0, the strength of the jump

cdW(t) = w(t) —w(t),  where w(t) = w(t,0£), (2.6)

and also on the difference between the speed of characteristic and the speed of the shock curve

W)y = pw w P flw= (@) — f(w*(2))
b (1) = (L, 04), b (¢ x) = f(w(t,x)) — O (2.7)

Calling xg the indicator function of E, we define the function A € C3(R\{0}) as the an-
tiderivative of K, that is,

A(z) = /0z Ki(y)dy + Aa(z), (2.8)

with As being the even function as the antiderivative of Ky such that

Ao(z) = (/ K(y) - xoa@) + ([ K@y) o) ool (29)

In order to make an appropriate ansatz for the function go(w), we make use of the following
property.

Lemma 2.1 If g € HY(R\{0}) with supp(g) C [~2,2], then for every x # 0 we have

Glg)() = / ) Az —y) dy + [9(04) — 9(0-)] - A(x).
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Proof. We consider the case 0 < =z < 2, the others being similar. Integrating by parts, we
obtain

[ sy - [ /] Al — y)dy
- [+ E+/ﬁj g(y)-K(az—y)dy+g<—e>-A<x+a>—g<e>-A<x—s>)

+ Jim [g(e =) M) — gla +2) - A=)

= Glgl(x) - [9(0+) — 9(0-)] - A(x) + lim [glw — =) - AE) = glo +2) - A=)

From the assumption (H1)-(H2) and (2.8), one has

lig,eh@ = 0 b (A0 -Aa)] = g, [ s = o

and this yields

lim gz — <) AE) — g(e +2) - A(=e)] = 0.

The proof is complete. O



Observe that Lemma 2.1 was implicitly used in [4, formula (2.11)] in the particular case where
G is the Hilbert transform.

At this point we note that equation (2.2) can be approximated by the simpler equation

(u™(t) — f(u" (1))
u™ () — ut(t)
Indeed, we expect that the solutions of (2.2) and (2.10) with the same initial data will have

the same asymptotic structure near the origin. Their difference will lie in H?(R\{0}). With
this in mind, let ® : [0, co[— R be the antiderivative of A such that

up + <f/(u) _f > cup = [ut(t) —u(t)] - Az). (2.10)

®(0) = 0, O(x) = /093 Ay)dy for all z € R\{0}. (2.11)

Consider the function
o(z,0) = n(x) - [®(b) — P(x + b)) for all z,b € R. (2.12)

We make the ansatz

)) : [gf)(x, 0) — ¢ (x . b(_w)(t)ﬂ

tne) - [o(z— b))~ (<t @)] i e <o,

)) (6,00~ 6 (2.~ 82(0)]

() - [@ (ac — 1 (t)) ~ 3 (—t ) (t))} if 2> 0.
(2.13)
From (2.2), (2.5) and (2.7), the remaining component w(t,-) from (2.5) solves the equation

w + a(t,z,w) - w, = F(t,z,w), (2.14)
where a and F are respectively given by
alt,z,w) = b (@) + f (w+ ™)) = f(w), (2.15)
and
Flte,w) = G o] (ta) = [f (w+e™) = f'w)] - t,) (2.16)

+ (Gl (t2) = [0 (t.2) + bt ) - o (1))

2.3 Construction of solution

In order to finish the proof of Theorem 2.1, we construct solutions to the Cauchy problem
(2.14)-(2.16) with initial data satisfying

w(0,)) = w(-) € H*(R\{0}),  w@(0—)—w(0+) > O. (2.17)



Following the analysis in [4], the solution will be obtained as the limit of a sequence of ap-
proximations. Namely, consider a sequence of linear approximations constructed as follows.
As a first step, we set

wy(t,x) = w(x) forall t>0, z€eR.

By induction, let w, be given. We define wy,+1 to be the solution of the semilinear, non-
homogeneous Cauchy problem

we + at,x,wy,) - wy = F(t,z,w), w(0,) = w. (2.18)

The induction argument requires two main steps:

(). Existence and uniqueness of solutions to each semilinear problem (2.18) such that

sup{ sup Hwn(t")HHQ(R\{O})} < o

n>1 | t€[0,7]

(ii). Convergence in the weaker norm H'(R\{0}), which will follow from the contractive
property below

1
t:{%%}“'wnﬂ(tv \) — wn(t, ')HHl(R\{O}) < ) tes[%%]Hwn(t’ ) — wn—1(t, ')HHl(R\{O})' (2.19)

The details for these three main steps will be provided in the following sections.

3 Key estimates on the source term F

In order to prove existence and uniqueness of solutions to each linear problem (2.18) above,
we need a priori estimates on the source term F' defined in (2.16) and recalled here:

Flto,w) = G o] ta) = [f (w+e™) = f/w)] -t )
+ (Gl (o) - ¢ (t2) + 6t 2) - (k7))

First, we rewrite the source F' in the following way:

F(t,z,w) = AW(t,2)+ B®(t,z) — C™(t,z), with (3.1)
A 2) = G )] (ta) = [f (w+ ™) = )] - (2, ), (3.2)
BW(t,z) = Gw](t,z)—oc“(t)-Ax)-n(z) and (3.3)
C@Ot,z) = &t z) +b@(t,z) - o) (t,2) + @ (t) - Az) - n(x). (3.4)



3.1 Estimating the corrector term o) (¢, z)

Given two constants My, 8y > 0, we shall assume that w(t,-) is in H?(R\{0}) and satisfies
lwt, Mm@y < Mo,  o™(t) > &  forallte0,7]. (3.5)
In addition, the map ¢ — w*(¢) = w(t,0%) is locally Lipschitz and
=) < 1t)  ae. t€)0,T] (3.6)

for some function ¢ : ]0,7] — |0, oo[ such that tlir&rf(t) = o0o. From (3.5) and (2.6), we have
H
the following estimates for all z € R\{0} and ¢ € [0, T]]

w(t, )] et 2)] < 2My,  [o®B)] < [t + (@) < AMp,  (37)
and
[0t 2)], 65 (¢ 2)| < 411 llexqoanso naop Mo = b,
(3.8)
8628, 2)| < I Flles(-2nt2nn0)y (0o, )] +403)
By the strict convexity of f in (1.2), one has that
—b < b)) < —by < 0 < by < M) < by, (3.9)
with by defined by
1,1
by = do- i "(b—rs(b— drd 0. 3.10
o= e i L= = asdras > (3.10)
Moreover, assumption (3.6) implies that
08 (1)] < 20 fllea(ansy2nme) - £(8)  for all ¢ € [0, (3.11)

Using (3.7)-(3.9), we provide some estimates on the corrector term ¢(*)(¢,z) defined (2.11)-
(2.13). In the following, as usual, by the Landau symbol O(1) we shall denote a uniformly
bounded quantity which does not depend on My, dy and f.

1
Lemma 3.1 For every 0 < |z| < 1/4 and 0 <t < — with by defined in (3.8), we have that

4by
’<p<w)(t,x)‘ < Co-lal (|nfaf| +27Y), (3.12)
d 1
2w < . -
'dxgo (t,x)| < Co (‘ln|m[| + (|$|+t)1a> , (3.13)
dt 1 1
—p(®) < Cp- : : ' 14
L) < G (it g ) i€ 2) (3.14)
Moreover, for § > 0 small, we obtain that
(@) (¢.. < . 5e—3/2
HSO (t, ))m(m\[—a,(s]) s Co-d ’

with a constant Cy > 0 satisfying

[e®@o], . < o = o (Mg +1) - (657 +1) -

Loe



Proof. We rewrite ¢(*) equivalently as p(*) = ) 4 3(") with

o) .
_ o) (t) §
o [6(2,0) = 6 (2. ~-521))]  Xoet

@)(t,2) = () - [@ (x —t-b@(t)) 3 (—t-b,’”)(t))}  X]—o00{
(@) o (z—t-0 1) = (-0 ®)] - Xo et

From the assumption (H2), for all x € [-1/4,1/4]\{0}, it holds that

A@)| < O1)-|ljal], KO@) < —o

|@(z)] < O(1) ’fl‘ln _Wv

i=0,1,2.

