

Effectiveness of the Ike Dike in Mitigating Coastal Flood Risk under Multiple Climate and Sea Level Rise Projections

Seokmin Son¹ | Chaoran Xu^{2,3} | Meri Davlasheridze⁴ | Ashley D. Ross⁴ | Jeremy D. Bricker^{1,5}

* Address correspondence to Jeremy D. Bricker, Department of Civil and Environmental Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, MI 48109, USA.
Email: jeremydb@umich.edu

¹ Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI 48109, USA.

² National Engineering Research Center of Port Hydraulic Construction Technology, Tianjin Research Institute for Water Transport Engineering, M.O.T., Tianjin 300456, China

³ State Key Laboratory of Estuarine and Coastal Research, School of Marine Sciences, East China Normal University, Shanghai 200241, China

⁴ Department of Marine and Coastal Environmental Science, Texas A&M University at Galveston, Galveston, TX 77553, USA.

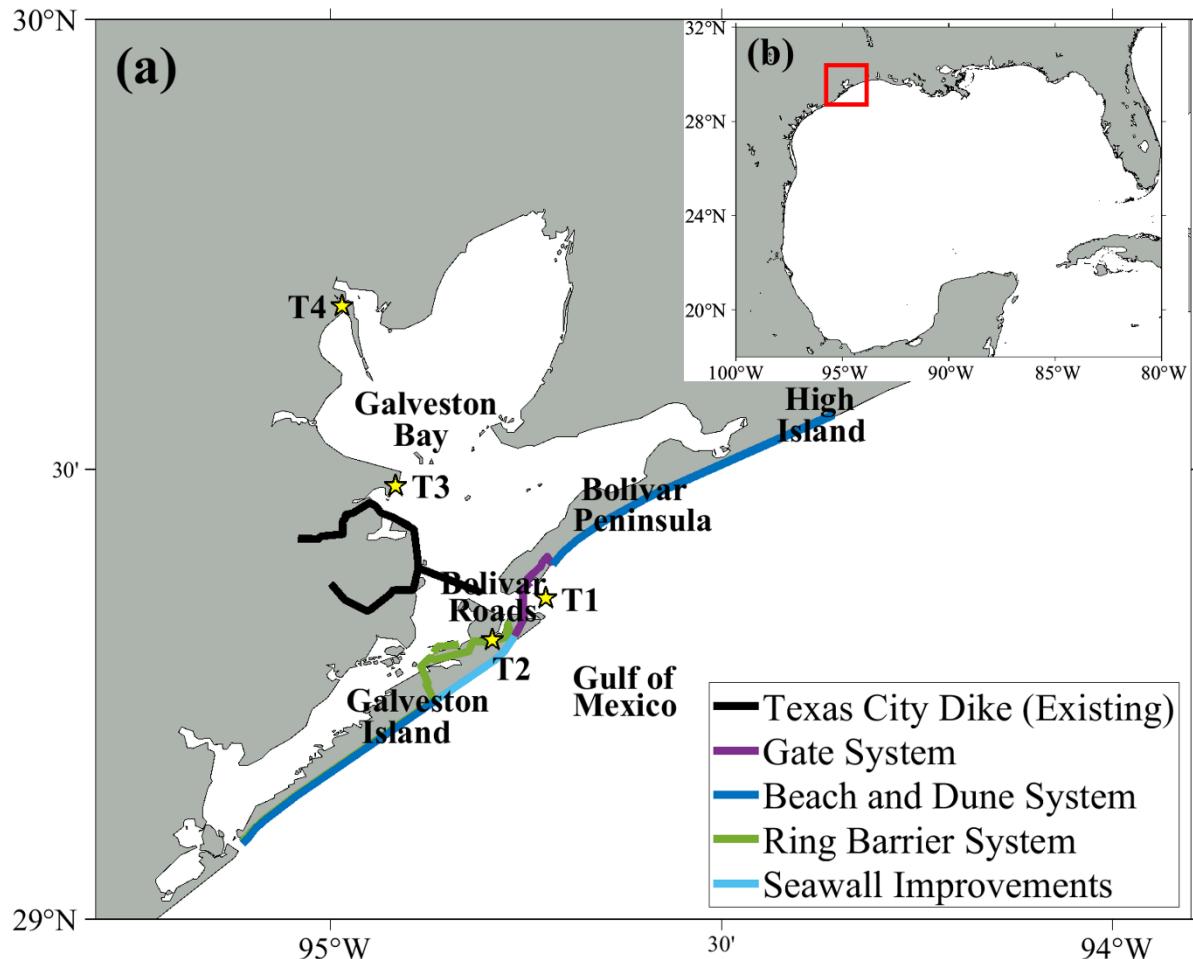
⁵ Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, The Netherlands

ABSTRACT

In the aftermath of Hurricane Ike in 2008 in the U.S., the ‘Ike Dike’ was proposed as a coastal barrier system, featuring flood gates, to protect the Houston-Galveston area (HGA) from future storm surges. Given its substantial costs, the feasibility and effectiveness of the Ike Dike have been subjects of investigation. In this study, we evaluated these aspects under both present and future climate conditions by simulating storm surges using a set of models. Delft3D Flexible Mesh suite was utilized to simulate hydrodynamic and wave motions driven by hurricanes, with wind and pressure fields spatialized by the Holland model. The models were validated against data from Hurricane Ike and were used to simulate synthetic hurricane tracks downscaled from several general circulation models and based on different sea level rise projections, both with and without the Ike Dike. Flood maps for each simulation were generated, and probabilistic flood depths for specific annual exceedance probabilities were predicted using annual maxima flood maps. Building damage curves were applied to residential properties in the HGA to calculate flood damage for each exceedance probability, resulting in estimates of expected annual damage as a measure of quantified flood risk. Our findings indicate that the Ike Dike significantly mitigates storm surge risk in the HGA, demonstrating its feasibility and effectiveness. We also found that the flood risk estimates are sensitive to hurricane intensity, the choice of damage curve, and the properties included in the analysis, suggesting that careful consideration is needed in future studies.

KEY WORDS: Ike Dike; flood risk; storm surge simulation; probabilistic flood depth; expected annual damage

1. INTRODUCTION

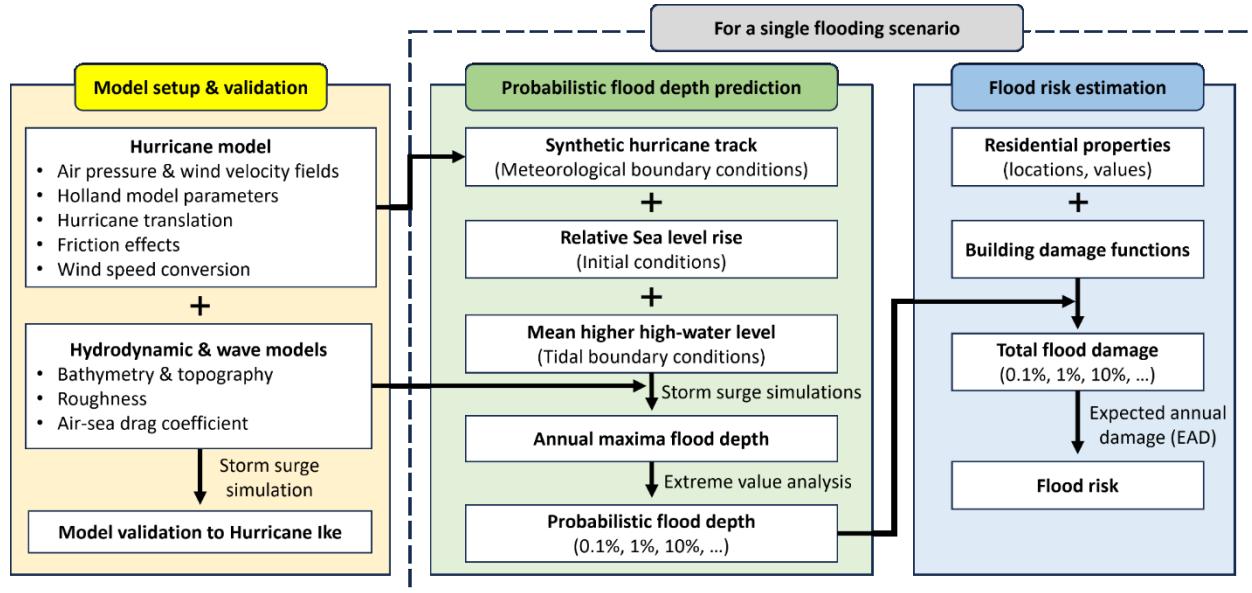

2 The Houston-Galveston Area (HGA), located in southeast Texas along the upper Gulf Coast
3 (Figure 1), has been severely threatened by storm surges generated by hurricanes originating in
4 the Atlantic Ocean and intensifying as they cross the Gulf of Mexico. One of the most
5 devastating events was in 1900 when a major hurricane struck Galveston Island with a 15 ft
6 storm surge, resulting in approximately 6000 fatalities – the deadliest hurricane in U.S. history
7 (Weems, 1952). This catastrophe led to the construction of the Galveston Seawall, a 17 ft high
8 (relative to mean low water) barrier along the eastern coastline of Galveston Island (USACE,
9 1981). This seawall significantly reduced hurricane damage on Galveston Island for many years.
10 However, in 2008, Hurricane Ike brought a 10 – 15 ft (NAVD88) storm surge to Galveston Island
11 and Harris County, Texas, and a 15 – 20 ft (NAVD88) surge to the Bolivar Peninsula and
12 Chambers County, Texas (Berg, 2009). The resulting damage was extensive, estimated as USD
13 30 billion (NHC, 2018). Hurricane Ike serves as a warning of the potential for future catastrophic
14 storm surges. Research indicates that global warming is likely to increase hurricane intensities
15 (Emanuel, 2005; Knutson & Tuleya, 2004; Webster, Holland, Curry, & Chang, 2005) and
16 contribute to sea level rise (SLR), which further raises the vulnerability of coastal regions to
17 storm surge flooding (Frazier, Wood, Yarnal, & Bauer, 2010; Kleinosky, Yarnal, & Fisher, 2007;
18 Tebaldi, Strauss, & Zervas, 2012). Furthermore, future economic growth is expected to amplify
19 hurricane damage costs (Geiger, Frieler, & Levermann, 2016; Mendelsohn, Emanuel,
20 Chonabayashi, & Bakkensen, 2012), while population growth in the HGA will make evacuations
21 increasingly challenging (Merrell, Reynolds, Cardenas, Gunn, & Hufton, 2011).

22 In response to these threats, there has been a concerted push to implement long-term safety
23 measures to protect the HGA from future storm surges, particularly those that would repeat the
24 destructive impact of Hurricane Ike. Texas A&M University Galveston proposed the ‘Ike Dike’
25 concept – a coastal barrier system that would extend the Galveston Seawall to the west of
26 Galveston Island, construct a barrier along the Bolivar Peninsula coastline, and install floodgates
27 at the mouth of Galveston Bay (Merrell et al., 2011). Jonkman et al. (2015) proposed a similar
28 design for a coastal spine system, which includes land barriers and a seawall along the coastlines
29 of Galveston Island and the Bolivar Peninsula, as well as articulated storm surge barriers for
30 navigation and environmental flows between the island and the peninsula. Jackson State

31 University (JSU) investigated different alignments of the Ike Dike by simulating storm surges
32 and found that all alignments significantly reduced surge levels (Ebersole et al., 2018). The U.S.
33 Army Corps of Engineers (USACE) Galveston District proposed comprehensive plans for the
34 protection and restoration of the Texas coast (USACE & GLO, 2021a). These plans include the
35 Galveston Bay Storm Surge Barrier System, which extends from the west of Galveston Island to
36 High Island, consisting of a gate system, beach and dune systems, a ring barrier system, and
37 Galveston Seawall improvements. The gate system is comprised of different types of gates and
38 walls across Bolivar Roads with a crest level of 21.5 ft (NAVD88), and the beach and dune
39 system is designed as a dual dune system with a 14 ft (NAVD88) landward dune and a 12 ft
40 (NAVD88) seaward dune. The ring barrier system encompasses northeast Galveston Island with
41 a crest level of 14 ft (NAVD88), and improvements of the existing seawall along the Galveston
42 coastline raise its crest level to 21 ft (NAVD88). For these USACE's plans, a USD 31 billion bill
43 was authorized by the U.S. Congress, marking the largest civil undertaking by the USACE
44 (Douglas, 2022). The schematic design of the Ike Dike is illustrated in Figure 1.

45 The Ike Dike project has faced scrutiny regarding its feasibility. Economic assessments
46 indicate that the benefits of the coastal spine outweigh its costs, supporting the practicability of
47 the barrier system for mitigating storm surge risks (Davlasherdze et al., 2019; Davlasherdze,
48 Fan, Highfield, & Liang, 2021). Additionally, policies advocating for the construction of
49 seawalls and levees or the rehabilitation of dunes have garnered strong support from residents of
50 the HGA, particularly those who have experienced coastal flood damages or perceive higher
51 flood risks (Ross & Atoba, 2022). However, these studies assumed current climate conditions
52 and sea level, so further research is necessary to determine whether the Ike Dike would remain
53 effective under future climate and sea level scenarios. Concerns have also been raised about the
54 effectiveness of the Ike Dike in protecting the region against major hurricanes (Bittle, 2023;
55 Keller, 2024; Peters, 2024). Critics argue that the coastal spine may not effectively withstand
56 Category 4 or 5 hurricanes (Simpson, 1974), which can produce storm surges of 25 ft (NAVD88)
57 or higher (Blackburn, 2019). Also, the parallel dune system with heights of 14 and 12 ft
58 (NAVD88) may be inadequate to protect Galveston Island and the Bolivar Peninsula from severe
59 hurricanes (Merrell, 2021). The USACE's design includes a shorter western barrier of within the
60 dune system, compared to the earlier barrier designs proposed by Jonkman et al. (2015) and JSU,

61 to allow water flow into the bay. This modification, however, could allow fore-runner surge in
62 Galveston Bay and prevent the bay from being sealed at low tide (Merrell, 2021).



63 **Figure 1.** Schematic illustration of the study area: (a) HGA with the recommended plan for the Galveston
64 Bay Storm Surge Barrier System, the yellow stars are NOAA tide stations; (b) Gulf of Mexico, the red
65 box indicates the HGA
66

67 In this study, we evaluate the long-term feasibility and effectiveness of the proposed Ike
68 Dike under present and end-of-century climate scenarios by quantifying coastal flood risk in the
69 HGA. The coastal flood risk associated with storm surges strongly depends on storm intensity
70 and SLR (Woodruff, Irish, & Camargo, 2013). To account for different scenarios, we conduct
71 numerical simulations under several sets of synthetic hurricane tracks, both without and with the
72 Ike Dike, for present and future climate scenarios, and different SLR projections in storm surge
73 models. Prior to the simulations, a hydrodynamic model, a wave model, and a hurricane wind
74 and pressure model are validated using data from Hurricane Ike. The simulated flood depths are

75 used to predict probabilistic flood depths for specific annual exceedance probabilities. A
 76 common method to relate flood damage to residential buildings to flood depth is through a
 77 damage function (Suppasri et al., 2013). By applying several damage functions to residential
 78 properties in the HGA, we estimate flood risk under different flooding scenarios to evaluate the
 79 effectiveness of the Ike Dike. Furthermore, since our study takes into account several input
 80 parameters, including climate models, SLR, and damage functions, we evaluate the robustness of
 81 storm surge risk and the performance of the Ike Dike with respect to these parameters. This
 82 approach aims to identify the significant factors to be considered in future coastal flood risk
 83 studies. Figure 2 illustrates the flowchart of the study that highlights the specific objectives
 84 mentioned above.

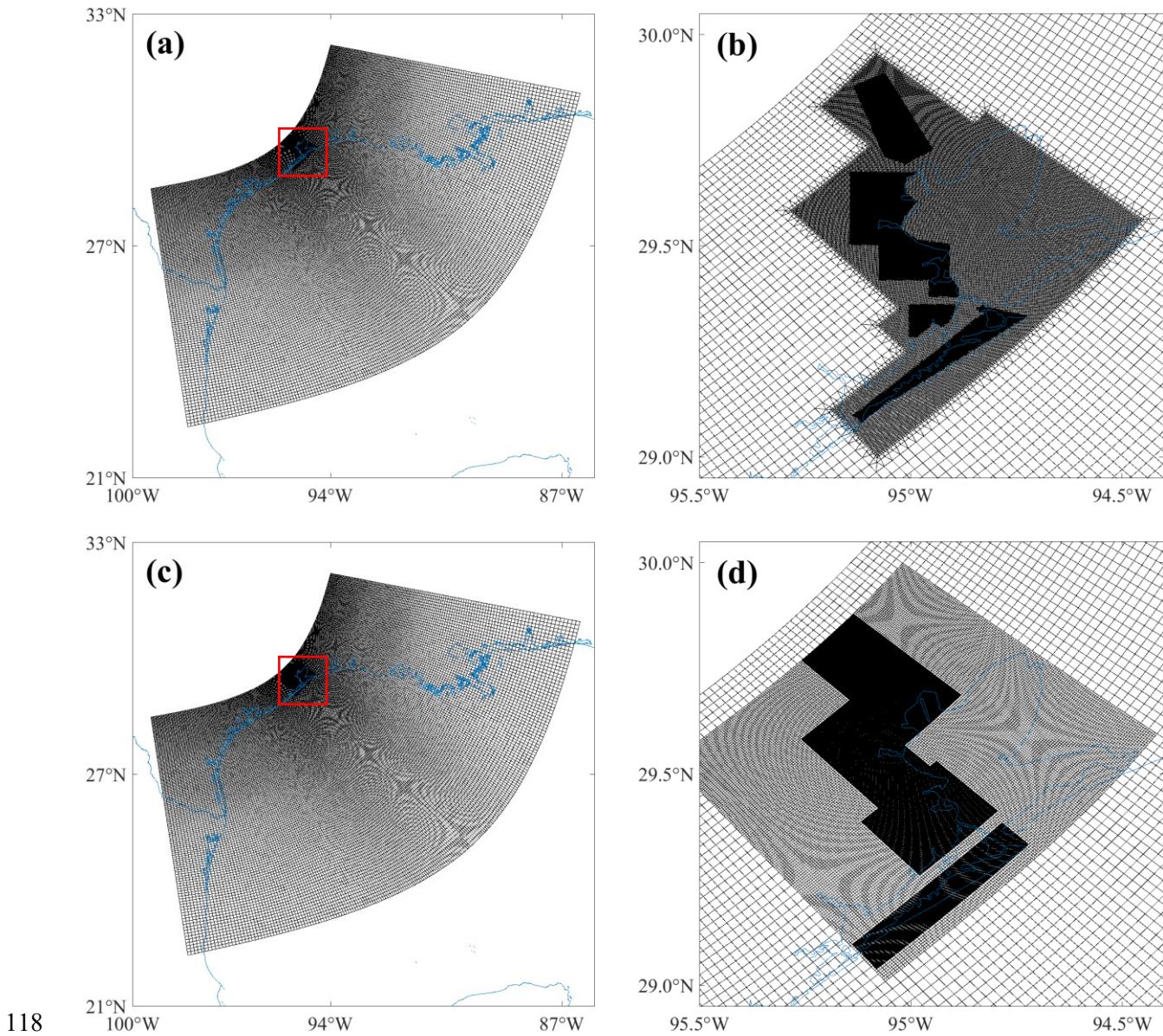
85 The remainder of the paper is structured as follows. Section 2 details the materials and
 86 methods used in this study, and Section 3 describes the results of the probabilistic flood depth
 87 predictions and flood risk estimations. These findings are discussed in Section 4, and the overall
 88 study is summarized and concluded in Section 5.

89

90 **Figure 2.** Flowchart of the study

91

92 **2. MATERIALS AND METHODS**


93 **2.1. Model Setup and Validation**

94 *2.1.1. Hydrodynamic and wave model domains and setup*

95 For conducting our storm surge simulations, the Delft3D Flexible Mesh (D-Flow FM) suite
96 was selected (Deltares, 2024a). D-Flow FM solves the unsteady shallow water equations for an
97 incompressible fluid over an unstructured grid, which allows for flexible and detailed resolution
98 of complex geometries. To capture the interactions between wave dynamics and current flows,
99 D-Flow FM is integrated with the third-generation spectral wave model Simulating Waves
100 Nearshore (SWAN) (Deltares, 2024b). SWAN works on a structured grid and solves the spectral
101 action balance equation responsible for the generation, propagation, and dissipation of waves.

102 The domain of the model encompasses the northwest region of the Gulf of Mexico,
103 geographically ranging from 22°N to 32°N and from 100°W to 86°W. Within the flow model,
104 the grid consists of approximately 280,000 cells of varying resolutions to accurately capture
105 different scale features. The grid resolution is finer in the HGA with cells sized 60 m × 60 m,
106 whereas further offshore, the resolution is coarser with cell sizes of 5 km × 10 km. The grid of the
107 wave model is distinct from that of the flow model and consists of multiple nested grids. The
108 outermost grid covers the full extent of the modeling domain, matching the flow model's spatial
109 reach. Nested within this, the intermediate nested grid covers the HGA with a resolution of 500
110 m × 500 m, and the smallest grid focuses on the coastline and Galveston Island with a finer
111 resolution of 150 m × 150 m (Xu et al., 2023). Figure 3 illustrates the domain and grid structures
112 of the flow and wave models.

