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1 Introduction

The Seiberg-Witten (SW) solution to four dimensional N/ = 2 super-Yang-Mills theory
provides the exact low energy effective action and BPS mass spectrum on the Coulomb



branch. The vacuum expectation values (VEVs) of the gauge scalars and their magnetic
duals are encoded in terms of a family of Riemann surfaces equipped with a meromorphic
differential, referred to as the SW curve and the SW differential, respectively. The original
construction was given for gauge group SU(2) in [1, 2]. In the present paper, we focus on
theories with gauge group SU(N), primarily for N > 3 and without hypermultiplets, for
which the SW curve and differential were constructed in [3-6] (see also [7-11]).

At generic points on the Coulomb branch, the gauge group SU(N) is spontaneously
broken to its maximal Abelian subgroup U(1)V~! and the low energy contents of the theory
consist of N — 1 massless Abelian N’ = 2 gauge multiplets. The spectrum of massive BPS
states includes the N (NN — 1) gauge bosons and their magnetic counterparts. Remarkably, the
SW solution predicts the existence of isolated points in the moduli space where the masses
of one or several of these BPS state tends to zero. We now describe two distinct scenarios
where a maximal number of massive BPS states become simultaneously massless.

There are N multi-monopole points in the moduli space, at each one of which N — 1
mutually local (i.e. with vanishing Dirac pairing) BPS states become simultaneously massless.
At each multi-monopole point, there exists an Sp(2N — 2,7Z) electric-magnetic duality frame
in which all the massless BPS states have purely magnetic charges, whence the name. In view
of their mutual locality, there exists an effective field theory description where the massless
magnetic monopoles are described by hypermultiplets. Investigations into the behavior of
the effective prepotential and periods in the neighborhood of a multi-monopole point may
be found in [12-14] as well as in [15], where the behavior of the Kéhler potential and the
walls of marginal stability are analyzed.

For gauge group SU(3), Argyres and Douglas discovered two so-called AD points in
the moduli space, where three mutually non-local BPS states (i.e. with non-vanishing Dirac
pairing) simultaneously become massless [16]. The corresponding AD theories are strongly
interacting N' = 2 superconformal field theories (SCFTs). For gauge group SU(N) with
N > 3 the maximal number of mutually non-local BPS states become massless at two
maximal AD points, thereby generalizing the case of N = 3, while, for N = 2, no AD points
exist. Since the Dirac pairing is invariant under Sp(2N — 2,Z), there is no electric-magnetic
duality frame in which the massless BPS states are mutually local and simultaneously admit
a standard local field theory description.

While the absence of a standard local field theory formulation of the AD theories presents
a considerable conceptual challenge, several indirect avenues of investigation have been
explored, including the superconformal bootstrap and brane constructions in string theory.
Here, we shall investigate the space of theories in the vicinity of the maximal AD points,
first by exploring the Coulomb branch of their embedding in SU(NV) super-Yang-Mills and
second by exploring their intrinsic Coulomb branch obtained by sending the strong coupling
scale A of the SU(V) theory to infinity. The organization of the remainder of the paper and
an overview of the results is presented in the subsections below.

e Series expansion near the maximal Argyres-Douglas points.
In section 2, we compute the SW periods in a convergent series expansion around the
maximal AD points. Our expansion provides a non-trivial analytic continuation of the
strong-coupling expansion produced in [15] around the unique Zgy-symmetric point.



While the latter expansion contains the AD and the multi-monopole points on the
boundary of its domain of convergence, our expansion is centered at one or the other
AD point and thereby provides a significant extension of the domain of convergence
near the AD points. On regions where they overlap, our expansion arguably has better
convergence properties than the one given in [15]. Finally, by taking the decoupling
limit A — oo, where A is the strong-coupling scale, we obtain the intrinsic AD periods
for (a;,an—1) superconformal field theories in section 4.

Charting candidate walls of marginal stability.
Two BPS states with central charges Z; and Zs and masses My = |Z;| and My = | Z5]
can form a stable bound state provided its mass M obeys M < Mj; 4+ Ms. The bound
state is BPS when M = |Z] + Z|, and becomes marginally stable when the binding
energy vanishes, namely when |Z; + Zs| = | Z1| + | Z2|, which requires the ratio Zs/Z;
bo be a real number. The reality of Zs/Z; defines a real co-dimension one sub-variety of
the Coulomb branch, referred to as a candidate wall of marginal stability. Determining
this sub-variety was already undertaken in [1, 2] for gauge group SU(2), and discussed
in more detail in [17-19]. Candidate walls of marginal stability were investigated more
recently in [15] for gauge group SU(N) on restricted slices through the Coulomb branch.
In section 3, we shall map out candidate walls of marginal stability beyond the
restricted slices of [15] for gauge group SU(3), and present partial results for N > 4.
The series expansion around the AD points, discussed in the preceding subsection, will
play a key role in gaining access to the walls of marginal stability beyond the special
slices studied in [15]. In addition, we shall adapt the numerical integration methods
used in [15] to the computation of the SW periods and the central charges. These
numerical computations will allow us to reach beyond the radius of convergence of
either the Zsn or the AD expansion, and to complete the charting of candidate walls of
marginal stability.

Exploring the intrinsic Kdhler potential of the (a;,ay_1) AD theories.
Interest in the behavior of the Kéhler potential, within the context of the SW solution,
has recently been rekindled by the role it may play in the soft breaking of N' = 2
super Yang-Mills theory and the renormalization group flow of this theory to adjoint
QCD [14, 15, 20, 21]. Specifically, the flow of the mass operator M?tr(¢f¢) for the
gauge scalar ¢ purely within the N' = 2 super Yang-Mills theory is to the Kéhler
potential of the SW solution. Motivated in part by future work on soft supersymmetry
breaking in or near AD theories, we initiate here a study of the intrinsic Kéhler potential
of the maximal AD theories. Key questions concern its positivity, convexity, and global
minima properties.

In section 4, we shall study the intrinsic periods of the AD theories; calculate the
intrinsic Kéhler potential; investigate the location of its minima; and understand its
positivity and convexity properties. We will find that, in the absence of deformations,
namely moduli corresponding to operators with dimension A < 1, but allowing the
VEVs of genuine Coulomb branch operators with dimension A > 1 to be non-zero, the
intrinsic Kéhler potential exhibits positivity and convexity. This distinction between
the dimensions coincides precisely with the unitarity bound on scaling dimensions of



operators in any N' =2 SCFT: A > 1, where free bosonic fields saturate this bound.
We shall gather compelling evidence that turning on Coulomb branch operators with
unitary scaling dimensions is compatible with maintaining positivity and convexity of
the Kéhler potential, and its unique global minimum being at the AD point.
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2 Series expansion near a maximal AD point

We begin this section with a brief summary of the salient features of the Seiberg-Witten (SW)
solution for four-dimensional N = 2 super Yang-Mills theory gauge group SU(N) without
hyper-multiplets [3, 4, 7]. We also review the expansion of the SW solution around the
Zon symmetric point obtained in [15]. A similar set-up is then used to derive a convergent
expansion of the SW periods near one of the Zy symmetric maximal AD points for NV > 3,
and to show that this expansion coincides with the analytic continuation of the Zsy expansion
of [15]. A key tool in matching the expansions is the Gauss-Kummer quadratic transformation
on hypergeometric functions. A detailed analysis of the domain of convergence is undertaken
and its results are presented graphically.

2.1 Summary of the Seiberg-Witten solution

The SW solution determines the vacuum expectation values of the gauge scalars ar(u) and
their magnetic duals ap, r(u) as locally holomorphic functions of the gauge invariant Coulomb
branch moduli u, for I = 1,--- /N —1 and n = 0,1,...,N — 2. The SW solution is
constructed from a family of Riemann surfaces C(u) that depends holomorphically on the
moduli u,, and is referred to as the Seiberg-Witten curve. For gauge group SU(/N) and no
hyper-multiplets, the SW curve is given by,

N-2
y? = A(x)? — APV, Az) = 2N — > upa, (2.1)
n=0

where A is the strong-coupling scale of the non-Abelian SU(NV) super Yang-Mills theory.'
Each Riemann surface in the family is hyper-elliptic and has genus N — 1. Choosing a basis
of homology cycles 2l and B; with canonical intersection pairing J,

J®RALDBy) = —J(Br,2A5) =61
3(9’l172[]) = 3(%17%J):0’ (22)

! Our conventions for the curve differ from those in [13, 14] by an N-dependent redefinition of the

strong-coupling scale 4A2Y = AZN . Henceforth we shall set A = 1, unless otherwise stated.



the vacuum expectation values of the gauge scalars ar(u) and their magnetic duals ap r(u)
are obtained as the periods of a meromorphic Abelian differential \ as follows,

A'(z)d
2mia; = A, 2miap, = A A= m (2.3)
2Ap B Y
The matrix 7 of U(1)V~! gauge couplings and mixings is given by,
da da
Ty = 2t = 22 (2.4)

Oay Oaj

The matrix 7 is symmetric and its imaginary part is positive definite. The symmetry of 7
implies the existence of a pre-potential F, determined by ap ; = 0F/dar, which will not
be needed in the sequel. The imaginary part of 7 is the matrix of inverse gauge couplings
squared and must be positive on physical grounds. This property is automatic in the SW
solution. Indeed, the partial derivatives O\/du,, are holomorphic Abelian differentials on C(u),
up to exact differentials of single-valued functions, so that the partial derivatives day/0u,
and dap r/Ouy are periods of holomorphic differentials and 7 is the period matrix of the
Riemann surface C(u). The Riemann bilinear relations automatically imply that 7 has positive
imaginary part. Finally, modular transformations on the cycles 2, B leave the canonical
intersection pairing J invariant and form the duality group Sp(2N — 2,7Z).

2.2 Review of the expansion around the Zaxn point

For gauge group SU(2), the SW curve has genus one, namely it is a torus, so that the periods
may be solved in terms of elliptic functions and modular forms [1]. For gauge group SU(3),
the periods are given by hyper-elliptic integrals which may be reduced to linear combinations
of the Appell Fj functions [3]. For gauge group SU(N) with N > 4, however, the periods are
given by hyper-elliptic integrals that are no longer tabulated special functions. Nonetheless,
a relatively simple convergent Taylor series expansion of the periods was obtained in [15]
around the Zsy symmetric point u, = 0 for all n = 0,1,..., N — 2 for arbitrary N. This
expansion, which we shall briefly review below, will serve as a guide to obtaining a similar
expansion around the maximal AD points.

At the Zoy point we have A(z) = 2V so that the SW curve y? = 22 — 1 manifestly
exhibits the Zony symmetry © — ex where € = e2™/2N  The curve contains the two Zon
symmetric points (z,y) = (0,%¢). The 2N branch points are given by the 2/N-th roots of
unity (z,y) = (¢¥,0) for k= 0,--- ,2N — 1, and are shown in the left panel of figure 1 for
the case of N = 3. They are mapped into one another by Zsy. The expansion around the
Zopn point is obtained by Taylor expanding the SW periods in powers of the moduli w,. In
practice, the expansion may be organized by setting,

N-2
2 =2 14+ U(@)? - 22NU(2) U(z) = Z Upx" (2.5)
n=0

and Taylor expanding A in powers of U(z),

< T (k+3) VU () - U@)D)F
> r (1) lj! (22N — 1)k+3

k=0

(NxN - mU’(x)) dx . (2.6)



Figure 1. The Zg symmetric curve y?> = 2% — 1 is shown in the left panel, while the Z3 symmetric
curve y2 = (2% + v)(23 + v — 2) is shown in the right panel. In each case, the branch cuts are shown
in black double lines; the integration paths for Q(e™) and R({) are shown in green; the cycles of the
canonical homology bases 2l and B are shown in blue and red, respectively.

The integrals of A along the homology cycles 2i; and 23, needed in the calculation of the
SW periods in (2.3), may be computed by integrating term by term in powers of U(z). The
homology cycles for all terms may then be chosen along the line segments of the branch cuts
of the Zyn symmetric curve 42 = 22V — 1, as illustrated in figure 1 for the case N = 3.