1
Recalling (3.7) and (3.9), we estimate for every x € (0,1/4] and 0 < ¢t < — that

4by
_ AM, w M
50 2)| < [0l 0) = 6 (2~ 1 (0)| < 01)- 7 [elnlad]
d AM M
5w 70 @) - Mo
— Pt < ’A( b} ()) A(x)’ <o
di My 1
>(w) < ki U ;
S| < 03— ie{23),
and
—(w — w _ w . T
d’ d’ 1
4 S(w) — e —+.pW - ;
7 (t,) ‘dﬂ.v (3: £l (t))‘ < O0) s 1€ {123}

The same estimates hold for x € [-1/4,0), 0 <t < 1/(4by), and this yields (3.12)-(3.14). [

3.2 Estimating source F

The next lemma provides some estimates on the function F' in (2.16). These estimates will
be used in Lemma 4.3 to establish a priori bounds on the approximate solutions of the linear,
non-homogeneous Cauchy problem (2.18).

Lemma 3.2 Assume that w : [0,7] x R — R satisfies assumptions (3.5)-(3.6). Then for
|z| < 1/4 and a.e. t € [0,T], we have

{F(t,m,w) < Ty [0t) - (|enfz]] + ) + 271,
(3.16)

Fo(tew)l < To-[07%2 4 (60) + 6271) - Jelo7].
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Furthermore, for every 6 > 0 sufficiently small, we obtain that
1P )l sy < Tie [T+ (@7 +00) 574, with  (3.7)
rh = 0Q1)- F?Cg(Mg +1)[1+b57%], T = 1+ 1 fllea (=20t —co,2Mo+Co))- (3.18)
Proof. First, recall that we expressed F in (3.1) in terms of A®), B(®) and C(),

1. Estimates on B(®), Applying Lemma A.2 for w(t,-), we get for every 0 < |z| < 1/4 and
0 > 0 that

Bt < 00) My, |BW(e)| < 00)- My n?al,
and
BW)(¢, . < O(1)- My-57%3,
” (*, )‘ H2(R\[-6,6]) — O(1) - Mo

2. Estimates on A(™). We are now giving some bounds on A®) by splitting it into two
parts
AW — @ [¢<w>] —Alw gl =gl o) (3.19)
with
e = (w o) = f(w).

From (3.7)-(3.9) and Lemma 3.1, we estimate

d + !

&gy < O1)-1 1 Tl LAl a

e (t,z)] < O(1) -T'sCy <| n\xH (|| —|—t)10‘> ’

- 1 1 (3.20)
Y (w) < O(1)-T (ol 4 #\2—a |-

dac2d (t,x)| < O(1)-TyCo <‘wm’ lz| (=] + t)Q_O‘>

Notice that d®)(t,0) = 0, we derive from Lemma 3.1 that

A

< rf.|<p<w>¢§cw>| < T4C8 - |2|* (|7 + n? |=]),

A1 2,

IN

d w w w w w w
LA00)| < 00)Ty (o] + [+ )

< O(1)-T;CE(My +1) - [tz

Moreover, keeping the leading order terms, one also gets
4 (w
@Ag )(t»ﬂf)‘
w 3 w
< O(1) Ty (M3 + 1) - ||| + || + [ + 0 oy, |
1 |Wa| }

<O(1) - TH(MZ +1)C2 - {(! I fz]| +¢777) - <|x1| T t)H) e

In particular, setting I' = F%Cg(Mg’ +1)[1+ 68‘_3], we have

HAEW) (ta )‘ H2(R\[—6,6]) < O(].)F . (| In 5’ + tail) ((571/2 + ((5 + t)a*3/2> )
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To estimate the term G [go(w)] (t,x) in A™) we first recall Lemma A.2 to obtain that

<o) Mo 2y

G[FW ()] (@)] < 0(1) - 22 < bo

= Ea

~ My,
IG[E™) (¢, .)]HHQ(R\[%&D <0O(1)- bT)O 523

We observe that

#(t,0)| = 0, and dip(%,x) < O(1) - (o] + bot)* ™", i € {1,2},
and therefore we obtain
—(w a—1/2 oa—
’(p( )(t")‘Hl(R) < O(1)- (L4857 0712,
P ey S O (1457 002

Using the L2-continuity of G, we then have that

<2 HG [E("“)(t, -)} ‘ <0Q)- (1 + b3*1/2) a1z,

~—
1

HG {a(w) () HLOO(]R) H(R)

<O(1)- (14057%2) 42372,

<o )

d -
H dx [ L= (Rr)

H2(R)
Thus, for every ¢t > 0 and |z| < 1/4, we have the following estimates:

)A(w)(t,x)’ s O)-T (|:U|aln2 2| + to‘_l) 7

%A(w)(t,x) < O)-T -t (oot 4 +71/2),
Aw) g 1).T .t 1. (41/2 -2/3 a=3/2)
H (t, )’HQ(R\H,&) < O(1)-T-t (t +6723 4 (541 )

3. Estimates on C). From (2.16) and (3.2)-(3.3), we have that
O (ta) = ¢ () + 0 () - ) (t,2) + 0 (1) Ale) - m(a).
Recalling (3.15), we compute for 0 < z < 1/4 that

A0 (1) = M [6el@.0) = 60 (.=t 00 ®) | Bt2) =T (2 =260 0))

A00) = (810 0) 7 (0 820) ~ (o= 610)],

 (w) (w)
_(w) (o (t) b (t) C~(w
oy (t,x) <0'(w)(t) — b&»@)) SO( )($7t)
o)
@ 2. CRORSRS0) '%(‘5 (=0 )
B0



_ d oy d d o
Since %qb(x, b) = ®'(b) + %d)(x,b) and %gb(x,()) = —A(x), one has

oW i (w)
C(to) = (M Eii - Z@ 8) @)+ (00, 2) — b (1)) - 9l (8, )

— " (1) [

with E®) defined by

o) (t)
b (1)

From (3.5)-(3.11) and Lemma 3.1 we obtain

B = (0170 + -0 0)) [

c®(t, )| < O - [£(t) - (|oln|z|| + 1) +t*71],

it z)| < OQ)r- [E(t) [W + }ln|x|\] + W] )

cWit,z)| < OM)- <€(t) [W + ’i'] + (|wgz| + 1) [}mm] + ( !
and
Hc<w>(t,-)‘H2(R\[_w < O()r- (to‘_l+t€(t)(6+t)a_5/2+€(t)5_1/2) .

L@ (—t ) (t)> +7 (—t ) (t))] .

|z + 1)t

)

From the previous estimates on A®™), B and (3.2), one then achieves (3.16)-(3.17) for

a>3/4.

O

To complete this section, we study the change in the function F'(¢,z,w) as w takes different
values which plays a key role in the proof of convergence of the approximations. More precisely,
for any given two functions wy,ws : [0,7] x R — R satisfying (3.5)-(3.6), we provide a priori

estimates on the difference
Fw2)(t o) = F(t, 2, wy) — F(t, 2, w).
in terms of M;(t) for i € {1,2} with
w = wy — wi, M;(t) = [[w(t, ) mim\foy)-

For all x € R\{0} and ¢ € [0,77, it holds

(w(t,z)| < 2Mi(t),  |wa(t,z)] < 2Ma(2),
For simplicity, recalling (2.7) and (3.15), we set

b = plw2) _ plwr) U = pw2) _ pwn),
We first estimate b(®1:%2) by direct computations

|b(t,z)| < ALy My(t), ba(t,x)| < 20 (MoMy(t) + |wa(t,z)]),
|boa(t,z)| < ATf - ([ME + |w12a(t,2)|] - My(t) + 2MoMa(t) + [Waa(t, 7)) ,
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with I'; given in (3.18). In particular, this yields
lba(t)] = [b™2)(t,0£) — b™2)(¢,0£)| < 4Tp - My(t). (3.27)

Secondly, the difference of the corrector term W and its transform G[\Il] is bounded by the
following lemma.

