
Efficient Discovery of Actual Causality using
Abstraction-Refinement

Arshia Rafieioskouei
Michigan State University

rafieios@msu.edu

Borzoo Bonakdarpour
Michigan State University

borzoo@msu.edu

Abstract—Causality is the relationship where one event con-
tributes to the production of another, with the cause being
partly responsible for the effect and the effect partly dependent
on the cause. In this paper, we propose a novel and effective
method to formally reason about the causal effect of events in
engineered systems, with application for finding the root-cause of
safety violations in embedded and cyber-physical systems. We are
motivated by the notion of actual causality by Halpern and Pearl,
which focuses on the causal effect of particular events rather than
type-level causality, which attempts to make general statements
about scientific and natural phenomena. Our first contribution is
formulating discovery of actual causality in computing systems
modeled by transition systems as an SMT solving problem.

Since datasets for causality analysis tend to be large, in order
to tackle the scalability problem of automated formal reasoning,
our second contribution is a novel technique based on abstraction-
refinement that allows identifying for actual causes within smaller
abstract causal models. We demonstrate the effectiveness of our
approach (by several orders of magnitude) using three case
studies to find the actual cause of violations of safety in (1)
a neural network controller for a Mountain Car, (2) a controller
for a Lunar Lander obtained by reinforcement learning, and (3)
an MPC controller for an F-16 autopilot simulator.

Index Terms—Causality, root-cause analysis, cyber-physical
systems, safety failures.

I. INTRODUCTION

In a causal system, the output of the system is influenced
only by the present and past inputs. In other words, in a
causal system, the present and future outputs depend solely
on past and present inputs, not on future inputs. Causality
addresses the logical dependencies between events and reflects
the essence of event and action flows in systems. Engineers
generally build causal systems, that is, structures, systems, and
processes that seek to tie effects to their causes. This also
includes approaches to explain the root-cause of failures that
violate safety standards, especially in safety-critical systems.

In this context, embedded and cyber-physical systems (CPS)
are no exceptions. In fact, root-cause analysis has been of
interest to both academic and industrial circles for decades,
aiming not just to find safety violations but also to precisely
explain why they happened. This means proving mathemati-
cally that safety would not have been violated in the absence
of the identified cause. Formalizing and reasoning about causal
explanations is much harder than just finding “bugs” and often
aims to identify the earliest flawed decisions by controllers

This work is sponsored by the United States NSF Award CCF 2320050.

that lead to violations of safety requirements. Finding such
causes provides engineers with tremendous insights to design
more reliable systems, but it has been a long-standing and
very challenging problem for various reasons, from defining
a formal definition of causal effect of events to the high
computational complexity of counterfactual reasoning.

There is a wealth of research on causality analysis in
the context of embedded and component-based systems from
different perspectives [1], [2], [3], [4], [5], [6], [7], [8], [9].
Recently, there has been great interest in using temporal logics
to reason about causality and explain bugs [10], [11], [12],
[13]. In the CPS domain, using causality to repair AI-enabled
controllers has recently gained interest [14], [15]. However,
these lines of work either focus on only modeling aspects of
causality or do not address the problem of scalability in auto-
mated reasoning about causality, which inherently involves a
combinatorial blow up to enumerate counterfactuals.

Objectives

This paper is concerned with the following problem.
Given are (1) a formal operational description of a
computing system T (e.g., a transition system of a
CPS), and (2) a logical predicate ωe that describes
the effect (e.g., a safety failure) as input. Our goal is
to identify a predicate ωc that describes the cause of
ωe happening (e.g., the earliest bad decision made by
a controller). We note that ωe can be given by the
user or can be found by using a verification or testing
technique. Hence, the way the effect is identified is
irrelevant to the problem studied in this paper.

The first natural step is to formalize the definition of
causality and in fact, there are several interpretations of the
meaning of causality. In this paper, we are motivated by the
notion of actual causality by Halpern and Pearl (HP) [16],
which focuses on the causal effect of particular events, rather
than type causality, which attempts to make general statements
about scientific and natural phenomena (e.g., smoking causes
cancer). Actual causality is a formalism to deal with token-
level causality, which aims to find the causal effect of individ-
ual events (in our context, in embedded and CPS), as opposed
to type-level causality, which intends to generalize the causal
effect of types of events.

https://orcid.org/0009-0002-8844-4441
rafieios@msu.edu
https://orcid.org/0000-0003-1800-5419
borzoo@msu.edu%20

Under-Approximation Ť
(AC1, AC2(a)): →ω.→ω →

Concrete model T

Over-Approximation T̂
(AC2(b): ↑ω →→)

Fig. 1: Over/under-
approximations of the
concrete model and their
relation to HP conditions of
the form →→↑.

Concrete TS (T)

under-approximation (Ť)

AC1 ↓AC2(a)

over-approximation (T̂)

AC1 ↓ ¬AC2(a) ¬AC1 ↓AC2(a)

AC2(b) ¬AC2(b)

refine

refinerefine

Fig. 2: Overall idea of
our algorithm – Steps
of abstraction-refinement
approach.

As we aim at analyzing executions of computing systems
(e.g., models or data logs of a CPS), we first formalize causal
models in (possibly infinite-state) transition systems, rather
than the classic set of structural equations [16]. We show that
formalizing the three conditions of actual causality yields a
second-order logic formula of the form ωhp ↭ →ε.→ε →.↑ε →→.ϑ,
where ε , ε →, and ε →→ range over the set of executions of a
transition system and ϑ stipulates the relation between actual
and counterfactual worlds. More specifically:

• The outermost existential quantifier in ωhp intends to
establishes a relationship between the cause and the effect
in an execution ε (known as the AC1 necessity condition
in the HP framework [16]). That is, the cause and then
the effect actually happen in ε .

• The inner existential quantifier aims at refuting the causal
effect relation in the counterfactual world (known as
the AC2(a) condition, stipulating the “but-for” condition
under contingencies). That is, when the cause does not
happen, the effect will not happen.

• The universal quantifier requires that if the cause happens
in any execution ε →→ that is to ε (as far as the variables
contributing to the cause and effect are concerned), then
the effect should also happen (known as the AC2(b)
sufficiency condition).

This formula exhibits a quantifier alternation and indeed, the
problem of deciding actual causality in a causal model is
known to be DP-complete [17] in the size of the model,
illustrating the computational complexity of the problem. To
deal with this complexity, we propose an effective method to
formally reason about actual causality using decision proce-
dures to solve satisfiability modulo theory (SMT). Although
there has been tremendous progress in developing efficient
SMT solvers, they may not scale well when dealing with very
large causal models or data logs. To tackle this problem, we
introduce a novel technique based on abstraction-refinement
that allows identifying causes within smaller abstract causal
models. This abstraction simplifies the model and attempts
to view it from a higher level, while preserving the causal
relations.

Although the idea of abstracting causal models in terms
of structural equations has been studied in the literature [18],
[19], [20], these works develop an exact simulation which may
not exist or do not attempt to establish a relation between
actual causes in the abstract and concrete causal models. Our
technique incorporates two levels of abstraction to reason
about actual causality (i.e., formula ωhp ↭ →ε.→ε →.↑ε →→.ϑ).
More specifically, our approach works as follows (see Figs. 1
and 2). Given a concrete causal model T :

• We first compute an under-approximate model Ť of
T . This model is used to find witnesses for conditions
AC1 and AC2(a) (i.e., the existential quantifiers). If not
successful, we refine Ť (e.g., by including states that are
in T and not in Ť) and try again.

• If the previous step succeeds, we compute an over-
approximate model T̂ to verify condition AC2(b) for the
universal quantifier. If successful, then an actual cause
is identified and the algorithm terminates. Otherwise, we
refine T̂ (e.g., by excluding states that are in T̂ and not
in T) and repeat the second step1.

We prove the correctness of our approach by showing that our
algorithm is sound (but not necessarily complete).

We have implemented2our approach using the Python pro-
gramming language and utilized the SMT solver Z3 [21] and
data analysis libraries [22], [23] to construct our solver and
abstraction technique. We conduct experiments on three case
studies to find the actual cause of violations of safety in
(1) a neural network controller for a mountain car [24], (2)
a controller for a Lunar Lander obtained by reinforcement
learning [24], and (3) an MPC controller for an F-16 autopilot
simulator [25]. Our experiments demonstrate the effectiveness
of our abstraction-refinement technique by several orders of
magnitude compared to the SMT-based approach for concrete
causal models.

In summary, our contributions are the following. We:
• Formulate the classic HP framework by transition sys-

tems and introduce an SMT-based decision procedure to
identify actual causes in a computing system;

• Introduce a technique based on abstraction-refinement to
deal with scalability of formal reasoning about actual
causality, and

• Conduct three rigorous experimental evaluations on AI-
enabled as well as non-AI controllers in CPS.

