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The centrosomal aster is a mobile and adaptable cellular organelle that exerts and transmits forces necessary
for tasks such as nuclear migration and spindle positioning. Recent experimental and theoretical studies of
nematode and human cells demonstrate that pulling forces on asters by cortically anchored force generators
are dominant during such processes. Here, we present a comprehensive investigation of the S-model (S for
stoichiometry) of aster dynamics based solely on such forces. The model evolves the astral centrosome position,
a probability field of cell-surface motor occupancy by centrosomal microtubules (under an assumption of
stoichiometric binding), and free boundaries of unattached, growing microtubules. We show how cell shape
affects the stability of centering of the aster, and its transition to oscillations with increasing motor number.
Seeking to understand observations in single-cell nematode embryos, we use highly accurate simulations to
examine the nonlinear structures of the bifurcations, and demonstrate the importance of binding domain overlap
to interpreting genetic perturbation experiments. We find a generally rich dynamical landscape, dependent
upon cell shape, such as internal constant-velocity equatorial orbits of asters that can be seen as traveling
wave solutions. Finally, we study the interactions of multiple asters which we demonstrate an effective mutual
repulsion due to their competition for surface force generators. We find, amazingly, that centrosomes can
relax onto the vertices of platonic and nonplatonic solids, very closely mirroring the results of the classical
Thomson problem for energy-minimizing configurations of electrons constrained to a sphere and interacting via
repulsive Coulomb potentials. Our findings both explain experimental observations, providing insights into the
mechanisms governing spindle positioning and cell division dynamics, and show the possibility of new nonlinear
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phenomena in cell biology.
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I. INTRODUCTION

The centrosome, a micrometer-scale organelle [1], is the
primary microtubule organizing center in animal cells and
plays a central role in cellular processes such as division,
polarization, and intracellular organization and transport [2].
Microtubules (MTs), stiff polar biopolymers having a persis-
tence length on the order of millimeters [3], nucleate from the
centrosome with their plus-ends growing outwards and their
minus-ends tethered to the centrosome. A centrosome and
its radially oriented MTs form the characteristic centrosomal
aster.

An important biophysical aspect of centrosomal asters is
their ability to exert and transmit forces. For example, during
cell division the mitotic spindle, a bipolar structure primarily
composed of transitory MTs and associated proteins, forms
near the cell center with a centrosome, and its aster, at each
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pole (Fig. 1(a) and video 1 in Ref. [5]). Accurate spindle
positioning, largely mediated by the centrosomal asters, is
crucial for precise genome and organelle segregation, while
errors in centrosome and spindle positioning can prove fatal
for cells. Various forces upon centrosomal MTs, including MT
polymerization-driven pushing forces against the cell cortex,
pulling forces from motor proteins carrying payloads along
MTs, pulling forces from cortically anchored motor proteins,
and forces from MT friction with the cell wall, have been
proposed to drive spindle positioning within cells [4,6-24].
While the exact force mechanism behind spindle positioning
remains an open question, even for many model organisms,
molecular and biophysical perturbation experiments across
diverse cell types, including yeast [25], C. elegans [6], and
human cells [26], have shown the dominance of pulling forces
exerted by cortically anchored motor proteins, such as the
minus-end directed motor dynein. A centrosome typically
nucleates hundreds of MTs per second, each with a short
lifespan of tens of seconds, collectively forming a dynamic
aster comprising thousands of MTs. At any given moment
a subset of these MTs, typically a few hundred, interfaces
with the cortex, giving these MTs the potential to engage with
dynein motors anchored there. In this scenario, an impinging
MT binds to an anchored dynein motor, which then walks
towards the MT’s minus-end and so exerts a pulling force

Published by the American Physical Society
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FIG. 1. Mitotic spindle and results from our stoichiometric model. (a) First mitotic spindle in C. elegans embryo. Blue shows the
microtubules, pink indicates the chromosomes, and white represents the centrosomes. Scale bar, 10 um. See also video 1 [5]. (b) Equilibrium
configuration of two centrosomes (black circles) inside a prolate cell. Color-field represents the probability that a CFG is bound to a MT.
(c) Equilibrium configuration of twelve centrosomes that arranged into the vertices of an icosahedron embedded in a sphere.

upon it [27]. The dynein motor, together with its anchoring
protein complex, is referred to as a cortical force-generators,
or CFG. The interaction between CFGs and MTs is transient,
perhaps from the motor’s detachment from either cortex or
microtubule, or, possibly, the disassembly of the MT itself, but
collectively generates the tens of piconewton forces involved
in positioning the centrosome, and other structures such as
spindles to which it is connected, within the cell [28,29].
The precise role of these pulling forces in spindle positioning
remains the subject of ongoing theoretical and experimental
inquiry.

In prior work, we developed versions of the so-called sto-
ichiometric model, or S-model, for how mobile centrosomal
asters interact with CFGs and through them studied aspects of
spindle dynamics [24,30]. The S-model framework is based
exclusively on the pulling forces exerted by CFGs upon MTs
and, through the transience of their interactions, deals nat-
urally with the cell geometry through which a centrosomal
aster moves. It is derived from the fundamental biophysics of
MT dynamics and well-established biochemistry of molecular
motors. Central is a stoichiometric interaction between CFGs
and MTs: a CFG can bind to only one MT at a time. Until
detachment, the bound MT experiences a pulling force, which
is transmitted to the centrosome. In Ref. [24], we developed an
S-model with discrete CFGs assuming a quasi-static balance
of MT cortical impingement rate and motor-MT detachment.
For C. elegans single-cell embryos, this model quantitatively
explained the dynamics of spindle positioning and elongation,
and final length scaling with cell size, while accounting for
their variations within species and across nematode species
spanning over 100 million years of evolution. In Ref. [30], a
combination of laser scission of MTs, cytoplasmic flow re-
constructions, computational fluid dynamics, and an S-model,
were used to demonstrate the predominance of cortical pulling
forces in the dynamics of pronuclei and of the spindle in all
stages leading up to the first cell division C. elegans embryo.
There the S-model was extended to include the dynamics of
MT-motor interactions, and the discrete CFGs replaced with a
continuous surface distribution of occupancy probability. The
S-model consists of an ordinary differential equation (ODE)
for centrosome position driven by a surface integral of motor
forces weighted by an evolving probability field of MT-motor
attachment. Within a spherical cell under symmetry assump-
tions this S-model was mathematically analyzed to show,
among other things, that stable positioning could transition to
oscillations via a Hopf bifurcation, at motor densities and at

oscillation frequencies consistent with observations of spin-
dles during the metaphase to anaphase transition.

Other biological processes can be at play during the spindle
positioning. In fission yeast, pushing forces from MTs grow-
ing against the cell periphery position the nucleus [31]. The
magnitude of the force from a force generator can depend on
its relative velocity to MT [32]. In the S-model, we consider
only a small number of interactions of MTs with CFGs, and
do not consider MT bending, pushing forces from MT growth,
a force-velocity relation for CFGs, complicated unbinding
interactions (such as catch-bonds) of CFGs from MTs, com-
pliance of the cell cortex, and tether stretching of the CFGs.
While the S-model can incorporate some such details, like
force-velocity relationship, catch bonds, and tether stretching,
it does assume that MTs follow straight trajectories and, in its
current formulation, cannot account for bent MTs.