1
Lemma 3.3 For every 0 < |z| < 1/4 and 0 < t < —, we have

4bq
d
(W (t, z)| < TyiMi(t)|z|* 'dx‘l’(ta 2)| <TpaMy(t) (| nfel] + (Jz| + 1)),
' 1—4 a—i - (3.28)
T V()| STrad(@) (Jaf =+ (Jo| +6)777), i=2,3,

IG L2t i ggop) - 1 E i eygop < Trada(ee=72,

with T = O(1)(4by + 16Ty Mo) (b5 > + by ?). Moreover, for every § > 0 small, it holds

| (¢, ')HHZ(R\[—(S,a]) < Ty M(t) (ta—3/2 +571/2)’

(3.29)
G ¥t ) g2y osgy < Trada(t) (2732 +6723).
Proof. 1. Recalling (3.15), we first write ¥ = ¥ + ¥ with
U = pw2) _plwn) U = plw2) _ glwn), (3.30)

From (3.15) and (1.6), for every ¢t € [0,1/(4b1)] and |z| > 0, one has that ¥(t,0) = 0,
supp (E(t, )) - [_2a2]7 and

Mi(t)
(|| + tbo)i—’

d —
- (¢
£ 9.2)

< 01)- i=1,2,3,

whence

IN

o) - (1 +bg_1/2) poe—1/2 M (t),

{ H@(t’ ')HHl(R)

T a=3/2\ a-3/2
1 )
| (t O(1)- (1 +by %) - 12732 My(t)

IN

7‘)HH?(R)

and so the L2-continuity of G yields
1€ [0 ey < 20€ B0 gy < O)- (1457 -2 2y
(R) (R)

and

G [ )] [ oy = OM)- (1 + by~ Y2) T M),

2. Fix 0 < 2 < 1/4 (similar computations hold for —1/4 < 2 < 0). To estimate ¥, we write

- B g(wz)(t) O'(wl)(t) (w1)
Yt = (b(i‘”)(t) B bi“’”(t)) <¢(I’O) ~o(rt8d )>

N o) ()b ()t _/1 d
0

a g g (w2)
o =0 (x £ ol (t)+7b+(t)t) dr.
v ()

13



From (3.9) and (3.27), it holds

o2 (p)  glw(g) by - |w(t,0+) — w(t,0—)| +4Mp - [by(2)]
4b + 16FfM0
< -~ J 7.
0

(3.31)
Mi(t) = Tpobi(?).

Recalling (1.4), we estimate

—tb{ (1) bt gr
/ K(x+71)dr| < (9(1)-/
0 0 r+T

= O()-In <1+b;t> < O(l)-min{llnwl,<b;t>a_1/2}»

bu (2,10 (1)) ~u(,0)| =

and
d 1 d (w2) o ! (w2)
dx/o %¢<x,_t.b+ (t)+7b+(t)t>d7 - /0 K(a:—t-b+ (t)+7b+(t)t)d7
1 dr Uodr 1
<ow- | ar <0 [T —ow)
0 z—(1—7)tl"? (1) — rebl" o =+ bot L+ bot

Thus, keeping into account that ¥(¢,0) = 0, we then have

}

" a—1/2
< O(1) - Ty b 25 My () - min{ <> ,|1n:cy}.
xr

)\Il(t,x)‘ < 0(1)- Ff’gb?fl/QMl(t) - min {ta_1/2x3/2_a, ‘xlnaz

d ~
—U(t
Pl

This, together with the L2-continuity of G, yields

HG F/(t")} 2 HG [\T](t’ ')] ’ HIR\{0}) — o) H\II

< O) - Tybd 20y (1212,

IN

(t,)

HLOO(R) HY(R\{0})

Concerning the other derivatives of W, direct computations, together with (3.9), (3.27), and
(3.31), yield

e 1
- < . —_ )
dxz\lj(t,l') < 0(1) Fflel(t)xz—l’ 1€ {2,3},
and, in particular,
U(t,- 1) - Ty My ()52,
[¥C| sy < OO Trad (05

, We write U= \I’l + \ng, with
H2(R\[-4,3])

~ o2 (1) gw(t) o2 (1) gw(t)
= [(b£w2’<t> ) b£w1’<t>) Yot (b&”’(t) ) bi"“””(t)) 'X]O’”[] et

3. In order to estimate HG [\Tl(t, )} ‘

14



From (2.12), (3.31), and Lemma A.1, we obtain
i

Gl (1]
On the other hand, from (3.15) and (3.30), for every x > 0, we can write

dz?
Tt — o (1) - ow2) (¢) ot ple)
Us(t,z) = <b$”1)(t) b$v2)(t)> ¢( ,—t-by (t))

N o) ()b ()t

< O(1) - Ty oM (t) HCZ;GW% 0)]‘

HZ2(R\[-6,0]) H2(R\[-4,0])

< O(1)-Ty oMy (t)d~%/3.

/01 %gf) (x —t- 0" (1) + Tb+(t)t) dr.

b2 (1)
Combining (3.9), (3.27), and (3.31), we obtain
d? ~ LyoMy(t)
- < S b
72 Uy(t,z)| < O(1) (el + bot)

Similarly, the above estimates also hold for z < 0. Thus, noticing that \Tlg(t, 0) = 0 and using
again the L2-continuity of G, we get

& [ware.0)]] < O(1)  Tyoby My (1) H2.

< o(1) || Fat, )

H?(R) H2(R)

Combining all the above estimates and using the fact that 3/4 < a < 1, we finally obtain
(3.28) and (3.29). O

Using the estimates in Lemma 3.3, we provide an H? bound on F(1:%2) which allows us to

obtain the convergence of a sequence of approximate solutions w® to (2.18) in Lemma 4.4.

Lemma 3.4 There exists a constant I'y = O(1)-T'f (F? (MEC3by + 1) and T > 0 sufficiently
small such that for every |z| < 1/4, 0 <t < T, and § > 0, we have

’F(wl,w)(t’x)‘ <T,- (Mg(t) [T L) + 2] + 2(t)]x|°‘) (3.32)

HF(wlfLUQ)(t’ )‘

< Ty - (Ma(t) - [£()5°73/2 4 5720322 -11%) 4 5y1)53/2), (3.33)
wy (t) =y (1)}

Proof. 1. Recalling (3.2), (3.19), and (3.23)-(3.25), we have

H2(R\[-4,0])
with $(t) = max {|w3 (t) — wf (t)

)

Fow) (g 2) = Ag(t,x) — Ay(t,z) + B™ (¢, z) — C(t, z),

with
Ay = G[U], Ay = A A ¢ o= o) —oten),

From Lemma A.2 and Lemma 3.3, for every 0 < |z| < 1/4 and § > 0, it holds
{B(W)(t, 2)] < 0)-Mi(t), B oy S OL) - M),

| BC) < O(1)- My(t) - 523,

() HHQ(R\[fé,é])
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and
{A2(ta9€) < O(1)-Trodi(t),  [[Ax(t, )mmyoy < O1) - TraMi(t),

A2t ) 2@ ssy < OO)-TraMi(t) (2732 4 572/3).

2. To bound the term Ay, we first recall d®) = f’ (w + ™)) — f/(w) and write
Ay = d"I0, +d-pw2) = A+ A, d = dw2) —qw) = d, +ds,

x

with
1
d, = </ 1 (wl +7- cp(“’l)) dT) -,
0

17 p1
dy = o). / {/ A <w1 + 7o) 4 [w 7] S> ds - (w+ T\I/)] dar.
o Lo

Since [|wilg2®\qoy) < Mo and f € C*, we directly estimate

d

—d™) (¢, z - min () |zt n|z _ .
--d (t,z)| <C {M (t)]z|*7t, My(t) (\1 | |y+(|x‘+t)1a>} (3.34)
—dz W) (¢, | w w I

T5d™ () <C [| x| + Mo(t) (\ 2’xx‘+\x|+(|x\+t)2—0‘>}’ (3.35)

where C = O(1) - I'/T';1 CZ.

