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We consider the problem of multi-product dynamic pricing with demand learning and propose a nonparametric
online learning algorithm based on the simultaneous perturbation stochastic approximation (SPSA) method.
The algorithm uses only two price experimentations at each iteration, regardless of problem dimension, and
could be especially efficient for solving high-dimensional problems. Under moderate conditions, we prove that
the price estimates converge in mean-squared error (MSE) to the optimal price. Furthermore, we show that b
suitably choosing input parameters, our algorithm achieves an expected cumulative regret of order O (ﬁ
over T periods, which is the best possible growth rate in the literature. The exact constants in the rate can be
identified explicitly. We investigate the extensions of the algorithm to application scenarios characterized by
non-stationary demand and inventory constraints. Simulation experiments reveal that our algorithm is effective
for a range of test problems and performs favorably compared with a recently proposed alternative method
for high-dimensional problems.

1. Introduction straightforward pricing policy (i.e., learning algorithm) would typ-

ically involve establishing the estimate of the optimal price based

Dynamic pricing has become a prevalent strategy adopted by busi-
nesses across diverse industries to maximize their revenue. This pricing
technique involves adjusting the price of a product in real time based
on various factors, such as customer demand, competition, time of
day, seasonality, and inventory levels. Among these factors, customer
demand is perhaps the most critical. With advancements in technology
and data analytics, sellers can now use statistical tools to learn customer
demands by continuously updating their prices. This approach is known
as demand learning, which entails collecting and analyzing customer
data to identify patterns in their purchasing behavior. By leveraging
these data, sellers can adjust their prices dynamically to maximize rev-
enue. This procedure is called dynamic pricing with demand learning,
which is also referred to as learning and earning.

The problem of dynamic pricing with demand learning has attracted
considerable attention in the literature of operations research and
management science over the years. Most papers study the problem
under the setting where the demand function of the product follows
a parametric model (e.g., linear model or generalized linear model)
so that the demand learning problem boils down to the estimation
of unknown parameters in the demand function. Arguably, the most
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on the prevailing parameter estimates. This approach can be viewed
as a myopic or greedy policy, also known as passive learning or
certainty-equivalence control. Though simple in its implementation,
this approach may perform poorly. For instance, den Boer and Zwart
(2014) show that the prices generated by the certainty-equivalence
policy may converge with a positive probability to a non-optimal
price. In fact, the certainty-equivalence pricing policy is an example of
incomplete learning that describes the phenomenon where parameter
estimates in a dynamic decision problem with parameter uncertainty
can converge to an incorrect value with positive probabilities; cf. Keskin
and Zeevi (2018).

Extensive findings from the literature underscore a crucial factor to
avoid incomplete learning: the inclusion of adequate price dispersion
within the pricing policy (Keskin & Zeevi, 2014). This insight highlights
the need to integrate a dedicated price experimentation step into the
learning algorithm, preventing prices from converging too rapidly. By
doing so, an abundance of new and valuable information could be
obtained, leading to significant improvement in the accuracy of param-
eter estimates. We briefly describe three pricing policies satisfying the
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above requirement. The first example is the MLE-CYCLE policy pro-
posed in Broder and Rusmevichientong (2012). MLE-CYCLE operates
in cycles, and each cycle is separated by an exploration phase and an
exploitation phase to balance the tradeoff between demand learning
(i.e., parameter estimation) and revenue optimization (i.e., the myopic
price concerning the current estimate of the demand parameter). The
second example is the controlled variance pricing proposed in den Boer
and Zwart (2014). This policy charges a myopic price at each period
unless this price leads to insufficient price dispersion to ensure the
sample variance of prices is greater than or equal to a lower bound;
in the latter case, a small perturbation term is added to the myopic
price. The third example is the semimyopic pricing scheme given
in Besbes and Zeevi (2015). The policy also combines estimation and
optimization in a cycle-based manner, with the selling prices during a
cycle being adjusted, either upward or downward, on the basis of the
estimated optimal price. The exploration and exploitation dilemma is
resolved by appropriately tuning the length of cycles and the magnitude
of perturbations. All the aforementioned pricing policies can be applied
to the multi-product setting when the seller has multiple products to
price and sell. For example, den Boer (2014) introduces an adaptive
pricing policy, extending the controlled variance pricing to multiple
dimensions.

In practice, the functional relationship between demand and price
is not easily accessible to the sellers. This is particularly evident when
a new product is introduced into the market for initial sale or when
the market conditions undergo alterations. In such cases, it is plausible
to take an approach that avoids specifying the explicit form of the
demand function, so that the seller can employ a more flexible model
for analyzing the demand-price relationship. Such an approach enables
better representation of consumer behavior by taking into account the
dynamic nature of the market, and thereby facilitates well-informed
decision-making in an obscure market environment. Note that this type
of pricing policy deals with quite general multi-product settings that
allows different cross elasticities among the demands of products, either
complement or substitute, and it includes the parametric models (e.g.,
den Boer & Zwart, 2014; Broder & Rusmevichientong, 2012; Keskin &
Zeevi, 2014) as special cases. However, there are relatively few papers
on nonparametric algorithms for dynamic pricing with demand learn-
ing. To the best of our knowledge, the Kiefer~-Wolfowitz (KW) pricing
policy proposed in Hong, Li, and Luo (2020) is the only existing multi-
product nonparametric solution algorithm in the literature. The method
applies the classical KW stochastic approximation (SA) algorithm, one
of the most widely-used model-free stochastic optimization algorithms
within an online pricing context. At each price experimentation step,
the KW pricing policy uses d + 1 revenue function evaluations to collect
information on dispersed prices, where d is the price dimension. It has
been shown in Hong et al. (2020) that the price estimates converge in
mean-squared error (MSE) to the optimal price and that an upper bound
on the regret (i.e., the relative loss due to not using the optimal price) is
of order ﬁ, which is the best possible growth rate (see, e.g., Broder &
Rusmevichientong, 2012; Keskin & Zeevi, 2014). Nevertheless, because
the per-iteration complexity of the KW pricing policy grows with the
price dimension, the algorithm may not be very efficient on high-
dimensional problems. In particular, when the quantity of products is
much larger than the total decision periods, an (online) implementation
of a KW pricing policy may not even be feasible.

In this paper, following the nonparametric formulation of Hong
et al. (2020), we propose a novel pricing policy based on the si-
multaneous perturbation stochastic approximation (SPSA) technique
introduced by Spall (1992). Such a technique allows the algorithm to
explore different prices with only two revenue function evaluations,
regardless of the price dimension, avoiding the need for expending a
significant amount of computational effort for price experimentation
at each step. The revenue estimates are then exploited to construct
a stochastic gradient estimator for updating the price. Under certain
smoothness and regularity conditions on the revenue function, we show
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that the regret of our policy can also achieve the best possible growth
rate under appropriate choices of algorithmic parameters. Our regret
analysis reveals no significant performance gap between parametric
and nonparametric models. Consequently, our algorithm can help re-
duce the effort needed in searching for the correct parametric forms of
demand functions. For high-dimensional pricing problems, we propose
two additional strategies to further enhance the algorithm’s empirical
performance. The extensions of the algorithm to application scenarios
involving non-stationary demand and finite inventory constraints are
also investigated.

To summarize, we view our work as providing the following re-
search contributions:

» We introduce a novel online learning algorithm for nonparametric
multi-product dynamic pricing with demand learning, charac-
terize the growth rate of the regret, and present enhancement
strategies to improve the algorithm’s practical performance.
From a theoretical point of view, we relate the multivariate sim-
ulation/stochastic optimization approach to the dynamic pricing
problem and show that such a problem can indeed be effec-
tively solved by SPSA-based algorithms that achieve the opti-
mal learning rate, both in stationary and non-stationary demand
environments.

In terms of practical implications, SPSA-based algorithms could
be particularly useful for solving high-dimensional problems,
even in the presence of inventory constraints, because the num-
ber of revenue function evaluations required per iteration is
independent of the number of pricing decisions.

Finally, the new algorithm serves as a valuable complement to ex-
isting dynamic pricing policies that rely primarily on parametric
approaches to single-product (or low-dimensional) problems.

The rest of this paper is structured as follows. Related literature is
reviewed in Section 2. We present the proposed pricing policy under
the basic model in Section 3 and analyze its regret in Section 4. Two
significant extensions of the model that incorporate non-stationary
demand and finite inventory constraints are investigated in Section 5.
Numerical experiments are provided in Section 6. We conclude the
paper with some future research topics in Section 7. All proofs and
additional numerical results are included in the Appendix.