As shown in [15], all such integrals may be obtained by evaluating the function Q(§)
which is defined as the Abelian integral of the SW differential, given by (2.3),

i Q) = /0 AeNo (2.7)

between either Zoy symmetric point (z,y) = (0, £i), denoted hereby 0, and an arbitrary
branch point (z,y) = (£,0) denoted here by £. The paths of integration are indicated in
green in the left panel of figure 1. In terms of Q(&) the SW periods are,

I
ar =Y {QE) - Q) aps = Q) — QY. (28)

J=1
Swapping the roles of the Zyxn symmetric points (0, i) reverses the signs of @ and all the
periods which, in turn, is equivalent to a modular transformation by —I € Sp(2N — 2,7Z).
The Taylor series expansion of Q(£) in powers of the moduli u,, is given by,?

< 2 NM4+L4N p (L N uy! uf\lfv_z2
@) ZZ::O 2m2N £ N (€7, a3u0) 21 SNy (2.9)

2The notation used here is related to the notation used in [15] by letting L + 1 — L, My — M, and
Yar (€N, L) = Y (€Y, a;up), as defined in (2.10) and (2.11), and will be convenient when matching with the
expansion around the AD points in the sequel.



where we shall use the following combinations throughout,

N-2 N-2
NM — L
L=1+ i M = L o= —. 2.10

The function Y (€N, o; ug) is given by the following linear combination of Gauss hypergeometric
functions F' = 5F7,

1)? 1 13
Y (&N, oz ug) = 2up &N cos? ()T (a + 2) F (a + @ + 5 ;u%)

1
+sin?(ra)T(a)* F (a, @ 53 ug) (2.11)

Alternatively, the hypergeometric functions may themselves be expanded in Taylor series
in ug [15], but the above formulation will be more pertinent to the expansion around the
maximal AD points, to which we now turn.

2.3 Expansion around a maximal AD point

For gauge group SU(N) with N > 3, the maximal AD points are characterized by u, = 0
for all n > 0 and ug = +1, recalling that we set the strong coupling scale A = 1. Without
loss of generality we may concentrate on the AD point with ug = 1 so that A(z) = 2V — 1.
The corresponding SW curve 32 = V(2" — 2) manifestly exhibits Zy symmetry z — £z,
recalling that ¢ = €>™/2N while the SW differential A = NzNdx /y transforms as A\ — g2\

2.3.1 Expansion of the SW differential

The neighborhood of the AD point ug = 1, inside of which we shall obtain a convergent series
expansion, may be parametrized by first taking ug away from the value 1 and then turning
on the moduli u, for n > 0. To do so we introduce the shifted variable v = 1 — ug keeping

Uy, = 0 for n > 0. In terms of v the SW curve is given by,
y? = (2N + )@V +v-2). (2.12)

Its branch points exhibit Zy symmetry but, for v # 1, do not exhibit Zon symmetry. Instead,
they are given as follows for k = 0,1,--- N — 1,

i =(2- U)%EEQ'IC x; =Nl (2.13)

For sufficiently small |v| < 1 the distance from branch points to the origin is of order A =1
for 2}, but of order |v\% < 1 for z;_, as illustarted in the right panel of figure 1 for the case
N = 3. The small branch points x, correspond to the intrinsic data of the AD theory, while
the large branch points xz correspond to its embedding into SU(V). The small branch points
dominate the dynamics of the AD theory as A — oo since the heavy states have masses of
order A and decouple. For v # 0,2, the SW curve also contains two points that are invariant
under Zy given by (z,y) = (0, +v/v(v — 2)) and that are referred to simply as 0 in figure 1.

Turning on the remaining moduli u,, for n > 0 will modify the disposition of the branch
points from the one for the Zy symmetric curve. As long as the u, for n > 0 remain



sufficiently small, the branch points will remain well-separated and a convergent Taylor
series expansion should be expected.

In this subsection we shall evaluate the periods spanned by the small branch points,
which are represented by the cycles 2[58) and %gs) in the right panel of figure 1 for SU(3), and
will be defined for arbitrary SU(N) in (2.21). The periods involving the large branch points,
which are represented by the cycles Q[gé) and ’Bg) in the right panel of figure 1 for SU(3), will
be defined for arbitrary SU(N) in (2.35) and will be evaluated in subsection 2.3.5.

To proceed with the evaluation of the small periods, we set A(z) = A(z) — 1 in terms
of which the SW curve and differential become,

zA'(z)dx

2 A A —
y = Al)(Alr) -2) A= ;

(2.14)

The AD point ug = 1 corresponds to fl(a:) = 2" and the small branch points correspond
to |z| < 1. Thus, to evaluate the periods spanned by the small branch points, we expand
the denominator in powers of A(a:), as follows,

1 & T(kt3) o A(a)de

A= . (2.15)
V-2 ,§) 2k T (%) K A(z)z*
By setting ug = 1 — v and rescaling the variable z and the moduli w,, as follows,
z=0Nz Up =v' "Nv, forn>0 (2.16)

the function A(x) decomposes into a factor of v times a factor that only depends on the
remaining rescaled moduli v, for n > 0, but is independent of v,

N-2
Alz) =v (zN —V(z)+ 1) V(z) = Z v 2" (2.17)
n=1

Clearly, the expansion (2.14) in powers of fl(a:) is equivalent to an expansion in powers of v.
To proceed, we expand A in powers of the remaining moduli v,, with n > 0 as follows,

oo ( ) k o F(f—k‘—i—M) V(z)M(NzN V(2))dz
kz% F( ) <2) M=0 F(i—k) M! (ZN_}_l)f—k—i-M - (218)

Note that all reference to the larger branch points has been translated into analytic dependence

in z, and the above expression for A can be used only to calculate the periods spanned by
the small branch points.
2.3.2 The short SW periods in terms of R(()

The short SW periods may be evaluated in terms of the function R(¢) defined for ¢V = —1,3
as the integral from either one of the Zy symmetric points, denoted here by z = 0, to the
small branch point z = ( by,

¢
mR(g):/O A N=—1. (2.19)

3We shall use the symbol ¢ for the N-th roots of unity satisfying (¥ = —1 here in order to clearly distinguish
them from the arbitrary 2/N-th roots of unity denoted by £ in the preceding subsection.



The integral is taken along a path from z = 0 to z = ( that does not intersect any of the
branch cuts produced by the square root, as shown in green in the right panel of figure 1.
As in the case of the expansion around the Zsy symmetric point, swapping the sign of the
Zy symmetric point amounts to reversing the sign of all periods and is equivalent to the
modular transformation —I € Sp(2N — 2,Z). The integrals R({) will soon be related by
analytic continuation to the integrals Q(§) and hence to the periods a; and ap ; considered
in [15]. Choosing a basis for the short homology one-cycles,

ﬁlg's) = [e¥73, e A = U ﬁﬁ‘S)
j=1
sBZ(s) = [l it i=1,--- {]\72—1] (2.20)

(s)

)

(s)

the short periods a;” and ap’; may be expressed in terms of the periods a; and ap ; and

in terms of the function Q(§) as follows,

dz(s) = Q2; +appi—1 = R(54i_1) - R(€4i_3> a§5) - d§5)
j=1
. ‘ - , N -1
afy); = Gaip1 + apoi = R — R(eM7Y) i=1 [2} ' (2.21)

The short homology cycles Q[gs) and ’B%S) are indicated in figure 1 for SU(3).

2.3.3 Expansion of R({) and the short periods

We are now ready to formulate and prove one of the fundamental results of this paper, namely
the expansion of the short periods around the maximal AD points for arbitrary gauge group
SU(N). As shown in the preceding subsection, the periods are given by (2.21) in terms of
the function R(() defined in (2.19). The results below give the expansion of the function
R({) around the maximal AD points.

Theorem 2.1. The function R(() for the small branch points ¢ with (N = —1 admits the
following series expansion around v, =0 for alln=1,...,.N —2 andvg=v=1—wugy # 0:

vity o (—)MHICLD (%)F@o%— %>2 P
R(¢) = NGT Z 5 YRR ' (2.29)
2N n:oén:?vf2 I (%) I (% —2a + £0> ol .. n_s!

where the combinations L, M and o were defined in (2.10).
The proof proceeds from the SW differential A in (2.18) and is relegated to appendix A.

Corollary 2.2. The summation over £y in the Taylor series expansion for R(C) for the small
branch points with (N = —1 in theorem 2.1 may be carried out in terms of an infinite series
of Gauss hypergeometric functions o F1 = F and the result is given by,

+1 21 N2

N

v > Uit UN
R(() = 1% ) T N=2 2.23
O=Vmy X WG g (2.23)
n=1,--- ,N—-2



where L, M were defined in (2.10) and the coefficient functions Wr ar(C,v) are given by,

()M CET () 113 v
Wrm(¢,v) = F <, —: = — 2 ) ) (2.24)
p(% _20) 2'272 2
In the special case where v, =0 for all n # 0, the function R(() reduces to,
1 1
CvtNT (g 11 1
R(C) = - () F(,;3+;U). (2.25)
\/%NF(%—F%) 22’2 N’2

The corollary readily follows from theorem 2.1, and its proof is left to the reader.

2.3.4 Evaluating R(¢) by analytic continuation of Q(¢) for ¢V = —1

Before addressing the calculation of the long periods, we show that R({) may be obtained
from Q(&) by analytic continuation in the variable v = 1 — ug for the small branch points,
namely & = ¢ for which ¢V = —1. Using these results, we shall then use the same analytic
continuation to obtain the long periods in the next subsection. We begin by proving the
following corollary of theorem 2.1.

Corollary 2.3. The function R(() is the analytic continuation in the modulus v =1 — ug of
Q(&) for the small branch points specified by € = ¢ and &N = —1.

To prove the theorem, we start from the Taylor series expansion (2.9) for Q(¢) and
re-express the coefficient functions Y of (2.11) using the reflection formula for the I'-function,

I'(z)[(1 — 2)sin(7z) =7 (2.26)
as well as the change of variables v = 1 — wy,

a,v) 2 fila,v)

YV (N, agug) = =€V ™ fal 2t T 5 (2.27)
r (% — a) (1-a)
in terms of the functions f3 and f; given by,
1 13
fa(a,v) = =2(1 —v)F (a + 37 + 3y (1- 0)2)
1
fila) = F (a0i 33 (1= 0)?). (2.28)

By construction, both functions admit a convergent Taylor series expansion around the point
v = 1, which is the Zon symmetric point. Our goal is to perform an analytic continuation
to functions that admit convergent Taylor series expansions around the point v = 0, which
is one of the AD points. To proceed, it is readily verified that both functions f3, f4 are
solutions to the same hypergeometric differential equation,

a
dv

v(2 — v)d2—f + (da+1)(1 —v)

3 —4a®f =0. (2.29)

,10,



The solutions to this equations may alternatively be expressed in terms of hypergeometric
functions with argument v/2, whose normalizations are conveniently chosen as follows,

1
2(20)272* /11 3 v
=2 P22t 24~
fileww) = ==, <2’2’2 a’z)
1w
fo(a,v) = F <2a, 2a; 2 + 5 2) . (2.30)

The two bases of solutions to (2.29) are related by a matrix S € SL(2,R),

fl a, v f3 «, v Si3 S

@) _[flen)) o [Siusu) o)
faa,v) fa(a,v) Sa3 S

The resulting expression for fs is the Gauss-Kummer quadratic transformation of hypergeo-

metric functions. The matrix elements of S are given as follows, [22]

@ @
i) = r(i-a) Sule) = —Fa g
N1 (L4 D (L4 90
Sos(a) = L (2)§(£2)2+2 ) Soa(a) = t <;>(I1‘ 5_2 ;22 ) . (2.32)
5 (6%

One verifies that indeed det(S) = 1 by using the reflection relation (2.26). Inspection of the
coefficients S13 and Sy4 reveals that, for the special case where fN = —1, the combination
Y (=1, a;up) is proportional to the function fi(«,v), namely,

72 fi(a, )
r(3)r(s-2qa)
Substituting this expression into (2.9) readily produces the expressions of theorem 2.1 in (2.23)

and (2.24), which concludes the proof of theorem 2.3. Henceforth, we shall set R(¢) = Q(()
for ¢V = —1 and express the short SW periods in terms of Q(¢).