113 Model stability is a critical concern, and setting a proper simulation time step is essential for
114 maintaining it. The flow model has a time step automatically adjusted to keep the maximum
115 Courant number less than 0.5, while the wave model is run in its stationary mode and updates
116 hourly. The coupling of the flow and wave models takes place at intervals of 1 hour, allowing for
117 interaction between models without compromising the stability or accuracy of the simulations.

119 **Figure 3.** Domain and grid structures of the models, where blue indicates the coastline: (a) full extent of
 120 the domain and grid of the flow model, the red box indicates the refined grid; (b) the refined grid of the
 121 flow model in the HGA; (c) full extent of the domain and grid of the wave model, the red box indicates
 122 the nested grids; (d) the nested grids of the wave model in the HGA

123 We sourced global bathymetry from the General Bathymetric Chart of the Oceans
 124 (GEBCO) 2023, providing a 15-arc second spatial grid (GEBCO, 2023). For high-resolution
 125 topography data in the HGA, we used the National Centers for Environmental Information
 126 (NCEI) Coastal Relief Model with a 1-arc second grid (NOAA, 2023). For depicting variations
 127 in land and ocean roughness in the flow model, Manning's n coefficients are derived according

128 to land cover classifications from the National Land Cover Database (NLCD) (Bunya et al.,
 129 2010; Dewitz, 2023). In addition, the air-sea drag coefficient is crucial for both storm surge and
 130 wave prediction (Charnock, 1955). In the study, we compared the air-sea drag coefficients of
 131 Makin (2005) and Zweers, Makin, de Vries, and Burgers (2010), then adopted Zweers et al.
 132 (2010)'s one. For scenarios that include the Ike Dike barriers, these structures are implemented
 133 as fixed weirs in D-Flow FM; these prohibit flow exchange between the two adjacent cells up to
 134 an assigned crest level.

135

136 *2.1.2. Hurricane model*

137 To simulate the hurricanes in the hydrodynamic model, hurricane track data are spatialized
 138 into spiderweb pressure and wind velocity fields to serve as input data to the storm surge and
 139 wave models. Using Holland's model (Holland, 1980), the air pressure and tangential wind
 140 velocity fields are computed as follows:

$$P(r) = P_c + (P_n - P_c) \exp\left(-\frac{A}{r^B}\right), \quad (1)$$

$$V_g(r) = \sqrt{\frac{AB(P_n - P_c) \exp\left(-\frac{A}{r^B}\right)}{\rho r^B} + \frac{f^2 r^2}{4} - \frac{f r}{2}}, \quad (2)$$

141 where $P(r)$ is surface pressure at a distance r from the center of hurricane, P_c is central surface
 142 pressure, P_n is ambient surface pressure (=1015 hPa), $V_g(r)$ is tangential wind velocity at a
 143 distance r from the center of the hurricane, ρ is density of air (=1.2 kg/m³), f is the Coriolis
 144 parameter, and A and B are Holland model parameters. By comparing the accuracy of the
 145 hurricane models using different methods of estimating model parameters (Vickery & Wadhera,
 146 2008; Willoughby & Rahn, 2004), the parameters are estimated by Holland, Belanger, and Fritz
 147 (2010) as follows:

$$A = (R_{max})^B, \quad (3)$$

$$B = \frac{\rho e (V_{max})^2}{P_n - P_c}, \quad (4)$$

148 where R_{max} is the radius of maximum sustained wind, e is the Euler number, and V_{max} is
 149 maximum 10-m ground relative wind speed. Since $V_g(r)$ cannot represent the hurricane's
 150 asymmetric structure due to the interaction with steering flow caused by hurricane translation,
 151 the original Holland model was improved to represent the translation. Xie, Bao, Pietrafesa, Foley,
 152 and Fuentes (2006) is used to implement new wind vector, which achieves better accuracy than
 153 rescaling $V_g(r)$ with any additional coefficient (Kalourazi, Siadatmousavi, Yeganeh-Bakhtiary,
 154 & Jose, 2020):

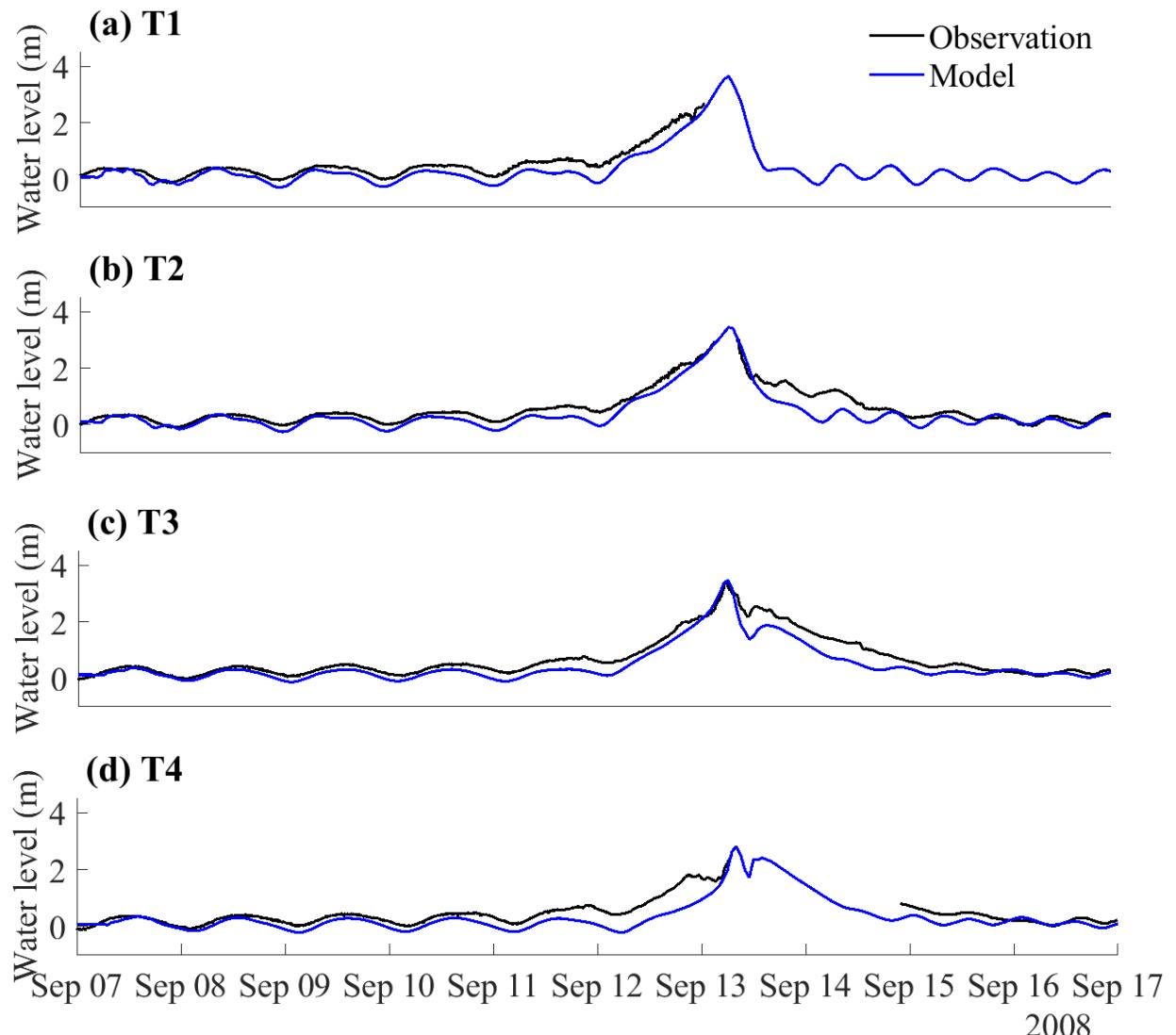
$$\mathbf{V}(r, \theta) = \mathbf{V}_g(r, \theta) + 0.5\mathbf{V}_t, \quad (5)$$

$$\mathbf{V}_g(r, \theta) = \begin{pmatrix} V_g(r) \cos(\theta + \beta) \\ V_g(r) \sin(\theta + \beta) \end{pmatrix}, \quad \mathbf{V}_t = \begin{pmatrix} V_t \cos \alpha \\ V_t \sin \alpha \end{pmatrix}, \quad (6)$$

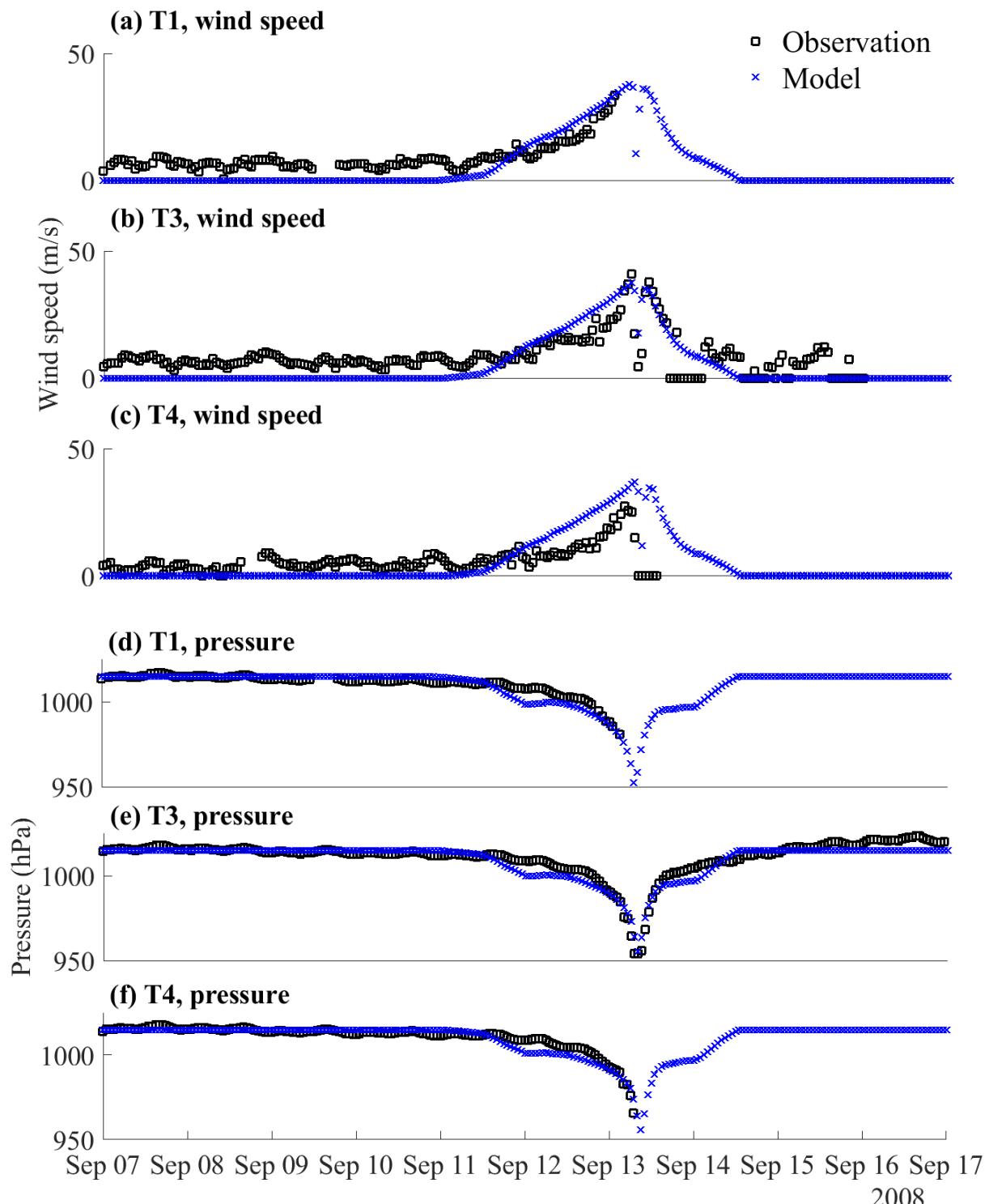
155 where \mathbf{V} is the wind velocity vector at a distance r from the center of the hurricane and at an
 156 azimuth of θ , V_t is the hurricane translation speed, β is the angle of inflow, and α is the angle
 157 from the direction of the hurricane translation. β represents the friction effects caused by
 158 hurricane translation obtained as follows (Graham & Nunn, 1959):

$$\beta(r) = \begin{cases} \frac{10r}{R_{max}}, & r < R_{max} \\ 10 + 75 \left(\frac{r}{R_{max}} - 1 \right), & R_{max} \leq r < 1.2R_{max} \\ 25, & r \geq 1.2R_{max} \end{cases} \quad (7)$$

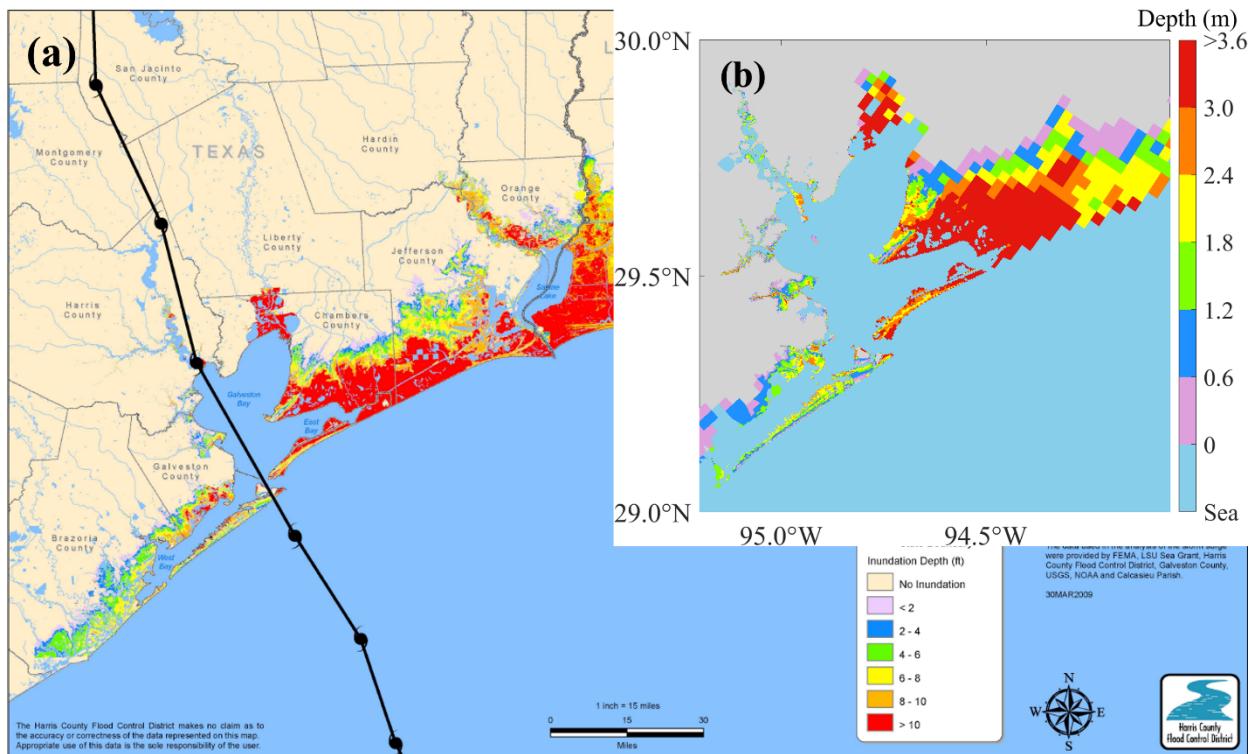
159 For storm surge simulations, it is necessary to use at least 10-minute average wind speeds
 160 since these provide a more stable estimate of the wind's force over time, compared to shorter
 161 averaging periods (Deltares, 2024c). The 1-minute average wind speeds from our track data were
 162 converted to 10-minute average wind speeds using a Gust factor, which is a numerical value that
 163 represents the ratio between the peak wind gust over a specific duration and the average wind
 164 speed for a period of time (Krayer & Marshall, 1992). The conversion factor from 1-minute to
 165 10-minute average wind speeds is determined by dividing the 10-minute Gust factor (1.08) by
 166 the 1-minute Gust factor (1.32). As a result, we get a conversion factor of 0.818, which must be
 167 applied to V_{max} for each hurricane so that the equivalent 10-minute average wind speed can be
 168 estimated.


169

170 *2.1.3. Model Validation to Hurricane Ike*


171 To ensure the reliability and accuracy of our models, we validated the model by comparing
172 the model outputs against water level (Figure 4), wind speed, and pressure (Figure 5) observed
173 during Hurricane Ike, as well as overland inundation extent and depth (Figure 6). The tropical
174 cyclone extended best track dataset (EBTRK) from Regional and Mesoscale Meteorology
175 Branch (RAMMB) was used for the meteorological boundary condition input (Demuth, DeMaria,
176 & Knaff, 2006). We validated model results against observed data from NOAA tide stations
177 around Galveston Bay: 8771341 Galveston Bay Entrance (T1), 8771450 Galveston Pier 21 (T2),
178 8771013 Eagle Point (T3), and 8770613 Morgans Point (T4), which are illustrated in Figure 1.
179 Wind speed and pressure were also compared against observations from T1, T3, and T4. The
180 observed wind data recorded were at 1.5 m above the ground and provided as 5-minute averages,
181 needing a conversion to make it compatible with the model outputs. Using Krayer and Marshall
182 (1992) and Allen, Pereira, Raes, and Smith (1998) the data was converted to 10-minute average
183 wind speed at 10 m above the ground. Simulated inundation depth was compared to the
184 Hurricane Ike inundation depth map created by the Harris County Flood Control District
185 (HCFCD) (HCFCD, 2009). When simulating storm tide conditions for Hurricane Ike within the
186 model, we applied astronomical tide data on the open boundary derived from regional and local
187 models provided by OSU Tidal Inversion Software (OTIS) for the Gulf of Mexico with a 1/45°
188 resolution (Egbert & Erofeeva, 2002). The performance of the model was evaluated using
189 statistical measured of relative root-mean-square error (RRMSE) and R-squared values,
190 described in Table 1. RRMSE is calculated as:

$$RRMSE = \sqrt{\frac{1}{N} \frac{\sum_{i=1}^N (x_i - \hat{x}_i)^2}{\sum_{i=1}^N (\hat{x}_i)^2}}, \quad (8)$$


191 where N is the length of data, x_i is i -th modeled data, and \hat{x}_i is i -th observed data. These
192 demonstrate strong agreement between modeled and observed data, affirming the reliability of
193 the simulations conducted within our study.

