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1 Introduction

The Seiberg-Witten (SW) solution to four dimensional N = 2 super-Yang-Mills theory
provides the exact low energy effective action and BPS mass spectrum on the Coulomb
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branch. The vacuum expectation values (VEVs) of the gauge scalars and their magnetic
duals are encoded in terms of a family of Riemann surfaces equipped with a meromorphic
differential, referred to as the SW curve and the SW differential, respectively. The original
construction was given for gauge group SU(2) in [1, 2]. In the present paper, we focus on
theories with gauge group SU(N), primarily for N ≥ 3 and without hypermultiplets, for
which the SW curve and differential were constructed in [3–6] (see also [7–11]).

At generic points on the Coulomb branch, the gauge group SU(N) is spontaneously
broken to its maximal Abelian subgroup U(1)N−1 and the low energy contents of the theory
consist of N − 1 massless Abelian N = 2 gauge multiplets. The spectrum of massive BPS
states includes the N(N − 1) gauge bosons and their magnetic counterparts. Remarkably, the
SW solution predicts the existence of isolated points in the moduli space where the masses
of one or several of these BPS state tends to zero. We now describe two distinct scenarios
where a maximal number of massive BPS states become simultaneously massless.

There are N multi-monopole points in the moduli space, at each one of which N − 1
mutually local (i.e. with vanishing Dirac pairing) BPS states become simultaneously massless.
At each multi-monopole point, there exists an Sp(2N − 2,Z) electric-magnetic duality frame
in which all the massless BPS states have purely magnetic charges, whence the name. In view
of their mutual locality, there exists an effective field theory description where the massless
magnetic monopoles are described by hypermultiplets. Investigations into the behavior of
the effective prepotential and periods in the neighborhood of a multi-monopole point may
be found in [12–14] as well as in [15], where the behavior of the Kähler potential and the
walls of marginal stability are analyzed.

For gauge group SU(3), Argyres and Douglas discovered two so-called AD points in
the moduli space, where three mutually non-local BPS states (i.e. with non-vanishing Dirac
pairing) simultaneously become massless [16]. The corresponding AD theories are strongly
interacting N = 2 superconformal field theories (SCFTs). For gauge group SU(N) with
N > 3 the maximal number of mutually non-local BPS states become massless at two
maximal AD points, thereby generalizing the case of N = 3, while, for N = 2, no AD points
exist. Since the Dirac pairing is invariant under Sp(2N − 2,Z), there is no electric-magnetic
duality frame in which the massless BPS states are mutually local and simultaneously admit
a standard local field theory description.

While the absence of a standard local field theory formulation of the AD theories presents
a considerable conceptual challenge, several indirect avenues of investigation have been
explored, including the superconformal bootstrap and brane constructions in string theory.
Here, we shall investigate the space of theories in the vicinity of the maximal AD points,
first by exploring the Coulomb branch of their embedding in SU(N) super-Yang-Mills and
second by exploring their intrinsic Coulomb branch obtained by sending the strong coupling
scale Λ of the SU(N) theory to infinity. The organization of the remainder of the paper and
an overview of the results is presented in the subsections below.

• Series expansion near the maximal Argyres-Douglas points.
In section 2, we compute the SW periods in a convergent series expansion around the
maximal AD points. Our expansion provides a non-trivial analytic continuation of the
strong-coupling expansion produced in [15] around the unique Z2N -symmetric point.
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While the latter expansion contains the AD and the multi-monopole points on the
boundary of its domain of convergence, our expansion is centered at one or the other
AD point and thereby provides a significant extension of the domain of convergence
near the AD points. On regions where they overlap, our expansion arguably has better
convergence properties than the one given in [15]. Finally, by taking the decoupling
limit Λ → ∞, where Λ is the strong-coupling scale, we obtain the intrinsic AD periods
for (a1, aN−1) superconformal field theories in section 4.

• Charting candidate walls of marginal stability.
Two BPS states with central charges Z1 and Z2 and masses M1 = |Z1| and M2 = |Z2|
can form a stable bound state provided its mass M obeys M < M1 + M2. The bound
state is BPS when M = |Z1 + Z2|, and becomes marginally stable when the binding
energy vanishes, namely when |Z1 + Z2| = |Z1|+ |Z2|, which requires the ratio Z2/Z1
bo be a real number. The reality of Z2/Z1 defines a real co-dimension one sub-variety of
the Coulomb branch, referred to as a candidate wall of marginal stability. Determining
this sub-variety was already undertaken in [1, 2] for gauge group SU(2), and discussed
in more detail in [17–19]. Candidate walls of marginal stability were investigated more
recently in [15] for gauge group SU(N) on restricted slices through the Coulomb branch.

In section 3, we shall map out candidate walls of marginal stability beyond the
restricted slices of [15] for gauge group SU(3), and present partial results for N ≥ 4.
The series expansion around the AD points, discussed in the preceding subsection, will
play a key role in gaining access to the walls of marginal stability beyond the special
slices studied in [15]. In addition, we shall adapt the numerical integration methods
used in [15] to the computation of the SW periods and the central charges. These
numerical computations will allow us to reach beyond the radius of convergence of
either the Z2N or the AD expansion, and to complete the charting of candidate walls of
marginal stability.

• Exploring the intrinsic Kähler potential of the (a1, aN−1) AD theories.
Interest in the behavior of the Kähler potential, within the context of the SW solution,
has recently been rekindled by the role it may play in the soft breaking of N = 2
super Yang-Mills theory and the renormalization group flow of this theory to adjoint
QCD [14, 15, 20, 21]. Specifically, the flow of the mass operator M2 tr(ϕ†ϕ) for the
gauge scalar ϕ purely within the N = 2 super Yang-Mills theory is to the Kähler
potential of the SW solution. Motivated in part by future work on soft supersymmetry
breaking in or near AD theories, we initiate here a study of the intrinsic Kähler potential
of the maximal AD theories. Key questions concern its positivity, convexity, and global
minima properties.

In section 4, we shall study the intrinsic periods of the AD theories; calculate the
intrinsic Kähler potential; investigate the location of its minima; and understand its
positivity and convexity properties. We will find that, in the absence of deformations,
namely moduli corresponding to operators with dimension ∆ ≤ 1, but allowing the
VEVs of genuine Coulomb branch operators with dimension ∆ > 1 to be non-zero, the
intrinsic Kähler potential exhibits positivity and convexity. This distinction between
the dimensions coincides precisely with the unitarity bound on scaling dimensions of
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operators in any N = 2 SCFT: ∆ ≥ 1, where free bosonic fields saturate this bound.
We shall gather compelling evidence that turning on Coulomb branch operators with
unitary scaling dimensions is compatible with maintaining positivity and convexity of
the Kähler potential, and its unique global minimum being at the AD point.
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2 Series expansion near a maximal AD point

We begin this section with a brief summary of the salient features of the Seiberg-Witten (SW)
solution for four-dimensional N = 2 super Yang-Mills theory gauge group SU(N) without
hyper-multiplets [3, 4, 7]. We also review the expansion of the SW solution around the
Z2N symmetric point obtained in [15]. A similar set-up is then used to derive a convergent
expansion of the SW periods near one of the ZN symmetric maximal AD points for N ≥ 3,
and to show that this expansion coincides with the analytic continuation of the Z2N expansion
of [15]. A key tool in matching the expansions is the Gauss-Kummer quadratic transformation
on hypergeometric functions. A detailed analysis of the domain of convergence is undertaken
and its results are presented graphically.

2.1 Summary of the Seiberg-Witten solution

The SW solution determines the vacuum expectation values of the gauge scalars aI(u) and
their magnetic duals aD,I(u) as locally holomorphic functions of the gauge invariant Coulomb
branch moduli un for I = 1, · · · , N − 1 and n = 0, 1, . . . , N − 2. The SW solution is
constructed from a family of Riemann surfaces C(u) that depends holomorphically on the
moduli un and is referred to as the Seiberg-Witten curve. For gauge group SU(N) and no
hyper-multiplets, the SW curve is given by,

y2 = A(x)2 − Λ2N , A(x) = xN −
N−2∑
n=0

unxn , (2.1)

where Λ is the strong-coupling scale of the non-Abelian SU(N) super Yang-Mills theory.1
Each Riemann surface in the family is hyper-elliptic and has genus N − 1. Choosing a basis
of homology cycles AI and BI with canonical intersection pairing J,

J(AI ,BJ) = −J(BI ,AJ) = δIJ

J(AI ,AJ) = J(BI ,BJ) = 0 , (2.2)

1 Our conventions for the curve differ from those in [13, 14] by an N -dependent redefinition of the
strong-coupling scale 4Λ2N

there = Λ2N
here. Henceforth we shall set Λ = 1, unless otherwise stated.
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the vacuum expectation values of the gauge scalars aI(u) and their magnetic duals aD,I(u)
are obtained as the periods of a meromorphic Abelian differential λ as follows,

2πi aI =
∮
AI

λ , 2πi aD,I =
∮
BI

λ λ = xA′(x)dx

y
. (2.3)

The matrix τ of U(1)N−1 gauge couplings and mixings is given by,

τIJ = ∂aD,I

∂aJ
= ∂aD,J

∂aI
. (2.4)

The matrix τ is symmetric and its imaginary part is positive definite. The symmetry of τ

implies the existence of a pre-potential F , determined by aD,I = ∂F/∂aI , which will not
be needed in the sequel. The imaginary part of τ is the matrix of inverse gauge couplings
squared and must be positive on physical grounds. This property is automatic in the SW
solution. Indeed, the partial derivatives ∂λ/∂un are holomorphic Abelian differentials on C(u),
up to exact differentials of single-valued functions, so that the partial derivatives ∂aI/∂un

and ∂aD,I/∂un are periods of holomorphic differentials and τ is the period matrix of the
Riemann surface C(u). The Riemann bilinear relations automatically imply that τ has positive
imaginary part. Finally, modular transformations on the cycles A, B leave the canonical
intersection pairing J invariant and form the duality group Sp(2N − 2,Z).

2.2 Review of the expansion around the ZZZ2N point

For gauge group SU(2), the SW curve has genus one, namely it is a torus, so that the periods
may be solved in terms of elliptic functions and modular forms [1]. For gauge group SU(3),
the periods are given by hyper-elliptic integrals which may be reduced to linear combinations
of the Appell F4 functions [3]. For gauge group SU(N) with N ≥ 4, however, the periods are
given by hyper-elliptic integrals that are no longer tabulated special functions. Nonetheless,
a relatively simple convergent Taylor series expansion of the periods was obtained in [15]
around the Z2N symmetric point un = 0 for all n = 0, 1, . . . , N − 2 for arbitrary N . This
expansion, which we shall briefly review below, will serve as a guide to obtaining a similar
expansion around the maximal AD points.

At the Z2N point we have A(x) = xN so that the SW curve y2 = x2N − 1 manifestly
exhibits the Z2N symmetry x → εx where ε = e2πi/2N . The curve contains the two Z2N

symmetric points (x, y) = (0,±i). The 2N branch points are given by the 2N -th roots of
unity (x, y) = (εk, 0) for k = 0, · · · , 2N − 1, and are shown in the left panel of figure 1 for
the case of N = 3. They are mapped into one another by Z2N . The expansion around the
Z2N point is obtained by Taylor expanding the SW periods in powers of the moduli un. In
practice, the expansion may be organized by setting,

y2 = x2N − 1 + U(x)2 − 2xN U(x) U(x) =
N−2∑
n=0

unxn (2.5)

and Taylor expanding λ in powers of U(x),

λ =
∞∑

k=0

Γ
(
k + 1

2

)
Γ
(

1
2

)
k!

(2xN U(x)− U(x)2)k

(x2N − 1)k+ 1
2

(
NxN − xU ′(x)

)
dx . (2.6)
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Figure 1. The Z6 symmetric curve y2 = x6 − 1 is shown in the left panel, while the Z3 symmetric
curve y2 = (x3 + v)(x3 + v − 2) is shown in the right panel. In each case, the branch cuts are shown
in black double lines; the integration paths for Q(εn) and R(ζ) are shown in green; the cycles of the
canonical homology bases A and B are shown in blue and red, respectively.

The integrals of λ along the homology cycles AI and BI , needed in the calculation of the
SW periods in (2.3), may be computed by integrating term by term in powers of U(x). The
homology cycles for all terms may then be chosen along the line segments of the branch cuts
of the Z2N symmetric curve y2 = x2N − 1, as illustrated in figure 1 for the case N = 3.

As shown in [15], all such integrals may be obtained by evaluating the function Q(ξ)
which is defined as the Abelian integral of the SW differential, given by (2.3),

πi Q(ξ) =
∫ ξ

0
λ ξ2N = 1 (2.7)

between either Z2N symmetric point (x, y) = (0,±i), denoted hereby 0, and an arbitrary
branch point (x, y) = (ξ, 0) denoted here by ξ. The paths of integration are indicated in
green in the left panel of figure 1. In terms of Q(ξ) the SW periods are,

aI =
I∑

J=1

{
Q(ε2J−1)− Q(ε2J−2)

}
aD,I = Q(ε2I)− Q(ε2I−1) . (2.8)

Swapping the roles of the Z2N symmetric points (0,±i) reverses the signs of Q and all the
periods which, in turn, is equivalent to a modular transformation by −I ∈ Sp(2N − 2,Z).
The Taylor series expansion of Q(ξ) in powers of the moduli un is given by,2

Q(ξ) =
∞∑

ℓi=0

2M−L
N

2π2N
ξNM+L+N Γ

(
L

N

)
Y (ξN , α;u0)

uℓ1
1 . . . u

ℓN−2
N−2

ℓ1! . . . ℓN−2!
(2.9)

2The notation used here is related to the notation used in [15] by letting L + 1 → L, M0 → M , and
YM (ξN , L) → Y (ξN , α;u0), as defined in (2.10) and (2.11), and will be convenient when matching with the
expansion around the AD points in the sequel.
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where we shall use the following combinations throughout,

L = 1+
N−2∑
j=1

jℓj M =
N−2∑
j=1

ℓj α = NM − L

2N
. (2.10)

The function Y (ξN , α;u0) is given by the following linear combination of Gauss hypergeometric
functions F = 2F1,

Y (ξN , α;u0) = 2u0 ξN cos2(πα)Γ
(

α + 1
2

)2
F

(
α + 1

2 , α + 1
2;

3
2;u

2
0

)
+ sin2(πα)Γ(α)2 F

(
α, α; 12 ;u

2
0

)
(2.11)

Alternatively, the hypergeometric functions may themselves be expanded in Taylor series
in u0 [15], but the above formulation will be more pertinent to the expansion around the
maximal AD points, to which we now turn.