Y(-1,0;up) = (2.33)

2.3.5 Expansion of Q(&) for the long periods by analytic continuation

Obtaining the expansion of the long SW periods around the maximal AD points directly from
the integral representation of the periods is considerably more involved than the evaluation
for the short periods given in theorem 2.1. Instead of proceeding directly here, we shall take
advantage of the analytic continuation of the expansion for Q(¢) for ¢V = 1 around the Zay
symmetric point to obtain the long periods. The long homology cycles are chosen to be,

QALEE) = Ai1 — By 911(2) = QA[;Z)
=1

<

B = —9y; + By, t=1,--- [] : (2.34)

i —
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(0)

i

)

The long periods will be denoted by a;” and ap,; and may be expressed as follows,

i
RO ¢ NU
GE ) = gy — ap2i—1 az(- ) — > ag-)
i=1
L N . N
a’(D?i = —a2; + ap2; i=1,--- [2] . (2.35)

We alert the reader to the fact that the ranges of the index 7 labelling the short and long
cycles (and periods) coincide for odd values of N but differ when N is even, in which case
there is one more pair of long periods than short periods. Using these definitions and (2.2)
one verifies that the short and long cycles satisfy the following canonical intersection pairings,

N
3(%@)’%52)) =8 i,j=1,-- {2}
N -1
3@, 8Y) =6, =1, {2 ] (2.36)

while all other pairings of the cycles le(-g), %;E), 9[2(5), and %gfs) vanish. The long and short
homology cycles ngz)’ %gz)’ nge) and SB%E) are indicated in figure 1 for SU(3).
The Taylor series expansion of Q(¢) for ¢V =1 at the maximal AD point in powers of

the moduli v, for n > 0 is given by the following theorem.

Theorem 2.4. The Taylor series expansion near the AD point of the function Q(&) for
N =1 is given by the following expression,

> QM*% I L NM—Lt1 vfl .. 'Uf\zfv—;
= 'l — )Y, _ 2.
Q) 2. Gant (N) (L asuojv™= N 5= =1 (2.37)

£p=0
n=1,- ,N—2

where ug = 1 — v, the combinations L, o were defined in (2.10), and Y (1, a;ug) is given by,
2720 (3) T (4 - 20)

(1 —«)T (% - a)2

Y(1,05up) = —T <;> r (; + 204) fila,v) +

fa(a,v). (2.38)

The functions fi(a,v) and fo(c,v) were defined in (2.30). In the special case where v, =0
forn >0, only the term with £, = 0 for n > 0 contributes so that L = 1, and we have,

0©) - 2 er (L)v (1) (239)

=_—— — ———sup | . .
2r2N° \N aN

The proof of the theorem follows from using the relation (2.31) to re-express Q(§).

2.4 The case of gauge group SU(3)

The N = 2 super-Yang-Mills theory with gauge group SU(3) offers one of the simplest settings
in which the AD theories arise. For this reason, and because one can at the same time obtain
simplified and more explicit formulas for the periods than in the case of arbitrary N, we
shall study the behavior of the SU(3) theory in detail here. The formulas we shall obtain

— 12 —



may also be compared with various known results available in the literature [3]. In terms of
the moduli v = u; and v = 1 — ug the SW curve and differential are given by,

(323 — ux)dx
Y

2

y? = (2 —uz +v) (23 —uz +v—2) A= (2.40)

Since the two factors in 4% have no common roots, the zeros of the discriminant of this curve
obey either 4u® = 27v? or 4u?® = 27(v — 2)2.

2.4.1 Series expansion of the short and long periods

Using corollary 2.2 for N = 3 and for the case €3 = —1 we obtain the following expansion
for the small branch points,

v

- r(=2)r(3) /o 11 11—4m v
Q) = 3\f7rz " (1?—64771) :1! <_§) F(22 6 ’2) (2.41)

while using theorem 2.4 for N = 3 and for the case 3 = 1 we obtain the expansion for
the large branch points,

oo m— m 4m—>5 _
QO =Y 2(261)/35’“% (’”“> r PF<(16)3,)(2U)56F (; L, 647”,;)
2

2r (1)1 (5=m) p(2m=12m—1 4m+1 v
< 37 3 7 6 ’2)

(2.42)

We note that Q(§) is analytic in w, but non-analytic in v as it contains powers of vs for all
values of £. For u = 0, its dependence on v is through a factor of v% times integer powers
of v. This scaling behavior for small v/A" is consistent with the predictions of the scaling
dimension A = g for the intrinsic Coulomb branch of rank 1 AD theories [11, 23-29]. We
shall return to this point in later sections.

2.4.2 Analyticity of the long periods

On physical grounds, the long periods, namely those associated with the embedding of the
AD theory into the SU(3) super Yang-Mills theory, are expected to be analytic in all moduli
u, v for |ul, |v| < 1. The fact that this is the case is borne out by the following proposition.

Proposition 2.5. There exists an Sp(4,Z) electric-magnetic duality frame such that one
pair of periods is analytic in the moduli (u,v), while the other pair of periods carry the
non-analyticities associated with the AD point.

,13,



To prove the proposition, consider the following Sp(4,7Z) duality transformation, which
implements the relations (2.21) and (2.35) for the special case of N = 3,

(0)

“() 1 0 -10\ [ @
a S

-1 1 10 az

ap 1 -1 01 ap,1

(5) 0 -1 01 CLD72
ap

where we have suppressed the sole index ¢ = 1. One may verify that the corresponding
cycles satisfy the canonical intersection relations of (2.36). It will be convenient to use the
decomposition of Q(§) into characters of Zg, familiar from [15],

5
Q)= ¢"Qn Q3 =0 (2.44)
n=0

where we recall that @)y actually drops out of all SW periods (see appendix B). Expressing
the long periods in terms of the functions @Q),, we obtain,

a® = (14 p)(Q1 — 3Qu) — p(Q5 — 3Qo)
o) = (Q1 = 3Q4) + (@5 — 3Q2) (2.45)

where p = €2 = ¢?™/3, The combinations 3Q4 — Q; and 3Q2 — Q5 may be obtained using
equations (B.9) and (B.10) of appendix B, and are given by,

1/3 oo r(2u—l)2r(u+l) 3
31— Qi =~ ’ ’ F(Qu—12u—1~2u+1'v)u

o2 S T (2u+1) (3p)! 3’ 3’ 6'2) 22

T2 p=0 HT 5 H):

2

_ 1 2

3Q2—Q5=2 1/3 oo F(2u+3) F(M+3)F<2u+1 2M+1'2M+5'v> uPttt
3 ) 9 9
L M) r(gqug) (3 + 1)! 3 3 6°2) 22

(2.46)

Hence, it is clear by inspection that all non-analytic behavior of the long periods completely
cancels, as is expected on physical grounds.

2.4.3 SU(3) periods via elliptic functions and modular forms

The expansion of the SW periods near the AD points for SU(3) gauge group may be obtained
in terms of elliptic functions and modular form, in parallel to the results of [15] for the
expansion around the Zg symmetric point. We shall adopt the notations and conventions of
appendix C in [15]. The derivation of these results is analogous to the one used in section 15
of [30], and will not be presented here.

— 14 —



We begin by parametrizing the genus 2 curve for N = 3 given in (2.40) as follows,

(2w)*z = p(2|7)

420 = gofr) = E40
—4(2w)% = gs(1) = — E;ig) (2.47)

where the Weierstrass function p(z|7) has periods 2w and 2wT, and satisfies the relation
@' (2|7)? = 4p(2|7)? — g2(7)p(2|7) — g3(7), while E4(7) and Eg(7) are the modular forms
of weight 4 and 6 respectively, normalized to the value 1 at the cusp ico. In terms of the
parametrization (2.47), the SW curve (2.40) becomes,

y? = (4w) (4" — g3p — g3) (490° — gap — g3 — 4(2w)°). (2.48)

Suitably deformining the short cycles 2 = ngs) = [0,27i] and B = %gs) = [0, 27i7] in order
to avoid the double-pole of p(z) at z = 0, the elliptic integrals defined by,

1 1
57 ]g‘ dz p(2) 2ri 7{% dz p(z) (2.49)

satisfy the following recursion that holds for J, € {Ag, Br}:

(8n —4)J, = (2n — 3)gaJpn—2 + (2n — 4)g3Jp—3 (2.50)
with the initial conditions Ay = 1 and By = 7. The solution is given by,
Ap = Ko+ 221 By = An+ ——1L (2.51)
n = fin 12 n—1 n = TAp o n—1 .

where K, and L,, are modular forms of weight 2n, determined by the recursion relation (2.50)
and the initial conditions. We have K1 = L = 0 and,

E4 Ee 5E] E4Es
Ko=1 Ky=— . T Ks=—
0 27 114 37 72160 17 48384 5 77760
E4 Es 7E2 29E, Eg
Lo=1 Ly=— g=———0_ — Ly=——""476 " (959
0 2780 3 1512 17 48384 5 1330560 (2.52)

The short periods are then given by expanding the SW differential in powers of 1/w as given
by the following theorem, which offers a non-trivial extension of the calculation of short
periods carried out to leading order in large A in [16].

Theorem 2.6. The small periods a(T) = ags)(r) and ap(T) = a(g?l (1) admit the following

Taylor series-expansion in terms of the basis {Ea, E4, Eg} of the ring of quasi-modular forms,

along with the variable w,

o0 l m m
[kt ltm+g) (—)m gt

_ ! 92
a= N Hzm::(] QRHBEEIMEI Pl (20)0(k+E+m)+5 (3A3k+f+3 T A3k+f+1>

. i > T (k+€+m+ %) (=)fm gb g
D= ——
o b 2k+3+3m ) o1 ) (2w)6(k+ﬁ+m)+5

2
(3ng+£+3 - 9433k+£+1) .

(2.53)
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As a result, the following combination can be expressed in terms of modular forms {E4, Eg}

1
I D(k+e+m+3) (yttmglgm . e,
D = (27r)% L QRSB Tl (20) 8k ERm) 45 Bktt4+2 ™ 73k
K 7m:

(2.54)

which is a locally holomorphic modular form of weight —1 provided w is assigned holomorphic
weight 1 and L, has weight 2n.

Remarks:

1. The factor 2w in the denominator of each formula in theorem 2.6 may be eliminated in

favor of either the variables (u, g2(7)) or the variables (v, g3(7)) using (2.47) depending
_ 2mi/3
=e

on whether the expansion is sought near the points 7 =7 or 7 =p respectively.

2. The combination ap — 7a vanishes at the AD point 7 = p, since we have gs2(p) = 0, and
the recursion relation implies Lsiio = 0 for all £ > 0. Thus, at the AD point, we have
ap = Ta, as must be the case for any rank-1 N’ =2 SCFT.

3. The Zsz symmetry of the AD point fixes the modulus 7 = p and g2(p) = 0. In the
neighborhood of the AD point, the combination |g2(7)3/g3(7)?| = 4|u|?/|v|? is small, a
condition that coincides with the original assumption for the validity of the expansion.

4. There exists a different potential superconformal fixed point at 7 = 4 that preserves Zo
symmetry, and where v = g3(i) = 0 and go2(i) = (2w)*4u. The sum over m in (2.54)
then collapses to the m = 0 contribution, the recursion relation (2.50) for L,, may be
solved, and the remaining dependence on w may be eliminated in favor of wu,

3

B ui X 2*10"11(71—1—%)21“(114-%)2 u\ 3"
R N e n el
(2.55)

The above series has radius of convergence |u| < 3. The scaling dimension of the
operator corresponding to the modulus u is A(u) = % < 1 is below the unitarity bound.
This implies that there is no consistent way to take A — oo such that the resulting
theory is unitary and superconformal.

2.5 Remarks on the convergence of the Zy expansion
In this subsection we shall discuss the convergence properties of the expansion around the
maximal AD point, briefly for the SU(N) case, and in more detail for SU(3).

2.5.1 Heuristic analysis of the SU(IN) case

As illustrated in the right panel of figure 1 for the case of SU(3), the branch points split
into a set of small branch points of order O (v%) and large branch points of order O(A).
The starting point for our expansion is a point in the moduli space of the Coulomb branch
where v # 0 and v, = 0 for all n > 0. The non-vanishing of v guarantees that the small
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branch points z; remain well-separated. Turning on the moduli v, for n # 0 we observe that
the parameter entering from the Taylor expansion in corollary 2.2 is v,. The expansion will
remain convergent as long as no two branch points are brought to coincide with one another,
which requires the parameter u, to remain sufficiently small with respect to vWV=)/N - Thuys,
the conditions for convergence, derived on heuristic grounds, are as follow,

lv] < AN lop| < 1. (2.56)
For the case of SU(3) we can make these bounds more precise.

