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ABSTRACT 

Conditional value-at-risk (CVaR) is a well-established tool for measuring risk. In this article, we con-
sider solving CVaR optimization problems within a general simulation context. We derive an ana-
lytical expression for CVaR gradient and propose a simultaneous perturbation-type gradient 
estimator. This naturally results in a two-time-scale stochastic gradient algorithm for differentiable 
CVaR optimization. The algorithm is easily implementable and uses only three simulation evalua-
tions at each iteration without requiring knowledge of the simulation model. We prove the almost 
sure local convergence of the algorithm and show that for the class of strongly convex problems, 
the mean absolute error of the sequence of solutions produced by the algorithm diminishes at a 
rate that is bounded from above by Oðk

−2=7Þ, where k is the number of iterations. Simulation 
experiments are also carried out to illustrate and evaluate the performance of the algorithm.
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1. Introduction

Conditional Value-at-Risk (CVaR) (see Rockafellar and 
Uryasev, 2000) has become a standard technique in the 

financial industry for assessing and managing risk. CVaR is 

closely related to Value-at-Risk (VaR), which defines the 
quantile value quantifying the potential loss on a risky asset 

or portfolio at a given confidence level. CVaR, on the other 

hand, takes into account the risk in the tail of a return dis-
tribution and measures the average extreme losses beyond 

the threshold specified by VaR. In recent years, the applica-

tion of CVaR has been extended to domains beyond finance. 
For instance, Ahmed et al. (2007); Gotohand and Takano 

(2007); Katariya et al. (2014) and Qiu et al. (2014) have 

examined the use of CVaR as the optimization objective to 
incorporate risk aversion when making inventory manage-

ment decisions. In Goh and Meng (2009); Felfel et al. 

(2018); and Sawik (2019), CVaR is incorporated into opti-
mization models to avoid excessively large costs associated 

with ordering, transportation, shortage, and disruption in 

supply chain design and management. Many other practical 
applications of CVaR include transportation/traffic control, 

network design, and renewable energy; see the recent survey 

article by Filippi et al. (2020) and references therein.
Despite its widespread applications, previous studies have 

rarely examined CVaR optimization from a computational 

point of view (Filippi et al., 2020), with the majority of the 
existing literature focusing on applying the stochastic pro-

gramming framework introduced in Rockafellar and Uryasev 

(2000). Specifically, let Y be a random variable and u 2
ð0, 1Þ be a given probability level, a fundamental result given 

in Rockafellar and Uryasev (2000) is that CVaR can be 

expressed as the optimal value of a minimization problem, 

i.e.,

CVaRuðYÞ ¼ min
z

z þ 1

1 − u
E maxfY − z, 0g½ ÿ

ÿ ÿ

: (1) 

This representation is convenient from an optimization 

standpoint, because it allows one to bypass VaR estimation 

and instead leverage mean-based techniques such as sample 

average approximation (Rockafellar and Uryasev, 2000; 

Wang and Ahmed, 2008) and stochastic programming 

(Kunz-Bay and Mayer, 2006; Schultz and Tedemann, 2006; 

Huang and Subramanian, 2012; Noyan, 2012) for CVaR 

optimization. Nevertheless, the application of the framework 

relies critically on structural properties (e.g., linearity or 

convexity) of the assumed system model, as well as know-

ledge of the distribution function (Sarykalin et al., 2008; 

Filippi et al., 2020). In particular, one limitation of such 

methods, as pointed out in Tamar et al. (2015), is that they 

cannot be suitably applied in the presence of distributional 

parameters, i.e., when decision variables appear as the 

parameters of the input distributions and affect the system/ 

model outcomes through changing the input distributions, a 

scenario that frequently arises in many engineering problems 

such as queueing network optimization, resource allocation, 

and reinforcement learning.
In this article, we consider CVaR optimization under a 

general simulation context where there is minimal know-

ledge of the underlying model generating the output, and 

decision variables may affect the simulation model both dir-

ectly and via the input distributions. Our setting assumes 

that the objective function is differentiable, and a primary 
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issue is to construct a CVaR gradient estimator that can be 

effectively integrated within an optimization procedure. In 

the simulation literature, CVaR gradient estimation is often 

referred to as CVaR sensitivity analysis, and has been a topic 

of active research over the past two decades. The early work 

of Scaillet (2004) considers the class of linear loss functions, 

for which a kernel-based CVaR sensitivity estimator is devel-

oped and analyzed in terms of its asymptotic properties. 

Hong and Liu (2009) later show that for general Lipschitz 

continuous loss functions, the CVaR sensitivity can be 

expressed in the form of a conditional expectation, leading 

to an Infinitesimal Perturbation Analysis (IPA)-type of esti-

mator with desired properties such as consistency and 

asymptotic normality. When no structural parameter is con-

tained in the loss function, Tamar et al. (2015) also derive 

an asymptotically unbiased estimator based on the 

Likelihood Ratio (LR) method and incorporate it into sto-

chastic gradient descent for CVaR optimization. More 

recently, Glynn et al. (2021) propose a sensitivity estimator 

for general distortion risk measures that obeys a central 

limit theorem. The estimator uses the Generalized 

Likelihood Ratio (GLR) method (Peng et al., 2018) to esti-

mate distribution sensitivities, which allows the sample path 

to be discontinuous. It should be noted that sensitivity ana-

lysis in general is a broad area that goes far beyond just 

CVaR derivative estimation. Due to the vast amount of 

work in this area, we do not attempt to provide a descrip-

tion of all developments, but rather refer the interested 

reader to, e.g., Fu (2015) and references therein.
Although the aforementioned sensitivity estimators are 

valuable tools in providing CVaR gradient information at a 

fixed parameter value, their constructions rely on the VaR/ 

quantile estimators, which are inherently biased for any finite 

sample size. Thus, a straightforward implementation of these 

estimators in a gradient search method would require a simu-

lation sample size that grows with the number of algorithm 

iterations. In addition to the issue of bias, the selection and 

application of these estimation techniques could also be 

highly problem-dependent. For example, the LR approach of 

Tamar et al. (2015) cannot handle problems with structural 

parameters, whereas IPA- and GLR-based estimators rely on 

knowledge of the simulation model, and thus may not be 

applicable when the sample path derivatives of a simulation 

model are either unavailable or difficult to obtain.
To overcome these limitations, we draw upon ideas from 

recent results on quantile optimization (Hu et al., 2022) and 

develop a two-time-scale stochastic gradient algorithm in 

which the CVaR gradient is approximated through a novel 

application of the well-known Simultaneous Perturbation 

(SP) method (Spall, 1992). The key observation is that the 

true gradient can be expressed in the form of an integral of 

the output distribution sensitivities. We show that this leads 

to a strikingly simple SP-style gradient estimator that is not 

only easy to implement (requiring only three simulation 

evaluations at each step), but can also be applied in the 

presence of both distributional and structural parameters. 

The resultant optimization algorithm we call SP-based CVaR 

optimization (SPCO) then consists of two coupled Stochastic 

Approximation (SA) recursions running at different time 

scales. One computes quantile estimates, and the other 

searches for improved solutions along the estimated descent 

directions of CVaR. As compared with existing approaches 

relying on increasing the simulation sample size to reduce 

estimation errors (Tamar et al., 2015), SPCO simultaneously 

eliminates the estimation bias and noise (in both quantile 

and gradient estimates) by averaging all simulation data col-

lected over the iterations, allowing evaluation (quantile esti-

mation) and search to be conducted in a coherent manner.
We analyze the bias and variance of the proposed CVaR 

gradient estimator, and prove the probability one conver-

gence of SPCO using an Ordinary Differential Equation 

(ODE) method from the multi-time-scale SA literature. 

Then, for the class of strongly convex objective functions, 

we further characterize the convergence rate of the algo-

rithm by following the fixed-point argument recently intro-

duced in Hu et al. (2024). Our result indicates that an 

optimal bound on the convergence rate of SPCO, when 

expressed in terms of the Mean Absolute Errors (MAEs) of 

the solutions produced, is of order Oðk−2=7Þ, where k is the 

number of algorithm iterations. We note that although the 

convergence of two-time-scale SA algorithms is relatively 

well understood, the research is sparse on analyzing their 

rates of convergence. The first such result is due to Konda 

and Tsitsiklis (2004), who establish a central limit theorem 

for two-time-scale SA with linear structures. An extension 

of the result to the nonlinear case is presented in 

Mokkadem and Pelletier (2006); however, their analysis 

assumes that the gradient estimation errors have bounded 

moments and that the covariance of the estimation noise 

converges to a constant matrix, two critical conditions that 

are not satisfied by a finite-difference-based gradient estima-

tor like ours.
In the rest of this article we start by describing the CVaR 

optimization problem under a simulation scenario in 

Section 2. In Section 3, we introduce the proposed gradient 

estimator and the SPCO algorithm. In Section 4, we prove 

the convergence of the algorithm and investigate its rate of 

convergence. Some numerical studies and comparison 

results are reported in Section 5. Finally, Section 6 concludes 

the article with a brief summary of the contributions.