194 **Figure 4.** Comparison of the modeled water level to the observed water level during Hurricane Ike at
195 different tide stations (relative to MSL): (a) T1 (8771341 Galveston Bay Entrance); (b) T2 (8771450
196 Galveston Pier 21); (c) T3 (8771013 Eagle Point); (d) T4 (8770613 Morgans Point)
197

198 **Figure 5.** Comparison of the modeled wind speed or pressure to the observed wind speed (converted to
199 10-minute average 10-m ground wind speed) and pressure during Hurricane Ike at different tide stations:
200 (a) wind speed at T1 (8771341 Galveston Bay Entrance); (b) wind speed at T3 (8771013 Eagle Point); (c)
201 (d) pressure at T1; (e) pressure at T3; (f) pressure at T4

203

204 **Figure 6.** Comparison of the maximum modeled inundation depth to the observed inundation depth map
 205 during Hurricane Ike: (a) observed flood depths (HCFCD, 2009) (b) simulated flood depths

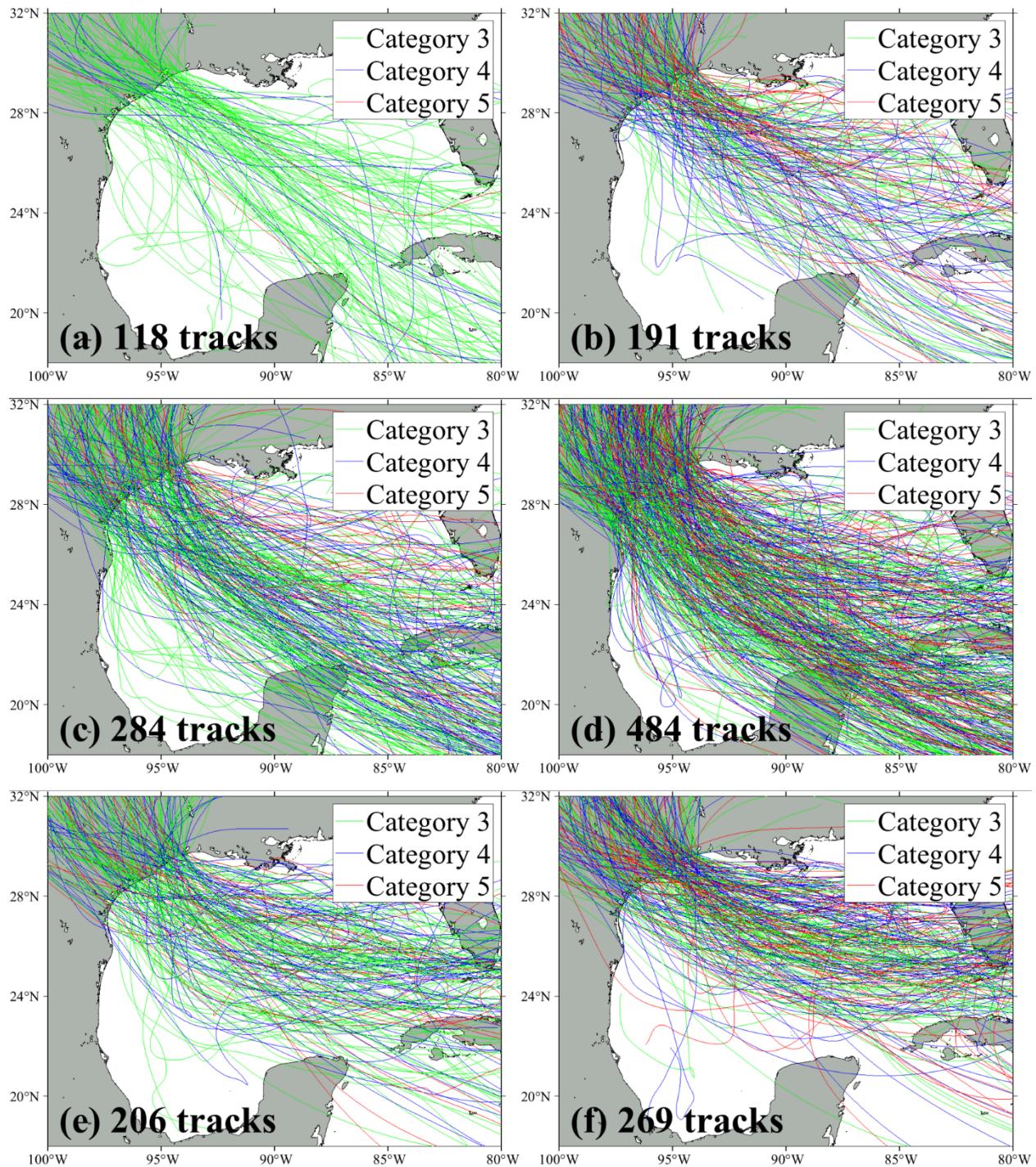
206

207 **Table 1.** Goodness of fit for modeled water level, wind speed, and pressure compared to the observed
 208 data at different tide stations during Hurricane Ike

Parameter	Station	RRMSE	R ²
Water level	T1	0.0321	0.9343
	T2	0.0244	0.8707
	T3	0.0200	0.9194
	T4	0.0387	0.7373
Wind speed	T1	0.0509	0.8365
	T3	0.0412	0.7613
	T4	0.0637	0.7651
Pressure	T1	0.0029	0.8463
	T3	0.0025	0.9141
	T4	0.0026	0.8740

209

210 **2.2. Probabilistic Flood Depth Predictions**


211 *2.2.1. Climate scenarios and synthetic hurricane tracks*

212 For this study, we utilized sets of synthetic hurricane tracks statistically downscaled from
213 three different CMIP6 general circulation models (GCMs) under present and projected future
214 climates by WindRiskTech (Emanuel, Sundararajan, & Williams, 2008). The GCMs used
215 include: the Canadian Earth System Model (CanESM), the Geophysical Fluid Dynamics
216 Laboratory (GFDL) model, and the Hadley Centre Global Environmental Model (HadGEM).
217 From each GCM, the synthetic dataset comprised 4,500 hurricane tracks spanning a period of 30
218 years. The present dataset covers the years 1981 to 2010 based on the simulations of 20th century
219 climate, while the future dataset is for 2071 to 2100 under the Intergovernmental Panel on
220 Climate Change's (IPCC's) very high greenhouse gas (GHG) emission scenario SSP5-8.5
221 (Shared Socio-economic Pathway) (IPCC, 2023). Each track in the dataset contains data at 2-
222 hour intervals, including information on the cyclone's geographical position (latitude and
223 longitude), central surface pressure, maximum 10-m ground relative wind speed, and the radius
224 of maximum winds.

225 Since limitations of our available computing facilities made it impractical to simulate all
226 4,500 hurricane tracks, we narrowed down our focus to those cyclones that could have a major
227 impact on the HGA. To select the relevant cyclone tracks for simulation, two main filtering
228 criteria were considered: landfall location and storm intensity. First, only the tracks are included
229 where the hurricanes made landfall to the west of the longitudinal line 93.78°W, which is
230 approximately 50 kilometers east of Galveston Bay. This ensured that the simulated storms were
231 ones that could affect the HGA. Then, the Saffir-Simpson Hurricane Wind Scale was used to
232 categorize the storms based on their maximum wind speeds (Simpson, 1974). We focused on
233 major hurricanes, which are defined as category 3 (with wind speeds of 111 – 129 mph),
234 category 4 (130 – 156 mph), and category 5 (157 mph or higher). Only hurricanes that reached
235 these thresholds when positioned north of 27.5°N, in proximity to Galveston Bay, were
236 evaluated with hydrodynamic simulations. There are also other important metrics to be
237 considered in selecting cyclones, such as angle of approach, radius of maximum winds, and
238 hurricane translation speed (Chouinard, Liu, & Cooper, 1997; FEMA, 2008). The synthetic

239 hurricane tracks applied here account for a large range of variation in each of these metrics.
240 However, the research team lacked sufficient computational power to simulate storm surge for
241 all synthetic tracks in the database, so a choice we made to only consider major hurricanes
242 (category 3, 4, or 5) that make landfall within 50 km of HGA.

243 As a result, 118 synthetic tracks were selected for the CanESM under the present climate
244 scenario and 191 tracks under the future climate scenario. For the GFDL model, 284 and 484
245 tracks were selected for the present and future climate, respectively. For the HadGEM, 206
246 tracks were used for the present climate and 269 tracks for the future climate. Figure 7 illustrates
247 the synthetic tracks and the number of tracks for each climate scenario. In order to consider the
248 potential impacts of back surge, all the hurricanes were simulated until they dissipated over land,
249 which occurred after they passed over Galveston Bay.

251 **Figure 7.** Illustrations of the synthetic tracks selected for simulations with the number of tracks under
 252 different climate scenarios: (a) CanESM for the present climate; (b) CanESM for the future climate; (c)
 253 GFDL-6.0 for the present climate; (d) GFDL-6.0 for the future climate; (e) HadGEM-6.0 for the present
 254 climate; (f) HadGEM-6.0 for the future climate

256 2.2.2. *Relative sea level rise*

257 In future climate scenarios, SLR is considered one of the most significant factors affecting
258 coastal areas, making them increasingly vulnerable to the impacts of storm surges (Yang et al.,
259 2014). There are two components to SLR: global SLR and regional SLR. The cumulative effect,
260 which is known as relative SLR, is determined by summing the global and regional SLRs.

261 Global SLR is predominantly driven by global warming, which contributes to rising sea
262 levels through mechanisms such as the melting of ice sheets and glaciers, as well as the thermal
263 expansion of seawater (Sweet et al., 2022). The extent of future global SLR strongly depends on
264 GHG emission scenarios. To align with the scenarios conceived in our GCMs, we assume a very
265 high GHG emission scenario. According to IPCC (2023), under this scenario, the global SLR
266 relative to the baseline period of 1995 – 2017 is projected to be 0.20 – 0.29 m by 2050,
267 escalating to 0.63 – 1.01 m by 2100. For the purposes of extreme value analysis and flood
268 mapping across specific return periods, a constant SLR must be presumed for the future storm
269 events in 2071 – 2100. Therefore, a steady global SLR is assumed corresponding to the estimate
270 for the year 2085, which is the midpoint of the 30-year period to be used in the extreme value
271 analysis as a consistent SLR value, projected to be 0.48 – 0.75 m. Three global SLR scenarios
272 are utilized for the research: 0.48 m (scenario 1), 0.57 m (scenario 2), and 0.75 m (scenario 3).

273 On the other hand, regional SLR is influenced by changes in the ocean's circulation patterns
274 and density, alterations in Earth's gravity and rotation, and vertical land movements including
275 both subsidence and uplift (Sweet et al., 2022). Therefore, it has to be evaluated separately from
276 global SLR. According to (Sweet et al., 2022), regional SLR in the HGA relative to 2000 is
277 projected to reach 0.6 m by 2100 and 0.9 m by 2150. By interpolation, we estimate that the
278 regional SLR by 2085 would be approximately 0.51 m. Considering both global and regional
279 SLR projections, three relative SLR scenarios are constructed for our research: 0.99 m (scenario
280 1), 1.08 m (scenario 2), and 1.26 m (scenario 3), which are the projected relative SLR by 2085.
281 These scenarios are instrumental in evaluating the potential risks and impacts of storm surge on
282 coastal regions in the face of climate change.

283 Each flooding scenario is constructed by combining an SLR projection, a GCM, and either
284 the presence or absence of the Ike Dike barriers (Table 2).

285 **Table 2.** Flooding scenario numbers under different GCMs, SLR projections, and the presence or absence
 286 of the Ike Dike barriers, where X means ‘without the Ike Dike’ and O means ‘with the Ike Dike’

Present / Future	SLR scenario	GCM	Ike Dike	Flooding Scenario #
Present	-	CanESM	X	1
			O	2
		GFDL-6.0	X	3
			O	4
	SLR Scenario 1 (0.99 m)	HadGEM-6.0	X	5
			O	6
	SLR Scenario 2 (1.08 m)	CanESM	X	7
			O	8
		GFDL-6.0	X	9
			O	10
		HadGEM-6.0	X	11
			O	12
Future	SLR Scenario 2 (1.08 m)	CanESM	X	13
			O	14
		GFDL-6.0	X	15
			O	16
		HadGEM-6.0	X	17
			O	18
	SLR Scenario 3 (1.26 m)	CanESM	X	19
			O	20
		GFDL-6.0	X	21
			O	22
		HadGEM-6.0	X	23
			O	24

287

288 *2.2.3. Tidal boundary conditions*

289 This study assumes a constant tide level representing the mean higher high water (MHHW)
 290 condition (Ke et al., 2021), which is the average of the highest tidal levels recorded daily over a

19-year period, as observed at tide stations (NOAA, 2000). This assumption implies that the MHHW occurs simultaneously at all locations across our model, simplifying the baseline water level against which storm surges are evaluated. To determine the MHHW level specific to the HGA, the observed MHHW from nearby tide stations was arithmetically averaged, resulting in a tidal level of 0.18 m relative to mean sea level (MSL). This MHHW level is then consistently added to the initial water level in our model, which operates at a datum of MSL. For the present climate scenarios, the initial water level is set as 0.18 m, reflecting the MHHW without additional SLR. Considering relative SLR projections and MHHW, the initial water level for simulations is adjusted to 1.17 m, 1.26 m, and 1.44 m for SLR scenarios 1, 2, and 3, respectively. As in the setup for validation, to mitigate long wave reflections at the model boundaries, we employ a weakly reflective Riemann boundary condition (Deltares, 2024a).

302

303 2.2.4. *Extreme value analysis*

304 By simulating storm surges for each scenario using the hydrodynamic model, we produce 305 30-year annual flood maps that present the maximum flood depths experienced at every location 306 within a given year. From the annual maximum flood depths, we then generate maps 307 representing specific annual exceedance probability floods. To achieve this, extreme value 308 analysis is conducted using probability distribution functions, allowing us to estimate the flood 309 depths associated with specific return periods at each computational cell of the storm surge 310 model. The process is summarized as follows (Bedient, Huber, & Vieux, 2019):

- 311 1. Rank the annual flood depths recorded over 30 years for each model grid cell in 312 descending order. If there are n_0 zeros out of 30 ($= n$) data, calculate the discrete 313 probability of zero depth occurrence (P_0) as $P_0 = n_0/n$.
- 314 2. Fit the non-zero flood depth data to an appropriate probability distribution. The 315 maximum likelihood estimation (MLE) method is employed to derive the parameters of 316 the distribution. Denote the cumulative distribution function (CDF) of this distribution 317 function of non-zero data as $F_{X,0}$.
- 318 3. Adjust the total probability within the distribution to reflect the probability of non-zero 319 events, scaling the overall probability mass to $(1 - P_0)$ instead of 1. The base value of

320 the CDF is set to P_0 to account for the occurrence of zero-depth events. The CDF for the
 321 full dataset (F_X) is given by:

$$F_X(x) = \begin{cases} P_0, & x = 0 \\ P_0 + (1 - P_0)F_{X,0}(x), & x > 0 \end{cases} \quad (9)$$

322 4. Match F_X to the theoretical plotting position (F_m) which calculates the expected CDF
 323 value for each rank m given by Gringorten (1963):

$$F_m = 1 - \frac{m - 0.4}{n + 1 - 0.8}. \quad (10)$$

324 The goodness of fit of the probability distribution is evaluated using root-mean-square error
 325 (RMSE) and the R-square values. These metrics assess the accuracy and the strength of
 326 the fit.

327 5. Compute the flood depth for a given return period.

328 The generalized extreme value (GEV) distribution probability distribution is adopted in this
 329 study. The GEV distribution is particularly suitable for our purpose because of its flexibility and
 330 its widespread adoption in extreme value analysis (Ke, Jonkman, van Gelder, & Bricker, 2018;
 331 Loaiza et al., 2022; van den Brink, Können, & Opsteegh, 2003), and it has been widely used in
 332 significant projects, such as Federal Emergency Management Agency's (FEMA's) flood map
 333 project (FEMA, 2023). The CDF of the GEV distribution is expressed as follows:

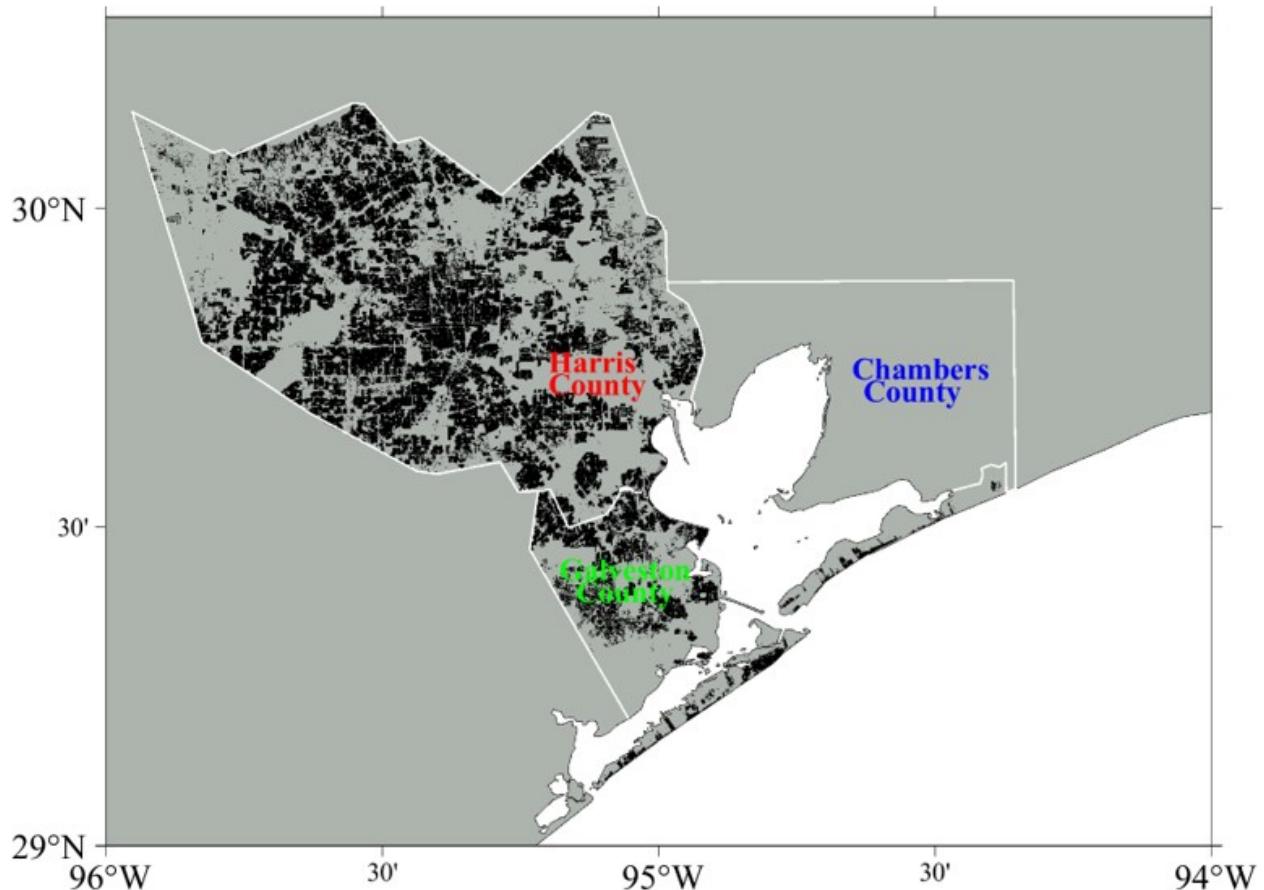
$$F_{X,0}(x) = \begin{cases} \exp \left[- \left\{ 1 + \xi \left(\frac{x - \mu}{\sigma} \right) \right\}^{-\frac{1}{\xi}} \right], & \xi \neq 0, \quad 1 + \xi \left(\frac{x - \mu}{\sigma} \right) > 0 \\ \exp \left\{ - \exp \left(- \frac{x - \mu}{\sigma} \right) \right\}, & \xi = 0 \end{cases}, \quad (11)$$

334 where ξ is a shape parameter, μ is a location parameter, and σ is a scale parameter. The value of
 335 ξ determines the form of the distribution: Frechet distribution for $\xi > 0$, Gumbel distribution for
 336 $\xi = 0$, and inverse Weibull distribution for $\xi < 0$. In our extreme value analysis, there was an
 337 issue of excessively high flood depth estimates for the 100-year and 500-year return periods
 338 while using the Frechet distribution, corresponding to a positive value of ξ . To achieve a more
 339 realistic estimate of flood depths, our approach is to constrain the value of ξ to 0 if it is positive.
 340 These forces provide a more practical fit for the flood depth data and preventing overestimation

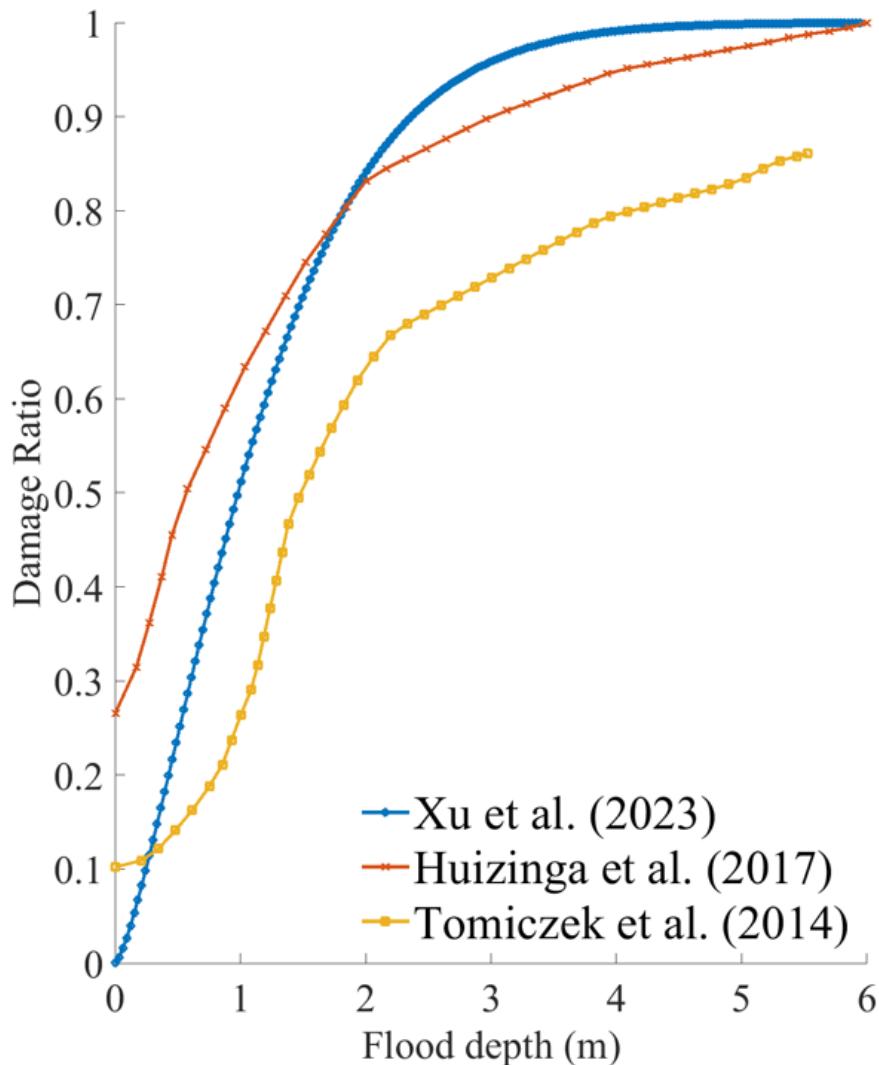
341 of the flood risk for extreme events. The use of this distribution is justified by comparing its
 342 goodness of fit to that of the Gumbel and Weibull distributions, both of which are also
 343 recommended for flood map projects by FEMA (FEMA, 2023). Comparison of the results is
 344 shown in Table 3.