Our work is the first step in automating discovery of actual
cause of failures, and our experiments show that we are able
to identify the earliest bad decisions by controllers that lead
to violations of safety requirements.

Organization: The rest of the paper is organized as
follows. Section II presents the classic HP framework for
actual causality. In Section III, we introduce our formulation
of HP for transition systems as well as a translation to an
SMT-based decision procedure to identify actual causes. Our

1Alternatively, one can return to the first step and start from scratch.
2Source code and all trace logs available at https://github.com/TART-MSU/

Causality abs refinement

https://github.com/TART-MSU/Causality_abs_refinement
https://github.com/TART-MSU/Causality_abs_refinement

abstraction-refinement technique is introduced in Section IV.
We present our experimental evaluation in Section V. Related
work is discussed in Section VI. Finally, we make concluding
remarks and discuss future work in Section VII. Proofs of
correctness are available in [26].

II. PRELIMINARIES – ACTUAL CAUSALITY

In this section, we present the notion of actual causality
by Halpern and Pearl (HP) [16] as the baseline preliminary
concept. Since, the definition in [16] is not a natural model of
computation, in Section III, we will adapt the concepts in this
section to transition systems and second-order logic formulas
in order to reason about actual causality in computing systems.
We will consistently use the Mountain Car running example
to explain the definitions and concepts throughout the paper.

A. Causal Models

Definition 1: A signature S is a tuple (U ,V,R), where U
is set of exogenous variables (variables that represent factors
outside the control of the model), V is a set of endogenous
variables (variables whose values are ultimately determined by
the values of the endogenous and exogenous variables). R is
a function that associates with every variable Y ↔ U ↗ V a
nonempty set R(Y) of possible values for Y . ↫

Following Definition 1, a state is a valuation of a vector of
variables ϖX = (X1, . . . , Xn) in U ↗ V , where each variable
X ↔ ϖX is assigned a value from R(X).

Definition 2: A basic causal model M is a pair (S,F),
where S is a signature and FX defines a function that asso-
ciates with each endogenous variable X a structural equation
FX that maps R(U ↗ V ↘ {X}) to R(X), so FX determines
the value of X , given the values of all the other variables in
U ↗ V . ↫
It is important to highlight that exogenous variables cannot
be linked to a function; thus, assigning values to exogenous
variables, denoted as ϖu, is referred to as a context.

Definition 3: An intervention entails setting the values of
endogenous variables, denoted as ϖX ≃ ϖx, and this notation
signifies that the variables within set ϖX are assigned values
ϖx = (x1, . . . , xn). ↫

The structural equations define what happens in the presence
of interventions. Setting the value of some variables ϖX to
ϖx in a causal model M = (S,F) results in a new causal
model, denoted M ωX↑ωx, which is identical to M, except
that F is replaced by F ωX↑ωx: for each variable Y ⇐↔ ϖX ,
F ωX↑ωx

Y = FY while for each X → in ϖX , the equation FX→

is replaced by X → = x→. Thus, we define a causal model M
by a tuple (S,F , I), where (S,F) is a basic causal model
(see Definition 2) and I is a set of allowed interventions.
Following [20], the sets of “allowed interventions” ensure that
the interventions can be appropriately limited to include only
those that can be abstracted.

Example 1: Consider a car located in a valley and aiming to
reach the top of a mountain (see Fig. 3a). At each time step,
the controller of the car determines whether to apply positive

pos
-1.2 0 0.6

(a)

pos(t) vel(t) g

action(t)vel(t+ 1)pos(t+ 1)

(b)

Fig. 3: (a) Schematic of the mountain car example. (b) Graph
illustrating the causal model and relationships between the
variables at a snapshot in time t.

or negative acceleration to guide the car towards the mountain
top. We define signature S = (U ,V,R) for this example as
follows. Let

U = {pos(0), vel(0), g}

be the set of exogenous variables, denoting the initial posi-
tion, initial velocity, and the gravitational force on the car,
respectively. Let

V = {pos(t), vel(t), action(t)}

be the set of endogenous variables, denoting the position,
velocity, and the controller action, respectively, at each time
step t, where t ⇐= 0. We also set:

R(pos(t)) =[↘1.2, 0.6]

R(vel(t)) =[↘0.07, 0.07]

R(action(t)) ={↘1, 0, 1}

where -1,0, and 1 are assigned as accelerate to the left, don’t
accelerate, and accelerate to the right, respectively, for all t ⇒
0.

Now, we define the causal model (S,F) based on the
system dynamics for each t > 0 by structural equations:

Fpos(t+1) = Fpos(t) + Fvel(t) (1)
Fvel(t+1) = Fvel(t) + 0.001Faction(t) ↘ g.cos(3Fpos(t)) (2)

To illustrate the dependencies of the system, we can use a
causal graph, as shown in Fig. 3b. In this model, Maction(t)↑1

denotes the model obtained by an intervention, where the
action(t) is set to 1 at time t (for some t > 0). ↫
B. Causal Formulas

To precisely define actual causality, formal language is
essential for articulating causal statements with clarity and
rigor, in particular to formalize causes and effects. We use
an extension of propositional logic, wherein primitive events
take the form ϖX = ϖx, representing an endogenous variable ϖX
and a possible value ϖx for ϖX . The combination of primitive
events is achieved through standard propositional connectives
such as {↓,⇑,¬}. Thus, in this paper, we are only concerned
with causal formulas that are state based (and not temporal).

Given a signature S = (U ,V,R), a primitive event is
a formula of the form X = x, for X ↔ V and x ↔
R(X). A causal formula (over S) is one of the form
[Y1 ≃ y1, . . . , Yk ≃ yk]ω, where ω is Boolean combination

of primitive events, Y1, . . . , Yk are distinct variables in V , and
yi ↔ R(Yi). Such a formula is abbreviated as [ϖY ≃ ϖy]ω. The
special case where k = 0 is abbreviated as []ω or, more often,
just ω. Intuitively, [ϖY ≃ ϖy]ω says that ω would hold if Yi

were set to yi, for i = 1, . . . , k.
A causal formula ϑ is true or false in a causal model,

given a context. We use a pair (M, ϖu) consisting of a causal
model M and context ϖu as a causal setting. Hence, we write
(M, ϖu) |= ϑ if the causal formula ϑ is true in the causal
setting (M, ϖu). We are restricted to recursive models, where
given a context, no cyclic dependencies exists. In a recursive
model, (M, ϖu) |= X = x if the value of X is x once we set
the exogenous variables to ϖu. Given a model M, the model
that describes the result of this intervention is MωY↑ωy . Thus,
(M, ϖu) |= [ϖY ≃ y]ϑ iff (MωY↑ωy, ϖu) |= ϑ. Mathematical for-
malism serves to express the intuition precisely encapsulated
within the formula [ϖY ≃ ϖy]ϑ is true in a causal setting (M, ϖu)
exactly if the formula ϑ is true in the model that results from
the intervention, in the same context ϖu.

Example 2: Context ϖu in causal setting (M, ϖu) in our
example is determined by system inputs: initial velocity, initial
position, and gravity:

ϖu =
{
(vel(0) ≃ 0.01), (pos(0) ≃ 0), (g ≃ 0.0025)

}
.

where we defined M in Example 1. To conduct causal
analysis, the car at time t = 0 decides to set action(0) = 1,
but it fails to reach the goal. We defined causal formula to
express failure as follows:

ωfail ↭
(
pos(n) ⇐= 0.6

)
,

where 0.6 is the flag position and n is the last car state. ↫
C. Actual Causality

Definition 4: ϖX ≃ ϖx is an actual cause of ω in causal
setting (M, ϖu), if the following three conditions hold:

• AC1. (M, ϖu) |= [ϖX ≃ ϖx]ω
• AC2(a). There is a partition of V (set of endogenous

variables) into two disjoint subsets ϖZ and ϖW (i.e, ϖZ ⇓
ϖW = ⇔) with ϖX ↖ ϖZ and a setting ϖx→ and ϖw of the
variables in ϖX and ϖW , respectively, such that:

(M, ϖu) |= [ϖX ≃ ϖx→, ϖW ≃ ϖw] ¬ω.

• AC2(b). For all subsets ϖZ → of ϖZ ↘ ϖX , we have

(M, ϖu) |= [ϖX ≃ ϖx, ϖW ≃ ϖw, ϖZ → ≃ ϖz↓]ω

where ϖz↓ denotes that variables in ϖZ → are fixed at their
values in the actual context.