2.5.2 Detailed analysis of the SU(3) case

In appendix B.3, we provide a detailed derivation of the convergence conditions for the Zs
series. Here, we remark on its consequences and compare it with the Zg series of [15].

1. The Zg expansion converges provided the moduli satisfy the following inequalities [15],
lul 1o <1 (257
—|ul? —v| < 1. .
V27

In figure 2(a), the green translucent region shows the domain of convergence of the Zg
expansion. The AD points are located on the boundary of this domain and the three
multi-monopole points are mapped to the red dot at the peak of the conical region.

2. The Z3 expansion converges provided the moduli satisfy the inequalities,

43

o ?<1. (2.58)

lv

In figure 2(b), the red translucent cylindrical region minus the solid cone shows the
domain of convergence of the Z3 expansion. The AD point is at the peak of the cone.
The multi-monopole and Zg points are on the boundary of the domain of convergence.

3. Figure 3 shows the total region that we can access with the combined expansions.

3 Candidate walls of marginal stability revisited

In this section, we shall reanalyze the candidate walls of marginal stability proposed in [15]
for SU(3), this time from the perspective of the expansion of the periods around the AD
points. We shall check agreement of the results obtained by the two expansions on the slice
with u = 0 and map out more walls of marginal stability beyond the v-plane for SU(3), and
analyze marginal stability in the SU(4) case on the slice u; = ug = 0.

3.1 Setup

In this subsection, we shall briefly summarize the setup of [15] used to analyze the marginal
stability of BPS states. At a generic point on the Coulomb branch, the SU(N) gauge-group
is spontaneously broken to its maximal Abelian subgroup U(1)V~!. With respect to this
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Figure 2. All the translucent colored regions denote convergence in the coordinates (Re v, Im v, |ul),
but the opaque colored regions are excluded by convergence.
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Figure 3. This plot shows the total region of moduli-space that we can access using the two Zs and

Zg expansions: the solid blue and red cones are excluded from the regions of convergence of the Zs
expansions, and the translucent regions denote convergence.

unbroken gauge group, the states in the theory carry both electric charges q = (q1,- -+ ,qn—1)
and magnetic charges g = (g1, ,gn—1), which we shall assemble into a single multiplet,

n= (qag) = (qlv - dN—-17G15 - - - agN—l) € ZN_l X ZN_l . (31)

The central charge Z[u] of the NV = 2 supersymmetry algebra, evaluated in a state with
charge vector p, is a linear function of u given by [1],

N-1

Zlul = > (qrar + grap) - (3.2)
=1
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In a unitary theory the mass M of any state with charge vector u satisfies the BPS bound
|Z[u]] < M. The state is a BPS state provided its mass M saturates the BPS bound,

M = |Z]]). (3.3)

!/

Two BPS states with charges © = (q,g) and i/ = (q’,g’) obey the Dirac quantization

condition D € Z where D is given by the symplectic pairing of the charges p and p/,

N-1

D=q-g —g-d =Y (ug;—dq9r) - (3.4)

I=1
When D = 0, one may perform an Sp(2N — 2,Z) duality transformation to new charges
i and i’ that have vanishing magnetic components, and are therefore mutually local. By
contrast, when D # 0, the corresponding BPS states are mutually non-local. This non-locality
is, of course, familiar in the semi-classical limit where electric charges are light and magnetic
monopoles are heavy soliton states such as the 't Hooft-Polyakov monopole. The novelty of
the AD theories is the presence of massless mutually non-local states and fields.

Two BPS states with charges p, ¢/ and masses M = |Z[u]|, M' = |Z[1/]|, respectively,
can form a bound state of charge p + ' provided the mass M, of the bound state satisfies
My, < M + M’'. The mass M, satisfies the BPS bound |Z[u + /]| < M,. In general, the
inequality will be a strict one and the resulting bound state will not be a BPS state. For
special charge arrangements and for special values of the vacuum expectation values a; and
ap,r, however, two BPS states can form a BPS bound state, namely when,

Z|u') =rZu] for somer € R (3.5)

For a given pair p, i/, the solutions to this equation carve out a real co-dimension one slice
of the Coulomb branch that we refer to as a candidate wall of marginal stability. Having
equality of the mass M of the bound state with its BPS bound |Z[u + i/]| on the wall does
open the option of forming a stable non-BPS bound state on either side of the wall. Whether
this option is actually adopted by the theory is a dynamical question that goes beyond the
purely kinematical considerations used here. For this reason the terminology candidate wall
of marginal stability will be used throughout.

3.2 Marginal stability of BPS states in SU(3)

Candidate walls of marginal stability were analyzed in [15] for SU(3) on the slice u = 0 for
arbitrary v using the Zg expansion of the periods. In this subsection, we re-examine these
candidate walls of marginal stability using the Zj3 expansion around one or the other of the
AD points, first for v = 0 and then for arbitrary u, v.

3.2.1 The u = 0 slice

In terms of our expansion around the AD point uy = 1, given in (2.42), (2.41) and (2.44),
the expressions for the SW periods of (2.8) for the case N = 3 are as follows,

a1 =(p—1)(Q1— Q1) — (3Qs — Q1) ag = (1+ play
apy = (p—1)(Q1— Q4) + p(3Qs — Q1) ap2 = pap, (3.6)
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Central charges and masses of BPS dyons near the SU(3) AD points
Dyon charge Central charge Z[uxs] M(ug = +1) M(ug = —1)
por = (=1,0;—1,0) —(p = 1)(Q1+ Q4) 1.55632 0
pi2 = (—1,1;0,1) —(2p+ 1)(Q1 + Qu) 1.55632 0
po1 = (0,1;1,1) —(p+2)(Q1+ Q) 1.55632 0
poz = (0,150, 1) (p—1)(Q1 — Q) 0 1.55632
pa1 = (1,0;-1,-1) (20 4+ 1)(Q1 — Qu) 0 1.55632
oo = (1, —1;-1,0) (p+2)(Q1— Q) 0 1.55632

Table 1. Central charges and masses of BPS dyons near the SU(3) AD points.

where p = ¢%'. Consider BPS states with charge vectors pu = (q1,q2;91,92) and p' =

(4}, d5; 91, g5) and corresponding central charges,

Zp'] = aQ1 + BQ4

Z[p] = Q1+ Q4 (3.7)
where we have defined the following integers of the ring Z[p],
a=p(d —95) — (a3 +g1)
B=—2+p)(a+9) — (1+2p)(g2 — g1)

y=p(g—92) — (2 + g1)
d=—-2+p)(q1+g2) — (1 +2p)(q2 — 1) - (3.8)

We may parametrize the solutions to the equation (3.5) for the candidate wall of marginal
stability in terms of the real variable r as follows,

i ZW] _az+f 2(v) = Q1(v)

Zlp ~ vz +6 Qa(v)
Inverting the relation between z and the real parameter r, for given charge assignments, will

(3.9)

make z trace arcs of circles in the complex z-plane that depend on the particular charge
assignments of p and p/. The strong-coupling spectrum of SU(N) SW theory has been
worked out in [31], and the SU(3) case is explained in appendix E of [15]. We summarize
the results in table 1.

As indicated in the table, each AD point has three mutually non-local dyons that become
simultaneously massless. The equation (3.5) has been solved for all possible pairs on the
u = 0 plane in [15]. We summarize these results below, and then build on them.

There are 15 distinct pairwise ratios of the six BPS states. Two sets of three of these
ratios are between massless mutually non-local dyons. These ratios are independent of ();
and @4 and necessarily complex, such as for example Z[u11]/Z[po2] = —p. There can be
no walls of marginal stability between such pairs. The remaining nine ratios are between
one massive and one massless dyon, they do depend on )1 and Q4 through the ratio
z = Q1/Q4, and can lead to candidate walls of marginal stability. To analyze the ratios
systematically, we compare the central charges in the first triplet of mutually non-local dyons
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Figure 4. The candidate walls of marginal stability for SU(3) on the slice u = 0 are represented by
colored arcs in the z-plane in the left panel and in the ugy plane in the right panel. The contour of
vanishing Kéhler potential is drawn in black [15].

(Z[po1], Z[p12], Z[p21]) with cyclic permutations of the second triplet of mutually non-local
dyons (Z[poz], Z[p11], Z]pne2]), as follows,

1 (Z[pozl, Z[p11], Z[p2a])
12 (Z|p22l, Z[po2], Z[p1]) (3.10)
73 (Z[pnl, Zp22], Z[po2])

(Z[po1l, Z[m12], Z[p21])
(Z[po1l, Z[u12], Z[p21])
(Z[po1], Z[p2], Z[p21])

where z = z(v) and,

z+1 z+1 2z +1
- 2= =p 7“32102_1

(3.11)

L=

z—1 z—1

1. The reality of r; parametrizes a straight line segment in the complex z-plane that lies
on the real-axis. We will not consider such walls because they are non-compact.

2. The reality of ro parametrizes a continuous subset of the circle ’z + % = % in the
complex z-plane for a continuous range of values of r9 € R.
2
3. The reality of ro parametrizes a continuous subset of the circle ’z — % = % in the

complex z-plane for a continuous range of values of r3 € R.

In this sense, each candidate wall of marginal stability on the v-plane has a three-fold
degeneracy, i.e. each wall can be obtained from three distinct pairs of dyons. Finally, we can
numerically map z(v) to the ug-plane by using the expression for w(v) in terms of v or wy.
This is displayed in the right panel of figure 4, which reproduces the result of [15]

3.2.2 Existence of walls of marginal stability away from the v-plane

In this sub-subsection, we give an argument for the existence of walls of marginal stability
in the SU(3) Coulomb branch with u # 0 over the curves of marginal stability restricted to
the v-plane. We expect to find a marginal stability subspace of real dimension three inside
the Coulomb branch, since we have 2 complex degrees of freedom u and v parametrizing
the Coulomb branch, and one real constraint Z5/Z; € R. Since such a surface lives in the
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four-dimensional moduli space, it is rather hard to visualize and we shall focus instead on
the marginal stability subspace of a three-dimensional slice of the Coulomb branch that
we can visualize more easily. The following proposition shows the existence of walls in the
u-plane for fixed values of v that lie on a wall.

Proposition 3.1. For any point vg on a curve of marginal stability in the v-plane, there
exists a curve of marginal stability in the u-plane that goes through the point (u,v) = (0, vp).

We hold v = vy fixed and consider two central charges Z;(u) and Za(u) evaluated at the
point v = vy, which may be regarded as a (locally) holomorphic function of a single complex
variable u. Then we may define the relative phase of these two central charges as,

2id(ua) _ Z1(w)Za (1) (3.12)

Zg(u) 1

NIl N

In what follows, we will use the fact that the phase of a holomorphic function f is harmonic
for all points where the function is non-zero; this assumption is necessary since one takes
the logarithm of f in the proof of this fact. However, (potential) vanishing of the central
charge Zj(u) does not pose an issue since we take its complex modulus in the definition of
the relative phase. Then it follows that ¢(u, ) is locally a harmonic function on any open
set that contains v = 0. But a harmonic function on a connected domain D C C can never
attain its extreme values in the interior. Any point ug € C that lies on a wall of marginal
stability, i.e. Zo/Z; € R, satisfies ¢(ug, ug) = 0. In particular, ¢(0,0) = 0. This implies that
zero is neither a minimum nor a maximum of ¢, and that there exists a closed subset C C 0D
such that ¢(C) < 0 and ¢(C¢) > 0. Hence, there exists a curve of marginal stability that
goes through the interior and is continuously connected to u = 0.

Remark. The above proposition applies locally in a neighborhood of v = 0, where the
central charges are analytic. In particular, Z(u) is not required to be analytic globally, and
hence the function ¢ would not be globally harmonic due to the potential non-analyticities in
Z(u). Therefore, this local existence result for walls of marginal stability does not pose an
obstruction to the compactness of the walls of marginal stability.

3.2.3 Numerically finding walls of marginal stability beyond the v-plane

In this sub-subsection, we will find candidate walls of marginal stability using two distinct
methods: perturbation theory and numerical integration.

The first method involves first-order perturbation theory in w for a fixed value of v
on the orange arc in figure 4 and a mesh of values of r. We note that the figure does not
appreciably change even if we go to high orders in perturbation theory, as long as we are
inside the radius of convergence.