Notice that d®V(¢,0) = d™)(t,0) = 0. By keeping the leading order terms, we derive from
(3.20), Lemma 3.1 and Lemma 3.3 that for every |z| < 1/4 and 0 < ¢t < T, it holds

‘Al(t#ﬂ) < At a) +|Ara(te)| < TaMa(t) - |,
D pta)| < 1A (o) + JArs(t.a)] < Todby(t)- (W2]a] + —
dx 1\%, = 1,1(% 1,2\, = 24V12 (|x’ +t)1_a )
and
d—QAl(t z)| < Ty |Ma(t) (|In|z]| +t71) 1 + -
Zo ol Gl v o7
1
+<‘W:Ba7’ + M2(t)(‘w1,a:w‘ + "U)Q,.rz‘)) <‘ In ‘-TH + W‘)]’
and thus

[ALE ) 2@y —sey < T2Ma(t) {(1115 + tafl)((i*l/Q + (6 + t)@*?’/?)]_

3. It remains to estimate C. From (3.21), (3.23), (3.24), (3.27), we have

‘C(t,()—i—)‘ < ‘U(wz) . <I>/( _ tbg_wQ)) _ gwn) <I>/( _ tbg_wl)))

i ‘bg_wz) . 17/( o tbg_um)) o bg_un) ,@/( . tbS:’“))‘ < FQMl(t)ta_l.
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Moreover, for 0 < x < 1/4 (similar estimates hold when —1/4 < z < 0), it holds

iC(t,az) =

d d d
" TCi(t,2) + 7 Calt,) + - Cyt,2),

dx dx dx
with

o[04 st B BVO] (600 K0 g
g(w2)(t) g(wl)(t) b(w2)(t) bgﬁ’“)(t) g(wl)(t) bﬁf”l)(t)

Cy = (b(t,z) — by (t ))'(,0(“’2)—1- <b(w1) t,z) —bwl ) ..

Cs = —tb (t) - D™) + 5" (t) . |D [ . ]

and

)
DW(t,z) = e ((;) o' (ac — ) (t)) +7 (:c - tb(j”)(t)) .

Recalling (3.5), (3.9), (3.24), and (3.27), and taking ¢ = O(1) HMEUHL e haye

0
b B )
o) o)

agw2) () glw)(t)
ocw2)(t)  olwn(t) *

C(é(t)Ml(t) + Z(t)),

IN

and this implies

dz’
dxzt

7

< o [(f(t)Ml(t) +3(1)) - ‘ddxi@(u&) d'

_J
dz*

i

Moreover, from (3.8) and (3.26), taking C' = O(1)(Ty Mg + T + by + 1), we obtain

C

+F-£(t)-’

In particular, Lemma 3.1 and Lemma 3.3 imply

(| d d—201 C() My (t) + 2(t)

2 C! < Ty [L(t)Mi(t) + 2(t)]| In ], s <TIy- - )
%cg < ToMy(t) - (|Ina| + (@ + )Y, (3.36)
d? -
ECQ <Ty- (Mg(t) (7' + (2 +8)72) + (|Wae| + Ma(t) |woza) C’(w,t)),
with C(z,t) = |Inz| 4 (z +t)*~'. Noticing that
be(] < OOD Mo+ DM ® +S0]. 0] < 0T,k + 1) -6,
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we have

di
- p(w2)
dxz’

Cs + £(t)

di
dz?

ddi. (D) — ptn) D .
=

with C' = O(1)I';(Mp + 1). Thus, a direct computation yields

<Ct <[€(t)M1(t) +2(t)]

di . 1
_p(w2) (¢ < 1R i I —
D) < o) (18T Coa
di o M (t)
(ws) _ Aw) < ) a—2—4) A1)
— (D (t,z) — D (t,x))‘ < O(1)-Ty (1+b§ ) (z + t)l-a+i’
and g (O)M(E) + (1)
i t)Mq(t) + (¢
. < TIy- :
dxlci%(tvx) < Iy (z +t)i—e

Finally, combining the above estimates and (3.36), we obtain

%C(t,x) < Ty [z(t)Ml(t)+M2(t)+z(t)] <|lna:| +(x+1t)1a)
Sets)| < o { [ + a0+ 20] (1 + i)

(1w Ma(t) 2,00 <|m| + M) 3

I Mazqasspy < Tov [(OM(E) + Malt) + S(®)] (5712 + (0 +6)27%/2)

and then we obtain the desired estimates. ]

4 Local existence and uniqueness of an entropic solution

Throughout this section, we give a proof of Theorem 2.1 by constructing a local solution to
the Cauchy problem (2.2) with general initial data of the form @ = w 4 v as in (2.3) where v
is in A, defined in (1.6) and w € H?(R\{0}) satisfies
- _ My . | _

b = w(O—) — w(0+) > 0, 7 = ||w||H2(R\{O}) < oQ. (4.1)
The solution will be obtained as limit of a Cauchy sequence of approximate solutions wy,(t, x)
in L>([0,T], H'(R\{0})) for some T' > 0 sufficiently small, following the two steps (i)-(ii)
outlined at the end of Section 2. Indeed, we first establish the existence and uniqueness of
solutions to the Cauchy problem (2.18).

4.1 Construction of approximate solutions

For fixed n > 1, let wy, : [0,7] x R — R be a given function such that

o 1)
lwn(t; ) 2 m\ 103 < Mo, [wn(t,0£) —w(0%)] < go (4.2)

18



For simplicity, recalling the definition of the corrector function ¢ (¢, z) in (2.13), (2.15), and
(2.16), we set

Un(t) = w, (t) - w;i:,_ (t)v wg: (t) = wn(tv Oi) )

(4.3)
on(t,z) = n)(t ), an(t,x) = a(t,x,wy).
The Cauchy problem (2.18) can be rewritten as
wi + an(t,z) - wy, = F(t,z,w), w(0,z) = w(x). (4.4)

Hence, to complete step (i), we shall prove that (4.4) admits a unique solution w41 which
satisfies the bounds listed in (4.2). The construction of w1 is divided into three steps:

Step 1. Let ¢t — x,(t; 7, 2;) be the solution to the Cauchy problem
z(t) = an(t,z(t)), (1) = xr,
with a,(t,z) being the characteristic speed of (4.4), i.e.

an(t,z) = bt 2) + ' (wn + @n) — f(wn)

The solution w41 will be constructed by considering a sequence of approximate solutions w®)
to (2.18), inductively defined as follows.

1. w(t,-) = w(-) for all t > 0.
2. For every k > 1, w*+1(¢,.) solves the linear equation
M+%@@wx:ﬂwmgipgaww, w(0,) = w(). (4.5)

(k+1)

Equivalently, w satisfies the integral identity

to
w* D (tg, z0) = w(:rN(O;t07x0))+/ FW(t, (5 to, z0) )dt. (4.6)
0

Recall the definition of by and by in (3.10) and (3.8), we denote by
I = [=bo(T —1t)/2,bo(T —t)/2], 0<t<T<o00. (4.7)
The next lemma provides some properties including the Lipschitz continuous dependence of

the characteristic curves t — x,(t; 7, 27 ).

Lemma 4.1 Assume that wy, and p,, satisfy (4.2)-(4.3). Then there exist constants 61,T, K >
0 depending only on My, and f such that for all (z-,7) € ([-d1,01]\{0}) x (0,7, and for
every 0 <t <7, we have

bQ(T — t)

waltimer) ¢ I, and 2

< zp(tyT,20) — xT’ < 2by(T —t). (4.8)
Moreover, for any 0 < 1 < x9 < 81 or =61 < x1 < 22 < 0, one has

|20 (57, 31) — 2y (7, 22)| < K - |21 — 22| (4.9)
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1
Proof. From Lemma 3.1, it holds for every 0 < |z| < 1/4 and 0 < t < — that

4by
Lantr)] < [ 2)| 415 (lona(t. )] +2- st 2)])
dx - ’ ’ (4.10)
< b —|—Ff . (C(] . |$’a_1 +4M0) .
Recalling (3.9) and since ¢(®)(t,0) = 0, we have that
bo < an(t,0-) = B"(t) < b, —bi < an(t,04) = (1) < — by,
there exists a constant d; > 0 depending on b1, by, Cy, Mo, and I'; such that
b
—2b < ap(t,z) < - 50 (t,x) € [0,1/(4b1)]x 0, 254],
, (4.11)
50 < an(t,z) < 2b, (t,x) € [0,1/(4b1)] x [~261,0[.

In particular, set 7' = min{1/(4b1),1/(2b1)}. For (z,,7) € ([—01,01]\{0}) x (0, 7], one has
|2 (t; 7, 27)| < 2b1|7 + |2, < 26,  0<t<T,

and (4.11) implies (4.8).