2. Related literature

The basic model of this paper assumes that the market environment
(demand function) remains unchanged and the seller possesses an
infinite inventory (i.e., no limit on the amount of resources that can be
used). Each of these conditions is then relaxed in Section 5. We begin
by reviewing the related literature focusing on the basic model setting
and then discuss existing studies that consider non-stationary market
environments and limited inventory supplies.

Under the basic model setting, in addition to the studies (Besbes
& Zeevi, 2015; den Boer & Zwart, 2014; Broder & Rusmevichientong,
2012) mentioned in Section 1, some earlier works include, e.g., Bertsi-
mas and Perakis (2006), Carvalho and Puterman (2005), Lobo and Boyd
(2003), suggesting that pricing policies incorporating active explo-
ration tend to outperform myopically greedy policies. This observation
underscores the importance of engaging in price experimentation. Che-
ung, Simchi-Levi, and Wang (2017) establish asymptotically optimal
policies when the seller is constrained to a finite number of allow-
able price changes. den Boer and Keskin (2020) consider the cases
where discontinuities are permitted in the demand function. From a
Bayesian perspective, Harrison, Keskin, and Zeevi (2012) address a sta-
tionary, two-hypothesis dynamic pricing problem. Robust optimization
approaches to address demand uncertainty are also investigated, as dis-
cussed in Bergemann and Schlag (2011). Interested readers may consult
the survey papers (e.g., Chen & Chen, 2015; Den Boer, 2015a) for
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comprehensive reviews on various dynamic pricing and learning prob-
lem formulations. Also closely related with this topic is the stream of
literature on multi-armed bandit (MAB) problems, initially introduced
by Thompson (1933). While the original emphasis was on medical
trials, the applications of MAB algorithms have undergone substantial
expansions in contemporary research (see, e.g., Bubeck et al., 2012;
Lattimore & Szepesvari, 2020). The approach closest to our work in the
MARB literature is the continuum-armed bandit problems, in which there
is an infinite number of arms (i.e., pricing decisions). Similar to the
setting of our basic model, the literature on continuum-armed bandits
does not consider resource constraints and presents various policies for
learning the maximum of an objective function (e.g., Auer, Ortner, &
Szepesvari, 2007; Bubeck, Munos, Stoltz, & Szepesvari, 2011; Grant &
Szechtman, 2021; Kleinberg, 2004; Kleinberg, Slivkins, & Upfal, 2008;
Misra, Schwartz, & Abernethy, 2019). These policies can be employed
to maximize the expected revenue as a function of price but are much
more complex to implement than ours. In contrast, we employ a direct
stochastic gradient-based approach to maximize the revenue function.

For dynamic pricing problems with unknown non-stationary de-
mand, Besbes and Zeevi (2011) apply a change-point detection ap-
proach to identify temporal shifts in the demand function. They in-
vestigate demand learning within an uncapacitated Bernoulli demand
model, wherein the seller is initially aware of the demand curve. At an
undisclosed point in time, the demand curve undergoes a switch to a
different function of the price. The authors show that under the well-
separated condition of demand curves, a myopically greedy policy turns
out to be optimal. Keskin and Zeevi (2017) investigate a generalized
version of the problem, which allows multiple change points. They
examine the scenario where the seller lacks knowledge about the
potential demand function, the timing of changes, and the total number
of changes. A joint learning-and-detection policy is proposed, which
attains a T-period regret on the order of ﬁ, up to a logarithmic factor.
For more general non-stationary demand settings, Den Boer (2015b)
considers a demand environment characterized by unknown and non-
stationary market size, with known price sensitivity of demand. The
author formulates policies that hedge against potential demand changes
and derives upper bounds on the long-run average regret for these
policies.

In contrast to the setting of unlimited inventory, determining op-
timal prices becomes more challenging when inventory constraints
are incorporated. Based on the foundational work on canonical rev-
enue management models formalized in Gallego and Van Ryzin (1994)
(single-product single-resource problems) and Gallego and Van Ryzin
(1997) (multiple products using common resources, i.e., network rev-
enue management problems), there is an array of literature focusing
on nonparametric algorithms for dynamic pricing in the presence of
inventory constraints; (see, e.g., Besbes & Zeevi, 2009, 2012; Chen
& Gallego, 2022; Wang, Deng, & Ye, 2014; Yang & Xiong, 2020).
The salient feature of these models is that the demand is given by
a Poisson process whose intensity is controlled by the price, and the
seller does not know the relationship between the price and the demand
rate. We remark that the structure of the above solution algorithms
significantly differs from that used in the basic setting of our paper.
They consider the fluid approximation of the original continuous-time
dynamic program and find an upper bound for the expected cumula-
tive revenue based on the deterministic optimization counterpart. The
objective is to design an algorithm with small asymptotic regret of
the so-called “size-k” problem with both the initial inventory and the
demand function scaled by k. In addition to the canonical revenue
management formulation, the problem is connected to the so-called
bandits with knapsacks model. Badanidiyuru, Kleinberg, and Slivkins
(2013) is among the first to consider such a problem and modifies
the celebrated upper confidence bound algorithm to accommodate
the setting with inventory constraints. Agrawal and Devanur (2016)
propose an algorithm for linear contextual bandits with knapsacks.
(Ferreira, Simchi-Levi, & Wang, 2018) develop Thompson sampling

European Journal of Operational Research xxx (xxxx) xxx

algorithms tailored for both the linear demand case and the bandits
with knapsacks problem.

On a technical level, the construction of our pricing policy hinges
on SA methods, which are among the most commonly used online
learning tools, dating back to two pioneering papers, Robbins and
Monro (1951) and Kiefer and Wolfowitz (1952). SA was originally in-
troduced to solving stochastic root-finding problems. When the function
of interest is the gradient of the objective function in an optimization
problem, SA can be interpreted as a stochastic version of the steepest
ascent/descent algorithm for finding the first-order critical points. The
theoretical properties of SA such as the local/global convergence and
the rate of convergence can be analyzed by the ordinary differential
equation (ODE) approach; (see, e.g., Borkar, 2009; Kushner & Yin,
2003; Meyn, 2022). However, the ODE-based convergence analysis is
often conducted in an asymptotic form. In this study, we adopt the
general bounds for the SA algorithms developed in Broadie, Cicek, and
Zeevi (2011) and apply them to our variant of the SPSA algorithm to
perform a finite-time analysis.

3. SPSA pricing policy for dynamic pricing with demand learning
3.1. Basic model

We consider a stylized dynamic pricing problem where a seller has
d distinct products for sale over T discrete time periods, denoted as
t = 1,2,...,T. At the beginning of period ¢, the seller must select a
price (vector), denoted by p, = (p,;, ... ,p,vd)T, for its products. After
setting the price, the seller observes the demand during that period,
denoted by D(p,) = (D;(p,), ..., D4(p,)). Given any p,, D(p,) is a random
vector, and we assume that its functional relationship with respect to
p, does not change over time but is unknown to the seller. We also
assume that all products are nonperishable, and that all demands are
fulfilled by the seller. Each of these assumptions will later be relaxed
in Section 5. In particular, the non-stationary demand case will be
addressed in Section 5.1, whereas in Section 5.2, we discuss the finite
inventory setting. The marginal costs of all products are equal to 0 so
that the revenue is equal to the profit. In period ¢, the seller’s expected
one-period revenue under any advertised price p € R is given by

f =E[F@)lp, =p]. )

where F(p) := p'D(p), Vp. After receiving the realized revenue F(p,),
the seller moves to the next period. The product price in the next
period is determined by a stationary random pricing policy ¥ and the
history of prices and demands collected through the end of period
t, that is, p,.; = PP, D(P)).....p,.D(p,)). Such a class of policies
is usually referred to as non-anticipating policies, inducing {p,} to
be a sequence of random vectors. Accordingly, the seller’s expected
cumulative revenue under policy ¥ across T periods is defined as

T
T, %) :=E [Z f(p,)] :

=1
Note that the expectation above is taken with respect to both the
randomness in revenue outcomes and any randomization in the pricing
policy. As is standard in the online learning literature, the performance
metric we adopt is the T-period cumulative (static) regret, which is
defined as follows:

R(T,¥) :=Tf*" - rT,¥P), 2)

where f* = sup, f(p), representing the maximal expected revenue
under the true optimal price in each period. For instance, consider
the commonly used linear demand model. The expected revenue at
every period is a quadratic function of the posted price, i.e., f(p) =
p'E[D(p)] = p’(a + Bp), where a € R? and B is a d x d matrix. Under
some appropriate conditions, the true optimal price p* is given by
p* = —(B+BT)~!a due to the first-order optimality condition (see Keskin
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& Zeevi, 2014). Given any sub-optimal policy ¥, the regret measures
the expected revenue loss relative to a clairvoyant who always charges
the optimal policy. Clearly, the regret is non-negative, and the lower the
regret, the better the policy. The amount of the regret, especially how
it grows over time, gives a perspective on how well a policy performs.