2. Problem setting

Let Y be an output random variable from a simulation 

model hðX, hÞ, where X 2 R
l is a random vector generated 

from an input probability distribution, and h ¼ ðh1, :::, hdÞ 2
R

d is a design parameter vector whose components may 

appear in both the input distribution and the simulation 

model h itself. We let Fðÿ; hÞ be the cumulative distribution 

function (c.d.f.) of Y with an (almost everywhere) continu-

ous probability density function (p.d.f.) f ðÿ; hÞ: Let SðhÞ ÿ R 

be the (closed) support of f ðÿ; hÞ and assume that it can be 

expressed as the union of a finite number of disjoint inter-

vals, i.e., SðhÞ ¼ [K
i¼1½aiðhÞ, biðhÞÿ with biðhÞ < aiþ1ðhÞ, i ¼

1, :::, K − 1, where it is possible that a1ðhÞ ¼ −1 and/ 

or bKðhÞ ¼ 1:
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For a given probability level u 2 ð0, 1Þ and a parameter 
vector h, we assume that the u-quantile of the output ran-
dom variable Y, qðh;uÞ, lies in the open interval 
ðalðhÞ, blðhÞÞ for some l 2 f1, :::, Kg so that it can be 
uniquely written as qðh;uÞ ¼ F−1ðu; hÞ: The (right-tail) 
CVaR at the same level u, denoted by /Yðh;uÞ, measures 
the average value of Y in excess of qðh;uÞ and can be 
defined as

/Yðh;uÞ :¼
1

1 − u

ð1

qðh;uÞ
yf ðy; hÞdy, (2) 

provided that the integral above is well-defined. The exist-
ence of CVaR is typically justified when the output distribu-
tion is light-tailed, whereas for certain types of heavy-tailed 
distributions, a truncation to a finite interval is often neces-
sary to ensure the finiteness of /Yðh;uÞ: Our goal is to find 
an optimal parameter vector hÿ that minimizes /Yðh;uÞ, 
i.e.,

hÿ ¼ argmin
h2H

/Yðh;uÞ, (3) 

where the feasible region H is a compact, convex, full- 
dimensional subset of R

d: We assume that H can be 
described by inequality constraints hjðhÞ ÿ 0, j ¼ 1, :::, m, 
where each hjðÿÞ is a continuously differentiable function 
satisfying rhhjðhÞ 6¼ 0 whenever hjðhÞ ¼ 0 (Kushner and 
Yin, 1997). Many commonly encountered constraint sets 
such as hyper-balls, hyper-rectangles, and general convex 
polytopes can all be written in such a form.

Note that, as is common in CVaR optimization, we have 
formulated (3) as a minimization problem. In this setting, 
the representation (1) implies that (3) is equivalent to solv-
ing a stochastic programming problem over an augmented 
parameter space (Rockafellar and Uryasev, 2000), i.e.,

min
h2H, z2R

z þ 1

1 − u
E maxfY − z, 0g½ ÿ

ÿ ÿ

, (4) 

which can be tackled using tools from traditional mean- 
based optimization. There are instances, however, when it is 
preferable to adopt a risk-seeking stance (Xia et al., 2023), 
in which case the objective becomes CVaR maximization. 
For those problems, considering their stochastic program-
ming equivalences may no longer be beneficial, because (4)
would transform into a challenging max-min problem with 
very few tractable solutions. Our approach, in contrast, is 
based on a general gradient descent/ascent idea, which is 
unaffected by this change in problem formulation, equally 
accommodating both minimization and maximization 
objectives.

3. Simultaneous perturbation-based CVaR gradient 
estimator

It is well-known (Glynn et al., 2021) that the CVaR 
/Yðh;uÞ defined in (2) belongs to a general class of distor-
tion risk measures that take the form

qgðYÞ ¼
ð1

0

gðÿFðy; hÞÞdy −

ð1

0

1 − gðÿFð−y; hÞÞ
ÿ ÿ

dy, 

where gðÿÞ : ½0, 1ÿ ! ½0, 1ÿ is called the distortion function 
and ÿFðy; hÞ :¼ 1 − Fðy; hÞ is the complementary c.d.f. Thus, 
if we assume the smoothness of Fðy; hÞ and suppose that 
derivative and integral can be interchanged, then using the 
chain rule, the gradient of qgðYÞ can be easily obtained as

rhqgðYÞ ¼ −

ð1

−1

dgðuÞ
du

ju¼1−Fðy;hÞrhFðy; hÞdy:

In the case of CVaR, the distortion function specializes to 
gðuÞ ¼ u=ð1 − uÞ if 0 ÿ u ÿ 1 − u, and gðuÞ ¼ 1 if 1 − u ÿ
u ÿ 1: This immediately suggests the following form of the 
CVaR gradient: 

rh/Yðh;uÞ ¼ −

1

1 − u

ð1

qðh;uÞ
rhFðy; hÞdy:

We now collect the assumptions needed to formalize this 
observation.

Assumption A1: Let NðHÞ be an open neighborhood of H:

(i) The support boundary points ai : NðHÞ ! R, i ¼
2, :::K and bi : NðHÞ ! R, i ¼ 1, :::, K − 1 are differ-
entiable functions of h: The endpoint bK : NðHÞ ! R 

is either a differentiable function of h or bKðhÞ ¼ 1
for all h 2 NðHÞ:

(ii) The output c.d.f. Fðÿ; ÿÞ is twice continuously differenti-
able in both arguments on fðy, hÞ : y 2 intðSðhÞÞ, h 2
NðHÞg, where intðSðhÞÞ is the interior of SðhÞ:

(iii) limy!1 yrhFðy; hÞ ¼ 0 for all h 2 H:
(iv) For all q < 1, the integrals 

Ð r

q yf ðy; hÞdy, 
Ð r

q
yrhf ðy; hÞdy,

Ð r

q
rhf ðy; hÞdy, and 

Ð r

q
rhFðy; hÞdy 

converge uniformly on NðHÞ as r ! 1:

Because H is compact, the differentiability of bKðhÞ in 
condition A1(i) implies that bKðhÞ is bounded for all h 2 H, 
which covers output distributions supported on bounded 
intervals, e.g., uniform, Beta, and their mixture distributions. 
On the other hand, the bKðhÞ ¼ 1 case is satisfied by many 
distributions supported on (semi-)infinite intervals, such as 
Cauchy, exponential, and normal distributions. A1(ii) 
requires the output distribution to be sufficiently smooth. 
A1(iii) is generally satisfied by light-tailed distributions, e.g., 
those belonging to the exponential family, as well as general 
distributions with bounded support. A1(iv) holds automatic-
ally for distributions supported on bounded intervals, and 
can be verified for many frequently encountered light-tailed 
distributions. A general sufficient condition for A1(iv) to 
hold is the existence of integrable functions g1ðyÞ, g2ðyÞ, 
g3ðyÞ, and g4ðyÞ on ½q,1Þ that dominate the integrands in 
the sense that jyf ðy; hÞj ÿ g1ðyÞ, jjyrhf ðy; hÞjj ÿ g2ðyÞ, 
jjrhf ðy; hÞjj ÿ g3ðyÞ, and jjrhFðy; hÞjj ÿ g4ðyÞ for all h 2 H:

Lemma 3.1. Suppose that A1 holds. Then /Yðh;uÞ is differ-
entiable with 

rh/Yðh;uÞ ¼ −

1

1 − u

ð1

qðh;uÞ
rhFðy; hÞdy: (5) 

Proof. See Section A of the Online Appendix for a proof.   ÿ
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Because both the output distribution Fðÿ; hÞ and the 

quantile qðh;uÞ are unknown, the CVaR gradient needs to 

be estimated from simulation data. An important observa-

tion from (5) is that the gradient operator only appears 

inside the integral, and the integral itself can thus be viewed 

as a continuous function of the integration limit qðh;uÞ:
This suggests that the CVaR gradient can be estimated by 

approximating an integral of the form 
Ð1

q rhFðy; hÞdy and 

then replacing q by an estimate of qðh;uÞ:
In particular, let h 2 H be fixed and qk be an estimate of 

qðh;uÞ, the quantile estimation can be carried out separately 

using the recursive procedure proposed in Hu et al. (2022):

qkþ1 ¼ qk þ ckðu − IfYk ÿ qkgÞ, (6) 

where ck is the step size, Ifÿg is the indicator function, and 

Yk ÿ Fðÿ; hÞ is an output random variable distributed 

according to Fðÿ; hÞ: Note that given qk, IfYk ÿ qkg is an 

unbiased estimator for Fðqk; hÞ: Consequently, if the simula-

tion noises IfYk ÿ qkg − Fðqk; hÞ can be averaged out over 

the iterations, then the sequence fqkg generated by (6)

should approach the unique solution qðh;uÞ to the root- 

finding problem Fðy; hÞ ¼ u:
Now, given a quantile estimate qk, consider the following 

simple simultaneous perturbation procedure for estimating 

rh/Yðh;uÞ based on simulation output information:

−

1

1 − u

−maxfYþ
k , qkg þ maxfY−

k , qkg
2ckDk

, (7) 

where ck > 0 is the perturbation size, Dk ¼ ðDk, 1 , :::, Dk, dÞT is 

a zero-mean random direction with i.i.d. bounded inverse 

second moments, Y6k ÿ Fðÿ; h6 ckDkÞ are the output ran-

dom variables generated under the perturbed parameters 

h6 ckDk, and the division by a vector is element-wise. We 

justify this estimation procedure through the help of the fol-

lowing result.

