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ABSTRACT

Conditional value-at-risk (CVaR) is a well-established tool for measuring risk. In this article, we con-
sider solving CVaR optimization problems within a general simulation context. We derive an ana-
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lytical expression for CVaR gradient and propose a simultaneous perturbation-type gradient

estimator. This naturally results in a two-time-scale stochastic gradient algorithm for differentiable
CVaR optimization. The algorithm is easily implementable and uses only three simulation evalua-
tions at each iteration without requiring knowledge of the simulation model. We prove the almost
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sure local convergence of the algorithm and show that for the class of strongly convex problems,
the mean absolute error of the sequence of solutions produced by the algorithm diminishes at a
rate that is bounded from above by O(k=?/7), where k is the number of iterations. Simulation
experiments are also carried out to illustrate and evaluate the performance of the algorithm.

1. Introduction

Conditional Value-at-Risk (CVaR) (see Rockafellar and
Uryasev, 2000) has become a standard technique in the
financial industry for assessing and managing risk. CVaR is
closely related to Value-at-Risk (VaR), which defines the
quantile value quantifying the potential loss on a risky asset
or portfolio at a given confidence level. CVaR, on the other
hand, takes into account the risk in the tail of a return dis-
tribution and measures the average extreme losses beyond
the threshold specified by VaR. In recent years, the applica-
tion of CVaR has been extended to domains beyond finance.
For instance, Ahmed et al. (2007); Gotohand and Takano
(2007); Katariya et al. (2014) and Qiu et al. (2014) have
examined the use of CVaR as the optimization objective to
incorporate risk aversion when making inventory manage-
ment decisions. In Goh and Meng (2009); Felfel et al.
(2018); and Sawik (2019), CVaR is incorporated into opti-
mization models to avoid excessively large costs associated
with ordering, transportation, shortage, and disruption in
supply chain design and management. Many other practical
applications of CVaR include transportation/traffic control,
network design, and renewable energy; see the recent survey
article by Filippi et al. (2020) and references therein.

Despite its widespread applications, previous studies have
rarely examined CVaR optimization from a computational
point of view (Filippi et al., 2020), with the majority of the
existing literature focusing on applying the stochastic pro-
gramming framework introduced in Rockafellar and Uryasev
(2000). Specifically, let Y be a random variable and ¢ €
(0,1) be a given probability level, a fundamental result given
in Rockafellar and Uryasev (2000) is that CVaR can be

expressed as the optimal value of a minimization problem,
ie,

1
CVaR,(Y) = min z—i—ﬂE[max{Y—z,O}} . (1)
p _

This representation is convenient from an optimization
standpoint, because it allows one to bypass VaR estimation
and instead leverage mean-based techniques such as sample
average approximation (Rockafellar and Uryasev, 2000;
Wang and Ahmed, 2008) and stochastic programming
(Kunz-Bay and Mayer, 2006; Schultz and Tedemann, 2006;
Huang and Subramanian, 2012; Noyan, 2012) for CVaR
optimization. Nevertheless, the application of the framework
relies critically on structural properties (e.g., linearity or
convexity) of the assumed system model, as well as know-
ledge of the distribution function (Sarykalin et al, 2008;
Filippi et al., 2020). In particular, one limitation of such
methods, as pointed out in Tamar et al. (2015), is that they
cannot be suitably applied in the presence of distributional
parameters, i.e., when decision variables appear as the
parameters of the input distributions and affect the system/
model outcomes through changing the input distributions, a
scenario that frequently arises in many engineering problems
such as queueing network optimization, resource allocation,
and reinforcement learning.

In this article, we consider CVaR optimization under a
general simulation context where there is minimal know-
ledge of the underlying model generating the output, and
decision variables may affect the simulation model both dir-
ectly and via the input distributions. Our setting assumes
that the objective function is differentiable, and a primary
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issue is to construct a CVaR gradient estimator that can be
effectively integrated within an optimization procedure. In
the simulation literature, CVaR gradient estimation is often
referred to as CVaR sensitivity analysis, and has been a topic
of active research over the past two decades. The early work
of Scaillet (2004) considers the class of linear loss functions,
for which a kernel-based CVaR sensitivity estimator is devel-
oped and analyzed in terms of its asymptotic properties.
Hong and Liu (2009) later show that for general Lipschitz
continuous loss functions, the CVaR sensitivity can be
expressed in the form of a conditional expectation, leading
to an Infinitesimal Perturbation Analysis (IPA)-type of esti-
mator with desired properties such as consistency and
asymptotic normality. When no structural parameter is con-
tained in the loss function, Tamar et al. (2015) also derive
an asymptotically unbiased estimator based on the
Likelihood Ratio (LR) method and incorporate it into sto-
chastic gradient descent for CVaR optimization. More
recently, Glynn et al. (2021) propose a sensitivity estimator
for general distortion risk measures that obeys a central
limit theorem. The estimator uses the Generalized
Likelihood Ratio (GLR) method (Peng et al., 2018) to esti-
mate distribution sensitivities, which allows the sample path
to be discontinuous. It should be noted that sensitivity ana-
lysis in general is a broad area that goes far beyond just
CVaR derivative estimation. Due to the vast amount of
work in this area, we do not attempt to provide a descrip-
tion of all developments, but rather refer the interested
reader to, e.g., Fu (2015) and references therein.

Although the aforementioned sensitivity estimators are
valuable tools in providing CVaR gradient information at a
fixed parameter value, their constructions rely on the VaR/
quantile estimators, which are inherently biased for any finite
sample size. Thus, a straightforward implementation of these
estimators in a gradient search method would require a simu-
lation sample size that grows with the number of algorithm
iterations. In addition to the issue of bias, the selection and
application of these estimation techniques could also be
highly problem-dependent. For example, the LR approach of
Tamar et al. (2015) cannot handle problems with structural
parameters, whereas IPA- and GLR-based estimators rely on
knowledge of the simulation model, and thus may not be
applicable when the sample path derivatives of a simulation
model are either unavailable or difficult to obtain.

To overcome these limitations, we draw upon ideas from
recent results on quantile optimization (Hu et al., 2022) and
develop a two-time-scale stochastic gradient algorithm in
which the CVaR gradient is approximated through a novel
application of the well-known Simultaneous Perturbation
(SP) method (Spall, 1992). The key observation is that the
true gradient can be expressed in the form of an integral of
the output distribution sensitivities. We show that this leads
to a strikingly simple SP-style gradient estimator that is not
only easy to implement (requiring only three simulation
evaluations at each step), but can also be applied in the
presence of both distributional and structural parameters.
The resultant optimization algorithm we call SP-based CVaR
optimization (SPCO) then consists of two coupled Stochastic

Approximation (SA) recursions running at different time
scales. One computes quantile estimates, and the other
searches for improved solutions along the estimated descent
directions of CVaR. As compared with existing approaches
relying on increasing the simulation sample size to reduce
estimation errors (Tamar et al.,, 2015), SPCO simultaneously
eliminates the estimation bias and noise (in both quantile
and gradient estimates) by averaging all simulation data col-
lected over the iterations, allowing evaluation (quantile esti-
mation) and search to be conducted in a coherent manner.