• AC3. ϖX is minimal; no subset of ϖX satisfies AC1 and
AC2. ↫

Roughly speaking Definition 4 expresses the following. AC1
says that ϖX = ϖx cannot be considered a cause of ω unless
both ϖX = ϖx and ω actually happen. AC2(a) says that the
but-for condition holds under the contingency ϖW = ϖw. Also,
changing the value of some variable in ϖX results in changing
the value(s) of some variable(s) in ϖZ (perhaps recursively),

which finally results in the truth value of ω changing. Finally,
AC2(b) provides a sufficiency condition: if the variables in ϖX
and an arbitrary subset ϖZ↘ ϖX of other variables on the causal
path are held at their values in the actual context, then ω holds
even if ϖW is set to ϖw (the setting for ϖW used in AC2(a)). The
types of events that the HP definition allows as actual causes
are ones of the form X1 = x1 ↓ · · · ↓ Xk = xk, that is,
conjunctions of primitive events; this is often abbreviated as
ϖX . In Section III, Example 3, we will provide an example on
how actual cause of formula ωfail can be identified using our
proposed technique.

III. SMT-BASED DISCOVERY OF ACTUAL CAUSALITY

In this section, we transform the components of the HP
framework presented in Section II into transition systems and
a second-order formula to express actual causality. Such a
transition system can model the operational behavior of a
system (e.g., a controller). Our technique can be agnostic to the
details of the system and only take a set of execution traces.

Recall that a causal model M is of the form (S,F , I),
where S = (U ,V,R). Also, recall that a state is a mapping
from the variables in U ↗ V to their respective domain of
values. We start with representing M with a set of traces
obtained from a transition system that essentially describes
how the state of all variables in U ↗ V evolve over time by
structural equations FX , for every X ↔ V .

A. Transition Systems

Definition 5: A transition system T corresponding to a
causal model M is a tuple T = (!,”,ϱ0,#), where

• ! is the set of all possible states obtained from all
possible valuations of variables in U ↗ V;

• ” is a function mapping states in 2! to a state in !
(recall that FX is a function);

• ϱ0 ↔ ! is the initial state, and
• # is a function mapping states in 2! to an atomic propo-

sition from a set AP (e.g., given by causal formulas). ↫
Following Definition 5, given a causal setting (M, ϖu), the

corresponding causal transition system is one that is acyclic
and fixes ϱ0 according to ϖu. An intervention ϖX ≃ ϖx is simply
a set of transitions in ” where in the target state ϖX = ϖx
holds, denoted by ” ωX↑ωx. We denote the set of all possible
interventions in T by IT .

Definition 6: A path of a transition systems T =
(!,”,ϱ0,#) is a sequence of states of form ϱ0ϱ1 . . ., where
for all i ⇒ 0 (1) ϱ0 = ϱ0, and (2) (ϱi,ϱi+1) ↔ ”.
The trace corresponding to a path ϱ0ϱ1 . . . is the sequence
ε = #(ϱ0)#(ϱ1) ↫
Let Tr denote the set of all traces of a transition system.

Example 3: Figure 4 shows three traces ε0, ε1, and ε2
for our mountain car example for context ϖu = (pos(0) =
0.0, vel(0) = 0.02). In each step, the controller makes accel-
eration decisions. Dotted transitions means the next state is not
the immediate next time step. The nth state is the last state of
the trace. As can be seen, traces ε0 and ε2 never reach position

pos(0) = 0.0

vel(0) = 0.02

action(0) = 1

pos(1) = 0.018

vel(1) = 0.018

action(1) = 1

pos(n→ 1) = 0.12

vel(n→ 1) = 0.00

action(n→ 1) = 1

pos(n) = 0.11

vel(n) = →0.001

action(n) = 1

Trace ε0

ωfail

pos(0) = 0.0

vel(0) = 0.02

action(0) = →1

pos(1) = →0.01

vel(1) = →0.01

action(1) = →1

pos(n→ 1) = 0.58

vel(n→ 1) = 0.051

action(n→ 1) = 1

pos(n) = 0.6

vel(n) = 0.052

action(n) = 1

Trace ε1

¬ωfail

pos(0) = 0.0

vel(0) = 0.02

action(0) = 1

pos(1) = 0.018

vel(1) = 0.018

action(1) = 1

pos(n→ 1) = 0.12

vel(n→ 1) = 0.00

action(n→ 1) = 1

pos(n) = 0.11

vel(n) = →0.001

action(n) = 1

Trace ε2

ωfail

Fig. 4: Three traces for the mountain car example.

0.6 (i.e., satisfying causal formula ωfail, meaning failing to
reach the flag), while trace ε1 does (i.e., violating causal
formula ωfail, meaning successfully reaching the flag). ↫

We introduce three temporal operators to express the occur-
rence of causes and effects in traces:

• For a state ϱ and a proposition p ↔ AP iff ϱ |= p iff
p ↔ #(ϱ).

• A trace ε = ε0ε1 . . . satisfies formula p (read as
‘always p’ and denoted ε |= p) iff ↑i ⇒ 0.εi |= p.

• A trace ε0ε1 . . . satisfies formula p (read as ‘eventually
p’ and denoted ε |= p) iff →i ⇒ 0.εi |= p.

• A trace ε0ε1 . . . satisfies formula p U q (read as ‘p until
q’ denoted ε |= p U q) iff →i ⇒ 0.(εi |= q ↓ (↑j <
i.εj |= p)).

B. SMT-based Formulation of Actual Causality

An SMT decision problem generally consists of two com-
ponents: (1) the SMT instance (i.e., data elements such as
variables, domains, functions, sets, etc), and (2) SMT con-
straints (i.e., first-order modulo theory involving quantified
Boolean predicates with arithmetic). In the context of our
problem, the SMT instance consists of two parts (1) A set
of elements for expressing a transition system T , or, a set of
traces Tr (e.g., from a data log). While the latter is simply a
set of sequences of states (defined as a function from natural
numbers to the full set of states), the former is specified by
Boolean formulas from the unrolled transition system, similar
to standard bounded model checking [27] without loops. (2)
Our SMT model formalize conditions AC1, AC2(a), and
AC2(b) of Definition 4 for transition systems (see Fig. 5). For
simplification, we omit AC3 (minimality of cause), as it is not
the most important constraint to reason about causal effect of
events in a system. Condition AC1 (in Fig. 5) means in the set
Tr, there exists at least one trace ε , where effect ωe appears
after cause ωc holds. Condition AC2(a) requires the existence
of one trace ε →, where neither cause ωc nor effect ωe hold.
Additionally, trace ε → is not equivalent to trace ε (identified
in AC1) as far as variables in W or Z are concerned (i.e., the

counterfactual worlds). The remaining endogenous variables,
the ones in ϖW , are off to the side, so to speak, but may still
have an indirect effect on what happens. Condition AC2(b)
requires that for all traces ε →→ that are similar to ε as far as
causal variables in Z are concerned, if cause ωc holds, then
effect ωe hold some time in the future.

We clarify that while SMT solvers cannot directly encode
temporal operators, one can easily encode them using the
above expanded definitions by quantifiers over traces.

SMT Decision Problem

Given are (1) a causal transition system (T , ϖu) (or a
set of traces Tr expressed as a mapping from natural
numbers to states), (2) a causal formula ωe, (3) an
uninterpreted function representing ωc, and (4) con-
straints AC1, AC2(a), and AC2(b). The corresponding
SMT instance is satisfiable iff the interpreted ωc is
an actual cause of ωe in T .

Example 4: We aim to identify the cause of the failure,
denoted as ωfail, explained in our running example. For the
sake of argument, let X = {action(0) = 1}. Since both pos
and vel are dependent on the value of action , they are part
of ϖZ or the causal path. That is,

ϖZ =
{
pos(t), action(t), vel(t) | t > 1

}

and, hence, W = {} (since ϖW ⇓ ϖZ = ⇔). We now analyze the
conditions of HP:

• Starting with AC1, one can instantiate ε (in Fig. 5) with
concrete trace ε0 in Fig. 4, indicating the satisfaction of
the first condition.

• Moving to AC2(a), which involves counterfactual rea-
soning, when we change the actual setting in AC1 to a
counterfactual value action(0) = ↘1, the car eventually
reaches the goal (i.e., pos = 0.6). This change allows
the car to initiate a leftward movement, acquiring the
necessary momentum to reach the flag, so flipping the
failure ωfail to success (i.e., ¬ωfail). Consequently, AC2(a)
is satisfied by instantiating ε → (in Fig. 5) with concrete
trace ε1 (in Fig. 4). Also, notice that condition ε1 ⇐↙Z ε0
is satisfied.