Lemma 3.2. Let h 2 H and qk be fixed and suppose that 

A1(iv) holds. Then we have E maxfY6k , qkgjqk,Dk

ÿ ÿ

¼ qk þ
Ð1

qk
½ÿFðz; h6ckDkÞÿdz:

Proof. See Section B of the Online Appendix for a proof. ÿ
In view of Lemma 3.2, the expectation of the estimator 

(7) (conditional on qk) can be written as

E −

1

1 − u

−maxfYþ
k , qkg þ maxfY−

k , qkg
2ckDk

ÿ

ÿ

ÿ

ÿ

ÿ

qk

2

4

3

5

¼ E E −

1

1 − u

−maxfYþ
k , qkg þ maxfY−

k , qkg
2ckDk

ÿ

ÿ

ÿ

ÿ

ÿ

qk,Dk

2

4

3

5

ÿ

ÿ

ÿ

ÿ

ÿ

qk

2

4

3

5

¼ −

1

1 − u
E

ð1

qk

Fðz; h þ ckDkÞ − Fðz; h − ckDkÞ
2ckDk

dz

ÿ

ÿ

ÿ

ÿ

ÿ

qk

2

4

3

5:

(8) 

We observe that the difference quotient in (8) is precisely 

the SP estimator for approximating the gradient rhFðz; hÞ:
In particular, if we suppose that the expectation (w.r.t. Dk) 

can be taken inside the integral, then using Taylor’s theorem 

along with the fact E½Dk, i=Dk, jÿ ¼ 0 for all i 6¼ j and ignoring 
the resulting estimation bias, it can be readily seen that (8)
reduces to − 1

1−u

Ð1
qk

rhFðz; hÞdz, which differs from (5) only 
in the integration limit. As a result, when qk approaches 
qðh;uÞ, it is reasonable to expect that the CVaR gradient 
could be closely approximated by (7).

The above discussion suggests a natural gradient-based 
method for solving (3), leading to our proposed SPCO algo-
rithm. Specifically, let hk be a current estimate of hÿ, the 
algorithm uses two coupled recursions to search for an 
improved hkþ1 along the descent direction of (7) while sim-
ultaneously computing a new quantile estimate as follows:

qkþ1 ¼ qk þ ckðu − IfYk ÿ qkgÞ, (9) 

hkþ1 ¼ PH hk − bk −

1

1 − u

−maxfYþ
k , qkg þ maxfY−

k , qkg
2ckDk

 !" #

,

(10) 

where bk and ck are step-size parameters, Yk ÿ Fðÿ; hkÞ, 
Y6k ÿ Fðÿ; hk6ckDkÞ, and PHðÿÞ stands for a projection 
operator that forces the iterates generated by (10) to stay 
within the feasible region H: Since SPCO is a two-time-scale 
SA method, its effective implementation requires the step- 
size bk to be chosen very small relative to ck: Intuitively, 
this is because the convergence of the quantile estimates qk 

relies on the sequence fYkg being generated under a fixed 
parameter vector hk: Thus, setting bk small has the effect of 
making the increments in hk become progressively negligible 
when viewed from the qk recursion (9), and this in turn 
allows proper tracking of the true quantile value qðhk, uÞ as 
the underlying parameter hk slowly varies over time.

4. Asymptotic properties of SPCO

In this section, we establish the general local convergence 
behavior of SPCO and characterize its convergence rate in 
terms of the MAEs of fhkg: Let ðX,F , PÞ be the probability 
space induced by the algorithm, where X is the collection of 
all sample trajectories generated by the algorithm, F is a 
r-field of subsets of X, and P is a probability measure on 
F : We also define F k ¼ rfq0, h0, :::, qk, hkg, k ¼ 0, 1, ::: as 
the sequence of increasing r-fields generated by the collec-
tion of all random iterates obtained up to iteration k. 
Throughout the analysis, we let jj ÿ jj be the usual Euclidean 
norm and denote 

Dk ¼ −

1

1 − u

−maxfYþ
k , qkg þ maxfY−

k , qkg
2ckDk 

for notational convenience.

4.1. Strong convergence

The projection operation PHðÿÞ in (10) essentially serves as 
a correction step that sends an iterate back onto the region 
H whenever it becomes infeasible (Kushner and Yin, 1997). 
Thus, we can replace the operation with an extra correction 
term and put (10) in the following equivalent form:
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hkþ1 ¼ hk − bk −

1

1 − u

−maxfYþ
k , qkg þ maxfY−

k , qkg
2ckDk

 !

þ bkZk,

(11) 

where bkZk :¼ hkþ1 − hk þ bkDk is the real vector with the 

smallest Euclidean norm needed to maintain the feasibility 

of hkþ1: More precisely, because H is a convex set, the cor-

rection term Zk lies in the convex cone generated by the 

inward normals to the surface of H at the point hkþ1, that 

is, Zk 2 −Cðhkþ1Þ, where CðhÞ is the normal cone to H at 

h,

CðhÞ :¼ fm 2 R
d : mTð~h − hÞ ÿ 0, 8~h 2 Hg: (12) 

Clearly, from this definition, we have that CðhÞ ¼ f0g for 

all h that lie in the interior of H:
Our convergence analysis is based on a standard ODE 

argument from multi-time-scale SA literature (Kushner and 

Yin, 1997; Borkar, 2009; Hu et al., 2022) and proceeds in 

two major steps. First, we show that the sequence of quan-

tile estimates fqkg remains bounded w.p.1. This, together 

with the boundedness of fhkg (due to the projection), allows 

us to construct continuous-time interpolations of the iterates 

fqk, hkg1k¼0 and subsequently use a set of two coupled ODEs 

to characterize their long-run behavior. This part of the ana-

lysis is aimed at establishing the tracking ability of the qk 

iterates, in the sense that qk ! qðhk;uÞ as k ! 1: Then 

using this result, we can write (11) in the form of a general-

ized SA algorithm in terms of the true CVaR gradient, two 

bias terms (due to the approximation error of qk and SP 

estimation), a simulation noise term, and the additional pro-

jection term Zk: Consequently, by directly applying existing 

results from single-time-scale SA, we are able to conclude 

the strong convergence of fhkg to the limiting solution of 

the projected ODE

_hðtÞ ¼ −rh/Yðh;uÞjh¼hðtÞ þ zðtÞ, t ÿ 0, (13) 

where zðtÞ 2 −CðhðtÞÞ is the minimum force needed to keep 

the trajectory hðtÞ in H:
Our analysis is conducted under the following 

assumptions:

Assumptions:  

A2: Let NðHÞ be an open neighborhood of H:

(i) Fðÿ; ÿÞ is three times continuously differentiable in both 

arguments on fðy, hÞ : y 2 intðSðhÞÞ, h 2 N ðHÞg:
(ii) There exists C1, C2 > 0 such that 

Ð1
−1 y2f ðy; hÞdy ÿ C1 

and 
Ð1

−1 ½r3
hFðy; hÞÿi, j, kdy ÿ C2 for all h 2 N ðHÞ, 

where ½r3
hFðy; hÞÿi, j, k denotes the ði, j, kÞth element 

of r3
hFðy; hÞ,

(iii) There exists a constant Cf > 0 such that f ðy; hÞ ÿ Cf 

for all y 2 S, h 2 H:

A3: The random perturbations fDkg are i.i.d., independent of 

F k. The components of each Dk are mutually independent 

following the symmetric Bernoulli distribution PðDk, i ¼ 1Þ ¼
PðDk, i ¼ −1Þ ¼ 1=2 for all i ¼ 1, :::, d:
A4: The sequences fbkg, fckg, and fckg satisfy

(i) ck > 0, 
P1

k¼0 ck ¼ 1, 
P1

k¼0 c2
k < 1:

(ii) bk, ck > 0, ck ! 0, 
P1

k¼0 bk ¼ 1, 
P1

k¼0 b2
k=c2

k <
1, bk ¼ oðckÞ:

Condition A2(i) is a strengthened version of A1(ii) and 
assumes the output distribution to be three times continu-
ously differentiable. The condition 

Ð1
−1 y2f ðy; hÞdy ÿ C1 in 

A2(ii) ensures the output random variable has a bounded 
second-order moment under all h, whereas the condition 
Ð1

−1 ½r3
hFðy; hÞÿi, j, kdy ÿ C2 is needed to bound the approxi-

mation error of the gradient estimator (7). Due to A2(i), 
both conditions in A2(ii) hold trivially for distributions sup-
ported on finite intervals. A2(iii) requires the output density 
to be uniformly bounded, which is generally satisfied in 
many practical situations. Both A3 and A4 are regularity 
conditions on the algorithm input parameters. In particular, 
the Bernoulli random direction in A3 is a common choice 
when implementing SP estimators. The conditions on step- 
and perturbation-sizes in A4 are also standard in the SA lit-
erature (Spall, 1992; Kushner and Yin, 1997; Borkar, 2009; 
Zhang and Hu, 2019).