We will focus on the segment of the curve produced by the pairs (uo1, p122), (t12, po2),
and (21, p11) that has positive imaginary part, i.e. the orange curve in figure 4. For any
up with |ug| < 1 on this arc, we have an absolutely convergent expansion in u, and we can
get arbitrarily close to the AD points at ug = £1. Recall that our expansions have the
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following radii of convergence in the u-plane
Z3 points : 2%]u| < 3|1 F u0|§ <3 for up = £1 respectively
2 2
Ze point : 23 |u| < 3 (1 — |ug|)? and |ug| < 1. (3.13)

On regions of overlapping convergence, recall that Radius,(Zs) > Radius,(Zg). Hence, it
is more fruitful to apply the Zs expansions near the AD points because this inequality is
significant. On the other hand, we apply the Zg expansion on the imaginary v-axis because
that is the boundary of convergence for the Zs expansion. Precisely at the AD points, neither
expansion converges but we can get arbitrarily close.

However, this method is limited by the radius of convergence of the expansion. To
circumvent this limitation, we recall that the periods of pure SU(3) SW theory satisfy
Picard-Fuchs equations in the variables [7]

4o
(x1,22) = (27, (1- v)2> . (3.14)

This system of second-order PDEs can be transformed into a system of first-order ODEs
which are numerically integrable (see appendix D of [15]). We use this method to compute
the periods, central charges, and walls of marginal stability, by scanning for points on the
u-plane, for fixed values of v on the orange arc in figure 4 where Z[us]/Z[u1] is real-valued.

Remarks:
1. The three pairs correspond to the three walls in figure 5, both related by Zs. At the
fixed point u = 0 of this Z3 symmetry the degeneracy among the three pairs is restored.

2. The arcs in figure 5 with ¢ = 0 are approximately circular near the origin because,
inside the radius of convergence, equation (3.5) was truncated to first order to give,

ar +b
cr+d

(du —b) = r(—cu+a)=u(r)=

for some a, b, c,d € C with ad — bc # 0. An equation of this form traces out an arc of a
circle inside the radius of convergence. However, the arcs are slightly deformed from
circles outside the radius of convergence, as is clear from figure 5(c).

3. The plots in figure 6 were created by picking 33 evenly spaced points on the orange arc
of marginal stability in figure 4 and then solving numerically for ¢ = 0.

4. The region of stability is a tubular neighborhood, and there are three such compact
regions corresponding to the three walls that are related by Zs.

3.3 Marginal stability of BPS states in SU(4)
On the slice that contains the AD points (i.e. ux = 0 for k # 0), we have

a1 =eQ- — Q4 ap,1 = 52Q+ —eQ-
ag = (62 + 1)a1 ap,2 = 62aD71 (3.15)
az = 52a1 ap,;3 = —ap,
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(a) Walls for the a single pair (uo1, f22)- (b) Walls for all three pairs.

Imu

\_/

(c) Full picture of the three walls beyond the
radius of convergence.

Figure 5. The figure above shows the curves of marginal stability on the u-plane for ug ~ 0.61844
(the midpoint of the orange arc in figure 4). The left panel shows the walls for a single pair of dyons.
The red region is inaccessible by perturbation theory since our Zg-expansion does not converge there,
the blue region is where the BPS states pp; and poo are stable with ¢ < 0, and the green region is
where bound states may be formed, i.e. ¢ > 0. The right panel shows a plot of the curves of marginal
stability on the u-plane for all three pairs of dyons simultaneously. Again, the red region is inaccessible
by perturbation theory. The regions of mutual stability (¢ < 0) and instability (¢ > 0) for 2 pairs are:
IT and IT for (po1, f22) and (g1, po2), I and I for (w12, po2) and (po1, p11), 1T and I for (per, pi1)
and (po1, p22). The panel 5(c) displays the full walls beyond the radius of convergence obtained from
numerical integration. Blue walls correspond to (g1, to2), orange walls to (u12, to2), and purple walls

to (peot, p11)-
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Imu

(a) 1 pair (uo1, p22)- (b) All 3 pairs — degeneracy lifted.

Figure 6. A three-dimensional view of the candidate walls of marginal stability.

The central charge can be shown to take the following form (Q+ = Q1 + Q5):

Z[p) = (mo + &*ma)Qy +e(no + °n2)Q—, (3.16)
where
mo=—q1—q2 — g2 no=q+q2—91+9s
mz=—q2—q3+ g1 — g3 N2 =q2+4q3—92.

As for SU(3), the following coordinate will be convenient

z(v) = 8;

The strong-coupling spectrum of BPS dyons in pure N’ = 2 SU(N) gauge theory was

(3.17)

worked out in [31]. Following their algorithm for the N = 4 case, we see that there are 12
stable BPS dyons at strong coupling which split into 2 sets of 6, each of which becomes
massless at one or the other of the two AD points corresponding to (uo,u1,u2) = (£1,0,0).
Two dyons within each set of 6 are mutually local, while two dyons belonging to different sets
of 6 are mutually non-local. The electromagnetic charge vectors pr; = (q1, 92, 43; 91, 92, 93)
for the IR gauge-group U(1); x U(1)2 x U(1)3 are displayed in table 2.

We observe a phenomenon that did not occur in SU(3): at each AD point, the massive BPS
states belong to two different multiplets with unequal masses mg = 1.2828 and m; = 1.8142,
listed explicitly below.

o JA. Massless at up = 1 but have mass mg at ug = —1: {po2, to2, 131, 433 }-
o IB. Massless at ug = 1 but have mass my at ug = —1: {11, 13}
o [IA. Massless at ugp = —1 but have mass mg at ug = 1: {101, 103, 12, 1432 }-
o IIB. Massless at ug = —1 but have mass m; at ug = 1: {po1, pos}-
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Masses and central charges of BPS dyons near the SU(4) maximal AD points

Dyon AN M(up = +1) M(up = —1)
po1 = (—1,0,0;—1,0,0) (1-e2)Qy 1.2828 0
po3 = (0,1,-1;0,0,—1) —(1 -, |1.2828 0

=(-1,1,0;0,1,0) —(1+£2)Q, | 1.2828 0
ps2 = (0,0,1;1,1,1) —(1+£2)Qs | 1.2828 0
po1 = (0,1,0;1,1,0) —2Q 1.8142 0

= (-1,0,1;0,1,1) —2e2Q) 1.8142 0
po2 = (0,1,-1;0,—1,0) c(1+e2)Q_ 0 1.2828
po2 = (1,0 —1,-1) e(1+e%)Q- 0 1.2828
p31 = (0,0, 1;0,0,—1) —(1-¢%)Q- |0 1.2828
psz = (1,—1,0;—1,0,0) e(1-e2)Q_ 0 1.2828
p1 = (1,0, —1; —1,—1,0) 2eQ_ 0 1.8142
pz = (0,1,0;0,—1,—1) 2e3Q)_ 0 1.8142

Table 2. Masses and central charges of BPS dyons near the SU(4) maximal AD points.

Naively, there are (122

) distinct pairs. But ratios of central charges within a single category

always give rise to trivial walls of complex-co-dimension 1 in the z-plane. So, it suffices to
consider walls between distinct types: {IA-IIA, TA-IIB, IB-IIA, IB-IIB}. Hence, there are only
36 pairs between mutually local BPS states that could give rise to genuine walls.

1. TA-IIA. We have the folllowing candidate walls for this case:

Z1 (’I”) =

14+ ar

, h € {£e, L£ic}.
T Vhereo { ic}

2. IB-ITA. We have the folllowing candidate walls for this case:

zo(r) =

1+ pr
1—Br’

1
where 3 € {i

3. IA-IIB. We have the folllowing candidate walls for this case:

z3(r) =

1
+’YT, where v € {:t\/i, im/i} .
1—r

4. IB-IIB. We have the folllowing candidate walls for this case:

Z4 (’I") =

1+or

m, where § € {—gil}.
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‘Re v

Figure 7. The candidate walls of marginal stability for the SU(4) case on the slice u3 = us = 0
represented in the z-plane in the left panel and in the v-plane in the right panel. The purple dots
denote the AD points, and the gray dot is the Zg-point. The black curve is the contour of vanishing
Kéhler potential.

This set of curves is still highly degenerate: there are only three distinct walls of marginal
stability (see figure 7).

1. A circle of radius v/2 centred at z = i with degeneracy 10.
2. A circle of radius v/2 centred at z = —i with degeneracy 10.

3. A circle of radius 1 centred at z = 0 with degeneracy 12.

Note that the above degeneracy adds up to 32 instead of 36 since we do not consider the
straight lines with degeneracy 4 corresponding to 5 = i% and v = ++v/2. The last contour
to plot is of vanishing Kéhler potential:

K(v) =0= |z| = cot (g) = 1+V2. (3.22)

3.4 Comments on the SU(N) case for ur =0 for k£ > 0

We have computed candidate walls of marginal stability up to SU(7) on the v-plane with
ur = 0 for £ > 0. We do not give the pictures here explicitly since they share many features.
Instead, we close this section with some general remarks on the SU(N) case, always assuming
ur = 0 for £ > 0 in what follows. A generic wall of marginal stability on this slice satisfies

1
@ _ort for some a € C and any r € R. (3.23)

QN1 ar—1'

z(r)

The Kéhler potential on such a wall of marginal stability satisfies [15]

" ot? <27;V>1 . (3.24)

Since r can be arbitrarily rescaled, without loss of generality, we may take o = €' € S!, for

™

N
K ()t = @ tan (1)

‘ar—i—l
ar —1

¢ € 10,7 (we identify o ~ —a since they are equivalent under ¢ — —(). For the present
discussion, we suppose that o ¢ {0, 7} so that we exclude straight lines on the real axis.
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Consider the special case a = i. Then we have |z| = 1. This is the origin-centred circle
in the z-plane that exist for N = 2,4,6. For the N = 2 case, this is precisely the K = 0
contour found by Seiberg and Witten [1]. However, such an origin-centred circle seems to
be absent for odd N — we checked this up to SU(7) but lack a proof.

If a wall of marginal stability that is confined to the region K < 0 contains a point
where K = 0, then we claim that it must be tangential to the K = 0 contour at one of
z = Ficot (55). This point, together with both the AD points, uniquely specifies a circle in
the z-plane. This can be seen explicitly by setting (3.24) to zero, which amounts to

(1 — cot? (27ZTV>) 72 + 2 csc? (27;\[> cos ¢r + (1 — cot? (27;\7)> =0. (3.25)

This discriminant of this quadratic polynomial is

D = 2csc? (27;\7) (cos(?qﬁ) — cos (33)) . (3.26)

™

This equation admits real solutions provided ¢ € [0, %] U [7 — L, 7). If ¢ ¢ {&. 7 — &},
the wall intersects the K = 0 contour twice. Such a wall goes beyond the K < 0 region
since the circle also goes through the AD points; i.e. this is a circle through four specified
points. If ¢ € {{,7 — %}, then D = 0 and we have a unique intersection corresponding to
a=et'N =+, Solving the quadratic for these values of « fixes r = £1, i.e. z = Ficot (ﬁ)
Hence, there exist only two distinct walls of marginal stability that are confined to the region
K < 0, and are tangential to the contour K = 0. Furthermore, such walls exist for all
N > 3. However, the above statement does not preclude the existence of walls that are
confined to the strong-coupling region but always have K < 0. This pair of walls is explicitly
realized in the cases N = 3,4,5,6,7.

The contour of vanishing Kéhler potential is also a universal feature, and always has
radius cot (5}) in the z-plane, which scales like ~ N as N — oo. This N-scaling of the
radius of the K = 0 contour implies that the universal curves of marginal stability that are
tangential to the K = 0 contour do not exist at large-N since they tend to straight lines. On
the other hand, for any even N, we always expect to find the contour with |z| =1 since its
radius is independent of N. The fate of the other contours (in the strict region K < 0) for
even or odd N is not completely clear. We expect that the even and odd cases converge to
the same picture as N — oco. On these grounds, we suspect that the contours that lie in
the (strict) K < 0 region for any N converge to the contour with |z] =1 as N — oo, but
we do not have a proof. We close with an open question: is |z| = 1 the unique contour of
marginal stability as N — oo on the z-plane with u; = 0 for £ # 07

4 The intrinsic Coulomb branch of AD theories

In this section we shall study certain properties of the intrinsic Coulomb branch of the AD
theories by taking the A — oo limit of the asymptotically free embedding SU(N) super
Yang-Mills theory near one of the maximal AD points. The resulting intrinsic AD theory is
N = 2 superconformal, its operators transform under representations of the superconformal
Lie algebra SU(2,2|2), and have definite scaling dimensions. In particular, we shall study the
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behavior of the Kéhler potential in this limit, and show that it is positive definite (vanishing
only at the AD point) and convex provided only genuine intrinsic Coulomb branch operators
O,, are turned on away from the AD point, whose operator dimension satisfies the unitarity
bound A(O,) > 1 in a unitary superconformal field theory.