• Considering AC2(b), notice that trace ε2 is identical to ε0
as far as the variables in ϖZ are concerned (i.e., ε0 ↙Z ε2).
Also, since ϖW = {}, changing variables in ϖW while
preserving the actual context results in an equivalent
scenario to AC1, which is already satisfied. Thus, the
only trace that can instantiate ε →→ (in Fig. 5) is ε2, in
which ωfail becomes true. Note that the reason ε0 and ε2
are trace-equivalent is indeed due to the fact that ϖW = {}.
Hence, AC2(b) hold.

This means in this set of traces, action(0) = 1 is the actual
cause of failure for the car to reach the flag. ↫

In the ideal world, one has to have all possible traces
for combinatorial enumeration to evaluate AC2(b). However,
this is far from reality and most trace data logs (e.g., by

AC1 ↭ →ω ↓ Tr.
(
ω |= ¬εe U (εc ↔ εe)

)
(εc causes εe in ω)

AC2(a) ↭ →ω → ↓ Tr.
(
ω → |= (¬εc ↔ ¬εe)

)
↔
(
ω ↗↘Z ω → ≃ ω ↗↘W ω →) (changes in the causal inhibits εe)

AC2(b) ↭ ↑ω →→ ↓ Tr.
(
(ω →→ |= (¬εe U εc) ↔ (ω ↘Z ω →→ ↔ ω ↗↘W ω →→)

)
⇐

(
ω →→ |= εe

)
(in traces similar to ω , εc causes εe)

Fig. 5: HP conditions adapted for causal transition systems.

some testing mechanisms, fuzzing, mutation testing, some
automaton, etc) include only a subset of possibilities. Our goal
in this paper is to identify causal effects within a given set of
traces. Finally, as mentioned in the introduction, decision pro-
cedure for verification of actual causality is DP-complete [17],
signifying the computation difficulty of automated reasoning
about causality. This means our SMT-based problem is indeed
dealing with a decision problem that is DP-complete, setting
the complexity of our SMT-based solution.

IV. ABSTRACTION-REFINEMENT FOR CAUSAL MODELS

In this section, we propose our abstraction-refinement tech-
nique and its application in reasoning about actual causality,
as presented in Section III.

A. Overall Idea
Generally speaking, the traditional abstraction approach to

handle an existential quantifier is under-approximation, where
we start from a subset of behaviors and attempt to instantiate
the quantifier. If successful, then the problem is solved. Other-
wise, we refine the abstraction by including addition behaviors
and try again. On the contrary, to handle universal quantifiers,
the traditional abstraction approach is over-approximation,
where we start from a subset of behaviors and attempt to
verify universality. If successful, then the problem is solved.
Otherwise, we need to ensure that the counterexample is not
spurious (due to over-approximation). If it is, we refine the
abstraction by excluding the counterexample and try again.

The overall idea of our technique is as follows (see Fig. 2).
Observe that the logic formula for actual causality is of the
form →→↑ (see Fig. 5). Given a transition system T and causal
formula ωe as the effect, we proceed as follows:

• Step 1. Compute an under-approximation Ť and an
over-approximation T̂ . We first attempt to instantiate
the existential quantifiers in AC1 and AC2(a) in Ť . If
instantiating one of the quantifiers does not succeed, we
refine Ť and repeat Step 1.

• Step 2. When Step 1 succeeds, we compute T̂ and verify
the universal quantifier in AC2(b) for T̂ . If successful,
the witness to ε is a trace where the actual cause happens
and we also obtain a witness to ωc by the SMT solver.
Otherwise, we can either refine T̂ and repeat Step 2 or
refine Ť and return to Step 1.

We show that termination of these steps results in identify-
ing an actual cause ωc in T for ωe. This algorithm, however,

may never terminate and, thus, our approach is sound but
not complete. We also remark that our heuristic based on
abstraction-refinement is sound but not complete (e.g., similar
to the CEGAR [28] technique in model checking) to solve the
general DP-complete problem. The computation complexity of
our solution, therefore, does not change.

B. Approximating Causal Transition Systems
We first fix some notation. For a concrete causal transition

system T = (!,”,ϱ0,#) (the one given as input for causal
reasoning), let us denote an over-approximate causal transition
system by T̂ = (!̂, ”̂, ϱ̂0, #̂) and an under-approximate causal
transition system by Ť = (!̌, ”̌, ϱ̌0, #̌). We denote the domain
of endogenous (respectively, exogenous) variables of T by
R(VT) (respectively, R(UT).

Given an over-approximate causal transition system T̂ ,
we construct a sequence T̂0 ⇒ T̂1 ⇒ . . . T̂k of over-
approximations, where (1) T̂k = T̂ , and T̂i+1 is a refinement of
T̂i, for 0 ∝ i < k, which we compute using counterexamples.
A counterexample is a state of !̂i that is not in !. Over-
approximation state mapping is a function which map states
from T to T̂ ; i.e., ĥ : 2! ′∞ !̂.

Assumption 1: In this paper, we only allow over-
approximation state mappings ĥ that preserve the equality of
traces as far as variables in Z are concerned. That is, for two
concrete transitions (ϱ0,ϱ1) and (ϱ→

0,ϱ
→
1), if (1) ϱ0 ↙Z ϱ→

0,
and (2) ϱ1 ⇐↙Z ϱ→

1, then we have (1) ϱ0 ↙Z ĥ(ϱ→
0), and (2)

ϱ1 ⇐↙Z ĥ(ϱ→
1). Otherwise, we will not be able to prove the

soundness of Algorithm 1 with regard to causal paths. We
will elaborate more in the requirement in proof of Theorem 1.
We will also explain in Section V, how this assumption is
ensured in our implementation ↫

We need an additional function: ŵ : IT ′∞ IT̂ which maps
concrete interventions to over-approximation interventions.

Definition 7: Given a subset of endogenous variables in !,
called ϖX , and ϖx ↔ 2!, let

Rst(!, ϖx) = {ϖv ↔ 2! : ϖx is the restriction of ϖv to ϖX}. ↫
This definition carries to a transition system T =
(!,ϱ0,”,#) in a straightforward fashion as follows. The
restriction of a set of values ϖx on ! is a subset !|ωx ↖ !
restricted to those states, where ϖX = ϖx. The set of restricted
transitions is obviously those start and end in states in !|ωx.

We now explain how we compute the above functions.
Given ĥ, we define: ŵ(” ωX↑ωx) = ”̂ωY↑ωy if (1) ϖy ↔ 2!̂, and

(2) ĥ(Rst(!|ωx)) = Rst(!̂|ωy). Hence for every intervention in
” ωX↑ωx, there is only one intervention in ”̂ωY↑ωy . If such a ϖY
and ϖy do not exist, we take ŵ(” ωX↑ωx) to be undefined. Let
I ĥ
T be the set of interventions for which ŵ is defined, and let

IT̂ = ŵ(I ĥ
T).

Based on this definition, it becomes evident that not all
interventions in IT will have corresponding mappings in IT̂
or IŤ . This is due to the fact that ȟ and ĥ may aggregate states,
resulting in some IT representing only partial interventions
on IŤ or IŤ . In this context, the introduction of a notion
termed allowed intervention becomes crucial. This notion
is essential as certain interventions in the abstract model
may lack definition or relevance in a well-defined concrete
model. Consequently, within this framework of definitions,
the translation of interventions is not universal; rather, only
essential interventions that can be meaningfully mapped are
considered.

We follow a similar but simpler procedure for under-
approximations. Given an under-approximate causal transition
system Ť , we construct a sequence Ť0 ∝ Ť1 ∝ . . . Ťk of under-
approximations, where (1) Ťk = Ť , and Ťi+1 is a refinement of
Ťi, for 0 ∝ i < k, which we compute using counterexamples.
A counterexample is a state of ! that is not in !̌i. In this
paper, since we begin causal analysis from a trace log ”, we
compute an under-approximation by a subset of the input set
of traces. That is, ȟ(Tr) ↖ Tr.

C. Detailed Description of the Algorithm
The input to Algorithm 1 is a concrete transition systems

T (more specifically, its trace set) and a causal formula ωe.
Also, ς and φ and are parameters used in computing ĥ
and ȟ, respectively. ς indicates the subset size of ȟ and φ
is a threshold to compute Euclidean distance of states for
over-approximation. We are restricted to a set of allowed
interventions I ĥ

T . Our objective is to identify states of T ,
where causal formula ωc holds as an actual cause in the trace
ε = #̌(ϱ0)#̌(ϱ1)

Line 1 initializes the under-approximation Ť , with parame-
ter ς indicating the number of traces to use and map in ȟ func-
tion. In lines 3 – 16, the algorithm computes whether the SMT
query returns ωc as the cause for effect ωe in the current under-
approximation and over-approximation. Specifically, in line 3,
the SMT function receives Ť as the under-approximation and
constraints of AC1 and AC2(a) specified in Fig. 5, and it
returns the result ωc as the cause. The SMT solver also returns
a witness trace ε ↔ Ťr. In line 16, if the result of SMT query
in line 3 is unsatisfiability, then the algorithm chooses more
traces Tr by increasing ς. Indeed, lines 15 and 16 establish
the refinement for the under-approximate model.