Lemma 4.1. Let Assumptions A2(i), A2(iii), and A4(i) hold. 
Then the sequence fqkg generated by recursion (9) satisfies: 
(i) supk qkj < 1j w.p.1; (ii) supk E½q2

kÿ < 1:

Proof. See Section C of the Online Appendix.                 ÿ

The next result quantifies the estimation error of the SP 
estimator (7) and shows that the bias of the estimator is of 
order Oðc2

kÞ, whose proof is given in Section D of the 
Online Appendix.

Lemma 4.2. Define

bk :¼ E −

1

1 − u

−maxfYþ
k , qkg þ maxfY−

k , qkg
2ckDk

jF k

" #

þ 1

1 − u

ð1

qk

rhFðz; hkÞdz:

Suppose that A1(iv), A2, and A3 hold. Then we have 
ðiÞ bk ¼ Oðc2

kÞ w.p.1; ðiiÞ E½jjbkjjÿ ¼ Oðc2
kÞ:

In Lemma 4.3 below, we characterize the asymptotic 
behavior of ðhk, qkÞ along the time scale defined by fckg and 
establish the convergence of the quantile estimates qk to the 
true quantiles qðhk;uÞ as k ! 1:

Lemma 4.3. If Assumptions A1-A4 hold, then jqk − 

qðhk;uÞj ! 0 as k ! 1 w.p.1.

Proof. See Section E of the Online Appendix for a proof.   ÿ

The main convergence result for SPCO is stated in the 
following theorem.

Theorem 4.4. If Assumptions A1-A4 hold, then the sequence 
fhkg generated by SPCO converges to some limit set of the 
projected ODE (13) w.p.1. In addition, if /Yðh;uÞ is strictly 
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convex on H, then fhkg converges to the unique optimal solu-

tion hÿ to the CVaR optimization problem (3) w.p.1.

Proof. Denote by 

~bk :¼ −

1

1 − u

ðqðhk;uÞ

qk

rhFðz; hkÞdz, 

nk :¼ Dk − E DkjF k½ ÿ
and recall that

rh/Yðh;uÞjh¼hk
¼ −

1

1 − u

ð1

qðhk;uÞ
rhFðz; hkÞdz:

Then, under the notation of Lemma 4.3, recursion (11)

can be written as

hkþ1 ¼ hk − bk −

1

1 − u

ð1

qðhk;uÞ
rhFðz; hkÞdz þ ~bk þ bk þ nk

 !

þ bkZk

¼ hk − bk rh/Yðh;uÞjh¼hk
þ ~bk þ bk þ nk

ÿ ÿ

þ bkZk:

Since rhFðz; hÞ is continuous for all h 2 H (A1(ii)) and 

jqk − qðhk;uÞj ! 0 w.p.1. (Lemma 4.3), we have jj~bkjj ! 0 

as k ! 1 w.p.1. In addition, from Lemma 4.2, jjbkjj ! 0 

w.p.1. Thus, it can be seen that all assumptions except A2.1 

in Theorem 5.2.3 of Kushner and Yin (1997) are satisfied. 

We remark that A2.1 in Kushner and Yin (1997) is stated 

for expositional ease and is in fact stronger than what is 

needed. The assumption could instead be relaxed to the 

weaker condition 
P1

k¼0 b2
kE½jjnkjj2ÿ < 1, which holds true 

in our setting (see the proof of Lemma 4.3). It is then easy 

to check that all steps in the convergence proof given in 

Theorem 5.2.3 of Kushner and Yin (1997) still go through 

without requiring any modification. Hence, the convergence 

of fhkg is a direct consequence of Theorem 5.2.3 in 

Kushner and Yin (1997). The second part of the result 

amounts to showing that when the objective function is 

strictly convex, the optimal solution hÿ to (3) is a unique 

globally asymptotically stable equilibrium of ODE (13). The 

proof is identical to that of Corollary 1 in Hu et al. (2022), 

and we omit the details.                                            ÿ

4.2. Rate of convergence

To analyze the convergence rate of the algorithm, we con-

sider the case where the optimization problem (3) has a 

strictly convex objective function, with its optimal solution 

hÿ lying in the interior of the constraint set H: Clearly, by 

the first-order condition for optimality, rh/Yðh;uÞjh¼hÿ ¼
0: In addition, we have from Theorem 4.4 that hk ! hÿ as 

k ! 1 w.p.1.
To fix ideas, we take the step- and perturbation-sizes to 

be of the standard forms bk ¼ b=kb, ck ¼ r=kc, and ck ¼
c=ks for constants b, r, c > 0 and b, c, s 2 ð0, 1Þ: Let /Yðh;uÞ
be twice continuously differentiable with Hessian HðhÞ :¼

r2
h/Yðh;uÞ: We impose the following additional assump-

tions on the output density and the Hessian matrix:

Assumptions:  

B1: For almost all ðqk, hkÞ pairs, there exist constants ÿ > 0 
and CF > 0 such that (i) f ðy; hkÞ ÿ ÿ and (ii) 
jjrhFðy; hkÞjj ÿ CF for all y on the line segment between qk 

and qðhk;uÞ:
B2: Let kðhÞ be the smallest eigenvalue of HðhÞ. There exists 
a constant . > 0 such that kðhÞ ÿ . for all h that lie on the 
line segment between hk and hÿ:

B1 essentially requires f ðÿ; hkÞ and rhFðÿ; hkÞ to be uni-
formly bounded on the line segment connecting qk and 
qðhk;uÞ: This is not a very restrictive condition in practice, 
and its suitability has been discussed in Hu et al. (2022), 
where it is shown that (9) can be replaced by a projected 
recursion that projects quantile estimates onto any closed 
interval H containing the true quantiles qðh;uÞ for all h 2
H: This projection will not have an influence on the conver-
gence behavior of fqkg and ensures fqkg to stay uniformly 
bounded along all sample trajectories. Consequently, B1 is 
guaranteed to hold when f ðÿ; ÿÞ and rhFðÿ; hÞ are continuous 
on the compact region H ÿ H: B2 is obviously satisfied 
when kðhÞ is bounded from below uniformly for all h 2 H, 
which is the case for CVaR objectives that are strongly con-
vex; see, e.g., Hu and Fu (2024). From this perspective, B2 
can be viewed as a strengthened version of the strict convex-
ity condition adopted in Theorem 4.4.

Lemma 4.5 below establishes the convergence rate of the 
quantile estimates fqkg in terms of their mean squared 
errors.