345 **Table 3.** Comparison of goodness of fit for CDFs of the flood depth compared to the theoretical plotting
 346 position using the mean of RMSEs and R²s at all computational cells

Flooding Scenario #	Gumbel		Weibull		GEV	
	RMSE	R ²	RMSE	R ²	RMSE	R ²
1	0.0575 m	0.9179	0.0462 m	0.9419	0.0350 m	0.9627
2	0.0432 m	0.9348	0.0356 m	0.9476	0.0305 m	0.9596
3	0.0365 m	0.9479	0.0356 m	0.9511	0.0314 m	0.9569
4	0.0362 m	0.9522	0.0385 m	0.9521	0.0305 m	0.9637
5	0.0324 m	0.9495	0.0328 m	0.9497	0.0297 m	0.9526
6	0.0351 m	0.9431	0.0351 m	0.9456	0.0303 m	0.9581
7	0.0528 m	0.9469	0.0422 m	0.9635	0.0362 m	0.9724
8	0.0428 m	0.9322	0.0410 m	0.9361	0.0363 m	0.9437
9	0.0458 m	0.9587	0.0375 m	0.9692	0.0351 m	0.9745
10	0.0435 m	0.9381	0.0394 m	0.9430	0.0380 m	0.9446
11	0.0473 m	0.9464	0.0402 m	0.9589	0.0402 m	0.9591
12	0.0339 m	0.9333	0.0373 m	0.9314	0.0324 m	0.9451
13	0.0535 m	0.9461	0.0427 m	0.9632	0.0362 m	0.9727
14	0.0435 m	0.9358	0.0418 m	0.9358	0.0366 m	0.9449
15	0.0463 m	0.9594	0.0380 m	0.9696	0.0355 m	0.9746
16	0.0440 m	0.9394	0.0394 m	0.9452	0.0386 m	0.9457
17	0.0426 m	0.9556	0.0423 m	0.9582	0.0378 m	0.9634
18	0.0340 m	0.9306	0.0375 m	0.9285	0.0327 m	0.9446
19	0.0552 m	0.9442	0.0440 m	0.9622	0.0364 m	0.9733
20	0.0443 m	0.9378	0.0423 m	0.9403	0.0363 m	0.9521
21	0.0472 m	0.9596	0.0389 m	0.9698	0.0360 m	0.9749
22	0.0440 m	0.9423	0.0388 m	0.9486	0.0388 m	0.9485
23	0.0427 m	0.9586	0.0433 m	0.9595	0.0379 m	0.9657


347

348 **2.3. Flood Risk Estimations**349 *2.3.1. Property damages and damage curves*


350 In advance of estimating the flood risk for each flooding scenario, we compute the flood
351 damages for different annual exceedance probability floods. This study focuses on the total flood
352 damage, which refers to the cumulative damage to residential properties in the HGA, specifically
353 in Harris and Galveston Counties, TX. For this analysis, we utilize the database of CoreLogic,
354 Inc., which includes the locations (latitude and longitude at the parcel level) and assessed values
355 of residential properties as of 2021. The dataset used in the study comprises 1,243,195 residential
356 properties in Harris County and 132,029 in Galveston County, amounting to 1,375,224 properties
357 considered for flood damage assessment, regardless of the property's elevation or material.
358 Among these properties, 1,058,642 properties are owner-occupied, 281,674 are owner-absent,
359 and remaining properties are unidentified. Figure 8 illustrates these properties on a gridded map
360 of the HGA.

361 To estimate flood damages, each property is matched to its corresponding computational
362 cell on the return period flood map generated by the storm surge model. The flood depth at the
363 property location is assumed to equal the flood depth within that cell. We then compute the
364 damage ratio for each property using established residential building damage curves, which
365 represent the relationship between flood depth and the damage ratio (DR). Three different
366 damage curves are employed: (1) Xu et al. (2023), a regional damage curve derived from the
367 Hurricane Ike event and the National Flood Insurance Program (NFIP) database, (2) North
368 America global data from Huizinga, de Moel, and Szewczyk (2017), and (3) local FEMA survey
369 data from Tomiczek, Kennedy, and Rogers (2014), which are illustrated in Figure 9. The flood
370 damage for each property is then computed by multiplying the assessed property value by the
371 corresponding DR. If the properties are not flooded, DR is set to 0 although the DR is greater
372 than 0 with zero flood depth under the curves of Huizinga et al. (2017) and Tomiczek et al.
373 (2014). For the future scenarios, DR is set to 1 for the properties submerged by SLR, and the
374 flood damage caused by SLR is separated from the damage caused by storm surge to isolate the

375 impact of the Ike Dike on storm surge risk. Finally, the total flood damage is calculated as the
376 sum of the flood damages for all properties.

377
378 **Figure 8.** Illustration of the locations of residential properties (black dots) included in the damage
379 analysis

380

381 **Figure 9.** Comparison of residential building damage curves using the data from Xu et al. (2023),
 382 Huizinga et al. (2017), and Tomiczek et al. (2014)

383

384 *2.3.2. Expected annual damages*

385 To quantify flood risk, the expected annual damage (EAD) is used as an estimate of the risk
 386 integrated over a range of return periods (Arnell, 1989). EAD can be approximated using the
 387 mid-range method as follows:

$$EAD = \sum_{i=0}^N (P_i - P_{i+1}) \frac{D_{i+1} + D_i}{2}, \quad (12)$$

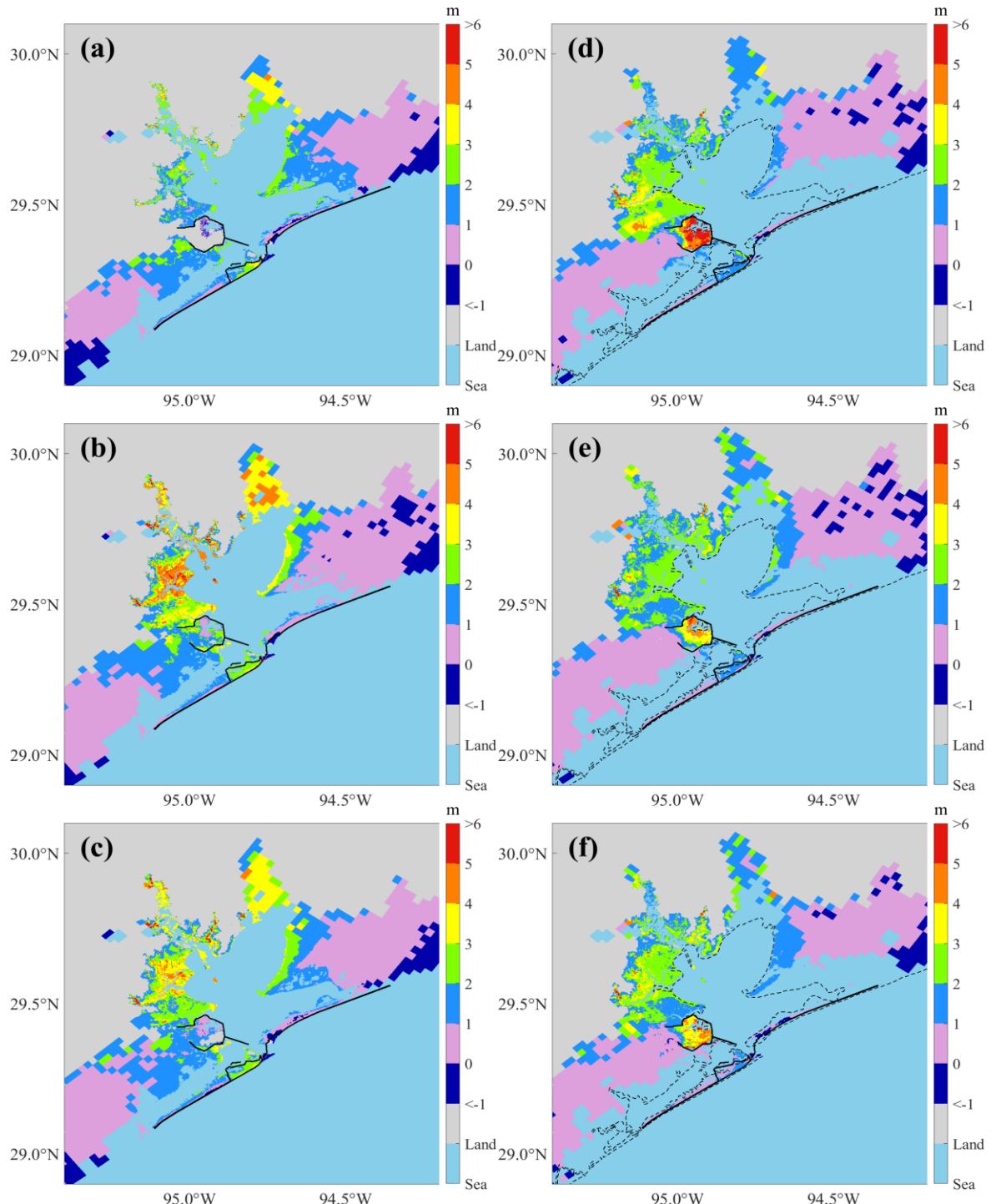
$$P_0 = 1, \quad D_0 = 0, \quad P_{N+1} = 0, \quad D_{N+1} = D_N$$

388 where N is the number of flood events considered, P_i is the exceedance probability for the i -th
 389 flood event, and D_i is the damage for the i -th flood event. This method calculates EAD by
 390 averaging the damages between successive flood events weighted by the difference in their
 391 annual exceedance probabilities. Such the method is sensitive to the selection of probability
 392 increments, so we derive EAD using three different sets of return periods for comparison: (1) 10,
 393 25, 50, 100, 500 years (FEMA, 2013), (2) 5, 10, 25, 50, 100 years (Arnell, 1989), and (3) 2, 5,
 394 10, 20, 50, 100, 500, 1000, 5000, 10000 years (Tariq, 2013).

395

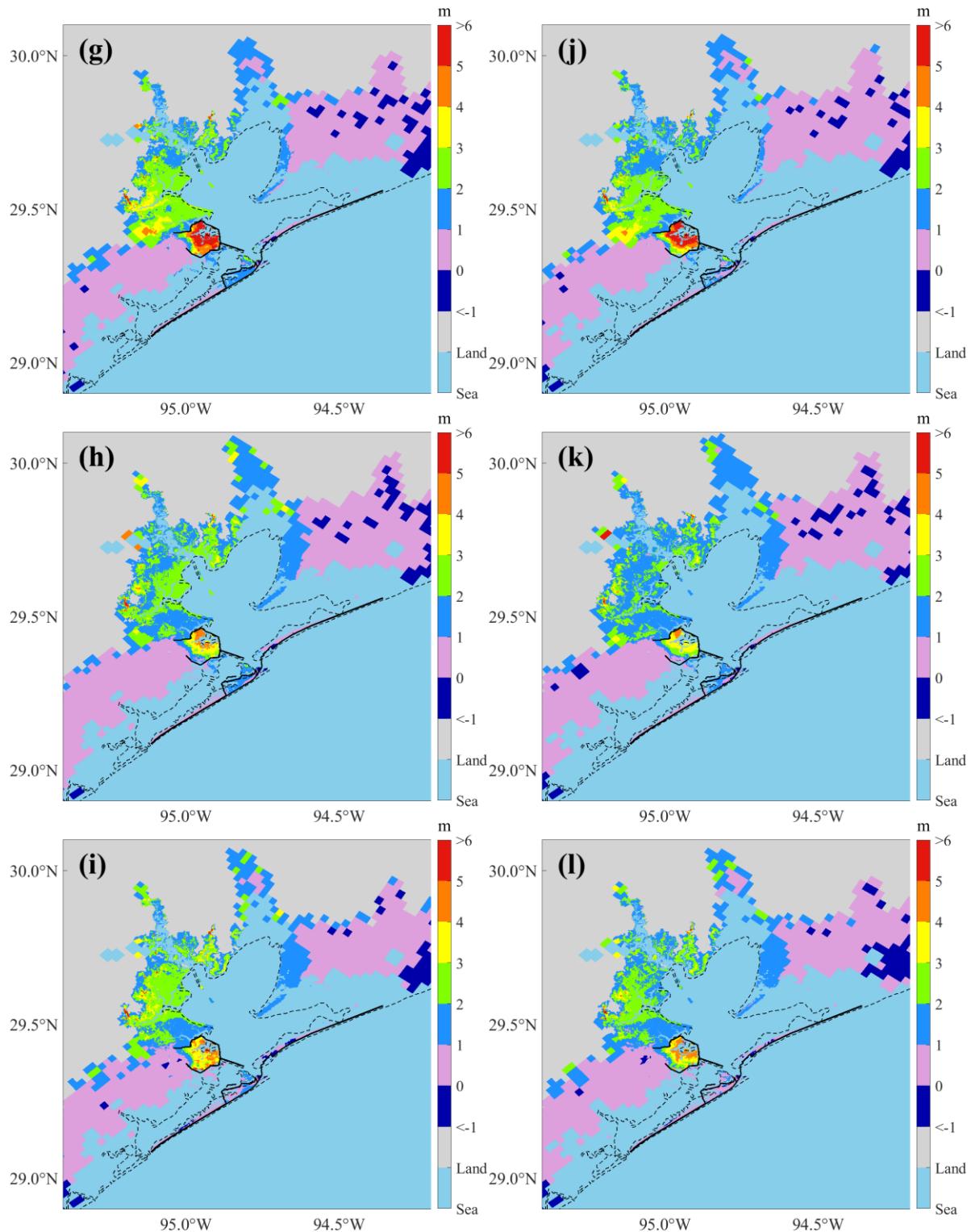
396 3. RESULTS

397 3.1. Probabilistic Flood Depth Predictions


398 Using the modified GEV distribution, we determined the flood depths for return periods of
 399 2, 5, 10, 20, 50, 100, 500, 1000, 5000, and 10,000 years for each flooding scenario. Figure A1
 400 represents the predicted 100-year flood maps for the present climate (scenarios 1 – 6), while
 401 Figure A2 shows the predictions for the future climate (scenarios 7 – 24). The results indicate
 402 that synthetic storm tracks downscaled from the GFDL model generate the largest floods in terms
 403 of depth and flooded area, followed by those from the HadGEM, with the smallest floods
 404 produced by the CanESM, regardless of whether the scenario pertains to the present or future
 405 climate. For the future scenarios, Chambers County, TX, exhibits the largest submerged area due
 406 to SLR, followed by Galveston County, TX, which includes Galveston Island and Bolivar
 407 Peninsula. Harris County, TX, is the least affected by SLR.

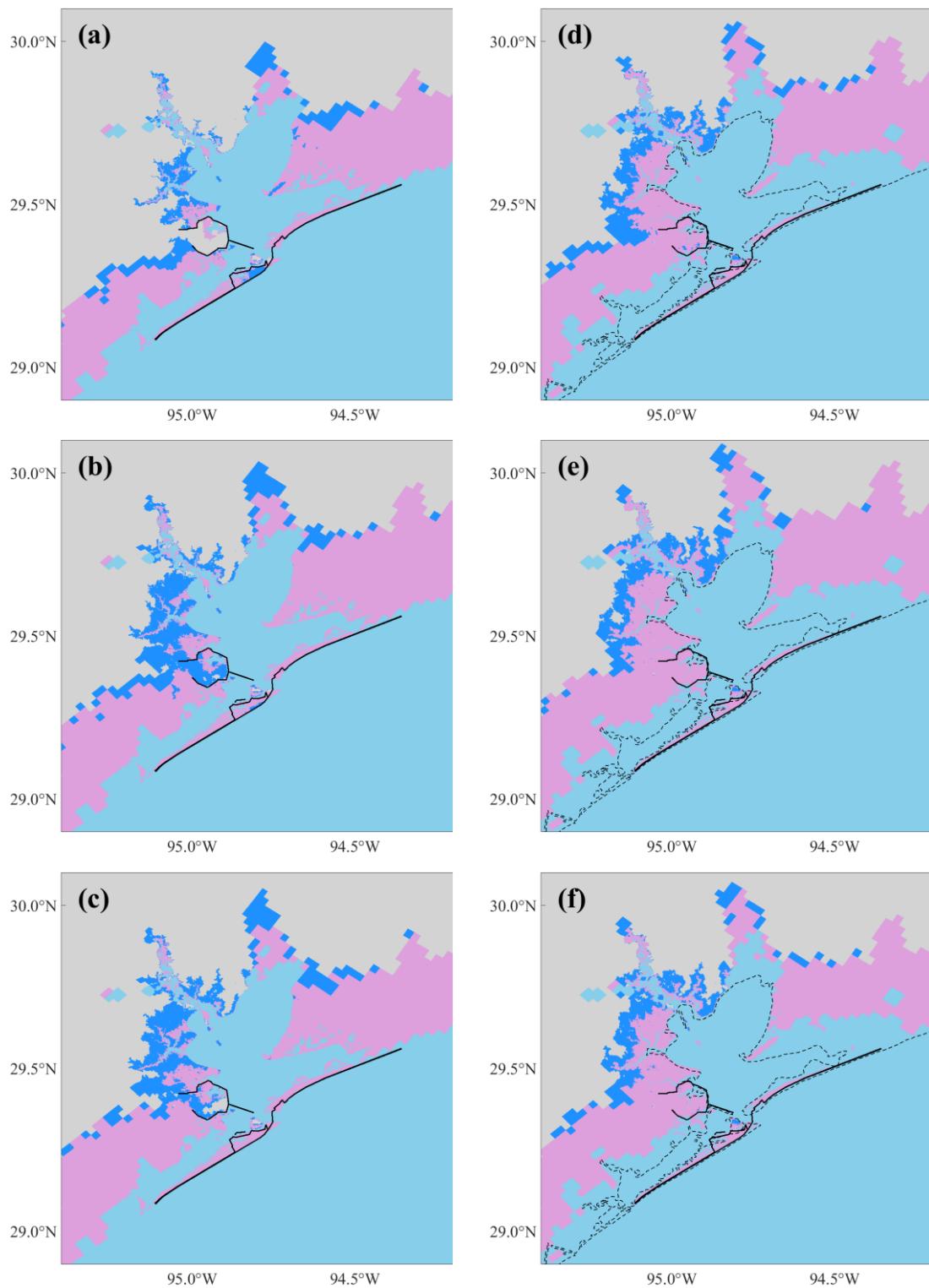
408 Comparing flood maps across scenarios with and without the Ike Dike reveals that the Ike
 409 Dike effectively protects the area along Galveston Bay from storm surges. According to Figure
 410 10, the 100-year flood depth is reduced by up to 5 m under present climate scenarios, and by 1 –
 411 3 m along Galveston Bay and more than 3 m inside the existing Texas City Dike under future
 412 climate scenarios. Additionally, Figure 11 shows that most of the reduced flooded areal extent
 413 due to the Ike Dike is concentrated around Galveston Bay. However, the Ike Dike does not
 414 significantly reduce flood depth in the regions west of Galveston Island and east of the Bolivar
 415 Peninsula. In these regions, the flood depth difference does not exceed 2 m under the present

416 climate or 1 m under the future climate (Figure 10). In some areas, the flood depth is even higher
417 with the Ike Dike than without it, as surges that cannot pass through the Ike Dike accumulate
418 outside it, leading to higher surges there.