To complete the proof, we shall establish (4.9) for 0 < x; < z2 < d;, the other case being
entirely similar. Set z(t) = ’:L‘n(t;T,l'l) — & (t; 7, 2)|. From (4.10), one has

\jtzu)\ < (b 4Ty [Co- lealtim @)l +40o)) - 2(1)

)0

and this yields (4.9). O

a—1

bolr =" | 4,

Co - 5

< <b1+rf'

As a consequence, for every 7 € [0,7], all characteristics starting at time ¢ = 0 inside the
interval I§ hit the origin before time 7. On the other hand, since a,, = b(wn) 4 d(wn) - from
(3.8), (3.20), and (4.7), there exists a constant Cy > 0 depending only on Mo, do, a and f such
that for every x € R\I] and t € [0, 7], it holds

|ana(t,2)| < Co-(r=1)*""  anea(t,2)| < Co- (Jwnaalt,z)| +[2]°7%) . (4.12)
Hence, one can use the same arguments as in [4, Lemma 4.1] to prove the following Lemma:

Lemma 4.2 Under the same assumptions as in Lemma 4.1, there exists a constant T > 0
depending only on My, 8y and f such that for every T € [0, T] and any solution v of the linear
equation

ve+an(t,x) vy = 0, v(0,) = v € H*(R\I), (4.13)

one has

w

0 sy ay) < 5 Il (414)
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Proof. To establish (4.14) for a fixed T € [0, T], we set
Z(t) = |lv(t, -)H%IQ(R\ID for all ¢ € [0, 7].
Multiplying the linear equation (4.13) by 2v, we have
(U2)t + (amﬂ)m = apav?, v(0,2) = v(x).
Integrating the above equation over the domain

0= |J{Bx®I) = {(te)€l0,7]xR:zeR\[]},
te[0,7]

and using the the first inequality in (4.12), we get

/ v*(, z)dx S/ 172(:1:)d:x+// nq(t, 2)02(t, ) dadt
—o0 2€R\IJ 0 Jaer\I7

; (4.15)
< BBy + Co / (r— 1)1 Z(t) dt.

Similarly, differentiating equation (4.13) with respect to x and multiplying by 2v, (and by
2044), we have

(vi)t + (an v%)x = —apg v v:(0,2) = ¥ (x),

(vgz)t + (an vix)x = —3anz vfm — 2an x4 Vo Vo, Vz2(0,2) = ().

Integrating the above equations over €2, we obtain

/ v2(7, x)dx S/ [@']z(x)dx—// .o (t, )02 (¢, ) dadt
—c0 z€R\IJ 0 JaeRr\I]

0 (4.16)
o' ()13 ) + Co /0 (r— )71 2(t) dt,

IN

and

(o] T
/ Ro(rz)de < / 0"2(z) do — / / 301002, + 2 o azs didi
—oo z€R\I] 0 JzeR\I]

) ] (4.17)
< 7" () By ) + 3C0 /0 (r — =1 Z(1)dt + 2Cy /O / Ot
T€R\IT

Using the second inequality in (4.12), (4.7), and Hélder’s inequality, we estimate

/ U 22Uz Uzgdr < / (1 + |wee (t, )| + ]a:|a72) ‘vx(t,x)vm(t,a:)‘ dx
c€R\IT o€R\IT
< et )l 2@y Ve () L2 eyar)

+ vz (t, )l @ay) / . [lwnao(t, 2)] + [2*72] - vga(t, 2)| do
T€R\IY

< 20 +220) [ [naelto) el s t0)] o

x€R\I]
bo(T — t)j| 0‘—3/2>

< Z(t)- <1+2M0+(2—a)—1/2- [ 5
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Thus, summing up (4.15), (4.16), and (4.17), we get

Z(t) < Z(0) + Co /OT <2 +AMy 4 5(r — 1) 4 —2 bolT = t)r_m) Z(t)dt,

(2 - a)l/ 2 [ 2
and by Gronwall’s lemma, we derive for 7 > 0 sufficiently small that

9 9

2 _ e — 252
0Ny = 20 < 72O = Il

proving (4.14). O

As a consequence of Lemma 4.1, by Duhamel’s formula, we get from (4.6) that

3, 3 [T
< 2~HwHH2(R\15)+2-/0 HF('“)(t,‘)‘ dt. (4.18)

[l -

H2(R\{0})
for all k£ > 1.

Step 2. Using Lemma 3.2, Lemma 4.1, and (4.18), we are now going to establish a priori

estimates on the sequence of approximations (w(k)) E>1°

Lemma 4.3 Assume that w,, and @, satisfy (4.2)-(4.3). There exists T > 0 depending only
on My, do, and f such that, for all T € [0,T],

0
®)(r, 0+ —*Oi’ < H (k) ‘ Mo. 4.19
O on) —wos)| < P [uBeo)] < Mo (4.19)
In addition, the map T — w®) (1,0+) s locally Lipchitz and
‘U')(k)(T,O:I:)‘ < Ml ae e [0,T). (4.20)

Proof. 1. Since w( ( ) = w(-) for all 7 € [0,7], the estimates (4.19)-(4.20) hold for
k = 1. Assume that (4.1 ) (4.20) hold for a given k > 1. Applying Lemma 3.2 for w = w(®),
t)

((t) =2I1t* ! and § = bo(r = 1) , we get

2
Hp(k) (t, .)’ < T [t_3/4 + (20 + 1)t <bo(7_t)> _3/4] ’

H2(R\IT) 2

and (4.18), (4.1) yield

3Mo / H FO)(
H2(R\{0}) —

3M 3My
< TO +F11 (7_1/4 _|_Ta—3/4) < 1 —|—2F1 7= 3/4

A

oo

HQ(R\F) (4.21)

for some constant I'1 1 > 0 that depends on I'1, by and M.
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2. For any 7 € [0,7] and —0; < Z2 < 1 < 0, consider the characteristics t — z;(t) = z(t; 7, Z;)
for i = 1,2. Recalling Lemma 3.2, Lemma 4.1, and (4.6), we have

< [w(2(0) ~w(ea(0) |+ [ [FOta(0) = PO 11 )]

bot|T — t|
2

< 2M0K|{Z‘2 — iZ‘l‘ + FLQ . (TQa_l + Ta_1/2) . |i‘2 — j1|

< OMoK % — #1| + (2T% +T1) /OT [( )CH + ta—f”/ﬂ 22(t) — a1 (t)|dt (422)

< <2MOK + 2111’2 . 7'1/4) . ’i’2 — fl‘

for some constant I'; 2 > 0 that depends on I'{,bp. An entirely similar estimate holds for
7€[0,T] and 0 < Zg < Z1 < I7.

3. Given 0 < 1y < 1 < T, let :c%t(t) = z(t; 72,0+) be the backward characteristic starting
from negative side and positive side of the origin at time 7o . From Lemma 3.2, Lemma 4.1,

(4.6), and (4.22), one has

‘w(k"'l) (19,0+) — w(k+1)(7'1, O:E)‘

T2
< [ (1, () = D (71, 05)| + / PO (¢, i (1)) |dt
T1
T2 bo(T —t bo(T —t
< 6MoKby (12 — 1) +F1/ ot <1 + 2T - [ O(T2 )ln< O(T2 )>‘ —I—ta}) dt
Ty
boT boT &
S 6M0Kb1(7’2 - 7'1) + |:P1 + QF% <Ta + OTIH <02> D:| . min{7-2’7_10¢—1(7_2 — Tl)} .
«

In particular, for almost every 7 € [0,7], it holds

‘w(kﬂ)(ﬂ 0) — @(Oi)‘ < 6MoKb T + [Fl +2r? <Ta +

bOTTln <b02T)D] % (4.23)

507T1n (btJQT)m sy (4.24)

Thus, from (4.21), (4.23), and (4.24), there exists a sufficiently small time 7' > 0 depending
only on My, dp and f so that (4.19)-(4.20) holds. O

and

‘w“:“)(f, Oi)‘ < 6MoKby + [rl 4 or? (T"‘ n

Step 3. Thanks to the above estimates, we now complete step (i), which is a key step toward
the proof of Theorem 2.1, by proving that the sequence of approximations w*¥) is Cauchy and
converges to a solution w of the linear problem (2.18).

Lemma 4.4 Under the same settings in Lemma 4.3, the sequence of approzimations (w(k))k>1

converges to a limit function w in L>([0,T], H*(R\{0})) for sufficiently small T > 0 depend-
ing only on My, do, and f. Moreover, w(r,-) satisfies (4.19)-(4.20) in [0, T].
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Proof. 1. For every k > 1, we set w(¥) = o+ — (%) and

® ) = sup ||lw®(t,- for all 7 € [0,7). 4.25
s = sup [w( Wy o 0,7] (4.25)

By (4.20), for almost every 7 € [0,7T], we define
2 () = max{‘w(m(ﬂoﬂ Jw®r, 0—)‘} < AT oL (4.26)

From (3.22) and (4.5), w*) solves the semilinear equation
v+ an(t,z) v, = PO @) w0,) = 0.