Lemma 4.5. Let Assumptions A1-A4 and B1 hold. The 
sequence fqkg generated by SPCO satisfies 

oooooooooooooooooooooooooooooooooooooo

E ðqk − qðhk;uÞÞ2
ÿ ÿ

q

¼ O
bk

ckck

ÿ ÿ

þ O c
1
2

k

ÿ ÿ

:

Proof. Let fk ¼ qk − qðhk;uÞ and write (9) in terms of fk as

fkþ1 ¼ fk þ ckðu − IfYk ÿ qkgÞ þ qðhk;uÞ − qðhkþ1;uÞ:
We square both sides of the equation to obtain

f2
kþ1 ¼ f2

k þ c2
kðu − IfYk ÿ qkgÞ2 þ qðhk;uÞ − qðhkþ1;uÞ

� ÿ2

þ2fkckðu − IfYk ÿ qkgÞ
þ 2fk qðhk;uÞ − qðhkþ1;uÞ

� ÿ

þ2ckðu − IfYk ÿ qkgÞ qðhk;uÞ − qðhkþ1;uÞ
� ÿ

:

(14) 

Under A1(ii), qðh;uÞ is continuously differentiable on H 

and therefore is Lipschitz continuous. Let Lq be its associ-
ated Lipschitz constant. Then we have from (11) and the 
fact that jjZkjj ÿ jjDkjj (Hu et al., 2022, lemma 5) 

jqðhk;uÞ − qðhkþ1;uÞj ÿ Lqjjhk − hkþ1jj
ÿ bkLqðjjDkjj þ jjZkjjÞ ÿ 2bkLqjjDkjj,

(15) 
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Substituting the above into (14), we get

f2
kþ1 ÿ f2

k þ c2
k þ 4b2

kL2
qjjDkjj2 þ 2fkckðu − IfYk ÿ qkgÞ

þ4bkLqjfkjjjDkjj
þ 2ckðu − IfYk ÿ qkgÞ qðhk;uÞ − qðhkþ1;uÞ

� ÿ

:

Because fk is F k-measurable and Yk is conditionally inde-
pendent of Y6k given F k, the conditional expectation 
E½f2

kþ1jF kÿ can be bounded as follows:

where in the second step we have used a first-order Taylor 

series expansion of Fðqk; hkÞ around qðhk;uÞ and ÿqk is on 

the line segment between qk and qðhk;uÞ: The last inequal-

ity follows from B1, f ðÿqk; hkÞ ÿ Cf (condition A2(iii)), 

and (15).
Without loss of generality, we take ÿ to be sufficiently 

small so that 2ckÿ < 1 for all k. Then, by unconditioning on 

F k, it follows that

E f2
kþ1

h i

ÿ ð1 − 2ckÿÞE f2
k

ÿ ÿ

þ c2
k þ 4b2

kL2
qE jjDkjj2
ÿ ÿ

þ 4bkLq 1 þ ckCfð ÞE jfkjE jjDkjjjF k½ ÿ½ ÿ
ÿ ð1 − 2ckÿÞE f2

k

ÿ ÿ

þ c2
k þ 4b2

kL2
qE jjDkjj2
ÿ ÿ

þ 4bkLq 1 þ ckCfð Þ
oooooooooooooooooooooooooooooo

E f2
k

ÿ ÿ

E jjDkjj2
ÿ ÿ

q

ÿ
oooooooooooooooo

1 − 2ckÿ
p

ooooooooooo

E f2
k

ÿ ÿ

q

þ
2bkLq 1 þ ckCfð Þ

ooooooooooooooooooo

E jjDkjj2
ÿ ÿ

q

oooooooooooooooo

1 − 2ckÿ
p

0

@

1

A

2

þ c2
k

ÿ ðð1 − ckÿÞ
ooooooooooo

E f2
k

ÿ ÿ

q

þMkÞ2 þ c2
k, 

where the second inequality is due to the Cauchy–Schwarz 

inequality, the last step follows from 
ooooooooooo

1 − x
p

ÿ 1 − x=2 for 

x 2 ½0, 1ÿ, and we have defined 

Mk :¼
2bkLq 1 þ ckCfð Þ

ooooooooooooooooooo

E jjDkjj2
ÿ ÿ

q

oooooooooooooooo

1 − 2ckÿ
p :

From (A-11) in the Appendix, we have E½jjDkjj2ÿ ¼
Oð1=c2

kÞ: Thus, there exist a constant C > 0 and an integer 

N > 0 such that Mk ÿ Cbk=ck for all k ÿ N :

Now consider a sequence of mappings

T kðxÞ :¼
oooooooooooooooooooooooooooooooooooooooooooooooooooooo

ðð1 − ckÿÞx þ Cbk=ckÞ2 þ c2
k

q

for x ÿ 0; k ÿ N :

Let fxkg be the sequence of real numbers generated by 

xkþ1 ¼ T kðxkÞ: Through a simple inductive argument, it can 

be shown that if xN ¼
ooooooooooo

E½f2
N ÿ

q

, then 
oooooooooo

E½f2
kÿ

q

ÿ xk for all 

k ¼ N ,N þ 1, :::: On the other hand, because 

d
oooooooooooooo

y2 þ c2
k

q

=dy ¼ y=
oooooooooooooo

y2 þ c2
k

q

< 1 for all y > 0, the mapping 

T kðÿÞ satisfies that jT kðxÞ − T kðyÞj ÿ ð1 − ckÿÞjx − yj for all 
x, y > 0, and hence, is a contraction. The unique fixed point 
xÿk of T k can be obtained by solving the quadratic equation 

T kðxÿkÞ ¼ xÿk and its order can be derived as follows:

xÿk ¼
Cð1 − ckÿÞbk=ck þ

oooooooooooooooooooooooooooooooooooooooooooo

C2b2
k=c2

k þ c3
kÿð2 − ckÿÞ

q

ckÿð2 − ckÿÞ

¼ O
bk

ckck

ÿ ÿ

þ O c
1
2

k

ÿ ÿ

:

Finally, by the contraction property of T kðÿÞ, the same 
argument as in Hu et al. (2024) can be used to show that 
jxk − xÿkj ¼ oðxÿkÞ: This in turn implies 

ooooooooooo

E f2
k

ÿ ÿ

q

ÿ xk ÿ xÿk þ oðxÿkÞ ¼ Oðbk=ðckckÞÞ þ Oðc1=2
k Þ:

ÿ

The main result of this section is presented in the follow-
ing theorem, which provides a characterization of the con-
vergence rate of the MAE E½jjhk − hÿjjÿ:
Theorem 4.6. If Assumptions A1-A4 and B1-B2 hold, then 
the sequence fhkg generated by SPCO satisfies 

E jjhk − hÿjj½ ÿ ¼ O
bk

ckck

ÿ ÿ

þ O c
1
2

k

ÿ ÿ

þ Oðc2
kÞ þ O

b
1
2

k

ck

 !

:

(16) 

E f2
kþ1jF k

h i

ÿ f2
k þ c2

k þ 4b2
kL2

qE jjDkjj2jF k

ÿ ÿ

þ 2fkckðFðqðhk;uÞ; hkÞ − Fðqk; hkÞÞ

þ 4bkLqjfkjE jjDkjjjF k½ ÿ þ 2ckðFðqðhk;uÞ; hkÞ − Fðqk; hkÞÞE qðhk;uÞ − qðhkþ1;uÞjF k

ÿ ÿ

¼ f2
k þ c2

k þ 4b2
kL2

qE jjDkjj2jF k

ÿ ÿ

þ 2fkckf ðÿqk; hkÞðqðhk;uÞ − qkÞ
þ 4bkLqjfkjE jjDkjjjF k½ ÿ þ 2ckf ðÿqk; hkÞðqðhk;uÞ − qkÞE qðhk;uÞ − qðhkþ1;uÞjF k

ÿ ÿ

¼ ð1 − 2ckf ðÿqk; hkÞÞf2
k þ c2

k þ 4b2
kL2

qE jjDkjj2jF k

ÿ ÿ

þ 4bkLqjfkjE jjDkjjjF k½ ÿ
þ 2ckf ðÿqk; hkÞjfkjE jqðhk;uÞ − qðhkþ1;uÞjjF k

ÿ ÿ

ÿ ð1 − 2ckÿÞf2
k þ c2

k þ 4b2
kL2

qE jjDkjj2jF k

ÿ ÿ

þ 4bkLq 1 þ ckCfð ÞjfkjE jjDkjjjF k½ ÿ, 
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Proof. Define wk :¼ hk − hÿ: Recall that

Dk ¼ −

1

1 − u

−maxfYþ
k , qkg þ maxfY−

k , qkg
2ckDk 

and

E DkjF k½ ÿ ¼ bk −

1

1 − u

ð1

qk

rhFðz; hkÞdz :¼ bk þ Gðqk; hkÞ, 

where bk is defined as in Lemma 4.2. From (11), we have

jjwkþ1jj2 ¼ jjwkjj2 − 2bkwk
TðDk − ZkÞ þ b2

kjjDk − Zkjj2
ÿ jjwkjj2 − 2bkwk

T
Dk þ 2bkwk

T
Zk þ 4b2

kjjDkjj2,

(17) 

where the inequality follows from jjZk − Dkjj ÿ jjZkjj þ
jjDkjj ÿ 2jjDkjj: Because Zk 2 −Cðhkþ1Þ, we have by (12)
that −Z

T
k ðhÿ − hkþ1Þ ÿ 0, implying Z

T
k ðhk − hÿÞ ÿ

Z
T
k ðhk − hkþ1Þ: This allows us to bound the 2bkwk

T
Zk term 

in Lemma 4.2 as follows:

