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We present a first study of the effects of renormalization-group resummation (RGR) and leading-

renormalon resummation (LRR) on the systematic errors of the unpolarized isovector nucleon generalized

parton distribution in the framework of large-momentum effective theory. This work is done using lattice

gauge ensembles generated by the MILC Collaboration, consisting of 2þ 1þ 1 flavors of highly improved

staggered quarks with a physical pion mass at lattice spacing a ≈ 0.09 fm and a box width L ≈ 5.76 fm. We

present results for the nucleon H and E generalized parton distributions (GPDs) with average boost

momentum Pz ≈ 2 GeV at momentum transfers Q2 ¼ ½0; 0.97� GeV2 at skewness ξ ¼ 0 as well as

Q2 ∈ 0.23 GeV2 at ξ ¼ 0.1, renormalized in the modified minimal subtraction (MS) scheme at scale

μ ¼ 2.0 GeV, with two- and one-loop matching, respectively. We demonstrate that the simultaneous

application of RGR and LRR significantly reduces the systematic errors in renormalized matrix elements

and distributions for both the zero and nonzero skewness GPDs, and that it is necessary to include both

RGR and LRR at higher orders in the matching and renormalization processes.

DOI: 10.1103/PhysRevD.110.034503

I. INTRODUCTION

An open question in the theory of quantum chromody-
namics (QCD) is how the fundamental degrees of freedom,
quarks and gluons, comprise the more massive hadrons. The
quarks and gluons (known collectively as partons) contribute
to a hadron’s mass and spin but cannot be studied in isolation
due to confinement. Thus, knowledge of the internal struc-
ture of a hadron is highly valued. Great effort has been
focused on the study of parton distribution functions (PDFs),
which describe the distribution of a hadron’s longitudinal
momentum among its constituents, and much has been

learned about hadronic structure from these studies (see
Ref. [1] for a review from Snowmass 2021). However, the
PDF only paints a one-dimensional picture of the hadron,
since it is dependent solely on longitudinal momentum.
Generalized parton distributions (GPDs) contain more infor-
mation about the hadron, including spin structure, form
factors, and how the longitudinal momentum of the parton
depends on the distance from the center of the hadron. The
unpolarized GPD is comprised of two functions commonly
denotedH and E, defined in terms of matrix elements on the
light cone as
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where Lð−z=2; z=2Þ is a link along the light cone, Qμ ¼

ðp00 − p0Þμ is the momentum transfer, and ξ ¼ p00þ−p0þ

p00þþp0þ is

the skewness. In the limit Q2
→ 0 and ξ → 0, the H GPD

reduces to the PDF. The E GPD is inaccessible in this limit,

since it ismultiplied by themomentum transfer vector. GPDs

can be probed experimentally by processes such as deeply

virtual Compton scattering [2,3] or deeply virtual meson

production [4], and their study will be an important exper-

imental program at the future Electron-Ion Collider [5–9].

Lattice QCD involves converting the QCD path integral

from continuousMinkowski spacetime to discrete Euclidean

spacetime, making field-theory calculations amenable to
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supercomputers. It can provide early insight into GPD

functions complementary to experimental programs. The

computation of the Bjorken-x dependence of parton distri-

butions can be studied in the framework of lattice QCD

using one of several recent methods: the “hadronic-tensor

approach” [10–15], the Compton-amplitude approach (or

“OPE without OPE”) [16–28], the “current-current correla-

tor” method [23,29–35], or the large-momentum effective

theory (LaMET) [36–38], which is our focus in this paper.

The method of LaMET begins with the study of spatially

separated, equal time, matrix elements of boosted hadrons

computed directly on the lattice:
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where Γ ¼ γt; γtγ5; γtγ⊥ for the unpolarized, helicity and

transversity GPDs, respectively. Wð−z=2; z=2Þ is a lattice

link from the coordinate ð0; 0; 0;−z=2Þ to ð0; 0; 0; z=2Þ,
since we may assume without loss of generality that the

average momentum ðp⃗0 þ p⃗00Þ=2 is along the z axis. The

bare matrix elements are then renormalized and Fourier

transformed to momentum space to obtain the quasi-GPD.

The final step is to match the quasi-GPD to the light cone to

obtain the GPD. GPDs have been studied in LaMET in the

Breit-frame setting on the lattice. The GPD on the lattice

was first studied in the case of the pion in Ref. [39] and

carried out at physical pion mass [40,41] by MSULat in the

zero-skewness limit. The nucleon unpolarized and helicity

GPDs were studied in Refs. [42–44] and the transversity

ones in Ref. [45]. Recently, the ETMC and ANL/BNL

groups have computed bare matrix elements in asymmetric

frames [46] to help reduce the computational cost of the

lattice calculation.

Since the aforementioned numerical studies of GPDs,

developments in the framework of LaMET include renorm-

alization-group resummation (RGR) [47] and leading-

renormalon resummation (LRR) [48]. RGR is designed

to resum the logarithms that arise from the differing

intrinsic physical scale and final renormalization scale of

the parton. The method is to set the energy scale such that

the logarithmic terms vanish and then evolve to the desired

scale with the renormalization group. This process can be

applied both to the renormalization of the bare matrix

elements as well as the perturbative matching. LRR is

designed to resum the divergence arising from the infrared

renormalon which plagues perturbation series [49], and

whose effect is more pronounced with the application

of RGR alone. The first application of LRR was to the

pion PDF in Ref. [48], which showed that LRR in

combination with RGR results in greatly reduced system-

atic uncertainties in the final x-dependent PDF. The ANL/
BNL Collaboration also applied LRR (and RGR) to their