In particular, Lemma 4.2 and the Duhamel formula yield

3
H2(R\{0}) 2 Jo

Thus, by (4.7), (4.20), and the second inequality in (3.32), we derive

F(w® ) ds

HW(HU(T’ ')‘ H2(R\I7)

(5.)]

3

B < - (39 [ s =9 h (=9 Ee ) - )
0

IN

Cy8H) (7‘)7’20‘_% +Cy- / 2R () (7 — s)o‘_% ds.
0
(4.27)

for some constants C7, Cy depend only on I'y, and by

2. Next, we are going to provide a bound on ) in terms of ) and S**Y. Given any
0<7 <1 <T,let #3(t) = x,(t;m,04) be the characteristics, which reach the origin at
time 7, from the positive or negative side, respectively. From (4.6), it holds

T2
WD (,02) = W (35 )+ [ )

T1

Using (4.8), (4.25), (4.26), and the first inequality in (3.32), we estimate
wFHD (7, 04) — WD (7 O:I:)‘

< )w(kﬂ) (Tl,iét(Tl)) — W(k+1)(71,0:t)‘ —|—/ i

T1

Fl® D) (5 ) ‘ dt
T2

< g [ )] + it [ o a

1
T2
+ T80 (1) / tom b 2Dy (2 + |35 ()| dt
T1
< Cy- (,3<k+1>(n) + P (=) + 5“0(72)73—1) (2 —71),

and the increasing property of the map 7+ S (7) implies that

W(k+1)(57():|:)‘ < Oy - (5““*”(3) + 5(16)(8)50‘71), a.e. s €]0,T7, (4.28)

24



where C5 > 0 only depends on I'y,T'9, b1, and «.

3. To complete the proof, we introduce the sequence of maps 7 +— 7*)(7) defined by

(k) T
V() = o) +/ S8 (s) (1 —5)*3/2ds  for all T € [0, T).
4C4 0
with C being the same as in (4.27). Then, from (4.26), (4.27), (4.28), and the increasing

property of 8*) it holds

Cyr20—1/2
k+1 < 2
YT () < T

B0+ 1 [ SV = s

+ 03/ (B(k+1)(7_) + 5(k)(7')8a_1) (7_ . S)a—3/2 ds
0
< C4Ta71/2,3(k+1)(7') + 047'20‘*3/25(’“) (1) + % / E(k)(s)(T — 5)0“3/2 ds
0

for some constant Cy > 0 that only depends on C7,Cy and C5. In particular, by choosing
T > 0 sufficiently small such that

— 2 ) —
one obtains a contractive property

1
sup /(7)< < sup A W(r)  forall k> 1.
7€[0,T] T€[0,T]

It follows that (w(k))k>1 is a Cauchy sequence in L*°([0, 7], H*(R\{0})) and converges to a
function wy, 1 € L°([0,T], H2(R\{0})). This implies that

lwn1 (7 Mz @ygoy < Mo, lim w®(1,04) = w,yi(r,04)  forall 7 € [0, 7],

and w4 satisfies (4.19)—(4.20). Furthermore, from (4.28) and (4.20), the limit klim ™ (7, 04)
—00

exist and bounded by 2I'1 7! for almost every 7 € (0,7). Thus, for every 0 < 71 < 70 < T,
one has
W1 (12, 0%) — wpi1(r,04) = lim (w(k)(TQ,Oﬂ:) - w(k)(Tl,Oj:))

k—o00
T2 T2

= lim [ @®(r,04)dr = / lim w® (7, 04)dr,

k—o0 T T k—o0

and this yields
lim %) (7,04) = t,q1(r,0+) ae. 7€ [0,T].

k—o0

Thus, recalling the first estimate in (3.32), we have

klim F(T,x,w(k) (r,2)) = F(7,2,wp41(7,2)).
—00
Finally, taking k — +o00 in (4.6), we obtain that for all ¢, € [0, T,
to
wn+1(t07 xO) = w(-rn((), lo, 33'())) + / F<ta xn(t7 lo, 330)7 wn+1) dt,
0

and wy1 is a solution to the semilinear equation (4.4). U
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4.2 Proof of Theorem 2.1

1. By Lemma 4.4, we inductively construct the sequence of approximate solutions (wy,)n>1
where each w,, solves (2.18) and satisfies (4.2), on a suitably small time interval [0,T]. More-
over, the map 7 — wy,(7,0%) is locally Lipschitz and

|ty (7,04)| < 21 -77" ae. 7 €[0,7].

As outlined at the end of Section 2, we show that the sequence (wy,),>1 is Cauchy w.r.t. the
norm in H'(R\{0}), hence it converges to a unique limit w providing an entropic solution to
the Cauchy problem (2.14). In order to do so, for a fixed n > 2, we define

W, = Wy — Wp_1, v, = W(wn) - So(wn,ﬂ’ u, = w, +¥,,
Ap = ap — ap-1, Bu(T) = sup [[wy(t, ')HHl(R\{O}) :
te[0,7]

Recalling (2.5) and (2.18), we have
Unpt1,t + ay - Untle = G[\Iln—‘rl + Wn+1] - Anwn,x - An—l—l@g(cwwrl)-
From Lemma 4.2 and Duhamel’s formula, we obtain that for all 7 € [0,T], we have

[Wn+1(7, )l 51 @\ o))

3 T
< = _ _ (wn+1) . .
5 /0 (G[\I’n+1 + Wip1]) — Apwn g — Ant1y )(t, )H LR\) dt (4.29)

2. To bound the right-hand side of (4.29), we first recall the last inequality in (3.28) and
Lemma A.2 to get

IG¥ntillm@qoy < Tr1 IWnri® ) lm@ygoy < T Bera(t),

W1 (8, ) | g\ g0 Brr1(t
|GIWantill i r\=s0) < 512 B < (;}2( >,

for 6 > 0 sufficiently small. On the other hand, since a, = b(*») + d~)  from (3.26) and
(3.34), it holds

| An(t, )] < Cullwn (s )l @\ foy)-
B | (4.30)
(At 2)] < G <“W“|)”H““> W, x))

and this implies that
ARt oy < Co Iwalt, )lm oy

for some constant C1, Cy > 0 depending on f, My, and Cp. Thus, using (3.5) and (3.12)-(3.14),
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we derive

[ An(t, )wn,o () @yvgoy) < 4AE )l mr @0y - 1Wnell o @®\(oy)

< AMy - [[An(t, )l ey goy) < 4C2MoBal(t),

sy < AAnr ()l yop el )l e -ss)

Ansr ()Rl (8, )|

4Cy 4CoCaBp41(t)
< W’\Anﬂ(ta e @0y < —5ra

Thus, from (4.29) and (4.7), we obtain

1 (7, )l 7 )\ o) (4.31)
3 T 2 1/2 - 3/2—0é

< — 4Cy My By, T —_— 4 — n

< 2/0 CoMoBn(t) + | Tp1 + ‘bo(T >y +4CyCo bo(r 1) By (t)dt

< 6Co Mot (1) + Camo V26,44 (7)

for some constant C~'3 > 0 depending on CO,C~'2,F #1,b0 and a. From the last inequality in
(3.28), one has

a1 (7, ) @0y 2 Wt (7o) L ygoy) = 1Wnaa (75 ) oy
> (1 — Ff,lTa_1/2> N Wat (7, ) L w0y
and (4.31) yields

Ta—1/2

1-— Ff’lTOZ_l/2

< 3B+ g Ba(r)

IN

3 - . -
Wt 1 (7, )| 51w\ {0y : <202M0T3/2 - Bn(T) +Cs - ﬁn+1(7)>

for all 7 € [0,7] with T' > 0 sufficiently small. In particular,
1
Bry1(1) < 3 B (7) for all 7 € [0,7],

and (wp), is a Cauchy sequence in L*([0, 77, H'(R\{0})) which converges to the unique
limit w such that

do
’U)(t, 0—) — w(t,0+) > g, ||’U)(t, )HHQ(R\{O}) < Mo, for all t € [O,T].
Moreover, the map t — w(t,0+) is locally Lipschitz and

[ir(t,04)] < 2Ty -t ae. t €10,7).