We analyze the bias and variance of the proposed CVaR
gradient estimator, and prove the probability one conver-
gence of SPCO using an Ordinary Differential Equation
(ODE) method from the multi-time-scale SA literature.
Then, for the class of strongly convex objective functions,
we further characterize the convergence rate of the algo-
rithm by following the fixed-point argument recently intro-
duced in Hu et al. (2024). Our result indicates that an
optimal bound on the convergence rate of SPCO, when
expressed in terms of the Mean Absolute Errors (MAEs) of
the solutions produced, is of order O(k~2/7), where k is the
number of algorithm iterations. We note that although the
convergence of two-time-scale SA algorithms is relatively
well understood, the research is sparse on analyzing their
rates of convergence. The first such result is due to Konda
and Tsitsiklis (2004), who establish a central limit theorem
for two-time-scale SA with linear structures. An extension
of the result to the nonlinear case is presented in
Mokkadem and Pelletier (2006); however, their analysis
assumes that the gradient estimation errors have bounded
moments and that the covariance of the estimation noise
converges to a constant matrix, two critical conditions that
are not satisfied by a finite-difference-based gradient estima-
tor like ours.

In the rest of this article we start by describing the CVaR
optimization problem under a simulation scenario in
Section 2. In Section 3, we introduce the proposed gradient
estimator and the SPCO algorithm. In Section 4, we prove
the convergence of the algorithm and investigate its rate of
convergence. Some numerical studies and comparison
results are reported in Section 5. Finally, Section 6 concludes
the article with a brief summary of the contributions.

2. Problem setting

Let Y be an output random variable from a simulation
model h(X,0), where X € R is a random vector generated
from an input probability distribution, and 0 = (0, ..., 0,) €
R is a design parameter vector whose components may
appear in both the input distribution and the simulation
model h itself. We let F(-;0) be the cumulative distribution
function (c.d.f.) of Y with an (almost everywhere) continu-
ous probability density function (p.d.f.) f(-;0). Let S(0) C R
be the (closed) support of f(-;0) and assume that it can be
expressed as the union of a finite number of disjoint inter-
ValS, i.e., 8(0) = Ufil[a,(()),b,(O)} with bl(0) < aH_l(O), i=
1,...,K—1, where it is possible that a;(0) = —oo and/
or bg(0) = oo.



For a given probability level ¢ € (0,1) and a parameter
vector ), we assume that the ¢-quantile of the output ran-
dom variable Y, ¢(0;¢), lies in the open interval
(as(0),b,(0)) for some /€ {1,..,K} so that it can be
uniquely written as q(0; ) = F"'(¢;0). The (right-tail)
CVaR at the same level ¢, denoted by ¢y (0;¢), measures
the average value of Y in excess of q(0;¢) and can be
defined as

Py (0: ) - #r w0 @

L= Jg00
provided that the integral above is well-defined. The exist-
ence of CVaR is typically justified when the output distribu-
tion is light-tailed, whereas for certain types of heavy-tailed
distributions, a truncation to a finite interval is often neces-
sary to ensure the finiteness of ¢y (0; ¢). Our goal is to find
an optimal parameter vector 6" that minimizes ¢ (0; @),
ie,

0" = argmin ¢ (0; @), (3)

0cO

where the feasible region ® is a compact, convex, full-
dimensional subset of R?. We assume that ® can be
described by inequality constraints hj(0) < 0,j=1,...,m,
where each h;j(-) is a continuously differentiable function
satisfying  Vgh;(0) # 0 whenever hj(0) =0 (Kushner and
Yin, 1997). Many commonly encountered constraint sets
such as hyper-balls, hyper-rectangles, and general convex
polytopes can all be written in such a form.

Note that, as is common in CVaR optimization, we have
formulated (3) as a minimization problem. In this setting,
the representation (1) implies that (3) is equivalent to solv-
ing a stochastic programming problem over an augmented
parameter space (Rockafellar and Uryasev, 2000), i.e.,

1
L + = @E[max{Y —z,0}]], 4)
which can be tackled using tools from traditional mean-
based optimization. There are instances, however, when it is
preferable to adopt a risk-seeking stance (Xia et al., 2023),
in which case the objective becomes CVaR maximization.
For those problems, considering their stochastic program-
ming equivalences may no longer be beneficial, because (4)
would transform into a challenging max-min problem with
very few tractable solutions. Our approach, in contrast, is
based on a general gradient descent/ascent idea, which is
unaffected by this change in problem formulation, equally
accommodating both minimization and maximization
objectives.

3. Simultaneous perturbation-based CVaR gradient
estimator

It is well-known (Glynn et al, 2021) that the CVaR
¢y (0; @) defined in (2) belongs to a general class of distor-
tion risk measures that take the form

py(¥) = jw o(F(y: 0))dy - jm [1 - g(F(—y:0)]dy.
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where g(-) :[0,1] — [0,1] is called the distortion function
and F(y;0) := 1 — F(y; 0) is the complementary c.d.f. Thus,
if we assume the smoothness of F(y;0) and suppose that
derivative and integral can be interchanged, then using the
chain rule, the gradient of p,(Y) can be easily obtained as

< dg(u
In the case of CVaR, the distortion function specializes to
gw)y=u/(1-@)if0<u<l-¢, andg(u)=1if1—¢ <

u < 1. This immediately suggests the following form of the
CVaR gradient:

1 OO
vmw;w:——l_(PJw |
q\v;Q

We now collect the assumptions needed to formalize this
observation.

—0Q

VoF(y; 0)dy.

Assumption Al: Let N'(©) be an open neighborhood of ©.

(i) The support boundary points a;: N (@) — R,i=
2,..K and b; : N(®) = R,i=1,...,K—1 are differ-
entiable functions of 0. The endpoint bx : N (@) — R
is either a differentiable function of 0 or bx(0) = oo
for all 0 € N(O).

(ii) The output c.d.f. F(-;-) is twice continuously differenti-

able in both arguments on {(y,0) : y € int(S(0)),0

N(®)}, where int(S(0)) is the interior of S(0).

limy_. yVoF(y;0) = 0 for all 6 € ©.

For all g<oo, the integrals fqryf(y; 0)dy,

Iy yNof (v 0)dy, [T Vof (v;0)dy, and [T VeF(y; 0)dy

converge uniformly on N'(®) as r — cc.

(iii)
(iv)

Because © is compact, the differentiability of bx(0) in
condition A1(i) implies that bk (0) is bounded for all 0 € O,
which covers output distributions supported on bounded
intervals, e.g., uniform, Beta, and their mixture distributions.
On the other hand, the bx(0) = co case is satisfied by many
distributions supported on (semi-)infinite intervals, such as
Cauchy, exponential, and normal distributions. A1(ii)
requires the output distribution to be sufficiently smooth.
Al(iii) is generally satisfied by light-tailed distributions, e.g.,
those belonging to the exponential family, as well as general
distributions with bounded support. A1(iv) holds automatic-
ally for distributions supported on bounded intervals, and
can be verified for many frequently encountered light-tailed
distributions. A general sufficient condition for Al(iv) to
hold is the existence of integrable functions gi1(y), £(»),
g (), and g4(y) on [g,00) that dominate the integrands in
the sense that [yf(y;0)] <& (y), [yVef(y;0)l| < &),
IVof (7 0)[] < g5(y), and |[VoF(y; 0)[| < ga(y) for all 0 € ©.