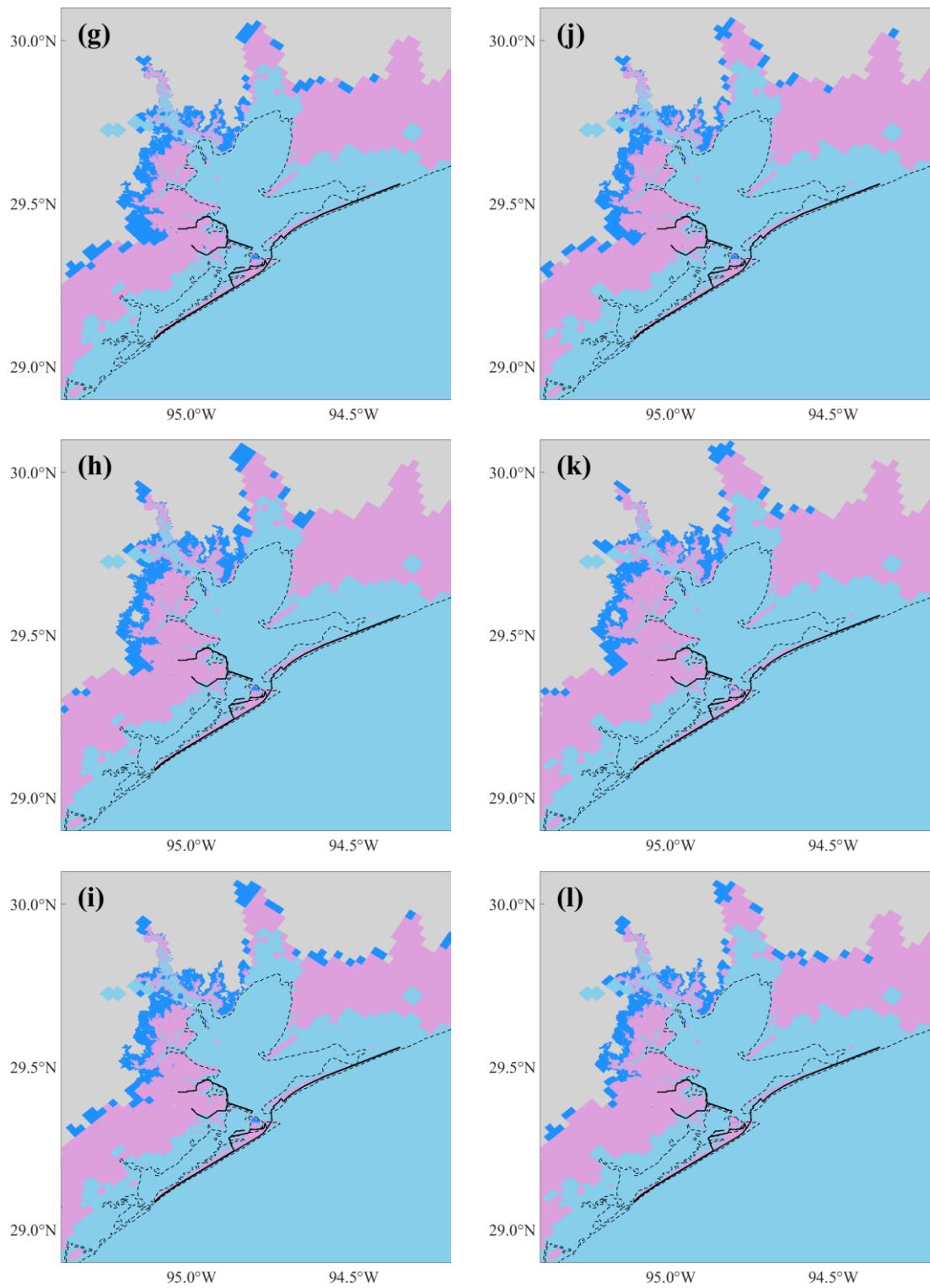

419 In the entire HGA, the area-weighted average flood depth is reduced by 1 – 1.25 m under
420 the present climate, which represents a reduction of 35 – 37% compared to the depth without the
421 Ike Dike. The flooded areal extent under the present climate is reduced by 520 – 800 km², which
422 is 6 – 6.5% of the original flooded area. For future climate scenarios, the difference in area-
423 weighted average flood depth is 0.90 – 1.05 m, for a reduction of 26 – 32.5%. The difference in
424 the flooded areal extent is 455 – 585 km², accounting for a reduction of 3.8 – 5.1%. These results
425 indicate that the Ike Dike can reduce both flood depth and flooded area more effectively for
426 present climate scenarios compared to future climate scenarios. These results for area-weighted
427 average flood depth and flooded areal extent are listed in Table 4.

428

429


430 **Figure 10.** Difference in the 100-year flood depths between scenarios without and with the Ike Dike for
 431 each flooding scenario. The black solid lines are existing seawalls and the proposed barrier system, and
 432 the black dashed line is the coastline under present conditions: (a) scenarios 1 and 2; (b) scenarios 3 and
 433 4; (c) scenarios 5 and 6; (d) scenarios 7 and 8; (e) scenarios 9 and 10; (f) scenarios 11 and 12

434


435 **Figure 10.** (g) scenarios 13 and 14; (h) scenarios 15 and 16; (i) scenarios 17 and 18; (j) scenarios 19 and
 436 20; (k) scenarios 21 and 22; (l) scenarios 23 and 24 (cont'd)

437

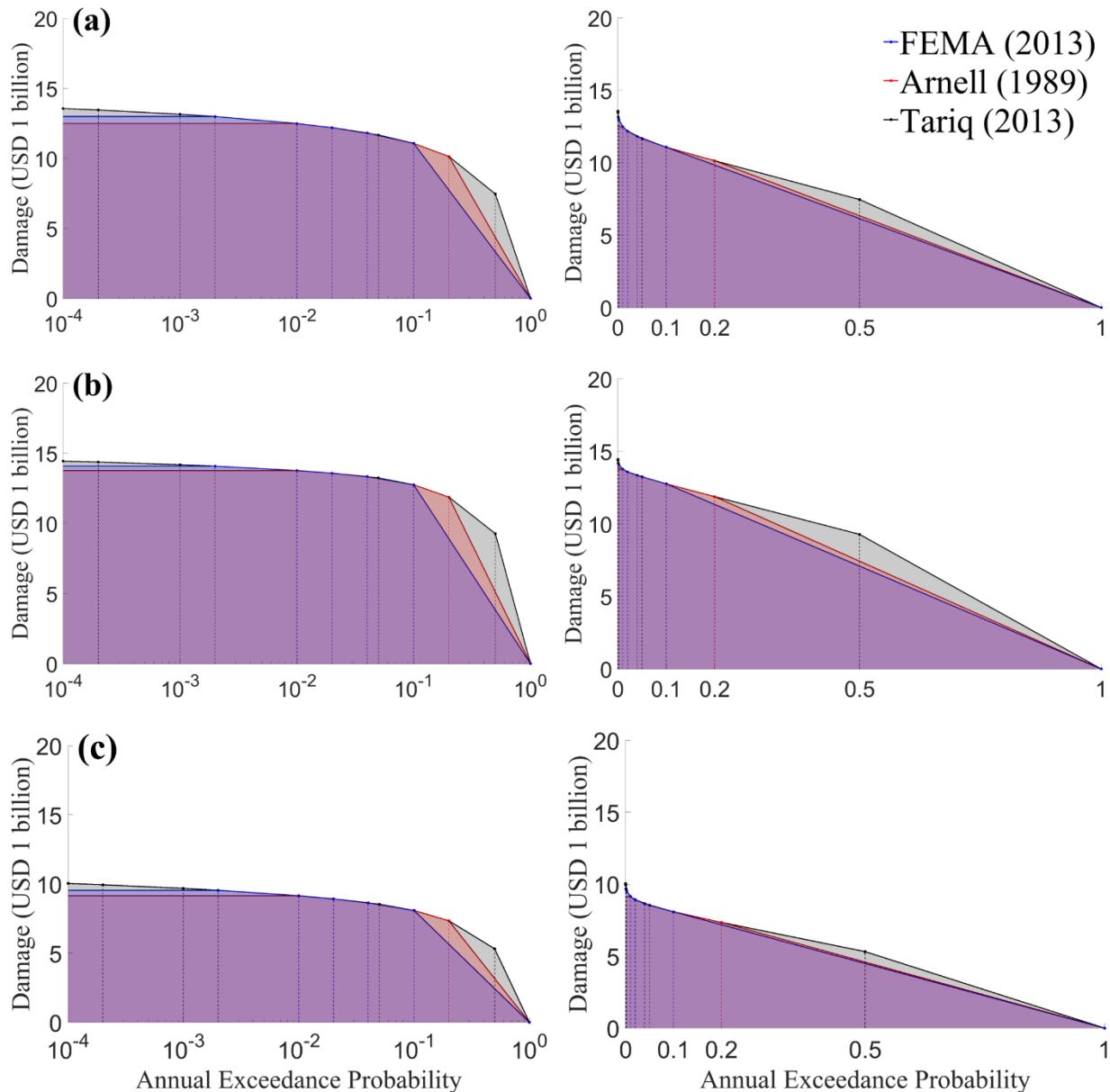
438

439 **Figure 11.** Flooded areal extent under scenarios without (blue area) and with (pink area) the Ike Dike for
 440 each flooding scenario. The black solid and dashed lines are the same as Figure 10: (a) scenarios 1 and 2;
 441 (b) scenarios 3 and 4; (c) scenarios 5 and 6; (d) scenarios 7 and 8; (e) scenarios 9 and 10; (f) scenarios 11
 442 and 12

443

444 **Figure 11.** (g) scenarios 13 and 14; (h) scenarios 15 and 16; (i) scenarios 17 and 18; (j) scenarios 19 and
445 20; (k) scenarios 21 and 22; (l) scenarios 23 and 24 (cont'd)

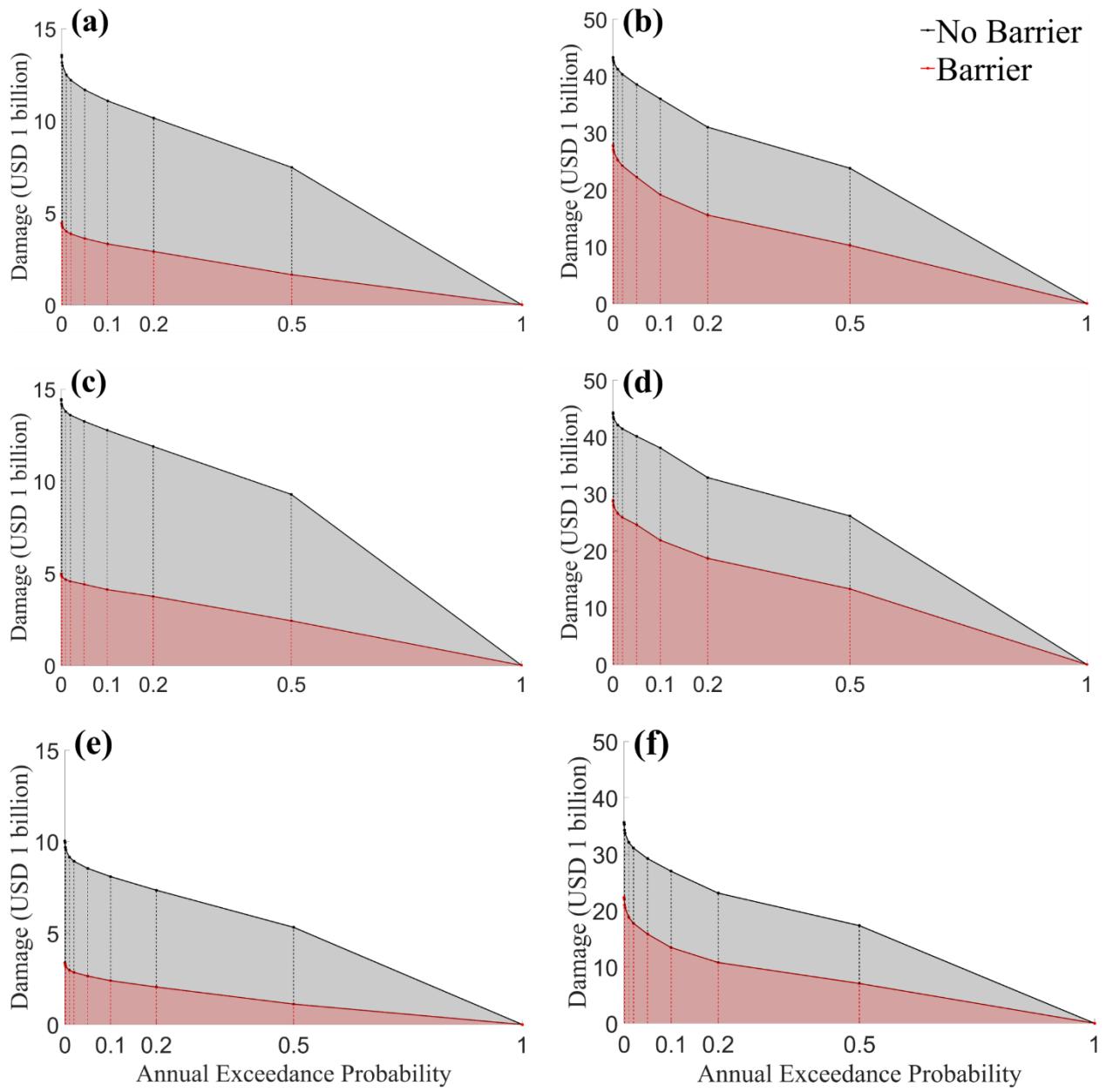
446


447 **Table 4.** Difference in area-weighted average 100-year flood depth and flooded areal extent between
448 scenarios without and with the Ike Dike for each flooding scenario

Present / Future	SLR Scenario	GCM	(Difference) = (No Ike Dike) – (Ike Dike)	
			[Percent Reduction]	
			Area-weighted Average Flood Depth	Flooded Areal Extent
Present	-	CanESM	1.015 m [37.00%]	521.32 km ² [6.40%]
		GFDL-6.0	1.251 m [35.29%]	803.14 km ² [5.98%]
		HadGEM-6.0	1.245 m [36.40%]	791.24 km ² [6.25%]
SLR Scenario 1 (0.99 m)	SLR Scenario 1 (0.99 m)	CanESM	1.047 m [31.35%]	584.08 km ² [5.01%]
		GFDL-6.0	1.001 m [28.85%]	546.51 km ² [4.21%]
		HadGEM-6.0	1.064 m [32.59%]	536.89 km ² [4.97%]
Future Scenario 2 (1.08 m)	SLR Scenario 2 (1.08 m)	CanESM	1.019 m [30.58%]	544.49 km ² [4.74%]
		GFDL-6.0	0.976 m [28.21%]	531.67 km ² [4.16%]
		HadGEM-6.0	1.051 m [32.44%]	547.73 km ² [5.12%]
SLR Scenario 3 (1.26 m)	SLR Scenario 3 (1.26 m)	CanESM	0.944 m [28.25%]	485.21 km ² [4.24%]
		GFDL-6.0	0.902 m [26.13%]	491.87 km ² [3.86%]
		HadGEM-6.0	0.953 m [29.27%]	455.29 km ² [4.25%]

450 **3.2. Flood Damages for Probability Increments**

451 By applying damage curves to the predicted probabilistic flood depths for each residential
452 property, we estimate the total flood damages for each annual exceedance probability. Then the
453 EAD is computed for different sets of probability increments as described in Section 2.3.2.
454 Figure 12 presents the plots of flood damage for specific annual exceedance probabilities using
455 different probability increment sets under flooding scenario 1. It shows that flood damages from
456 higher annual exceedance probabilities (2, 5, and 10 years) occupy a significant portion of the
457 shaded area, implying their importance in the estimation of EAD. Additionally, a set with a
458 higher number of probability increments provides a more accurate EAD estimate than a set with
459 fewer increments. Therefore, we have chosen to use the set of probability increments from
460 (Tariq, 2013) to estimate EAD for all flooding scenarios.


461 Figure 13 and Table 5 compare the total flood damages under scenarios without and with
462 the Ike Dike (flooding scenarios 1 and 2, scenarios 23 and 24) for specific probability increments
463 or return periods. Regardless of damage function applied, the total damage under flooding
464 scenario 2, with the Ike Dike, is approximately one-third the damage under scenario 1, without
465 the Ike Dike. Also, flooding scenario 24, with the Ike Dike, incurs total damage of about 40 –
466 60% compared to scenario 23, without the Ike Dike. As a result, the Ike Dike is expected to
467 reduce total damage in the HGA by about 40 – 70%, which would significantly reduce the risk
468 zone.

469

470 **Figure 12.** Comparison of total flood damages for specific annual exceedance probabilities under
 471 flooding scenario 1. The left-side plots use a logarithmic scale x-axis, while the right-side plots use a
 472 linear scale x-axis. The shaded area represents the EAD. Damages are estimated using three damage
 473 curves: (a) Xu et al. (2023); (b) Huizinga et al. (2017); (c) Tomiczek et al. (2014)

474

475

476 **Figure 13.** Comparison of total flood damages for specific annual exceedance probabilities under the
 477 scenarios without and with the Ike Dike: (a) scenarios 1 and 2 with Xu et al. (2023); (b) scenarios 23 and
 478 24 with Xu et al. (2023); (c) scenarios 1 and 2 with Huizinga et al. (2017); (d) scenarios 23 and 24 with
 479 Huizinga et al. (2017); (e) scenarios 1 and 2 with Tomiczek et al. (2014); (f) scenarios 23 and 24 with
 480 Tomiczek et al. (2014)

481

482 **Table 5.** Comparison of the total flood damages for specific return periods under flooding scenarios 1, 2,
 483 23, and 24 (unit: USD 1 billion)

Damage Curves	Return Period (year)	Flooding Scenario #					
		1	2	Percent Reduction	23	24	Percent Reduction
Xu et al. (2023)	2	7.4642	1.6399	78.03%	23.807	10.246	56.96%
	5	10.146	2.8996	71.24%	31.025	15.551	49.88%
	10	11.077	3.3088	70.13%	35.983	19.131	46.83%
	20	11.677	3.6073	69.11%	38.530	22.229	42.31%
	50	12.200	3.8542	68.41%	40.332	24.235	39.91%
	100	12.495	3.9914	68.06%	41.197	25.242	38.73%
	500	12.993	4.2175	67.54%	42.391	26.691	37.04%
	1000	13.157	4.2889	67.40%	42.702	27.078	36.59%
Huizinga et al. (2017)	2	9.2801	2.4197	73.93%	26.121	13.295	49.10%
	5	11.884	3.7426	68.51%	32.869	18.658	43.24%
	10	12.763	4.1112	67.79%	38.081	21.845	42.64%
	20	13.249	4.4008	66.78%	40.123	24.571	38.76%
	50	13.588	4.5633	66.42%	41.440	25.862	37.59%
	100	13.776	4.6534	66.22%	42.125	26.559	36.95%
	500	14.089	4.8010	65.92%	43.184	27.687	35.89%
	1000	14.191	4.8492	65.83%	43.504	28.035	35.56%
Tomiczek et al. (2014)	2	5.3163	1.1166	79.00%	17.327	7.0646	59.23%
	5	7.3442	2.0492	72.10%	23.088	10.776	53.33%
	10	8.0874	2.3941	70.40%	26.961	13.426	50.20%
	20	8.5370	2.6495	68.96%	29.209	15.822	45.83%
	50	8.9248	2.8507	68.06%	31.074	17.729	42.94%
	100	9.1507	2.9644	67.60%	32.076	18.797	41.40%
	500	9.5476	3.1534	66.97%	33.704	20.493	39.20%
	1000	9.6835	3.2149	66.80%	34.237	21.012	38.63%

485 **3.3. Flood Risk Estimations**

486 The EAD calculated using three damage curves under all flooding scenarios is summarized
487 in Table 6. The EAD varies depending on the synthetic storm data, and the damage curve used,
488 and the SLR scenario. For the present scenarios, the EAD due to storm surges ranges from USD
489 6.24 to 15.85 billion per year (bn/yr) without the Ike Dike, and from USD 2.62 to 6.16 bn/yr with
490 the Ike Dike. For the future scenarios without the Ike Dike, EAD ranges from USD 14.46 to
491 25.96 bn/yr under SLR scenario 1, from USD 14.87 to 26.66 bn/yr under SLR scenario 2, and
492 from USD 15.83 to 28.16 bn/yr under SLR scenario 3. With the Ike Dike, EAD ranges from
493 USD 5.78 to 14.72 bn/yr under SLR scenario 1, from USD 6.14 to 15.65 bn/yr under SLR
494 scenario 2, and from USD 7.27 to 17.25 bn/yr under SLR scenario 3. The EAD increases as the
495 sea level rises and decreases with the presence of the Ike Dike.

496 Table 7 presents the difference in EAD between scenarios without and with the Ike Dike,
497 illustrating the economic impact of the Ike Dike. The EAD difference ranges from USD 3.62 to
498 10.16 bn/yr under present scenarios, from USD 8.68 to 12.47 bn/yr under the SLR scenario 1,
499 from USD 8.74 to 12.54 bn/yr under the SLR scenario 2, and from USD 8.58 to 12.33 bn/yr
500 under the SLR scenario 3. For the overall trend in the future, the mean EAD difference across all
501 GCMs and damage curves used is USD 10.824 bn/yr under SLR scenario 1, USD 10.779 bn/yr
502 under SLR scenario 2, and USD 10.559 bn/yr under SLR scenario 3. Although the EAD
503 difference decreases as sea level rises, the change in difference is relatively minor.

504 Absolute values of EAD difference are higher under future scenarios than under present
505 scenarios. On the other hand, the percent reduction of the EAD is 58 – 68% under present
506 scenarios, which is higher than under future scenarios. The future scenarios incur a percent
507 reduction of 43 – 60% under SLR scenario 1, 41 – 59% under SLR scenario 2, and 39 – 56%
508 under SLR scenario 3, showing a clear decreasing trend as sea level rises. These results are
509 attributed to the fact that the absolute EAD without the Ike Dike increases with higher SLR
510 values and stronger hurricane intensity. Regardless of the scenario, it is demonstrated that the Ike
511 Dike substantially reduces the EAD in both present and future scenarios, highlighting its
512 effectiveness in mitigating storm surge risks.