4.1 The (ai,an—_1) intrinsic Coulomb branch

The intrinsic AD theories exist independently of their embedding into the Coulomb branch of
an asymptotically-free parent theory, and a given AD theory may be reached from different
parent theories. For example, the AD theories obtained in the A — oo limit of the parent
theories SU(3)n,=0 and SU(2)n,=1 are the same and referred to as the (a1, az) theory. The
nomenclature originates with yet another parent theory, namely the (a1, a2) theory may be
constructed by compactifying the six-dimensional ' = (2,0) theory with gauge-algebra a;.
The BPS quiver for such a theory is given by the product of the a; and ay_; Dynkin
diagrams, whence the nomenclature (a;,ay_1) [32-35].

In this section, we shall consider the intrinsic theory obtained near the maximal AD points
of the N' = 2 super Yang-Mills theory with gauge group SU(N) without hyper-multiplets.
These theories can also be constructed The SW curve and one-form are given by, [36]*

N-2
ﬁzsz—Zunx"—i—v A=vV-27dz. (4.1)
n=1

The resulting SW curve and differential are scale covariant in the following sense. Since the
SW periods are given by integrals of A, we must assign to A the scaling dimension one, which
means that under a scale transformation by a factor of s € C* we have A — X = s\. This
scaling relation may be derived from the following scale transformations on x, uy,v ~ ug,

R ~ I \ SN L =
xr—x =sNe2g J— 1y =sN2g Up = Uy, = § NT2uy, (4.2)
forn=0,1,--- , N — 2. The scaling dimension of the operator O,, whose expectation value

is u, has the same scaling dimension as u,, and therefore is given by,

N —n
=2 .
N +2

AO,) (4.3)
In a unitary superconformal field theory the dimension of every physical operator must be
larger than one in view of the unitarity bound imposed by the representation theory of the
supersymmetry algebra, which requires A(QO,,) > 1 and thus,

N_l} . (4.4)

n+1<|——
<5

The parameter t is referred to as the rank of the (aj,ay_1) AD theory, and is defined to

be the dimension over C of the intrinsic Coulomb branch. By contrast, the parameters u,,

for n > v do not correspond to intrinsic moduli of the AD theory.

4The relation may be derived by temporarily restoring the A-dependence in (2.14) to A(z) = A(z) — AV
and y? = A(z)(A(z) — 2A") and taking the limit —2§% = lims_, o y? /A", while keeping z, u,, constant.
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4.2 The intrinsic Kédhler potential
The Kahler potential of SU(N) SW theory is defined by,

Ksyv

*ﬂs.

N-—
Z arap, —arap,)- (4.5)

We may conveniently re-express Kgy(y) in terms of the long and short periods with the help
of an Sp(2N — 2,7Z) change of duality frame, which results in the following expression,

7]

.
1 s)—(s s i 0)_ (¢ _(0) (¢
Kguvy = o > (az( )ag),)i a\"a a )> i ( z( )a(D?i - a )a%?z-) (4.6)

=1 =1

vl

where the rank v was defined in (4.4). We consider the decoupling limit of the SU(NN) super
Yang-Mills theory near the AD point as A — oo to obtain the intrinsic periods and the
intrinsic Kéhler potential. Doing so causes the term in the Kéhler potential for the long
periods to vanish, leaving the intrinsic Kéhler potential Kap of the AD theory expressed
solely in terms of the short periods,

. T
Kap = =3 (af”ap), — a3 (4.7)
=1

in the limit where v/A"Y — 0. In the remainder of this section we shall analyze the intrinsic
periods and the Kéhler potential using a combination of analytical and numerical methods.

4.3 Analytical results for the periods

In this subsection, we obtain analytical results for the periods and the Kéhler potential, in
terms of an expansion in the parameters v and v,, already encountered in (2.16),

vp = oV Luy, n=1---N—-2. (4.8)

Note that these parameters include the moduli of the intrinsic Coulomb branch, namely v
and v, forn=1,2,--- ,t— 1, but also the non-intrinsic parameters v,, for n > t. We consider
both for the sake of completeness, but also to contrast the difference of the behavior of the
Kéhler potential under both deformations. We first turn to evaluating the short periods.

Corollary 4.1. The short periods of the (ai,an—1) theory may be expressed in terms of the
function R(C) that admits the following infinite series expansion in vi,...,UN_2,

PSP A SRRl Rl S €)
V2N i Gl (34 & - M)

n=1,--,N—2

(4.9)

where L and M were defined in (2.10).

This expression for R({) follows from corollary 2.2, upon restoring the A-dependence
and taking the limit A — co. The result represents a major simplification of the expressions
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obtained in (2.23) and (2.24) for the embedded theory. The short periods may be expressed
in terms of the decomposition of the function R in terms of characters of Zy as follows,

N-1

R(()=> ("R, (N =-1. (4.10)

n=0

Throughout, it will be convenient to use the abbreviations,

. (2™ 2mn
Sy, = sin <2N) Cp = COS (2N> . (4.11)

Corollary 4.2. The short periods of (ai,an—_1) theories have the following expressions in
terms of the characters R, for any N >3 and j =1,...,¢,

N-1
afy), =2j Zl e s, Ry, (4.12)
n=
and,
N—
1
Z 2— (e* —1)R, odd N
“g‘s) -3 N-1 (4.13)
—2ijR, + ) 27(64713‘ —1)R, even N =2v.
n=1 Cn
n#v

(s)

To derive ap’;, we simply substitute the expansion (4.10) in terms of characters into

(s)

the expression for the dual period in (2.21), and apply the definition of s,. To derive a;”,

we begin by substituting the expansion (4.10) of R(¢) into characters,

ag-s) = Z Z ghh (3 — MR, (4.14)

k=0 n=1

We then apply the following key identity

k when ¥ =1

Z ghin — 1 _ gank (4.15)
= 1o otherwise.
—¢

Since the range of n is given by 0 < n < N — 1, the instance %"

orn = % The former does not give a contribution to the sum (4.14) thanks to the factor

(Sn

=1 can occur only if n =0

— &™) in the summand, while the latter can only contribute when N is even. It is now

(s)

clear that performing the sum over k produces the different expressions for a; " depending

on whether N is even or odd, thereby completing the proof of corollary 4.2.
4.4 Analytical results for the Kéhler potential

We now turn to the analytical results for the intrinsic K&hler potential, and begin by evaluating
Kap of (4.7) in terms of the character coefficients R,,, using the results of corollaries 4.1
and 4.2. The results are given by the following theorem.
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Theorem 4.3. The Kdihler potential Kap of (ai,an—1) theories admits the following decom-
position in terms of the characters R,

N N2
=3 R, odd N
4 =
Kap = 4.16
AD NN , N N1 on (4.16)
E; a|R"| +§ ; R, +c.c. even N = 2v.
n#v n#v

o For odd N, the proof proceeds by substituting the expressions for the periods obtained in
corollary 4.2 into the definition of the intrinsic Kéhler potential in (4.7), and we obtain,

1 t N-1 s 3 L
Kap = I z_: z; iRmRn(ezl(m mi =) 4+ c.c. (4.17)
j=1mmn=1
Applying the summation identity (4.15) shows that the first term receives contributions
only from m = n since m —n # N/2 for any 1 <m, n < N —1 when N is odd. This is

a key simplification for odd N. After several further elementary manipulations, we find,

27"—1—1N_13 i N2l S, S
Kap = IR, - — — " (R Rn — RmRn) . 4.18
AD 47 712:1 Cn nl 81 s cmcncm,n< mem m ") ( )
m#n

The second term on the right side cancels, since the prefactor in the summand is

symmetric under m <> n while the combination in the parentheses is anti-symmetric.

e For even N = 2v, with v € N and vt = v — 1, the proof proceeds by separating the term
(

n=vina S)z from the other terms, and splitting the expression (4.7) accordingly into
the following four contributions, Kap = K1 + Ko + K3 + K4,

i N-1 v—1
Ky =——R, w > je M e
T .
n=1 j=1

R Z —Rmz (e —1) + c.c.

1 N—-1 v—1
Ky=-1— > R ana*‘mﬂ +c.c
v#m,n=1 j=1
1 N—-1 s vl )
Ky = yym Z iRmRn Z gdm=n)j 4 ¢c. (4.19)
v#Emmn=1 j=1

To evaluate the sum over j in K7, we use the following identity in z = e~4" with ¥ = 1,

.j:_ux” m(l—m”):_ v 4.20
Z]»T -z (1—2x)2 1—z’ (420)
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The contribution from the n = v term is purely real, and hence cancels. The sums over
j in Ky and K3 are evaluated using the identity (4.15) to give,

v N-1 B €2n
Ki=—R, Z R,— +c.c.
41 Cn
v#n=1
v - Nl
Ko=-2R, 3 Rytec
47 Cm
v#Em=1
Ky= o Ni % R R + (4.21)
3 = 4 c miln C.C. .

The evaluation of K is a bit more subtle because,
N—-1 : _
, v—1 ifm—n=0 (modv
Z E_:4(m—n)j :{ ( ) (4.22)
j=1

-1 otherwise.

Since the condition m —n = 0 (mod v) can be satisfied only if m —n € {0, +v} we have,

K — 1 = Sn, R R 2(v—1) Nl st 9
4__E Zl a(m n+CC>+—4 Z_ a| m’
m:n'r;:éa,iu V;ém_l
v—1 =2 s =
+= > ERpRn [6m-ny + Om—n,—v] + c.C. (4.23)
7 Cm
v#Emmn=1

Using the fact that ¢y, 801, = —cpsy for any n, we see that the sum on the second

line above cancels. Rearranging the contributions from m — n = 0, +v in the sum of
Ky, Ky, K3, K, gives the second line in (4.16) and completes the proof of the case
when N is even.

Next, we prove analytical results on the positivity and convexity of the (aj, ay_1) Kéhler

potential using the results of theorem 4.3 and corollary 4.1, assembled in the theorem below.

Theorem 4.4. The Kahler potential Kap of the (a1, an—1) theories is bounded from below

by zero provided we only turn on moduli corresponding to operators with unitary scaling

dimensions, i.e. A(Oy) > 1. Furthermore, in the absence of deformations with non-unitary

scaling dimensions, the expansion of the Kdihler potential in the rescaled moduli vy begins at
quadratic order with positive coefficients for k > 1 when N is not divisible by 4. When N is
divisible by 4, an additional linear term arises.

To prove the theorem, we shall need the values of R,, to leading orders in vy, --- ,vn_9.

This information may be read off from corollary 4.1,

TR estE
" VanNT (L + %

)
ot T (%)

V1 4+ O(v}) n=2---,N-1

1 1 N—-2
1 + <Z\72 + 2]V) Z UnUN—-n

R = -

+O(v3) (4.24)

(2
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where O(v?) and O(v}) stand for any bilinear or trilinear terms in vy, - -+ ,vy_2. To confirm
the absence of linear terms in Ry, we use the fact that its contributions arise from combinations
for which L = 1 (mod N). A term linear in v, has ¢, = 1 and all other ¢ = 0, so that
L =1+ n. Since n < N — 2, there are no solutions to the equation L = 1 (mod N), and
hence no linear terms.