2.3 Expansion around a maximal AD point

For gauge group SU(N) with N ≥ 3, the maximal AD points are characterized by un = 0
for all n > 0 and u0 = ±1, recalling that we set the strong coupling scale Λ = 1. Without
loss of generality we may concentrate on the AD point with u0 = 1 so that A(x) = xN − 1.
The corresponding SW curve y2 = xN (xN − 2) manifestly exhibits ZN symmetry x → ε2x,
recalling that ε = e2πi/2N while the SW differential λ = NxN dx/y transforms as λ → ε2λ.

2.3.1 Expansion of the SW differential

The neighborhood of the AD point u0 = 1, inside of which we shall obtain a convergent series
expansion, may be parametrized by first taking u0 away from the value 1 and then turning
on the moduli un for n > 0. To do so we introduce the shifted variable v = 1− u0 keeping
un = 0 for n > 0. In terms of v the SW curve is given by,

y2 = (xN + v)(xN + v − 2) . (2.12)

Its branch points exhibit ZN symmetry but, for v ̸= 1, do not exhibit Z2N symmetry. Instead,
they are given as follows for k = 0, 1, · · · , N − 1,

x+
k = (2− v)

1
N ε2k x−

k = v
1
N ε2k+1 . (2.13)

For sufficiently small |v| ≪ 1 the distance from branch points to the origin is of order Λ = 1
for x+

k , but of order |v|
1
N ≪ 1 for x−

k , as illustarted in the right panel of figure 1 for the case
N = 3. The small branch points x−

k correspond to the intrinsic data of the AD theory, while
the large branch points x+

k correspond to its embedding into SU(N). The small branch points
dominate the dynamics of the AD theory as Λ → ∞ since the heavy states have masses of
order Λ and decouple. For v ̸= 0, 2, the SW curve also contains two points that are invariant
under ZN given by (x, y) =

(
0,±

√
v(v − 2)

)
and that are referred to simply as 0 in figure 1.

Turning on the remaining moduli un for n > 0 will modify the disposition of the branch
points from the one for the ZN symmetric curve. As long as the un for n > 0 remain
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sufficiently small, the branch points will remain well-separated and a convergent Taylor
series expansion should be expected.

In this subsection we shall evaluate the periods spanned by the small branch points,
which are represented by the cycles A

(s)
1 and B

(s)
1 in the right panel of figure 1 for SU(3), and

will be defined for arbitrary SU(N) in (2.21). The periods involving the large branch points,
which are represented by the cycles A

(ℓ)
1 and B

(ℓ)
1 in the right panel of figure 1 for SU(3), will

be defined for arbitrary SU(N) in (2.35) and will be evaluated in subsection 2.3.5.
To proceed with the evaluation of the small periods, we set A(x) = Â(x)− 1 in terms

of which the SW curve and differential become,

y2 = Â(x)(Â(x)− 2) λ = xÂ′(x)dx

y
. (2.14)

The AD point u0 = 1 corresponds to Â(x) = xN and the small branch points correspond
to |x| ≪ 1. Thus, to evaluate the periods spanned by the small branch points, we expand
the denominator in powers of Â(x), as follows,

λ = 1√
−2

∞∑
k=0

Γ
(
k + 1

2

)
2k Γ

(
1
2

)
k!

x Â′(x)dx

Â(x) 1
2−k

. (2.15)

By setting u0 = 1 − v and rescaling the variable x and the moduli un as follows,

x = v
1
N z un = v1− n

N vn for n > 0 (2.16)

the function Â(x) decomposes into a factor of v times a factor that only depends on the
remaining rescaled moduli vn for n > 0, but is independent of v,

Â(x) = v
(
zN − V (z) + 1

)
V (z) =

N−2∑
n=1

vnzn . (2.17)

Clearly, the expansion (2.14) in powers of Â(x) is equivalent to an expansion in powers of v.
To proceed, we expand λ in powers of the remaining moduli vn with n > 0 as follows,

λ = v
1
2 + 1

N

√
−2

∞∑
k=0

Γ
(
k + 1

2

)
Γ
(

1
2

)
k!

(
v

2

)k ∞∑
M=0

Γ
(

1
2 − k + M

)
Γ
(

1
2 − k

)
M !

V (z)M (NzN − zV ′(z))dz

(zN + 1)
1
2−k+M

. (2.18)

Note that all reference to the larger branch points has been translated into analytic dependence
in z, and the above expression for λ can be used only to calculate the periods spanned by
the small branch points.

2.3.2 The short SW periods in terms of R(ζ)

The short SW periods may be evaluated in terms of the function R(ζ) defined for ζN = −1,3
as the integral from either one of the ZN symmetric points, denoted here by z = 0, to the
small branch point z = ζ by,

iπR(ζ) =
∫ ζ

0
λ ζN = −1 . (2.19)

3We shall use the symbol ζ for the N -th roots of unity satisfying ζN = −1 here in order to clearly distinguish
them from the arbitrary 2N -th roots of unity denoted by ξ in the preceding subsection.
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The integral is taken along a path from z = 0 to z = ζ that does not intersect any of the
branch cuts produced by the square root, as shown in green in the right panel of figure 1.
As in the case of the expansion around the Z2N symmetric point, swapping the sign of the
ZN symmetric point amounts to reversing the sign of all periods and is equivalent to the
modular transformation −I ∈ Sp(2N − 2,Z). The integrals R(ζ) will soon be related by
analytic continuation to the integrals Q(ξ) and hence to the periods aI and aD,I considered
in [15]. Choosing a basis for the short homology one-cycles,

Â
(s)
j = [ε4j−3, ε4j−1] A

(s)
i =

i⋃
j=1

Â
(s)
j

B
(s)
i = [ε4i−1, ε4i+1] i = 1, · · ·

[
N − 1

2

]
(2.20)

the short periods a
(s)
i and a

(s)
D,i may be expressed in terms of the periods aI and aD,I and

in terms of the function Q(ξ) as follows,

â
(s)
i = â2i + aD,2i−1 = R(ε4i−1)− R(ε4i−3) a

(s)
i =

i∑
j=1

â
(s)
j

a
(s)
D,i = â2i+1 + aD,2i = R(ε4i+1)− R(ε4i−1) i = 1, · · ·

[
N − 1

2

]
. (2.21)

The short homology cycles A
(s)
1 and B

(s)
1 are indicated in figure 1 for SU(3).

2.3.3 Expansion of R(ζ) and the short periods

We are now ready to formulate and prove one of the fundamental results of this paper, namely
the expansion of the short periods around the maximal AD points for arbitrary gauge group
SU(N). As shown in the preceding subsection, the periods are given by (2.21) in terms of
the function R(ζ) defined in (2.19). The results below give the expansion of the function
R(ζ) around the maximal AD points.

Theorem 2.1. The function R(ζ) for the small branch points ζ with ζN = −1 admits the
following series expansion around vn = 0 for all n = 1, . . . , N − 2 and v0 ≡ v = 1− u0 ̸= 0:

R(ζ) = v
1
2 + 1

N

√
2πN

∞∑
ℓn=0

n=0,··· ,N−2

(−)M+1ζLΓ
(

L
N

)
Γ
(
ℓ0 + 1

2

)2

Γ
(

1
2

)2
Γ
(

3
2 − 2α + ℓ0

) vℓ0
0 . . . v

ℓN−2
N−2

2ℓ0 ℓ0! . . . ℓN−2!
(2.22)

where the combinations L, M and α were defined in (2.10).

The proof proceeds from the SW differential λ in (2.18) and is relegated to appendix A.

Corollary 2.2. The summation over ℓ0 in the Taylor series expansion for R(ζ) for the small
branch points with ζN = −1 in theorem 2.1 may be carried out in terms of an infinite series
of Gauss hypergeometric functions 2F1 = F and the result is given by,

R(ζ) = v
1
2 + 1

N

√
2πN

∞∑
ℓn=0

n=1,··· ,N−2

WL,M (ζ, v)
vℓ1

1 . . . v
ℓN−2
N−2

ℓ1! . . . ℓN−2!
(2.23)
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where L, M were defined in (2.10) and the coefficient functions WL,M (ζ, v) are given by,

WL,M (ζ, v) =
(−)M+1 ζL Γ

(
L
N

)
Γ
(

3
2 − 2α

) F

(1
2 ,

1
2;

3
2 − 2α; v

2

)
. (2.24)

In the special case where vn = 0 for all n ̸= 0, the function R(ζ) reduces to,

R(ζ) = −
ζ v

1
2 + 1

N Γ
(

1
N

)
√
2πN Γ

(
3
2 + 1

N

)F

(1
2 ,

1
2;

3
2 + 1

N
; v

2

)
. (2.25)

The corollary readily follows from theorem 2.1, and its proof is left to the reader.

2.3.4 Evaluating R(ζ) by analytic continuation of Q(ξ) for ξN = −1

Before addressing the calculation of the long periods, we show that R(ζ) may be obtained
from Q(ξ) by analytic continuation in the variable v = 1− u0 for the small branch points,
namely ξ = ζ for which ζN = −1. Using these results, we shall then use the same analytic
continuation to obtain the long periods in the next subsection. We begin by proving the
following corollary of theorem 2.1.

Corollary 2.3. The function R(ζ) is the analytic continuation in the modulus v = 1− u0 of
Q(ξ) for the small branch points specified by ξ = ζ and ξN = −1.

To prove the theorem, we start from the Taylor series expansion (2.9) for Q(ξ) and
re-express the coefficient functions Y of (2.11) using the reflection formula for the Γ-function,

Γ(z)Γ(1− z) sin(πz) = π (2.26)

as well as the change of variables v = 1 − u0,

Y (ξN , α;u0) = −ξN π2 f3(α, v)

Γ
(

1
2 − α

)2 + π2 f4(α, v)
Γ(1− α)2 (2.27)

in terms of the functions f3 and f4 given by,

f3(α, v) = −2 (1− v)F
(

α + 1
2 , α + 1

2;
3
2; (1− v)2

)
f4(α, v) = F

(
α, α; 12 ; (1− v)2

)
. (2.28)

By construction, both functions admit a convergent Taylor series expansion around the point
v = 1, which is the Z2N symmetric point. Our goal is to perform an analytic continuation
to functions that admit convergent Taylor series expansions around the point v = 0, which
is one of the AD points. To proceed, it is readily verified that both functions f3, f4 are
solutions to the same hypergeometric differential equation,

v(2− v)d2f

dv2 + (4α + 1)(1− v)df

dv
− 4α2f = 0 . (2.29)
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The solutions to this equations may alternatively be expressed in terms of hypergeometric
functions with argument v/2, whose normalizations are conveniently chosen as follows,

f1(α, v) = 2 (2v) 1
2−2α

1− 4α
F

(1
2 ,

1
2;

3
2 − 2α; v

2

)
f2(α, v) = F

(
2α, 2α; 2α + 1

2;
v

2

)
. (2.30)

The two bases of solutions to (2.29) are related by a matrix S ∈ SL(2,R),f1(α, v)
f2(α, v)

 = S

f3(α, v)
f4(α, v)

 S =

S13 S14

S23 S24

 . (2.31)

The resulting expression for f2 is the Gauss-Kummer quadratic transformation of hypergeo-
metric functions. The matrix elements of S are given as follows, [22]

S13(α) =
Γ
(

1
2

)
Γ
(

1
2 − 2α

)
Γ
(

1
2 − α

)2 S14(α) =
Γ
(

1
2

)
Γ
(

1
2 − 2α

)
Γ(1− α)2

S23(α) =
Γ
(

1
2

)
Γ
(

1
2 + 2α

)
Γ(α)2 S24(α) =

Γ
(

1
2

)
Γ
(

1
2 + 2α

)
Γ
(

1
2 + α

)2 . (2.32)

One verifies that indeed det(S) = 1 by using the reflection relation (2.26). Inspection of the
coefficients S13 and S14 reveals that, for the special case where ξN = −1, the combination
Y (−1, α;u0) is proportional to the function f1(α, v), namely,

Y (−1, α;u0) =
π2 f1(α, v)

Γ
(

1
2

)
Γ
(

1
2 − 2α

) . (2.33)

Substituting this expression into (2.9) readily produces the expressions of theorem 2.1 in (2.23)
and (2.24), which concludes the proof of theorem 2.3. Henceforth, we shall set R(ζ) = Q(ζ)
for ζN = −1 and express the short SW periods in terms of Q(ζ).

2.3.5 Expansion of Q(ξ) for the long periods by analytic continuation

Obtaining the expansion of the long SW periods around the maximal AD points directly from
the integral representation of the periods is considerably more involved than the evaluation
for the short periods given in theorem 2.1. Instead of proceeding directly here, we shall take
advantage of the analytic continuation of the expansion for Q(ξ) for ξN = 1 around the Z2N

symmetric point to obtain the long periods. The long homology cycles are chosen to be,

Â
(ℓ)
i = Â2i−1 −B2i−1 A

(ℓ)
i =

i⋃
j=1

Â
(ℓ)
j

B
(ℓ)
i = −Â2i +B2i i = 1, · · ·

[
N

2

]
. (2.34)
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The long periods will be denoted by a
(ℓ)
i and a

(ℓ)
D,i and may be expressed as follows,

â
(ℓ)
i = â2i−1 − aD,2i−1 a

(ℓ)
i =

i∑
j=1

â
(ℓ)
j

a
(ℓ)
D,i = −â2i + aD,2i i = 1, · · ·

[
N

2

]
. (2.35)

We alert the reader to the fact that the ranges of the index i labelling the short and long
cycles (and periods) coincide for odd values of N but differ when N is even, in which case
there is one more pair of long periods than short periods. Using these definitions and (2.2)
one verifies that the short and long cycles satisfy the following canonical intersection pairings,

J(A(ℓ)
i ,B

(ℓ)
j ) = δi,j i, j = 1, · · ·

[
N

2

]
J(A(s)

i ,B
(s)
j ) = δi,j i, j = 1, · · ·

[
N − 1

2

]
(2.36)

while all other pairings of the cycles A
(ℓ)
i , B(ℓ)

j , A(s)
i , and B

(s)
j vanish. The long and short

homology cycles A
(ℓ)
1 , B(ℓ)

1 , A(ℓ)
1 and B

(ℓ)
1 are indicated in figure 1 for SU(3).