Lemma 3.1. Suppose that Al holds. Then ¢y (0;9) is differ-
entiable with

Voody(0;0) = —;Jw VoF(y; 0)dy. (5)

1= Jy0:9)

Proof. See Section A of the Online Appendix for a proof. W


https://doi.org/10.1080/24725854.2024.2429714

1170 J. HU ET AL.

Because both the output distribution F(-;0) and the
quantile q(0; ) are unknown, the CVaR gradient needs to
be estimated from simulation data. An important observa-
tion from (5) is that the gradient operator only appears
inside the integral, and the integral itself can thus be viewed
as a continuous function of the integration limit q(6; ¢).
This suggests that the CVaR gradient can be estimated by
approximating an integral of the form ij VoE(y; 0)dy and
then replacing q by an estimate of g(; ¢).

In particular, let @ € © be fixed and g, be an estimate of
q(0; @), the quantile estimation can be carried out separately
using the recursive procedure proposed in Hu et al. (2022):

Grs1 = g + k(@ — { Yk < gi}), (6)

where 7y, is the step size, I{-} is the indicator function, and
Yi ~ F(-;0) is an output random variable distributed
according to F(-;0). Note that given qi, I{Yy < qx} is an
unbiased estimator for F(qx; @). Consequently, if the simula-
tion noises I{Y; < qx} — F(qx; 0) can be averaged out over
the iterations, then the sequence {qx} generated by (6)
should approach the unique solution q(6;¢) to the root-
finding problem F(y; 0) = ¢.

Now, given a quantile estimate g, consider the following
simple simultaneous perturbation procedure for estimating
Vody(0; @) based on simulation output information:

1 —max{Y;, qc} + max{Y,qx}
1- Q@ ZCkAk ’

where ¢, > 0 is the perturbation size, Ay = (A 1. ...,Ak,d)T is
a zero-mean random direction with ii.d. bounded inverse
second moments, Y;" ~ F(+;0 = cxAx) are the output ran-
dom variables generated under the perturbed parameters
0 = cxAx, and the division by a vector is element-wise. We
justify this estimation procedure through the help of the fol-
lowing result.

@)

Lemma 3.2. Let 0 € ©® and qi be fixed and suppose that
Al(iv)  holds. Then we have E[max{Y}", qi}|qx Ax]
= gk + [ [F(z:0=ceAp)]dz.

Proof. See Section B of the Online Appendix for a proof. B
In view of Lemma 3.2, the expectation of the estimator
(7) (conditional on gi) can be written as

E 1 —max{Y;,qc} + max{Y,q}
1- ] 2CkAk &
1 —max{Y,", g} + max{Y,qi}
=E|E|- A
1-— Q@ ZCkAk qk k qk
1 * F(z;0 Ax) — F(z;0 — A
__ E J (20 + ckAr) — F(z;0 — cAx) dzlqe|
1—0o @ 2¢ck Ak
(8)

We observe that the difference quotient in (8) is precisely
the SP estimator for approximating the gradient VgyF(z;0).
In particular, if we suppose that the expectation (w.r.t. Ay)
can be taken inside the integral, then using Taylor’s theorem

along with the fact E[Ay ;/A ;] = 0 for all i # j and ignoring
the resulting estimation bias, it can be readily seen that (8)
reduces to —Tl(pfqoko VoF(z; 0)dz, which differs from (5) only
in the integration limit. As a result, when gx approaches
q(0; @), it is reasonable to expect that the CVaR gradient
could be closely approximated by (7).

The above discussion suggests a natural gradient-based
method for solving (3), leading to our proposed SPCO algo-
rithm. Specifically, let @; be a current estimate of 0%, the
algorithm uses two coupled recursions to search for an
improved 0y, along the descent direction of (7) while sim-
ultaneously computing a new quantile estimate as follows:

g1 = gk + k(@ — I{Yx < qi}), )

=Tle

Or11

0 fof - 1 —max{Y;", g} + max{Y,q}
FTPR\TTZ 10 2c;Ax ’

(10)

where f, and y, are step-size parameters, Yj ~ F(-;60),
Y, ~ F(;0k*=cAg), and Ilg(-) stands for a projection
operator that forces the iterates generated by (10) to stay
within the feasible region ®. Since SPCO is a two-time-scale
SA method, its effective implementation requires the step-
size f, to be chosen very small relative to y,. Intuitively,
this is because the convergence of the quantile estimates gy
relies on the sequence {Y;} being generated under a fixed
parameter vector 0. Thus, setting f, small has the effect of
making the increments in 0; become progressively negligible
when viewed from the g recursion (9), and this in turn
allows proper tracking of the true quantile value q(0, @) as
the underlying parameter 0y slowly varies over time.

4. Asymptotic properties of SPCO

In this section, we establish the general local convergence
behavior of SPCO and characterize its convergence rate in
terms of the MAEs of {6x}. Let (Q, F,P) be the probability
space induced by the algorithm, where Q is the collection of
all sample trajectories generated by the algorithm, F is a
o-field of subsets of Q, and P is a probability measure on
F. We also define Fy = a{qo,00,....9k 0k}, k=0,1,... as
the sequence of increasing o-fields generated by the collec-
tion of all random iterates obtained up to iteration k.
Throughout the analysis, we let || - || be the usual Euclidean
norm and denote

1 —max{Y,",qx} + max{ Y[, qx}
1- Q 2CkAk

for notational convenience.

Dy =

4.1. Strong convergence

The projection operation ITg(-) in (10) essentially serves as
a correction step that sends an iterate back onto the region
® whenever it becomes infeasible (Kushner and Yin, 1997).
Thus, we can replace the operation with an extra correction
term and put (10) in the following equivalent form:
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1  —max{ Yk+’ g} + max{Y_, qk}>

0k+1:0k_ﬁk<_1_(p 20AL

+ BiZy,
(11)

where f,.Z; := 01 — 0r + b Dy is the real vector with the
smallest Euclidean norm needed to maintain the feasibility
of Or.,. More precisely, because © is a convex set, the cor-
rection term Zj lies in the convex cone generated by the
inward normals to the surface of ® at the point 0,;, that
is, Zx € —C(0k1), where C(0) is the normal cone to ® at
0,

C0):={veR: v (0-0)<0,Y0 c O

Clearly, from this definition, we have that C(6) = {0} for
all @ that lie in the interior of ©.

Our convergence analysis is based on a standard ODE
argument from multi-time-scale SA literature (Kushner and
Yin, 1997; Borkar, 2009; Hu et al.,, 2022) and proceeds in
two major steps. First, we show that the sequence of quan-
tile estimates {gx} remains bounded w.p.1. This, together
with the boundedness of {0} (due to the projection), allows
us to construct continuous-time interpolations of the iterates
{qx. 0k }1—, and subsequently use a set of two coupled ODEs
to characterize their long-run behavior. This part of the ana-
lysis is aimed at establishing the tracking ability of the g
iterates, in the sense that gy — q(0k; ) as k — co. Then
using this result, we can write (11) in the form of a general-
ized SA algorithm in terms of the true CVaR gradient, two
bias terms (due to the approximation error of g; and SP
estimation), a simulation noise term, and the additional pro-
jection term Zi. Consequently, by directly applying existing
results from single-time-scale SA, we are able to conclude
the strong convergence of {6} to the limiting solution of
the projected ODE

0(t) = =Voy(0; ®)lo=o) +2(0):t =0,

where z(t) € —C(0(t)) is the minimum force needed to keep

the trajectory 0(t) in ©.
Our analysis s

assumptions:

(12)

(13)

conducted under the following

Assumptions:
A2: Let N'(®) be an open neighborhood of ©.