LaMET calculation of the nucleon transversity PDF in

Ref. [50] to better control the systematic errors. The field of

LaMET has matured to the point at which such systematic

uncertainties become an important issue. The methods of

RGR and LRR have not yet been applied to GPDs; doing so

can lead to a more precise calculation of tomography from

lattice QCD in the future.
The purpose of this paper is to make the first application

of the RGR and LRR improvements to the calculation
of the unpolarized nucleon isovector GPD at different

skewness, ξ, and squared momentum transfer, Q2, in the
Breit frame. We use clover valence fermions at physical
quark mass with a lattice spacing of a ≈ 0.09 fm and box
length L ¼ 64a ≈ 5.76 fm with QCD vacuum composed
of Nf ¼ 2þ 1þ 1 flavors of highly improved staggered

quarks [51], generated by the MILC Collaboration [52–54]
with one step of hypercubic smearing [55] applied to the
gauge links to reduce discretization effects. The valence
fermion parameters are tuned so as to produce a physical
pion mass (mπ ≈ 130 MeV). The same mixed-action
setup used in this calculation was previously studied in
Refs. [56–70] and found to be free of exceptional configu-
rationswhich can cause theDiracmatrix to be ill conditioned
or the correlation functions to be anomalously large. From a
total of 1960 lattice configurations, we use the 501 760
measurements of the bare nucleonmatrix elements of Eq. (2)

with average boost momentum Pz ¼ 10 × 2π
L
≈ 2.2 GeV in

Ref. [42].More information on the barematrix elements such
as the source-sink separation, the momentum smearing, and
momentum transfer can be found in Ref. [42] and its
supplementalmaterial. The ground-state nucleon barematrix
elements are extracted by simultaneously fitting multiple
source-sink separations with skewness values of ξ ¼ 0 and
ξ ¼ 0.1. For each skewness value, we have momentum

transfer Q2 ∈ f0.0; 0.19; 0.39; 0.77; 0.97g GeV2 and Q2 ¼
0.23 GeV2 respectively.

This paper is laid out as follows. In Sec. II, we describe

the methodology of RGR and LRR as well as the outline of

our calculation of the GPDs at zero skewness from the bare

matrix elements. We also show results for zero-skewness

GPDs for both zero and nonzero-momentum transfer,

demonstrating the improvements afforded by both RGR

and LRR as well as matching at both next-to-leading-order

(NLO) and next-to-next-to-leading-order (NNLO). In

Sec. III, we show nonzero-skewness GPDs at NLO. We

conclude in Sec. IV.

II. ZERO-SKEWNESS GPDS AT NLO AND NNLO

In this section we present the zero-skewness (ξ ¼ 0)

unpolarized isovector nucleon GPD at both zero (H GPD

only) and nonzero (H and EGPDs) momentum transferQ2.

When both ξ ¼ 0 and Q2 ¼ 0, the unpolarized GPD

reduces to the unpolarized PDF. The renormalization

procedure and the transformation to momentum space

are also described in this section, since the same methods

are used for all values of momentum transfer and skewness.

We describe the light cone matching for the case of zero
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skewness and postpone the discussion of nonzero skewness

matching to Sec. III.

We begin with the renormalization of the bare matrix

elements. We perform the renormalization in the hybrid-

ratio scheme [71], in which the bare matrix elements are

renormalized in the ratio scheme up to distances zs ¼
3a ≈ 0.27 fm with our lattice spacing, and at large dis-

tances the linear divergence and renormalon divergence are

removed by an exponential term. The ratio scheme involves

dividing the bare matrix element at nonzero boost momen-

tum by those at zero boost momentum at fixed z. The fully
renormalized matrix element (for bothH and E) is given by

hRðz; Pz; Q
2; ξÞ ¼

8

<

:

hBðz;Pz;Q
2;ξÞ

hBπ ðz;Pz¼0Þ
z < zs

eðδmþm0Þðz−zsÞ h
Bðz;Pz;Q

2;ξÞ
hBπ ðzs;Pz¼0Þ

z ≥ zs;

ð3Þ

where we have used bare unpolarized pion matrix elements

at zero boost momentum, hBπ ðz; Pz ¼ 0Þ [72] for the ratio

scheme at z < zs. At Q
2 ¼ 0, we normalize the matrix

elements to 1 at z ¼ 0. The terms δm and m0 are,

respectively, the linear divergence and the renormalon

divergence. The linear divergence is due to the self-energy

of the Wilson line in the bare matrix element, and the

renormalon divergence arises from the fact that the per-

turbation series used to calculate δm is not convergent to all

orders [48,49,71,72]. We determine the linear divergence

by following the same procedure as in Ref. [71] by fitting

the zero-momentum pion matrix elements to the exponen-

tial decay Be−δmz in the interval z ¼ ½0.54; 1.53� fm, as

shown in the left-most panel of Fig. 1, where B and δm are

fitting parameters. This same procedure was performed

with the same data in our previous work [73] in which we

find δm ¼ 0.668ð10Þ GeV.
While the computation of the linear divergence would

seem to be subjective, it is compensated for by the cal-

culation of the renormalon divergence such that their sum,

δmþm0, is constant in a fixed scheme [71]. The renor-

malon divergence is determined by demanding that the

short-distance physics (z≲ 0.3 fm) agrees with the theo-

retical predictions of the operator-product expansion

(OPE). The functions that appear in the OPE (and describe

the short distance physics) are known as Wilson coeffi-

cients, which we denote by C0ðz; μÞ, where z is the Wilson

length, and μ is the energy scale. For a Wilson length z and
renormalization scale μ, which is the final desired energy

scale for the light cone PDF renormalized in the modified

minimal-subtraction (MS) scheme, the unpolarized Wilson

coefficients are

CNLO
0
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αsðμÞCF
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�
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2
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5

2
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ð4Þ

at NLO [74] and

CNNLO
0
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0
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�

þ lðz;μÞ

�

37.1731−
5

3
nf

�
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�
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at NNLO [75] where lðz; μÞ ¼ ln ðz2μ2e2γE=4Þ, γE is the

Euler-Mascheroni constant, αsðμÞ is the strong coupling

at energy scale μ, CF is the quadratic Casimir for the

fundamental representation of SU(3), and nf is the number

of fermion flavors.