To investigate the positivity and local convexity of Kap, we consider first the case of
odd N, for which the Kéhler potential is given by theorem 4.3,

N N=1g )
Kap = — IR, 4.2
w = g 3 oIl (4.25)

Since we manifestly have the following inequalities,

N -1 N +1
8—n>0 forn=1,---,—— S—n<0 forn:i

- N—-1 4.26
cn 2 cn 2 77 (4.26)

it is clear that the contributions from R,, and thus v,,_1 for n = %, .-+, N —1 are negative
and not convex. Setting the corresponding parameters v, = 0, we retain only those v,, for
which n = 0,--- ,%. In this case, the bilinear terms in R; automatically vanish, and
R; has contributions in vq,--- ,vny_o to order zero, but no linear or bilinear contributions.
Therefore, the Kéhler potential, locally near the AD point, is positive and convex. By
inspection of (4.3) and (4.4), we find, remarkably, that these values precisely correspond to
operators whose dimension is larger than 1 and thus obey the unitarity bound, while the
other values of n correspond to operators whose dimension is below the unitarity bound,

thereby proving the first part of the theorem. By contrast, turning on the deformations v,,_1
The situation is more subtle for even N = 2v. The argument for the positivity of the

forn = -, N — 1 renders the Kéhler potential non-positive and non-convex.
diagonal part of the Kap is identical to the case of odd N. The rest of the proof has two steps.
First, we show that the non-diagonal part of Kap for even N gives a vanishing contribution
when all non-unitary deformations are turned off. Second, we prove the absence of linear
terms provided N is not divisible by 4. To prove the first claim, note that all contributions
to R, come from the L = v (mod N) sector. Parameterizing L = v + Nk for k € Z>¢, the
coefficients in the expansion of R are proportional to,

r(#) - F(k+%)
r(3+4-m) T@+k-M)

(4.27)

Furthermore, we observe that £ — M < 0. Hence, the only non-vanishing contribution can
come from k — M = —1. This is equivalent, for a single fixed j, to (2v — j)¢; = v + 1. Such
a term contributes linearly only if 2v — j < v+ 1or j > v —1 = r. All such terms are
killed if we restrict to deformations with A > 1. To prove the second claim, we examine the
contributions to Ry from L =1 (mod v) when v is odd. This gives rise to a linear term only
if 7 = v, which is excluded by the constraint A > 1. This concludes the proof of the theorem.
We remark that the Kéhler potential is positive even when N is divisible by 4, provided we
only turn on unitary deformation. Indeed, the non-diagonal part of the Kéhler potential then
vanishes, and we are left with a sum of absolute-squares with positive coefficients.
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Remarks. To study the global structure of the Kéahler potential, we use numerics, which
agree perfectly with our analytical results. At rank-1, convexity of Kap over intrinsic slices
follows directly from the scaling of the periods: a(v) ~ UA(“ , which is required by scale-
invariance (cf. [11]). We numerically analyze the effect of turning on deformations u; with
A(Oy) < 1. Generically, such deformations introduce points where the second-derivative test
on the Kéhler potential fails to yield a unique minimum, and the determinant of the Hessian
is vanishing. In the rank-2 case, we primarily consider the intrinsic Coulomb branch, which
is now 2-complex-dimensional. On the intrinsic Coulomb branch, the Kéahler potential is a
positive and convex function provided there are no deformations with A < 1.

4.5 Rank-1, example 1: (aj, az)
This is a rank-1 theory with N = 3, and has an elliptic SW curve,
9% = a3 —uz +v. (4.28)
The function R(¢) for this theory is given as follows (3 = —1),
o ()
- e

(4.29)

S
I
S\w‘ Q

The sum may be reorganized into hypergeometric functions of various degrees,
R(O) = ve Cf(é) b (5 12 4 +<2T(§) (1 5 4 4
— .22 I w
3ver | (4 )2 N\ T12712°3 27 p(%)2 "\ 1273 27

1 13 45 4u?
F: 77751;757; 2 . 4.30
+2p(1>32<44 373 27)“’] (430)

This presentation explicitly produces exact expressions for the characters Ry, Ry and Ro

from the last, first, and middle terms, respectively, and allows us to compute the periods and
the Kéhler potential. Before proceeding to the necessary numerical analysis, it is instructive
to evaluate the Kéhler potential at low-orders in u, and we find,

o 0 () () r () () ) o

While the Kéhler potential for u = 0 is convex and positive with a unique vanishing point
at v = 0 by theorem 4.4, convexity is immediately lost as soon as we turn on u. Beyond
the analytical result for the small v approximation, numerics are required to explore the
Kéhler potential away from the AD points, as shown in figure 8.

4.6 Rank-1, example 2: (a1, as)

In this subsection, we consider the AD theory that lives in the moduli-space of pure SU(4)
SW theory. This theory is defined by a quartic SW curve,

7 =2t —upa® — w4+ v. (4.32)
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(a) (Rev,Imwv) (b) (Reu,Rew) (¢) (Rew,Imu)

Figure 8. A plot of the (a1, a2) Kéhler potential for various slices of parameter space u, v.

It is clear from theorem 4.4 that the Kéahler potential is convex and positive-definite in the

absence of any non-unitary Coulomb branch deformations with A < 1. Here, we gather

further evidence that turning on such deformations spoils both positivity and convexity.
For v > 0 the expansion in small u; € R is given as follows,

ORI O A O
fap = 3272l (%)2 " 16v/2m3/2T (g) a 32y/273/2T (%) o3 +O0(uf). (4.33)

The expression shows that turning on u; spoils convexity; we find an analogous result for
ug # 0. These results are qualitatively analogous to the results we obtained for SU(3), and
we shall refrain from presenting numerical plots for this case.

4.7 A rank-2 example: (a1, ay)

Numerical analysis confirms, here as well, that turning on any non-intrinsic moduli, such as
u9 and ug, spoils both convexity and positivity. We shall now concentrate on the numerical
analysis of the dependence of the Kéhler potential on the intrinsic moduli v = u1,v, with
no other deformations turned on. The SW curve is given by,

7 =a° —ux +v (4.34)

and the Taylor expansion of R(¢) in u for v # 0, with (®> = —1, is given by,

T oo (VAL (12
R(C) V10 Z( C) F( 5 ) (u)e (4'35)

= 1
5V2m o T (35— %) e \ws

This series may be summed in terms of the hypergeometric functions 5F4 and 4F3 with
argument proportional to u®/v*. Such a closed form for the characters R, is useful extract
the small-v behavior of Kxp by expanding the hypergeometric functions around u; = oo.
We shall not produce these lengthy explicit formulas here. Instead we concentrate on the
numerical results when only the intrinsic moduli v = u; and v are turned on.

In figure 9 the Kahler potential is plotted in various slices of the intrinsic Coulomb branch
moduli (u,v): versus (Re(v),Im(v)) for fixed u in panel (a); versus (Re(v),Im(u)) for fixed
Re(u), Im(v) in panel (b); and (Re(u),Im(u)) for fixed v in panel (c). One observes in each
case that, for the domain plotted, the Kéhler potential is manifestly convex. More detailed
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(b) (Im u, Rev)-plane.

Figure 9. Plots of Kxp for (aj, a4) on various slices of the intrinsic moduli space.

10evenly spaced v € [1, 2] 10evenly spaced u € [1, 2]

K(u=2,v) K (u, v) K (u, v)

0.25

4

u -2

(a) v-plane with v = re®. (b) u-plane for discrete v. (¢) v-plane for discrete u.

Figure 10. Plots of Kap for (a;,a4) on discrete slices of the intrinsic moduli space.

numerical analysis, not manifestly visible form the plots, establishes that K 4p is also positive
definite for all values of u, v studied, and vanishes only for u = v = 0.

In figure 10 we provide a more detailed numerical analysis of the precise positivity and
convexity properties, by taking different representative slicing of the intrinsic moduli space.

¥ as a function

In panel (a) of figure 10 we set u = 2, and plot Kap as a function of v = e e
of r € [-1,2] for a number of discrete values of 6. Convexity and positivity is observed for
every such slice. In panel (b) of figure 10 we plot Kap as a function of real u € [—2,2] for
10 evenly spaced discrete values of v € [1,2]. Again, we observe positivity and convexity on
each slice. Finally, in panel (c) of figure 10 we plot Kxp as a function of real v € [—2,2] for
10 evenly spaced real values of u € [1,2], further confirming positivity and convexity.

Additional observations include the following. One verifies numerically, for example in
panel (b) of figure 10, that the minimum of the Kéhler potential over the u-plane always
occurs at the origin v = 0 for any v # 0. From panel (c) of figure 10, we also see that for
various real (as well as) complex values of u, the Kdhler potential has a local minimum
that is shifted from v = 0 for any u # 0, though still respecting positivity and convexity.
Finally, the Kéahler potential is always positive in all these cases, and the minimum of K
is strictly bigger than 0 if u # 0.

4.8 A rank-3 example: (ai,ag)

We consider the dependence of the intrinsic Kahler potential on the three intrinsic moduli
u9, U1, v, where the SW curve is given by,

7 =2 —upx® — w4+ v. (4.36)
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(a) up-plane. (b) ug-plane. (¢) (Rewuy,Imus)-plane.

Figure 11. Plots of Kap for (aj,as) on various slices of the intrinsic moduli space for fixed value of
v and different splicings of the intrinsic moduli u, us.

The evaluation of the periods and Kahler potential proceeds very similarly to what we have
already described up to rank 2, so we will not go into that here but rather only present the
results. We study the regime of fixed v, and small u; o using our expansion. This allows us
to produce plots in figure 11 that further support our conjecture that the intrinsic Kéhler
potential is a convex and positive function with a unique minimum at Kap = 0 that is
located at the Zy-symmetric point.

5 Conclusions and future directions

In this paper, we have analyzed three different aspects of Argyres-Douglas (AD) theories,
and their embeddings into the moduli-spaces of asymptotically-free gauge theories: the SW
periods near the AD points; the marginal stability of mutually local BPS states in a near the
AD points; and the intrinsic periods and Kéhler potential of (aj,ay_1) theories.

5.1 Summary of results

1. For gauge-group SU(N), we evaluated SW periods near the maximal AD points for
N > 3 by a non-trivial analytic continuation of the expansion of the periods obtained
near the Zoy-symmetric point studied in [15]. Since our expansion is around one or
the other maximal AD point, it allows us to access a neighborhood of the maximal
AD points that includes the intrinsic Coulomb branch of the AD theory. On regions
of overlap, we showed that our expansion has better convergence properties than the
expansion considered in [15].

2. For gauge-group SU(3), we revisited the structure of the walls for marginal stability,
which were analyzed in [15] only on the restricted slice with w = 0. Utilizing a
combination of our expansion around the Zs point and the numerical integration
methods of [15], we mapped out the walls of marginal stability in the 3D space
(Reu,Imwu, Arc), where Arc refers to a real-dimension 1 curve in the v-plane. This
adds a more complete understanding of the walls, and explains the degeneracy-lifting
associated with the Zs-symmetry of the v-plane. We provide partial results for SU(4)
on the uo = u; = 0 slice, and point out some generic features for N > 3.
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3. In the last part of this paper, we explore the intrinsic Coulomb branch of (a1, ay_1)
theories. We applied the decoupling limit A — oo to obtain the intrinsic periods and
their expansion around the AD point. We then apply this understanding of the periods
to exactly compute the intrinsic Kahler potential and prove its positivity and convexity
near v, = 0 on intrinsic slices, except when 4 { N. We numerically test the global
positivity and convexity of the Kéhler potential over intrinsic slices in a variety of
examples up to and including rank-3, i.e. N = 3,4,5,6,7. We find broad agreement
with our analytic results, and find that convexity and positivity are spoiled if we allow
non-unitary deformations to be turned on, namely uj>, # 0. This is in full agreement
with theorem 4.4.

5.2 Future directions

Let us close this section with some concrete directions for future work.

1. Dynamics of wall-crossing. A key question that we have not addressed in our
considerations is whether genuine bound BPS states are formed when we follow a
trajectory in the Coulomb branch that crosses a kinematically allowed wall. It would
be interesting to explicitly determine the spectrum of BPS states after such a wall
is crossed, and determine under what conditions formation of bound BPS states is
possible. Work along these lines has been recently undertaken in [33], and it would be
interesting to apply these methods to the walls we obtain here. It is worth emphasizing,
however, that more complicated phenomena can take place upon wall-crossing that we
have also not addressed here — see [32].

2. Integrated correlation functions of the (a;,an_1) stress-tensor. There is
a large body of work on integrated correlators in 3d ABJM and 4d N = 4 super-
Yang-Mills [37-39]. The key motivation behind such work is to provide non-trivial
non-perturbative checks of holographic duals in eleven and ten dimensions respectively.
Such works often rely on supersymmetric localization, superconformal symmetry, and
S-duality: all of which can be accessed for AD theories. Recently, holographic duals
have been proposed for AD theories in M-theory [40, 41], and it would interesting to
compute observables on the field theory side to test these duals. On a related note,
there are investigations of the correlators of chiral ring operators in AD theories using
supersymmetric localization and the intrinsic SW periods [42].