The crux of the nonparametric dynamic pricing model is that the
demand D(p) is a stochastic “black-box” function of the posted price
p, i.e., there is minimal knowledge on how the aggregate market
responds to the price. The seller is confronted with the challenge of
adaptively balancing the acquisition of demand information while max-
imizing revenue in an online fashion. To address this issue, we adopt
a stochastic gradient-based black-box optimization approach instead of
assuming any particular form of the demand function. This approach is
relatively simple to implement and offers greater flexibility in practical
applications.

3.2. Algorithm description

The proposed algorithm operates in stages. At the beginning of each
stage, which we index by n € {1,2,...}, the seller has an estimate
of the optimal price, namely, p,. Then the seller conducts two price
experimentations by randomly perturbing p,, where the magnitude
of the perturbation is determined based on a random vector 4, =
(4,1, ....4,)7 € RY, with A,; being the ith component of 4, for all
i€{l,2,...,d}. We will discuss the regularity conditions on the choice
of A, in Section 4. Each perturbed price will be used for one period,
and the corresponding revenue is earned under this price. At the end
of stage n, the price estimate is updated through a stochastic gradient
ascent method in the spirit of the SPSA. The process continues until the
time horizon comes to a close.

Let {a,} and {c,} be two real-valued parameter sequences, which
will be used in the algorithm. The detailed algorithmic steps are
presented below.

SPSA pricing policy: ¥SPSA

Step 0: Initialization
Select a step-size sequence {a,}, a perturbation-size sequence
{c,}, and a starting price p,. Set period counter + = 0 and stage
counter n = 1.

Step 1: Price Experimentation
Generate a realization of the random vector 4,.

> Set 1 = t+ L. Put p7 = p, + ¢,4, and obtain a revenue
observation F*, where F* = F(p}).

> Set t =t + 1. Put p; = p, — c,4, and obtain a revenue
observation F~, where F~ = F(p;).

Step 2: Price Updating
Compute
F* — F~

Put1 =Py +a, 2¢
n

-1
4., 3
where A;] is the component-wise reciprocal of 4,. Set n =n+ 1.
If t < T, then go to Step 1; otherwise, the algorithm outputs all
price estimates {p,} and terminates.

In Step 1, we use F* and F~ to denote the realized revenue per
period under the perturbed prices p and p;. These terms play a
crucial role in constructing the gradient estimate in Step 2. Notice
that ¥SPSA is an online version of the classical SPSA. The classical
SPSA is designed to solve offline optimization problems where only the
terminal solutions of the iterations (i.e., {p,}) are relevant. On the other
hand, our algorithm considers all evaluated solutions (i.e., {p,}) since
they all lead to increased regrets. This distinction between offline and
online optimizations sets the two algorithms apart. The online nature
of PSPSA allows the seller to learn demand and/or revenue functions
on the fly by leveraging past experiences, thus continuously improving
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its decision-making as the sale proceeds. For instance, online retailing
platforms are natural application scenarios of our algorithms because
one can benefit from adapting the service to the individual sequence
of customers. This methodology is consistent with the fundamental
principles of reinforcement learning (Sutton & Barto, 2018), where the
agent (seller) must balance exploration (Step 1) and exploitation (Step
2) in consecutive stages to optimize the objective function.

The structure of ¥SPSA is similar to the KW pricing policy proposed
by Hong et al. (2020), denoted by ¥XW. The common goal is to
approximate the maximum value of the expected revenue function
Eq. (1) in cases where direct gradient information cannot be easily
acquired from sales data. Both algorithms fall under the umbrella of
the zeroth-order optimization methods (see, e.g., Chen & Liu, 2019;
Ghadimi & Lan, 2013). The primary difference between ¥SPSA and
PKW resides in their respective approaches to tackle the issue of
incomplete learning. Specifically, we utilize an SPSA-based updating
scheme, while ¥XW relies on the forward finite difference method.
For high-dimensional price vectors, i.e., a large number of products
whose prices need to be determined by the seller, ¥*¥ may become
computationally demanding. In particular, each price experimentation
step in XV requires d revenue function evaluations at the perturbed
price vectors. This, together with the current price estimate, results in
a total of d + 1 different price evaluations at each stage. In contrast,
our algorithm takes a different approach by simultaneously altering all
components of the price vector in random directions (i.e., +c,4,). We
show in Section 4 that this achieves the same optimal regret bound as
the forward-finite-difference-based approach but with only two revenue
function evaluations needed during each stage, regardless of the price
dimension. The algorithm is also much easier to implement than the
parametric approaches, especially in high-dimensional settings. There
are very few hyperparameters to tune, and we will give the optimal
choice of parameter structures in the next section.

In addition to the SPSA pricing policy, we further propose the
following two modified versions to improve the empirical performance
of the algorithm:

Adding a projection operator.

According to the original recursion Eq. (3), there is no “truncation”
when updating the price. However, in practical applications, it is
always necessary to establish price limits, e.g., both lower and upper
bounds, for any given product. That is, there exist two non-negative
constants /; and u; such that p,; € [/;,u;] for all » € {1,2,...} and
i € {l1,...,d}. Thus the truncated ¥SPA policy uses the following
recursion when updating price estimates:

Ft—F
Pt = Py g xeo g aag] (Pn +ta,——A4, )
n

where recall that &% is the projection operator with
g)[ll’“]Jx"'sUdvudJ(x) = (min{u;, max{/{,x;}}, ..., min{u,, max{l;, x;} Nt

for any x = (xj,...,x,)T. Incorporating such a projection constrains
the search of the algorithm within a predetermined price range, which
typically results in enhanced algorithm stability; cf., e.g., Andradottir
(1995) and Nemirovski, Juditsky, Lan, and Shapiro (2009).

Using common random numbers.

Another enhancement is to use a variance reduction technique
for reducing the variance of the finite-difference term in Eq. (3). In
particular, because Eq. (3) involves the difference of two random
variables, namely F* — F~, it is natural to consider the use of common
random numbers (CRN), i.e., the same stream of random numbers, for
generating F* and F~ (see, e.g., Law, 2015, Chapter 11). Specifically,
let Flp\ = F(p, +¢,4,;U,) and F,, = F(p,—c,A,;U,) be the output
random revenue obtained using the same input random number stream
U, under the perturbed price p, +c¢,4, and p, —¢,4,, respectively. The
CRN version of #5SP5A simply works by replacing F* and F~ in (3) with

Fpy and FZ, ., thus the price updating scheme is given by
Ft. . —F2
CRN ~ "CRN ,-|
pn+1 =Pn + a, An :

2c,

n
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In the context of dynamic pricing with demand learning, this means
that the seller only modifies the price during the price experimentation
step while keeping all other conditions unchanged, with the aim of
achieving a variance reduction effect based on CRN.

In light of the discussion on the two aforementioned modifications,
we denote the enhanced variant of the ¥SPSA algorithm by €¥SPSA,
Its performance will be discussed through numerical experiments in
Section 6.

4. Finite-time regret analysis

In this section, we carry out a rigorous regret analysis of the SPSA
pricing policy. To begin with, we define (®, %,P) as the probability
space induced by ¥SPSA, where ® refers to the set of all potential
sample trajectories that can be observed during the execution of the
algorithm, % is the o-field of subsets of ®, and P is a probability
measure on %. For a vector v, let ||v|] be the Euclidean norm of v.
For a matrix A, we use ||A|| and ||A|,, to denote the matrix norm
induced by the Euclidean norm (also known as the spectral norm)
and the infinite norm (i.e., ||A|l, = max; Y, i 14 1) respectively. Let
9;f(p) = 9;f(X)|x=p where 9;f denotes the partial derivative of the
function f with respect to the jth argument and the definition is
for notational convenience. The gradient and Hessian matrix of the
function f at p is denoted as V f(p) and V2 f(p), respectively. For any
two real-valued functions x(n) and y(n), we write x(n) = O(y(n)) if
limsup,_, , x(n)/y(n) < o0, x(n) = o(y(n)) if lim,_, x(n)/y(n) = 0, and
x(n) = Q(y(n)) if liminf,_  x(n)/y(n) > 0. Let [-] denote the ceiling
function. For any p € RY, let £ = F(p) — f(p). Note that the noise
term ¢ may depend on p, but we drop this dependency to simplify
the notation. To analyze the regret of the proposed pricing policy,
R(T,¥SPSA), we impose the following conditions on the model and
algorithm parameters:

Assumptions.