514 **Table 6.** Comparison of the EAD caused by storm surge and SLR estimated by different damage curves
 515 for each flooding scenario (unit: USD 1 bn/yr)

Flooding Scenario #	Storm Surge			SLR
	Xu et al. (2023)	Huizinga et al. (2017)	Tomiczek et al. (2014)	
1	8.1281	9.4370	6.2424	
2	3.1473	3.7434	2.6253	
3	14.060	15.850	10.479	
4	4.5671	5.6864	3.7831	0
5	13.197	15.491	9.8559	
6	4.8879	6.1621	3.9471	
7	21.401	22.712	15.935	
8	8.9297	11.071	6.2996	
9	24.055	25.957	17.946	
10	12.021	14.715	8.4168	3.6328
11	19.552	21.211	14.460	
12	8.2012	10.370	5.7848	
13	21.991	23.212	16.419	
14	9.4539	11.524	6.6800	
15	24.619	26.658	18.469	
16	12.963	15.645	9.0630	3.9558
17	20.122	21.753	14.873	
18	8.7786	10.861	6.1373	
19	23.115	24.252	17.384	
20	10.787	12.905	7.6938	
21	26.038	28.161	19.619	
22	14.595	17.250	10.244	4.5552
23	21.400	22.951	15.853	
24	10.406	12.594	7.2691	

517 **Table 7.** Difference in EAD caused by storm surge between scenarios without and with the Ike Dike for
 518 each flooding scenario (unit of difference: USD 1 bn/yr)

Present / Future	SLR Scenario	GCM	Difference in EAD [Percent Reduction]		
			Xu et al. (2023)	Huizinga et al. (2017)	Tomiczek et al. (2014)
Present	-	CanESM	4.9808	5.6936	3.6171
			[61.28%]	[60.33%]	[57.94%]
		GFDL-6.0	9.4929	10.163	6.6963
	SLR Scenario 1 (0.99 m)	HadGEM-6.0	[67.52%]	[64.12%]	[63.90%]
			8.3086	9.3286	5.9088
			[62.96%]	[60.22%]	[59.95%]
	SLR Scenario 2 (1.08 m)	CanESM	12.471	11.641	9.6354
			[58.27%]	[51.25%]	[60.47%]
		GFDL-6.0	12.034	11.242	9.5292
Future	SLR Scenario 2 (1.08 m)	HadGEM-6.0	[50.03%]	[43.31%]	[53.10%]
			11.351	10.841	8.6752
			[58.05%]	[51.11%]	[59.99%]
	SLR Scenario 3 (1.26 m)	CanESM	12.537	11.688	9.7390
			[57.01%]	[50.35%]	[59.32%]
		GFDL-6.0	11.656	11.013	9.4060
		HadGEM-6.0	[47.35%]	[41.31%]	[50.93%]
			11.343	10.892	8.7357
			[56.37%]	[50.07%]	[58.74%]
		CanESM	12.328	11.347	9.6902
			[53.33%]	[46.79%]	[55.74%]
		GFDL-6.0	11.443	10.911	9.3750
		HadGEM-6.0	[43.95%]	[38.75%]	[47.79%]
			10.994	10.357	8.5839
			[51.38%]	[45.13%]	[54.15%]

520 **4. DISCUSSION**521 **4.1. Sensitivity of Storm Surge Risk to Damage Curve**

522 To evaluate the variability of EAD with respect to different damage curves, we compute the
523 coefficient of variation (CV) of EAD for each flooding scenario as follows (Table 8):

$$\delta = \frac{\sigma}{\mu}, \quad (13)$$

524 where μ and σ are the mean and the standard deviation, respectively, of the three EAD values
525 across three damage curves for each flooding scenario. The present scenarios show CVs around
526 0.20. For future scenarios without the Ike Dike, the CV ranges from 0.17 to 0.20, while it ranges
527 from 0.25 to 0.29 with the Ike Dike. These results indicate that the presence of the Ike Dike has a
528 minimal impact on the sensitivity of EAD in the present scenarios, while EAD is more sensitive
529 to the damage curve when the Ike Dike is considered in the future. It suggests that the selection
530 of the damage curve in future scenarios becomes more critical when assessing the effectiveness
531 of the Ike Dike based on EAD estimation.

532 Additionally, we compare the sensitivity to the choice of damage curve and other
533 parameters by computing the CV of EAD across different GCMs (Table 9) and SLR scenarios
534 (Table 10). For the sensitivity to GCM choice, the CV ranges from 0.2 to 0.29 for present
535 scenarios, around 0.1 for future scenarios without the Ike Dike, and around 0.2 with the Ike Dike.
536 These results imply that storm surge risk is more sensitive to the choice of the GCM for present
537 climate scenarios, while the damage curve has a greater impact than the GCM for future climate
538 scenarios. Meanwhile, the CVs of EAD across different SLR scenarios are less than 0.05 without
539 the Ike Dike and around 0.1 with the Ike Dike. Therefore, the result is less sensitive to SLR
540 scenario compared to the choices of damage curve and GCM. When comparing the sensitivity of
541 EAD between the scenarios without and with the Ike Dike, the CV of EAD is higher with the Ike
542 Dike than without it for every future scenario, while no clear trend appears under present
543 scenarios.

545 **Table 8.** Comparison of the coefficient of variance of EAD across different damage curves for each
 546 flooding scenario and the difference between the scenarios without and with the Ike Dike

Present / Future	SLR scenario	GCM	Ike Dike	Coefficient of Variance	
				EAD of Each Scenario	EAD Difference
Present	-	CanESM	X	0.2024	
			O	0.1764	0.2215
		GFDL-6.0	X	0.2031	
	SLR Scenario 1 (0.99 m)	GFDL-6.0	O	0.2044	0.2093
			X	0.2206	
		HadGEM-6.0	O	0.2224	0.2237
Future	SLR Scenario 2 (1.08 m)	CanESM	X	0.1796	
			O	0.2726	0.1296
		GFDL-6.0	X	0.1848	
			O	0.2697	0.1171
		HadGEM-6.0	X	0.1911	
			O	0.2825	0.1381
	SLR Scenario 3 (1.26 m)	CanESM	X	0.1763	
			O	0.2636	0.1267
		GFDL-6.0	X	0.1834	
			O	0.2636	0.1084
		HadGEM-6.0	X	0.1901	
			O	0.2755	0.1350
		CanESM	X	0.1706	
			O	0.2505	0.1199
		GFDL-6.0	X	0.1807	
			O	0.2521	0.1015
		HadGEM-6.0	X	0.1860	
			O	0.2653	0.1252

548 **Table 9.** Comparison of the coefficient of variance of EAD across different GCMs for each flooding
 549 scenario and the difference between the scenarios without and with the Ike Dike

Present / Future	SLR Scenario	Ike Dike	Coefficient of Variance		
			Xu et al. (2023)	Huizinga et al. (2017)	Tomiczek et al. (2014)
Present	-	X	0.2717	0.2651	0.2852
		O	0.2205	0.2465	0.2087
		Difference	0.3080	0.2831	0.2958
Future	SLR Scenario 1 (0.99 m)	X	0.1045	0.1041	0.1086
		O	0.2087	0.1936	0.2041
		Difference	0.0472	0.0356	0.0567
	SLR Scenario 2 (1.08 m)	X	0.1016	0.1055	0.1088
		O	0.2160	0.2045	0.2134
		Difference	0.0523	0.0383	0.0550
	SLR Scenario 3 (1.26 m)	X	0.0997	0.1079	0.1075
		O	0.1942	0.1827	0.1915
		Difference	0.0586	0.0456	0.0618

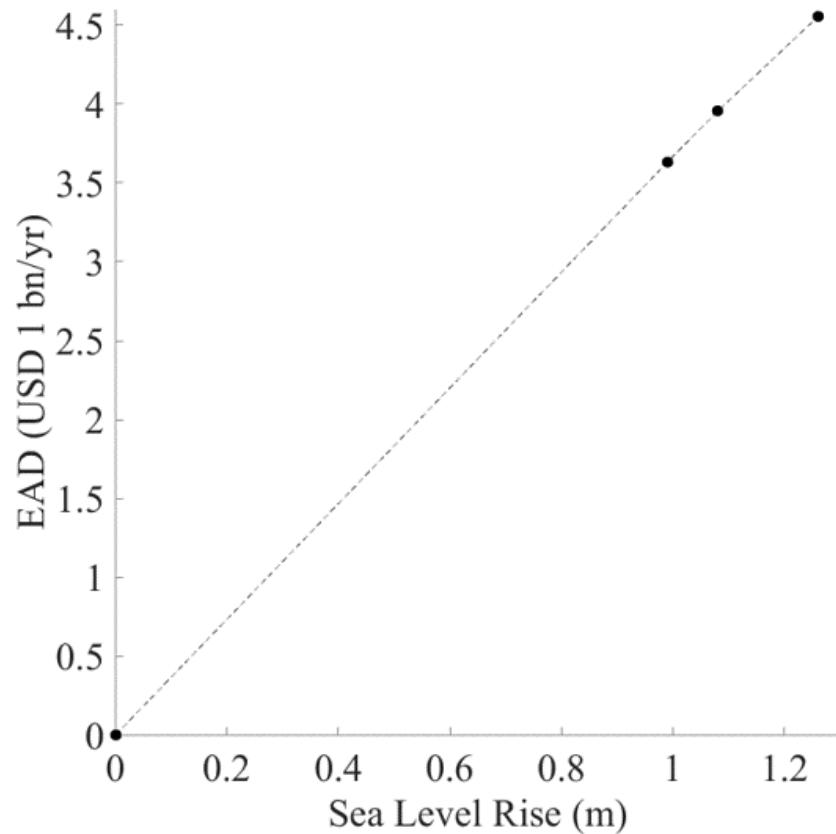
551 **Table 10.** Comparison of the coefficient of variance of EAD across different SLR scenarios for each
 552 future flooding scenario and the difference between the scenarios without and with the Ike Dike

Present / Future	GCM	Ike Dike	Coefficient of Variance		
			Xu et al. (2023)	Huizinga et al. (2017)	Tomiczek et al. (2014)
Future	CanESM	X	0.0393	0.0336	0.0445
		O	0.0985	0.0807	0.1046
		Difference	0.0086	0.0160	0.0053
	GFDL-6.0	X	0.0410	0.0418	0.0458
		O	0.0987	0.0808	0.1003
		Difference	0.0256	0.0153	0.0086
	HadGEM-6.0	X	0.0456	0.0405	0.0475
		O	0.1252	0.1036	0.1212
		Difference	0.0182	0.0276	0.0088

553

554 Overall, the choice of damage curve significantly influences the estimation of EAD
 555 depending on flood depth. As shown in Figure 9, the DR provided by different studies varies
 556 with flood depth. Xu et al. (2023) show lower DRs compared to Huizinga et al. (2017) and
 557 Tomiczek et al. (2014) when flood depths are less than approximately 0.27 m. For depth between
 558 0.27 m and 0.18 m, Xu et al. (2023) have lower DRs than Huizinga et al. (2017) but higher than
 559 Tomiczek et al. (2014). At depths greater than 1.8 m, Xu et al. (2023) provide the highest DR
 560 compared to the other two damage curves. As a result of our EAD estimation described in
 561 Section 3.3, we found that the highest EAD was calculated using Huizinga et al. (2017),
 562 followed by Xu et al. (2023), and the lowest using Tomiczek et al. (2014). This pattern aligns
 563 with the range of flood depths from 0.27 m to 1.8 m, suggesting that most of the vulnerable
 564 properties in the HGA are most frequently affected by storm surges with an annual average flood
 565 depth within this range. Approximately 90% of the residential properties in this study are located
 566 in Harris County, TX, which experiences the least flooding from storm surges within the HGA.

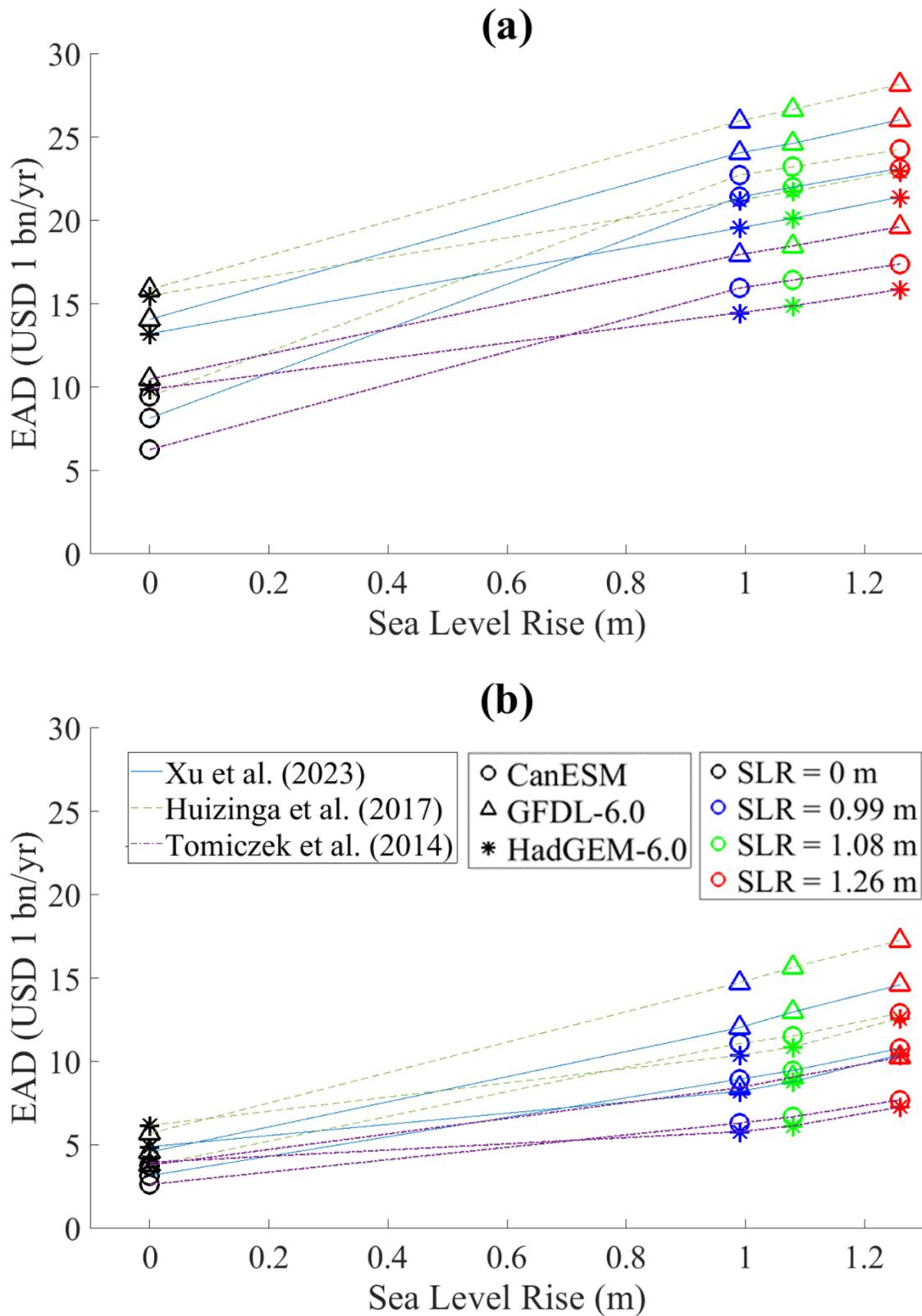
567 The remaining properties are in Galveston County, TX, which also experiences less flooding
568 compared to Chambers County, TX. Consequently, floods with high annual exceedance
569 probabilities, which significantly contribute to overall flood damage, tend to exhibit lower
570 depths.

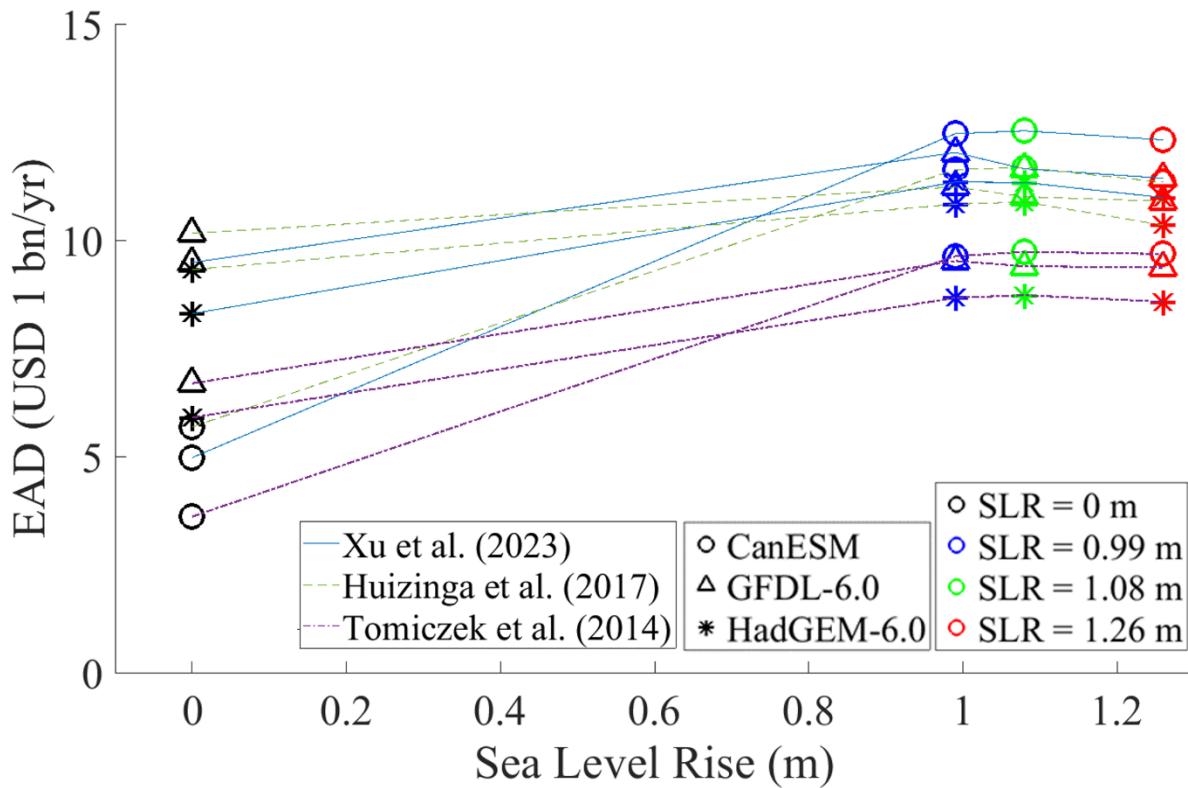

571

572 **4.2. Impact of Sea Level Rise**

573 In the future climate scenarios, the EAD due to SLR alone (no storm surge) is estimated as
574 USD 3.63 bn/yr for SLR scenario 1, USD 3.96 bn/yr for SLR scenario 2, and USD 4.56 bn/yr for
575 SLR scenario 3, as presented in Table 6. These estimates show a linear relationship between
576 EAD and SLR (Figure 14). The EAD values due to SLR are lower compared to those caused by
577 storm surges across all flooding scenarios with the same SLR. This indicates that the direct
578 impact of SLR on flood risk is less hazardous than that of storm surges. However, it is observed
579 that EAD due to storm surges also increases as the sea level rises (Figure 15). Although EAD
580 from storm surges is more sensitive to hurricane intensity compared to SLR, as indicated by the
581 variations of EAD attributed to different GCMs and SLR scenarios in Figure 15, this observation
582 highlights the importance of considering SLR in evaluating future storm surge risk.

583 To investigate the impact of SLR on the effectiveness of the Ike Dike, we evaluated the
584 variability of storm surge EAD differences between scenarios without and with the Ike Dike
585 across different SLR scenarios (Figure 16). Our findings conclude that SLR does not have a
586 major impact on the effectiveness of the Ike Dike in reducing storm surge risk, compared to the
587 influence of hurricane intensity and the choice of damage function. Notably, the effectiveness of
588 the Ike Dike is most sensitive to the choice of the damage curve for the future scenarios. This is
589 supported by comparing the CV of EAD differences between scenarios without and with the Ike
590 Dike. The CV across different SLR scenarios ranges from 0.005 to 0.03 (Table 10), which is less
591 than that across different GCMs (0.035 – 0.06) (Table 9) or damage curves (0.1 – 0.14) (Table 8).


592



593

594 **Figure 14.** Plot of EAD caused by SLR alone.

595

599

600 **Figure 16.** Plot of difference in EAD due to storm surge between the scenarios without and with the Ike
601 Dike.

602

603 4.3. Cost-Effectiveness of the Ike Dike

604 We assess the cost-effectiveness of the Ike Dike using a benefit-to-cost (B/C) ratio,
605 considering the Ike Dike feasible if the B/C ratio is greater than 1 (Davlasheridze et al., 2019).
606 The EAD difference is used to represent the benefit, while the cost estimate includes construction
607 costs and operation and maintenance costs over 50 years. According to the economic analysis in
608 the USACE's report (USACE & GLO, 2021b), the average annual construction cost is USD
609 1.077 bn/yr, and the average annual operation and maintenance cost is USD 0.131 bn/yr,
610 amounting to a total average annual project cost of USD 1.208 bn/yr amortized over 19 years, in
611 2021 dollars. These estimates assume that construction begins in 2025 and ends in 2043, with
612 operations and maintenance continuing for 50 years from 2043 onwards. The analysis used the
613 FY 2021 federal interest rate of 2.5% based on the year of 2043. Table 11 presents the B/C ratio
614 calculations for each flooding scenario. For the present scenarios, the B/C ratio ranges from 2.99
615 to 8.41, demonstrating the feasibility of the Ike Dike under the present climate and MSL. For the

616 future scenarios, the B/C ratio ranges from 7.23 to 10.38, indicating the Ike Dike is even more
617 economically beneficial under future climate conditions with increased sea levels. These results
618 imply that the Ike Dike is a cost-effective solution for mitigating storm surge risks under both
619 current and future conditions.