Hence, u = w + () satisfies (i)-(ii) in Definition 1.1 and (2.1). To verify that u a piecewise
regular solution to (2.2)-(2.3), we notice that wy41 is the solution to (2.18) and

% [wn+1 + w(w"“)] + an - % |:wn+1 + sﬁ(w”“)} =G [wn+1 + go(w"“)] — Apy1- gogcw”“).
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Denoting by z,(-; to, zo) the solution to
z(t) = an(t,z(t)), x(tp) = o,
the formula above implies
|:’U)n+1 + go(w"“)} (to,w0) = (W +0)(xn(0;t0,x0))+

to t (4.32)
+/ G |:wn+1 + SO(W”“)} (t, 2p (s to, 20))dt —/ [Ap 180 (8, 2 (¢ to, z0) ) dt
0 0

From the first inequality in (4.30), it holds
t
lim [Apgr - gpg”"“)} (t, z(t;to, z0)) dt

n—o0 0

QW) (¢ 2t tg, 20))| dt = 0.

- to
< nli_{rolocl -5n+1(t0)/0

Taking n — oo in (4.32), we obtain
to
u(to, x0) = (w+0)(x(0;t0, x0)) + [ Glu(t,)] (x(t;t0, 0)) dt
0
with t — x(t; to, xo) being the characteristics curve, obtained by solving
w(t)) — flu™(t
() = fr @)Y
u=(t) —ut(t)

& = at,z,u) = <f’(U(t>fv))— !

= 9.

3. It remains to prove the uniqueness of (2.2)-(2.3). Assume that @ is a piecewise regular
solution to (2.2)-(2.3). Then we have

sup [la(t, )|mrw\foy = M1 < oo,
t€[0,T]

and for every § > 0 there exists a constant Ms > 0 such that
|ty (t,x)| < My for all (¢,z) € [0,T] x R\(—9,9).

By (1.7), (1.9), and the continuity G[a(t,)](-) outside the origin, @ is continuously differen-
tiable with respect to both variables ¢,z for  # 0. In particular, the map ¢ — a,(¢,0+) is
continuous and

inf @(t,0—) —a(t,0+) > 0.
tel[%,T]u( ) — u(t, 0+)

Following the same argument as in the proof of Lemma 4.1, there exist 61,00 > 0 and 0 <
T; < T small such that for all 7 € [0,71] and ¢ € [0, 7], it holds

at,z,u) -sign(z) < 0  for all z € [—d1,81]\{0},

and ~ -
T(t;mwr) > wp+bo- (r—t) if xp €]0,61],
(4.33)

F(t;mar) < @ —bo-(r—1t) if ;€ [-61,0[,
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where Z(-; 7, ;) is the solution to
z(t) = a(t,z(t),u), (1) = xr.
For every 0 < § < b1 small, we shall provide a better upper bound for

- (0,t) = sup |ug(t, )| for all t € [0, 7].
z€eR\[Z(t;T,—9),Z(t;7,0)]

For every z1 < w9 < &(t;7,—0) or Z(t;7,0) < x1 < x9, set T;(-) = Z(-;t,x;) for i = 1,2. Then,

one has
‘il(s) — 352(5)| la(s, z1(s),u) — a(s, x2(s), )]

Co - [i(s, 21(5)) — (s, wa(s))] < Co-Fr(0,8) - |#1(s) — da(s)]

IN

IN

with Cy = max,e—an, 2an] |/ (w)]. Applying Gronwall’s inequality, we get

~ t
|Z1(s) — Za(s)] < exp <Cg . / A+ (9, r)dr) - |xy — x| for all s € 0,t].

By Lemma A.2, (1.6), and (4.33), we estimate

ja(t, 21) —a(t, z2)] < [(0+7@)(#1(0)) — (0 + W) (72(0))|
iy Gla(t, ))(Z1(s)) — Gla(s, -)](Z2(s))| ds

(20My + Gy - (5 4+ 7)) - [31(0) — E2(0)

+53'M1/0t <1n2 [0 4 bo(r — 5)] +

IN

1

) e Bk

< Cy- (6+7)* "+ |In(s + bo(T — t)]) - exp (52 . /0 3+ (9, s)ds) - |xy — o).
Thus, for t € [0, 7], we have
- B N t
Fr(6,t) < Cy- ((6+ el 4 | In(6 + bo(T — t))D - exp (02 : /0 (0, S)ds) (4.34)

Equivalently,

e (-G / 56.5)ds) < Gl (647" 4 1(a + (s~ 0)

):

dt

and thus there exists a small time 0 < Ty < 77 and a constant 65 > (0 such that
o~ T ~
exp <Cg . / A+ (6, s)ds) < O for all 7 € [0, Ty].
0

Recalling (4.34), we finally get

sup  |ig(T,2)] = 3:(0,7) < Cg-6°"" for all T € [0, T3] (4.35)
2€R\[—5,5]

for some constant 56 > 0 which does not depend on §.
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4. Finally, to show that (¢, -) coincides with u(t,-) for all ¢ € [0, T, defining
U(t, 'CU) = ’&(t, 33‘) - u(ta $), A(tv .7}) = &(ta z, ’L~L) - El(t, z, u)>

we have
u +a(t,z,u) -uy, = Glu] — A(t, ) - uy.

Multiplying the above equation by 2u, we derive
(u?), + (a(t,,a) - v®) = u-[2G[u] — 2A(t, ¥)uy + Gz (t, 2, @)u]. (4.36)
For every 7 € [0, T»], integrating (4.36) over the domain
O = {(ta) € [0.7] xRz € R\[5 (1), 2 (1]},
where ZF(t) = &(t; 1,0+

T

), we get
la(r, e < // ) u- [2G[u] — 24t @)y + @y (t, 2, )] | dadt.
0 JR\[Z5 (t),31 (1)

Similarly, arguing as in the proof of Lemma 4.2, we obtain
[uz (7, 2) 172z
d ~
/ / um [ —Gu] — a,(t,z,u)uy — 2A5(t, v)uy — 2A(t, ) Ugy | dxdt.
R\[ZF ( a:T dx

From Lemma A.2, (4.35), the two inequalities above, and the fact that o > 3/4, there exists
T3 > 0 so small that for every 7 € [0, T3]

(M argon < Cr [ D012 () ooy
where C7 > 0 does not depend on 7 and x, = max{Z, —Z;}. From (4.33) and Gronwall’s
inequality, we conclude that
Ju(r, Mar@ypoy = 0 forall 7€ [0,T3].
Finally, we set
T = sup {re[0,7]:a(t,-) =u(t,-) foralltel0,7]}

By the continuity of %, u outside the origin, @(T,-) = (T, -) has the same regularity as w + v.
Consequently, if ' < T, then arguing as above we can find T €]T,T) such that @(r,-) = u(r,-)
for every 7 € [0,T], which contradicts the definition of T'. O

A Estimates on the nonlocal source

In this section, we shall establish basic estimates which are used in the proof of Lemma 3.2
and Lemma 3.4. Assume that K satisfies (H1)-(H2). Recalling the definition of A, ®, n and
¢ in (2.8)-(2.9) and (2.11)-(2.12), we set

b z+b
Po(z) = o(x,0) = n(x)-[®(0b) - (z +b)] = n(=)- [/O A(y)dy—/o Afy) dy]-

We first provide some bounds on G|y oo[®s] With X[o,cc[ being the indicator function on [0, oo|
for b > 0 small. As usual, by the Landau symbol O(1) we shall denote a uniformly bounded
quantity which does not depend on b.
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Lemma A.1 Assume that 0 < b < 1/4. For every 0 < |z| < 1/4 and § > 0, we have

|GX[0,00[¢] ()| < O(1), ’CZG[X[O,OO[%](&U) < O(1) - In*|z],

2
@G[X[o,oo[qﬁb] (z)

In |z|

< 0Q1)- J HG[X[OPO[(%]HH2(R\[75,5]) = O(l)'5_2/3'

(A1)

X

Proof. From Lemma 2.1 and ¢,(0) = 0, it holds

2
G'[X[O,oo[gbb} (x) = / &' (y+b) - Az —y) dy for all |x| < 1/2.
0
Case 1. Assume that —1/4 < z < 0. Observe that for all y € [-2,2]\{0},

AL < 0) ([Inlyl|+1), || < OQ)-lyl- (|In]yl| +1),

we have

2
Cloitr)@)] = | [ P+ M-y dy‘

2
< (’)(1)-/0 (14 |Injy+0])(1+|Injz—y||) dy < O().