The determination of the renormalon divergence can be

improved with the additions of RGR [47,48] and LRR [48].

The difference between the intrinsic physical scale and the

final renormalization scale results in logarithmic terms

that require resummation. This is achieved by setting the

renormalization scale such that the logarithmic terms

vanish and then evolving to the desired scale using the

renormalization-group equation:

dC0ðz; μÞ

dlnðμ2Þ
¼ γðμÞC0ðz; μÞ; ð6Þ

FIG. 1. Determination of the linear divergence (left-most plot), δm, by fitting the zero-momentum pion matrix element (blue points)

to the function Be−δmz (red curve) in the interval z ¼ ½0.54; 1.53� fm (shaded green). The error bars for the pion matrix elements

are included but too small to be visible. The middle (right-most) plots show the renormalon divergence, m0, determined to (N)NLO

(solid orange), ðNÞNLOþ LRR (hatched red), ðNÞNLO × RGR (hatched green), and ððNÞNLOþ LRRÞ × RGR (solid blue).

The vertical width of each band corresponds to the systematic error determined from scale variation described in Sec. II A.
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where γðμÞ is the anomalous dimension, which has been

calculated up to three loops [76]. The energy scale at which

the logarithms vanish is μ ¼ 2e−γE=z≡ z
−1 as can be seen

in Eqs. (4) and (5). Thus, we can improve the computation

of the Wilson coefficient with RGR giving

CNkLO×RGR
0

ðz; μÞ ¼ CNkLO
0

ðz;z−1Þ

× exp

�
Z

αsðμÞ

αsðz
−1Þ

dα0
γðα0Þ

βðα0Þ

�

; ð7Þ

where k ¼ 1 for NLO, k ¼ 2 for NNLO, and βðαÞ is the
QCD beta function. For brevity, we define

Iðμ;z−1Þ ¼ exp

�
Z

αsðμÞ

αsðz
−1Þ

dα0
γðα0Þ

βðα0Þ

�

: ð8Þ

The Wilson coefficients are a perturbation series which

can contain a renormalon divergence [77]. We account for

this using the LRR method, in which the Wilson coefficient

is modified according to Eq. (14) of Ref. [48]:

CNkLOþLRR
0

ðz;μÞ ¼CNkLO
0

ðz;μÞ

þ zμ

�

CPVðz;μÞ−
X

k−1

i¼0

αiþ1
s ðμÞri

�

; ð9Þ

where ri are the coefficients of the renormalon series in αs
and CPVðz; μÞ is the contribution of the renormalon to the

Wilson coefficients after a Borel transformation originally

derived in Refs. [78,79]. Explicit definitions can be found

in Eqs. (12) and (13), respectively, of Ref. [48].

We can then combine the RGR and LRR improvements

into a single high-quality Wilson coefficient:

C
ðNkLOþLRRÞ×RGR
0

ðz; μÞ ¼ CNkLOþLRR
0

ðz;z−1ÞIðμ;z−1Þ:

ð10Þ

The Wilson coefficients with different improvements yield

different central values and uncertainties for the renormalon

divergence, m0. We use the same procedure to compute the

renormalon divergence as Ref. [48] in which ln
�

e−δmzC0ðz;μÞ
hBπ ðz;PzÞ

	

is fitted to m0zþ c for multiple sets of z values. We inter-

polate the matrix elements hBπ ðz; Pz ¼ 0Þ as in our pre-

vious work [73] and determine m0ðzÞ with the inputs of

fz− 0.02 fm; z; zþ 0.02 fmg to a maximum of z ¼ 0.2 fm.

A plot of m0 to different orders and with different improve-

ments as a function of fitting range is shown in the middle

and right panels of Fig. 1. We seek a plateau in the values

of m0 across different fitting ranges which signals a stable

and reliable measurement of the renormalon divergence

and select the corresponding value as the measurement of

m0. The results with the smallest errors as well as clear

plateaux are those for which RGR and LRR are applied

simultaneously. Having determined both the linear diver-

gence and the renormalon divergence, we now have fully

renormalized matrix elements in the hybrid-ratio scheme

[using Eq. (3)].

To obtain the quasidistribution, we first extrapolate the

renormalized matrix elements to infinite distance with a

view to performing a Fourier transform. The extrapolation

model is inspired by the small x physics we expect to see in
the PDF [71,80,81], which is itself governed by the large-

distance behavior of the renormalized matrix elements:

hRðz;Q2; ξÞ →
Ae−mz

jzPzj
d

as z → ∞; ð11Þ

where A,m and d are fitting parameters. The data used to fit

the extrapolation must be at sufficiently large z that we can
realistically model the large-distance behavior. We then

Fourier transform to momentum space to obtain the quasi-

GPDs with the convention

qFðx;Q2; ξÞ ¼

Z

∞

−∞

Pzdz

2π
eixzPzhRFðz;Q

2; ξÞ; ð12Þ

where F is either H or E corresponding to the respective

GPD functions. By extrapolating the renormalized matrix

elements to infinite distance, we remove unphysical oscil-

lations from the quasi-GPDs that would otherwise occur in

the Fourier transform.

The final stage in the calculation is the perturbative

matching to align the ultraviolet (UV) behavior of the

quasi-GPD with the light cone. The matching formula is

qFðx;Q2; ξÞ ¼

Z

1

−1

dy

jyj
Kðx; y; μ; ξ; PzÞFðy;Q

2; ξÞ

þO

�

Λ
2

QCD

P2
zx

2ð1 − xÞ

�

; ð13Þ

where K is the matching kernel. Once again, this formula

applies to both the quasi-H and quasi-E GPDs. For zero

skewness, ξ ¼ 0, the kernel has been calculated up to

NNLO in the hybrid-ratio scheme for unpolarized GPDs in

Refs. [47,75,82]. For nonzero skewness, the kernel has

been computed up to NLO for unpolarized GPDs (as well

as helicity and transversity GPDs) [83], and we discuss it in

more detail in Sec. III.