2bkwk
T
Zk ¼ 2bkðhk − hÿÞT

Zk ÿ −2bkðhkþ1 − hkÞT
Zk

¼ 2b2
kD

T
k Zk − 2b2

kZk
T
Zk ÿ 2b2

kD
T
k Zk ÿ 2b2

kjjDkjj2:
Substituting the above into (17) and then taking condi-

tional expectations at both sides, we have

E jjwkþ1jj2jF k

h i

ÿ jjwkjj2 − 2bkwk
TE DkjF k½ ÿ

þ 6b2
kE jjDkjj2jF k

ÿ ÿ

¼ jjwkjj2 − 2bkwk
T ½Gðqðhk;uÞ, hkÞ þ Gðqk, hkÞ

− Gðqðhk;uÞ, hkÞ þ bkÿ
þ 6b2

kE jjDkjj2jF k

ÿ ÿ

:

Note that because rh/Yðh;uÞjh¼hÿ ¼ 0, through a Taylor 
series expansion around hÿ, we can write

Gðqðhk;uÞ; hkÞ ¼ rh/Yðh;uÞjh¼hk

¼ rh/Yðh;uÞjh¼hÿ þ HðÿhÞðhk − hÿÞ
¼ HðÿhÞwk, 

where ÿh is on the line segment between hk and hÿ:
Moreover, by B1(ii) and the definition of Gðq, hkÞ, we have

jjGðqk; hkÞ − Gðqðhk;uÞ; hkÞjj ÿ
CF

1 − u
jqk − qðhk;uÞj

¼ LGjfkj, 
where LG :¼ CF=ð1 − uÞ and recall that fk ¼ qk − qðhk;uÞ:
Consequently, by the Cauchy–Schwarz inequality,

E jjwkþ1jj2jF k

h i

ÿ jjwkjj2 − 2bkwk
T ½HðÿhÞwk þ Gðqk, hkÞ

− Gðqðhk;uÞ, hkÞ þ bkÿ

þ 6b2
kE jjDkjj2jF k

ÿ ÿ

ÿ ð1 − 2bk.Þjjwkjj2 þ 2bkjjwkjjðLGjfkj

þ jjbkjjÞ þ 6b2
kE jjDkjj2jF k

ÿ ÿ

, 

where in the last step we have used B2 and the Rayleigh- 
Ritz inequality (Rugh, 1996), i.e., wT

k HðÿhÞwk ÿ kðÿhÞjjwkjj2 ÿ
.jjwkjj2: Since bk ! 0, there exists an integer N > 0 such 
that 0 < bk. ÿ 1=2 for all k ÿ N: Then, taking expectations 
at both sides, we have that for all k ÿ N 

E jjwkþ1jj2
h i

ÿ ð1 − 2bk.ÞE jjwkjj2
ÿ ÿ

þ 2bk LG

ooooooooooooooo

E jfkj2
ÿ ÿ

q

þ
oooooooooooooooooo

E jjbkjj2
ÿ ÿ

q

ÿ ÿ

ooooooooooooooooooo

E jjwkjj2
ÿ ÿ

q

þ 6b2
kE jjDkjj2
ÿ ÿ

ÿ ðð1 − bk.Þ
ooooooooooooooooooo

E jjwkjj2
ÿ ÿ

q

þ BkÞ2 þ 6b2
kE jjDkjj2
ÿ ÿ

, 

where Bk :¼ bk LG

oooooooooooooo

E½jfkj2ÿ
q

þ
ooooooooooooooooo

E½jjbkjj2ÿ
q

ÿ ÿ

=
ooooooooooooooooo

1 − 2bk.
p

:
From the proof of Lemma 4.2(ii), it can be easily 

observed that 

ooooooooooooooooo

E½jjbkjj2ÿ
q

¼ Oðc2
kÞ: Therefore, we have by 

Lemma 4.5, Bk ¼ Oðb2
k=ðckckÞÞ þ Oðbkc

1=2
k Þ þ Oðbkc2

kÞ: Also 

note from (A-11) in the Appendix that E½jjDkjj2ÿ ¼ Oð1=c2
kÞ:

Let N0 ÿ N be such that Bk ÿ C1ðb2
k=ðckckÞ þ bkc

1=2
k þ bkc2

kÞ
and E½jjDkjj2ÿ ÿ C2=c2

k for all k ÿ N0 and constants C1, C2 >

0: Next, we proceed by constructing a mapping HkðyÞ ¼
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

ðð1 − bk.Þyþ ÿBkÞ2 þ 6C2b
2
k=c2

k

q

, where ÿBk :¼ C1ðb2
k=ðckckÞþ

bkc
1=2
k þ bkc2

kÞ, and consider the sequence of iterates fykg
generated by ykþ1 ¼HkðykÞ with yN0 ¼

oooooooooooooooooo

E½jwN0 jj2ÿ
q

: As in 

the proof of Lemma 4.5, it is easy to see that Hk is a con-
traction mapping with a unique fixed point yÿk satisfying 

yÿk ¼HkðyÿkÞ: In addition, using induction and applying the 

same fixed-point argument as in the proof of Lemma 4 in 

Hu et al. (2024), we have that 

oooooooooooooooooo

E½jjwkjj2ÿ
q

ÿ yk ÿ yÿk þ oðyÿkÞ:
The order of yÿk can be derived by inspecting the root of the 

fixed-point equation yÿk ¼HkðyÿkÞ, i.e.,

yÿk ¼
ð1 − bk.ÞÿBk þ

oooooooooooooooooooooooooooooooooooooooooooooooooo

Bk
2 þ 6.C2ð2 − bk.Þb3

k=c2
k

q

bk.ð2 − bk.Þ

¼ O
ÿBk

bk

 !

þO
b

1
2

k

ck

 !

¼ O
bk

ckck

ÿ ÿ

þO c
1
2

k

ÿ ÿ

þOðc2
kÞþO

b
1
2

k

ck

 !

:

Hence, the desired result is proved by noting that 

E½jjhk − hÿjjÿ ÿ
oooooooooooooooooo

E½jjwkjj2ÿ
q

: ÿ

From Theorem 4.6, the convergence rate of the MAE is 
dominated by the order of the slowest component on the 
right-hand side of (16). Thus, given the specific forms of bk, 
ck, and ck, by taking into account A4, the choice of algo-
rithm parameters that yields the tightest convergence rate 
bound can be determined by solving the following optimiza-
tion problem:
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max
b, c, s

minfb − c − s,
c

2
, 2s,

b

2
− sg

s:t:

1

2
< s þ 1

2
< b,

1

2
< c < b < 1:

8

>

<

>

:

The problem can be readily solved to yield b ÿ 1, c ¼
4=7, and s ¼ 1=7: Under such a choice, we find that the 
optimal bound on the convergence rate of E½jjhk − hÿjjÿ is of 
order Oðk−2=7Þ: An empirical illustration of this convergence 
rate result is provided in Section F of the Online Appendix.

5. Numerical experiments

To illustrate the algorithm, we perform some computational 
experiments on two sets of examples. In Section 5.1, we 
apply the algorithm to minimize the CVaRs of four artifi-
cially constructed output random variables under various 
input distributions, whereas in Section 5.2, we consider a 
risk-averse inventory problem, where the goal is to maxi-
mize the left-tail CVaR of the seller’s revenue.

5.1. Artificial test functions

The following test functions are used in our experiments:

1. h1ðX, hÞ ¼Pd
i¼1ðhi − iÞhi þ X, where hi 2 ½0, iÿ for i ¼

1, :::, d and X ÿ Cauchy(0,1).

2. h2ðX, hÞ ¼
−10 exp −0:2

Pd

i¼1
h2

i

ÿ ÿ

=d

ÿ ÿ

þ11

1− log ð1−uÞ X, where H ¼
½−2, 2ÿd, and X ÿ exp(1).

3. h3ðX, hÞ ¼ ½Pd
i¼1 ðhi − iÞ2 þ 1ÿX þQd

i¼1ðhi − iÞ, where 
hi 2 ½i − 0:5, i þ 0:5ÿ, i ¼ 1, :::, d and X ÿ Normal(0,1).

4. h4ðX, hÞ ¼
Pd

i¼1
h2

i

d
þ 0:1

ÿ ÿ

exp ð1 þ XÞ, where H ¼
½−1, 1ÿd and X ÿ Normal(0,1).

In function h1, the Cauchy noise is additive, so the out-
put distribution is also Cauchy and does not have a defined 
mean. Consequently, we truncate the output random vari-
able YðhÞ to the interval ½−Pd

i¼1 i2=4 − 104, 104ÿ to ensure 
the existence of CVaR. Function h2 scales the input random 
variable X by a factor that varies with the underlying param-
eter vector h: In function h3, the input random variable is 
both shifted and scaled. For function h4, the output distri-
bution is log-normal with location parameter 
log ðPd

i¼1 h2
i =d þ 0:1Þ þ 1, which is a heavy-tailed distribu-

tion but has a well-defined mean. For each test problem, we 
consider two choices of problem dimension: d ¼ 20, d ¼ 50 
and two different quantile levels: u ¼ 0:95, u ¼ 0:99, 
resulting in a total of 16 test cases.