If a cause ωc is identified by satisfying AC1 and AC2(a),
we use this cause to initialize over-approximation in line 5
(to ensure Assumption 1), where we include all original
states as well as potentially unreachable states by creating an
abstract representation by function ĥ, such that all states in
T map to T̂ , and also similar states are merged into a single
abstracted state in T̂ . The distance threshold for merging states

Algorithm 1: Finding actual cause of ωe in T
Input: T = (!,”,ω0,#), causal formula εe, allowed

interventions Iȟ
T , ϑ = [0, 1], ϖ ↑ 0

Output: Causal formula εc

1 Ťr ↓ ȟ(Tr) using ϑ;
2 while true do
3 {εc, ϱ̌ , ϱ̌ →} ↓ SMT(Ťr, AC1 ↔AC2(a));
4 if ¬εc then
5 T̂ ↓ ĥ(T) using ϖ and εc;
6 while true do
7 result ↓ SMT(T̂ ,εc, AC2(b));
8 if result then
9 return εc ;

10 else
11 T̂ ↓ ˆRefine(T̂ ,!→ !̂, Iȟ

T);
12 end
13 end
14 end
15 Increase ϑ;
16 Ťr ↓ ȟ(Tr) using ϑ;
17 end

is controlled by the parameter φ. If the distance between any
pair of states is less than φ, those states will be merged.
Consequently, a smaller φ results in a larger number of abstract
states, while a larger φ leads to a smaller number of abstract
states.

In lines 7 – 11, we focus on verifying AC2(b) using the
over-approximation. In line 7, the SMT query takes T̂ as the
current over-approximate model and ωc as output from line 3.
It then examines whether all traces for which ωc and ωe hold
can be modified by changing states such that ωe still holds. If
the SMT solver returns SAT, then ωc is returned as the actual
cause, where ωc is a Boolean expression on the atomic propo-
sitions related to states in a specific trace. If the result is not
SAT, in line 11, we use counterexample(s) in !↘ !̂, allowed
interventions identified by ŵ(IT). These counterexamples are
then eliminated by Refine, and the resulting model is assigned
to the new T̂ . We emphasize that in the refinement step for
over-approximation (line 11), it is crucial to consider restricted
interventions, denoted as I ȟ

T . This consideration is necessary
because, in a concrete model, certain interventions may not be
directly mapped to their counterparts in the over-approximated
model. Consequently, the refinement process must incorporate
I ȟ
T as an essential input, utilizing it effectively during the

mapping process to ensure consistency of model translation.
Theorem 1: Let T be a concrete causal transition system

and ωc and ωe be two causal formulas. If ωc is an actual
cause of ωe identified by Algorithm 1 (for T̂ and Ťr), then ωc

is an actual cause of ωe in T .

V. EXPERIMENTAL EVALUATION

This section first provides an overview of the implementa-
tion details of the algorithm proposed in Section IV-C. We also
evaluate our technique on three case studies: (1) Mountain Car,
and (2) Lunar Lander environments from OpenAI Gym [24] –
commonly used evaluation benchmarks for learning-enabled
CPS, and (3) an F-16 autopilot simulator [25] that uses an
MPC controller.

A. Implementation

To identify the actual cause of failures in our studies, we
need to generate traces consisting of those that do not violate
safety and those that do violate safety. We need successful
traces to find conterfactuals for failure scenarios, where the
same conditions lead to success through different decisions.

In our experiments, we use 47 networks for the Mountain
Car experiment [29], [15] and generate over 570 neural net-
works, trained with Deep Reinforcement Learning [30], for the
Lunar Lander case study. Consequently, the success rates of
traces in satisfying ωe used in our experiments were 17% and
11% for the case studies in Sections V-C and V-D, respectively.
In the case study in Section V-E, the success rates were 21%
and 33% for the first and second scenarios, respectively. This
is because the non-AI MPC controller typically makes better
decisions than the AI controller.

We have implemented Algorithm 1 using the Python pro-
gramming language. Algorithm 1 is implemented through two
approaches. First, the Z3 SMT solver [21], and secondly (for
non-symbolic cases), by employing a search method to find
traces in datasets that meet the HP conditions. For instance,
if we find a trace that leads to failure, we take this sample
and search for other traces with the same features, except
for the decision that caused the failure in the original trace.
To accomplish this, we utilize built-in data science search
algorithms in [22], [23]. In fact, in our case studies, we are
dealing with large-sized data rather than symbolic properties.
Therefore, in Section V-F, we will demonstrate that searching
through the dataset is more efficient compared to Z3. While
Z3 is primarily employed for its robust capabilities in theorem
proving and constraint solving, it is not as effective for finding
traces in a large set of already generated traces that meet
certain conditions.

For execution of Algorithm 1, specific strategies are adopted
in refinement of the under- and especially over-approximate
(function Refine in line 11) models in cases of unsatisfiability.
In the under-approximation model, a parameter ς is utilized
to incorporate additional traces. This parameter can be pro-
gressively increased to obtain more traces, thereby refining
the under-approximation. In the over-approximation model, a
parameter φ is used within the mapping function to dictate the
threshold for the distance between states. When the distance
between a group of states is less than this threshold, they are
merged into a single state to simplify the model. Moreover, in
refining the over-approximate model, the algorithm checks for
the existence of counterexample states that violate the over-
approximation. If such states are identified, they are removed
from the model to ensure its accuracy [28].

Assumption 1 for both our case studies is implemented as
follows that in the over-approximation function, it is crucial
not to merge states that transition to different outcomes. For
instance, in the Mountain Car example, if there are two traces
that differ only in their actions but have the same position
and velocity, and the under-approximation model identifies
that action might be a possible cause of failure, these states

cannot be merged in the over-approximation model. This is
because merging them would obscure the distinction between
a trace leading to failure and another leading to success.

B. Experimental Settings

All of our experiments were conducted on a single core of
the Apple M2 Pro CPU, which features a 10-core architecture
and operates @3.7GHz. Given a set of collected traces, we
applied our techniques in four different modes to identify the
cause of failure (safety violations):

• Only Z3 is the implementation, where we only use the
SMT solver Z3 to discover actual causality (the technique
proposed in Section III).

• Abs Z3 is the implementation, where Algorithm 1 uses
Z3.

• Only DA is the implementation, where we only use the
search algorithms in [23], [22] in lieu of an SMT solver.

• Abs DA is the implementation, where Algorithm 1 uses
the search algorithms in [23], [22] in lieu of an SMT
solver.

C. Case Study 1: Mountain Car

Out first case study is the continuation of our running
example. In Fig. 3a, the car is initially positioned in the valley
between two mountains with the objective being to navigate
it to the peak of the right mountain before a set deadline.
The system incorporates three variables in accordance with
Equations 1 and 2, specifying the domain for each variable as
pos(t) ↔ [↘1.2, 0.6], vel(t) ↔ [↘0.07, 0.07], and action(t) ↔
[↘1, 1]. Here, action represents a learning-based function
f , implemented using various pre-trained neural networks of
different dimensions:

action(t) = f(pos(t), vel(t))

The car’s mission is to achieve pos(t) = 0.6 before the time
limit of t = 100 episodes. Our study explores various initial
settings for pos(0), vel(0), and the function f to find the cause
of the vehicle’s failure to reach its target. In our study, we
began by collecting data by assigning different initial values to
the variables pos(0) and vel(0), which were treated as external
(exogenous) variables. We also utilized various combinations
of pre-trained neural networks as the decision-making mech-
anism for acceleration. The action controller in the Mountain
Car scenario employs a neural network characterized by a
rectangular architecture with varied dimensions. The sigmoid
function serves as the activation mechanism for both the input
and hidden layers, whereas the Tanh function is utilized for
the output layer. This approach represents a modification of
the methodology detailed in [29], [15].

By executing multiple initial valuations with distinct neu-
ral networks, we generated a substantial set of traces, each
indicating whether the car reached its destination within 100
episodes.