(i) F(-;-) is three times continuously differentiable in both
arguments on {(y,0) : y € int(S(9)),0 € N (0)}.
There exists Ci,C, > 0 such that [° y*f(y;0)dy < G
and |7 [V3F(y;0)),;,dy < Co for all 0€ N(O),
where [V3F(y; 0)];; denotes the (i,j,k)th element
of V3F(y;0),

There exists a constant C; > 0 such that f(y;0) < Cy
forallye S, 0¢ 0.

(ii)

(iii)

A3: The random perturbations {Ay} are i.i.d., independent of
Fx. The components of each Ay are mutually independent
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following the symmetric Bernoulli distribution P(Ay; =1) =
P(Ayi=-1)=1/2foralli=1,..,d.
A4: The sequences {f}, {yi} and {ck} satisfy

1) 7 >0, Dy vk = 00, Z,f%gvi<oo. o
(i) o «>0 a—0, Y ofi=00 Y iobi/a<
00, B = o(7k).

Condition A2(i) is a strengthened version of Al(ii) and
assumes the output distribution to be three times continu-
ously differentiable. The condition [~ y*f(y;0)dy < C; in
A2(ii) ensures the output random variable has a bounded
second-order moment under all 6, whereas the condition
2o [VRE(y;0)]; ; xdy < C; is needed to bound the approxi-
mation error of the gradient estimator (7). Due to A2(i),
both conditions in A2(ii) hold trivially for distributions sup-
ported on finite intervals. A2(iii) requires the output density
to be uniformly bounded, which is generally satisfied in
many practical situations. Both A3 and A4 are regularity
conditions on the algorithm input parameters. In particular,
the Bernoulli random direction in A3 is a common choice
when implementing SP estimators. The conditions on step-
and perturbation-sizes in A4 are also standard in the SA lit-
erature (Spall, 1992; Kushner and Yin, 1997; Borkar, 2009;
Zhang and Hu, 2019).

Lemma 4.1. Let Assumptions A2(i), A2(iii), and A4(i) hold.
Then the sequence {qi} generated by recursion (9) satisfies:
(i) supy|qk| < co w.p.1; (i) sup, E[qi] < co.

Proof. See Section C of the Online Appendix. |

The next result quantifies the estimation error of the SP
estimator (7) and shows that the bias of the estimator is of
order O(c;), whose proof is given in Section D of the
Online Appendix.

Lemma 4.2. Define

1 —max{Y,, qx} + max{Y;,qx}
1- Q ZCkAk

1 (o.¢]
+—J VoF(z; 0;)dz.
1- ¢ 9k

bk =FE |.7:k

Suppose that Al(iv), A2, and A3 hold. Then we have
(i) bx = O(cg) w.p.I; (ii) E[|[by][] = O(cp)-

In Lemma 4.3 below, we characterize the asymptotic
behavior of (0, gx) along the time scale defined by {y,} and
establish the convergence of the quantile estimates g to the
true quantiles g(0; @) as k — oc.

Lemma 4.3. If Assumptions AI-A4 hold,
q(0; ©)| — 0 as k — oo w.p.1.

then |qx —

Proof. See Section E of the Online Appendix for a proof. W

The main convergence result for SPCO is stated in the
following theorem.

Theorem 4.4. If Assumptions AI-A4 hold, then the sequence
{0k} generated by SPCO converges to some limit set of the
projected ODE (13) w.p.1. In addition, if ¢y(0;¢) is strictly
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convex on O, then {0y} converges to the unique optimal solu-
tion 6" to the CVaR optimization problem (3) w.p.1.

Proof. Denote by

- 1 [4(00)
bk = —7J V()F(Z; Hk)dZ,

&, := Dy — E[Dy| Fy]
and recall that

Vody(0; €0)|0:0k =

1 o0
- J VoF(z; 0x)dz.
l—¢ q(0x;0)

Then, under the notation of Lemma 4.3, recursion (11)
can be written as

1 e ~
01 =0k — py (—m[ 000) VgF(Z; Ok)dz + b+ b+ Eak) + BrZk
q\Vk:o

=0k — P (ng)y(t‘); ®)lgg, + br + bi+ Fsk) + BiZk.

Since VyF(z;0) is continuous for all § € ® (Al1(ii)) and
lgk — q(0x; ©)| — 0 w.p.1. (Lemma 4.3), we have ||bi|| — 0
as k — oo w.p.l. In addition, from Lemma 4.2, ||bg|| — 0
w.p.1. Thus, it can be seen that all assumptions except A2.1
in Theorem 5.2.3 of Kushner and Yin (1997) are satisfied.
We remark that A2.1 in Kushner and Yin (1997) is stated
for expositional ease and is in fact stronger than what is
needed. The assumption could instead be relaxed to the
weaker condition >, BrE[||&||’] < oo, which holds true
in our setting (see the proof of Lemma 4.3). It is then easy
to check that all steps in the convergence proof given in
Theorem 5.2.3 of Kushner and Yin (1997) still go through
without requiring any modification. Hence, the convergence
of {6} is a direct consequence of Theorem 5.2.3 in
Kushner and Yin (1997). The second part of the result
amounts to showing that when the objective function is
strictly convex, the optimal solution 6 to (3) is a unique
globally asymptotically stable equilibrium of ODE (13). The
proof is identical to that of Corollary 1 in Hu et al. (2022),
and we omit the details. ]

4.2. Rate of convergence

To analyze the convergence rate of the algorithm, we con-
sider the case where the optimization problem (3) has a
strictly convex objective function, with its optimal solution
0" lying in the interior of the constraint set ®. Clearly, by
the first-order condition for optimality, Vedy(0; @)|g_g =
0. In addition, we have from Theorem 4.4 that 0, — 0" as
k — oo w.p.l.

To fix ideas, we take the step- and perturbation-sizes to
be of the standard forms f, = b/kP, y, =r/k', and ¢ =
¢/k* for constants b,r,c > 0 and f5,7,7 € (0,1). Let ¢y(0; )
be twice continuously differentiable with Hessian H(0) :=

Vigy(0; ). We impose the following additional assump-
tions on the output density and the Hessian matrix:

Assumptions:

B1: For almost all (qi,0x) pairs, there exist constants ¢ > 0
and Cp>0 such that (i) f(y;0k) >€¢ and (i)
[|VoF(y; 0k)|| < Cr for all y on the line segment between qi
and (6 ).

B2: Let A(0) be the smallest eigenvalue of H(0). There exists
a constant ¢ > 0 such that (0) > ¢ for all 0 that lie on the
line segment between 0y and 0*.