In each of the four test functions, the output Y is mono-
tonic (element-wise) with respect to the input random vari-
able X. Thus, it is natural to adopt the Common Random 
Numbers (CRN) method for reducing the variance of the 
gradient estimator in (10). This leads to a CRN version of 
the algorithm, SPCO-CRN, in which the two output random 
variables Y6k in (10) are generated at each iteration using 

the same stream of random numbers. We also consider a 
version of SPCO that uses the traditional (symmetric) finite 

difference method in estimating CVaR gradients. The algo-
rithm, we call finite-difference-based CVaR optimization 
(FDCO), requires 2d þ 1 output evaluations at each step 

and only differs from SPCO in that the perturbation in the 
parameter vector hk is carried out in (10) in an element- 
wise (as opposed to simultaneous) manner.

In addition to the two variants of SPCO, we have imple-
mented two other optimization approaches based on direct 

gradient estimation: the Likelihood-Ratio CVaR optimization 
(LRCO) of Tamar et al. (2015) and a gradient descent 
procedure using the pathwise CVaR gradient estimator pro-

posed in Hong and Liu (2009) (PWCO). LRCO is a single- 
timescale SA algorithm that takes the recursive form ~hkþ1 ¼
PHð~hk − qk

~DkÞ: Here, qk > 0 is the step-size and ~Dk is the 

LR estimator of the CVaR gradient with its jth element 
given by

~Dk, j ¼ 1

nku

X

nk

i¼1

@ log f ðYi; hÞ
@hj

ÿ

ÿ

ÿ

ÿ

ÿ

h¼hk

ðYi − ~qðhkÞÞIfYi ÿ ~qðhkÞg
0

@

1

A,

(18) 

where ~qðhÞ is the dnkueth order statistic of an output sam-
ple Y1, Y2, :::Ynk

ÿ Fðÿ; hÞ: In our experiments, we set qk ¼
1=k and nk ¼ dð log kÞ4e, as suggested in Tamar et al. 

(2015). It is worth noting that in all our test cases, hi’s are 
structural parameters that directly appear in the test func-
tions. Thus, the application of the LR estimator (18) requires 

the explicit form of the output density f ðÿ; hÞ: PWCO, on 
the other hand, relies on the analytical expression for the 
sample path derivative rhhðX, hÞ: In particular, let 

Y1, Y2, :::Ynk 
be nk i.i.d output evaluations under ÿhk, and 

G1,G2, :::Gnk 
be observations of rhhðX, hÞjh¼ÿhk

: Similar to 
LRCO, PWCO is also a recursive gradient descent procedure 

of the form ÿhkþ1 ¼ PHðÿhk − ÿqk
ÿDkÞ, where the gradient esti-

mator ÿDk is given by

ÿDk ¼
1

nkð1 − uÞ
X

nk

i¼1

GiIfYi > ~qðÿhkÞg, 

which provides an approximation of the closed-form 
expression of the CVaR gradient rh/Yðh;uÞ ¼

1
1−u

E rhhðX, hÞIfhðX, hÞ > qðh;uÞg
ÿ ÿ

(Hong and Liu, 2009). 

In our experiments, we set ÿqk ¼ 1=k and nk ¼ dð log kÞ4e, 
the same as in LRCO for a fair comparison.

In the implementation of SPCO, SPCO-CRN, and FDCO 
the decay rates of the parameters are determined from the 
result of Section 4.2, i.e., b ¼ 0:99, c ¼ 4=7, and s ¼ 1=7:
Throughout the experiments, we take ck ¼ R=kc, where R is 
10% of the total number of iteration steps in SPCO and 
SPCO-CRN. As discussed in Hu et al. (2022), the large con-

stant R allows quick tracking of the true quantiles as hk 

changes, especially when the initial estimate q0 is far away 
from their true values. The parameters bk and ck are chosen 

to be of the forms bk ¼ b=ðk þ 10bÞb and ck ¼ c=ðk þ 10cÞs:
In general, the value of b should be taken neither too large 
(to prevent oscillatory behavior in early iterations) nor too 

small (to prevent sluggish performance in the long run), 
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whereas the value of c should be chosen carefully to balance 

the bias variance tradeoff in gradient estimation. The values 

of the constants b and c used in SPCO, SPCO-CRN, and 

FDCO are listed in Table 1. These parameters are selected 

based on trial and error to achieve reasonable performance 

of the algorithms. We have also tested the performance of 

SPCO under different values of b and c. The results are 

reported in Section G of the Online Appendix, indicating 

some robustness of the algorithm performance with respect 

to their choices.
Our comparison results are based on equating the 

amount of computational budget, where the total number of 

evaluations is set to 3 ÿ 104 for h1 and h3, and 3 ÿ 105 for 

h2 and h4: In SPCO, SPCO-CRN, and FDCO, the initial 

quantile estimate is set to q0 ¼ 0: In all algorithms, h0 is 

uniformly generated from H: Each algorithm is independ-

ently repeated 40 times. The means and standard errors 

(over 40 runs) of the true CVaR values at the final solutions 

found by the five comparison algorithms are given in Tables 

2 and 3, where in each case, the result that is closest to the 

true optimal value is shown in bold. The convergence 

behaviors of SPCO, SPCO-CRN, LRCO, FDCP, and PWCO 

are also illustrated in Figures 1 and 2, which plot the true 
CVaR values at the current estimated solutions as functions 
of the numbers of simulation evaluations.

Test results indicate good performance of SPCO in com-
parison with LRCO and PWCO. In particular, the algorithm 
outperforms LRCO and PWCO on function h2 and most 
cases on function h1 within the allowed budget. In particular, 
we conjecture that the relatively slow convergence of LRCO 
and PWCO on h2 is due to the flat response surface of the 
objective function near the optimum, so that finding a good 
solution requires a large number of algorithm iterations. 
However, the increasing (per-iteration) sample size nk 

required by both algorithms results in a much smaller num-
ber of algorithm iterations compared with SPCO under the 
given budget constraint. For h3, SPCO shows comparable 
performance to PWCO and outperforms LRCO. For h1 and 
h4, the true quantiles at the optimal hÿ values are very distant 
from the initial estimate q0 ¼ 0: Thus, it may take many iter-
ations of an iterative quantile estimation procedure such as 
(9) to identify the correct quantile range. On the other hand, 
because LRCO and PWCO estimate quantiles using order sta-
tistics, they do not require specification of an initial estimate 
and are not heavily affected by the location of the true quan-
tile. We see from the figures that LRCO and PWCO typically 
show a faster initial improvement than SPCO. Test results 
also show that the use of CRN may drastically reduce the 
variance of the gradient estimator, leading to significantly 
improved finite-time convergence behavior. From Tables 2

Table 2. Performance on test functions for d ¼ 20, based on 40 independent runs (standard error in parentheses).

u ¼ 0:95

Case 1 2 3 4

Optimum −670.26 1.00 2.06 24.40
SPCO −670.24 (1.99e-3) 1.02 (7.75e-4) 2.06 (3.84e-6) 25.78 (7.35e-2)
SPCO-CRN 2670.26 (3.64e-14) 1.00 (4.97e-10) 2.06 (2.31e-7) 24.40 (7.70e-6)
LRCO −670.23 (2.10e-3) 1.79 (2.83e-2) 3.49 (5.11e-2) 24.40 (7.40e-6)
FDCO −670.21 (1.60e-2) 1.04 (1.88e-3) 2.15 (3.75e-3) 24.78 (1.83e-2)
PWCO −670.24 (1.20e-3) 2.16 (2.59e-2) 2.06 (1.60e-10) 24.40 (1.91e-6)

u ¼ 0:99

Optimum −532.32 1.00 2.67 1394.75
SPCO −532.28 (7.76e-3) 1.05 (2.11e-3) 2.67 (9.58e-8) 1534.35 (6.89)
SPCO-CRN -532.32 (1.82e-14) 1.00 (2.48e-11) 2.67 (1.09e-7) 1394.75 (7.28e-14)
LRCO −530.87 (7.69e-2) 2.11 (3.47e-2) 4.77 (8.06e-2) 1394.75 (9.48e-6)
FDCO −530.45 (1.63) 1.09 (4.03e-3) 2.93 (1.19e-2) 1478.31 (3.75)
PWCO −530.93 (5.91e-2) 2.64 (4.34e-2) 2.67 (5.03e-8) 1394.75 (1.58e-6)

Table 3. Performance on test functions for d ¼ 50, based on 40 independent runs (standard error in parentheses).