D. Case Study 2: Lunar Lander
In this case study, the space lander is initially positioned

at a certain altitude from the ground, aiming to land on the
designated landing pad. The landing pad is always located
at (0 ± ↼, 0 ± ↼). In the Lunar Lander system, there are
eight variables (e.g., x and y coordinates, velocity, angular
velocity, angle, etc), which are intrinsic to the system, and an
additional seven variables that are configured to represent the
environment (e.g., wind, gravity, turbulence power, etc). For a
comprehensive overview of this case study, refer to [24]. The
exogenous variables we consider are four different values for
wind: {0, 5, 10, 15}, three values for gravity: {↘8,↘10,↘12},
and three values for turbulence power: {0.8, 1.5, 2}. Moreover,
in our experiment, we focus on a subset of the endogenous
variables, specifically posx(t), posy(t), velx(t), vely(t), and
action(t). These variables correspond to the horizontal and
vertical positions, horizontal and vertical velocities, and the
action controlling the engines of the lander, respectively.

In our model, action denotes a learning-based function
f , which is implemented using various pre-trained neural
networks with different dimensions:

action(t) = f(posx(t), posy(t), velx(t), vely(t)).

In the Lunar Lander environment, there are four discrete ac-
tions available for controlling the lander, denoted as action =
{0, 1, 2, 3}:

• 0: Do nothing;
• 1: Fire the left orientation engine;
• 2: Fire the main engine, and
• 3: Fire the right orientation engine

The action controller designed for the Lunar Lander exper-
iment is based on deep reinforcement learning principles,
as explored in [30]. The neural networks employed in this
experiment are rectangular in shape and utilize the Rectified
Linear Unit (ReLU) activation function to introduce non-
linearity and enhance the learning capability of the model.
We performed multiple simulations with varying initial values
for posx(0), posy(0), velx(0), vely(0), wind , gravity , and
turbulence each paired with different neural networks. This
procedure produced a substantial set of traces, with each
trace indicating whether the lander successfully landed on the
landing pad within the time frame of t < 500 episodes or not.

E. Case Study 3: F-16 Autopilot MPC Controller [25]
This benchmark models both the inner-loop and outer-loop

controllers of the F-16 fighter jet. We explore two scenarios.
The first scenario involves reaching a specified altitude set
point while maintaining a certain speed. The second scenario
tests whether the automated collision avoidance system can
recover the aircraft from a critical moment.

1) First Scenario: In this scenario, the aircraft’s goal
is to reach a certain altitude while maintaining a speci-
fied speed within a timeline of t. There are 16 state vari-
ables (e.g., altitude, airspeed , pitch , yaw , roll , power–lag ,
AoA (Angle of Attack) noted as ς, and etc). Our exoge-
nous variables are the initial settings for altitude(0), ς(0),

airspeed(0), pitch(0), and the power lag that the engine suf-
fers (power–lag). Our endogenous variables are altitude(t),
ς(t), airspeed(t), pitch(t), power–lag(t), and the actions of
the autopilot system for t > 0, which include changing the
throttle ↽t(t) and adjusting the angle of the elevators ↽e(t)
to control the pitch (nose up or down). In this experiment,
we investigate the actions (↽t(t) and/or ↽e(t)) that determine
whether the plane succeeds or fails in reaching the desired
checkpoint, achieving the desired speed, or violating aircraft
limits such as upward acceleration, AoA, or minimum airspeed
that could lead to stalling.

2) Second Scenario: Here, we place the aircraft in a critical
position near the ground to evaluate its collision avoidance
system. This scenario involves using a larger set of variables,
thereby increasing the dimensionality of our problem com-
pared to the previous scenario. These critical moments involve
high degrees of pitch , roll , and yaw , as well as low airspeed
near the ground, which may lead to failures such as ground
collision and violations of the aircraft’s aerodynamic limits.
Our exogenous variables are the initial settings for altitude(0),
airspeed(0), pitch(0), ς(0), yaw(0), roll(0), and power–lag ,
while the endogenous variables are altitude(t), airspeed(t),
pitch(t), yaw(t), roll(t), for t > 0 and the actions of the
autopilot system. These actions include adjusting the degree
of the rudder ↽r(t) to change the yaw of the plane, changing
the degree of the aileron ↽a(t) to modify the roll of the plane,
and controlling the throttle ↽t(t) and elevator ↽e(t). As in the
previous scenario, we are examining the autopilot decisions
that influence whether the aircraft can successfully recover
from a potential collision or avoid violating aerodynamic
constrains. Additionally, we aim to identify the actual cause
of the failures.

F. Performance Analysis

Figures 6a, 6b, 6c, and 6d illustrate the results of our
experiments for the Mountain Car, Lunar Lander, and both
F-16 simulation scenario, respectively. Indeed all graphs show
a similar profile in terms of the behavior of the four modes of
experiments mentioned in Section V-A.

As shown in the graphs, the abstraction algorithms
(Abs DA and Abs Z3) demonstrate significantly better per-
formance by orders of magnitude than the conventional solvers
(Only DA and Only Z3), with the latter exhibiting expo-
nential growth in runtime with an increasing number of
traces. This demonstrates the effectiveness of our abstraction-
refinement technique: it identifies the actual causes of failures
while running much faster than techniques on concrete traces.
As shown in Fig. 6b, our technique processes up to 80,000
traces in under 250 seconds, whereas Only Z3 times out with
threshold 1200 seconds at 20,000 traces and Only DA at
55,000 traces.

Notably, Abs DA outperforms Abs Z3, and Only DA
shows better performance than Only Z3. This observation
can be attributed to the fundamental differences between
SMT solvers, which focus on logical consistency, and the

2,000 4,000 6,000 8,000

103

104

105

Number of traces

Ti
m

e
(m

s)
–

lo
g

sc
al

e

(a) Mountain Car

2 4 6 8

·104

103

104

105

106

Number of traces

Ti
m

e
(m

s)
–

lo
g

sc
al

e

Time-Out Time Out

(b) Lunar Lander

2,000 4,000 6,000 8,000

103

104

105

Number of traces

Ti
m

e
(m

s)
–

lo
g

sc
al

e

(c) F-16 Simulation Scenario 1

0.4 0.8 1.2 1.6 2

·104

103

104

105

106

Number of traces

Ti
m

e
(m

s)
–

lo
g

sc
al

e

(d) F-16 Simulation Scenario 2

Fig. 6: Comparison of four modes of our implementation for various case studies. The legend is as follows: represents
Abs DA, represents Abs Z3, represents Only DA, and represents Only Z3.

searching methods developed in data analysis libraries, which
are tailored for efficient searching in large datasets.

In Table I, we present a comparison between different
valuations of the parameter ς, which represents the subset
size of ȟ. We conducted an experiment to find an optimal
value for ς. Our findings indicate that a very small ς may
require numerous refinements, as it needs to add more traces
to identify the cause, which is inefficient. On the other hand,
large values of ς needs fewer refinements, but the under-
approximation function has to process a larger amount of
data, which increases the processing time. Therefore, there
is a trade-off between the number of refinements and the total
time spent on them. We note that for row that have equal ς,
we shuffle the trace set, which impact computing the under-
approximation.

G. Causality Analysis

This section demonstrates an important aspect of this re-
search in investigating the actual cause of safety failures in
CPS to explain the underlying reason. Our case studies involve
simulations that specifically focus on the intersection of AI-
enabled decision-making (Mountain Car and Lunar Lander),
environmental dynamics feedback, and the correctness of a
non-AI controller within an F-16 aircraft simulation.

1) Mountain Car: In Example 3 (see Fig. 4), we prove
that making a poor decision to accelerate to the right (i.e.,
action(0) = 1) leads to failing in reaching the mountain
top (i.e., formula ωfail). Instead, in the counterfactual scenario
we observe that it is necessary to accelerate to the left to
gain momentum in order to climb the mountain. This not
only shows the earliest bad decision by the controller but

TABLE I: Experiment on 1000 traces
Case Study Algorithm ω Refinement steps Time (ms)

Mountain
Car

Abs DA
0.01 28 1024
0.05 7 475
0.1 2 102

Abs Z3
0.01 22 9793
0.05 6 4757
0.1 2 1306

Lunar
Lander

Abs DA
0.01 24 494
0.05 7 396
0.1 3 150

Abs Z3
0.01 19 2809
0.05 4 794
0.1 3 239

also identifies the “but-for” scenario, meaning what would
have happened if a different action was taken. Additionally,
counterfactual reasoning demonstrates how to fix the bad
decision made by the neural network.

2) Lunar Lander: We observe that when there is a strong
wind from left to right, some controllers tend to overuse the
right engine, resulting in action = 3 during the initial steps.
This causes the lander to drift to the left. However, we observe
that even in this situation where the lander is positioned to the
left of the landing pad, the controller can use its left engine,
action = 1, to move the lander to the right and land safely.
However, some controllers use their main engine, action =
2, resulting in the lander not reaching the landing pad. This
results in posx(t) < 0↘ ↼, constituting a failure.