B1 essentially requires f(-;0;) and VyF(+;0;) to be uni-
formly bounded on the line segment connecting gq; and
q(0; ). This is not a very restrictive condition in practice,
and its suitability has been discussed in Hu et al. (2022),
where it is shown that (9) can be replaced by a projected
recursion that projects quantile estimates onto any closed
interval H containing the true quantiles g(0; ¢) for all 0
©®. This projection will not have an influence on the conver-
gence behavior of {gx} and ensures {gix} to stay uniformly
bounded along all sample trajectories. Consequently, B1 is
guaranteed to hold when f(+;-) and VgF(+; 0) are continuous
on the compact region H x ®. B2 is obviously satisfied
when A(0) is bounded from below uniformly for all 6 € ©,
which is the case for CVaR objectives that are strongly con-
vex; see, e.g., Hu and Fu (2024). From this perspective, B2
can be viewed as a strengthened version of the strict convex-
ity condition adopted in Theorem 4.4.

Lemma 4.5 below establishes the convergence rate of the
quantile estimates {gx} in terms of their mean squared
errors.

Lemma 4.5. Let Assumptions Al-A4 and Bl hold. The
sequence {qy} generated by SPCO satisfies

Vellac- a0 071 = o( L) + o).

YkCk

Proof. Let {x = qx — q(0k; @) and write (9) in terms of (; as
Gent = G+ 70 = H{Yi < qi}) + 9(0k; @) = (0115 9)-
We square both sides of the equation to obtain
G = G770 = 1{Ye < a}) + (4(0 0) — (013 9))°
+2Gk(e — H{Yi < gi})
+ 20k (q(0k; @) = 4(Ok15 )

+2y(@ — {Yi < @i}) (4(0k; @) — q(Ok 115 ).
(14)

Under A1(ii), g(0; ¢) is continuously differentiable on ©
and therefore is Lipschitz continuous. Let L, be its associ-
ated Lipschitz constant. Then we have from (11) and the
fact that ||Zx|| < ||Dk|| (Hu et al., 2022, lemma 5)

19(0k; @) — (0415 0)| < Ly|0x — Or 11|
< BrLg([|Di|| + [|Zk|]) < 2BiLg||Dk],

15)



Substituting the above into (14), we get

G SG+H7+ 4ﬁ2L§||Dk||2 + 2Gk(e = I{Yk < gi})
+40Lq ||| D
+ 200 = H{Yk < ai}) (a(0k: ) — 9(0k115 ).

Because (i is F-measurable and Y} is conditionally inde-
pendent of Y, given Fj, the conditional expectation
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Now consider a sequence of mappings

Ti(x) == \/((1 — 1€)x + Chi/ck)” + i for x>0, k> N.

Let {xx} be the sequence of real numbers generated by
X1 = T x(xx). Through a simple inductive argument, it can

be shown that if xyr = (/E[(3/], then {/E[(}] < x; for all

E[(;.,|F4] can be bounded as follows:

k=N,N+1,.... On the other hand, because

E[GIF <G +9p+ABLENIDPIF + 20 (B0 0); 06) — Flgis 00)
+ 4B Ly G (D[ F k] + 29 (F(q(0; @); k) — F(qx; 0x))E[q(0k; @) — q(Oks15 )| Fi]
=G+n+ 4ﬁiL2E[||Dk||2‘-7:k] + 28e7if (53 06) (9(0k; @) — qi)
+ 4B Ly Gk E[ D[ F 1] + 294f (G4 06) (a(0k: ) — ai)E[q(0; @) — 40k 0) | F ]
= (1= 29 (q1: 00) & + % + 4BL2E[ DRl [*| Fi] + 4BiLgl Gl LDy [| ]
+ 27 (@1 00) |Gk E[|9(0k; 0) = 9(0k105 @) [1F ]
< (123G + 77 + 4ﬁiL2E[||Dk||2|fk] + 4BiLq(1 + 7. Cr) |G| E[| Dl | F k],

where in the second step we have used a first-order Taylor
series expansion of F(qx;0) around q(6k; ¢) and g, is on
the line segment between g and q(0k; ¢). The last inequal-
ity follows from BI, f(q,;0k) < C; (condition A2(iii)),
and (15).

Without loss of generality, we take e to be sufficiently
small so that 2y,e < 1 for all k. Then, by unconditioning on
Fr, it follows that

B[] < (1 - 2n0B[]) + 92 + 4BL2E[ D]
+ 4BiLq (L + 74 Cr)El Skl E[| | Dk || 7]
< (1= 230)E[G] + 72 + 4B L2E[ || De ]

+4BiLo(1 + 7Cr)\ E[G] E[|[Dk]*]

2
2BiLy(1 + %Cr) ELIIDkI’] 2
VI=2)€ k

< <\/1 —2y.e\/E[G}] +
< (1= e EG] + M) + 9%,

where the second inequality is due to the Cauchy-Schwarz
inequality, the last step follows from v1—x<1—x/2 for
x € [0,1], and we have defined

 2BeLg(X + 7 Cy) E[||Dy]|’]
ke V1= 2)¢ '
From (A-11) in the Appendix, we have E[||Dy|[’] =

O(1/c}). Thus, there exist a constant C > 0 and an integer
N > 0 such that My < CB;/cx for all k > N.

dy/y* +yi/dy = y/\/y* +y; <1 for all y >0, the mapping
Ti(+) satisfies that |Tx(x) — Tx(»)| < (1 — pre)|x — y| for all
x,y > 0, and hence, is a contraction. The unique fixed point
x; of Ty can be obtained by solving the quadratic equation
T (x;) = x; and its order can be derived as follows:

C(1 = yxe) By/cx + \/Czﬁi/cﬁ + 7re(2 = 14€)
7k€(2 =€)

- o<ﬁ) + o(yi).

CkVk

*
xk—

Finally, by the contraction property of 7,(-), the same
argument as in Hu et al. (2024) can be used to show that
|xx — x| = o(xg). This in turn implies

VE[G] < x < % + 0(x}) = O(Bi/ (eex)) + O(72).
|

The main result of this section is presented in the follow-
ing theorem, which provides a characterization of the con-
vergence rate of the MAE E[||0, — 07||].

Theorem 4.6. If Assumptions Al-A4 and B1-B2 hold, then
the sequence {0y} generated by SPCO satisfies

E[[0 — 0°][] = o( P ) +o(3t) + 0@ +o<ﬁ—i>.