The RGR process applied to the matching is designed to

resum logarithmic terms that occur in the matching kernel.

The philosophy is the same as that of the determination of

the renormalon divergence with RGR in that we set an

energy scale such that the logarithms vanish and then

evolve to the final desired energy scale. This time, the

anomalous dimension is the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi (DGLAP) equation

dFðx; ξ ¼ 0; μÞ

dlnðμ2Þ
¼

Z

1

x

dz

jzj
PðzÞF

�

x

z
; ξ ¼ 0; μ

�

; ð14Þ

where PðzÞ is the DGLAP kernel, which has been

calculated up to three loops [84]. The formula is applicable
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to both H and E GPDs. We use the same algorithm for

RGRmatching as in Ref. [47]. However, this formula is only

applicable to zero skewness GPDs. At nonzero skewness, a

different evolution formula is required for jxj < ξ. The cor-

responding formula is the Efremov-Radyushkin-Brodsky-

Lepage (ERBL) equation [85–88], and jxj < ξ is known as

the ERBL region. In this x range there are two distinct scales
that emerge, which cannot be eliminated simultaneously by

the choice of a single energy scale. A more sophisticated

technique must be developed for this case in the future.

A. Zero skewness H GPD at Q2 = 0

We begin by looking into the special case of the nucleon

unpolarized GPD at Q2 ¼ 0 and ξ ¼ 0, which is equivalent

to the PDF. We use the four different methods of computing

the renormalon divergence m0 at NLO and again at NNLO

with the renormalized matrix elements hRHðz;ξ¼0;Q2¼0Þ.
Our notation for the different schemes is “ðNÞNLO×RGR”

for the RGR improvement only, “ðNÞNLOþ LRR” for the

LRR improvement only, and ððNÞNLOþ LRRÞ × RGR for

both the RGR and LRR improvements.
1
We show the real

and imaginary parts of the matrix elements for (N)NLO in

the top (bottom) of Fig. 2. The (N)NLO, ðNÞNLO × RGR,

ðNÞNLOþ LRR, and ððNÞNLOþ LRRÞ × RGR matrix

elements are plotted in blue, red, green, and purple,

respectively. Except for (N)NLO, the data points are offset

slightly from their true z values to allow for readability. The

plots contain both statistical error bars and combined

statistical and systematic error bars from scale variation.

In the case of the renormalized matrix elements, the

systematic errors are computed by scale variation as was

used in Ref. [48]. When RGR is applied to the Wilson

coefficients, we vary the initial energy scale used in the

RGR process, c0 × z
−1, before evolving to the final desired

one. The central value corresponds to c0 ¼ 1.0; the upper

and lower error bars are derived by varying c0 from 0.75 to

1.5. The range c0 ∈ ½0.75; 1.5� corresponds to a change of

approximately 15% on either side of αsðμ ¼ 2.0 GeVÞ.
This creates two additional curves with the maximum

(minimum) value corresponding to the upper (lower) sys-

tematic error. The systematic errors are asymmetric, since the

strong-coupling dependence on the energy scale is nonlinear.

When RGR is not applied to the Wilson coefficients, the

systematic errors are determined by computing the renor-

malon divergence at energy scales 0.8GeVand 2.8GeVwith

2.0 GeV being the central value. These scale variations yield

different measurements of the renormalon divergence, and

FIG. 2. Real (left column) and imaginary (right column) renormalized hRH matrix elements at Q2 ¼ 0 with the top row showing data

points of NLO (blue), NLOþ LRR (red), NLO × RGR (green), and ðNLOþ LRRÞ × RGR (purple) improvements and the bottom row

with NNLO (blue), NNLOþ LRR (red), NNLO × RGR (green), and ðNNLOþ LRRÞ × RGR (purple) improvements. The solid error

bars are statistical, and the dashed error bars are combined statistical and systematic, the latter arising from the scale variation. Except for

NLO and NNLO, the data points shown in the plots have been offset from their exact z value to allow for readability.

1
Note that we adopt a different notation from Ref. [48] to

emphasize that the RGR process is applied to both the Wilson
coefficient and the LRR modification as opposed to just the
former.
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the upper and lower values are interpreted as the upper and

lower systematic errors, respectively. The RGR and LRR

improvements to the Wilson coefficients give different

central values and uncertainties in the renormalon diver-

gence, resulting in different systematic errors in the renor-

malized matrix elements.

Examining the four NLO schemes in the top row of

Fig. 2, we can see that the relative systematic errors are

reduced by approximately 15% to 35% from NLO to

NLOþ LRR. The reduction from NLO × RGR to ðNLOþ
LRRÞ × RGR, however, is approximately 70% to 90%

showing that leading-renormalon resummation has a much

greater effect when used in combination with RGR. This is

to be expected, since the Wilson coefficients used to

compute the renormalon divergence m0 are series expan-

sions in the strong coupling αs, and the renormalon

divergence does not emerge until we expand the series to

a power n in the strong couplingwhere n ∼ 1=αsðμÞ [49,89].
At our smallest energy scale used at fixed order, μ ¼
0.8 GeV, αsðμÞ ≈ 0.5, and the renormalon divergence will

not emerge unless we expand beyond quadratic terms in the

strong coupling; however, this does not mean that the

renormalon divergence is irrelevant. We can see that there

is an increase up to fifteenfold in the absolute systematic

errors from NLO to NLO × RGR, since the latter does not

account for the renormalon divergence. When we compute

the Wilson coefficients (and hence the renormalon diver-

gence) at NLO × RGR, we set the initial energy scale to

μ ¼ z
−1. At small z, this is a large energy scale, which

results in a smallαs,meaning that the renormalondivergence

does not emerge atNLO × RGR in the series expansion. The

opposite occurs at large z, and hence, the renormalon

divergence can emerge at NLO × RGR. This divergence

is passed on to the calculation of the renormalon divergence,

resulting in large systematic errors, particularly at large z,
where the renormalon divergence occurs sooner in the series

expansion. For this reason, there is a significant difference

betweenNLOandNLO × RGR.This reasoning also applies

at NNLO, in fact, to a greater extent, as can be seen in the

bottom half of Fig. 2.