A1l (Concavity and Smoothness) The function f is twice differentiable.
There exist positive constants K, L, and L, such that K < L :=
max{L,,L,} and

(@

®-p)'V/P) <-Klp-p*l’, Vp,

where p* = (p],..., p:)T is the unique optimal price satisfying
Vi) =0

®

IVf®I < Lillp-p*ll, Vp.
(¢) For all t,,t, € (0, 1), with probability one

max{ sup V2 ®, + 11¢,4,) I 50D V2 B, = 12,4, } < L.
n n

A2 (Bounded Variance) There exists a positive constant ¢ such that with
probability one,

o® = supVar[F(p, +c,4,) — F(p, — ¢,4,)|p,. 4,] < co.
n

A3 (Random Direction Sequence) (a) The components of A, are d
mutually independent zero-mean random variables. The inverse mo-
ment E[|1/A, ;|1 is finite for all n and i, and the sequence of A,’s are
independent and identically distributed (i.i.d.) with A, independent
of {p;, i=1,....n} for all n.

(b) There exist positive constants B; > 1 and B, > 1 such that

14,11> < B, and E[||4;"||*] < B for all n.

A4 (Step Size and Perturbation Size) {a,} and {c,} are positive and
bounded sequences. There exist positive constants C, t,, and , such
that

European Journal of Operational Research xxx (xxxx) xxx

(@) a,/c2 < (an+1/c§+1) (1+Cayyy) foralln> 1.

() 32 < C5+1 (1+Ca,y,) forall n> 1.

(©) a,—>0asn- .

(d) either (i) ¢*/a, < 7 or (i) ¢}/a, >t for all n > 1.

We briefly comment on these assumptions. Al(a) is satisfied if f
is strongly concave so that the gradient-based iterative algorithm may
take successive steps in the direction where the revenue function is
increasing. A1(b) imposes a linearly increasing envelope on the gradi-
ent, which holds if the domain is compact and the function f is twice
continuously differentiable. A1(c) relaxes the bounded third derivative
assumption made by Spall (1992) and only requires the boundedness
of second order derivatives.

A2 assumes a bounded variance of the noise term when constructing
the SPSA-based stochastic gradient, which frequently appears in the SA
literature (Kushner & Yin, 2003). Both A3 and A4 are conditions on the
input parameters. A3 precludes the use of common distributions such
as the Gaussian and uniform distributions due to their concentration
of probability mass in the proximity of 0. A common choice of 4, is
the Rademacher (or symmetric Bernoulli) random vectors, with each
component of 4, taking value +1 or —1 with equal probability 1/2. A4
is taken from Broadie et al. (2011). The condition is quite general and
includes not only polynomial-like sequences (e.g., for some a > 0 and
y > 0, setting a, = a/n® and ¢, = y/n“ where 0 < a < 1 and ¢ > 0),
but also allows for a much broader class of sequences such as a, = a/n
and ¢, = y/log(n); cf. Broadie et al. (2011, Remark 3). We note the
assumption “for all » > 1” in A4 is primarily made for the sake of
simplicity. It can be substituted with the statement “for n sufficiently
large” by making minor adjustments.

Given the above assumptions, we can prove the following theorem,
which gives a finite-time upper bound on the MSE of the pricing policy
wSPSA | The analysis is based on that of Broadie et al. (2011) with
appropriate modifications tailored to our setting.

Theorem 1. Assume A1-A4 hold and C < 2K. Then there exist constants
C, >0 and C, > 0 such that for all n > 1,

Clan/cz l:fc;‘;/an < 715

C,c? if ct/a, > ).

Efllpaes —p*I°] < (4

Proof. See Appendix A for the proof. []

Note that the constants C; and C, can be identified explicitly (see
Eq. (A.6) and Eq. (A.7) in the proof), both depend polynomially on
the price vector dimension d. The theorem suggests that the rate of
convergence of the price estimates is associated with the choice of the
sequences {a,} and {c,}. Clearly, if we specify the form of a, and ¢,
such that a, = 0 (c?) and ¢, — 0 (as well as satisfying Assumption A4),
then the sequence of price estimates is guaranteed to converge to the
true optimal price in terms of the MSE.

Based on the upper bounds presented in Theorem 1, we can adopt
a methodology analogous to that employed by Hong et al. (2020,
Theorem 2) for regret analysis. Specifically, we initiate the procedure
by deriving an upper bound for the regret in each price experimentation
step, and subsequently extend it to cover all periods. The regret upper
bound is achieved through a careful choice of parameters a, and c,,
followed by substituting the summation with an integral, as detailed in
the proof of Corollary 1.

A finite-time upper bound on the regret of ¥SP5A is provided in
Proposition 1 below; see Appendix B for a proof.

Proposition 1. Assume A1-A4 hold and C < 2K. Then for all T > 1,

rerpsn, | S0 (/) 0 (ya)
’ T2 0/(2)
n=1 n

lfcj/aﬂ ST]!

if ct/a, > 1.
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Note that all omitted constants contained in the big-O notations
above can be identified explicitly in the proof. Proposition 1 reveals the
relationship between the regret of ¥SP5A and tuning sequences {a, } and
{c,}. Roughly speaking, a, and c, reflect the degree of exploitation and
exploration in the algorithm, respectively. In particular, a large a, value
implies that the price estimate p, changes quickly over the iterations, in
which case the perturbation size ¢, should decay sufficiently slowly to
ensure that the regret cannot increase too fast. Indeed, we can optimize
the order of the regret bound by properly selecting the forms of 4, and
¢,, which is given by Corollary 1.

Corollary 1. Assume Al-A4 hold and C < 2K. Let a, = an™! and

¢, = yn /4 with a > % and y > 0. Then there exist constants C; > 0

and C, such that R(T,¥5P54) < C, VT + G forallT =1,2,....

Proof. See Appendix C for the proof. []

The constants C; and C, are explicitly identified in the proof; refer
to Eq. (C.1). Combined with the definition of C; and C, in Theorem 1, it
follows that the regret has a polynomial dimension dependency. In sev-
eral dynamic pricing with demand learning settings, it has been proved
that the lower bound of the expected cumulative regret is Q(ﬁ) for
arbitrary pricing policy (see, e.g., Broder & Rusmevichientong, 2012;
Keskin & Zeevi, 2014), hence O(ﬁ) is the best possible growth rate of
the regret. Corollary 1 has shown that our pricing policy can achieve a
finite-time regret bound of O(y/T) by setting a, = an~! and ¢, = yn~1/4
for some positive constants a and y. This is a finite-time result that is
stronger than the asymptotic bound and hence implies the asymptotic
result such as Cope (2009).

Remark 1. The expressions of {a,} and {c,} in Corollary 1, i.e., a, =
an~" and ¢, = yn~'/4, are the same as the parameter selection employed
in YXW presented in Hong et al. (2020). However, unlike Hong et al.
(2020) (as well as essentially most previous literature), we refrain
from explicitly specifying the exact forms of the two sequences in
Theorem 1 and Proposition 1. Instead, we follow the methodology
outlined in Broadie et al. (2011) and derive this parameter structure
from general bounds.

Remark 2. From Eq. (4), we obtain that the order of MSE is O(n_%)
when assigning values to a, and ¢, as an~! and yn~'/4, respectively.
Note that by imposing stronger smoothness conditions, e.g., third-order
differentiability of f as stated in Spall (1992), we are able to derive the
following result similar to Eq. (4):

O(a—ﬁ’) ifcf’,/anS‘r;,
0(c,)

E[llpses —p*I°] = (5)

if ¢® v/a, > 1'2,
where ‘r{ and ‘ré are positive constants. Following the same argument as
in the proofs of Proposition 1 and Corollary 1, we can set a, = «’n~! and
¢, = y'n~'/% for some positive constants «’ and y’, and the optimal MSE
given by Eq. (5) is then of order O(n_»%). However, this improvement
does not affect the growth rate of the regret. By Eq. (B.1), the expected
regret at each stage, denoted as ¢(n), is upper bounded in order by
the maximum of the M SE and O(c2) If the function f has bounded
third derlvatlves with ¢, = y'n~1/%, then <p(n) is dominated by O(c2) and

o) =0~ 5 ), yielding R(T,¥SPSA) = O(T?) Therefore, even when the
revenue function is thrice differentiable, we also need to set a, = an™!
and ¢, = yn~'/4 to achieve the optimal regret order O(\/T).

We note that all the convergence proofs are also applicable if a
projection operator is used in the price updating step, as in €¥SPSA,
In particular, if we assume the optimal price of each product i lies
in the interior of [/;, 4], i.e., [; < pf < u;, then all theoretical results
(Theorem 1, Proposition 1, and Corollary 1) still hold. The proof of
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truncated ¥SPSA differs from that of the projection-free ¥SPSA only in
its use of the fact that the projection operator is non-expanding. Hence
for all p € RY,

12°(p) — p*Il = 12°(p) = PP < llp — p*II.