620 However, the estimated B/C ratios are much higher compared to the values reported by
621 USACE and GLO (2021b). The equivalent annual net benefits for residential and commercial
622 structures are USD 1.529 bn/yr under the low SLR scenario (0.43 m by 2085), USD 1.959 bn/yr
623 under the intermediate SLR scenario (0.64 m by 2085), and USD 3.320 bn/yr under the high
624 SLR scenario (1.34 m by 2085). This results in B/C ratios of 1.266, 1.622, and 2.748,
625 respectively (Table 12). The USACE's study utilized over 120 events of historical hurricanes and
626 tropical storms from the year 1851 to the present, which have significantly lower intensity and
627 frequency compared to the synthetic hurricanes used in this study. The synthetic tracks were
628 statistically downscaled from GCMs under the SSP5-8.5 scenario, which is very conservative,
629 meaning it represents the worst possible case or extreme hazard scenario, with respect to both
630 storm intensity and SLR. Our findings indicate that coastal flood risk and the effectiveness of the
631 coastal barrier are more sensitive to storm intensity than to SLR. Consequently, the B/C ratio is
632 also more affected by the variance of the climatological variables. Moreover, our scenario is the
633 most conservative among the SSP-based scenarios projected by the IPCC, suggesting that the
634 B/C ratio estimates would align more closely with those from the USACE's analysis if a less
635 conservative scenario were used. Therefore, our results represent an upper bound for estimates of
636 flood damage and risk.

637 Although the B/C ratio provides a quantified metric that justifies the feasibility of the Ike
638 Dike, it should not be the sole criterion for deciding on the construction of the system. The B/C
639 ratio is based on the difference in EAD, which means it does not fully capture the absolute flood
640 damage that could still occur from storm surges in the HGA even with the Ike Dike in place. If
641 storm surge risk is still significant and severe to the area with the Ike Dike, an improved plan
642 may be required to protect the HGA, even if the B/C ratio is high enough. This suggests
643 considering not only the relative economic impacts but also the absolute flood risk with the
644 presence of the Ike Dike. Furthermore, this study's benefit estimation only considered residential
645 properties in Harris and Galveston Counties, TX. It does not include commercial, industrial, or

646 agricultural properties and lands, which are also significant contributors to the region's overall
647 flood risk. Especially, properties and lands in Chambers County, TX are not included in this cost-
648 effectiveness analysis while this area is mostly vulnerable to flooding from storm surges and
649 SLR. Additionally, the USACE's plan includes not only the Ike Dike barrier system along
650 Galveston Island and Bolivar Peninsula but also a bay defense system along Galveston Bay,
651 which incorporates lake and bay gate systems as well as nonstructural improvements (USACE &
652 GLO, [2021a](#)). These two proposed systems likely have interdependent effects on protecting the
653 HGA. However, this study focuses solely on the Ike Dike barrier system and does not consider
654 the bay defense system, which may influence the overall B/C analysis. Therefore, the complete
655 economic impact of the Ike Dike on the HGA is not fully represented.

656 Importantly, cost-benefit analysis while helping to validate the efficacy and feasibility of the
657 proposed coastal spine, overlook equity considerations related to the differential impact (in terms
658 of risk reduction) this project may have on homeowners with different socioeconomic and
659 demographic backgrounds or on neighborhoods differing by social and economic makeup (Hahn,
660 [2021](#); Martens, [2011](#)). The analysis conducted here was a simple, traditional one, considering
661 only economic value, thereby neglecting the indirect costs incurred by disaster impacts on health
662 and livelihoods. Moreover, the economic analysis does not address the ramifications of the Ike
663 Dike on related issues of cultural importance, and social capital. Nor has this study explored how
664 public support for the Ike Dike (e.g., [\(Ross & Atoba, 2022\)](#)) – a factor critical for securing and
665 sustaining funding for the mitigation project – may change with consideration of future SLR and
666 changing climate conditions. Critically, our analysis did not factor in future development patterns
667 and subsequent land-use change in the HGA, which will undoubtedly have implications for the
668 efficiency and feasibility evaluations of the proposed coastal barrier system. These factors
669 suggest that a comprehensive socioeconomic reanalysis of the Ike Dike's effectiveness is
670 recommended in the future, especially if storm surge risk remains high despite the storm surge
671 barrier system.

672

673 **Table 11.** B/C ratios over 50 years for each flooding scenario

Present / Future	SLR Scenario	GCM	Xu et al. (2023)	Huizinga et al. (2017)	Tomiczek et al. (2014)
Present	-	CanESM	4.1232	4.7132	2.9943
		GFDL-6.0	7.8579	8.4131	5.5433
		HadGEM-6.0	6.8780	7.7222	4.8914
Future	SLR Scenario 1 (0.99 m)	CanESM	10.3237	9.6366	7.9763
		GFDL-6.0	9.9619	9.3063	7.8884
		HadGEM-6.0	9.3965	8.9743	7.1815
Future	SLR Scenario 2 (1.08 m)	CanESM	10.3783	9.6755	8.0621
		GFDL-6.0	9.6490	9.1167	7.7864
		HadGEM-6.0	9.3899	9.0166	7.2315
Future	SLR Scenario 3 (1.26 m)	CanESM	10.2053	9.3932	8.0217
		GFDL-6.0	9.4727	9.0323	7.7608
		HadGEM-6.0	9.1010	8.5737	7.1059

674

675 **Table 12.** Total equivalent annual damages to residential and commercial structures and net benefit
676 scenarios reported by the USACE and GLO (2021b) (unit of damages, benefits, and costs: USD 1 bn/yr)

SLR Scenario by 2085	Equivalent Annual Damages		Equivalent Annual Benefits	Total Average Annual Costs	B/C Ratio
	No Ike Dike	Ike Dike			
Low (0.43 m)	\$2.310	\$0.781	\$1.529		1.266
Intermediate (0.64 m)	\$3.328	\$1.369	\$1.959	\$1.208	1.622
High (1.34 m)	\$7.735	\$4.415	\$3.320		2.748

677

678 **5. CONCLUSION**

679 In this study, we validated a storm surge model against the data from Hurricane Ike, and
680 then used this model to estimate the probabilistic risk of storm surge flooding in the HGA. Flood
681 maps were produced from storm surge simulation for different scenarios, considering both the
682 presence and absence of the Ike Dike. These scenarios incorporated data from several GCMs and
683 different SLR projections. Statistical downscaling of the GCMs generated synthetic tracks of
684 hurricanes that significantly impact the HGA with storm surges. The hydrodynamic model
685 simulated these tracks and produced flood maps for each hurricane. Annual maxima of these
686 flood maps were used to perform extreme value analysis to construct flood maps for specific
687 annual exceedance probabilities. By applying building damage curves on each residential
688 property with the corresponding flood depth, flood damage was estimated for a given return
689 period. Finally, flood risk was quantified by expected annual damage (EAD) under different
690 flooding scenarios, offering insights into how the Ike Dike might change flood risk under various
691 conditions of climate change and SLR. We found that the Ike Dike would reduce probabilistic
692 flood depth and flooded areal extent behind the barrier under both present and future conditions,
693 leading to the reduction in flood damage on the residential properties in the HGA. This reduction
694 mitigated the storm surge risk, demonstrating the feasibility of the Ike Dike by providing B/C
695 ratios greater than 1 for all flooding scenarios.

696 However, we observed a wide range of EAD values, which varied depending on the SLR
697 scenarios, GCMs and residential building damage curves used. The sensitivity analysis of the
698 EAD to these input parameters found that the EAD was most sensitive to the GCM for present
699 climate scenarios and to the choice of damage curve for future climate scenarios, while being
700 least sensitive to SLR scenarios for both present and future climate scenarios. This trend was
701 consistent with the EAD difference that represents the effect of the Ike Dike on mitigating storm
702 surge risk. This suggests that the choice of climate model (related to hurricane intensity and
703 frequency) and the choice of damage function are critical factors in evaluating storm surge risk,
704 as well as the performance of the coastal defense, while they remain robust across different SLR
705 scenarios for future climate scenarios.

706 Under future conditions, although the direct flood risk due to SLR is less than the risk from
707 storm surges, the overall storm surge risk is amplified by the increased sea level. Nonetheless,

708 the effectiveness of the Ike Dike is only marginally impacted by SLR. The selection of the
709 properties to be used was also crucial to the risk analysis. The study used only residential
710 properties located in Harris and Galveston Counties, TX, but Chambers County, TX, presented
711 greater flood depth and flooded area, which is likely to significantly impact the flood risk in the
712 HGA. Further study should pursue a more comprehensive analysis, in terms of property type and
713 socioeconomic factors considered, of the effectiveness of the Ike Dike.

714

715 **ACKNOWLEDGMENT**

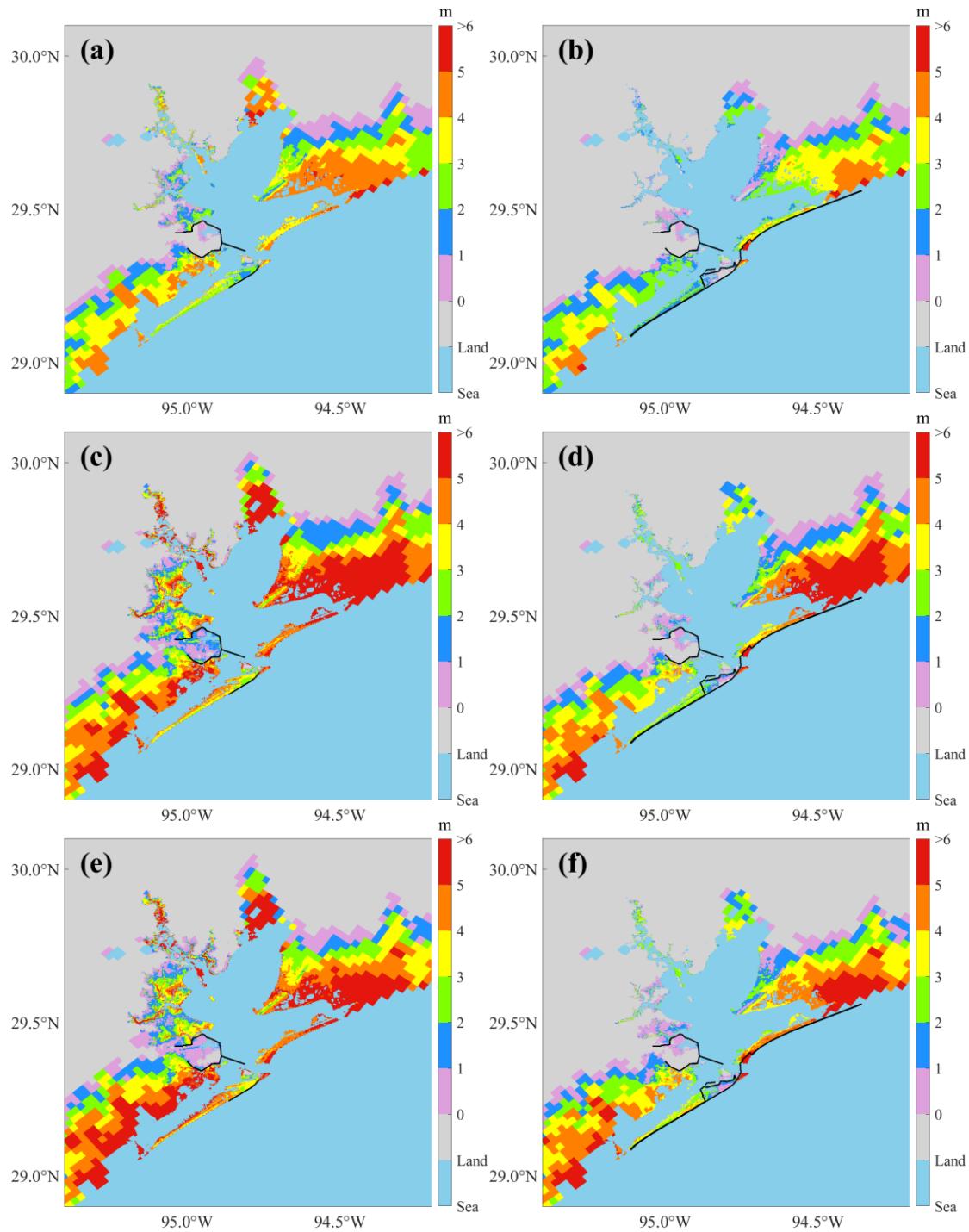
716 This research was funded by NSF award 2228485 and 2228486 under the program
717 Strengthening American Infrastructure (SAI). We are grateful Prof. Kerry Emanuel for providing
718 us synthetic tropical cyclone track datasets from WindRiskTech. We used UMGPT to ensure
719 clear and grammatically correct English expression.

720

721 **ORCID**

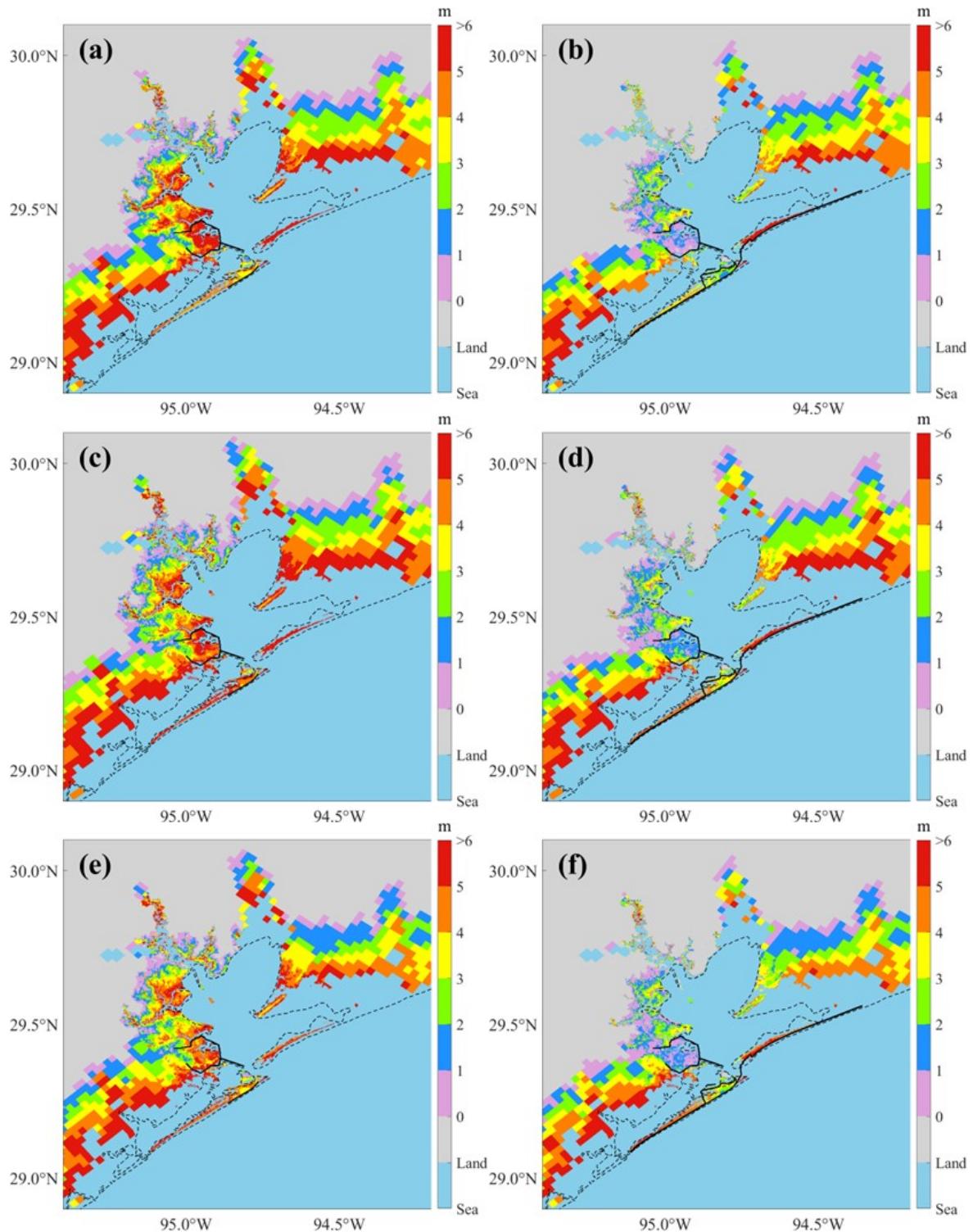
722 Seokmin Son: <https://orcid.org/0009-0009-7207-351X>