In parallel to the work on A/ = 4 super-Yang-Mills, is there a combination of
supersymmetric localization and our expansion of the SW periods that can be used to
compute the stress-tensor correlators of AD theories? If yes, what does this correspond
to in the proposed holographic dual?

3. SUSY breaking of Argyres-Douglas theories. As was already emphasized ex-
plicitly in [14, 15, 20, 21], the convexity of the K&hler potential plays a key role in
our understanding of the IR phases of SU(N) adjoint QCD,, which is obtained by
deforming pure N = 2 gauge-theory by T ~ M? tr ¢¢é near the monopole point. On
representation-theoretic grounds, we expect to find a non-supersymmetric interacting
CFT if we deform AD theories in an analogous manner [43].
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What can be said about the phases and spectrum of this IR CFT? Can this non-
supersymmetric CFT be analyzed by a Lagrangian description obtained by deforming the
N =1 Lagrangian that flows to Argyres-Douglas theory (cf. [44, 45]) in an intermediate
step? If such a theory does not admit a Lagrangian realization, can one analyze it using
SW theory?

A  Proof of theorem 2.1

To prove theorem 2.1 we use the SW differential given in (2.18) and the definition of the
integrals R(¢) in (2.19). Substituting the multinomial expansion for V(2)™ in powers of z,

M

M ¢

VM= Y (61 s 2) ol 2 Rl (A1)
L1, N —2=0 ’ P

where we use the combinations L and M familiar from (2.10), gives the following expansion
of the SW differential,

)\_U%‘F% s F(k:—f—l) <v>k i F(%—k—l—M)vf . vf\ff\’;

e r(3)m \2/ im o r(i-k) Al
N-2 L1
X (NZN - Z nvnz”> : 1dzk R (A.2)
n=1 (zN+1)27 +
The integral over z from 0 to ¢ greatly simplifies for (¥ = —1 and we obtain,
CoMdr @y 7 ) O TETA-p)
/o (N+1p g (pN N"') NT({I+73-p) (A-3)

The integrals of A\ given by the expansion in (A.2) correspond to the values p = % —k+ M,
and vy = L+ N or v = L+ n. As a result, we obtain,

o <k+%)2 o\ F ) U€1' Usz

ln=0
§L+NF(1+%> N-2 £"+LI‘<%)
X(r(§+fv+k_M)_;NU”F(§+W+1€_M) . (A4)

where we have made use of the reflection formula for I'-function I'(2)I'(1 — 2) sin(7z) = 7.

1

2

z\

iTR(&

The term labelled by n under the finite sum over n in the second line corresponds to shifting
ln, — ¢y, — 1 and adding these contributions simplifies the sum as follows,

RS el S MESRIL) (5)
v-2rN A=, N T (B4 f k- M) B2

n=1,-- ,N—2

imR(§) =

(A.5)

Relabelling k — £y, v — vp and choosing the branch y/—271 = iv/27 produces formula (2.22)
and thereby completes the proof of theorem 2.1.
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B Convergence, long periods, and elliptic form for SU(3)

We explicitly display the coefficients of the Zs expansion in this appendix, and examine the
convergence criterion for the SU(3) series. Then we demonstrate that an appropriate choice
of homology basis makes the long periods analytic.

B.1 The Zg expansion

Explicit formulas for the periods in the case N = 3 were obtained in [7] using Picard-Fuchs
equations. The authors expressed their results in terms of Appell F functions [22, 46], which
can be defined by the following series expansion,

Bt = 3 e 7 (1)
The SU(3) periods can be expre:ssed as follows [15],
o = Q") = Q) ap1 = Q(e*) — Q")
a3 = Q") = Q") + Q") - Q(<?) ap2=Q() -QE). (B2
The function Q(§) can be expanded in characters of Zg
Q) = 25:05"6% Q@3 =0. (B.3)

The formula for Q() given in (2.9) may be recast in terms of Appell functions F; expressed
as follows in terms of the variables x = 4u$/27 and y = u3

27 1123 2m 1141
Q1:1)30F4 ( 29 'ﬂfvy> QQZﬁUFAL <6’67372;x7y)

25331 (3 3332 25321 (2)
2332{‘23 1 121 23F(2)3 2 9 4 3
3 3
= F —_—— —— ., — . — = F —_— =, =, =
Q4 471'2 4( 67 673727xay> Q5 47_[_2 uv 4<37373727x7y>

(B.4)
Additionally, Q3 = 0, while Q¢ cancels out of all periods. Note that the double infinite series
for the Appell function is absolutely convergent for \/|x| 4+ /|y| < 1 which gives the following
region of absolute convergence in terms of u and wv,

2 3

Beyond this region, partial analytic continuation formulas are known for Fj,’
F(Cﬁf(b - a) —a ( 1 y)
— (= F. 1- 1—">b,c9;—, =
F(b)r(cl_a)( .%') 4 a,a+ Claa+ 70271137.@
['(c1)T'(a—b)
['(a)l'(c; —b)

F4(CL, b7 C1, C2; x,y) =

1
(—a) " Fy (b,b+ 1—cp,b+1—acy—, y) (B.6)
r X

5 These are obtained by expressing Fy as an infinite sum of hypergeometric functions, such as

+a)l(n + bl (c2) y" F(n+a,n+bjci;z),

) _ - I'(n
F4(a7 b7 61762,1’7y) - z_:o F(a)F(b)F(n—i—cz)n'

and applying inversion formulas for the hypergeometric functions.
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which gives the following region in terms of u; and wuyg,

1+ ‘UO’ < (B.?)

ju|?
\F

allowing us to explore the region of large |u;| and small |ug|. Recent progress on the analytic
continuation of Fy may be found in [47].
B.2 The Zg decomposition from the Z3 expansion
The above-mentioned decomposition in terms of the characters of Zg reduces to
Q(6) = (Qo+Q3)&" + (Q1 + Qu)E" + (Q2 + Q5)€*  for & = +1
Q€) = (Qo— Q3)&" +(Q1 — Qu)E' +(Q2 — Q5)6*  for & = 1. (B.8)

These coefficients may be extracted from the expression for Q(§) in (2.42) by parametrizing
m = 3u + v where v = 0,1,2 and u > 0.

o For €3 = —1 we obtain,

1
uv -3 p! T 2 111 v w3\
QO Z <) F(aa_2N7> 2
2)! 2°2°2 2) \v

w2z & T %4_2# 111 v w3\
Qo+ Q3 = Z ( ) F(272;2—2M5 ) 3 (B.10)

oo F(%—F,U ve F(—%Jr?u) 1111 VAN
Q1+Q4_§% Gut |3var T (1) <2’2;6_ ’2> (”2>
2P ()1 (5~ 20) () R
’ 6T (3—p) T (T-p)’ L
) F(2+#) ( l+2/1/> (4U3)u 1 117
Q2—{—Q5ZUHZ% (3;+1)! 21/3 66F %)3 (2’[))1 2p (272;6 2:‘"2)
+24/3r (%) r (% - 2#) (4u3)ﬂF (zl)’ +2N>%+2“; g +2u; g)

Using the reflection formula, Qo + Q3 = Qo — Q3 so that Q3 = 0, consistent with [15].
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B.3 Convergence of the Zg series

To study the convergence properties of the series for Q(¢) when ¢ = —1 we use the reflection
and multiplication formulas for I-functions to obtain,

QQ) =5 > (e (Y2 g,

v=0,1,2 6

o 1 iF(u“ﬁz‘r’)F(Wr“ﬁl)F(l 1 11— 4y v)<4u3>“+5'

2532 p=0 F(M+VT’L2)I‘<M+%+3) 227 6 _2“?5 3702

(B.11)

We begin by considering the A — 400 behavior of the hypergeometric function which is given
by the following Taylor series for fixed value of |z| < 1,

2
TEERTE G B12
22 =0T (3) T+ A K

The first few terms are given by,

11 z 9 22 7523
Flz,oihz) =1+~ ). B.1
(2’2’ ’Z) ot aosn fmaornory T (B-13)

The series is absolutely convergent for any compact subset of the open disc |z| < 1 uniformly
in A greater than any fixed number strictly greater than one; for our purposes it suffices
to choose A\ > 1. For fixed |z| < 1, the absolute value of each term in the series strictly
decreasing as A — 400 and therefore the limit of the series as A — +oo is simply given by,

11
lim F (2, 2;)\;2> =1 for all |z < 1. (B.14)

A—~+00

Next, we consider the case where A — —\ in the hypergeometric function, and use the general

formula below to relate this case to the previous one,®

AT (@+ 1+ A0+ 1+ A)
(1 — 2) M atoT (@) (H)T(A + 2)

Tla+1+NT(b+1+ )

Tla+b+1+MNT(A+1)

F(a,b;—X\;2) = F(1—a,1—bA+2;2)

F(a,b;a+b+14+X\1—2). (B.15)

5The procedure of relating the cases for positive and negative A was followed in [48], but the coefficient of
the first term is incorrect there. To establish the correct relation, one easily verifies that all three functions
satisfy the hypergeometric differential equation z(1 — 2)f” + (=X — (a + b+ 1)2) f' — abf = 0. The coefficient
of the second term on the right side may be determined by setting z = 0 and using Gauss’s formula for the
hypergeometric function at unit argument, while the coefficient of the first term may be determined using the
asymptotics of the left side z — 1, using the formulas in section 2.7.1 of [22].
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For the special case a = b = % of interest here, we have the following simplification,

2
ML T(=1=MT(2+ A
F<;;rﬁw)=—uizyﬂ 2 Q )F(;;M+2m>
r(3) T+
2
F(%—}—A) 11
F(=, 2 +21—2). B.16
TO+2TO 1 1) <2’2’ e z) (B.16)

For the first term to admit a finite limit as A — +o00, we must require |z| < |1 — z|, in
which case the contribution from the first term tends to zero. That this sufficient condition
is also necessary may be established numerically by taking the limit z — % and verifying
that the limit to be established below does not hold. In the absence of the first term, the
limit of the second term is then given by,

2
11 r(3+2) 1- 2
Fl=,=—\z|= 1 ox2> B.17
(2 2 Z) F(A+2)F()\+1)< o HO0T) (B-17)
and thus,
lim F(l 1~—A->—1 for all 2| < min(1, |1 — z|) (B.18)
o 5o TNE) = or all |z , z|). )

Convergence of the series for Q,. We shall now use the results of the preceding
subsection to investigate the convergence properties of the series given in (B.11) for Q,. The
large i behavior of the prefactor of I'-functions is as follows,

ot 50) (0 52
MG RS

- /; (1+00™). (B.19)

In view of the asymptotics of the hypergeometric function for ;4 — oo in the domain,

v 1 v v
— — — 1—-= B.20
2 < 2 ’2‘ < ’ 2 ( )
the large u behavior of the summand in @, is as follows,
1 4 3 “Jr%
— s (B.21)
w? \ 27v
and the series is convergent provided,
4 3
2—2‘7 <P =1—ul <1 (B.22)

since the condition |4| < 1 implies the condition |4 < |1 — %|.
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B.4 Elliptic expression for the (a;,as) Kihler potential

For completeness, we add here the exact expression for the intrinsic periods in terms of the
elliptic formulation developed in subsection 2.4.3. The SW differential is given by,

dz
A= —i— (12p(2)% — , B.23
573y (129() —929(:) (B.23)
Using the homology basis of subsection 2.4.3, 2 = [0, 27i], B = [0, 27it], the SW periods
may be read off from theorem 2.6 by setting k = ¢ = m = 0, and we have,

E2E4 — E6 _E4
! ap — T4 = —————.
720V 2 (2w)3 60(2)2 (2w)3

The right formula confirms that ap = pa for the AD theory since E4(p) = 0. As one

(B.24)

approaches the AD point, u,v — 0, which forces w — oo since Eg(p) is non-vanishing. Thus,
both periods tend to zero at the AD point, as expected. The Kéhler potential is given by,

2 Re (E4(E2E4 — E6))
675 73 |4ew|10

Im(r
Kap = 12D
™

(B.25)

One verifies that upon setting 7 = p and then letting w — oo, the intrinsic Kdhler potential
Kap tends to zero as expected.
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