Using this observation and recalling the proof of Theorem 1, now we
have
2

Ft—F~ _
Zn+1 = ”pn+1 _p*llz = ”9’ <Pn + H"T4n1> — p*
n

* F*t—F~ -1 :
P, —P ta, TA"
The remainder of the proof is identical to that of the projection-free

algorithm.

<

5. Extensions
5.1. Non-stationary demand

The demand for a seller’s product may become non-stationary under
various business settings, as influenced by exogenous factors such as
macroeconomic issues and fashion trends. The aim of this subsection
is to expand the foregoing discussion by formulating and exploring a
dynamic, time-varying demand environment, where the seller confronts
a non-stationary black-box online learning problem. Under such a
setting, the static regret employed in Eq. (2) to assess the algorithm’s
performance is no longer appropriate. Specifically, instead of a single
unknown revenue function f as in the stationary demand setting, there
is now a sequence of functions {f,, ¢t = 1,2,...,T} such that at every
period ¢, the seller selects a price p, and then observes a (unbiased)
noisy feedback F,(p,) to the true function value f,(p,). This gives rise
to the so-called dynamic regret (Besbes, Gur, & Zeevi, 2015):

RTY) = sup {2f,<p,)— [Zf,m)]} ©

(f1}e”

where p; € arg maxp, f,(p) for all + € {1,2,...,T}, and 7 is the set
of admissible revenue function sequences whose precise definition is
given later in Eq. (8). The performance metric adopted in our analysis
is closely linked to the dynamic regret, which has been employed
in adversarial online convex optimization (OCO) problems (see, e.g.,
Hazan et al., 2016). In particular, the efficacy of a policy ¥ in the OCO
context is gauged through the single best action in hindsight, referred to
as OCO regret. This evaluation is defined by the following expression:

T T
R(T. W) = sup {max{Zf,(p)} ~E[X £ } @)
traer P M3 =1

which mainly differs from the dynamic regret (6) in the order of the
sum and max operators on the right-hand sides.

A key insight gleaned from Besbes et al. (2015) is that a policy
exhibiting favorable performance regarding the single best action in
hindsight within the adversarial OCO framework, as measured by
Eq. (7), can be adapted to the stochastic non-stationary environment
to yield good performance, as evaluated by Eq. (6). Such an adaptation
can be facilitated through a simple “restarting” procedure. Therefore,
for analytical tractability, we focus on presenting the algorithm’s per-
formance with respect to the OCO regret. Dynamic regret can be
readily obtained by applying the established result in the literature (see
Besbes et al., 2015, Proposition 2), thereby providing a comprehensive
understanding of the algorithm’s efficacy.

Based on the estimated gradient step (EGS) method described
by Besbes et al. (2015, Section 5.2), we introduce an SPSA-type al-
gorithm that is rate optimal in the adversarial setting. Throughout
this section, we assume the decision space & is a convex, compact,
nonempty set in R?. Denote by % the é-interior of & for any & > 0,
ie, & = {p : Bs(p) C &}, where By(p) is a ball with radius 6,
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centered at p. For any y € RY, let Py (y) = arg mingcq [|Ix — y|| signify
the projection operator on any given set X. For k € {1,2,...,d}, we
denote by e the unit vector with 1 in the kth element. The algorithm
description of SPSA-type EGS is provided as follows:

SPSA-type EGS algorithm : ¥SPSA-EGS

Step 0: Initialization
Select three decreasing sequences of positive real numbers {«,},
{h,}, and {6,}. Set the initial price p; = Z, in &% and period
counter ¢ = 0.

Step 1: Price Experimentation
Generate a realization of the Rademacher random vector ¢, €
R,

> Compute a stochastic gradient estimate @ht [H(Z) =
F(Z+h¢;) &
n, 1

> Update Z,,, = ‘%?M (Z, + aﬁh,f,(Z,)).

Step 2: Price Updating
Compute

Pyt =Zi +hip

Sett=1t+1.Ifr < T, then go to Step 1; otherwise, the algorithm
outputs all price estimates {p,} and terminates.

pSPSA-EGS resembles the classical

The price experimentation step of
one-sided SPSA (Spall, 1997), with the random perturbation vectors
selected as Rademacher vectors. This departs significantly from the
EGS algorithm presented in Besbes et al. (2015). In their work, the
perturbation vector is a single unit vector e with k € {1,2,...,d},
perturbing only one component of the price vector in each period. This
difference is analogous to the distinction between our SPSA pricing
policy and the KW pricing policy under the basic model setting.

To investigate the theoretical performance of WSPSA-EGS | we first
transform the revenue maximization problem into its equivalent min-
imization counterpart by considering the cost function g,(-) := —f,(-).
Thus, the OCO regret of ¥SPSA-EGS can be expressed as

T T
R(T, WSPAECS) = qup { E[Y &m0 - mpin{ Yam} } :
t=1 t=1

{e}e?

We focus on the class of strongly convex revenue functions ¥, and

s
define the set of admissible function sequences as:

I *
7 = {{g,,t= 1,2, T} €F, : ) sup g(p) - g (P < VT}, ®
=2 PEP
where %* is the convex hull of the minimizers, i.e., #* = {p € R? :
p= Z¢T=1 AP}, Z;T=1 A, =1, 4 > 0,V:} and V; is the variation budget
satisfying 1 < V; < T for all T > 1. We impose the following conditions
on the model:

Assumptions.

A5 (Boundness, Strongly Convexity and Smoothness) There exist
positive constants G and H such that for all p € &% and period

te{l,...,T},

(@)

le: | £ G, Vg, ()l <G.
b

HI,; < V?g(p) < Gl,,

where 1, denotes the d-dimensional identity matrix.
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A6 (Bounded Variance) There exists a positive constant p such that for
dlte{l,..,T},

sup E [(F,(p))2] <G*+ pz,
PEP
where G is defined in A5.

We note that the “universal” constant G in A5 primarily serves as
the purpose to reduce notational burden. A5(b) indicates that the func-
tion g, is H-strongly convex and G-smooth. A6 is slightly more stringent
than A2 and is expected to hold under many practical situations.

Given the above conditions, we have the following theorem, which
shows that under appropriate choices of the parameters «,, 6,, and
h,, the SPSA-type EGS algorithm achieves a regret of order ﬁ with
respect to a single best action in the adversarial setting. The analysis
is partially based on the work of Besbes et al. (2015) but employs dif-
ferent techniques in the regret analysis, which could be of independent
interest.

Theorem 2. Assume A5 and A6 hold. Let a, = Hir and 6, = h, = a,1 &
for all t € {1,2,...,T}. Then there exist positive constants C; and C,,
independent of T, such that for all T > 1,

R(T, WSPSAEGS) < VT + G,

Proof. See Appendix D for the proof. []

By leveraging established results in the literature, the result of
Theorem 3 can be carried over from the adversarial OCO setting to
the non-stationary stochastic setting. Such a rate can be shown to be
the best possible under additional mild conditions; cf. Besbes et al.
(2015, Theorem 5). In particular, the dynamic regret of the proposed
algorithm in the context of a changing demand environment is provided
in Proposition 2. As previously noted, the proof directly applies (Besbes
et al., 2015, Proposition 2) and is hence omitted.

Proposition 2. Consider the policy = defined by the restarting procedure,
as described in Besbes et al. (2015, Section 3), with the SPSA-type EGS
algorithm as a subroutine using a batch size of [(T /Vy)*/?] in the restarting
procedure. Assume that all conditions in Theorem 2 are satisfied. Then, there
exists a constant C > 0 such that for all T > 2,

R(T, 1) < CV,PT?,
5.2. Finite inventory

Our previous discussion is based on the assumption that there is no
resource constraint and an infinite inventory is available to the seller.
This assumption, however, is unlikely to be satisfied in many practical
situations such as airline ticket booking, hotel room reservation, as well
as the selling of perishable commodities. Thus, the goal of this section
is to examine how the SPSA pricing policy proposed in Section 3 could
be modified/extended to handle resource constraints. We consider the
classical network revenue management model framework proposed
by Gallego and Van Ryzin (1997). In particular, there are m types of
resources used to produce d products. Let the resource consumption
matrix be

Ay o Ay
A=l w1,
Aml Amd

which each element 4;; € N indicates the units of resource i €
{1,2,...,m} that need to be consumed to produce one unit of product
Jj € {1,2,....d}. We denote by x, = (xg,Xq,....%o4)" the initial
capacity levels of all resources at the beginning of the selling sea-
son. Under the standard model assumption, inventory replenishment
is precluded throughout the entire season. This can often be justified
in various industrial settings such as in hotels and airlines, where the
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replenishment of resources during the selling season is often deemed
excessively costly or, in some cases, infeasible. The selling season is
divided into T discrete periods, with one customer arriving in each
period. Each customer purchases at most one unit of a product from
d alternatives. The seller discontinues the sale of all products for the
remainder of the season when the inventory of at least one resource is
depleted. Let Q(p) = (O;(p), Q>(p), ..., Q,(p))" represent the purchase
probability vector under the price vector p. For each j € {1,2,...,d},
Q;(p) can be interpreted as the demand rate or market share for
product j. Thus Q(p) lies in a d-dimensional simplex, that is, Q(p) €
D, = {1 %90 x)T I X0, % < Lx; 2 0,i = 1,...,d}. At the end
of time period ¢, the seller acquires the actual sales data denoted as
Y, = VY Y )T € {0y v 2 31 S Ly € (0,1} =
1,...,d}. Note that the exact form of the demand rate function is
unknown to the seller, and only the realized demand is available.
Due to this uncertainty, Besbes and Zeevi (2012) refer to the class of
problems as “blind” network revenue management.