The Taylor series expansion of Q(ξ) for ξN = 1 at the maximal AD point in powers of
the moduli vn for n > 0 is given by the following theorem.

Theorem 2.4. The Taylor series expansion near the AD point of the function Q(ξ) for
ξN = 1 is given by the following expression,

Q(ξ) =
∞∑

ℓn=0
n=1,··· ,N−2

2M− L
N

2π2N
ξLΓ

(
L

N

)
Y (1, α;u0)v

NM−L+1
N

vℓ1
1 . . . v

ℓN−2
N−2

ℓ1! . . . ℓN−2!
, (2.37)

where u0 = 1− v, the combinations L, α were defined in (2.10), and Y (1, α;u0) is given by,

Y (1, α;u0) = −Γ
(1
2

)
Γ
(1
2 + 2α

)
f1(α, v) +

2π2Γ
(

1
2

)
Γ
(

1
2 − 2α

)
Γ(1− α)2Γ

(
1
2 − α

)2 f2(α, v) . (2.38)

The functions f1(α, v) and f2(α, v) were defined in (2.30). In the special case where vn = 0
for n > 0, only the term with ℓn = 0 for n > 0 contributes so that L = 1, and we have,

Q(ξ) = 2− 1
N

2π2N
ξ Γ
( 1

N

)
Y

(
1,− 1

2N
;u0

)
. (2.39)

The proof of the theorem follows from using the relation (2.31) to re-express Q(ξ).

2.4 The case of gauge group SU(3)

The N = 2 super-Yang-Mills theory with gauge group SU(3) offers one of the simplest settings
in which the AD theories arise. For this reason, and because one can at the same time obtain
simplified and more explicit formulas for the periods than in the case of arbitrary N , we
shall study the behavior of the SU(3) theory in detail here. The formulas we shall obtain
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may also be compared with various known results available in the literature [3]. In terms of
the moduli u = u1 and v = 1 − u0 the SW curve and differential are given by,

y2 = (x3 − ux + v)(x3 − ux + v − 2) λ = (3x3 − ux)dx

y
. (2.40)

Since the two factors in y2 have no common roots, the zeros of the discriminant of this curve
obey either 4u3 = 27v2 or 4u3 = 27(v − 2)2.

2.4.1 Series expansion of the short and long periods

Using corollary 2.2 for N = 3 and for the case ξ3 = −1 we obtain the following expansion
for the small branch points,

Q(ξ) = − v
5
6

3
√
2π

∞∑
m=0

ξm+1
Γ
(

m+1
3

)
Γ
(

1
2

)
Γ
(

11−4m
6

)
m!

(
− u

v
2
3

)m

F

(1
2 ,

1
2;

11− 4m

6 ; v

2

)
(2.41)

while using theorem 2.4 for N = 3 and for the case ξ3 = 1 we obtain the expansion for
the large branch points,

Q(ξ) =
∞∑

m=0

2(2m−1)/3

6 ξm+1Γ
(

m + 1
3

)
um

m!

Γ
(

4m−5
6

)
Γ
(

1
2

)3 (2v)
5−4m

6 F

(1
2 ,

1
2;

11− 4m

6 ; v

2

)

+
2Γ
(

1
2

)
Γ
(

5−4m
6

)
Γ
(

2−m
3

)2
Γ
(

7−2m
6

)2 F

(2m − 1
3 ,

2m − 1
3 ; 4m + 1

6 ; v

2

) . (2.42)

We note that Q(ξ) is analytic in u, but non-analytic in v as it contains powers of v
1
6 for all

values of ξ. For u = 0, its dependence on v is through a factor of v
5
6 times integer powers

of v. This scaling behavior for small v/ΛN is consistent with the predictions of the scaling
dimension ∆ = 6

5 for the intrinsic Coulomb branch of rank 1 AD theories [11, 23–29]. We
shall return to this point in later sections.

2.4.2 Analyticity of the long periods

On physical grounds, the long periods, namely those associated with the embedding of the
AD theory into the SU(3) super Yang-Mills theory, are expected to be analytic in all moduli
u, v for |u|, |v| ≪ 1. The fact that this is the case is borne out by the following proposition.

Proposition 2.5. There exists an Sp(4,Z) electric-magnetic duality frame such that one
pair of periods is analytic in the moduli (u, v), while the other pair of periods carry the
non-analyticities associated with the AD point.
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To prove the proposition, consider the following Sp(4,Z) duality transformation, which
implements the relations (2.21) and (2.35) for the special case of N = 3,



a(ℓ)

a(s)

a
(ℓ)
D

a
(s)
D


=


1 0 −1 0
−1 1 1 0
1 −1 0 1
0 −1 0 1




a1

a2

aD,1

aD,2

 (2.43)

where we have suppressed the sole index i = 1. One may verify that the corresponding
cycles satisfy the canonical intersection relations of (2.36). It will be convenient to use the
decomposition of Q(ξ) into characters of Z6, familiar from [15],

Q(ξ) =
5∑

n=0
ξnQn Q3 = 0 (2.44)

where we recall that Q0 actually drops out of all SW periods (see appendix B). Expressing
the long periods in terms of the functions Qn, we obtain,

a(ℓ) = (1 + ρ)(Q1 − 3Q4)− ρ(Q5 − 3Q2)

a
(ℓ)
D = (Q1 − 3Q4) + (Q5 − 3Q2) (2.45)

where ρ = ε2 = e2πi/3. The combinations 3Q4 − Q1 and 3Q2 − Q5 may be obtained using
equations (B.9) and (B.10) of appendix B, and are given by,

3Q4 − Q1 = 21/3

2π
3
2

∞∑
µ=0

Γ
(
2µ − 1

3

)2
Γ
(
µ + 1

3

)
Γ
(
2µ + 1

6

)
(3µ)!

F

(
2µ − 1

3 , 2µ − 1
3; 2µ + 1

6;
v

2

)
u3µ

22µ

3Q2 − Q5 = 2−1/3

2π
3
2

∞∑
µ=0

Γ
(
2µ + 1

3

)2
Γ
(
µ + 2

3

)
Γ
(
2µ + 5

6

)
(3µ + 1)!

F

(
2µ + 1

3 , 2µ + 1
3; 2µ + 5

6;
v

2

)
u3µ+1

22µ
.

(2.46)

Hence, it is clear by inspection that all non-analytic behavior of the long periods completely
cancels, as is expected on physical grounds.

2.4.3 SU(3) periods via elliptic functions and modular forms

The expansion of the SW periods near the AD points for SU(3) gauge group may be obtained
in terms of elliptic functions and modular form, in parallel to the results of [15] for the
expansion around the Z6 symmetric point. We shall adopt the notations and conventions of
appendix C in [15]. The derivation of these results is analogous to the one used in section 15
of [30], and will not be presented here.
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We begin by parametrizing the genus 2 curve for N = 3 given in (2.40) as follows,

(2ω)2x = ℘(z|τ)

4(2ω)4u = g2(τ) =
E4(τ)
12

−4(2ω)6v = g3(τ) = −E6(τ)
216 (2.47)

where the Weierstrass function ℘(z|τ) has periods 2ω and 2ωτ , and satisfies the relation
℘′(z|τ)2 = 4℘(z|τ)3 − g2(τ)℘(z|τ) − g3(τ), while E4(τ) and E6(τ) are the modular forms
of weight 4 and 6 respectively, normalized to the value 1 at the cusp i∞. In terms of the
parametrization (2.47), the SW curve (2.40) becomes,

y2 = (4ω)−12(4℘3 − g3℘ − g3)(4℘3 − g2℘ − g3 − 4(2ω)6) . (2.48)

Suitably deformining the short cycles A = A
(s)
1 = [0, 2πi] and B = B

(s)
1 = [0, 2πiτ ] in order

to avoid the double-pole of ℘(z) at z = 0, the elliptic integrals defined by,

An = 1
2πi

∮
A

dz ℘(z)n Bn = 1
2πi

∮
B

dz ℘(z)n (2.49)

satisfy the following recursion that holds for Jk ∈ {Ak, Bk}:

(8n − 4)Jn = (2n − 3)g2Jn−2 + (2n − 4)g3Jn−3 (2.50)

with the initial conditions A0 = 1 and B0 = τ . The solution is given by,

An = Kn + E2
12Ln−1 Bn = τAn + 1

2πi
Ln−1 (2.51)

where Kn and Ln are modular forms of weight 2n, determined by the recursion relation (2.50)
and the initial conditions. We have K1 = L1 = 0 and,

K0 = 1 K2 = E4
144 K3 = − E6

2160 K4 = 5E2
4

48384 K5 = − E4 E6
77760

L0 = 1 L2 = E4
80 L3 = − E6

1512 L4 = 7E2
4

48384 L5 = − 29E4 E6
1330560 . (2.52)

The short periods are then given by expanding the SW differential in powers of 1/ω as given
by the following theorem, which offers a non-trivial extension of the calculation of short
periods carried out to leading order in large Λ in [16].

Theorem 2.6. The small periods a(τ) = a
(s)
1 (τ) and aD(τ) = a

(s)
D,1(τ) admit the following

Taylor series-expansion in terms of the basis {E2, E4, E6} of the ring of quasi-modular forms,
along with the variable ω,

a = −i√
2π

∞∑
k,ℓ,m=0

Γ
(
k + ℓ + m + 1

2

)
2k+3ℓ+3mk! ℓ!m!

(−)ℓ+m gℓ
2 gm

3
(2ω)6(k+ℓ+m)+5

(
3A3k+ℓ+3 −

g2
4 A3k+ℓ+1

)

aD = −i√
2π

∞∑
k,ℓ,m=0

Γ
(
k + ℓ + m + 1

2

)
2k+3ℓ+3mk! ℓ!m!

(−)ℓ+m gℓ
2 gm

3
(2ω)6(k+ℓ+m)+5

(
3B3k+ℓ+3 −

g2
4 B3k+ℓ+1

)
.

(2.53)
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As a result, the following combination can be expressed in terms of modular forms {E4, E6}

aD − τa = −1
(2π) 3

2

∞∑
k,ℓ,m=0

Γ
(
k + ℓ + m + 1

2

)
2k+3ℓ+3mk! ℓ!m!

(−)ℓ+m gℓ
2 gm

3
(2ω)6(k+ℓ+m)+5

(
3L3k+ℓ+2 −

g2
4 L3k+ℓ

)
(2.54)

which is a locally holomorphic modular form of weight −1 provided ω is assigned holomorphic
weight 1 and Ln has weight 2n.

Remarks:

1. The factor 2ω in the denominator of each formula in theorem 2.6 may be eliminated in
favor of either the variables (u, g2(τ)) or the variables (v, g3(τ)) using (2.47) depending
on whether the expansion is sought near the points τ = i or τ = ρ = e2πi/3 respectively.

2. The combination aD − τa vanishes at the AD point τ = ρ, since we have g2(ρ) = 0, and
the recursion relation implies L3k+2 = 0 for all k ≥ 0. Thus, at the AD point, we have
aD = τa, as must be the case for any rank-1 N = 2 SCFT.

3. The Z3 symmetry of the AD point fixes the modulus τ = ρ and g2(ρ) = 0. In the
neighborhood of the AD point, the combination |g2(τ)3/g3(τ)2| = 4|u|3/|v|2 is small, a
condition that coincides with the original assumption for the validity of the expansion.

4. There exists a different potential superconformal fixed point at τ = i that preserves Z2
symmetry, and where v = g3(i) = 0 and g2(i) = (2ω)44u. The sum over m in (2.54)
then collapses to the m = 0 contribution, the recursion relation (2.50) for Ln may be
solved, and the remaining dependence on ω may be eliminated in favor of u,

aD − τa = − u
5
4

9
√

π

∞∑
n=0

2−10n Γ
(
n + 1

4

)2
Γ
(
n + 3

4

)2

Γ
(

7
12

)
Γ
(

11
12

)
Γ
(
n + 13

12

)
Γ
(
n + 17

12

)
Γ
(
n + 1

2

)
n!

(
u

3

)3n

.

(2.55)

The above series has radius of convergence |u| < 3. The scaling dimension of the
operator corresponding to the modulus u is ∆(u) = 4

5 < 1 is below the unitarity bound.
This implies that there is no consistent way to take Λ → ∞ such that the resulting
theory is unitary and superconformal.

2.5 Remarks on the convergence of the ZZZN expansion

In this subsection we shall discuss the convergence properties of the expansion around the
maximal AD point, briefly for the SU(N) case, and in more detail for SU(3).

2.5.1 Heuristic analysis of the SU(N) case

As illustrated in the right panel of figure 1 for the case of SU(3), the branch points split
into a set of small branch points of order O

(
v

1
N

)
and large branch points of order O(Λ).

The starting point for our expansion is a point in the moduli space of the Coulomb branch
where v ̸= 0 and vn = 0 for all n > 0. The non-vanishing of v guarantees that the small
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branch points x−
k remain well-separated. Turning on the moduli vn for n ̸= 0 we observe that

the parameter entering from the Taylor expansion in corollary 2.2 is vn. The expansion will
remain convergent as long as no two branch points are brought to coincide with one another,
which requires the parameter un to remain sufficiently small with respect to v(N−n)/N . Thus,
the conditions for convergence, derived on heuristic grounds, are as follow,

|v| ≪ |Λ|N |vn| ≪ 1 . (2.56)

For the case of SU(3) we can make these bounds more precise.

2.5.2 Detailed analysis of the SU(3) case

In appendix B.3, we provide a detailed derivation of the convergence conditions for the Z3
series. Here, we remark on its consequences and compare it with the Z6 series of [15].

1. The Z6 expansion converges provided the moduli satisfy the following inequalities [15],

2√
27

|u|
3
2 + |1− v| < 1 . (2.57)

In figure 2(a), the green translucent region shows the domain of convergence of the Z6
expansion. The AD points are located on the boundary of this domain and the three
multi-monopole points are mapped to the red dot at the peak of the conical region.