Given the ubiquity and importance of centrosomal asters
to cellular dynamics, here we seek to understand this class
of models more comprehensively. In Sec. II, we develop
an elaborated S-model, which, again, takes the form of an
overdamped dynamics for centrosome position driven by a
surface integral of coarse-grained MT-oriented pulling forces
from CFGs, weighted by the probability for a CFG to be
occupied by an MT. The probability evolves as a balance of
binding by impinging MTs and unbinding. Unlike our earlier
models, here we include the effect of random overlap in CFG
binding domains. We show that the S-model has a natural
energylike quantity that evolves through a balance of input
power from MT impingement and binding, and dissipation
from drag and unbinding. In Sec. III, we study the centering
of single centrosomes within spheroidal cells; linear analysis
for a centrosomal aster predicts stable centering which, with
increasing motor density, loses its stability to oscillation via a
Hopf bifurcation as suggested by experiment. We find that in
the stably centered case, the elaborated S-model accounts for
force-displacement experiments using genetic perturbations.
Using highly accurate numerical methods we investigate the
nonlinear structures of the Hopf bifurcation, seeking and find-
ing supercriticality as is inferred from experiments probing
the transition to spindle oscillation. In Sec. IV, we show that
there is a rich variety of possible dynamics. We find and
construct internal equatorial orbits of asters that arise from
a symmetry breaking instability. We investigate how multi-
ple centrosomes interact. Within the S-model, centrosomes
compete for force generators, with that competition creating
an effective repulsion between them. Consequently, for two
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FIG. 2. Randomly distributed overlapped force generators on the
cell surface and schematics of the stoichiometric model. (a) A view
of the cell periphery (yellow) with randomly placed CFGs (pink
circular disks). (b) Schematics of the S-model. Microtubules (MTs,
blue) nucleate from the centrosome (red) with rate y, grow with
speed V,, and undergo catastrophe with rate A. The dashed line
indicates the microtubule front (S). Cortical force generators of size
rm (CFGs, pink) are distributed on the cell surface I'. The interaction
of CGFs and MTs is stoichiometric—a CFG can bind only one MT
at a time. Once bound, the CFG exerts a pulling force of magnitude
fo along the MT to the centrosome. CFGs detach from MTs with rate
« and become unbound.

centrosomes we can observe relaxation to well-separated po-
sitions, as in Fig. 1(b), reminiscent of the positioned mitotic
spindle, as in Fig. 1(a). This competition plays out beautifully
when simulating larger numbers where asters move to the
vertices of platonic [see Fig. 1(c) for 12 centrosomes relaxing
to an icosahedron] and nonplatonic solids in a manner re-
markably similar to what is found in J.J. Thomson’s classical
problem of electrons on a sphere interacting by a Coulomb
potential [33].

II. GENERALIZED FORMULATION OF THE
STOICHIOMETRIC MODEL

Building and expanding upon our prior studies [24,30],
we consider the cell periphery to be populated by CFGs in
random positions, without considering an exclusion principle
[Fig. 2(a)], and MTs as straight polymers nucleating with
spherical uniformity at rate y from a centrosome at location
X(t); see Fig. 2(b). This is consistent with the relative rigidity
of MTs and the observation that end-pulling forces create an
extensional stress in the attached MTs [34,35]. With their
minus-ends fixed at the centrosome, model MTs grow by
polymerization at their plus-ends at a constant speed V,, and
undergo catastrophe with rate A; see Fig. 2(b).

An MT that reaches the cell surface I has two possible
fates: either it binds to an unoccupied cortical force-generator
(CFG) anchored there or undergoes catastrophe and disassem-
ble. We take a stoichiometric interaction between CFGs and
MTs: a CFG can only be occupied by one MT at a time.
Once a CFG is bound to an MT, it exerts a constant pulling
force of magnitude fy on the centrosome toward the CFG;
see Fig. 2(b). Bound CFGs will also detach from their MTs
with a rate k and become unoccupied. Neglecting inertia, the
dynamics of the centrosome and its MT array are governed
by a balance between pulling forces from the CFGs and the
viscous drag forces from the cytoplasm on the centrosome and
its attached MTs.

Consider a centrosome at position X(z), hence with veloc-
ity X(¢), and at distance D(Y,t) = |Y — X(¢)| from points

Y € I'. We define two unit vectors: the outward normal i(Y)
to I, and &(Y; X) = (Y — X(¢))/D(Y, t), the direction along
which forces are exerted by CFGs.

We assume a total number M of CFGs, whose centers
are independent and identically distributed with a probabil-
ity density p [i.e., fr p(Y)dA = 1]. Note that independence
implies that there is no mutual exclusion between CFGs,
hence there can be overlap between the binding domains of
different CFGs. Further, we assume that o smoothly varies
across I'. Note, for a globally uniform distribution of CFGs,
p(Y) = 1/|'|, where |T"| is the surface area of I".

For sufficiently large M, we can apply the law of large
numbers, so up to statistical fluctuations, we can express the
total pulling force as an integral, and assume the centrosome
moves by the overdamped dynamics

7% = My [ POLORY:X0 pOYIMA+ Foe (D)
r

where P(Y, t) is the probability that a CFG centered at Y is
occupied by an MT, and 7 is a drag coefficient. Note that we
have allowed for the action of an external force Fex upon the
centrosome so as to mimic particular experiments.

Introducing P(Y, t) instead of the discrete states of a CFG
being occupied (bound) or unoccupied (unbound), we have ef-
fectively introduced a coarse-graining in time, allowing us to
write a forward-Kolmogorov equation. However, to properly
do this, we need to do a spatial coarse-graining of the CFGs.
In particular, we assume that each CFG can bind over a discal
area of radius r,, (with area a,, = Jrri) and that P(Y,t) has a
slow variation through the surface. Considering stoichiometry
of the CFGs, it follows that the evolution equation for the
occupancy probability P is

dP(Y, 1) .
— = QY,)I(P,Y)—«kP(Y,t) with
1 — e~ @Mp(Y)(1=P(Y,1))
I(PY) = . )

amM p(Y)

Here Q(Y, t) is the MT impingement rate on I", or the number
of unbound MTs per unit time that hit the area covered by
a CFG centered at Y, and Z(P, Y) is the probability that an
MT successfully binds to the CFG whose binding domain is
centered at Y (for a complete derivation, see Appendix G).

We can understand Z(P, Y) further by examining its form.
First, note that 0 < Z < 1 and 0pZ < O for P € [0, 1]. The
first bound is trivial, as Z is a probability, and the second
one is due to the assumption of stoichiometry (the larger the
P, the less likely a new MT binds to the CFG centered at
Y). Secondly, a,,M p(Y) approximates the number of CFGs
covering the point Y, and thus is a measure of competition
between them. For a,,Mp < 1 (or 1 — P « 1), 1i.e., negligible
overlap (or CFGs are close to complete saturation), we have
7 — 1 — P, recovering the independent CFG model, as used
in Refs. [24,30]:

oP(Y,1)
Jt

where the competition between CFGs becomes irrelevant ei-
ther due to the low level of overlap or because CFGs are
almost always occupied and do not locally compete with each

=Q(Y, 1)1 =P(Y,1)) —kP(Y,1),
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other. For (1 — P)a,Mp > 1, T = m, signifying that an
MT has an equal chance of binding to any of the CFGs cover-
ing the same area, making the competition between CFGs the
most relevant. Lastly, the numerator 1 — e~@Me()1=PX.0) jq
the probability that at least one of the CFGs at Y is unbound
(Appendix G). The term m comes from the fact that
since all CFGs are indistinguishable, the incoming MT will
choose one of them randomly.
Following Ref. [30], we approximate the impingement rate
Q by
QY. 1) = p(S)[Vs - fil, x (’—’”) <1e-1’”‘). 3)
D J\V,
In this expression, the first term ¢(S) is the indicator function
specifying whether the MT front [Fig. 2(b)] is in contact with
[ (for which ¢(S8) = 1), or not (for which ¢(S) = 0). The
second term contains Vg(Y,#) = X + Vgé(Y; X)), the velocity
of an MT plus-end with a direction E(Y;X), and [Vg - 0],
gives the rectified normal component of that velocity at T.
If Vg - i < 0 the centrosome is moving away from the surface
faster than MTs grow, and thus the impingement rate is zero.

The third term  (r,,/D) = (1 — ﬁ) estimates the

fraction of centrosomally nucleated, unbound MTs at I" avail-
able for binding to a CFG. Finally, %e’D/ le is the equilibrium
astral MT number per unit length reaching I" from the centro-
some (at distance D), with /. = V, /A the characteristic length
of MTs undergoing dynamic instability. We note that for time
t > W/V, it is appropriate to use the steady state distribution
because of linear hyperbolic nature of the associated Fokker-
Plank equation for the MT length distribution [30].