Denote by J*(xy,T) the optimal expected total revenue that could
be attained (while adhering to the resource constraints) if the seller had
full information about the market share function Q(:). A pricing policy
performs well if its T-period expected revenue, E Z,T:] plY,|, can be
made as close to J*(xy,T) as possible. Unfortunately, achieving this
would require solving a stochastic dynamic program, which could be
computationally intractable. So we instead develop a heuristic method
based on the following result. Specifically, consider the (deterministic)
optimization problem

maximize Tp Q(p)
P
subject to  TAQ(p) < X, ©)]
Q(p) € 9,

It has been shown (see, Gallego & Van Ryzin, 1997, Lemma 1) that
the optimal value of (9) serves as an upper bound on J*(x,,7), i.e.,

J*(x, T) < TPIQ(P,), 10)

where p, is the (unknown) optimal solution to (9). The idea is thus
to develop an SPSA-based algorithm for approximately solving (9) to
obtain a well-performing learning policy.

Due to the black-box nature of Q(-), neither the objective nor the
constraints are known in the optimization problem (9). Instead, one
can only obtain noisy responses when querying their values at a given
p- To the best of our knowledge, developing a constrained variant of
the SPSA algorithm for addressing such problems remains an open
challenge. Existing studies predominantly concentrate on situations
where the constraints are known (see, e.g., Shi & Spall, 2021). So we
propose two variants of constrained SPSA-based heuristics and conduct
numerical tests to evaluate their effectiveness in tackling blind revenue
management problems. The detailed descriptions of these heuristics are
presented below.

Projection SPSA heuristic : PSPSA-Proj.

Step O0: Initialization
Select a step-size sequence {a,}, a perturbation-size sequence
{c,}, a negative sequence {A,}, and a starting price p,. Choose
two positive integers n’ and s’ such that n’ x s’ < T.
Step 1: Demand Rate Function Regression
Select s’ sample points in the domain of prices, denoted as
(51,85, ... 84}
/
2
D:, 4 )! for each price S; by considering its occurrence over
n’ time periods:

> Calculate the empirical demand rate D] = (D], D

, #times the jth product is selected under price S,
D =
ij n ’

i=12,...d.

> Apply a regression model to fit a regression function Q(-) :
R? — RY, train it with independent variables {S1,95,,...,
Sy} and dependent variables {D’, D;, ey D; B

European Journal of Operational Research xxx (xxxx) xxx

Set period counter = n’ X s’ and stage counter n = 1.
Step 2: Price Experimentation
Generate a realization of the random vector 4,.

> Sett = ¢+ 1. Put p; = p, + c,4,, obtain a demand
observation Y,+ and a realized revenue R*, where RT =

(f):')TY;’~
> Set t = t+ 1. Put p; = p, — c,4,, obtain a demand
observation Y; and a realized revenue R~, where R~ =
@Y
Step 3: Price Updating

Compute

_ t—R

Puy1 =P, ta, 26,, An ’

Put1 =Po,,, Pur1);

where the projection sub-problem used to estimate &g (p,) is

defined as
minimize  ||p — §,||?
P
subject to  TAQ(p) —x, < h,, an
Qp) €2,

Set n=n+1.1Ifr < T, then go to Step 2; otherwise, the algorithm
outputs price estimates for all periods and terminates.

To utilize the constrained SPSA method effectively, it is imperative
to have knowledge of the constraints. In Step 1, a regression-based
method is used to fit the empirical data in order to provide an ap-
proximation of Q. The subsequent steps 2 and 3 remain essentially
unchanged compared to the SPSA pricing policy ¥SPSA in scenarios
without inventory constraints. A main difference lies in the use of
a projection operator, which is implemented in (11) to ensure the
feasibility of the estimated price vectors. Note that the variable 4, is
incorporated in (11) to account for the approximation error of Q. Also,
it helps to project an iterate onto the strict interior of the constraint
TAQ(p) < Xg, so that the perturbed price vectors pf = p, + ¢,4, are
well-defined. This could be achieved, for example, by setting s, =
—ZCn sup, ”An Il

Penalty SPSA heuristic : SPSA-Pena.

Step 0: Initialization
Select a step-size sequence {a,}, a perturbation-size sequence
{c,}, a positive sequence {r,}, a bounded vector sequence {4,}
in R?, and a starting price p;. Choose two positive integers n’
and s’ such that n’ x s’ < T.

Step 1-2: Same as SPSA-Proj.

Step 3: Price Updating
Compute

R*— R~ —1

Pu+1 =Pnt+a, TA" - anrnvﬂn(pn)’
n

where 1, () is a penalty function for all #. This is defined as

() = % jﬁ; { [max {0, Anj+ Ty (TA]TQ(') - xo,j) }]2 ~ } ’

where 4, ; is the jth component of 4, and 4; is the jth row of
the resource consumption matrix A.

Setn =n+1.1If t < T, then go to Step 2; otherwise, the algorithm
outputs price estimates for all periods and terminates.

The primary distinction between WSPSA—Pena. anq SPSA-Proj. he.
comes evident in the price updating step. Following the approach
outlined in Wang and Spall (2008), the basic concept of the penalty
SPSA involves transforming the originally constrained optimization
problem (9) into an unconstrained one by introducing a sequence of
augmented Lagrangian functions p,. During the price updating step, we
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Fig. 1. Histogram of relative errors with a, y € {1,2,...,10}.

use the gradient of the penalty function p,. However, when applying
the simultaneous perturbation method to derive gradient estimates of
n,, an additional bias is typically introduced. This bias arises from the
limitation that we can only measure the noisy value of Q(-) but not the
penalty function itself. As a result, we opt to fit a demand function with
analytical expressions in Step 1, facilitating the derivation of the closed-
form gradient of the penalty function. The numerical performance of
these heuristics are presented in the next section.

6. Numerical experiments

This section presents numerical experiments that showcase the prac-
tical effectiveness of our pricing policy ¥SPSA. In Section 6.1, we
empirically illustrate that the regret indeed grows at a rate of VT and
the price estimate converges to the optimal price for the linear demand
model. In Section 6.2, we test the empirical performance of ¥5PSA and
its enhanced version on different (possibly nonlinear) demand models.
In Section 6.3 we compare the performance of our algorithms with
that of ¥XW, the multi-product nonparametric policy suggested in Hong
et al. (2020), under both low-dimensional and high-dimensional set-
tings. We would like to note that our work does not aim to propose
an algorithm that outperforms all existing algorithms. Rather, our
goal is to develop an algorithm that combines a desirable theoretical
convergence rate with effective facilitation of practical applications,
even in high-dimensional problems. Finally, we conduct numerical
experiments on the non-stationary demand setting and finite-inventory
setting proposed in Section 5.

6.1. Illustration of the rate optimality of ¥SPSA

We follow the same multi-product linear demand model used in Ke-
skin and Zeevi (2014) and Hong et al. (2020). The random demand
vector in period ¢ is expressed as

D(p,) =a+Bp, +¢, (12)

where a € R¢ is an unknown vector with strictly positive components,
B = [b;;] is an unknown d X d matrix with strictly negative diagonal
elements, and |b;| > ¥, 1b;| for all i € {1,...,d}, and ¢, € R? is
a random demand vector whose components are i.i.d. normal random
variables with mean zero and variance ¢?. Then the unique optimal
price is given by p* = —(B + B")"'a as a result of the first-order
optimality condition (see Keskin & Zeevi, 2014).