With the above eight sets of renormalized matrix

elements, we then construct the quasidistributions. First,

we take each set of the real and imaginary renormalized

matrix elements at large Wilson-line displacement and

extrapolate them to infinite distance using Eq. (11).

Here, we select the range z∈ ½8a; 15a� ¼ ½0.72; 1.35� fm
for both the real and imaginary parts. For all schemes as

well as both real and imaginary parts, the χ2=d:o:f: values
are less than 1, which indicates the extrapolation formula is

a good model for unpolarized GPD matrix elements. We

construct a renormalized matrix element as a full function

of z by making a piecewise function. At small z, we

interpolate the lattice data, and at large z, we use the

extrapolation model with the best-fit parameters.

We then Fourier transform our full function into momen-

tum space using Eq. (12) to obtain the quasi-PDF and

finally match to the light cone using Eq. (13). When RGR is

not included in the calculation, the matching is performed

at fixed order; that is, K is evaluated at a fixed energy scale

μ. When we include RGR, we perform matching at the

energy scale μ ¼ 2xPz, which removes the large logarithms

in the kernel, and then evolve to the desired scale with the

DGLAP formula in Eq. (14). The DGLAP equation begins

to break down for jxj≲ 0.2, since the strong coupling

αsðμ ¼ 2xPzÞ becomes nonperturbative in this region.

Hence, we do not plot the unpolarized light cone GPD

data within this region and shade it in light gray. In

addition, the LaMET expansion breaks down for small

and large jxj as in the matching formula in Eq. (13); we

approximate the region where these corrections become

greater than or equal to 1 and shade these regions in

dark gray.

The systematic errors for the unpolarized PDFs are

computed by renormalizing the bare matrix elements with

the upper and lower values of the renormalon divergence

given by varying the scale. We then perform the large-

distance extrapolation, Fourier transformation, and match-

ing on the matrix elements. When RGR matching is used,

we set the initial scale to μ ¼ c0 × 2xPz with the central

value corresponding to c0 ¼ 1.0 and the systematic error

bands coming from c0 ¼ 0.75 and 1.5 as in the determi-

nation of the renormalon divergence. This gives us a central

value for the PDF as well as two other values which

correspond to the upper and lower systematic errors.

In Fig. 3 we show the light cone unpolarized GPDs in the

“PDF limit” (Q2 ¼ 0 and ξ ¼ 0) with statistical errors (inner

error bands) and combined statistical and systematic errors

(outer error bands). Sincewe have computed the unpolarized

GPD, the regions x > 0 and x < 0 correspond to the

combinations Fuðx;Q
2; ξÞ − Fdðx;Q

2; ξÞ (“quark region”)

and F
d
ðx;Q2; ξÞ − Fūðx;Q

2; ξÞ (“antiquark region”),

respectively. The top (bottom) row shows the PDFs at (N)

NLO. The left column shows no modifications and LRR

only, and the right column shows the RGR modification

only and both RGR and LRR. We plot the (N)NLO,

ðNÞNLO × RGR, ðNÞNLOþ LRR, and ððNÞNLOþ
LRRÞ × RGR PDFs in blue, red, green, and purple, respec-

tively. In Eq. (13), there are corrections to the light coneGPD

that are suppressed with Pz but grow at finite Pz as x → 0 or

jxj → 1.We, therefore, shade in the regions at small and large

jxj, where the LaMET calculation breaks down.

Examining the x dependent GPDs, we consider first the

four NLO schemes (top row of Fig. 3). The statistical errors

are more or less constant across the four of them, since the

bare matrix elements are the same. It is clear that the

systematic errors are at their minimum when both the LRR

and RGR improvements are applied simultaneously.

Indeed, much of the behavior of the systematic errors

we see in Fig. 2 for the renormalized matrix elements also

occurs in the PDFs. Examining the large-x region, we see

that the four schemes become compatible with zero as
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x → 1 within one to two sigma. Across the quark region as

a whole, we see that the central values across the four

schemes are in general agreement for x≳ 0.3, and the

main difference is the variation in systematic errors. We

anticipate this result from the fact that the renormalized

matrix elements differ in the renormalon divergence and its

uncertainty; the m0 parameters in the four schemes are all

compatible, but the error bars differ a great deal from one

scheme to another. The antiquark region, given the fluc-

tuations across the different schemes, is compatible with

zero. Larger boost momenta will be required to improve the

antiquark signal, as was demonstrated in Refs. [90–93].

Hereafter, our focus will be on the quark region.

Turning next to the four NNLO results in the bottom half

of Fig. 3, we see once again that the smallest systematic

errors occur with ðNNLOþ LRRÞ × RGR. The systematic

errors are approximately the same for NNLO and

NNLOþ LRR, as we would expect from the renormalized

matrix elements in Fig. 2 having similar systematic errors

for the two schemes. In the quark region, there is, in fact,

little difference between the central values at ðNLOþ
LRRÞ × RGR and ðNNLOþ LRRÞ × RGR except in the

endpoint regions; however, going to higher order reduces

the systematic errors. We note that while the ðNNLOþ
LRRÞ × RGR scheme has the smallest systematic errors,

the central value remains consistent with both NNLO and

NNLOþ LRR. The central values of the NNLO × RGR

results differ from the other three NNLO results due to the

enhancement of the renormalon divergence when RGR is

applied on its own.