Next, we consider the dynamics of the MT front [surface S
in Fig. 2(b)], which incorporates the finite propagation speed
of MT plus-ends and accounts for the detachment of the
MT front due to the centrosome moving away from the cell
boundary faster than MT growth. The full front is described
by the equation

% — §S)—Vs -0, Vs + (1 —pSHVs. (@)
Note that when the front is not located in the cell periphery,
it translates with the centrosome expanding at velocity V,, but
when a point on the MT front is located on the cell periphery,
it either stays on the periphery or moves with the velocity Vg
inwards and away from the cell boundary.

The model, Eqs. (1)—(4), has seven parameters (see Ta-
ble I). We take the cell scale W = /|I"|/4x as a characteristic
length scale, and T = W/V, (the timescale for an MT to grow
from cell center to cell periphery) as a characteristic timescale.
Other faster timescales are the inverse nucleation rate 1/y
(fastest) and the inverse detachment rate 1/x (next fastest).
The smallest length scale is r,,. From these, we obtain five
dimensionless parameters: dimensionless nucleation rate y =
Ty, dimensionless detachment rate k¥ = Tk, dimensionless
MT length I, = I./W, dimensionless CFG size 7, = r,,/W,
and dimensionless force fy = fo/ nV,.

Comments.

(1) The spatial coupling of P(Y, t) occurs only through the
integral coupling provided by Eq. (1), and not through the
explicit P dynamics, Eq. (2), which is entirely local in Y.

Egs. (1) and (2) are a countably infinite set of ODEs when
P is expanded in a countable and complete set of surface basis
functions (such as spherical harmonics).

(i) The probability Z(P) can take different forms, de-
pending upon modeling assumptions. As discussed above, in
the limit a,,M/|I"| < 1, where the overlap between CFGs is
negligible, Z(P) in Eq. (2) simplifies to Z = 1 — P, and the
occupancy probability satisfies the independent CFG model.
This was the form used in Ref. [30] and earlier in discrete form
by Ref. [24]. In recent work in human spindles, we consider
localized clusters of N CFGs that are independent between
each other, which yields an interaction in the form 7 = =P

(iii) Formally, one can write the RHS of Eq. (1) as the
gradient of an energy

nX = —Vx€&, &)

where the energy £ is defined as
EP:X] = Mfo/ P(Y,1)D(Y,0)p(Y)dA >0,  (6)
r

recalling that D(Y,t) = |Y — X(¢)|. This energy achieves its
minimum of zero only for P = 0, that is when there are no
bound microtubules (and no velocity). Were P independent of
time, which it is typically not, the energy would change only
with the centrosome position and so £ would decay in time
due to Eq. (5). Instead, using Egs. (1) and (2), £ evolves as

&= MfO/ Q(Y, )Z(P)D(Y, 1)p(Y)dA — (€ + nX|?)
r
=P —D, (7

where P > 0 is the input power due to microtubule impinge-
ment and binding, and D > 0 are the dissipations arising from
microtubule detachment from CFGs and the viscous drag of
aster motion. Hence, if £ were in a nonzero steady state, this
would reflect a balance of positive input power and positive
dissipation.

(iv) The S-model generalizes naturally to the dynamics
of N centrosomes, with each (ith) centrosome at its position
X(¢) having its surface probability P/(Y, ¢) of CFG binding.
In this generalization, all centrosomal asters compete for the
CFGs, which is a fixed resource, through their impingement
rates '(Y). This competition is found in the dynamics of
P'(Y,t):

AP(Y, 1)

rann QIY, YI(P) — kP(Y, 1), (3

where P = vaz , P is the total CFG occupancy probability.
The total probability P then satisfies

PY.1) [
— = (; Q (Y,t))I(P) —kP(Y,1). (9

The earlier S-model of Ref. [24], using N = 2, was used there
to study the effects of motor competition on the dynamics and
steady states of two asters, as a way of understanding spindle
length selection. Likewise, there is a multicentrosome analog
to Egs. (6) and (7) for a total energy £ = vazl &l
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Simulation methods

To numerically evolve X and P via Eqgs. (1) and (2), re-
spectively, we first compute the surface integral of P against 3
in Eq. (1), given X and P. Two different quadrature schemes
are used to evaluate the surface integral. For the simulations
in spheres examining oscillations near the Hopf bifurcation
(Sec. IIID), P is expanded in Legendre polynomials (Ap-
pendix B), and a high-order Gauss-Legendre quadrature is
used to evaluate the integral. Otherwise, we map the cell
surface to the unit sphere and use a more general patch-based
high-order quadrature (Appendix D). The centrosome posi-
tion is updated using the explicit Euler method with a time
step At which also yields X at the current time step. Using this
centrosome velocity and accounting for MT growth we then
update the position of the microtubule front S position via an
Euler step, whether S was in contact with I or not. There are
two cases. If the updated S lies within the cell, i.e., remains or
becomes detached, then the impingement rate imposed upon
the line-of-sight CFGs (i.e., from the centrosome) is zero.
If the front has moved outside of the cell then the front is
projected back to I' and 2 is calculated for updating P in
those regions. For stability, we use a mixed explicit/implicit
Euler scheme. The term Z(P) is treated explicitly, while the
damping term —«P is treated implicitly. This yields an ex-
plicit expression for P at the next time step [Eq. (Al) in
Appendix A]. The local error in time stepping is found to be
quadratic in At, and the global error scales linearly with Az,
as expected.

II1. BIFURCATIONS AND THEIR NONLINEAR
STRUCTURES

We first examine the linear behavior of the generalized
S-model under small perturbations. For ease of calculation we
assume that cell shapes are convex, axisymmetric about the z
axis, and symmetric across the xy plane. Thus the origin, or
the cell center X, is naturally a fixed point of centrosome po-
sition. It has an associated steady-state occupancy probability
P = Py(Y) satisfying

/Po(Y)\?p(Y)dAY =0, and Py(Y) = Q0(Y)Z(FR)/x,
r

(10)
where

Qo(Y) = ¥ - A(Y) x(r—’")e'ffy (1)

Y|

and Y = Y/|Y|. Note that, under these conditions, cell con-
vexity implies that the MT front is in contact with the cell
surface at all points [¢(S) = 1]. Also, for a general cell shape
the nonlinear equation for Py must typically be solved numer-
ically.

Consider perturbations around the fixed point, X(r) =
ex(t) X =ex) and P(Y,t) = Py(Y)+ eP(Y,1t), likewise
with a small external force Fexy = &fey;, where & < 1. We can
also assume |X| <« V,, ensuring continuous contact between
the MT front and the cell surface. Therefore we can disre-
gard the MT front dynamics in Eq. (4). Expanding in ¢ and

truncating at linear order, from Egs. (1) and (2), we find the
linearized equations of motion to be

o [ROY) oo
Px(r) = — (= Y¥)p(Y)dAy - x(1)
Y

+ f PUY, DY p(Y)dAy + e (12)
r
P X (1)
— Y, 1) = kPy(Y)R(Y) - | — + A1(Y) - x(¢)
at V,
—Qo(Y)Pi(Y, 1), (13)
where 7 = Mifo and £ = Af/;;;(] , and with
1 Y X (%) \ ww
A(Y)=——|1— 1+u+r—”‘(—,‘_‘”) Y|, (4
Y] LY ()
Qo(Y) = k + Q(Y)e MPNU=R) - o (15)

The matrix A is symmetric and nonsingular.

We first perform linear stability analysis of Eqs. (12) and
(13) in the absence of an external force (fox; = 0) and, second,
compute the linear force-displacement relation for a stationary
centrosome (x = 0). Analytical results are derived for spher-
ical geometry, and semianalytic extensions are obtained for
spheroidal geometries. For simplicity, we now assume the
CFG distribution is uniform (p = 1/|T'|).