We consider a simple two-product problem (i.e., d = 2). All model
parameters are set according to Hong et al. (2020), in which a =

(1L.0.7), B = [—0.5 0.05

) . .
0.05 _0.3], and ¢* = 0.01. Note that in this case, we

have set B as a symmetric matrix, signifying that all products share
a symmetric sensitivity to the prices of other products. However, in
general, B may take on an asymmetric form. The optimal price is
given by p* ~ (1.237,1.373)". In our algorithm, we set the initial price
po = 0.75,2.1)T and @, = 3n~! and ¢, = n~'/*. We remark that
while Corollary 1 provides the forms of a, and c,, determining the
constant factors (i.e., « and y) may require a trial-and-error approach.
Similar to the majority of SA algorithms, the practical efficacy of the
algorithm heavily relies on judicious selections of the iteration step size
and perturbation size. A systematic approach involves initial testing of
multiple constants over a wide range, establishing a reasonable guess
on the parameter range, and subsequently fine-tuning the constants.
In this context, we present our pilot runs with a, y € {1,2,...,10}—
resulting in 100 parameter combinations. For each combination, the
average price over 100 replications upon algorithm termination is
recorded, and the relative error between the estimated price and the
optimal price is calculated. The distribution of the 100 relative errors
is depicted in Fig. 1, which shows promising performance under such
a parameter range.

Fig. 2 plots the average cumulative regret, along with its 95%
confidence interval (CI) over 100 simulation replications, as a function
of \/7, where the maximum value of T is 3000. The results presented
in Fig. 2 confirm that, except for values of T that are very small
(approximately T < 25 in our experiment), the regret of ¥SPA increases
linearly with ﬁ This observation empirically supports the theoretical
growth rate of the regret bound established in Corollary 1. To further
assess the applicability of Corollary 1, we have computed the values of
C, and G, in Appendix E. Our calculation indicates that the theoretical
values of €, and C, (see Eq. (E.1)) are significantly larger than those
implied in Fig. 2. This discrepancy suggests that the constants given
in Corollary 1 might be overly conservative, leaving room for further
refinement and improvement. However, addressing this issue might
require completely different proof techniques, which is beyond the
scope of this paper. Additionally, Fig. 3 shows sample paths of the
two sequences of the product prices generated at successive iterations
(averaged over 100 replications), which clearly indicate the algorithm’s
fast convergent behavior.

In Appendix F, the performance of the algorithm is further tested on
a 50-dimensional version of the example. Test results suggest that the
algorithm scales well with problem dimension and has the potential to
be a useful tool for solving high-dimensional practical pricing problems.

6.2. PSPSA and €WSPSA ynder nonlinear demand models

Motivated by Besbes and Zeevi (2015) and Hong et al. (2020), we
proceed to investigate the empirical performance of ¥5PSA when the
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Fig. 3. Sample paths of the averaged prices over 100 simulation replications of the SPSA pricing policy.

underlying demand curve deviates from linearity. With a slight abuse of
notation, let {¢,} be i.i.d. normal random variables with zero mean and
variance ¢2. We consider the following three one-dimensional demand
models:

« Linear*: D(p,) = max{a + bp,, 0} + ¢,, where a = 1, b = 0.5, and
¢2 = 0.0025. The optimal price is p* = 1. Let initial price p, = 0.4,
a, =3n"', and ¢, = n~!/* for the SPSA pricing policy.
Exponential: D(p,) = exp(a + bp,) + ¢;, where a = 1, b = —0.3, and
¢2 = 0.0025. The optimal price is p* = 3. Let initial price p, = 0.7,
a, =0.55n"1, and ¢, = n~!/* for the SPSA pricing policy.

Logit: D(p,) = exp(a + bp,)/(1 + exp(a + bp,)) + ¢;,, where a = 1,
b = —0.3, and ¢? = 0.0025. The optimal price is p* ~ 5.224. Let
initial price p, = 4.5, a, = 10n~!, and ¢, = n~'/* for the SPSA
pricing policy.

The Linear* model is basically equivalent to the linear model Eq. (12),
with the difference being that it ensures the expected demand to be
nonnegative. However, such a requirement is not always essential from
a mathematical perspective. The Exponential and Logit models deviate
significantly from the linear model considered in Section 6.1. The
performance of Y5754 including the accumulated regret produced and
its convergence behavior for each of the above demand models, is
reported in Appendix G.

We have also implemented the €¥SPSA, the enhanced version of
SPSA_ The projection operation in our experiments is implemented by
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setting the low bound on the price to 0 and the upper bound to twice the
maximum value of the optimal price vector’s components. In addition,
when simulating F* and F~, the same random seed is used at each
step of the algorithm. The experiment is performed under the same
parameter setting as the original algorithm ¥5PSA, We report the mean
prices (with the corresponding standard errors in parentheses) obtained
upon the algorithm’s termination under four different demand models
in Table G.1; see Appendix G. We have tested three different variance
cases for both algorithms to investigate the effect of the variance on al-
gorithm performance. The numerical results indicate that the enhanced
algorithm surpasses its predecessor in both estimation accuracy and
statistical efficiency in most instances, especially under high variance
scenarios. For a theoretical analysis on the effect of noise variance on
finite-difference-based stochastic approximation algorithms, we refer
the reader to the recent work by Hu and Fu (2024).

6.3. Comparison with the KW pricing policy

In the section, we carry out simulation experiments to compare the
performance of our proposed ¥SP5A and €¥SPSA algorithms with that
of YXW_ First, we consider the low-dimensional example described in
Section 6.1 and use the same parameter setting as presented in that
section. Then, we evaluate the three algorithms on a high-dimensional
problem with a dimension of 200 and a total of 50 000 periods. Model
parameters in the high-dimensional problem are randomly generated,
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Fig. 5. Average cumulative regret of three different pricing policies on the 200-dimensional problem.

in which each component of a is uniformly selected from [0, 10], B is
randomly generated and satisfy the condition that diagonal elements
are strictly negative with |b;| > Z#i |b;| for all i € {1,...,d}, and
a, = 0.02n~" and ¢, = 0.01n~!/4. The cumulative regrets averaged over
100 replications in the two experiments are plotted in Fig. 4 and Fig. 5,
respectively.

From the figures, it can be observed that the KW pricing policy
exhibits superior performance in low dimensions, but its performance
becomes less competitive compared to our policies in high dimensions.
Additionally, in both cases, the KW algorithm has a smaller regret
value when the number of stages is relatively small. These outcomes
are as expected, because the KW pricing policy alters one component
of the price vector, i.e., the price of a single product, at each stage
while holding all other components constant. Since all components of
the price vector are fully explored deterministically, the constructed
(KW-based) stochastic gradient estimator has a lower bias than that of
simultaneous perturbation (Kushner & Yin, 2003). However, the KW
pricing policy requires d + 1 periods to carry out one price updating
step, leading to fewer updates within the fixed total number of periods
allowed in high-dimensional problems. In contrast, the SPSA pricing
policy requires only two periods to experiment with prices regardless of
problem dimension, thereby ensuring a large number of price updates
to the optimal price.

11

Remark 3. A close examination of the pricing policies employed by
KW and SPSA reveals the respective complexities of both algorithms.
In particular, for a given ¢ > 0, it can be seen (theorem 1 and
appendix in Hong et al., 2020) that the number of periods (i.e., function
evaluations) required by KW to achieve an MSE that falls below e is
of order O(d%)/€?. In contrast, according to Theorem 1 and Appendix
A, 0(d?)/€? periods is sufficient for our SPSA policy to achieve the
same level of accuracy, provided that the parameters a, = an~! and

¢, = yn~'/* are set with some positive constants « and y.

Further, based on the findings illustrated in Figs. 4 and 5, which
demonstrate the superior performance of the SPSA algorithm over the
KW algorithm, especially under conditions involving a linear demand
function and a substantial number of periods, we proceed to evaluate
the efficacy of both algorithms in handling nonlinear demand scenar-
ios, as elaborated in Section 6.2, while considering a relatively small
number of periods. All parameters are set as the same as that of Hong
et al. (2020). Fig. 6 presents the averaged cumulative regrets of the
three policies under Linear®, Exponential and Logit demand models,
respectively, over 100 independent replications for 7 = 1,2,...,200.
From the figure, it is clear that the KW pricing policy outperforms
our approach when the underlying model is approximately linear.
Nevertheless, in scenarios characterized by nonlinear demand models,
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our policy’s performance is either comparable or superior to that of
the KW pricing policy, which indicates that our policies may offer
advantages when employed in dynamic pricing contexts with nonlinear
demand models.