To estimate derivatives of G[X[o,oo[¢b] (x), we consider two cases:

o If z +b> 0 then

2+|z|
|dG [X[o,oo[ﬁbb] (z) /| S (x+b+2z2) K(—z) dz

dzx |
24z 1+ |In|z + b+ 2| 2+ 1
< (9(1)-/ . dz < (9(1)~(1+]1n|x\\)-/ ~dz < O(1)-1n? |z|,
o] o]
and
42 , 2+ || 24|z Y
TG M@ @) = |-+ b4 ) K24 [ @ kb)) K(-2) da
@ o]

In|z|

X

2]
< 0(1).‘;. <lnb|—|—/2+| idz) < 0(1)-

x|
e Otherwise, if z + b < 0 then

d 2+4|z| .
%G[X[o,oo[qbb] ()| = ‘/I D'(x+b+2)  K(—=2) dz

z|

24|
< 0(1)- [\1nya;\\+/ |®(z+b+2)- K'(—2)| dz] < O(1) -1n?|z|,

x
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and

d? In |z| 2+e] / /

@G[X[O,oo[gﬁb] (x) < O(l) . + o ) ($ + b+ z) K (—Z) dz
2+|z|

< o) mf' +/ |B(x +b+2) - K"(~2))| dz] < 0(1)- mf' .

||

Case 2. Assume that 0 < z < 1/4. We write

1-b 2
Cloa@rl@) = = [ Aw+DAe =9y [ VD@ -ndy = —h- D

Since A is C3 in [1/2,2], it holds
‘Ig“(x)) < O(1) forallie{0,1,2}.

On the other hand, we split I; into three parts as follows

/2 3z/2
n= [ A<y+b>-A<x—y>dy+// Ay +8) - Ax — y)dy
0 x/2

1—b
+// Aly+0b)- Az —y)dy = I+ Lo + 3.
3x/2

We estimate

[T (z)] < O(1)~/02\ln(y—{—b)Hln(a:—y)\dy < 0(1).|1M\/02\1ny\dy < O(1)-zln*z,

[y (2)| = /;A(y+b)K(x—y)dy+W < O(1)-n?z,
0
1@ = | [ M0y BEEDED) ADEGED| o iz
and
( 1-b
[hs(@)] - < 0<1>-/31 (1+[In(y+ b)) - (1+ Iy — 2))dy < O(1)-zln’z,
|[a(z)| = ;_bA(yH)K(m_y)dy_3A(%”C+26>A(—§) < o) Wl
1-b 3z . . .
1) = /32 Ay 4 DE @ — gy dy - K +4b)A( £ 3A(% +f)K( )
< 0Q)- 1“7”5

Concerning I19, first of all, by a change of variable, it holds

Ly (z :81_1>151+<//2 /> (y+0)- A(a:—y)dy:/_;A(a:+b—z)-A(z)dz,
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and one directly computes that

;

[La(z)| < O(l)-‘lnx‘-/2\lnz|dz§(’)(1)'$ln2x,
0

@) = ‘/zmw—z) Ae)dz+ - [ACK +DA-) + AGS +b>A<§>]‘
3
<0 ( ylnz]dz—i—ln a;) <0(1)-1n?z,
[I{y(z)] < O ( TK’x—i—b—z) A(z)dz| + h;z)
—3
< (1 . ‘lnz‘dz—l— ><(’) (1) - hq?m

From the previous step, we obtain the first three estimates in (A.1) for 0 < |z| < 1/4.
Finally, observe that x[p.o¢p is continuous with compact support and smooth outside the
origin. Hence, G[X[O,oo[gzﬁb] is smooth outside the origin. As |z| — +o0, for i € {1,2} we have

di
‘G[X[O,oo[(ﬁb] (.%')‘ < O(l) ’ «7371; ‘deG[X[O,m[¢b] (x)

and using the first three estimates in (A.1) we obtain the last estimate in (A.1). O

Following the same argument in Lemma A.1, one can show that

Remark A.1 Given A1, Ao € R, the function

v(z) = (AL X000 + A2 * XJ0,00[) - M(@)T

is more regular than ®. Thus, one can follow the same argument as in Lemma A.1 to obtain
for all |x| < 1/2 that

G]()] < O1) (Ml +[A2]), ‘dde[U](x) < O) - (IM] + Aaf) - In? [z,

and

|Gv < O(1) - (M) +Xo|) 6722 forall 6 > 0.

HH2 (R\[-4,3])

Lemma A.2 Let v € H*(R\{0}) be such that
ol gimypoy < M, i€ {1,2}.

Set D) (z) = Gv](z) — [0(0+) — v(0=)] -n(x) - A(z). Then for every 0 < |z| <1/2 and § >0
small, we have that

D@ < o), [DP@)| < OQ)- Myl
(A.2)
(i

< O(1)-M;,  ||DV < O(1)- My - 6723,

HHl (R\{0}) HH2 (R\[—6,3])

Consequently, G[v] is in H. (R\{0}) and
1G]l gy sy < Mi-0- Y2
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Proof. We first split v into two parts

v =11 + U9, where vy ()

{v(O) -n(z) if x<0,

v(0+) -n(z) if = >0.
For i € {1,2}, one has that

IN

ol gy < ([0O0=)] 4 [0(0-H)]) - 19l 7o @\ (o)

4My - H77”H<i)(R\{o}),
and the function vy € H*(R) satisfies

ool ey < (L4 40l ) - M, o2l 2oy < (1 + 40l p2w)) - Mo.
Step 1. For every 0 < |z| < 1/2, we have

o)) = [

; vi(y)-Az—vy) dy+ [U(O—i—) —U(O—)] A(x) =L+ [U(0+)—U(0—)] ‘A(z). (A.3)
Recalling (2.4), we estimate

[11(2)]

-1 2
o0-) [ i) A=) dy+o00) - @) A ) dy‘

O(1) - My - (/_;1 Az —y)| dy+/12 Az —y)| dy) < O(1) - My,

IN

and

@) < o) M- (/ A (@ = )| dy + / Az — )| dy) < o) M
for i € {1,2}. Hence, (A.3) and (1.4) yield

Glul(z) = O(1)- My + [v(0+) — v(0-)] - A=)
G/lvi)(z) = O(1)- My + [v(0+) — v(0-)] - K(x), (A.4)
G"[vi](z) = OQ) - My + [v(0+) —v(0—-)] - K'(x).

Moreover, since vy is bounded and compactly supported, as |z — 400

|Gvi](z)] < O1)- M-zt dci;G[vﬂ(x) < O1) My -z~ e (1,2},
and we have
{G[vl] = [0(04) = v(0)] - A ll g rygoyy < O(1) - M, "
1Gv1] = [0(0+) = v(0=)] - A ll g2y g0y < O(1) - M.

Step 2. To estimate G|vy], we first recall that vo € H'(R). By the continuity of the linear
operator G : L2(R) — L2(R), we have

1G]l ey < O) - [lv2llarey < OQ)- M,

34



and this particularly yields
|Glug)(z)| < 2- HG[U2]HH1(R) < O(1)-M; for all z € R.

Thus, recalling (A.4) and (A.5), we get the first and the third estimate in (A.2).

Step 3. To achieve the second and the fourth estimate in (A.2), we split v9 into two parts

v2,,(0—) - an(z) if = <O,
V2 = V21 + V22, va1 () =
v2,(04) - zn(z) if = >0.

Since |v22(0£)] < 2+ [lv2z | g1 (r\{0y) < 2Ma, one has that [Jvaa(+)[| g2w) < O(1) - M2. Thus, by
the continuity of the linear operator G : L?(R) — L2(R), we get

d

HG[U22 < 0(1) - Mo, ’G[ng](x)‘, )de[UQQ](IE) < O(l) - M>, for all z € R.

]()HHQ(]R)

Finally, by Remark A.1 we have

d
|Glva1](z)] < O(1) - Mo, 'de[Ugl](CC) < O(1) - My - In? |z| for all |z < 1/2,
and
1G] || o sgy < O1)-Mz-67%  forall §> 0.
Thus, (A.4) and (A.5) yield the second and the fourth estimates in (A.2). 0
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