A. Linearized dynamics in a spherical cell

Consider a spherical cell of radius W, for which the equa-
tions above now simplifies drastically. In this case Y = i,
Y| = W, and 2, Qo, and P, are all constants. In brief sketch,
we use the fact that fi - A, || Y and the identity fr YYday =

@I to show that Egs. (12) and (13) take the form
X = —ax + b/ PYdSy + gexe and Py, = V(1) - Y — QP
r

where V= ax+ 8x, and a, b, o, and B are all positive
constants and g.. = fe /7. We note that fr P, YdSy is the
projection of P against the three spherical harmonics (the
components of Y) with / = 1 polar index. A linear combi-
nation of these three / = 1 harmonics also emerges in the
forcing term, V(¢) - f(, in the evolution equation for P;. Con-
sequently this system can be decomposed by setting P, =
E-Y + Q(Y,t) where Q is the projection of P, onto the
spherical harmonics with [ # 1, that is, those orthogonal to
Y. We then find

. b|l"|
X = —ax + TE + gexla

E = (ax + %) — E, and O, = —$0.

So, for a sphere, the linearized Eqgs. (12) and (13) can be de-
composed into (i) a six-dimensional set of ODEs (for x and E)
in which each spatial direction can be treated independently
and identically (modulo the direction of the external force),
and which couple positional dynamics x to the evolving / = 1
components E of surface probability P;; (ii), an infinite num-
ber of surface harmonics evolved in Q, all of which decay to
zero at rate 2. We find a similar but somewhat more complex
structure for the generalized spheroid case. This generalizes
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FIG. 3. Linear analysis of the S-model and on-axis centrosome dynamics in the sphere. (a) Linear solutions of the eigenvalues as a function
of the bifurcation parameter M. Values of M where a change in the centrosome dynamics occurs, are indicated. For M < M, = 166, the
centrosome stably positions at the cell center. For M| < M < My = 526, the initially displaced centrosome moves to the center with damped
oscillation. For My < M < M, = 883, the centrosome oscillates around the center with a growing amplitude that plateaus. For M > M,,
the center is unstable and the centrosome decenters without oscillation. For M > M., the coefficient of the force-displacement changes sign.
(b) Examples of centrosome trajectories for various values of M as a function of time are shown.

and clarifies the analysis of Ref. [30] who assumed an ax-
isymmetric Py and centrosome motion along the z axis, and
did not analyze the dynamics of the remainder modes in Q.

The linearized dynamics of the system can now be under-
stood through two scalar ODEs (say, by projecting along the
direction of the external force). From these, we can obtain a
second-order ODE for the linear dynamics:

X -_— — K— X b— — KD)X
PEAPOT 3w v, w0

= QOfext + ﬁxh (16)

where B = (W/I, + 2 f({g;) = W/l +2 4 O((2)?). To ex-

amine the linear stability of the fixed point, we set fey to zero,
assume x ~ ¢°’, and determine the two eigenvalues o7 ;.

Turning to a specific case, consider the linearized dy-
namics for the parameter values in Table I and Fig. 3: for
M < M, (~ 165), the two eigenvalues are real and negative,
resulting in stable positioning of the centrosome at the cell
center [Figs. 3(a) and 3(b)]. These two real eigenvalues collide
at M = M,, and a complex pair of eigenvalues with negative
real parts emerges, giving damped oscillations of the centro-
some when perturbed from the cell center for My > M > M.
At M = My (~ 525), the real part crosses zero, becoming
positive with nonzero imaginary part, that is, this is a Hopf
bifurcation. The centrosome spontaneously oscillates with
frequency wy = /M foPy(280 — kB)/3Wn ~ 0.16 s~*. For
My <M < M, (~ 880), the real part of the eigenvalues is
positive, resulting in an oscillatory motion around the center.
For M, <M < M., both eigenvalues are real and positive.
For M > M,, the eigenvalues are real with different signs.
Thus the S-model exhibits almost every allowable type of
linear dynamics of a second order ODE as a function of CFG
number M.

For illustration, Fig. 3(b) shows examples of the nonlinear
dynamics in these different regimes assuming axisymmetry of
P and motion strictly on the z axis. The left panel shows strict
relaxation and damped oscillations. The right panel shows
on-axis oscillations and strict decentering (M = 2000) of the

centrosome. The curves are color-coded by the intervals of M
in Fig. 3(a).

B. Force versus displacement

A number of experimental studies have examined the
mechanics and stability of spindle centering by exerting a
controlled external force on the spindle and measuring the re-
sulting displacement [18,23,36]. For example, measurements
in early C. elegans embryos revealed that a micrometer dis-
placement of the spindle from the cell center required forces
of ~10 pN [18]. Further, it has also been shown that in mutant
embryos, where motors are partially depleted, a higher force
is required to displace the spindle [18]. It was argued that
this behavior arose from a combination of pulling forces from
CFGs acting to decenter the centrosome, and pushing forces
from MTs growing against the cell periphery acting as center-
ing ones [18]. Nonetheless, when forces upon the centrosome
were probed via laser cutting [30] no substantial contributions
from pushing forces was found.

Having found stable centering with only pulling forces in
the S-model, it is natural to enquire the magnitude of the
centering force and its variation with model parameters. To
do this, we set X = X = fexc = 0 in Eq. (16), and calculate the
force-displacement coefficient, k. = fux /x:

P
k, = Mo 0(2— LB)

For M = 200 and parameter values in Table I, k. ~ 7 pN/um,
which agrees in magnitude with measurements in C. elegans
[18]. While k. is often referred to as a spring coefficient the
centrosome of the S-model simply does not have a simple
spring-dashpot response to an applied force.

Previously, for the independent CFG S-model [30], we
showed that k. increases linearly with M blue curve in
Fig. 4(a)], in apparent disagreement with experimental ob-
servation. This follows directly from Eq. (17) by setting 2
to a constant independent of M, which is true for the inde-
pendent CFG S-model, but not for the overlap model; see
Eq. (15). Figure 4(a) (red) shows k. for the overlap S-model.

a7

013004-6



GEOMETRIC MODEL FOR DYNAMICS OF MOTOR-DRIVEN .

. PHYSICAL REVIEW RESEARCH 7, 013004 (2025)

(@) 15 :
independent CFG model
101 overlap model |
T
= M,
~ c
=% I\ 2 X
& ©
& -5L <60

2000 7,7 4000 6000

500 7000 1500
M

(b) 2500 2469
2000 l1986
1500 L1497

L4 o
= =
1000 Kelel)
500 487

170

I/ W

FIG. 4. Stable aster centering in the sphere. (a) Force-displacement coefficient, k., as a function of CFG number M for the independent
CFG model (blue) and the overlap model (red) using parameter values in Table I. At M = M, k. becomes negative, and the center becomes
unstable. The inset shows k. for a larger range of M. (b) The value of M, as a function of dimensionless MT length (/./W) and y /. In the
dashed region, M. = 0 and the center is unstable for any range of M. The red line shows the analytical result for the stable to unstable transition.
The inset shows the schematic of the simulation, where red/blue indicates bound/unbound CFGs. The star indicates parameters in Table L.

For low M, k. increases monotonically with M, consistent
with the independent CFG model, but is locally convex down
and reaches a maximum of k. ~ 11 pN/um around M = 495.
Beyond that, k. decreases monotonically with increasing M
(and eventually becomes negative for sufficiently large M).
This region of increasing k. with decreasing M, due to the
effect of overlap between CFGs, could be an explanation for
experimental measurements in C. elegans, where a decrease
in motor number increases the centering stiffness [18].