Kk %
(16)
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Proof. Define y; := 0 — 0". Recall that

1 —max{Y;",qx} + max{Y,qx}

Dy =—
k l—gD 2CkAk

and

o0

1
E[Dk|.7'—k] = by — EJ VaF(Z; Bk)dZ = b + G(qk; Bk),

Gk

where by, is defined as in Lemma 4.2. From (11), we have

||'/’k+1”22: Well” = 2B " (Dk — Zi) +2ﬁi|\D§ -z
< ||Will” = 2B "D + 280, T Zic + 455 || D[,
(17)

where the inequality follows from ||Zy — D|| < ||Zi|| +
||D|| < 2||Dy||- Because Zy € —C(011), we have by (12)
that  —Z[ (0" — 0x1) <O, implying ~ ZI (0, - 0*) <
Z!(0x — 011). This allows us to bound the 2,4, Z; term
in Lemma 4.2 as follows:

Zﬁklﬁk Z = Z.Bk(ak -0z < Zﬁk(0k+1 - 9k) Z
= ZﬁkD Z — 2[3ka Z, < ZﬁkD Z, < ZﬂkHDkH

Substituting the above into (17) and then taking condi-
tional expectations at both sides, we have

E[ W lPIFe] < el = 2B EID 7]
+ 6BLE[||Dy]|*| ]
= |Ill* = 280" [G(q(0k; 9), Ox) + Glqe, 0x)
— G(q(0k; 0), 0x) + by]
+ 6B;E[||Dxl 1’| 7]

Note that because Vg¢y(0; ¢)|,_g- = 0, through a Taylor
series expansion around 60", we can write

G(q(0x; 0); 0x) = Vody(0;
= V0¢Y(0;
= H(0)y,

where 0 is on the line segment between 6; and 6.
Moreover, by B1(ii) and the definition of G(q, 0x), we have

C
G(q(0; 0); 01)| < ﬁmk — q(0i; 0)|

where Lg := Cr/(1 — ¢) and recall that {; = gx — q(0k; @).
Consequently, by the Cauchy-Schwarz inequality,

E[ W | PIF] < 10 = 2807 THO) W, + Glgs,00)
~ Glq(04: ), 0) + b
+ 6BE[||Di| |7 ]
< (1= 2B)|IWell” + 2Bl el | (Lo |Gl
+ [[bell) + 657E[||Dx|[*| ],

<P)|9:0k
®)lg—g + H(0) (0, — 07)

|1G(qx; Ok) —

where in the last step we have used B2 and the Rayleigh-
Ritz 1nequahty (Rugh, 1996), i.e., Y H(0)y, > 2(0)||W]* >
ol[Wi|*. Since B — 0, there exists an integer N > 0 such
that 0 < S0 < 1/2 for all k > N. Then, taking expectations
at both sides, we have that for all k > N

E[ Wt |12] < (1= 26,0)E [l

2| toy/El5 ]+ D100y I ]

+ GBiE[IIDkIIZ]

(1= Bro)\ Bl I’] + Be)* + 6BLE[IIDx| ],

where By := (LG\/E 1G] + \/E[||bk|| })/\/ 1-2po.

From the proof of Lemma 4.2(ii), 1t can be easily

observed that 1/E[||bx||’] = O(c}).

Lemma 4.5, By = O(B;/(vxck)) + O(ﬁkyl/z) + O(Byct). Also
note from (A-11) in the Appendix that E[||D||*] = o(1/c}).
Let N’ > N be such that By < Ci(Bi/(yeck) + [)’ky,l(/z + Brct)
and E[||Dx||’] < Cy/c} for all k> N’ and constants C;,C >

Therefore, we have by

0. Next, we proceed by constructing a mapping Hi(y) =

V(1= Bi)y +Be)* +6Caf} /e, where Bic:=Ci(B/(eex) +
ﬁkyllc/ 2+ﬁkci), and consider the sequence of iterates {y;}
=Hi(y) with yy = E[|¢N,||2] As in

the proof of Lemma 4.5, it is easy to see that Hj is a con-
traction mapping with a unique fixed point y; satisfying

generated by yii;

¥ = Hi(y;). In addition, using induction and applying the

same fixed-point argument as in the proof of Lemma 4 in

Hu et al. (2024), we have that \/E[||[Y||°] <y <yt +o(y5).
The order of y; can be derived by inspecting the root of the

fixed-point equation y; = Hi(y), ie.,
 (1-B)Bi+ /B +60C: 2~ fro)Bi/ <t
Y Bre(2 = Bro)

b (ﬁz>

O +0 +0O(cg) + 0O

(Vk S (/k) (%)

Hence, the desired result is proved by noting that

E[[|0x = 0°[] < +/ElllelI°] u

From Theorem 4.6, the convergence rate of the MAE is
dominated by the order of the slowest component on the
right-hand side of (16). Thus, given the specific forms of f,
7% and ¢, by taking into account A4, the choice of algo-
rithm parameters that yields the tightest convergence rate
bound can be determined by solving the following optimiza-
tion problem:



. Y B
max min{f—-79-1, -,27, —— 1
max f=r-v3202-1
1 1
—<T1+=</,
st.d 2 +2 B
191
E<y<ﬁ<L

The problem can be readily solved to yield f~ 1, y=
4/7, and t=1/7. Under such a choice, we find that the
optimal bound on the convergence rate of E[||0; — 07||] is of
order O(k™2/7). An empirical illustration of this convergence
rate result is provided in Section F of the Online Appendix.

5. Numerical experiments

To illustrate the algorithm, we perform some computational
experiments on two sets of examples. In Section 5.1, we
apply the algorithm to minimize the CVaRs of four artifi-
cially constructed output random variables under various
input distributions, whereas in Section 5.2, we consider a
risk-averse inventory problem, where the goal is to maxi-
mize the left-tail CVaR of the seller’s revenue.

5.1. Artificial test functions

The following test functions are used in our experiments:

1. h (X,0) = Z; 1(0; —i)0; + X, where 6; € [0,i] for i=
1,...,d and X ~ Cauchy(0,1).

—10exp (—0 2(Zf 1 0,2) /d) +11
Xa

2. (X, 0) T (1=9) where © =
[—2,2]%, andXN exp(l)
3. hs(X,0) = [, (0, —i)* + ]X+H;’:I(ei-i), where

0;€[i—0.5i+0.5], i=1,.

d
4. hy(X,0) = ¥+0.1 exp (1 + X),
[—1,1]% and X ~ Normal(0,1).

., d and X ~ Normal(0,1).

where O =

In function h;, the Cauchy noise is additive, so the out-
put distribution is also Cauchy and does not have a defined
mean. Consequently, we truncate the output random vari-
able Y(0) to the interval [- Y% /4 —10%,10%] to ensure
the existence of CVaR. Function h, scales the input random
variable X by a factor that varies with the underlying param-
eter vector 0. In function ks, the input random variable is
both shifted and scaled. For function h4, the output distri-
bution is log-normal  with location  parameter
log (3%, 0?/d +0.1) + 1, which is a heavy-tailed distribu-
tion but has a well-defined mean. For each test problem, we
consider two choices of problem dimension: d = 20, d = 50
and two different quantile levels: ¢ =0.95, ¢ =0.99,
resulting in a total of 16 test cases.

In each of the four test functions, the output Y is mono-
tonic (element-wise) with respect to the input random vari-
able X. Thus, it is natural to adopt the Common Random
Numbers (CRN) method for reducing the variance of the
gradient estimator in (10). This leads to a CRN version of
the algorithm, SPCO-CRN, in which the two output random
variables Yki in (10) are generated at each iteration using
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the same stream of random numbers. We also consider a
version of SPCO that uses the traditional (symmetric) finite
difference method in estimating CVaR gradients. The algo-
rithm, we call finite-difference-based CVaR optimization
(FDCO), requires 2d + 1 output evaluations at each step
and only differs from SPCO in that the perturbation in the
parameter vector 6y is carried out in (10) in an element-
wise (as opposed to simultaneous) manner.