Our results have shown that much of the advantage

due to renormalization-group resummation and leading-

renormalon resummation comes from a reduction in the

systematic errors computed from scale variation. The

improved systematic errors with these schemes show that

the benefits are transferable across different LaMET

calculations, since their effects were first demonstrated

in the case of the pion PDF [47,48] and pion distribution

amplitude (DA) [94]. Given the significant differences in

our ðNÞNLO × RGR and ððNÞNLOþ LRRÞ × RGR

results and errors, we have shown that the renormalon

divergence is a source of systematic errors that cannot be

ignored as an esoteric phenomenon.

B. Zero skewness H and E GPDs at Q2 ≠ 0

In this section, we examine our results for both the
unpolarized zero skewness H and E GPDs at nonzero
momentum transfer. The range of momentum transfer

values used in this calculation is Q2 ∈ f0.19; 0.39; 0.77;
0.97g GeV2. We start this subsection by showing an
example of the renormalized matrix elements at the

intermediate value Q2 ¼ 0.39 GeV2 to demonstrate the
effects of LRR and RGR on the calculation. The same
procedures are applied to all of our ξ ¼ 0 GPD functions at

FIG. 3. Isovector nucleon light cone PDFs at NLO (top row) and NNLO (bottom row) without improvement (blue bands), with LRR

only (green), with RGR only (red), and with both LRR and RGR (purple) improvements. The dark-gray regions are the x values at which
the LaMET calculation breaks down. In addition, when RGR is applied (right column), the matching formula breaks down for jxj ≲ 0.2,

so this region is shaded in light gray.
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all momentum transfers. Since we have already studied the
effects of NLO, NNLO and the applications of LRR and
RGR in Sec. II A, we do not show every case here but
restrict ourselves to NLO, NNLO, ðNLOþ LRRÞ × RGR,
and ðNNLOþ LRRÞ × RGR.

In Fig. 4, we show the real (left column) and imaginary

(right column) renormalized matrix elements for the H and

E GPDs, hRH (top row) and hRE (bottom row), at zero

skewness and Q2 ¼ 0.39 GeV2. At each z point, two sets

of error bars are shown: the solid (inner) bars correspond to

statistical errors, and the dashed (outer) bars are statistical

and systematic errors combined in quadrature. The sys-

tematic errors are computed the same way as in Sec. II A.

Except for NLO, the results are offset slightly from their

true z values to allow for readability. Up to and including

Q2 ¼ 0.39 GeV2, we use the same fitting range for the

large-distance extrapolation as was used in the PDF case

(Q2 ¼ 0). However, at Q2 ¼ 0.77 and 0.97 GeV2, we use

the fitting range z∈ ½11a; 15a� ¼ ½0.99; 1.35� fm, since the

hRE matrix elements change sign at larger range for this

momentum transfer, and such behavior cannot be accom-

modated by the extrapolation model in Eq. (11).

As in the case of the renormalized matrix elements at

Q2 ¼ 0 in Fig. 2, we see a significant decrease in

systematic errors from NLO to ðNNLOþ LRRÞ × RGR

(30% to 70%) and an even greater decrease from NNLO to

ðNNLOþ LRRÞ × RGR (70% to 90%) in Fig. 4. This is to

be expected, since the systematic errors of the renormalized

matrix elements are governed by the renormalon diver-

gence, which is itself determined by the Wilson coeffi-

cients. The same benefits afforded by RGR and LRR that

we see in Fig. 2 should occur atQ2 ¼ 0.39 GeV2, since the

same Wilson coefficients are used and improved in the

same ways. In addition, the systematic errors increase from

NLO to NNLO as in the Q2 ¼ 0 case as we would expect

from the behavior of the renormalon divergence.

In Fig. 5, we show the unpolarized H and E GPDs in

the NLO, NNLO, ðNLOþ LRRÞ × RGR, and ðNNLOþ
LRRÞ × RGR cases for Q2 ¼ 0.39 GeV2. The inner error

bars are statistical, and the outer error bars are combined

statistical and systematic errors, the latter computed in the

same way as in theQ2 ¼ 0 case in Sec. II A. As in the PDF

case shown in Fig. 3, the systematics are at a minimum in

the ðNNLOþ LRRÞ × RGR scheme both for H and E
GPDs. The upper and lower systematic errors increase

from NLO to NNLO for almost the whole interval

x∈ ½0.2; 0.8� which shows that the need to account for

both the large logarithms and the renormalon divergence

persists across different Q2 values. Also, the systematic

errors decrease by up to 40% from ðNLOþ LRRÞ × RGR

FIG. 4. Real (left column) and imaginary (right column) renormalized hRH (top row) and hRE (bottom row) matrix elements of NLO

(blue), NNLO (red), ðNLOþ LRRÞ × RGR (green), and ðNNLOþ LRRÞ × RGR (purple) improvements at Q2 ¼ 0.39 GeV2. The

solid error bars are statistical, and the dashed error bars are combined statistical and systematic, the latter arising from the scale variation.

Except for NLO (real and imaginary for both hRH and hRE), the data points shown in the plots have been offset from their exact z value to

allow for readability.
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to ðNNLOþ LRRÞ × RGR in the interval x∈ ½0.3; 0.9�
both for H and E GPDs. This shows the benefits of going

up to two loops in the matching process. Once again, the

central values for all four schemes are in general agreement,

showing that the main improvement afforded by RGR and

LRR is a reduction in systematic errors. It is also evidence

for convergence in the matching procedure, since the

central values for ðNLOþ LRRÞ × RGR and ðNNLOþ
LRRÞ × RGR are close. It is to be expected that the

improved systematic errors persist across Q2 values since

the RGR and LRR improvements are universal and should

be applicable in all LaMET calculations. The fact that the

FIG. 5. Light cone H and E GPDs (left and right, respectively) with NLO (blue), NNLO (red), ðNLOþ LRRÞ × RGR (green), and

ðNNLOþ LRRÞ × RGR (purple) evaluated at Q2 ¼ 0.39 GeV2 and ξ ¼ 0. The inner bands are statistical errors; the outer bands are

combined statistical and systematic errors, derived from the scale variation described in Sec. II A. The dark gray regions are the x values
at which the LaMET calculation breaks down. In addition, when RGR is applied, the matching formula breaks down for jxj ≲ 0.2, which

is shaded in light gray.