Our analysis shows that for a sufficiently large CFG num-
ber M > M., where one of the real eigenvalues is positive and
the other is negative [Fig. 3(a)], k. is negative [Fig. 4(a)],
and the sphere center turns to a saddle fixed point. From
Eq. (17), it is straightforward to show that k. is positive
only if %e‘w/’ff < 2x(rm/W), where two dimensionless
parameters [./W and y/k characterize the transition from
centering to decentering. We calculated the critical value of
CFG number M = M,, at which this transition occurs as a
function of I./W and y /k. We found that for low [./W and
y /K, the center is always unstable [Fig. 4(b)]. However, for
larger [./W and y /k, the center becomes stable for M smaller
than My, and the decentering transition occurs at higher M,
[Fig. 4(b)].

C. Linear behavior in a spheroid

In Sec. IIT A, we show that in spherical geometry, the linear
dynamics of the centrosome is determined by two eigenvalues
with an independent motion in each direction. While spheres,
due to their symmetries, are amenable to analytical analysis,
as the reader may suspect not all biological cells are spherical
(e.g., see C. elegans embryo in Fig. 1(a) and video 1 [5]). In
this section, we study the linear behavior of the S-model for
a class of axisymmetric spheroids centered at the origin and
with the z axis taken as the axis of symmetry. We show that
only four eigenvalues determine the dynamics of the system—
two are associated with the movement in the xy plane, and the
other two along the z axis.

To extend the stability analysis in Sec. II A to spheroids,
we substitute the ansatz x(r) = ve’’ and P;(Y, t) = p(Y)e”'

as solutions into the linearized Eqgs. (12) and (13) and

obtain
__Mh RO G o
nov = IFI/r ¥ A =YY" )dAy - v
+ 1%0 / p(Y)YdAy, (18)
op(Y) = KPO(Y)(Alﬁ + %n) v —Qo(Y)p(Y). (19)
8

Here, we focus on the eigenvalues that correspond to
oscillatory /unstable centrosome motion, i.e., v# 0 and o ¢
R~. For a discussion of the stable spectrum see Appendix F.
By rearranging Eq. (19), we get

Py(Y
kPy(Y) Al <A + o

—> -V, (20)

p(Y) = v,

o+ Q(Y)

which we substitute to Eq. (18) and obtain the nonlinear
eigenvalue equation

M P .
nov :ﬁ[—f D —¥YY¥dAy
[T r Y]

/AGN Y’
r

= dA . 21
Velo + Qo) Y]V b

Using the axial symmetry of the geometry, we recast Eq. (21)
in cylindrical coordinates, with 8 = atan2(y, x) and z the co-
ordinate along the axis of symmetry, as

1
nov =—Dyv +/ (szo(z)DZ(Z)

o

+ s QO(Z)Dg(Z)>d2 v, (22)
where we reinterpret Q as a function of z. The matrices D3
are diagonal with ]D)]l.‘1 = ]D)jzﬁ2 with the superscript denoting
the entries of the matrix. Because of this algebraic structure,
we know that %, 9,2 are the eigenvectors of the problem,
where the first two will share the same eigenvalues. This
allows us to reduce the nonlinear eigenvalue problem to the

013004-7



YUAN-NAN YOUNG et al.

PHYSICAL REVIEW RESEARCH 7, 013004 (2025)

200 400

stable in xyz

stable in xy, oscillate in z

stable in z, oscillate in xy
oscillate in xyz

oscillate in z, unstable in xy
oscillate in xy, unstable in z

stable in xy, unstable in z

g
4
5
6
7
8

stable in z, unstable in xy

unstable in xyz

600 800
M

1000

FIG. 5. Linear analysis of the S-model in spheroidal geometries. (a) Four representative cell shapes parameterized by the shape factor o
with the same surface area: prolate for « > 1, sphere for « = 1, and oblate for &« < 1. (b) Linear stability analysis of the centrosomal aster as
a function of cell shape « and CFG number M for parameter values in Table I. The color code denotes the nine eigenmodes and associated
centrosome dynamics, where “stable” means that the real part of the eigenvalues is negative, “oscillate” means that the eigenvalue has a positive
real part and a nonzero imaginary part, and “unstable” means that the real part is positive and the imaginary part is zero.

following two nonlinear algebraic equations:

B ]Di,i ]Di,i
no; = —]D)ll’l +/ 2~(Z) + o, 3 (Z)
o; + Q0(z)

i = dz,
o; + QQ(Z))
i=1,3. (23)

We numerically solve Eqgs. (23) and find that there are only
two solutions per index. The first two eigenvalues are associ-
ated with four eigenmodes in the xy plane and the remaining
two correspond to motion in the z axis. Importantly, each
direction of motion is completely independent of the others,
just as in the case of the sphere. In Appendix E, we provide a
geometric argument on the structure of these solutions.

We further compute the eigenvalues of Egs. (23) for a
family of spheroidal shapes T, defined as (x/a)*> + (v/a)*> +
(z/c)*> = 1, with @ = c/a as the shape factor. The parameter
a is computed such that the total area of the cell remains
invariant as we vary « [Fig. 5(a)]. Details of the discretization
and eigenvalue computation are provided in Appendix D. We
construct a phase diagram as a function of CFG number M
and shape factor o by classifying each point based on the
eigenvalues and the corresponding centrosome movements in
each direction: stable centering, oscillatory, and unstable.

For o = 1, which is a sphere, we find three regimes that
we discussed earlier: for low M, the centrosome is stable in
the center (case 1). As M increases, the centrosome exhibits
an oscillatory behavior (case 4), and for large enough M,
the center becomes unstable (case 9) [Fig. 5(b)]. For oblate
spheroids with o < 1, we observe a more diverse set of be-
haviors where the centrosome exhibits different dynamics in
different directions. In case 2, the centrosome is stable in
the xy plane but oscillates in z; in case 6, the centrosome is
unstable in z direction and oscillates in the xy plane, and in
case 7, the centrosome is unstable in z and stable in the xy
plane [Fig. 5(b)]. For prolate spheroids with « > 1, we find
case 3 where the centrosome is stable in z but oscillates in
the xy plane, a small parameter region that the centrosome
is stable in z and unstable in the xy plane (case 8), and a

region that centrosome oscillates in z and is unstable in the xy
plane (case 5) [Fig. 5(b)]. The diverse dynamics we observe in
spheroids highlight the effect of cell geometry on centrosome
motion.

D. Nonlinear structures of the Hopf bifurcation

Motivated by the form of the unstable eigenfunction for
the spherical case, we study the nature of the Hopf bifurcation
in the simplest case of an axisymmetric centrosome motion
(along about the z axis). To distinguish between sub- and
supercritical Hopf bifurcations as a function of the bifurcation
parameter M, we simulate the system by gradually varying
M around My (the critical CFG number at the Hopf bifur-
cation). For a supercritical Hopf bifurcation, the transition
from stationary equilibrium to oscillation is continuous in
oscillation amplitude and history independent. This transition
is discontinuous for a subcritical Hopf bifurcation, and the
system exhibits hysteresis.

Taking advantage of the axial symmetry, we solve Egs. (1)—
(3) using a time-dependent spectral code (see Appendix B).
We expand the occupancy probability P in Legendre polyno-
mials and integrate the truncated system of nonlinear ODEs
in time, allowing for fast and accurate simulations to sweep
a large parameter space. Starting the simulation with CFG
number M < My, we gradually increase M past the Hopf bi-
furcation from the left (forward continuation). Once M > My,
we continue this simulation by decreasing M past the Hopf
bifurcation from the right (backward continuation). A com-
bination of forward and backward continuation simulations
allows us to compute the hysteresis and, thus, determine the
nature of the Hopf bifurcation. For example, for parameters
in Table I [star in Fig. 6(e)], there is no hysteresis, the Hopf
bifurcation is supercritical, and the amplitude of oscillation
continuously increases from zero as we pass through the Hopf
bifurcation [Fig. 6(a)]. Changing MT nucleation rate y, from
300 to 400 s~!, while keeping other parameters unchanged,
we find hysteresis in the model, the bifurcation becomes
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FIG. 6. Nonlinear dynamics of the centrosome near Hopf bifurcation. (a) Oscillation amplitude as a function of M for forward (red)
and backward (blue) continuations using parameter values in Table 1. The dashed line indicates the value of My at the Hopf bifurcation.
(b) Oscillation amplitude as a function of M for forward (red) and backward (blue) continuations using parameter values in Table I with
y =400 s~'. The dashed line indicates the value of M at the Hopf bifurcation. (c) A zoom-in of (b), where the dots represent the results
of the simulation. [(d)—(f)] The type of the Hopf bifurcation is shown as a function of MT nucleation rate y and CFG detachment rate «
using parameter values in Table I for three values of V, = 0.5, 11.5 um/s. In the dashed region, the centrosome is stably centered. In the pink
region, the centrosome exhibits supercritical Hopf bifurcation, and in the blue region, the Hopf bifurcation is subcritical. The star in E indicates

parameter values of Table 1.

subcritical, and the oscillation amplitude abruptly changes
passing through the bifurcation [Figs. 6(b) and 6(c)].