In addition to the two variants of SPCO, we have imple-
mented two other optimization approaches based on direct
gradient estimation: the Likelihood-Ratio CVaR optimization
(LRCO) of Tamar et al. (2015) and a gradient descent
procedure using the pathwise CVaR gradient estimator pro-
posed in Hong and Liu (2009) (PWCO). LRCO is a single-
timescale SA algorithm that takes the recursive form 0y, =
e (0x — piDy). Here, p; > 0 is the step-size and Dy is the
LR estimator of the CVaR gradient with its jth element
given by

b, = q(0:)I{Y; > q(0k)} |

Li dlogf(Y;; 0) (v, -

e 4= 00; oo,

(18)

where g(0) is the [ng]th order statistic of an output sam-
ple Y1,Y,,...Y,, ~ F(-;0). In our experiments, we set p, =
1/k and n; = [(logk)*], as suggested in Tamar et al.
(2015). It is worth noting that in all our test cases, 0;’s are
structural parameters that directly appear in the test func-
tions. Thus, the application of the LR estimator (18) requires
the explicit form of the output density f(-;0). PWCO, on
the other hand, relies on the analytical expression for the

sample path derivative Vgh(X,0). In particular, let
Y1, Y,,...Y, be n; iid output evaluations under 6, and
G1, Gy, ...G,, be observations of Vyh(X,80)|,_ 9, Similar to

LRCO, PWCO is also a recursive gradient descent procedure
of the form 0y, = g (0 — p,Dx), where the gradient esti-
mator Dy is given by

which provides an approximation of the closed-form
expression of the CVaR gradient V¢ (0;¢) =

E[Voh(X,0)I{h(X,0) > q(0; »)}] (Hong and Liu, 2009)
In our experiments, we set p, = 1/k and m = [(logk)*],
the same as in LRCO for a fair comparison.

In the implementation of SPCO, SPCO-CRN, and FDCO
the decay rates of the parameters are determined from the
result of Section 4.2, ie., f =099, y=4/7, and T=1/7.
Throughout the experiments, we take y, = R/k”, where R is
10% of the total number of iteration steps in SPCO and
SPCO-CRN. As discussed in Hu et al. (2022), the large con-
stant R allows quick tracking of the true quantiles as 6
changes, especially when the initial estimate g, is far away
from their true values. The parameters fi and ¢ are chosen
to be of the forms f; = b/(k + 10b)” and ¢, = ¢/(k + 10¢)".
In general, the value of b should be taken neither too large
(to prevent oscillatory behavior in early iterations) nor too
small (to prevent sluggish performance in the long run),



1176 J. HU ET AL.

whereas the value of ¢ should be chosen carefully to balance
the bias variance tradeoff in gradient estimation. The values
of the constants b and ¢ used in SPCO, SPCO-CRN, and
FDCO are listed in Table 1. These parameters are selected
based on trial and error to achieve reasonable performance
of the algorithms. We have also tested the performance of
SPCO under different values of b and c. The results are
reported in Section G of the Online Appendix, indicating
some robustness of the algorithm performance with respect
to their choices.

Our comparison results are based on equating the
amount of computational budget, where the total number of
evaluations is set to 3 x 10* for h; and k3, and 3 x 10° for
h, and hs. In SPCO, SPCO-CRN, and FDCO, the initial
quantile estimate is set to go = 0. In all algorithms, 0 is
uniformly generated from ©. Each algorithm is independ-
ently repeated 40 times. The means and standard errors
(over 40 runs) of the true CVaR values at the final solutions
found by the five comparison algorithms are given in Tables
2 and 3, where in each case, the result that is closest to the
true optimal value is shown in bold. The convergence
behaviors of SPCO, SPCO-CRN, LRCO, FDCP, and PWCO

Table 1. The values of (b, ¢) in SPCO, SPCO-CRN and FDCO.

Test Fcn. 1 2 3 4
SPCO (0.1, 50) (5, 15) (0.0001, 4) (0.1, 10)
SPCO-CRN (0.1, 50) (5, 15) (0.0001, 4) (0.1, 100)
FDCO (1, 500) (20, 40) (0.1, 5) (0.2, 20)

are also illustrated in Figures 1 and 2, which plot the true
CVaR values at the current estimated solutions as functions
of the numbers of simulation evaluations.

Test results indicate good performance of SPCO in com-
parison with LRCO and PWCO. In particular, the algorithm
outperforms LRCO and PWCO on function h, and most
cases on function h; within the allowed budget. In particular,
we conjecture that the relatively slow convergence of LRCO
and PWCO on h;, is due to the flat response surface of the
objective function near the optimum, so that finding a good
solution requires a large number of algorithm iterations.
However, the increasing (per-iteration) sample size
required by both algorithms results in a much smaller num-
ber of algorithm iterations compared with SPCO under the
given budget constraint. For k3, SPCO shows comparable
performance to PWCO and outperforms LRCO. For h; and
hy4, the true quantiles at the optimal 6 values are very distant
from the initial estimate go = 0. Thus, it may take many iter-
ations of an iterative quantile estimation procedure such as
(9) to identify the correct quantile range. On the other hand,
because LRCO and PWCO estimate quantiles using order sta-
tistics, they do not require specification of an initial estimate
and are not heavily affected by the location of the true quan-
tile. We see from the figures that LRCO and PWCO typically
show a faster initial improvement than SPCO. Test results
also show that the use of CRN may drastically reduce the
variance of the gradient estimator, leading to significantly
improved finite-time convergence behavior. From Tables 2

Table 2. Performance on test functions for d = 20, based on 40 independent runs (standard error in parentheses).

®=0.95
Case 1 2 3 4
Optimum —670.26 1.00 2.06 24.40
SPCO —670.24 (1.99e-3) 1.02 (7.75e-4) 2.06 (3.84e-6) 25.78 (7.35e-2)
SPCO-CRN —670.26 (3.64e-14) 1.00 (4.97e-10) 2.06 (2.31e-7) 24.40 (7.70e-6)
LRCO —670.23 (2.10e-3) 1.79 (2.83e-2) 3.49 (5.11e-2) 24.40 (7.40e-6)
FDCO —670.21 (1.60e-2) 1.04 (1.88e-3) 2.15 (3.75e-3) 24.78 (1.83e-2)
PWCO —670.24 (1.20e-3) 2.16 (2.59%¢-2) 2.06 (1.60e-10) 24.40 (1.91e-6)
@ =0.99
Optimum —532.32 1.00 2.67 1394.75
SPCO —532.28 (7.76e-3) 1.05 (2.11e-3) 2.67 (9.58e-8) 1534.35 (6.89)
SPCO-CRN -532.32 (1.82e-14) 1.00 (2.48e-11) 2.67 (1.09e-7) 1394.75 (7.28e-14)
LRCO —530.87 (7.69e-2) 2.11 (3.47e-2) 4.77 (8.06e-2) 1394.75 (9.48e-6)
FDCO —530.45 (1.63) 1.09 (4.03e-3) 2.93 (1.19e-2) 1478.31 (3.75)
PWCO —530.93 (5.91e-2) 2.64 (4.34e-2) 2.67 (5.03e-8) 1394.75 (1.58e-6)
Table 3. Performance on test functions for d = 50, based on 40 independent runs (standard error in parentheses).
¢ =0.95
Case 1 2 3 4
Optimum —10683.31 1.00 2.06 24.40
SPCO —10679.26 (6.02e-1) 1.05 (1.24e-3) 2.06 (8.01e-7) 38.18 (3.31e-1)
SPCO-CRN —10671.45 (1.19) 1.00 (3.21e-9) 2.06 (4.64e-7) 24.75 (1.54e-2)
LRCO —10682.88 (3.13e-2) 2.57 (2.78e-2) 8.01 (9.14e-2) 24.83 (2.29%-2)
FDCO —10682.54 (3.41e-1) 1.06 (1.77e-3) 2.69 (2.71e-2) 26.11 (4.83e-2)
PWCO —10682.98 (1.14e-2) 2.76 (3.31e-2) 2.06 (6.44e-9) 24.75 (8.76e-3)
» =0.99
Optimum —10542.60 1.00 2.67 1394.75
SPCO —10540.23 (5.40e-1) 1.14 (4.33e-3) 2.67 (3.14e-7) 1901.34 (18.32)
SPCO-CRN —10542.60 (2.91e-13) 1.00 (1.32e-12) 2.67 (1.66e-7) 1394.75 (2.64e-6)
LRCO —10520.42 (1.06) 2.78 (3.93e-2) 11.36 (1.65e-1) 1398.98 (4.50e-1)
FDCO —10542.30 (1.34e-1) 1.13 (4.26e-3) 4.73 (7.90e-2) 1547.65 (4.69)
PWCO —10519.85 (5.57e-1) 2.97 (2.68e-2) 2.67 (5.37e-8) 1398.75 (1.33e-1)
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Figure 2. Performance of SPCO, SPCO-CRN, LRCO, FDCO, and PWCO on hy — hy (¢ = 0.99).