To illustrate this further, Fig. 7 shows two traces start-
ing from the same point but taking different actions in the
first step. Dotted transitions means the next state is not the
immediate next time step. The final state of the traces ε0
and ε1 is the nth and mth state, respectively. In trace ε0,
action(0) = 1, while in trace ε1, action(0) = 3. However,
in both traces, the controllers overuse the right engine in the
initial steps (both controllers in ε0 and ε1 use the right engine
action(1) = 3), causing the lander to drift far to the left,
resulting in posx(i) = ↘0.32 in ε0 and posx(j) = ↘0.32
in ε1. At this state, where in both scenarios the lander has
the same position and setting, the controller in ε1 decides to
use the main engine action(j) = 2, while the controller in ε0
opts to use the left engine action(i) = 1 to move the lander to
the right. These decisions under similar conditions lead to the
failure of ε1 (i.e., posx(m) = ↘0.36 < 0↘ ↼) and the success
of ε0 (i.e., 0 ↘ ↼ < posx(n) = ↘0.02 < 0 + ↼). This finding
indicates that the failure in ε1 using decision action(j) = 2,
while the counterfactual scenario in ε0 succeeds with a differ-
ent decision action(i) = 1, highlighting that action(j) = 2
in ε1 is the actual cause of the failure.

3) F-16 Autopilot Simulation: Here, we identify the cause
of failures and analyze counterfactual scenarios (alternative
actions) under the same conditions that could lead to success.
When the aircraft needs to gain altitude at low speed, some
traces show the controller lowering the nose to gain speed and
avoid stalling before attempting to climb. This approach results
in a loss of altitude and insufficient time to reach the desired

posx(0) = 0.00

posy(0) = 1.41

action(0) = 1

posx(1) = →0.01

posy(1) = 1.43

action(1) = 3

posx(i) = →0.32

posy(i) = 0.15

action(i) = 1

posx(n) = →0.02

posy(n) = 0.04

action(n) = 0

Trace ε0

¬ωfail

posx(0) = 0.0

posy(0) = 1.41

action(0) = 3

posx(1) = →0.01

posy(1) = 1.42

action(1) = 3

posx(j) = →0.32

posy(j) = 0.15

action(j) = 2

posx(m) = →0.36

posy(m) = 0.05

action(m) = 0

Trace ε1

ωfail

Fig. 7: Simulated traces in Lunar
Lander and causal effect of deci-
sion by the main engine.

time step

alt(ft)

1 2 3 4 5 6 7 8 9 10

1300

1350

1400

1450

1500

1550

1600

1650

1700

1750

1800

1850

0

v = 500,ϑ = 0

ϖt = 0.64, ϖe = ⇒6

v = 492,ϑ = 11

ϖt = 1.0, ϖe = ⇒25

v = 407,ϑ = 17

ϖt = 1.0, ϖe = +25

v = 394,ϑ = 0

ϖt = 1.0, ϖe = +25

v = 381, ϑ = ⇒17

ϖt = 1.0, ϖe = +25

AoA violated v = 360,ϑ = ⇒17

ϖt = 1.0, ϖe = +25
v = 348,ϑ = ⇒17

ϖt = 1.0, ϖe = +25

v = 347,ϑ = ⇒5

ϖt = 1.0, ϖe = ⇒25

v = 368,ϑ = 17

ϖt = 1.0, ϖe = ⇒25

Fig. 8: The F-16 scenario leads to failure
due to a violation of the AoA limit.

time step

alt(ft)

1 2 3 4 5 6 7 8 9 10

1300

1350

1400

1450

1500

1550

1600

1650

1700

1750

1800

1850

0

v = 500,ϑ = 0

ϖt = 0.0, ϖe = ⇒6.8

v = 489,ϑ = 17

ϖt = 0.0, ϖe = ⇒12

v = 430,ϑ = 5

ϖt = 1.0, ϖe = 10

v = 421,ϑ = ⇒10

ϖt = 1.0, ϖe = ⇒6

v = 411,ϑ = ⇒5

ϖt = 1.0, ϖe = ⇒6

v = 410,ϑ = 0

ϖt = 1.0, ϖe = ⇒0.5

v = 410,ϑ = 0

ϖt = 1.0, ϖe = ⇒0.5

v = 414,ϑ = ⇒2

ϖt = 1.0, ϖe = ⇒2

v = 422,ϑ = 0

ϖt = 1.0, ϖe = ⇒1

Fig. 9: The F-16 counterfactual scenario
leads to success.

altitude within the specified time frame, leading to failure.
However, in counterfactual scenarios, the controller opts to
gain speed by using more throttle and then gradually raises
the nose using the elevators, eventually reaching the desired
altitude. This demonstrates that the decision to lower the nose
is the actual cause of the failure to reach the desired altitude
within the specified time frame.

In another scenario, when transitioning from a lower to a
higher altitude, some traces show controllers using excessive
elevator and throttle, which places the aircraft in a danger
zone and violates the angle of attach (AoA) limits, leading
to catastrophic failure. However, in alternative counterfactual
scenarios with the same starting conditions, the controller
gradually uses the throttle and adjusts the elevator more
cautiously. This approach allows the aircraft to reach the
desired altitude without violating its aerodynamic limits.

To illustrate the latter scenario in detail, Figs. 8 and 9
show two flight real paths starting from the same altitude,
altitude(1) = 1450, and the same speed, airspeed(1) = 500,
with the goal of reaching an altitude of altitude(n) = 1800.
This process should occur within a specified time frame while
not violating aircraft limits. In Fig. 8, the controller starts
by using throttle ↽t(1) = 0.64 and setting the elevator to a
negative position, ↽e(1) = ↘6, to achieve a positive pitch
angle. This decision continues in subsequent steps in a more
extreme manner, with ↽t(2) = 1.0 (full throttle) and ↽e(2) =
↘25, resulting in nearly a 45-degree pitch. Next, to counteract
this situation, the controller attempts to use ↽e(3) = 25 and
↽e(4) = 25 to stabilize the aircraft’s sharp nose-up attitude,
leading to a negative AoA, ς(5) = ↘17. Since the aircraft’s
maximum negative AoA limit is -15, ς(5) = ↘17 violates
this limit, and the controller fails to achieve its objective. On
the contrary, in the counterfactual scenario (see Fig. 9), the
controller starting with less aggressive throttle and elevator
adjustments, such as ↽t(1) = 0 and ↽e(1) = ↘6.8, result-
ing in a slight pitch. This strategy continues similarly with
↽t(2) = 0 and ↽e(2) = ↘12, avoiding harsh climbs to reach
the destination. By examining this scenario, we find that in
the first time step, Fig. 8 makes the decisions ↽t(1) = 0.64
and ↽e(1) = ↘6.8, while Fig. 9 makes ↽t(1) = 0.0 and
↽e(1) = ↘6.8 under the same conditions (same altitude, speed,

and etc). This counterfactual example shows that an alternative
decision by the controller leads to success, providing sufficient
evidence that the initial decision is the actual cause of failure.

VI. RELATED WORK

There is a wealth of research on causality analysis in
the context of embedded and component-based systems from
different perspectives. In [4], [3], [6], [7], [8], [2], [9], a new
structure of formal causal analysis is proposed that can serve as
a substitute for the HP causal model. This approach is distinct
from our work, which utilizes a framework of causal analysis
to identify the cause of a specific effect. Recently, there has
been great interest in using temporal logics to reason about
causality and explaining bugs [10], [11], [12], [13]. However,
these lines of work either focus on only modeling aspects of
causality or do not address the problem of scalability in au-
tomated reasoning about causality, which inherently involves
a combinatorial blow up for counterfactual reasoning. In the
CPS domain, using causality to repair AI-enabled controllers
has recently gained interest [15]. This work explored the
construction of HP models on AI-enabled controllers, the
search for the cause of failure using a search algorithm, and the
verification of these causes using HP constraints. In contrast,
our work focuses on identifying the cause of failure efficiently
in traces using HP constraints and proposes an efficient method
for doing so. In [31], causal analysis is performed on system
models and system execution traces. In contrast, our algorithm
is designed to efficiently identify the cause of any potential
failure. Additionally, our work is focused on systems such as
CPS that interact with their environment.

Although the idea of abstracting causal models in terms
of structural equations has been studied in the literature [18],
[19], [20], these works do not attempt to establish a relation
between actual causes in the abstract and concrete causal
models. In the studies [19], [20], [18], the concept of ab-
straction in causal models was introduced, along with the
preliminaries required to construct an abstraction function that
maps low-level variables to high-level variables. The work in
[18] presents a more general form of abstraction, while [19],
[20] focus on the concept of intervention in causal models
and how to build an abstraction that preserves them. The

distinction between our work and these studies lies in our
objective; we are not aiming to construct causal models, but
rather, we are utilizing abstraction to identify the cause of an
effect in a more efficient manner.