We perform a parameter sweep as a function of MT nucle-
ation rate y and CFG detachment rate « to construct a phase
diagram for the type of the Hopf bifurcation in the S-model
[Figs. 6(d)-6(f)]. We find three regimes. For low values of
detachment rate ¥ and nucleation rate y, the centrosome does
not stably oscillate [Figs. 6(d)-6(f)], stripped region]. How-
ever, for sufficiently large « and y, the centrosome oscillates.
For a fixed «, with increasing y, the system transients to su-
percritical Hopf bifurcation [Figs. 6(d)—-6(f)], pink], followed
by subcritical Hopf bifurcation [Figs. 6(d)—6(f)], blue]. While
the structure of the phase diagrams preserves with varying V,,
the details of these transitions change.

Comparison with experiment. Previous studies in C. ele-
gans revealed that depleting the gpr-1/2 genes, which impairs
GPR-1/2 protein functionality, results in reduced cortical
pulling forces and cessation of spindle oscillation [6]. A sub-
sequent titration study [37] demonstrated a gradual decrease
in spindle oscillation amplitude with the progressive deple-
tion of gpr-1/2, identifying a critical force-generator number
threshold below which spindle oscillation stops. Within the
framework of the S-model, these findings align with the
behavior expected from a supercritical Hopf bifurcation gov-
erning the C. elegans spindle. Our model predicts oscillation
amplitudes of approximately ~5 um, similar to experimental
observations (~5 wm for maximum oscillation amplitude),

and oscillation frequencies around ~0.16s~! (similar to
experiment, ~0.25s~!). Notably, the model confirms the
occurrence of a supercritical Hopf bifurcation. Despite the
model’s simplification—comparing the C. elegans spindle,
represented as two connected centrosomes in an ellipsoidal
geometry, to a single centrosome within a spherical cell-the
theoretical and experimental results show remarkable concor-
dance.

IV. EQUATORIAL ORBITS AND CENTROSOME
COMPETITION

In this section, we explore the nonlinear behavior of the
system under a variety of conditions. This includes investi-
gating aster dynamics for large values of M, analyzing the
impact of MT front dynamics on centrosome motion, and
examining geometries with discrete rotational symmetries.
We first demonstrate the emergence of periodic attractors in
systems with a freely moving centrosome, positing that these
attractors represent energetically preferable states compared
to on-axis oscillatory motions. Next, we present evidence
that stoichiometry alone can effectively position two centro-
somes at diametrically opposite ends of the cell, mirroring
the arrangement of spindle poles during mitosis. Finally,
we demonstrate that multiple asters inside a sphere interact
with each other through a competition-induced repulsion that
can position themselves into symmetric configurations, as
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electrons constrained to a sphere and interacting via repulsive
Coulomb potentials in the classical Thomson problem.

A. Nonlinear orbital dynamics beyond My

Here, we continue with the numerical analysis of the
3D nonlinear dynamics of the S-model aster, for which we
will need to take account of the dynamics of the MT-front
S. We examine three distinct cell shapes: prolate spheroid
(¢ = 1.5, similar to C. elegans single cell embryo), sphere
(¢ = 1), and oblate spheroid (o = 0.5), with all taken to have
equal surface areas. All simulations are for M = 600 > My
(My = 325, 415, 525, for @« = 0.5, 1.5, and 1, respectively)
and are prepared as follows. We initially fix the centrosome
position at a random location X, inside the cell with S, the
MT front position a sphere of radius zero at Xy (i.e., ini-
tially no MTs in bulk), and with P(-,# = 0) = 0 (all CFGs
unoccupied). Holding the centrosome in place, we evolve
the occupancy probability P via Eq. (2) until P reaches an
equilibrium Py. In the language of Eq. (1) at long times,
we are exerting an external force £ = —M f;y [ PocEdA. We
then release the centrosome to move while updating the MT
front according to the algorithm described in Appendix A.
We performed ten simulations for each cell shape, and show
examples in Fig. 7.

For the prolate and spherical cases, we find that the centro-
some can move into an internal equatorial orbit, which can be
interpreted as a steady traveling wave solution of the S-model.
Consider first the prolate case [Fig. 7(a)]. Our simulations
show that, with near independence of initial position, the
centrosome is attracted to the xy plane [panel (a, 1)] and thence
to a circular orbit in that plane (initial data on the z axis is
attracted to the origin). Different initial data yield different
directions of motion upon this attractor. The colorfield in
panel (a, ii) shows the translating P field for steady motion
on the orbital attractor (in the plot, moving rightwards). The
dashed curves show contours of the impingement rate €2
whose motion leads the P field. Their azimuthal asymmetry
reflects the mechanism that drives this traveling wave. If more
MTs are impinging on the right than on the left, as they
are in Figs. 7(a, ii) and 7(b, ii), this creates a force imbalance
on the centrosome that pulls it to the right, reinforcing the
effect. Note that in this case the traveling wave speed along
the cell surface is ~1.3 wm/s, greater than the MT growth
speed V, = 1 um/s, which means that in the aft of this wave,
growing centrosomal MTs never reach the cortex [i.e., 2 is
zero there; patterned region in Fig. 7(a, ii)].

For the case of the sphere [Fig. 7(b)], we again find at-
traction onto internal equatorial orbits, but since the sphere
geometry make no selection of a particular equator, these
attracting orbits depend upon initial conditions [Fig. 7(b, 1)].
The traveling wave fields for P and 2 are again asym-
metric, closely resembling those found in the prolate case,
again reflecting the asymmetry in centrosomal MT impinge-
ment that drives the wave. We have numerically constructed
the equatorial orbit solution by assuming a traveling wave
structure for Eqgs. (1) and (2) which becomes a nonlinear
eigenvalue-eigenfunction problem for the angular wave speed
w, centrosome orbital radius g, and the P field, and is solved
via an iterative gradient method, see Appendix C. We find

good agreement between the long-time simulations and the
numerical solution for exact equatorial orbits, and Fig. 7(b, ii)
shows the P and €2 fields, as in Fig. 7(a, ii).

The equatorial attractors emerge essentially with the Hopf
bifurcation. Figure 7(c, i) shows that o (black curve) has a
weak dependence on M, as does the orbital speed ow (red
curve). Returning to M = 600, we consider the energy £ for
centrosomes started initially near the fixed point at cell center
[panel (c, ii)]. The red curve is typical; the energy shows an
immediate oscillation as the centrosome is oscillating along a
line through the origin. After several oscillations, the centro-
some moves outwards and relaxes into an equatorial orbit of
lower, and constant, energy. For comparison, the green curve
shows the dynamics for a centrosome started upon the z axis.
Symmetries restrict its motion to oscillations along the axis,
with its energy oscillating about the energy level of the fixed
point itself (dashed line). Figure 7(c, iii) examines the behav-
ior of £ across three allowed types of dynamics: centrosome
at the center, on-axis oscillation (along the z axis), and moving
on an equatorial orbit. Note that there is a region of bistability
of the second and third cases, and that the equatorial orbit
shows the lowest energy overall.