2. The Z3 expansion converges provided the moduli satisfy the inequalities,∣∣∣∣∣4u3

27

∣∣∣∣∣ < |v|2 < 1 . (2.58)

In figure 2(b), the red translucent cylindrical region minus the solid cone shows the
domain of convergence of the Z3 expansion. The AD point is at the peak of the cone.
The multi-monopole and Z6 points are on the boundary of the domain of convergence.

3. Figure 3 shows the total region that we can access with the combined expansions.

3 Candidate walls of marginal stability revisited

In this section, we shall reanalyze the candidate walls of marginal stability proposed in [15]
for SU(3), this time from the perspective of the expansion of the periods around the AD
points. We shall check agreement of the results obtained by the two expansions on the slice
with u = 0 and map out more walls of marginal stability beyond the v-plane for SU(3), and
analyze marginal stability in the SU(4) case on the slice u1 = u2 = 0.

3.1 Setup

In this subsection, we shall briefly summarize the setup of [15] used to analyze the marginal
stability of BPS states. At a generic point on the Coulomb branch, the SU(N) gauge-group
is spontaneously broken to its maximal Abelian subgroup U(1)N−1. With respect to this
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(a) Convergence region of Z6 expansion. (b) Convergence region of Z3 expansion.

Figure 2. All the translucent colored regions denote convergence in the coordinates (Re v, Im v, |u|),
but the opaque colored regions are excluded by convergence.

Figure 3. This plot shows the total region of moduli-space that we can access using the two Z3 and
Z6 expansions: the solid blue and red cones are excluded from the regions of convergence of the Z3
expansions, and the translucent regions denote convergence.

unbroken gauge group, the states in the theory carry both electric charges q = (q1, · · · , qN−1)
and magnetic charges g = (g1, · · · , gN−1), which we shall assemble into a single multiplet,

µ = (q, g) = (q1, . . . , qN−1; g1, . . . , gN−1) ∈ ZN−1 × ZN−1 . (3.1)

The central charge Z[µ] of the N = 2 supersymmetry algebra, evaluated in a state with
charge vector µ, is a linear function of µ given by [1],

Z[µ] =
N−1∑
I=1

(qIaI + gIaD,I) . (3.2)
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In a unitary theory the mass M of any state with charge vector µ satisfies the BPS bound
|Z[µ]| ≤ M . The state is a BPS state provided its mass M saturates the BPS bound,

M = |Z[µ]| . (3.3)

Two BPS states with charges µ = (q, g) and µ′ = (q′, g′) obey the Dirac quantization
condition D ∈ Z where D is given by the symplectic pairing of the charges µ and µ′,

D = q · g′ − g · q′ =
N−1∑
I=1

(
qIg′I − q′IgI

)
. (3.4)

When D = 0, one may perform an Sp(2N − 2,Z) duality transformation to new charges
µ̃ and µ̃′ that have vanishing magnetic components, and are therefore mutually local. By
contrast, when D ̸= 0, the corresponding BPS states are mutually non-local. This non-locality
is, of course, familiar in the semi-classical limit where electric charges are light and magnetic
monopoles are heavy soliton states such as the ’t Hooft-Polyakov monopole. The novelty of
the AD theories is the presence of massless mutually non-local states and fields.

Two BPS states with charges µ, µ′ and masses M = |Z[µ]|, M ′ = |Z[µ′]|, respectively,
can form a bound state of charge µ + µ′ provided the mass Mb of the bound state satisfies
Mb < M + M ′. The mass Mb satisfies the BPS bound |Z[µ + µ′]| ≤ Mb. In general, the
inequality will be a strict one and the resulting bound state will not be a BPS state. For
special charge arrangements and for special values of the vacuum expectation values aI and
aD,I , however, two BPS states can form a BPS bound state, namely when,

Z[µ′] = r Z[µ] for some r ∈ R (3.5)

For a given pair µ, µ′, the solutions to this equation carve out a real co-dimension one slice
of the Coulomb branch that we refer to as a candidate wall of marginal stability. Having
equality of the mass M of the bound state with its BPS bound |Z[µ + µ′ ]| on the wall does
open the option of forming a stable non-BPS bound state on either side of the wall. Whether
this option is actually adopted by the theory is a dynamical question that goes beyond the
purely kinematical considerations used here. For this reason the terminology candidate wall
of marginal stability will be used throughout.

3.2 Marginal stability of BPS states in SU(3)

Candidate walls of marginal stability were analyzed in [15] for SU(3) on the slice u = 0 for
arbitrary v using the Z6 expansion of the periods. In this subsection, we re-examine these
candidate walls of marginal stability using the Z3 expansion around one or the other of the
AD points, first for u = 0 and then for arbitrary u, v.

3.2.1 The u = 0 slice

In terms of our expansion around the AD point u0 = 1, given in (2.42), (2.41) and (2.44),
the expressions for the SW periods of (2.8) for the case N = 3 are as follows,

a1 = (ρ − 1)(Q1 − Q4)− (3Q4 − Q1) a2 = (1 + ρ)a1

aD,1 = (ρ − 1)(Q1 − Q4) + ρ(3Q4 − Q1) aD,2 = ρaD,1 (3.6)
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Central charges and masses of BPS dyons near the SU(3) AD points
Dyon charge Central charge Z[µkI ] M(u0 = +1) M(u0 = −1)
µ01 = (−1, 0;−1, 0) −(ρ − 1)(Q1 + Q4) 1.55632 0
µ12 = (−1, 1; 0, 1) −(2ρ + 1)(Q1 + Q4) 1.55632 0
µ21 = (0, 1; 1, 1) −(ρ + 2)(Q1 + Q4) 1.55632 0
µ02 = (0, 1; 0,−1) (ρ − 1)(Q1 − Q4) 0 1.55632
µ11 = (1, 0;−1,−1) (2ρ + 1)(Q1 − Q4) 0 1.55632
µ22 = (1,−1;−1, 0) (ρ + 2)(Q1 − Q4) 0 1.55632

Table 1. Central charges and masses of BPS dyons near the SU(3) AD points.

where ρ = e
2πi

3 . Consider BPS states with charge vectors µ = (q1, q2; g1, g2) and µ′ =
(q′1, q′2; g′1, g′2) and corresponding central charges,

Z[µ′] = αQ1 + βQ4

Z[µ] = γQ1 + δQ4 (3.7)

where we have defined the following integers of the ring Z[ρ],

α = ρ (q′1 − g′2)− (q′2 + g′1)
β = −(2 + ρ)(q′1 + g′2)− (1 + 2ρ)(q′2 − g′1)
γ = ρ (q1 − g2)− (q2 + g1)
δ = −(2 + ρ)(q1 + g2)− (1 + 2ρ)(q2 − g1) . (3.8)

We may parametrize the solutions to the equation (3.5) for the candidate wall of marginal
stability in terms of the real variable r as follows,

r = Z[µ′ ]
Z[µ] = αz + β

γz + δ
z(v) = Q1(v)

Q4(v)
. (3.9)

Inverting the relation between z and the real parameter r, for given charge assignments, will
make z trace arcs of circles in the complex z-plane that depend on the particular charge
assignments of µ and µ′. The strong-coupling spectrum of SU(N) SW theory has been
worked out in [31], and the SU(3) case is explained in appendix E of [15]. We summarize
the results in table 1.

As indicated in the table, each AD point has three mutually non-local dyons that become
simultaneously massless. The equation (3.5) has been solved for all possible pairs on the
u = 0 plane in [15]. We summarize these results below, and then build on them.

There are 15 distinct pairwise ratios of the six BPS states. Two sets of three of these
ratios are between massless mutually non-local dyons. These ratios are independent of Q1
and Q4 and necessarily complex, such as for example Z[µ11]/Z[µ02] = −ρ. There can be
no walls of marginal stability between such pairs. The remaining nine ratios are between
one massive and one massless dyon, they do depend on Q1 and Q4 through the ratio
z = Q1/Q4, and can lead to candidate walls of marginal stability. To analyze the ratios
systematically, we compare the central charges in the first triplet of mutually non-local dyons
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Figure 4. The candidate walls of marginal stability for SU(3) on the slice u = 0 are represented by
colored arcs in the z-plane in the left panel and in the u0 plane in the right panel. The contour of
vanishing Kähler potential is drawn in black [15].

(Z[µ01], Z[µ12], Z[µ21]) with cyclic permutations of the second triplet of mutually non-local
dyons (Z[µ02], Z[µ11], Z[µ22]), as follows,

(Z[µ01], Z[µ12], Z[µ21]) = r1 (Z[µ02], Z[µ11], Z[µ22])
(Z[µ01], Z[µ12], Z[µ21]) = r2 (Z[µ22], Z[µ02], Z[µ11]) (3.10)
(Z[µ01], Z[µ12], Z[µ21]) = r3 (Z[µ11], Z[µ22], Z[µ02])

where z = z(v) and,

r1 = −z + 1
z − 1 r2 = −ρ

z + 1
z − 1 r3 = ρ2 z + 1

z − 1 (3.11)

1. The reality of r1 parametrizes a straight line segment in the complex z-plane that lies
on the real-axis. We will not consider such walls because they are non-compact.

2. The reality of r2 parametrizes a continuous subset of the circle
∣∣∣z + i√

3

∣∣∣2 = 4
3 in the

complex z-plane for a continuous range of values of r2 ∈ R.

3. The reality of r2 parametrizes a continuous subset of the circle
∣∣∣z − i√

3

∣∣∣2 = 4
3 in the

complex z-plane for a continuous range of values of r3 ∈ R.

In this sense, each candidate wall of marginal stability on the v-plane has a three-fold
degeneracy, i.e. each wall can be obtained from three distinct pairs of dyons. Finally, we can
numerically map z(v) to the u0-plane by using the expression for w(v) in terms of v or u0.
This is displayed in the right panel of figure 4, which reproduces the result of [15]

3.2.2 Existence of walls of marginal stability away from the v-plane

In this sub-subsection, we give an argument for the existence of walls of marginal stability
in the SU(3) Coulomb branch with u ̸= 0 over the curves of marginal stability restricted to
the v-plane. We expect to find a marginal stability subspace of real dimension three inside
the Coulomb branch, since we have 2 complex degrees of freedom u and v parametrizing
the Coulomb branch, and one real constraint Z2/Z1 ∈ R. Since such a surface lives in the
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four-dimensional moduli space, it is rather hard to visualize and we shall focus instead on
the marginal stability subspace of a three-dimensional slice of the Coulomb branch that
we can visualize more easily. The following proposition shows the existence of walls in the
u-plane for fixed values of v that lie on a wall.

Proposition 3.1. For any point v0 on a curve of marginal stability in the v-plane, there
exists a curve of marginal stability in the u-plane that goes through the point (u, v) = (0, v0).

We hold v = v0 fixed and consider two central charges Z1(u) and Z2(u) evaluated at the
point v = v0, which may be regarded as a (locally) holomorphic function of a single complex
variable u. Then we may define the relative phase of these two central charges as,

e2iϕ(u,ū) = Z1(u)Z̄2(ū)
Z2(u)Z̄1(ū)

. (3.12)

In what follows, we will use the fact that the phase of a holomorphic function f is harmonic
for all points where the function is non-zero; this assumption is necessary since one takes
the logarithm of f in the proof of this fact. However, (potential) vanishing of the central
charge Zk(u) does not pose an issue since we take its complex modulus in the definition of
the relative phase. Then it follows that ϕ(u, ū) is locally a harmonic function on any open
set that contains u = 0. But a harmonic function on a connected domain D ⊂ C can never
attain its extreme values in the interior. Any point u0 ∈ C that lies on a wall of marginal
stability, i.e. Z2/Z1 ∈ R, satisfies ϕ(u0, ū0) = 0. In particular, ϕ(0, 0) = 0. This implies that
zero is neither a minimum nor a maximum of ϕ, and that there exists a closed subset C ⊂ ∂D
such that ϕ(C) < 0 and ϕ(Cc) ≥ 0. Hence, there exists a curve of marginal stability that
goes through the interior and is continuously connected to u = 0.

Remark. The above proposition applies locally in a neighborhood of u = 0, where the
central charges are analytic. In particular, Z(u) is not required to be analytic globally, and
hence the function ϕ would not be globally harmonic due to the potential non-analyticities in
Z(u). Therefore, this local existence result for walls of marginal stability does not pose an
obstruction to the compactness of the walls of marginal stability.

3.2.3 Numerically finding walls of marginal stability beyond the v-plane

In this sub-subsection, we will find candidate walls of marginal stability using two distinct
methods: perturbation theory and numerical integration.

The first method involves first-order perturbation theory in u for a fixed value of v

on the orange arc in figure 4 and a mesh of values of r. We note that the figure does not
appreciably change even if we go to high orders in perturbation theory, as long as we are
inside the radius of convergence.

We will focus on the segment of the curve produced by the pairs (µ01, µ22), (µ12, µ02),
and (µ21, µ11) that has positive imaginary part, i.e. the orange curve in figure 4. For any
u0 with |u0| < 1 on this arc, we have an absolutely convergent expansion in u, and we can
get arbitrarily close to the AD points at u0 = ±1. Recall that our expansions have the
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following radii of convergence in the u-plane

Z3 points : 2
1
3 |u| < 3|±1∓ u0|

2
3 < 3 for u0 = ±1 respectively

Z6 point : 2
2
3 |u| < 3 (1− |u0|)

2
3 and |u0| < 1. (3.13)

On regions of overlapping convergence, recall that Radiusu(Z3) ≥ Radiusu(Z6). Hence, it
is more fruitful to apply the Z3 expansions near the AD points because this inequality is
significant. On the other hand, we apply the Z6 expansion on the imaginary v-axis because
that is the boundary of convergence for the Z3 expansion. Precisely at the AD points, neither
expansion converges but we can get arbitrarily close.

However, this method is limited by the radius of convergence of the expansion. To
circumvent this limitation, we recall that the periods of pure SU(3) SW theory satisfy
Picard-Fuchs equations in the variables [7]

(x1, x2) =
(
4u3

27 , (1− v)2
)

. (3.14)

This system of second-order PDEs can be transformed into a system of first-order ODEs
which are numerically integrable (see appendix D of [15]). We use this method to compute
the periods, central charges, and walls of marginal stability, by scanning for points on the
u-plane, for fixed values of v on the orange arc in figure 4 where Z[µ2]/Z[µ1] is real-valued.

Remarks:

1. The three pairs correspond to the three walls in figure 5, both related by Z3. At the
fixed point u = 0 of this Z3 symmetry the degeneracy among the three pairs is restored.