FIG. 6. ðNLOþ LRRÞ × RGR (left column) and ðNNLOþ LRRÞ × RGR (right column) H (top row) and E (bottom row) GPDs at

ξ ¼ 0 and variable Q2. The Q2 ∈ f0.0; 0.19; 0.39; 0.77; 0.97g GeV2 GPDs are plotted in blue, red, green, purple, and orange,

respectively. In all cases, the inner error bands are statistical, and the outer error bands are combined statistical and systematic errors. The

systematic errors decrease from ðNLOþ LRRÞ × RGR to ðNNLOþ LRRÞ × RGR, but in both cases are very small. The dark-gray

regions are the x values at which the LaMET calculation breaks down. In addition, when RGR is applied, the matching formula breaks

down for jxj ≲ 0.2, which is shaded in light gray. Note that the GPDs are suppressed as Q2 increases.
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systematics increase from NLO to NNLO and decrease

from ðNLOþ LRRÞ × RGR to ðNNLOþ LRRÞ × RGR,

shows again that the handling of systematic uncertainties

must keep pace with higher orders in the matching and

renormalization processes.

These are the first applications of the RGR and LRR

improvements to the LaMET calculation of the unpolarized

nucleon GPD as well as the first application of hybrid-ratio

renormalization to the same. We plot both the H and E

GPDs forQ2 values from 0.19 to 0.97 GeV2 (as well as the

H GPD for Q2 ¼ 0) at both ðNLOþ LRRÞ × RGR and

ðNNLOþ LRRÞ × RGR in Fig. 6. The left (right) column

corresponds to the unpolarized H (E) GPD. The top

(bottom) row corresponds to ððNÞNLOþ LRRÞ × RGR.

Once again, the inner bands correspond to statistical errors,

and the outer bands correspond to combined statistical and

systematic errors computed as in Sec. II A. We see that both

the H and E GPDs decrease with Q2, as has been seen in

previous calculations of nucleon GPDs [42,44]. In all cases,

the systematic errors are greatly reduced once again by the

simultaneous additions of RGR and LRR. This is more

evidence for the universality of the renormalization-group

resummation and leading-renormalon resummation. The

central values decrease from the quasi-GPD to the ðNLOþ
LRRÞ × RGR GPD across all Q2 and again when going

from ðNLOþ LRRÞ × RGR to ðNNLOþ LRRÞ × RGR.

This is to be expected as the matching process tends to

decrease the GPD value in the mid- to large-x regions and

increase the value at small x. This is due to the probability

of a parton carrying a high momentum fraction decreasing

as the hadron approaches the light cone. However, with the

application of RGR in the matching, we cannot reliably

study the small-x region, jxj≲ 0.2. Nevertheless, this first

application of the RGR and LRR methods to GPDs at

nonzero momentum transfer is a step toward precision

GPDs from lattice QCD.

III. NONZERO-SKEWNESS GPDS

In this section, we show the results for GPDs evaluated at

nonzero skewness. While the LRR method is directly

transferable to ξ ≠ 0, the RGR matching is not. In x space,

the GPD is often broken down into two regions: the

DGLAP region for jxj > ξ and the ERBL region for

jxj < ξ. While the DGLAP evolution in Eq. (14) is

applicable to the corresponding region, a different scaling

formula is required in the ERBL region, and there is

the additional issue of two different intrinsic scales,

which cannot be eliminated simultaneously by the judi-

cious selection of a single initial energy. For this reason,

FIG. 7. Real (left column) and imaginary (right column) renormalized hRH (top row) and hRE (bottom row) matrix elements at

Q2 ¼ 0.23 GeV2 and ξ ¼ 0.1. We show data with NLO (blue), NLOþ LRR (red), NLO × RGR (green), and ðNLOþ LRRÞ × RGR

(purple) improvements. The solid error bars are statistical, and the dashed error bars are combined statistical and systematic, the latter

arising from the scale variation. Except for NLO (real and imaginary for both hRH and hRE), the data points shown in the plots have been

offset from their exact z value to allow for readability.
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we only examine the effects of RGR on the renormalized

matrix elements and confine our attention to the NLO and

NLOþ LRR GPDs in momentum space.

We start by looking at the renormalized matrix elements

for both hRH and hRE at Q2 ¼ 0.23 GeV2 and ξ ¼ 0.1 with

statistical errors (inner bars) and combined statistical and

systematic errors (outer bars) for all NLO four schemes in

Fig. 7 with the outer systematic error bars computed as

detailed in the previous sections. The Wilson coefficients

for the nonzero skewness are the same as those in the

zero skewness case. Although we cannot yet apply RGR

matching at nonzero skewness, we can see that the

systematic errors in the renormalized matrix elements

follow the same pattern as in the zero-skewness cases in

Figs. 2 and 4. This is evidence that the same improvements

in the matching process adjusted for nonzero skewness

should be equally effective as at ξ ¼ 0.