and 3, it can be observed that SPCO-CRN yields superior
performance in the majority of the 16 test cases and has sig-
nificantly smaller standard errors than those of SPCO. In the
remaining seven cases, the availability of a direct gradient
estimator results in PWCO having the best performance of
all the methods. Note that we have used a single set of param-
eter values for PWCO in all test cases, the performance of the
algorithm could be further improved through a more careful
selection of algorithm parameters tailored to each case. From
the comparison results, it is clear that when structural know-
ledge of the underlying model is available, it should be
exploited. On the other hand, because SPCO is model-free
and only relies on simulation output samples, it applies more
generally in black-box settings.

5.2. An inventory example

We consider a single-period risk-averse inventory problem
adapted from Chen et al. (2009), where the goal is to deter-
mine how many items of a product should be kept in inven-
tory, as well as the selling price of the product in order to
maximize the CVaR of the seller’s profit. Let 0; denote the
inventory level at the beginning of a selling season, p the
per-unit ordering cost, 0, the per-unit selling price, d(0,,X)
the price-dependent demand during the selling season,
where X signifies the demand risk, which is a random vari-
able with a known distribution and is assumed to be inde-
pendent of 0,. At the end of the selling season, the leftover
inventory is salvaged at price s. Then the seller’s profit can
be represented as

Y(0) = 0,min{0,d(0,X)} + s(6, — d(0,,X))" = pO,
= (0, = p)0r — (0, = 5)(0; — d(0,.X))",
(19)

Table 4. Optimal solutions found by SPCO on the inventory example, based

IISE TRANSACTIONS . 1179

where z' = max{z,0}. The objective is to determine the
optimal choice of the parameter vector 6 = (0,,0,) that
maximizes the left-tail ¢-level CVaR of Y(0) defined by

L 1 [4(0:0)
o) =2 | oy
P J-o

Note that because this is a problem for maximizing the
left-tail CVaR, whereas SPCO is presented for minimizing
the right-tail CVaR, the following modification of (10) is
required in actual implementation of the algorithm:

1 —min{ Yk+, qr} + min{Y_, %})]

:H —_—
O e 9k+ﬁk< (p 20AL

For the numerical experiments, we set s =1, p =4, and
use a multiplicative demand model d(6,,X) = (100 — 6,)X,
where X follows a generalized Beta distribution with p.d.f.

(e N
fX(x)*mv x €[0,2]
with Beta being the beta function. The feasible region ® is
taken to be the set characterized by inequality constraints
0<0;, <100, 4 <0, <100, and 200 < 0, 4 20,. In SPCO,
we take 0, = (10,10), f; = 5/(k+50)"%, v, = 10*/k*7,
c =15/(k+ 150)1/7, and consider two CVaR levels: ¢ =
0.95 and ¢ = 0.99.

For the purpose of comparing with the optimum, we
note that an expression for the left-tail CVaR of Y(0) in

(19) can be obtained as

1 (2a(0:9) —a —a
Lo :71 y 22N (20
WO =01 TBemp2) ) @0
where a=-30;, = (0,—1)(100—0,), and q(0;¢) is

given by the solution to the integral equation

on 40 independent runs (standard errors in parentheses). q(0;0)
1 y—a ] y—a 4
=0.95 =0.99 - = @.
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Figure 3. Performance of SPCO on the inventory example.
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The performance of SPCO (averaged over 40 runs) is
shown in Figure 3 and Table 4. In particular, the graphs
plot the objective CVaR values ¢%(0y; @) as a function of
the number of simulation evaluations consumed, whereas
the table records the solutions returned by the algorithm
upon termination in each of the two respective test cases.
To further gauge the performance of the algorithm, we con-
sider a procedure used in Huang et al. (2006) for measuring
the relative efficacy of an optimization procedure.
Specifically, let @7 be the solution found by SPCO upon ter-
mination, we define a performance measure

. — P10 0) — y(0r:¢)

¢y (00: 0) = 3(07: )
which signifies the reduction in the optimality gap of a
returned solution relative to that of the initial values. The
means and standard errors of Gy values are reported in the

last row of Table 4. We see that in both test cases, SPCO is
able to achieve more than 99% reduction in optimality gap.

6. Conclusions

In this article, we have considered the problem of optimiz-
ing CVaR under a general simulation environment. We have
derived a closed-form formula for the CVaR gradient and
proposed a simple SP-based estimator for approximating its
value. The estimator, when combined with a separate pro-
cedure for estimating quantiles, results in a two-time-scale
SA method for general differentiable CVaR optimization.
The algorithm only requires three simulation evaluations at
each step and has the advantage of allowing simulation
errors to be incrementally eliminated using past simulation
data accrued over the iterations. Under appropriate condi-
tions, we have analyzed the asymptotic behavior of the algo-
rithm in terms of its convergence and rate of convergence.
The empirical performance of the algorithm has also been
illustrated through simulation experiments, indicating its
promising performance on a variety of testing scenarios.

Although our discussion of SPCO has primarily focused
on a specific SP-style gradient estimator, the two-time-scale
structure of the algorithm offers the flexibility to consider
many other alternative CVaR gradient procedures. For
instance, if the sample path derivatives of a simulation
model can be readily obtained, then both IPA and GLR
techniques could potentially be applied to lead to new algo-
rithms with direct CVaR gradients. From this perspective,
SPCO can be viewed as a framework for differentiable
CVaR optimization. Thus, one line of future work will be to
examine the use of other suitable gradient procedures within
the framework and to investigate the theoretical perform-
ance and computational efficiency of the resultant
algorithms.
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