2. The arcs in figure 5 with ϕ = 0 are approximately circular near the origin because,
inside the radius of convergence, equation (3.5) was truncated to first order to give,

(du − b) ≈ r(−cu + a) ⇒ u(r) = ar + b

cr + d
+ . . .

for some a, b, c, d ∈ C with ad − bc ̸= 0. An equation of this form traces out an arc of a
circle inside the radius of convergence. However, the arcs are slightly deformed from
circles outside the radius of convergence, as is clear from figure 5(c).

3. The plots in figure 6 were created by picking 33 evenly spaced points on the orange arc
of marginal stability in figure 4 and then solving numerically for ϕ = 0.

4. The region of stability is a tubular neighborhood, and there are three such compact
regions corresponding to the three walls that are related by Z3.

3.3 Marginal stability of BPS states in SU(4)

On the slice that contains the AD points (i.e. uk = 0 for k ̸= 0), we have

a1 = εQ− − Q+ aD,1 = ε2Q+ − εQ−

a2 = (ε2 + 1)a1 aD,2 = ε2aD,1 (3.15)
a3 = ε2a1 aD,3 = −aD,1
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(a) Walls for the a single pair (µ01, µ22). (b) Walls for all three pairs.

(c) Full picture of the three walls beyond the
radius of convergence.

Figure 5. The figure above shows the curves of marginal stability on the u-plane for u0 ∼ 0.6184i

(the midpoint of the orange arc in figure 4). The left panel shows the walls for a single pair of dyons.
The red region is inaccessible by perturbation theory since our Z6-expansion does not converge there,
the blue region is where the BPS states µ01 and µ22 are stable with ϕ < 0, and the green region is
where bound states may be formed, i.e. ϕ > 0. The right panel shows a plot of the curves of marginal
stability on the u-plane for all three pairs of dyons simultaneously. Again, the red region is inaccessible
by perturbation theory. The regions of mutual stability (ϕ < 0) and instability (ϕ > 0) for 2 pairs are:
II and II′ for (µ01, µ22) and (µ12, µ02), I and I′ for (µ12, µ02) and (µ21, µ11), III and III′ for (µ21, µ11)
and (µ01, µ22). The panel 5(c) displays the full walls beyond the radius of convergence obtained from
numerical integration. Blue walls correspond to (µ01, µ22), orange walls to (µ12, µ02), and purple walls
to (µ21, µ11).
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(a) 1 pair (µ01, µ22). (b) All 3 pairs — degeneracy lifted.

Figure 6. A three-dimensional view of the candidate walls of marginal stability.

The central charge can be shown to take the following form (Q± = Q1 ± Q5):

Z[µ] = (m0 + ε2m2)Q+ + ε(n0 + ε2n2)Q−, (3.16)

where

m0 = −q1 − q2 − g2 n0 = q1 + q2 − g1 + g3

m2 = −q2 − q3 + g1 − g3 n2 = q2 + q3 − g2 .

As for SU(3), the following coordinate will be convenient

z(v) = Q1
Q5

. (3.17)

The strong-coupling spectrum of BPS dyons in pure N = 2 SU(N) gauge theory was
worked out in [31]. Following their algorithm for the N = 4 case, we see that there are 12
stable BPS dyons at strong coupling which split into 2 sets of 6, each of which becomes
massless at one or the other of the two AD points corresponding to (u0, u1, u2) = (±1, 0, 0).
Two dyons within each set of 6 are mutually local, while two dyons belonging to different sets
of 6 are mutually non-local. The electromagnetic charge vectors µkJ = (q1, q2, q3; g1, g2, g3)
for the IR gauge-group U(1)1 × U(1)2 × U(1)3 are displayed in table 2.

We observe a phenomenon that did not occur in SU(3): at each AD point, the massive BPS
states belong to two different multiplets with unequal masses m0 = 1.2828 and m1 = 1.8142,
listed explicitly below.

• IA. Massless at u0 = 1 but have mass m0 at u0 = −1: {µ02, µ22, µ31, µ33}.
• IB. Massless at u0 = 1 but have mass m1 at u0 = −1: {µ11, µ13}.
• IIA. Massless at u0 = −1 but have mass m0 at u0 = 1: {µ01, µ03, µ12, µ32}.
• IIB. Massless at u0 = −1 but have mass m1 at u0 = 1: {µ21, µ23}.
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Masses and central charges of BPS dyons near the SU(4) maximal AD points
Dyon Z[µkI ] M(u0 = +1) M(u0 = −1)

µ01 = (−1, 0, 0;−1, 0, 0) (1− ε2)Q+ 1.2828 0

µ03 = (0, 1,−1; 0, 0,−1) −(1− ε2)Q+ 1.2828 0

µ12 = (−1, 1, 0; 0, 1, 0) −(1 + ε2)Q+ 1.2828 0

µ32 = (0, 0, 1; 1, 1, 1) −(1 + ε2)Q+ 1.2828 0
µ21 = (0, 1, 0; 1, 1, 0) −2Q+ 1.8142 0

µ23 = (−1, 0, 1; 0, 1, 1) −2ε2Q+ 1.8142 0

µ02 = (0, 1,−1; 0,−1, 0) ε(1 + ε2)Q− 0 1.2828

µ22 = (1, 0, 0;−1,−1,−1) ε(1 + ε2)Q− 0 1.2828

µ31 = (0, 0, 1; 0, 0,−1) −ε(1− ε2)Q− 0 1.2828

µ33 = (1,−1, 0;−1, 0, 0) ε(1− ε2)Q− 0 1.2828
µ11 = (1, 0,−1;−1,−1, 0) 2εQ− 0 1.8142

µ13 = (0, 1, 0; 0,−1,−1) 2ε3Q− 0 1.8142

Table 2. Masses and central charges of BPS dyons near the SU(4) maximal AD points.

Naïvely, there are
(

12
2

)
distinct pairs. But ratios of central charges within a single category

always give rise to trivial walls of complex-co-dimension 1 in the z-plane. So, it suffices to
consider walls between distinct types: {IA-IIA, IA-IIB, IB-IIA, IB-IIB}. Hence, there are only
36 pairs between mutually local BPS states that could give rise to genuine walls.

1. IA-IIA. We have the folllowing candidate walls for this case:

z1(r) =
1 + αr

1− αr
, where α ∈ {±ε,±iε}. (3.18)

2. IB-IIA. We have the folllowing candidate walls for this case:

z2(r) =
1 + βr

1− βr
, where β ∈

{
± 1√

2
,± i√

2

}
. (3.19)

3. IA-IIB. We have the folllowing candidate walls for this case:

z3(r) =
1 + γr

1− γr
, where γ ∈

{
±
√
2,±i

√
2
}

. (3.20)

4. IB-IIB. We have the folllowing candidate walls for this case:

z4(r) =
1 + δr

1− δr
, where δ ∈ {−ε±1}. (3.21)
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Figure 7. The candidate walls of marginal stability for the SU(4) case on the slice u1 = u2 = 0
represented in the z-plane in the left panel and in the v-plane in the right panel. The purple dots
denote the AD points, and the gray dot is the Z8-point. The black curve is the contour of vanishing
Kähler potential.

This set of curves is still highly degenerate: there are only three distinct walls of marginal
stability (see figure 7).

1. A circle of radius
√
2 centred at z = i with degeneracy 10.

2. A circle of radius
√
2 centred at z = −i with degeneracy 10.

3. A circle of radius 1 centred at z = 0 with degeneracy 12.

Note that the above degeneracy adds up to 32 instead of 36 since we do not consider the
straight lines with degeneracy 4 corresponding to β = ± 1√

2 and γ = ±
√
2. The last contour

to plot is of vanishing Kähler potential:

K(v) = 0 ⇒ |z| = cot
(

π

8

)
= 1 +

√
2. (3.22)

3.4 Comments on the SU(N) case for uk = 0 for k > 0

We have computed candidate walls of marginal stability up to SU(7) on the v-plane with
uk = 0 for k > 0. We do not give the pictures here explicitly since they share many features.
Instead, we close this section with some general remarks on the SU(N) case, always assuming
uk = 0 for k > 0 in what follows. A generic wall of marginal stability on this slice satisfies

z(r) = Q1
QN+1

= αr + 1
αr − 1 , for some α ∈ C and any r ∈ R. (3.23)

The Kähler potential on such a wall of marginal stability satisfies [15]

K(v)|wall =
N

2π
|QN+1|2 tan

(
π

2N

)[∣∣∣∣αr + 1
αr − 1

∣∣∣∣2 − cot2
(

π

2N

)]
. (3.24)

Since r can be arbitrarily rescaled, without loss of generality, we may take α = eiϕ ∈ S1, for
ϕ ∈ [0, π] (we identify α ∼ −α since they are equivalent under ζ 7→ −ζ). For the present
discussion, we suppose that α /∈ {0, π} so that we exclude straight lines on the real axis.
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Consider the special case α = i. Then we have |z| = 1. This is the origin-centred circle
in the z-plane that exist for N = 2, 4, 6. For the N = 2 case, this is precisely the K = 0
contour found by Seiberg and Witten [1]. However, such an origin-centred circle seems to
be absent for odd N — we checked this up to SU(7) but lack a proof.

If a wall of marginal stability that is confined to the region K ≤ 0 contains a point
where K = 0, then we claim that it must be tangential to the K = 0 contour at one of
z = ±i cot

(
π

2N

)
. This point, together with both the AD points, uniquely specifies a circle in

the z-plane. This can be seen explicitly by setting (3.24) to zero, which amounts to(
1− cot2

(
π

2N

))
r2 + 2 csc2

(
π

2N

)
cosϕr +

(
1− cot2

(
π

2N

))
= 0. (3.25)

This discriminant of this quadratic polynomial is

D = 2 csc4
(

π

2N

)(
cos(2ϕ)− cos

(2π

N

))
. (3.26)

This equation admits real solutions provided ϕ ∈
[
0, π

N

]
∪
[
π − π

N , π
]
. If ϕ /∈

{
π
N , π − π

N

}
,

the wall intersects the K = 0 contour twice. Such a wall goes beyond the K ≤ 0 region
since the circle also goes through the AD points; i.e. this is a circle through four specified
points. If ϕ ∈

{
π
N , π − π

N

}
, then D = 0 and we have a unique intersection corresponding to

α = e±i π
N = ε±1. Solving the quadratic for these values of α fixes r = ±1, i.e. z = ±i cot

(
π

2N

)
.

Hence, there exist only two distinct walls of marginal stability that are confined to the region
K ≤ 0, and are tangential to the contour K = 0. Furthermore, such walls exist for all
N ≥ 3. However, the above statement does not preclude the existence of walls that are
confined to the strong-coupling region but always have K < 0. This pair of walls is explicitly
realized in the cases N = 3, 4, 5, 6, 7.

The contour of vanishing Kähler potential is also a universal feature, and always has
radius cot

(
π

2N

)
in the z-plane, which scales like ∼ N as N → ∞. This N -scaling of the

radius of the K = 0 contour implies that the universal curves of marginal stability that are
tangential to the K = 0 contour do not exist at large-N since they tend to straight lines. On
the other hand, for any even N , we always expect to find the contour with |z| = 1 since its
radius is independent of N . The fate of the other contours (in the strict region K < 0) for
even or odd N is not completely clear. We expect that the even and odd cases converge to
the same picture as N → ∞. On these grounds, we suspect that the contours that lie in
the (strict) K < 0 region for any N converge to the contour with |z| = 1 as N → ∞, but
we do not have a proof. We close with an open question: is |z| = 1 the unique contour of
marginal stability as N → ∞ on the z-plane with uk = 0 for k ̸= 0?

4 The intrinsic Coulomb branch of AD theories

In this section we shall study certain properties of the intrinsic Coulomb branch of the AD
theories by taking the Λ → ∞ limit of the asymptotically free embedding SU(N) super
Yang-Mills theory near one of the maximal AD points. The resulting intrinsic AD theory is
N = 2 superconformal, its operators transform under representations of the superconformal
Lie algebra SU(2, 2|2), and have definite scaling dimensions. In particular, we shall study the
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behavior of the Kähler potential in this limit, and show that it is positive definite (vanishing
only at the AD point) and convex provided only genuine intrinsic Coulomb branch operators
On are turned on away from the AD point, whose operator dimension satisfies the unitarity
bound ∆(On) > 1 in a unitary superconformal field theory.

4.1 The (a1, aN−1) intrinsic Coulomb branch

The intrinsic AD theories exist independently of their embedding into the Coulomb branch of
an asymptotically-free parent theory, and a given AD theory may be reached from different
parent theories. For example, the AD theories obtained in the Λ → ∞ limit of the parent
theories SU(3)Nf =0 and SU(2)Nf =1 are the same and referred to as the (a1, a2) theory. The
nomenclature originates with yet another parent theory, namely the (a1, a2) theory may be
constructed by compactifying the six-dimensional N = (2, 0) theory with gauge-algebra a1.
The BPS quiver for such a theory is given by the product of the a1 and aN−1 Dynkin
diagrams, whence the nomenclature (a1, aN−1) [32–35].