Finally, in the oblate cell, we only observed on-axis oscil-
lation along the z axis. This observation is consistent with the
linear stability analysis in Fig. 4(b), where the only unstable
mode for an oblate spheroid is along the z axis, while for
prolate the most unstable modes are oscillations in the xy
plane.

B. Centrosome competition and positioning

So far, we have discussed the positioning of single asters in
cells. Prior to mitosis, however, the centrosome duplicates and
the two newly formed asters position themselves at the two
poles of the spindle, itself typically aligned along the long axis
of the cell. The position and orientation of spindle poles then
determine the position and orientation of the division furrow.
In Farhadifar et al. [24], we used a discrete formulation of the
independent motor S-model for two asters and showed that
it quantitatively explains the dynamics of spindle elongation
and length determination in the embryos of C. elegans and
other nematodes. In a recent study, Fujii et al. created a C.
elegans strain in which more than two centrosomal asters
coexist within the same cell [38]. This strain is created by
the deletion of the emb-27 and kip-18 genes, which yields an
enucleated embryo with functional centrosomes. As the em-
bryo progresses through its cycles, the centrosomes duplicate,
but the mitotic furrow does not fully form, thus generating
an embryo with multiple asters within the same cell. The
authors observed that after each round of duplication, the new
asters separate from each other and spread out throughout
the cell.

Inspired by these experiments, we performed simulations
of multiple centrosomes (N = 2-21) in a sphere for param-
eters in Table I and M = 100. For these parameter values,
a single centrosome is stably centered. In our S-model, note
that centrosomes only interact through their stoichiometry-
mediated competition for CFGs. That is, if a CFG is occupied
by MTs of centrosome A it cannot be simultaneously occu-
pied by MTs of centrosome B. This competition creates an
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FIG. 7. Three-dimensional nonlinear centrosome dynamics in spheroids for parameters in Table I. [(a, 1) and (b, 1)] Trajectories of a
centrosome starting from different initial positions (black dots) in a sphere and prolate spheroid (o = 1.5) with M = 600. [(a, ii) and (b,
ii)] The contour plots of steady-state surface occupancy probability P (in color) and impingement rate €2 (dashed lines), as a function of
azimuthal angle ¢ about the equator, and signed height along the z axis. The patterned region shows where 2 = 0 s~!, the black dot indicates
the centrosome position, and the arrow shows the orbit direction. (c, i) For case (B) of a sphere, the steady-state values of orbital radius o
(black) and orbital speed pw (blue), as a function of M. Dots show the values from full simulations, while solid lines indicate solutions found

numerically from a traveling wave Ansatz. The dashed line shows M =

My. (c, ii) The energy £ vs time for on-axis oscillation (green) and

orbital oscillations (red). The horizontal dashed line indicates the time average of the energy for on-axis oscillation. (c, iii) The time-averaged
energy as a function of M (green, transient solutions; red, asymptotic steady states). Both on-axis and orbital solutions are stable for M between

526 (dashed line) and 535 (dots).

effective repulsive interaction between asters: If two asters
are nearby then the CFGs within their common reach will
divide their pulling forces between the two asters, with that
division determined by the relative impingement rates of each
aster. This creates a force imbalance towards the directions
of noncompetitive binding, that is, the centrosomes will move
away from each other. A linear calculation for the stability
of two centrosomes at the sphere center confirms this is an
unstable configuration for any value of M, and two centro-
somes always move away from the center in the opposite
direction.

This is ably illustrated for the case of two centrosomes
(N = 2). To start, we hold the centrosomes fixed near each
other close to the cell center, find the corresponding steady
occupancy probability using Eq. (8), and then release the
asters. As Fig. 8(a) shows, the two centrosomes separate from
each other and move to opposing sides of the sphere, with their
pointwise CFG occupancy probabilities maximal near their
corresponding pole and decreasing to small values further
away. Each centrosome does not go all the way to the cell
periphery because when it is right by its pole, the pulling
force toward its pole reduces to zero, and the centrosome is
pulled to move toward the opposite pole. If repeated within an
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FIG. 8. Arrangement of multiple centrosomes inside a sphere for parameter values in Table I and M = 100. The surface color-field in
(a)—(c) shows the total occupancy probability. (a) Steady state occupancy probabilities for two centrosomes in a spherical cell, as a function of
the polar angle 6 from the axis that aligns with the centrosomes. The inset shows the two centrosomes (black dots) inside of the cell. (b) Stable
positioning of six centrosomes, forming an octahedron, inside the sphere. Video 2 [5] shows the relaxation of six asters into the vertices of an
octahedron. (c) Stable positioning of 3, 4, 8, and 20 centrosomes in the sphere. [(d) and (e)] The average distance of centrosomes from the
sphere center (cell radius is W = 15) and total energy £ for simulations in (a)—(c). Dots in E denote the total energy at the beginning of the
simulation when all the centrosomes are placed near the center, bars over N = 8 and 20 represent the energy of the platonic solids, less than

1% higher than the nonplatonic equilibrium configurations.

ellipsoidal cell, the two asters will migrate towards opposite
poles of the long axis, as demonstrated in Ref. [24]. and seen
in Fig. 1(b).

Keeping the number of CFGs the same, we repeat this
simulation with N = 6 asters and find that the centrosomes
spread outwards and move to the vertices of an octahedron, a
platonic solid, with those vertices sitting on a sphere of radius
pe = 11.63 < W(= 15um); see Fig. 8(b) and video 2 [5].
The steady CFG occupancy probability for each centrosome
is highest at the nearest cell surface point. This ultimate ar-
rangement of asters is allowed by the spherical geometry and
uniformity of the CFG distribution, as are many other possible
final states (e.g., all asters sitting on the equator of an internal
sphere whose radius is to be determined). That said, we find
that generic initial data of centrosome positions (i.e., having
no respected symmetry) relax to a platonic octahedron on a
sphere of radius pg.

Interestingly, we find that the N =4, 6, and 12 cases
also appear to be “globally attracted” to their corresponding
platonic solid; see Figs. 8(c). Not so for the N = 8 and 20
cases where the platonic solids appear to have much more
limited basins of attraction, and for which we also observe
other apparent steady states. For example, for N = 8§, if we
start the simulation with asters on the vertices of a centered

cube on a small sphere, it will remain a cube and expands
radially until it reaches the sphere of pg. More generally,
we instead find relaxation to the square antiprism, a twisted
cube, where two opposing square faces are rotated 45° relative
to each other (see video 3 [5], where we initiate dynamics
from a very slightly twisted cube). For N = 20, with general
initial conditions, we found a nonplatonic configuration that
resembles the 20-vertex elongated square cupola. The higher
the number of centrosomes, the closer they position to the
cell periphery [Fig. 8(d)]. For other values of N, the asters
are almost evenly positioned upon the surface of an internal
sphere, with a variance of 103 in centrosome distance to the
center. The mean centrosome distance to the center increases
with N [Fig. 8(d)], which corresponds to the plateau of total
energy £ at equilibrium [vertical bars in Fig. 8(e)], 20% (40%)
lower than the initial energy for N = 4 (N = 20) centrosomes
placed at the sphere center [diamonds in Fig. 8(e)].

We also investigated numerically the local stability of all
the platonic solid cases (N € {4, 6, 8, 12, 20}) by randomly
perturbing the centrosome positions at the vertices of equi-
librium platonic solids on a sphere of radius py. We first
determine py by simulating the relaxation of centrosomes,
placed on the platonic solid vertices of radius p3 < W at the
beginning of the simulations, until they reach an equilibrium
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distance py to the center. Throughout these simulations the
centrosome configurations retain their platonic symmetries,
and relax to an equilibrium distance py with a variance less
than 107, We then perturb the centrosome positions from the
equilibrium platonic solid configurations. For N = 4, 6, and
12, we observe the randomly perturbed configurations relax
back to the platonic solid of radii py, suggesting that these are
locally stable solutions. For N = 8§ and 20, however, the per-
turbed configurations evolve to nonplatonic shapes, suggest-
ing that the cube (N = 8) and dodecahedron (N = 20) config-
urations are unstable solutions. Interestingly we also find that,
for both N = 8 and 20, the platonic configuration has a total
energy & [horizontal bars in Fig. 8(e)] that is slightly (less than
1%) higher than the nonplatonic equilibrium configuration.