Finally, we conduct a numerical experiment to study the impact of
problem dimension on the regret by running the three algorithms on a
set of test problems with dimensions varying from 2 to 402, where the
total number of periods is fixed at 3000. This allows us to assess the
terminal regret exhibited by the three algorithms across varying dimen-
sions. For each dimension, model parameters are randomly generated,
with each component of a being uniformly selected from [0,0.01]. The
matrix B is also randomly generated and satisfies the condition that
diagonal elements are strictly negative with |b;| > X, 1b;l, b; €
[0,0.01] for all j #i € {1,...,d}, and ¢? = 0.0025. The input parameters
are set as a, = 0.2n~' and ¢, = 0.1n~!/. Fig. 7 shows the cumulative
regrets generated by the three algorithms, each averaged over 100
replications, as functions of problem dimensions. The figure clearly
indicates that the regret values of both our algorithms and the KW
algorithm demonstrate a tendency to increase polynomially with the
dimension d. This observation is consistent with the theoretical findings
derived from Corollary 1, as presented in Section 4.
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6.4. Numerical experiment on the extensions

First, we illustrate the dynamic regret by measuring the average
cumulative regret incurred under various patterns of changing de-
mands. Following the numerical example used in Besbes et al. (2015),
we construct a simple two-dimensional non-stationary environment. In
particular, under any price vector p = (p;,p,), the expected revenue
function at period 1 € {1,2,...,T} is expressed as f,(p) = b, p? + byp3 +
ay,py+ay,p,. This is a quadratic function with its optimal solution equal
to (_Zub‘l”, _2‘;2"). Such a revenue function represents a linear demand
function with no correlations between different products. Note that a;,
and a,, are time-varying. For every i € (1,2}, we consider the following
three types of variation patterns of g, ,, named as shock, decay, and
linear:

a.rhock — 1 lf t< T/4’ decay - 1 lf t< T/4,
it 0 otherwise. it e~ 10e=T/H/T otherwise.
) 1 ift <T/4,
aﬁl[near _ r et
= otherwise.

It can be verified that the variation can be bounded by the budget V; =
O(ﬁ ) in all the considered patterns. In our numerical experiment,
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we set b —0.7. Recall from Theorem 2, we set

—-0.5 and b,
2 and 5, = h, = aq* where H = max{-2b,-2b,} = 14.
The noise at every period is set to be independent normal random
variables with zero mean and variance equal to 0.3. We assume the
price vector lies in [0, 10] x [0,10]. Let T 1000. For each of the
considered variation patterns, we simulated the proposed policy with
the SPSA-type EGS algorithm as a subroutine using a batch size of T''/3
in the restarting procedure, replicating each instance 100 times and
calculating the average regret. The results are reported as in Fig. 8.
One can observe that a 5/6-degree function fits well with the regrets,
which is consistent with the theoretical bounds in Proposition 2.

Second, to investigate the efficacy of our constrained SPSA-based
heuristics, we consider the example used in Chen and Shi (2023, section
6) where the seller sells two products (d = 2) with three resources (m =
3). The resource consumption matrix A is defined by its first, second,
and third rows as (1, 1), (3, 1), and (0, 5). The purchase probabilities for
each customer follow a multinomial logit model with a base utility
vector of (2,2). Specifically, given any price vector p = (p;,p,)7, the
customer either selects product j € {1,2} with probability exp(p;)/ (1 +
exp(p;) +exp(p,)) or chooses not to purchase anything with probability
1/(1 + exp(p;) + exp(p,)). The feasible region is set to p; € [0.5,5]
and p, € [0.5,5]. Note that we examine a sequence of “increasing”
problems, which is standard for evaluating the algorithm’s performance
in finite inventory settings (e.g., Chen & Gallego, 2022; Chen, Jasin,
& Duenyas, 2019; Chen & Shi, 2023). Under such a context, both the
initial resource capacity and the demand rate are scaled by a factor
k > 0. Since we consider the case where there is exactly one customer
arrival in every discrete time period, scaling the length of the selling
season is equivalent to scaling the demand rate. In our experiments, the
initial inventories are set to (1.57,1.2T,3.07).

For the projection SPSA, we employ two regression techniques:
linear regression and Gaussian process regression (Rasmussen et al.,
2006). In the case of penalty SPSA, we examine two types of penalty
functions—quadratic penalty function and absolute value penalty func-
tion. Here, we simply let 4, be a zero vector (cf. Wang & Spall,
2008, Section 4). The utilization of linear regression demand in penalty
SPSA is motivated by the linear nature of Q) concerning p. Hence we
can derive the gradient of the penalty function analytically. In both
heuristics, we fix a, and ¢, as 3n~0°! /T and 2n=010!] respectively. In
Step 1, we employ a set of 128 low-discrepancy Sobol points in the two-
dimensional space (see, e.g., Glasserman, 2004, Chapter 5), i.e., s’
128. We allocate T'/3 periods for regression model fitting, and set
n' =T/(3s’). In Step 2, A, is chosen as the 2-dimensional Rademacher
vector. At Step 3 of WSPSA=Proi. the sub-problem (11) transforms into
a quadratic programming problem when Q() is linear, which can be

a;
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efficiently solved. On the other hand, if Q(-) is a (possibly non-convex)
Gaussian process, we employ the sequential quadratic programming
(SQP) approach to estimate the optimal solution to (11). It is worth
noting that SQP can be relatively easily implemented using the built-in
solvers in scientific programming languages, such as the SciPy library in
Python (e.g., scipy.optimize.minimize (method=‘SLSQP’)).
Regarding Step 3 of YSPSA-Pena. following Wang and Spall (2008), we
set r, = 10n%! for the quadratic penalty function and a constant penalty
of r, = 10 for the absolute value penalty function.

We gauge the performance of each heuristic by calculating the
percentage of cumulative revenue generated compared to the “opti-
mal revenue”, averaged over 30 replications; see Fig. 9. By “optimal
revenue”, we refer to the upper bound on optimal revenue where
the retailer knows the demand-price function prior to the selling
season, representing the optimal value of (9). In light of Eq. (10),
the percentage compared to the true optimal revenue is at least as
high as the numbers shown in Fig. 9. The figure illustrates that the
projection SPSA with linear regression shows only marginal growth
in the number of periods. This phenomenon is believed to stem from
the model misspecification inherent in linear demand models. Uti-
lizing a nonlinear Gaussian process to model the demand leads to
significant improvements in algorithmic performance. In contrast, the
penalty SPSA exhibits comparable efficacy under the two penalty func-
tions, surpassing the projection SPSA with linear regression in both
instances. Nevertheless, it should be noted that penalty SPSA intro-
duces a sequence of penalty parameters and necessitates additional
hyperparameter tuning work.

7. Conclusion

We have introduced a novel nonparametric gradient-based online
algorithm called SPSA pricing policy for dynamic pricing with demand
learning. This algorithm addresses the challenges of solving multi-
product problems with noisy black-box demand/revenue functions.
In the context of nonparametric multi-product settings, our proposed
pricing policy makes a significant methodological contribution to the
literature on dynamic pricing with demand learning. The SPSA pricing
policy is especially promising for high-dimensional problems, as it only
requires two price experimentations per iterative update. In comparison
to methods that rely on component-wise finite differences (such as
the KW pricing policy), our algorithm has the potential to achieve
substantial computational savings. Incorporating enhancements such as
projection and CRN may further improve the numerical stability of the
algorithm, reduce the variance in the gradient estimates, and therefore
lead to its enhanced empirical performance in practical applications.
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Fig. 9. Performance comparison of three constrained SPSA-based dynamic pricing heuristics.

Under the assumption of concavity and smoothness of the revenue
function and other appropriate conditions, we have analyzed the MSE
of the SPSA pricing policy and shown its capability to achieve the op-
timal order of regret 0(\/?). Additionally, through theoretical analysis
and numerical experiments, we have further investigated the perfor-
mance of the SPSA method under non-stationary and limited inventory
scenarios. Simulation experiments indicate that our algorithm performs
well, especially on high-dimensional problems, in terms of the total
time periods required to achieve reasonable performance.

Throughout the paper, the demand function in each period is
solely affected by the current advertised price (with stochastic demand
shocks). However, it is important to acknowledge that in real-world
situations, demand may be influenced not only by the present price but
also by past pricing instances. Under such a scenario, demands across
various periods are in general correlated. The corresponding analysis
could be more challenging than those addressed in our current work.
For instance, when considering the reference price effect (den Boer
& Keskin, 2022), demand becomes contingent on the entire historical
pricing trajectory. Exploring this aspect could be an interesting avenue.
Another potential future extension of this study will be to consider
the setting involving multiple types of consumers and investigate
personalized dynamic pricing strategies tailored to different consumer
segments. Lastly, it will also be interesting to explore whether the
regularity conditions on the unknown demand/revenue functions could
be relaxed by considering more general multi-modal revenue functions;
cf., e.g., Wang, Chen, and Simchi-Levi (2021).
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