In [10], [32], the concept of explaining counterexamples re-
turned from the model checker is proposed, with one focusing
on specifications in LTL format and the other in HyperLTL
format. However, in our work, we aim to efficiently identify
the cause of failure in an embedded system.

VII. CONCLUSION AND FUTURE WORK

We concentrated on designing an efficient technique to
reason about actual causality. We proposed an SMT-based
formulation to determine whether for an input transition
system or a set of traces and a state formula (the effect),
there exists an actual cause. Since identifying an actual cause
involves counterfactual reasoning and, hence, a combinatorial
blow up, we also introduced an efficient heuristic based on
abstraction-refinement. We evaluated our techniques on three
case studies from the CPS domain: AI-enabled controllers for
a (1) Mountain Car, and (2) Lunar Lander [24], (3) and an
MPC controller for an F-16 autopilot simulator [25].

One natural extension is to consider probabilistic actual
causality, where either occurrence of events in the system
are associated with probabilities, or, data points follow some
distribution. Another important direction is causal models
where the system is partially observable .

REFERENCES

[1] Y. Zhou and E. A. Lee, “Causality interfaces for actor networks,” ACM
Transactions on Embedded Computing Systems, vol. 7, no. 3, pp. 29:1–
29:35, 2008.

[2] M. Broy, “Time, causality, and realizability: Engineering interactive,
distributed software systems,” Journal of Systems and Software, vol.
210, p. 111940, 2024.

[3] G. Goessler and L. Astefanoaei, “Blaming in component-based real-time
systems,” in Proceedings of the International Conference on Embedded
Software (EMSOFT). ACM, 2014, pp. 7:1–7:10.

[4] G. Gössler and J. Stefani, “Causality analysis and fault ascription in
component-based systems,” Theoretical Computer Science, vol. 837, pp.
158–180, 2020.

[5] S. Cherrared, S. Imadali, E. Fabre, and G. Gößler, “SAKURA a model
based root cause analysis framework for vims,” in Proceedings of the
17th Annual International Conference on Mobile Systems, Applications,
and Services(MobiSys). ACM, 2019, pp. 594–595.

[6] G. Gößler, O. Sokolsky, and J. Stefani, “Counterfactual causality
from first principles?” in Proceedings 2nd International Workshop on
Causal Reasoning for Embedded and safety-critical Systems Technolo-
gies (CREST), vol. 259, 2017, pp. 47–53.

[7] S. Wang, Y. Geoffroy, G. Gößler, O. Sokolsky, and I. Lee, “A hybrid
approach to causality analysis,” in Proceedings of the 6th International
Conference Runtime Verification (RV). Springer, 2015, pp. 250–265.

[8] G. Gößler and D. L. Métayer, “A general trace-based framework of
logical causality,” in Proceedings of the10th International Symposium
on Formal Aspects of Component Software (FACS), 2013, pp. 157–173.

[9] G. Gößler, D. L. Métayer, and J. Raclet, “Causality analysis in contract
violation,” in Proceedings of the First International Conference on
Runtime Verification (RV), 2010, pp. 270–284.

[10] N. Coenen, R. Dachselt, B. Finkbeiner, H. Frenkel, C. Hahn, T. Horak,
N. Metzger, and J. Siber, “Explaining hyperproperty violations,” in
Proceedings of the 34th International Conference on Computer Aided
Verification(CAV), Part I, 2022, pp. 407–429.

[11] B. Finkbeiner and A. Kupriyanov, “Causality-based model checking,”
in Proceedings 2nd International Workshop on Causal Reasoning for
Embedded and safety-critical Systems Technologies (CREST), vol. 259,
2017, pp. 31–38.

[12] N. Coenen, B. Finkbeiner, H. Frenkel, C. Hahn, N. Metzger, and J. Siber,
“Temporal causality in reactive systems,” in Proceedings of the 20th
International Symposium on Automated Technology for Verification and
Analysis (ATVA). Springer, 2022, pp. 208–224.

[13] B. R, B. Finkbeiner, H. Frenkel, and J. Siber, “Checking and sketching
causes on temporal sequences,” in Proceedings of the 21st International
Symposium Automated Technology for Verification and Analysis (ATVA),
2023, pp. 314–327.

[14] P. Lu, M. Cleaveland, O. Sokolsky, I. Lee, and I. Ruchkin, “Repairing
learning-enabled controllers while preserving what works,” in Proceed-
ings of the 15th International Conference on Cyber-Physical Systems
(ICCPS), 2024, pp. 1 –11.

[15] P. Lu, I. Ruchkin, M. Cleaveland, O. Sokolsky, and I. Lee, “Causal
repair of learning-enabled cyber-physical systems,” in Proceedings of
the IEEE International Conference on Assured Autonomy (ICAA), 2023,
pp. 1–10.

[16] J. Y. Halpern, Actual Causality. MIT Press, 2016.
[17] G. Aleksandrowicz, H. Chockler, J. Y. Halpern, and A. Ivrii, “The com-

putational complexity of structure-based causality,” Journal of Artificial
Intelligence and Research, vol. 58, pp. 431–451, 2017.

[18] P. K. Rubenstein, S. Weichwald, S. Bongers, J. M. Mooij, D. Janzing,
M. Grosse-Wentrup, and B. Schölkopf, “Causal consistency of structural
equation models,” in Proceedings of the Thirty-Third Conference on
Uncertainty in Artificial Intelligence (UAI), 2017.

[19] S. Beckers, F. Eberhardt, and J. Y. Halpern, “Approximate causal ab-
stractions,” in Proceedings of the Thirty-Fifth Conference on Uncertainty
in Artificial Intelligence (UAI), 2019, pp. 606–615.

[20] S. Beckers and J. Y. Halpern, “Abstracting causal models,” in Pro-
ceedings of the Thirty-Third AAAI Conference on Artificial Intelligence
(AAAI), 2019, pp. 2678–2685.

[21] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
2008, pp. 337–340.

[22] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,
M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F.
del Rı́o, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant,
“Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–
362, Sep. 2020.

[23] W. McKinney, “Data Structures for Statistical Computing in Python,”
in Proceedings of the 9th Python in Science Conference, Stéfan van der
Walt and Jarrod Millman, Eds., 2010, pp. 56 – 61.

[24] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “OpenAI Gym,” 2016.

[25] P. Heidlauf, A. Collins, M. Bolender, and S. Bak, “Verification chal-
lenges in F-16 ground collision avoidance and other automated maneu-
vers,” in ARCH18. 5th International Workshop on Applied Verification
of Continuous and Hybrid Systems, vol. 54, 2018, pp. 208–217.

[26] A. Rafieioskouei and B. Bonakdarpour, “Efficient discovery of actual
causality using abstraction-refinement,” 2024. [Online]. Available:
https://arxiv.org/abs/2407.16629

[27] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking
using satisfiability solving,” Formal Methods in System Design, vol. 19,
no. 1, pp. 7–34, 2001.

[28] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in Computer Aided
Verification (CAV), 2000, pp. 154–169.

[29] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Verisig:
verifying safety properties of hybrid systems with neural network
controllers,” 2018.

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[31] F. Leitner-Fischer and S. Leue, “Towards causality checking for com-
plex system models,” in Dagstuhl-Workshop MBEES : Modellbasierte
Entwicklung eingebetteter Systeme VIII. Model-Based Development of
Embedded Systems 06.02.2012 – 08.02.2012. Tagungsband, 2012, pp.
71–80.

[32] I. Beer, S. Ben-David, H. Chockler, A. Orni, and R. J. Trefler, “Ex-
plaining counterexamples using causality,” in Proceedings of the 21st
International Conference on Computer Aided Verification (CAV), vol.
5643, 2009, pp. 94–108.

https://arxiv.org/abs/2407.16629

	Introduction
	Preliminaries – Actual Causality
	Causal Models
	Causal Formulas
	Actual Causality

	SMT-based Discovery of Actual Causality
	Transition Systems
	SMT-based Formulation of Actual Causality

	Abstraction-Refinement for Causal Models
	Overall Idea
	Approximating Causal Transition Systems
	Detailed Description of the Algorithm

	Experimental Evaluation
	Implementation
	Experimental Settings
	Case Study 1: Mountain Car
	Case Study 2: Lunar Lander
	Case Study 3: F-16 Autopilot MPC Controller ARCH18:VerificationChallengesinF16
	First Scenario
	Second Scenario

	Performance Analysis
	Causality Analysis
	Mountain Car
	Lunar Lander
	F-16 Autopilot Simulation

	Related Work
	Conclusion and Future Work
	References