In this section, we shall consider the intrinsic theory obtained near the maximal AD points
of the N = 2 super Yang-Mills theory with gauge group SU(N) without hyper-multiplets.
These theories can also be constructed The SW curve and one-form are given by, [36]4

ŷ2 = xN −
N−2∑
n=1

unxn + v λ =
√
−2 ŷ dx . (4.1)

The resulting SW curve and differential are scale covariant in the following sense. Since the
SW periods are given by integrals of λ, we must assign to λ the scaling dimension one, which
means that under a scale transformation by a factor of s ∈ C∗ we have λ → λ′ = sλ. This
scaling relation may be derived from the following scale transformations on x, un, v ∼ u0,

x → x′ = s
2

N+2 x ŷ → ŷ′ = s
N

N+2 ŷ un → u′
n = s2 N−n

N+2 un (4.2)

for n = 0, 1, · · · , N − 2. The scaling dimension of the operator On whose expectation value
is un has the same scaling dimension as un and therefore is given by,

∆(On) = 2N − n

N + 2 . (4.3)

In a unitary superconformal field theory the dimension of every physical operator must be
larger than one in view of the unitarity bound imposed by the representation theory of the
supersymmetry algebra, which requires ∆(On) > 1 and thus,

n + 1 ≤
[

N − 1
2

]
= r . (4.4)

The parameter r is referred to as the rank of the (a1, aN−1) AD theory, and is defined to
be the dimension over C of the intrinsic Coulomb branch. By contrast, the parameters un

for n ≥ r do not correspond to intrinsic moduli of the AD theory.
4The relation may be derived by temporarily restoring the Λ-dependence in (2.14) to A(x) = Â(x)− ΛN

and y2 = Â(x)(Â(x)− 2ΛN ) and taking the limit −2ŷ2 = limΛ→∞ y2/ΛN , while keeping x, un constant.
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4.2 The intrinsic Kähler potential

The Kähler potential of SU(N) SW theory is defined by,

KSU(N) =
i

4π

N−1∑
I=1

(aI āD,I − āI aD,I) . (4.5)

We may conveniently re-express KSU(N) in terms of the long and short periods with the help
of an Sp(2N − 2,Z) change of duality frame, which results in the following expression,

KSU(N) =
i

4π

r∑
i=1

(
a

(s)
i ā

(s)
D,i − ā

(s)
i a

(s)
D,i

)
+ i

4π

[N
2 ]∑

i=1

(
a

(ℓ)
i ā

(ℓ)
D,i − ā

(ℓ)
i a

(ℓ)
D,i

)
(4.6)

where the rank r was defined in (4.4). We consider the decoupling limit of the SU(N) super
Yang-Mills theory near the AD point as Λ → ∞ to obtain the intrinsic periods and the
intrinsic Kähler potential. Doing so causes the term in the Kähler potential for the long
periods to vanish, leaving the intrinsic Kähler potential KAD of the AD theory expressed
solely in terms of the short periods,

KAD = i

4π

r∑
i=1

(
a

(s)
i ā

(s)
D,i − ā

(s)
i a

(s)
D,i

)
(4.7)

in the limit where v/ΛN → 0. In the remainder of this section we shall analyze the intrinsic
periods and the Kähler potential using a combination of analytical and numerical methods.

4.3 Analytical results for the periods

In this subsection, we obtain analytical results for the periods and the Kähler potential, in
terms of an expansion in the parameters v and vn already encountered in (2.16),

vn = v
n
N
−1 un n = 1, · · ·N − 2 . (4.8)

Note that these parameters include the moduli of the intrinsic Coulomb branch, namely v

and vn for n = 1, 2, · · · , r− 1, but also the non-intrinsic parameters vn for n ≥ r. We consider
both for the sake of completeness, but also to contrast the difference of the behavior of the
Kähler potential under both deformations. We first turn to evaluating the short periods.

Corollary 4.1. The short periods of the (a1, aN−1) theory may be expressed in terms of the
function R(ζ) that admits the following infinite series expansion in v1, . . . , vN−2,

R(ζ) = − v
1
2 + 1

N

√
2π N

∞∑
ℓn=0

n=1,··· ,N−2

(−)M ζL vℓ1
1 · · · vℓN−2

N−2
ℓ1! · · · ℓN−2!

Γ
(

L
N

)
Γ
(

3
2 + L

N − M
) (4.9)

where L and M were defined in (2.10).

This expression for R(ζ) follows from corollary 2.2, upon restoring the Λ-dependence
and taking the limit Λ → ∞. The result represents a major simplification of the expressions
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obtained in (2.23) and (2.24) for the embedded theory. The short periods may be expressed
in terms of the decomposition of the function R in terms of characters of ZN as follows,

R(ζ) =
N−1∑
n=0

ζnRn ζN = −1 . (4.10)

Throughout, it will be convenient to use the abbreviations,

sn = sin
(2πn

2N

)
cn = cos

(2πn

2N

)
. (4.11)

Corollary 4.2. The short periods of (a1, aN−1) theories have the following expressions in
terms of the characters Rn for any N ≥ 3 and j = 1, . . . , r,

a
(s)
D,j = 2j

N−1∑
n=1

ε4njsnRn (4.12)

and,

a
(s)
j =



N−1∑
n=1

1
2cn

(ε4nj − 1)Rn odd N

−2ijRν +
N−1∑
n=1
n ̸=ν

1
2cn

(ε4nj − 1)Rn even N = 2ν .

(4.13)

To derive a
(s)
D,j , we simply substitute the expansion (4.10) in terms of characters into

the expression for the dual period in (2.21), and apply the definition of sn. To derive a
(s)
j ,

we begin by substituting the expansion (4.10) of R(ζ) into characters,

a
(s)
j =

j−1∑
k=0

N−1∑
n=1

ε4nk(ε3n − εn)Rn . (4.14)

We then apply the following key identity

k−1∑
j=0

ε4jn =


k when ε4n = 1

1− ε4nk

1− ε4n
otherwise.

(4.15)

Since the range of n is given by 0 ≤ n ≤ N − 1, the instance ε4n = 1 can occur only if n = 0
or n = N

2 . The former does not give a contribution to the sum (4.14) thanks to the factor
(ε3n − εn) in the summand, while the latter can only contribute when N is even. It is now
clear that performing the sum over k produces the different expressions for a

(s)
j depending

on whether N is even or odd, thereby completing the proof of corollary 4.2.

4.4 Analytical results for the Kähler potential

We now turn to the analytical results for the intrinsic Kähler potential, and begin by evaluating
KAD of (4.7) in terms of the character coefficients Rn, using the results of corollaries 4.1
and 4.2. The results are given by the following theorem.
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Theorem 4.3. The Kähler potential KAD of (a1, aN−1) theories admits the following decom-
position in terms of the characters Rn

KAD =



N

4π

N−1∑
n=1

sn

cn
|Rn|2 odd N

N

4π

N−1∑
n=1
n ̸=ν

sn

cn
|Rn|2 +

N

8π

Rν

N−1∑
n=1
n ̸=ν

ε2n − 1
cn

R̄n + c.c.

 even N = 2ν .

(4.16)

• For odd N , the proof proceeds by substituting the expressions for the periods obtained in
corollary 4.2 into the definition of the intrinsic Kähler potential in (4.7), and we obtain,

KAD = 1
4π

r∑
j=1

N−1∑
m,n=1

sn

cm
RmR̄n(ε4(m−n)j − ε−4nj) + c.c. (4.17)

Applying the summation identity (4.15) shows that the first term receives contributions
only from m = n since m − n ̸= N/2 for any 1 ≤ m, n ≤ N − 1 when N is odd. This is
a key simplification for odd N . After several further elementary manipulations, we find,

KAD = 2r + 1
4π

N−1∑
n=1

sn

cn
|Rn|2 −

i

8π

N−1∑
m,n=1
m ̸=n

smsn

cmcncm−n

(
RmR̄n − R̄mRn

)
. (4.18)

The second term on the right side cancels, since the prefactor in the summand is
symmetric under m ↔ n while the combination in the parentheses is anti-symmetric.

• For even N = 2ν, with ν ∈ N and r = ν − 1, the proof proceeds by separating the term
n = ν in a

(s)
D,i from the other terms, and splitting the expression (4.7) accordingly into

the following four contributions, KAB = K1 + K2 + K3 + K4,

K1 = − i

π
Rν

N−1∑
n=1

snR̄n

ν−1∑
j=1

jε−4nj + c.c.

K2 = 1
4π

R̄ν

N−1∑
ν ̸=m=1

sν

cm
Rm

ν−1∑
j=1

(ε4mj − 1) + c.c.

K3 = − 1
4π

N−1∑
ν ̸=m,n=1

sn

cm
RmR̄n

ν−1∑
j=1

ε−4nj + c.c.

K4 = 1
4π

N−1∑
ν ̸=m,n=1

sn

cm
RmR̄n

ν−1∑
j=1

ε4(m−n)j + c.c. (4.19)

To evaluate the sum over j in K1, we use the following identity in x = ε−4n with xν = 1,

ν−1∑
j=0

jxj = − νxν

1− x
+ x(1− xν)

(1− x)2 = − ν

1− x
. (4.20)
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The contribution from the n = ν term is purely real, and hence cancels. The sums over
j in K2 and K3 are evaluated using the identity (4.15) to give,

K1 = ν

4π
Rν

N−1∑
ν ̸=n=1

R̄n
ε2n

cn
+ c.c.

K2 = − ν

4π
R̄ν

N−1∑
ν ̸=m=1

sν

cm
Rm + c.c.

K3 = 1
4π

N−1∑
ν ̸=m,n=1

sn

cm
RmR̄n + c.c. (4.21)

The evaluation of K4 is a bit more subtle because,
N−1∑
j=1

ε4(m−n)j =
{

ν − 1 if m − n ≡ 0 (mod ν)
−1 otherwise.

(4.22)

Since the condition m−n ≡ 0 (mod ν) can be satisfied only if m−n ∈ {0,±ν} we have,

K4 = − 1
4π

N−1∑
m,n=1

m−n ̸=0,±ν

sn

cm

(
RmR̄n + c.c.

)
+ 2(ν − 1)

4π

N−1∑
ν ̸=m=1

sm

cm
|Rm|2

+ν − 1
4π

N−1∑
ν ̸=m,n=1

sn

cm
RmR̄n [δm−n,ν + δm−n,−ν ] + c.c. (4.23)

Using the fact that cn+νsn+ν = −cnsn for any n, we see that the sum on the second
line above cancels. Rearranging the contributions from m − n = 0,±ν in the sum of
K1, K2, K3, K4 gives the second line in (4.16) and completes the proof of the case
when N is even.

Next, we prove analytical results on the positivity and convexity of the (a1, aN−1) Kähler
potential using the results of theorem 4.3 and corollary 4.1, assembled in the theorem below.

Theorem 4.4. The Kähler potential KAD of the (a1, aN−1) theories is bounded from below
by zero provided we only turn on moduli corresponding to operators with unitary scaling
dimensions, i.e. ∆(Ok) > 1. Furthermore, in the absence of deformations with non-unitary
scaling dimensions, the expansion of the Kähler potential in the rescaled moduli vk begins at
quadratic order with positive coefficients for k ≥ 1 when N is not divisible by 4. When N is
divisible by 4, an additional linear term arises.

To prove the theorem, we shall need the values of Rn to leading orders in v1, · · · , vN−2.
This information may be read off from corollary 4.1,

Rn =
Γ
(

n
N

)
v

1
2 + 1

N

√
2πNΓ

(
1
2 + n

N

)vn−1 +O(v2
i ) n = 2, · · · , N − 1

R1 = − v
1
2 + 1

N

√
2πN

Γ
(

1
N

)
Γ
(

3
2 + 1

N

) [1 + ( 1
N2 + 1

2N

)N−2∑
n=1

vnvN−n

]
+O(v3

i ) (4.24)
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where O(v2
i ) and O(v3

i ) stand for any bilinear or trilinear terms in v1, · · · , vN−2. To confirm
the absence of linear terms in R1, we use the fact that its contributions arise from combinations
for which L ≡ 1 (mod N). A term linear in vn has ℓn = 1 and all other ℓ = 0, so that
L = 1 + n. Since n ≤ N − 2, there are no solutions to the equation L ≡ 1 (mod N), and
hence no linear terms.

To investigate the positivity and local convexity of KAD, we consider first the case of
odd N , for which the Kähler potential is given by theorem 4.3,

KAD = N

4π

N−1∑
n=1

sn

cn
|Rn|2 . (4.25)

Since we manifestly have the following inequalities,

sn

cn
> 0 for n = 1, · · · ,

N − 1
2

sn

cn
< 0 for n = N + 1

2 , · · · , N − 1 (4.26)

it is clear that the contributions from Rn and thus vn−1 for n = N+1
2 , · · · , N − 1 are negative

and not convex. Setting the corresponding parameters vn = 0, we retain only those vn for
which n = 0, · · · , N−3

2 . In this case, the bilinear terms in R1 automatically vanish, and
R1 has contributions in v1, · · · , vN−2 to order zero, but no linear or bilinear contributions.
Therefore, the Kähler potential, locally near the AD point, is positive and convex. By
inspection of (4.3) and (4.4), we find, remarkably, that these values precisely correspond to
operators whose dimension is larger than 1 and thus obey the unitarity bound, while the
other values of n correspond to operators whose dimension is below the unitarity bound,
thereby proving the first part of the theorem. By contrast, turning on the deformations vn−1
for n = N+1

2 , · · · , N − 1 renders the Kähler potential non-positive and non-convex.
The situation is more subtle for even N = 2ν. The argument for the positivity of the

diagonal part of the KAD is identical to the case of odd N . The rest of the proof has two steps.
First, we show that the non-diagonal part of KAD for even N gives a vanishing contribution
when all non-unitary deformations are turned off. Second, we prove the absence of linear
terms provided N is not divisible by 4. To prove the first claim, note that all contributions
to Rν come from the L ≡ ν (mod N) sector. Parameterizing L = ν + Nk for k ∈ Z≥0, the
coefficients in the expansion of R are proportional to,

Γ
(

L
N

)
Γ
(

3
2 + L

N − M
) =

Γ
(
k + 1

2

)
Γ(2 + k − M) . (4.27)

Furthermore, we observe that k − M < 0. Hence, the only non-vanishing contribution can
come from k − M = −1. This is equivalent, for a single fixed j, to (2ν − j)ℓj = ν + 1. Such
a term contributes linearly only if 2ν − j ≤ ν + 1 or j ≥ ν − 1 = r. All such terms are
killed if we restrict to deformations with ∆ > 1. To prove the second claim, we examine the
contributions to R1 from L ≡ 1 (mod ν) when ν is odd. This gives rise to a linear term only
if j = ν, which is excluded by the constraint ∆ > 1. This concludes the proof of the theorem.
We remark that the Kähler potential is positive even when N is divisible by 4, provided we
only turn on unitary deformation. Indeed, the non-diagonal part of the Kähler potential then
vanishes, and we are left with a sum of absolute-squares with positive coefficients.
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Remarks. To study the global structure of the Kähler potential, we use numerics, which
agree perfectly with our analytical results. At rank-1, convexity of KAD over intrinsic slices
follows directly from the scaling of the periods: a(v) ∼ v

1
∆(v) , which is required by scale-

invariance (cf. [11]). We numerically analyze the effect of turning on deformations uk with
∆(Ok) ≤ 1. Generically, such deformations introduce points where the second-derivative test
on the Kähler potential fails to yield a unique minimum, and the determinant of the Hessian
is vanishing. In the rank-2 case, we primarily consider the intrinsic Coulomb branch, which
is now 2-complex-dimensional. On the intrinsic Coulomb branch, the Kähler potential is a
positive and convex function provided there are no deformations with ∆ ≤ 1.