723 Chaoran Xu: <https://orcid.org/0000-0001-8392-3705>

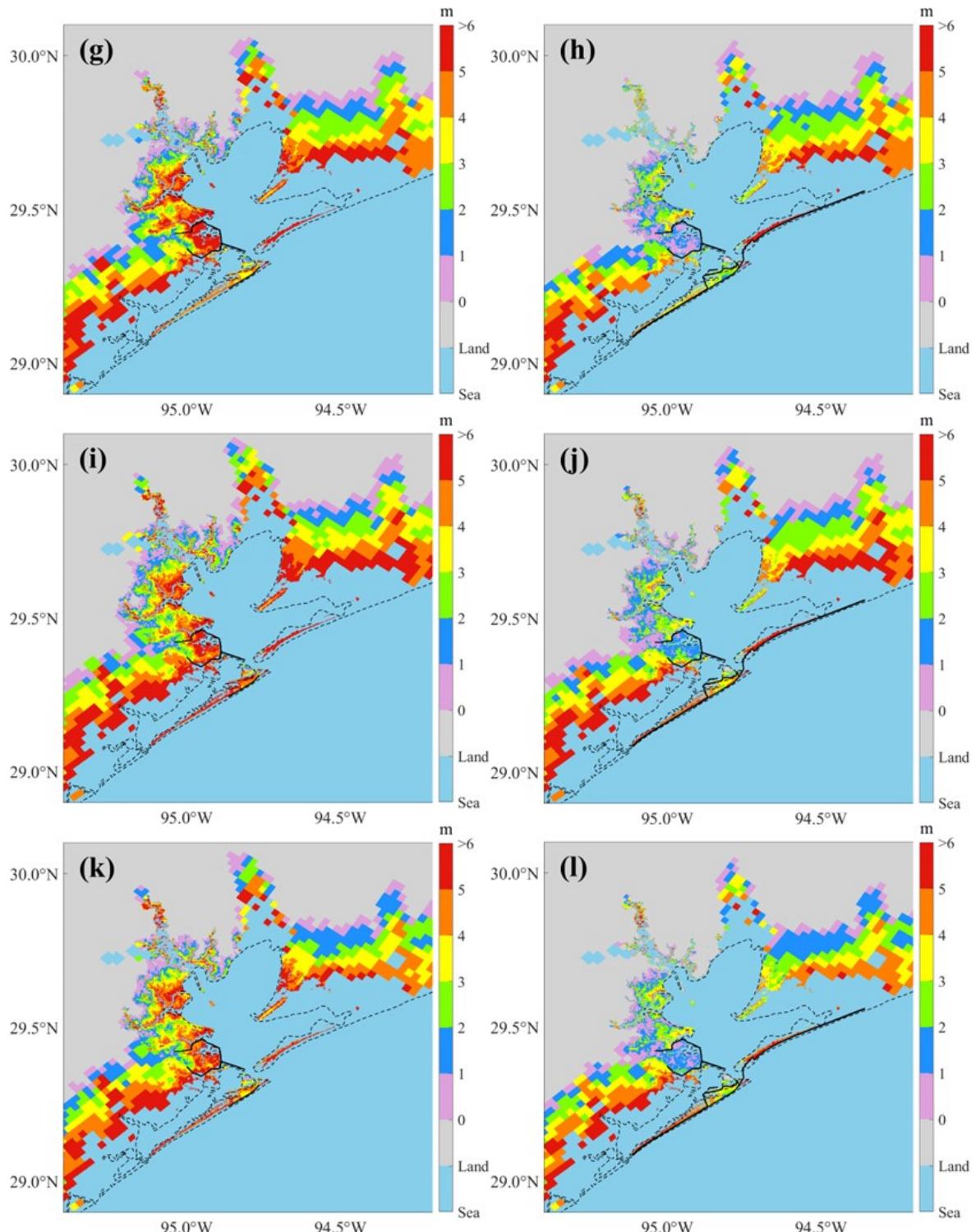

724 Meri Davlasherdze: <https://orcid.org/0000-0001-5468-7192>

725 Ashley D. Ross: <https://orcid.org/0000-0002-8415-3383>

726 Jeremy D. Bricker: <https://orcid.org/0000-0002-7503-6652>

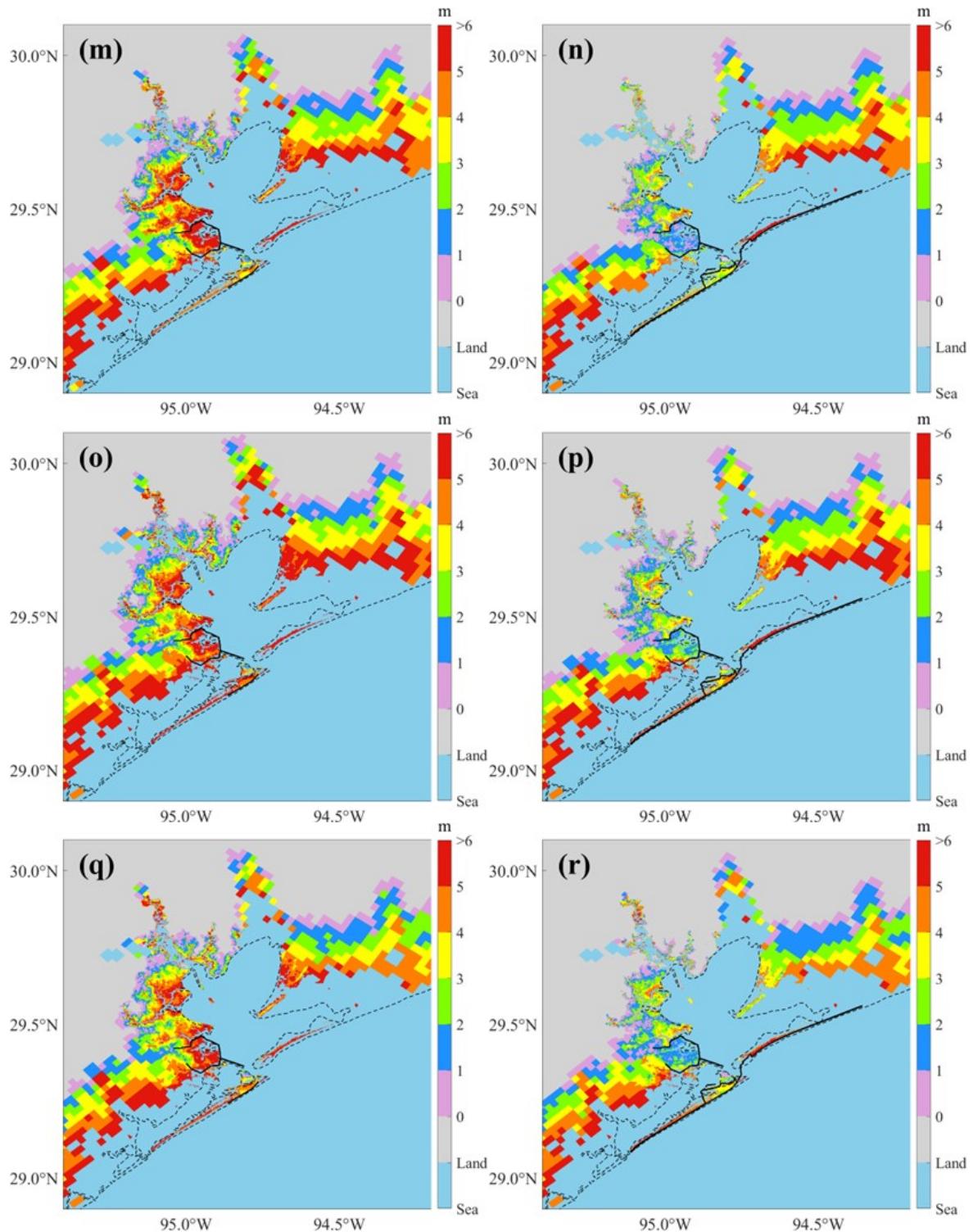

727

728 APPENDIX A: PREDICTIONS OF 100-YEAR FLOOD MAPS


729

730 **Figure A1.** Predictions of 100-year flood maps under different flooding scenarios for the present climate.
731 The black lines are existing seawalls (for scenarios without the Ike Dike) or the proposed barrier system
732 (for Ike Dike scenarios): (a) scenario 1; (b) scenario 2; (c) scenario 3; (d) scenario 4; (e) scenario 5; (f)
733 scenario 6

734


735 **Figure A2.** Predictions of 100-year flood maps under different flooding scenarios for future climate. The
 736 black solid lines are existing seawalls (for scenarios without Ike Dike) or the proposed barrier system (for
 737 scenarios with Ike Dike), and the black dashed line is the coastline under present conditions: (a) scenario
 738 7; (b) scenario 8; (c) scenario 9; (d) scenario 10; (e) scenario 11; (f) scenario 12

739
740
741

Figure A2. (g) scenario 13; (h) scenario 14; (i) scenario 15; (j) scenario 16; (k) scenario 17; (l) scenario 18 (cont'd)

742

743

744 **Figure A2.** (m) scenario 19; (n) scenario 20; (o) scenario 21; (p) scenario 22; (q) scenario 23; (r) scenario
 745 24 (cont'd)

746

747 **REFERENCES**

748 Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). *Crop evapotranspiration - Guidelines*
749 *for computing crop water requirements - FAO Irrigation and drainage paper 56*. Rome,
750 Italy: Food and Agriculture Organization of the United Nations.

751 Arnell, N. W. (1989). Expected Annual Damages and Uncertainties in Flood Frequency
752 Estimation. *Journal of Water Resources Planning and Management-Asce*, 115(1), 94-107.

753 Bedient, P. B., Huber, W. C., & Vieux, B. E. (2019). *Hydrology and floodplain analysis* (Sixth
754 Edition. ed.). New York, NY: Pearson.

755 Berg, R. (2009). *Tropical Cyclone Report: Hurricane Ike (AL092008)*, National Hurricane
756 Center.

757 Bittle, J. (2023). The 'Ike Dike' is the Army Corps of Engineers' largest project ever. It may not
758 be big enough. *Grist Magazine*. Retrieved from <https://grist.org/extreme-weather/houston-ike-dike-army-corps-flooding/>

760 Blackburn, J. (2019). Storm Surge and the Future of the Houston Ship Channel. *Reduce
761 Flooding*.

762 Bunya, S., Dietrich, J. C., Westerink, J. J., Ebersole, B. A., Smith, J. M., Atkinson, J. H., . . .
763 Roberts, H. J. (2010). A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind
764 Wave, and Storm Surge Model for Southern Louisiana and Mississippi. Part I: Model
765 Development and Validation. *Monthly Weather Review*, 138(2), 345-377.

766 Charnock, H. (1955). Wind Stress on Water - an Hypothesis - Wind Stress on a Water Surface.
767 *Quarterly Journal of the Royal Meteorological Society*, 81(350), 639-640.

768 Chouinard, L. E., Liu, C., & Cooper, C. K. (1997). Model for severity of hurricanes in Gulf of
769 Mexico. *Journal of Waterway Port Coastal and Ocean Engineering*, 123(3), 120-129.

770 Davlasherdze, M., Atoba, K. O., Brody, S., Highfield, W., Merrell, W., Ebersole, B., . . . Gilmer,
771 R. W. (2019). Economic impacts of storm surge and the cost-benefit analysis of a coastal
772 spine as the surge mitigation strategy in Houston-Galveston area in the USA. *Mitigation
773 and Adaptation Strategies for Global Change*, 24(3), 329-354.

774 Davlasherdze, M., Fan, Q., Highfield, W., & Liang, J. C. (2021). Economic impacts of storm
775 surge events: examining state and national ripple effects. *Climatic Change*, 166(1-2).

776 Deltaires. (2024a). *D-Flow Flexible Mesh. Computational Cores and User Interface. User
777 Manual*, Delft, Netherlands: Deltaires.

778 Deltaires. (2024b). *Delft3D-WAVE. Simulation of short-crested waves with SWAN. User Manual*,
779 Delft, Netherlands: Deltaires.

780 Deltaires. (2024c). *Delft3D-WES. Wind Enhance Scheme for cyclone modelling. User Manual*,
781 Delft, Netherlands: Deltaires.

782 Demuth, J. L., DeMaria, M., & Knaff, J. A. (2006). Improvement of advanced microwave
783 sounding unit tropical cyclone intensity and size estimation algorithms. *Journal of*
784 *Applied Meteorology and Climatology*, 45(11), 1573-1581.

785 Dewitz, J. (2023). National Land Cover Database (NLCD) 2021 Products: U.S. Geological
786 Survey data release. Retrieved from: <https://doi.org/10.5066/P9JZ7AO3>

787 Douglas, E. (2022). U.S. Senate approves bill containing Texas’ “Ike Dike” coastal protection
788 project. *The Texas Tribune*. Retrieved from
<https://www.texastribune.org/2022/07/28/texas-ike-dike-senate/>

790 Ebersole, B. A., Massey, T. C., Melby, J. A., Nadal-Caraballo, N. C., Hendon, D. L., Richardson,
791 T. W., & Whalin, R. W. (2018). *Final Report - Ike Dike Concept for Reducing Hurricane*
792 *Storm Surge in the Houston Galveston Region*, Jackson, MS: Jackson State University.

793 Egbert, G. D., & Erofeeva, S. Y. (2002). Efficient inverse Modeling of barotropic ocean tides.
794 *Journal of Atmospheric and Oceanic Technology*, 19(2), 183-204.

795 Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30 years.
796 *Nature*, 436(7051), 686-688.

797 Emanuel, K., Sundararajan, R., & Williams, J. (2008). Hurricanes and global warming - Results
798 from downscaling IPCC AR4 simulations. *Bulletin of the American Meteorological*
799 *Society*, 89(3), 347–368.

800 Federal Emergency Management Agency [FEMA]. (2008). *Mississippi Coastal Analysis Project.*
801 *Coastal Documentation and Main Engineering Report*, Washington, DC: US Department
802 of Homeland Security.

803 Federal Emergency Management Agency [FEMA]. (2013). *Multi-hazard Loss Estimation*
804 *Methodology. Flood Model. Hazus-MH. Technical Manual*, Washington, DC: US
805 Department of Homeland Security.

806 Federal Emergency Management Agency [FEMA]. (2023). *Guidance for Flood Risk Analysis*
807 *and Mapping, Coastal Flood Frequency and Extreme Value Analysis*.

808 Frazier, T. G., Wood, N., Yarnal, B., & Bauer, D. H. (2010). Influence of potential sea level rise
809 on societal vulnerability to hurricane storm-surge hazards, Sarasota County, Florida.
810 *Applied Geography*, 30(4), 490-505.

811 GEBCO Compilation Group. (2023). GEBCO 2023 Grid. General Bathymetric Chart of the
812 Oceans [GEBCO]. Retrieved from: [https://doi.org/10.5285/f98b053b-0cbc-6c23-e053-
813 6c86abc0af7b](https://doi.org/10.5285/f98b053b-0cbc-6c23-e053-6c86abc0af7b)

814 Geiger, T., Frieler, K., & Levermann, A. (2016). High-income does not protect against hurricane
815 losses. *Environmental Research Letters*, 11(8), 084012.

816 Graham, H., & Nunn, D. (1959). *Meteorological Considerations Pertinent to Standard Project
817 Hurricane, Atlantic and Gulf Coasts of the United States*. National Hurricane Research
818 Project [Report No. 33], Washington, DC: US Department of commerce, US Weather
819 bureau.

820 Gringorten, I. I. (1963). A Plotting Rule for Extreme Probability Paper. *Journal of Geophysical
821 Research*, 68(3), 813-814.

822 Hahn, R. W. (2021). Equity in cost-benefit analysis. *Science*, 372(6541), 439-439.

823 Harris County Flood Control District [HCFCD]. (2009). *Ike Storm Surge Inundation Maps*.

824 Holland, G. J. (1980). An Analytic Model of the Wind and Pressure Profiles in Hurricanes.
825 *Monthly Weather Review*, 108(8), 1212-1218.

826 Holland, G. J., Belanger, J. I., & Fritz, A. (2010). A Revised Model for Radial Profiles of
827 Hurricane Winds. *Monthly Weather Review*, 138(12), 4393-4401.

828 Huizinga, J., de Moel, H., & Szewczyk, W. (2017). *Global flood depth-damage functions.
829 Methodology and the database with guidelines* [EUR 28552 EN], Luxembourg:
830 European Union.

831 Intergovernmental Panel on Climate Change [IPCC]. (2023). *Climate Change 2023: Synthetic
832 Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the
833 Intergovernmental Panel on Climate Change* [Core Writing Team, H. Lee and J. Romero
834 (eds.)], Geneva, Switzerland: IPCC.

835 Jonkman, S. N., Lendering, K. T., Berchum, E. C. v., Nillesen, A., Mooyaart, L., Vries, P. d., . . .
836 Nooij, R. (2015). *Coastal spine system - interim design report*, TU Delft, Iv-Infra, Royal
837 HaskoningDHV, Texas A&M University, Defacto Urban & Landscape design.

838 Kalourazi, M. Y., Siadatmousavi, S. M., Yeganeh-Bakhtiary, A., & Jose, F. (2020). Simulating
839 tropical storms in the Gulf of Mexico using analytical models. *Oceanologia*, 62(2), 173-
840 189.

841 Ke, Q., Jonkman, S. N., van Gelder, P. H. A. J. M., & Bricker, J. D. (2018). Frequency Analysis
842 of Storm-Surge-Induced Flooding for the Huangpu River in Shanghai, China. *Journal of*
843 *Marine Science and Engineering*, 6(2), 70.

844 Ke, Q., Yin, J. S., Bricker, J. D., Savage, N., Buonomo, E., Ye, Q. H., . . . Jonkman, S. N. (2021).
845 An integrated framework of coastal flood modelling under the failures of sea dikes: a
846 case study in Shanghai. *Natural Hazards*, 109(1), 671-703.

847 Keller, M. (2024). Will America's biggest-ever civil engineering project ever get started?
848 *Construction Briefing*. Retrieved from <https://www.constructionbriefing.com/news/will-america-s-biggest-ever-civil-engineering-project-ever-get-started-/8034839.article>

849

850 Kleinosky, L. R., Yarnal, B., & Fisher, A. (2007). Vulnerability of Hampton Roads, Virginia to
851 storm-surge flooding and sea-level rise. *Natural Hazards*, 40(1), 43-70.

852 Knutson, T. R., & Tuleya, R. E. (2004). Impact of CO₂-induced warming on simulated hurricane
853 intensity and precipitation:: Sensitivity to the choice of climate model and convective
854 parameterization. *Journal of Climate*, 17(18), 3477-3495.

855 Krayer, W. R., & Marshall, R. D. (1992). Gust Factors Applied to Hurricane Winds. *Bulletin of*
856 *the American Meteorological Society*, 73(5), 613-617.

857 Loaiza, M. A. D., Bricker, J. D., Meynadier, R., Duong, T. M., Ranasinghe, R., & Jonkman, S. N.
858 (2022). Development of damage curves for buildings near La Rochelle during storm
859 Xynthia based on insurance claims and hydrodynamic simulations. *Natural Hazards and*
860 *Earth System Sciences*, 22(2), 345-360.

861 Makin, V. K. (2005). A note on the drag of the sea surface at hurricane winds. *Boundary-Layer*
862 *Meteorology*, 115(1), 169-176.

863 Martens, K. (2011). Substance precedes methodology: on cost-benefit analysis and equity.
864 *Transportation*, 38(6), 959-974.

865 Mendelsohn, R., Emanuel, K., Chonabayashi, S., & Bakkensen, L. (2012). The impact of climate
866 change on global tropical cyclone damage. *Nature Climate Change*, 2(3), 205-209.

867 Merrell, W. (2021). Comments on the Coastal Texas Study [OPED 1 - Ike Dike plan is better but
868 still not good enough].

869 Merrell, W., Reynolds, L. G., Cardenas, A., Gunn, J. R., & Hufton, A. J. (2011). The Ike Dike: A
870 Coastal Barrier Protecting the Houston/Galveston Region from Hurricane Storm Surge.
871 *Macro-Engineering Seawater in Unique Environments: Arid Lowlands and Water Bodies*
872 *Rehabilitation*, 691-716.

873 National Hurricane Center [NHC]. (2018). *Costliest U.S. tropical cyclones table updated*.

874 NOAA. (2000). *Tidal Datums and Their Applications* [1], NOAA, National Ocean Service,
875 Center for Operational Oceanographic Products and Services.

876 NOAA National Centers for Environmental Information. (2023). Coastal Relief Models (CRMs).

877 NOAA National Centers for Environmental Information. Retrieved from:
878 <https://doi.org/10.25921/5ZN5-KN44>

879 Peters, X. (2024). Galveston's Texas-Size Plan to Stop the Next Big Storm. *Smithsonian*
880 *Magazine*. Retrieved from [https://www.smithsonianmag.com/science-nature/galveston-](https://www.smithsonianmag.com/science-nature/galveston-texas-plan-stop-next-big-storm-hurricane-ike-180984487/)
881 [texas-plan-stop-next-big-storm-hurricane-ike-180984487/](https://www.smithsonianmag.com/science-nature/galveston-texas-plan-stop-next-big-storm-hurricane-ike-180984487/)

882 Ross, A. D., & Atoba, K. O. (2022). The Dimensions of Individual Support for Coastal Hazard
883 Mitigation: Analysis of a Survey of Upper Texas Coast Residents. *Natural Hazards*
884 *Review*, 23(2), 04022004.

885 Simpson, R. H. (1974). The Hurricane Disaster Potential Scale. *Weatherwise*, 27(4), 169-186.

886 Suppasri, A., Mas, E., Charvet, I., Gunasekera, R., Imai, K., Fukutani, Y., . . . Imamura, F.
887 (2013). Building damage characteristics based on surveyed data and fragility curves of
888 the 2011 Great East Japan tsunami. *Natural Hazards*, 66(2), 319-341.

889 Sweet, W. V., Hamlington, B. D., Kopp, R. E., Weaver, C. P., Barnard, P. L., Bekaert, D., . . .
890 Zuzak, C. (2022). *Global and Regional Sea Level Rise Scenarios for the United States:*
891 *Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines*
892 [NOAA Technical Report NOS 01], Silver Spring, MD: NOAA, National Ocean Service.

893 Tariq, M. A. U. R. (2013). Risk-based flood zoning employing expected annual damages: the
894 Chenab River case study. *Stochastic Environmental Research and Risk Assessment*, 27(8),
895 1957-1966.

896 Tebaldi, C., Strauss, B. H., & Zervas, C. E. (2012). Modelling sea level rise impacts on storm
897 surges along US coasts. *Environmental Research Letters*, 7(1), 014032.

898 Tomiczek, T., Kennedy, A., & Rogers, S. (2014). Collapse Limit State Fragilities of Wood-
899 Framed Residences from Storm Surge and Waves during Hurricane Ike. *Journal of*
900 *Waterway Port Coastal and Ocean Engineering*, 140(1), 43-55.

901 U.S. Army Corps of Engineers [USACE]. (1981). *Galveston's bulwark against the sea: history of*
902 *the Galveston seawall*, U.S. Army Corps of Engineers - Galveston District.

903 U.S. Army Corps of Engineers [USACE] & Texas General Land Office [GLO]. (2021a). *Coastal*
904 *Texas Protection and Restoration Feasibility Study. Final Report*, U.S. Army Corps of
905 Engineers - Galveston District.

906 U.S. Army Corps of Engineers [USACE] & Texas General Land Office [GLO]. (2021b). *Coastal*
907 *Texas Protection and Restoration Feasibility Study. Final Report. Appendix E-1:*
908 *Economics for the Coastal Storm Risk Management - Upper Texas Coast.*, U.S. Army
909 Corps of Engineers - Galveston District.

910 van den Brink, H. W., Können, G. P., & Opsteegh, J. D. (2003). The reliability of extreme surge
911 levels, estimated from observational records of order hundred years. *Journal of Coastal*
912 *Research*, 19(2), 376-388.

913 Vickery, P. J., & Wadhera, D. (2008). Statistical Models of Holland Pressure Profile Parameter
914 and Radius to Maximum Winds of Hurricanes from Flight-Level Pressure and H*Wind
915 Data. *Journal of Applied Meteorology and Climatology*, 47(10), 2497-2517.

916 Webster, P. J., Holland, G. J., Curry, J. A., & Chang, H. R. (2005). Changes in tropical cyclone
917 number, duration, and intensity in a warming environment. *Science*, 309(5742), 1844-
918 1846.

919 Weems, J. E. (1952). *The Great Galveston Hurricane of 1900: A Historical Overview*: Handbook
920 of Texas Online.

921 Willoughby, H. E., & Rahn, M. E. (2004). Parametric representation of the primary hurricane
922 vortex. Part I: Observations and evaluation of the Holland (1980) model. *Monthly*
923 *Weather Review*, 132(12), 3033-3048.

924 Woodruff, J. D., Irish, J. L., & Camargo, S. J. (2013). Coastal flooding by tropical cyclones and
925 sea-level rise. *Nature*, 504(7478), 44-52.

926 Xie, L., Bao, S. W., Pietrafesa, L. J., Foley, K., & Fuentes, M. (2006). A real-time hurricane
927 surface wind forecasting model: Formulation and verification. *Monthly Weather Review*,
928 134(5), 1355-1370.

929 Xu, C. R., Nelson-Mercer, B. T., Bricker, J. D., Davlasherdze, M., Ross, A. D., & Jia, J. J.
930 (2023). Damage Curves Derived from Hurricane Ike in the West of Galveston Bay Based
931 on Insurance Claims and Hydrodynamic Simulations. *International Journal of Disaster
932 Risk Science*, 14(6), 932-946.

933 Yang, Z. Q., Wang, T. P., Leung, R., Hibbard, K., Janetos, T., Kraucunas, I., . . . Wilbanks, T.
934 (2014). A modeling study of coastal inundation induced by storm surge, sea-level rise,
935 and subsidence in the Gulf of Mexico. *Natural Hazards*, 71(3), 1771-1794.

936 Zweers, N. C., Makin, V. K., de Vries, J. W., & Burgers, G. (2010). A sea drag relation for
937 hurricane wind speeds. *Geophysical Research Letters*, 37(21), L21811.

938