u ¼ 0:95

Case 1 2 3 4

Optimum −10683.31 1.00 2.06 24.40
SPCO −10679.26 (6.02e-1) 1.05 (1.24e-3) 2.06 (8.01e-7) 38.18 (3.31e-1)
SPCO-CRN −10671.45 (1.19) 1.00 (3.21e-9) 2.06 (4.64e-7) 24.75 (1.54e-2)
LRCO −10682.88 (3.13e-2) 2.57 (2.78e-2) 8.01 (9.14e-2) 24.83 (2.29e-2)
FDCO −10682.54 (3.41e-1) 1.06 (1.77e-3) 2.69 (2.71e-2) 26.11 (4.83e-2)
PWCO 210682.98 (1.14e-2) 2.76 (3.31e-2) 2.06 (6.44e-9) 24.75 (8.76e-3)

u ¼ 0:99

Optimum −10542.60 1.00 2.67 1394.75
SPCO −10540.23 (5.40e-1) 1.14 (4.33e-3) 2.67 (3.14e-7) 1901.34 (18.32)
SPCO-CRN 210542.60 (2.91e-13) 1.00 (1.32e-12) 2.67 (1.66e-7) 1394.75 (2.64e-6)
LRCO −10520.42 (1.06) 2.78 (3.93e-2) 11.36 (1.65e-1) 1398.98 (4.50e-1)
FDCO −10542.30 (1.34e-1) 1.13 (4.26e-3) 4.73 (7.90e-2) 1547.65 (4.69)
PWCO −10519.85 (5.57e-1) 2.97 (2.68e-2) 2.67 (5.37e-8) 1398.75 (1.33e-1)

Table 1. The values of ðb, cÞ in SPCO, SPCO-CRN and FDCO.

Test Fcn. 1 2 3 4

SPCO (0.1, 50) (5, 15) (0.0001, 4) (0.1, 10)
SPCO-CRN (0.1, 50) (5, 15) (0.0001, 4) (0.1, 100)
FDCO (1, 500) (20, 40) (0.1, 5) (0.2, 20)
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Figure 1. Performance of SPCO, SPCO-CRN, LRCO, FDCO, and PWCO on h1 − h4 (u ¼ 0:95).
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Figure 2. Performance of SPCO, SPCO-CRN, LRCO, FDCO, and PWCO on h1 − h4 (u ¼ 0:99).
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and 3, it can be observed that SPCO-CRN yields superior 
performance in the majority of the 16 test cases and has sig-
nificantly smaller standard errors than those of SPCO. In the 
remaining seven cases, the availability of a direct gradient 
estimator results in PWCO having the best performance of 
all the methods. Note that we have used a single set of param-
eter values for PWCO in all test cases, the performance of the 
algorithm could be further improved through a more careful 
selection of algorithm parameters tailored to each case. From 
the comparison results, it is clear that when structural know-
ledge of the underlying model is available, it should be 
exploited. On the other hand, because SPCO is model-free 
and only relies on simulation output samples, it applies more 
generally in black-box settings.

5.2. An inventory example

We consider a single-period risk-averse inventory problem 
adapted from Chen et al. (2009), where the goal is to deter-
mine how many items of a product should be kept in inven-
tory, as well as the selling price of the product in order to 
maximize the CVaR of the seller’s profit. Let h1 denote the 
inventory level at the beginning of a selling season, p the 
per-unit ordering cost, h2 the per-unit selling price, dðh2, XÞ
the price-dependent demand during the selling season, 
where X signifies the demand risk, which is a random vari-
able with a known distribution and is assumed to be inde-
pendent of h2: At the end of the selling season, the leftover 
inventory is salvaged at price s. Then the seller’s profit can 
be represented as

YðhÞ ¼ h2minfh1, dðh2, XÞg þ sðh1 − dðh2 , XÞÞ†
− ph1

¼ ðh2 − pÞh1 − ðh2 − sÞðh1 − dðh2 , XÞÞ†,

(19) 

where z† ¼ maxfz, 0g: The objective is to determine the 

optimal choice of the parameter vector h ¼ ðh1, h2Þ that 

maximizes the left-tail u-level CVaR of YðhÞ defined by

/L
YðhÞ ¼

1

u

ðqðh;uÞ

−1
yf ðy; hÞdy:

Note that because this is a problem for maximizing the 

left-tail CVaR, whereas SPCO is presented for minimizing 

the right-tail CVaR, the following modification of (10) is 

required in actual implementation of the algorithm:

hkþ1 ¼ PH hk þ bk −

1

u

−minfYþ
k , qkg þ minfY−

k , qkg
2ckDk

 !" #

:

For the numerical experiments, we set s ¼ 1, p ¼ 4, and 

use a multiplicative demand model dðh2, XÞ ¼ ð100 − h2ÞX, 

where X follows a generalized Beta distribution with p.d.f.

fXðxÞ ¼
x 1 −

x
2

� ÿ

4Betað2, 2Þ ; x 2 0, 2½ ÿ

with Beta being the beta function. The feasible region H is 

taken to be the set characterized by inequality constraints 

0 ÿ h1 ÿ 100, 4 ÿ h2 ÿ 100, and 200 ÿ h1 þ 2h2: In SPCO, 

we take h0 ¼ ð10, 10Þ, bk ¼ 5=ðk þ 50Þ0:99, ck ¼ 104=k4=7, 

ck ¼ 15=ðk þ 150Þ1=7, and consider two CVaR levels: u ¼
0:95 and u ¼ 0:99:

For the purpose of comparing with the optimum, we 

note that an expression for the left-tail CVaR of YðhÞ in 

(19) can be obtained as

/L
YðhÞ ¼

1

u

ð2lqðh;uÞ

a

y

4lBetað2, 2Þ
y − a

l
1 −

y − a

2l

ÿ ÿ

dy, (20) 

where a ¼ −3h1, l ¼ ðh2 − 1Þð100 − h2Þ, and qðh;uÞ is 

given by the solution to the integral equation

ðqðh;uÞ

a

1

4lBetað2, 2Þ
y − a

l
1 −

y − a

2l

ÿ ÿ

dy ¼ u:

Problem (20) can be numerically optimized using tools 

from nonlinear programming. Its (approximate) optimal sol-

utions under the two u-values are given in Table 4.

Table 4. Optimal solutions found by SPCO on the inventory example, based 
on 40 independent runs (standard errors in parentheses).

u ¼ 0:95 u ¼ 0:99

Optimum SPCO Optimum SPCO

h1 92.73 93.88 (4.19e-1) 92.94 94.15 (3.59e-1)
h2 53.64 53.35 (2.03e-1) 53.53 53.25 (1.70e-1)
GT 99:74% ð2:88e − 4Þ 99:77% ð2:56e − 4Þ

Figure 3. Performance of SPCO on the inventory example.
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The performance of SPCO (averaged over 40 runs) is 

shown in Figure 3 and Table 4. In particular, the graphs 

plot the objective CVaR values /L
Yðhk;uÞ as a function of 

the number of simulation evaluations consumed, whereas 

the table records the solutions returned by the algorithm 

upon termination in each of the two respective test cases. 

To further gauge the performance of the algorithm, we con-

sider a procedure used in Huang et al. (2006) for measuring 

the relative efficacy of an optimization procedure. 

Specifically, let hT be the solution found by SPCO upon ter-

mination, we define a performance measure

GT ¼ /L
Yðh0;uÞ − /L

YðhT ;uÞ
/L

Yðh0;uÞ − /L
Yðhÿ;uÞ

, 

which signifies the reduction in the optimality gap of a 

returned solution relative to that of the initial values. The 

means and standard errors of GT values are reported in the 

last row of Table 4. We see that in both test cases, SPCO is 

able to achieve more than 99% reduction in optimality gap.

6. Conclusions

In this article, we have considered the problem of optimiz-

ing CVaR under a general simulation environment. We have 

derived a closed-form formula for the CVaR gradient and 

proposed a simple SP-based estimator for approximating its 

value. The estimator, when combined with a separate pro-

cedure for estimating quantiles, results in a two-time-scale 

SA method for general differentiable CVaR optimization. 

The algorithm only requires three simulation evaluations at 

each step and has the advantage of allowing simulation 

errors to be incrementally eliminated using past simulation 

data accrued over the iterations. Under appropriate condi-

tions, we have analyzed the asymptotic behavior of the algo-

rithm in terms of its convergence and rate of convergence. 

The empirical performance of the algorithm has also been 

illustrated through simulation experiments, indicating its 

promising performance on a variety of testing scenarios.
Although our discussion of SPCO has primarily focused 

on a specific SP-style gradient estimator, the two-time-scale 

structure of the algorithm offers the flexibility to consider 

many other alternative CVaR gradient procedures. For 

instance, if the sample path derivatives of a simulation 

model can be readily obtained, then both IPA and GLR 

techniques could potentially be applied to lead to new algo-

rithms with direct CVaR gradients. From this perspective, 

SPCO can be viewed as a framework for differentiable 

CVaR optimization. Thus, one line of future work will be to 

examine the use of other suitable gradient procedures within 

the framework and to investigate the theoretical perform-

ance and computational efficiency of the resultant 

algorithms.
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