4.5 Rank-1, example 1: (a1, a2)

This is a rank-1 theory with N = 3, and has an elliptic SW curve,

ŷ2 = x3 − ux + v. (4.28)

The function R(ζ) for this theory is given as follows (ζ3 = −1),

R(ζ) = v
5
6

3
√
2π

∞∑
ℓ=0

(−ζ)ℓ+1Γ
(

ℓ+1
3

)
Γ
(

11
6 − 2ℓ

3

)
ℓ!

wℓ w = u

v
2
3

. (4.29)

The sum may be reorganized into hypergeometric functions of various degrees,

R(ζ) = v
5
6

3
√
2π

−ζ
Γ
(

1
3

)
Γ
(

11
6

) 2F1

(
− 5
12 ,

1
12;

2
3;

4w3

27

)
+ ζ2

Γ
(

2
3

)
Γ
(

7
6

) 2F1

(
− 1
12 ,

5
12;

4
3;

4w3

27

)
w

+ 1
2Γ
(

1
2

) 3F2

(
1
4 ,

3
4 , 1; 43 ,

5
3;

4w3

27

)
w2

 . (4.30)

This presentation explicitly produces exact expressions for the characters R0, R1 and R2
from the last, first, and middle terms, respectively, and allows us to compute the periods and
the Kähler potential. Before proceeding to the necessary numerical analysis, it is instructive
to evaluate the Kähler potential at low-orders in u, and we find,

KAD = 27
√
3

50π4

(
Γ
(1
3

)2
Γ
(7
6

)2
|v|

5
3 − Γ

(2
3

)2
Γ
(11

6

)2
|v|

1
3 |u|2

)
+O(u3) . (4.31)

While the Kähler potential for u = 0 is convex and positive with a unique vanishing point
at v = 0 by theorem 4.4, convexity is immediately lost as soon as we turn on u. Beyond
the analytical result for the small u approximation, numerics are required to explore the
Kähler potential away from the AD points, as shown in figure 8.

4.6 Rank-1, example 2: (a1, a3)

In this subsection, we consider the AD theory that lives in the moduli-space of pure SU(4)
SW theory. This theory is defined by a quartic SW curve,

ŷ2 = x4 − u2x2 − u1x + v . (4.32)
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(a) (Re v, Im v) (b) (Reu,Re v) (c) (Reu, Im u)

Figure 8. A plot of the (a1, a2) Kähler potential for various slices of parameter space u1, v.

It is clear from theorem 4.4 that the Kähler potential is convex and positive-definite in the
absence of any non-unitary Coulomb branch deformations with ∆ ≤ 1. Here, we gather
further evidence that turning on such deformations spoils both positivity and convexity.

For v > 0 the expansion in small u1 ∈ R is given as follows,

KAD =
Γ
(

1
4

)2
v

3
2

32π2Γ
(

7
4

)2 +
u1Γ

(
1
4

)
v

3
4

16
√
2π3/2Γ

(
7
4

) −
u3

1Γ
(

3
4

)
32
√
2π3/2Γ

(
1
4

)
v

3
4
+O(u4

1) . (4.33)

The expression shows that turning on u1 spoils convexity; we find an analogous result for
u2 ̸= 0. These results are qualitatively analogous to the results we obtained for SU(3), and
we shall refrain from presenting numerical plots for this case.

4.7 A rank-2 example: (a1, a4)

Numerical analysis confirms, here as well, that turning on any non-intrinsic moduli, such as
u2 and u3, spoils both convexity and positivity. We shall now concentrate on the numerical
analysis of the dependence of the Kähler potential on the intrinsic moduli u = u1, v, with
no other deformations turned on. The SW curve is given by,

ŷ2 = x5 − ux + v (4.34)

and the Taylor expansion of R(ζ) in u for v ̸= 0, with ζ5 = −1, is given by,

R(ζ) = v
7

10

5
√
2π

∞∑
ℓ=0

(−ζ)ℓ+1Γ
(

1+ℓ
5

)
Γ
(

17
10 − 4ℓ

5

)
ℓ!

(
u

v
4
5

)ℓ

. (4.35)

This series may be summed in terms of the hypergeometric functions 5F4 and 4F3 with
argument proportional to u5/v4. Such a closed form for the characters Rn is useful extract
the small-v behavior of KAD by expanding the hypergeometric functions around u1 = ∞.
We shall not produce these lengthy explicit formulas here. Instead we concentrate on the
numerical results when only the intrinsic moduli u = u1 and v are turned on.

In figure 9 the Kähler potential is plotted in various slices of the intrinsic Coulomb branch
moduli (u, v): versus (Re(v), Im(v)) for fixed u in panel (a); versus (Re(v), Im(u)) for fixed
Re(u), Im(v) in panel (b); and (Re(u), Im(u)) for fixed v in panel (c). One observes in each
case that, for the domain plotted, the Kähler potential is manifestly convex. More detailed
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(a) v-plane. (b) (Im u,Re v)-plane. (c) u-plane.

Figure 9. Plots of KAD for (a1, a4) on various slices of the intrinsic moduli space.

(a) v-plane with v = reiθ. (b) u-plane for discrete v. (c) v-plane for discrete u.

Figure 10. Plots of KAD for (a1, a4) on discrete slices of the intrinsic moduli space.

numerical analysis, not manifestly visible form the plots, establishes that KAB is also positive
definite for all values of u, v studied, and vanishes only for u = v = 0.

In figure 10 we provide a more detailed numerical analysis of the precise positivity and
convexity properties, by taking different representative slicing of the intrinsic moduli space.
In panel (a) of figure 10 we set u = 2, and plot KAD as a function of v = e eiθ as a function
of r ∈ [−1, 2] for a number of discrete values of θ. Convexity and positivity is observed for
every such slice. In panel (b) of figure 10 we plot KAD as a function of real u ∈ [−2, 2] for
10 evenly spaced discrete values of v ∈ [1, 2]. Again, we observe positivity and convexity on
each slice. Finally, in panel (c) of figure 10 we plot KAD as a function of real v ∈ [−2, 2] for
10 evenly spaced real values of u ∈ [1, 2], further confirming positivity and convexity.

Additional observations include the following. One verifies numerically, for example in
panel (b) of figure 10, that the minimum of the Kähler potential over the u-plane always
occurs at the origin u = 0 for any v ̸= 0. From panel (c) of figure 10, we also see that for
various real (as well as) complex values of u, the Kähler potential has a local minimum
that is shifted from v = 0 for any u ̸= 0, though still respecting positivity and convexity.
Finally, the Kähler potential is always positive in all these cases, and the minimum of K

is strictly bigger than 0 if u ̸= 0.

4.8 A rank-3 example: (a1, a6)

We consider the dependence of the intrinsic Kähler potential on the three intrinsic moduli
u2, u1, v, where the SW curve is given by,

ŷ2 = x7 − u2x2 − u1x + v . (4.36)
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(a) u1-plane. (b) u2-plane. (c) (Reu1, Im u2)-plane.

Figure 11. Plots of KAD for (a1, a6) on various slices of the intrinsic moduli space for fixed value of
v and different splicings of the intrinsic moduli u1, u2.

The evaluation of the periods and Kähler potential proceeds very similarly to what we have
already described up to rank 2, so we will not go into that here but rather only present the
results. We study the regime of fixed v, and small u1,2 using our expansion. This allows us
to produce plots in figure 11 that further support our conjecture that the intrinsic Kähler
potential is a convex and positive function with a unique minimum at KAD = 0 that is
located at the Z7-symmetric point.

5 Conclusions and future directions

In this paper, we have analyzed three different aspects of Argyres-Douglas (AD) theories,
and their embeddings into the moduli-spaces of asymptotically-free gauge theories: the SW
periods near the AD points; the marginal stability of mutually local BPS states in a near the
AD points; and the intrinsic periods and Kähler potential of (a1, aN−1) theories.

5.1 Summary of results

1. For gauge-group SU(N), we evaluated SW periods near the maximal AD points for
N ≥ 3 by a non-trivial analytic continuation of the expansion of the periods obtained
near the Z2N -symmetric point studied in [15]. Since our expansion is around one or
the other maximal AD point, it allows us to access a neighborhood of the maximal
AD points that includes the intrinsic Coulomb branch of the AD theory. On regions
of overlap, we showed that our expansion has better convergence properties than the
expansion considered in [15].

2. For gauge-group SU(3), we revisited the structure of the walls for marginal stability,
which were analyzed in [15] only on the restricted slice with u = 0. Utilizing a
combination of our expansion around the Z3 point and the numerical integration
methods of [15], we mapped out the walls of marginal stability in the 3D space
(Reu, Im u, Arc), where Arc refers to a real-dimension 1 curve in the v-plane. This
adds a more complete understanding of the walls, and explains the degeneracy-lifting
associated with the Z3-symmetry of the v-plane. We provide partial results for SU(4)
on the u2 = u1 = 0 slice, and point out some generic features for N ≥ 3.
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3. In the last part of this paper, we explore the intrinsic Coulomb branch of (a1, aN−1)
theories. We applied the decoupling limit Λ → ∞ to obtain the intrinsic periods and
their expansion around the AD point. We then apply this understanding of the periods
to exactly compute the intrinsic Kähler potential and prove its positivity and convexity
near vn = 0 on intrinsic slices, except when 4 ∤ N . We numerically test the global
positivity and convexity of the Kähler potential over intrinsic slices in a variety of
examples up to and including rank-3, i.e. N = 3, 4, 5, 6, 7. We find broad agreement
with our analytic results, and find that convexity and positivity are spoiled if we allow
non-unitary deformations to be turned on, namely uk≥r ̸= 0. This is in full agreement
with theorem 4.4.

5.2 Future directions

Let us close this section with some concrete directions for future work.

1. Dynamics of wall-crossing. A key question that we have not addressed in our
considerations is whether genuine bound BPS states are formed when we follow a
trajectory in the Coulomb branch that crosses a kinematically allowed wall. It would
be interesting to explicitly determine the spectrum of BPS states after such a wall
is crossed, and determine under what conditions formation of bound BPS states is
possible. Work along these lines has been recently undertaken in [33], and it would be
interesting to apply these methods to the walls we obtain here. It is worth emphasizing,
however, that more complicated phenomena can take place upon wall-crossing that we
have also not addressed here — see [32].

2. Integrated correlation functions of the (a1, aN−1) stress-tensor. There is
a large body of work on integrated correlators in 3d ABJM and 4d N = 4 super-
Yang-Mills [37–39]. The key motivation behind such work is to provide non-trivial
non-perturbative checks of holographic duals in eleven and ten dimensions respectively.
Such works often rely on supersymmetric localization, superconformal symmetry, and
S-duality: all of which can be accessed for AD theories. Recently, holographic duals
have been proposed for AD theories in M-theory [40, 41], and it would interesting to
compute observables on the field theory side to test these duals. On a related note,
there are investigations of the correlators of chiral ring operators in AD theories using
supersymmetric localization and the intrinsic SW periods [42].

In parallel to the work on N = 4 super-Yang-Mills, is there a combination of
supersymmetric localization and our expansion of the SW periods that can be used to
compute the stress-tensor correlators of AD theories? If yes, what does this correspond
to in the proposed holographic dual?

3. SUSY breaking of Argyres-Douglas theories. As was already emphasized ex-
plicitly in [14, 15, 20, 21], the convexity of the Kähler potential plays a key role in
our understanding of the IR phases of SU(N) adjoint QCD4, which is obtained by
deforming pure N = 2 gauge-theory by TUV ∼ M2 tr ϕ̄ϕ near the monopole point. On
representation-theoretic grounds, we expect to find a non-supersymmetric interacting
CFT if we deform AD theories in an analogous manner [43].
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What can be said about the phases and spectrum of this IR CFT? Can this non-
supersymmetric CFT be analyzed by a Lagrangian description obtained by deforming the
N = 1 Lagrangian that flows to Argyres-Douglas theory (cf. [44, 45]) in an intermediate
step? If such a theory does not admit a Lagrangian realization, can one analyze it using
SW theory?

A Proof of theorem 2.1

To prove theorem 2.1 we use the SW differential given in (2.18) and the definition of the
integrals R(ζ) in (2.19). Substituting the multinomial expansion for V (z)M in powers of z,

V (z)M =
M∑

ℓ1,··· ,ℓN−2=0

 M

ℓ1, · · · , ℓN−2

 vℓ1
1 · · · vℓN−2

N−2 zL−1 (A.1)

where we use the combinations L and M familiar from (2.10), gives the following expansion
of the SW differential,

λ = v
1
2 + 1

N

√
−2

∞∑
k=0

Γ
(
k + 1

2

)
Γ
(

1
2

)
k!

(
v

2

)k ∞∑
ℓn=0

n=1,··· ,N−2

Γ
(

1
2 − k + M

)
Γ
(

1
2 − k

) vℓ1
1 · · · vℓN−2

N−2
ℓ1! · · · ℓN−2!

×
(

NzN −
N−2∑
n=1

nvnzn

)
zL−1dz

(zN + 1)
1
2−k+M

. (A.2)

The integral over z from 0 to ζ greatly simplifies for ζN = −1 and we obtain,∫ ζ

0

zγ−1 dz

(zN + 1)p
= ξγ

γ
F

(
p,

γ

N
; 1 + γ

N
; 1
)
= ξγ

N

Γ
( γ

N

)
Γ(1− p)

Γ
(
1 + γ

N − p
) . (A.3)

The integrals of λ given by the expansion in (A.2) correspond to the values p = 1
2 − k + M ,

and γ = L + N or γ = L + n. As a result, we obtain,

iπR(ξ) = v
1
2 + 1

N

√
−2

∞∑
k=0

(−)M
Γ
(
k + 1

2

)2

Γ
(

1
2

)
k!

(
v

2

)k ∞∑
ℓn=0

n=1,··· ,N−2

vℓ1
1 · · · vℓN−2

N−2
ℓ1! · · · ℓN−2!