The matching kernel of the nonzero-skewness GPDs,Kξ,

differs from the zero-skewness one used in the Eq. (13)

due to the fact that skewness parameter ξ encapsulates the

change in the struck hadron’s longitudinal momentum. To

date, the ξ ≠ 0 matching kernel, Kξ, has only been com-

puted up to NLO for unpolarized GPDs in the hybrid-ratio

scheme in Refs. [83,95–97]; however, the kinematic setup

of the kernels in Refs. [95–97] in the ERBL region are

incomplete. For this work, we adopt the ξ ≠ 0 matching

kernel, Kξ, from Ref. [83]:

1

jyj
Kξðx; y; μ; ξ; PzÞ ¼ δðx − yÞ þ

αsðμÞCF

4π

��

jξþ xj

2ξðξþ yÞ
þ

jξþ xj

ðξþ yÞðy − xÞ

��

ln

�

4ðξþ xÞ2P2
z

μ2

�

− 1

�

þ

�

jξ − xj

2ξðξ − yÞ
þ

jξ − xj

ðξ − yÞðx − yÞ

��

ln

�

4ðξ − xÞ2P2
z

μ2

�

− 1

�

þ

��

ξþ x

ξþ y
þ
ξ − x

ξ − y

�

1

jx − yj
−

jx − yj

ξ2 − y2

��

ln

�

4ðx − yÞ2P2
z

μ2

�

− 1

��

: ð15Þ

Note that we modified the kernel to convention in which

there is an extra factor of 1=jyj in the integrand, whereas

Ref. [83] absorbed this factor into the kernel itself. The

nonzero-skewness matching kernel Kξ contains singular-

ities at y ¼ 0, y ¼ x, and jyj ¼ ξ. It is invariant under

ξ → −ξ and recovers the NLO zero-skewness kernel when

taking the limit ξ → 0. The LRR modification to the

matching kernel is the same at both zero and nonzero

skewness [48]. The LRR matching modification is derived

from the LRR modification to the Wilson coefficients.

Since the Wilson coefficients are the same for zero and

nonzero skewness, the same modification to the matching

kernel is applicable.

The final unpolarizedH and E GPDs are shown in Fig. 8

for ξ ¼ 0.1 at NLO and NLOþ LRR; we plot vertical

dashed lines at x ¼ �ξ. As in the zero-skewness case, there

is little change between the two aforementioned schemes

in central values or error bars. This is expected from the

fact that the renormalon divergence has a lesser effect

at fixed order (NLO) than it does when RGR is included

ðNLO × RGRÞ. In addition, the GPD suffers a disconti-

nuity at x ¼ �ξ due to the corresponding singularities in

the matching kernel. One difference between our nonzero-

skewness H GPD and those in Ref. [44] is that our H GPD

does not plateau in the ERBL region. The unpolarized H
GPD at ξ ¼ 0.3 in Fig. 3 of Ref. [44] is approximately flat

FIG. 8. Light coneH (left) and E (right) GPDs evaluated at ξ ¼ 0.1 at NLO (blue) and NLOþ LRR (green). The inner error bands are

statistical, and the outer error bands are combined statistical and systematic errors from scale variations. The vertical dashed lines

correspond to x ¼ �ξ. The GPDs suffer a discontinuity at these x values due to the singularity in the matching kernel.
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in the region jxj < ξ ¼ 0.3, whereas our H GPD at ξ ¼ 0.1

increases in the region jxj < ξ ¼ 0.1. Our ERBL region lies

within the x range where the LaMET expansion breaks

down. For this reason, we should perhaps not expect our

calculation to have the same qualitative behavior as that of

Ref. [44]. The effect of LRR on the x-dependent GPD
without RGR is similar to the corresponding effects at zero

skewness (Fig. 3); we, therefore, anticipate that the

improvements we see for the unpolarized GPDs at zero

skewness will also manifest at nonzero skewness once

the methods have been adapted for the latter. Because we

are ultimately interested in the x dependence, this is an

auspicious indication of the benefits of RGR and LRR

at ξ ≠ 0.

IV. CONCLUSION AND OUTLOOK

In this paper, we have shown the first application of

leading-renormalon resummation and renormalization-

group resummation to the unpolarized nucleon isovector

GPD computed on the lattice in the framework of large-

momentum effective theory. We used a lattice spacing a ≈

0.09 fm with a physical pion mass, Nf ¼ 2þ 1þ 1 flavors

of highly improved staggered quarks and an average boost

momentum Pz ≈ 2.2 GeV with ensembles generated by the

MILC Collaboration [52–54]. These matrix elements were

renormalized in the hybrid-ratio scheme, applying RGR

and LRR. We then extrapolated the renormalized matrix

elements to infinite distance and Fourier transformed to

momentum space. We report zero-skewness unpolarized

nucleon GPDs, H and E, with multiple momentum transfer

values Q2, which have been matched to two loops as well

as improved with both RGR and LRR for the first time. The

main advantage of the ðNNLOþ LRRÞ × RGR calculation

over other schemes is the reduction in systematic errors,

since the central values remain compatible between the

four schemes as shown in Sec. II. We also reported GPD

functions ξ ¼ 0.1 at a single momentum transfer value of

Q2 ¼ 0.23 GeV2 in this work. However, only the LRR

improvement is applied to the matching process up to one

loop due to the lack an RGR calculation for nonzero-

skewness GPDs to date.

The LaMET systematic errors were greatly reduced by

the simultaneous application of RGR and LRR in the

renormalization and matching processes. For both the

renormalized matrix elements and the x-dependent GPDs,
the statistical errors remain approximately constant with the

RGR and LRR modifications. The improved systematics

persist in the determination of the x-dependent GPDs.

The fact that systematic errors increase when we go from

NLO to NNLO but decrease from ðNLOþ LRRÞ × RGR

to ðNNLOþ LRRÞ × RGR shows that the handling of

systematics must keep pace with higher-order expansions

in the matching and renormalization processes. In addition,

the systematic errors increased when RGR was applied on

its own, due to its enhancement of the renormalon

divergence. The application of RGR and LRR to multiple

Q2 values at ξ ¼ 0 showed the efficacy of the two processes

for nonzero momentum transfer. Finally, we showed that

the effects of RGR and LRR on the renormalized matrix

elements and GPDs at nonzero skewness are also as

promising as those at zero skewness. Future work may

involve the modification of the RGR matching to that of

nonzero skewness using the ERBL equation in conjunction

with the DGLAP equation. In addition, the results could be

further improved by performing the LaMET calculation at

multiple boost momenta, Pz, in order to make an extrapo-

lation Pz →∞ where the parton model is defined.
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