×

 ξL+N Γ
(
1 + L

N

)
Γ
(

3
2 + L

N + k − M
) −

N−2∑
n=1

n

N
vn

ξn+L Γ
(

n+L
N

)
Γ
(

1
2 + n+L

N + k − M
)
 , (A.4)

where we have made use of the reflection formula for Γ-function Γ(z)Γ(1 − z) sin(πz) = π.
The term labelled by n under the finite sum over n in the second line corresponds to shifting
ℓn → ℓn − 1 and adding these contributions simplifies the sum as follows,

iπR(ξ) = v
1
2 + 1

N

√
−2πN

∞∑
ℓn=0

n=1,··· ,N−2

(−)M ξL vℓ1
1 · · · vℓN−2

N−2
ℓ1! · · · ℓN−2!

∞∑
k=0

Γ
(
k + 1

2

)2
Γ
(

L
N

)
Γ
(

3
2 + L

N + k − M
)

k!

(
v

2

)k

.

(A.5)

Relabelling k → ℓ0, v → v0 and choosing the branch
√
−2π = i

√
2π produces formula (2.22)

and thereby completes the proof of theorem 2.1.
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B Convergence, long periods, and elliptic form for SU(3)

We explicitly display the coefficients of the Z3 expansion in this appendix, and examine the
convergence criterion for the SU(3) series. Then we demonstrate that an appropriate choice
of homology basis makes the long periods analytic.

B.1 The ZZZ6 expansion

Explicit formulas for the periods in the case N = 3 were obtained in [7] using Picard-Fuchs
equations. The authors expressed their results in terms of Appell F4 functions [22, 46], which
can be defined by the following series expansion,

F4(a, b, c1, c2;x, y) =
∞∑

m,n=0

Γ(m + n + a)Γ(m + n + b)Γ(c1)Γ(c2)
Γ(a)Γ(b)Γ(m + c1)Γ(n + c2)m!n! xmyn . (B.1)

The SU(3) periods can be expressed as follows [15],

a1 = Q(ε1)− Q(ε0) aD,1 = Q(ε2)− Q(ε1)
a2 = Q(ε1)− Q(ε0) + Q(ε3)− Q(ε2) aD,2 = Q(ε4)− Q(ε3) . (B.2)

The function Q(ξ) can be expanded in characters of Z6

Q(ξ) =
5∑

n=0
ξnQn Q3 = 0 . (B.3)

The formula for Q(ξ) given in (2.9) may be recast in terms of Appell functions F4 expressed
as follows in terms of the variables x = 4u3

1/27 and y = u2
0

Q1 = 2π

2 1
3 3 3

2 Γ
(

2
3

)3 v F4

(1
3 ,

1
3 ,

2
3 ,

3
2;x, y

)
Q2 = 2π

2 1
3 32 Γ

(
2
3

)3 u F4

(1
6 ,

1
6 ,

4
3 ,

1
2;x, y

)

Q4 =
2 1

3 3 3
2 Γ

(
2
3

)3

4π2 F4

(
−1
6 ,−1

6 ,
2
3 ,

1
2;x, y

)
Q5 =

2 1
3 Γ

(
2
3

)3

4π2 uv F4

(2
3 ,

2
3 ,

4
3 ,

3
2;x, y

)
.

(B.4)

Additionally, Q3 = 0, while Q0 cancels out of all periods. Note that the double infinite series
for the Appell function is absolutely convergent for

√
|x|+

√
|y| < 1 which gives the following

region of absolute convergence in terms of u and v,
2√
27

|u|
3
2 + |v| < 1 . (B.5)

Beyond this region, partial analytic continuation formulas are known for F4,5

F4(a, b, c1, c2;x, y) = Γ(c1)Γ(b − a)
Γ(b)Γ(c1 − a) (−x)−aF4

(
a, a + 1− c1, a + 1− b, c2;

1
x

,
y

x

)

+ Γ(c1)Γ(a − b)
Γ(a)Γ(c1 − b) (−x)−bF4

(
b, b + 1− c1, b + 1− a, c2;

1
x

,
y

x

)
(B.6)

5 These are obtained by expressing F4 as an infinite sum of hypergeometric functions, such as

F4(a, b, c1, c2;x, y) =
∞∑

n=0

Γ(n + a)Γ(n + b)Γ(c2)
Γ(a)Γ(b)Γ(n + c2)n! yn F (n + a, n + b; c1;x) ,

and applying inversion formulas for the hypergeometric functions.
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which gives the following region in terms of u1 and u0,

1 + |u0| <
2√
27

|u1|
3
2 (B.7)

allowing us to explore the region of large |u1| and small |u0|. Recent progress on the analytic
continuation of F4 may be found in [47].

B.2 The ZZZ6 decomposition from the ZZZ3 expansion

The above-mentioned decomposition in terms of the characters of Z6 reduces to

Q(ξ) = (Q0 + Q3)ξ0 + (Q1 + Q4)ξ1 + (Q2 + Q5)ξ2 for ξ3 = +1
Q(ξ) = (Q0 − Q3)ξ0 + (Q1 − Q4)ξ1 + (Q2 − Q5)ξ2 for ξ3 = −1 . (B.8)

These coefficients may be extracted from the expression for Q(ξ) in (2.42) by parametrizing
m = 3µ + ν where ν = 0, 1, 2 and µ ≥ 0.

• For ξ3 = −1 we obtain,

Q0 − Q3 = u2 v−
1
2

3
√
2π

∞∑
µ=0

µ! Γ
(

1
2

)
Γ
(

1
2 − 2µ

)
(3µ + 2)!

F

(1
2 ,

1
2;

1
2 − 2µ; v

2

)(
u3

v2

)µ

Q1 − Q4 = − v
5
6

3
√
2π

∞∑
µ=0

Γ
(

1
3 + µ

)
Γ
(

1
2

)
Γ
(

11
6 − 2µ

)
(3µ)!

F

(1
2 ,

1
2;

11
6 − 2µ; v

2

)(
u3

v2

)µ

Q2 − Q5 = u v
1
6

3
√
2π

∞∑
µ=0

Γ
(

2
3 + µ

)
Γ
(

1
2

)
Γ
(

7
6 − 2µ

)
(3µ + 1)!

F

(1
2 ,

1
2;

7
6 − 2µ; v

2

)(
u3

v2

)µ

.

(B.9)

• For ξ3 = 1 we obtain,

Q0 + Q3 = u2 v−
1
2

3
√
2π

∞∑
µ=0

µ! Γ
(

1
2 + 2µ

)
Γ
(

1
2

)
(3µ + 2)!

F

(1
2 ,

1
2;

1
2 − 2µ; v

2

)(
u3

v2

)µ

(B.10)

Q1 + Q4 =
∞∑

µ=0

Γ
(

1
3 + µ

)
(3µ)!

 v
5
6

3
√
2π

Γ
(
−5

6 + 2µ
)

Γ
(

1
2

) F

(1
2 ,

1
2;

11
6 − 2µ; v

2

)(
u3

v2

)µ

+
22/3Γ

(
1
2

)
Γ
(

5
6 − 2µ

)
(4u3)µ

6Γ
(

2
3 − µ

)2
Γ
(

7
6 − µ

)2 F

(
2µ − 1

3 , 2µ − 1
3;

1
6 + 2µ; v

2

)

Q2 + Q5 = u
∞∑

µ=0

Γ
(

2
3 + µ

)
(3µ + 1)!

21/3
Γ
(
−1

6 + 2µ
)
(4u3)µ

6Γ
(

1
2

)3 (2v)
1
6−2µF

(1
2 ,

1
2;

7
6 − 2µ; v

2

)

+
24/3Γ

(
1
2

)
Γ
(

1
6 − 2µ

)
(4u3)µ

6Γ
(

1
3 − µ

)2
Γ
(

5
6 − µ

)2 F

(1
3 + 2µ,

1
3 + 2µ; 56 + 2µ; v

2

) .

Using the reflection formula, Q0 + Q3 = Q0 − Q3 so that Q3 = 0, consistent with [15].
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B.3 Convergence of the ZZZ3 series

To study the convergence properties of the series for Q(ξ) when ξ3 = −1 we use the reflection
and multiplication formulas for Γ-functions to obtain,

Q(ξ) = v
5
6

3π

∑
ν=0,1,2

(−)ν+1ξν+1 sin π

(4ν − 5
6

)
Qν

Qν = 1
2 4

3 3 1
2

∞∑
µ=0

Γ
(
µ + 4ν−5

12

)
Γ
(
µ + 4ν+1

12

)
Γ
(
µ + ν+2

3

)
Γ
(
µ + ν+3

3

) F

(1
2 ,

1
2;

11− 4ν

6 − 2µ; v

2

)( 4u3

27v2

)µ+ ν
3

.

(B.11)

We begin by considering the λ → +∞ behavior of the hypergeometric function which is given
by the following Taylor series for fixed value of |z| < 1,

F

(1
2 ,

1
2;λ; z

)
=

∞∑
k=0

Γ
(
k + 1

2

)2
Γ(λ)

Γ
(

1
2

)2
Γ(k + λ) k!

zk . (B.12)

The first few terms are given by,

F

(1
2 ,

1
2;λ; z

)
= 1 + z

4λ
+ 9 z2

32λ(λ + 1) +
75 z3

128λ(λ + 1)(λ + 2) +O(z4) . (B.13)

The series is absolutely convergent for any compact subset of the open disc |z| < 1 uniformly
in λ greater than any fixed number strictly greater than one; for our purposes it suffices
to choose λ ≥ 1. For fixed |z| < 1, the absolute value of each term in the series strictly
decreasing as λ → +∞ and therefore the limit of the series as λ → +∞ is simply given by,

lim
λ→+∞

F

(1
2 ,

1
2;λ; z

)
= 1 for all |z| < 1 . (B.14)

Next, we consider the case where λ → −λ in the hypergeometric function, and use the general
formula below to relate this case to the previous one,6

F (a, b;−λ; z) = zλ+1Γ(−λ)Γ(a + 1 + λ)Γ(b + 1 + λ)
(1− z)λ+a+bΓ(a)Γ(b)Γ(λ + 2) F (1− a, 1− b;λ + 2; z)

+Γ(a + 1 + λ)Γ(b + 1 + λ)
Γ(a + b + 1 + λ)Γ(λ + 1)F (a, b; a + b + 1 + λ; 1− z) . (B.15)

6The procedure of relating the cases for positive and negative λ was followed in [48], but the coefficient of
the first term is incorrect there. To establish the correct relation, one easily verifies that all three functions
satisfy the hypergeometric differential equation z(1− z)f ′′ + (−λ − (a + b + 1)z)f ′ − abf = 0. The coefficient
of the second term on the right side may be determined by setting z = 0 and using Gauss’s formula for the
hypergeometric function at unit argument, while the coefficient of the first term may be determined using the
asymptotics of the left side z → 1, using the formulas in section 2.7.1 of [22].
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For the special case a = b = 1
2 of interest here, we have the following simplification,

F

(1
2 ,

1
2;−λ; z

)
= − zλ+1

(1− z)λ+1

Γ(−1− λ)Γ
(

3
2 + λ

)2

Γ
(

1
2

)2
Γ(λ + 1)

F

(1
2 ,

1
2;λ + 2; z

)

+
Γ
(

3
2 + λ

)2

Γ(λ + 2)Γ(λ + 1)F

(1
2 ,

1
2;λ + 2; 1− z

)
. (B.16)

For the first term to admit a finite limit as λ → +∞, we must require |z| < |1 − z|, in
which case the contribution from the first term tends to zero. That this sufficient condition
is also necessary may be established numerically by taking the limit z → 1

2 and verifying
that the limit to be established below does not hold. In the absence of the first term, the
limit of the second term is then given by,

F

(1
2 ,

1
2;−λ; z

)
=

Γ
(

3
2 + λ

)2

Γ(λ + 2)Γ(λ + 1)

(
1 + 1− z

4λ
+O(λ−2)

)
(B.17)

and thus,

lim
λ→+∞

F

(1
2 ,

1
2;−λ; z

)
= 1 for all |z| < min(1, |1− z|) . (B.18)

Convergence of the series for Qν. We shall now use the results of the preceding
subsection to investigate the convergence properties of the series given in (B.11) for Qν . The
large µ behavior of the prefactor of Γ-functions is as follows,

Γ
(
µ + 4ν−5

12

)
Γ
(
µ + 4ν+1

12

)
Γ
(
µ + ν+2

3

)
Γ
(
µ + ν+3

3

) = 1
µ2

(
1 +O(λ−1)

)
. (B.19)

In view of the asymptotics of the hypergeometric function for µ → ∞ in the domain,∣∣∣∣v2
∣∣∣∣ <

1
2

∣∣∣∣v2
∣∣∣∣ <

∣∣∣∣1− v

2

∣∣∣∣ (B.20)

the large µ behavior of the summand in Qν is as follows,

1
µ2

(
4u3

27v2

)µ+ ν
3

(B.21)

and the series is convergent provided,∣∣∣∣∣4u3

27

∣∣∣∣∣ < |v|2 = |1− u0|2 < 1 (B.22)

since the condition
∣∣v

2
∣∣ < 1

2 implies the condition
∣∣v

2
∣∣ <

∣∣1− v
2
∣∣.
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B.4 Elliptic expression for the (a1, a2) Kähler potential

For completeness, we add here the exact expression for the intrinsic periods in terms of the
elliptic formulation developed in subsection 2.4.3. The SW differential is given by,

λ = −i
dz

2
√
2(2ω)5

(
12℘(z)3 − g2℘(z)

)
, (B.23)

Using the homology basis of subsection 2.4.3, A = [0, 2πi], B = [0, 2πiτ ], the SW periods
may be read off from theorem 2.6 by setting k = ℓ = m = 0, and we have,

a = −i
E2E4 − E6

720
√
2π(2ω)5 aD − τa = −E4

60(2π) 3
2 (2ω)5

. (B.24)

The right formula confirms that aD = ρa for the AD theory since E4(ρ) = 0. As one
approaches the AD point, u, v → 0, which forces ω → ∞ since E6(ρ) is non-vanishing. Thus,
both periods tend to zero at the AD point, as expected. The Kähler potential is given by,

KAD = Im(τ)
2π

|a|2 −
Re
(
Ē4(E2E4 − E6)

)
675π3|4ω|10 . (B.25)

One verifies that upon setting τ = ρ and then letting ω → ∞, the intrinsic Kähler potential
KAD tends to zero as expected.
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