The ordering of centrosomes inside a sphere is indicative of
an effective repulsion between centrosomes in the S-model.
We can understand this heuristically in a simplified version
of the S-model. As in Farhadifar er al. [24], assume that the
binding probability is determined quasistatically (i.e., P! = 0)
and that Z(P) = 1 — P (i.e., the independent motor model).
In this case, the occupancy probabilities can be found exactly
in terms of the impingement rates as P/(Y) = Q/(Y)/(x +
Q(Y)), where Q@ = T | @/, that is, the total impingement rate
from all centrosomes at a surface point (Y). In this approxi-
mation, we then have

Q(Y)

TK_Z(Y)E (Y)p(Y)dAy.

X = [ 4)
r

Thus the direction of centrosome motion is set by a weighted

integral average of pulling force vectors foél(Y), with regions
of high population impingement rate divisively reducing that
region’s contribution to the total pulling force on the centro-
some. Consequently, centrosomes will be pulled preferentially
by their respective regions of relatively unshared CFGs. This
is, in effect, a competition-induced repulsion between asters
and is consistent with the linear stability calculation that
shows two centrosomes at the sphere center always move
away from each other.

The results found here very closely track those of the
famous Thomson problem for energy-minimizing configura-
tions of electrons constrained to a sphere and repelling each
other through Coulombic forces [33]. The minimizing equilib-
rium configurations of up to 470 electrons are available in the
literature [39]. For 4, 6, and 12 electrons on a sphere, the cor-
responding platonic solids’ vertices (tetrahedron, octahedron,
and icosahedron, respectively) are the equilibrium positions
that minimize the total Coulombic potential. Eight electrons
settle to the square antiprism, similar to the antiprism of
eight asters in Fig. 8(c) but with a different aspect ratio.
Twenty electrons equilibrate to the twenty vertex nonregular
polyhedron with D3, symmetry. For both N = 8 and 20, the
distribution of pairwise distances between repelling electrons
is different from that between asters in Fig. 8(c). For N = 4, 6,
and 12, the equilibrium relative orientations of electrons in the
Thomson problem are those found here, though with the aster
choosing their own sphere upon which to order. Finally, note
that in our simulations, CFGs are uniformly distributed across
the cell surface, and presumably then, due to this symmetry,
the asters (nearly) evenly distribute.

The parallelism between the Thomson problem and the
spatial ordering of entities confined on spherical boundaries
in soft and biological systems has been previously studied
[40,41]. In modeling these systems, defects or structures are
pushed apart by effective pair-wise potential forces between
them. However, in the S-model, centrosomes are not explicitly
confined to a sphere, and their effective repulsion is created by
the stoichiometric competition of centrosomal microtubules
for available motors. Thus their spatial ordering within the
spherical cell, at least as modeled here, seems a new, general-
ized Thomson problem [42,43].

V. DISCUSSION

Cortical pulling forces play a fundamental role in the
positioning and orientation of the mitotic spindle, perhaps
best illustrated during asymmetric division, where the spin-
dle accurately positions off the cell center [44-46]. It has
been argued that cortical pulling forces are destabilizing, and
these forces alone are not sufficient to position the spindle
in cells [8]. Indeed, a set of models have been developed to
explain spindle positioning using mechanisms such as MT
polymerization-driven pushing forces against the cell cortex,
pulling forces from motor proteins carrying payloads along
MTs, MT length-dependent pulling forces from cortical mo-
tors, and forces from microtubule friction with the cell wall
[4,6-20,22,23]. Alternatively, a simple, intuitive idea was sug-
gested that stable centering of the aster could be accomplished
by pulling forces if there are fewer CFGs than astral MTs [47].
The stoichiometric model naturally expresses this possibility
through its bottom-up development and, in its earlier forms,
quantitatively explains spindle positioning, elongation dy-
namics, and scaling with cell size among nematodes [24], and
quantitatively explains the oscillatory dynamics of the spindle
in C. elegans [30]. A version of the independent motor model,
but with a force-dependent detachment rate, was previously
used to model chromosome oscillation in human cells [9].

Here we developed an elaborated S-model that accounts for
CFG binding domain overlap, which explains recent experi-
ments, and a generalized dynamical formulation. We used this
model to explore the mathematical and dynamical structure
of how centrosomal asters interact with CFG populations,
focusing particularly on the effects of motor density, cell
shape, and centrosome number. The system is surprisingly
rich in behaviors. As we describe below, this study creates the
basis for the modeling of yet more complex, and fundamental,
intracellular dynamics during development.

Previous in vitro and in vivo studies have demonstrated that,
in some cases, aster positioning is governed by a dynamic
equilibrium between the pulling forces exerted by motor
proteins and the pushing forces arising from microtubule
polymerization against the cell cortex [15,48-50]. As micro-
tubules elongate and encounter the cell periphery, they push
on the centrosomal aster, potentially leading to microtubule
buckling [51]. Computational tools such as Cytosim [52] and
SkellySim [34,53] have been employed to simulate these phe-
nomena, accommodating extensive microtubule deformations
and in the case of SKELLYSIM, incorporating hydrodynamic in-
teractions due to microtubule motion. Various coarse-grained
models have also been constructed to account for microtubule
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pushing forces, assuming microtubules grow briefly against
the cell surface and push, but disassemble before buckling
[8,13,16,17]. In line with such assumptions, pushing forces
can be easily accommodated within the S-model, with the
local pushing force being proportional to the microtubule
impingement rate €2, which is part of the S-model. Out of
curiosity and motivated by interesting in vitro experiments
[15], we studied the positioning, via the S-model, of an aster
in a flat cuboidal geometry with motors populating only the
sides. While it is clear that pushing must play a role there—
experimentally the aster centers in the lack of motors—we
were able to reproduce substantial parts of the results solely
by pulling forces (see Fig. 12).

The S-model is applicable to other biological phenom-
ena involving aster positioning. For example, the life of
C. elegans, and many other metazoans, begins with two pa-
ternally delivered centrosomal asters, which will eventually
fuse the male and female pronuclei, positioned at opposite
ends of the embryo. Thus begins an orchestrated movement of
asters and pronuclei starting with the centrosomes’ migration
toward opposing poles of the male pronucleus. Following this,
the female pronucleus advances toward the male, leading to
their fusion, and the resultant complex of asters and pronu-
clei collectively relocates to the cell center and reorients to
align with the cell’s axis. Similarly, in later stages, newly
duplicated centrosomes and their asters migrate to opposite
sides of the nucleus and orient themselves in the direction
of the future spindle. Studies have shown that SUN-KASH
protein complexes sitting within the nuclear envelope can
bind motor proteins such as dynein and through this will
exert a pulling force on centrosomal microtubules and the
aster itself. Unlike the cell cortex, which is more fixed, the
nucleus is mobile and can reposition and deform due to these
pulling forces. It is straightforward to expand the S-model
to account for centrosome/nucleus positioning and we are
doing that now. There are new issues to confront such as
overall force balance, and the “shadows” cast by the nucleus
that capture microtubules that might have otherwise impinged
upon the cortex. Other extensions to the S-model including
elastic responses such as from protein tether stretching (which
can induce torques), a force/growth-velocity relationship, and
hydrodynamic interactions [54].

The correspondence of multiple centrosome positioning,
which is a damped and driven competition for motors, and
the conservative and classical Thomson problem is amusing
and surprising. We note that there have been a number of ex-
amples of damped and driven active matter systems behaving
essentially as conservative systems; see, e.g., Refs. [55,56].
While a nonuniform distribution of CFGs is important to spin-
dle placement, we did not study it here. Such nonuniformity
has been posited to explain clustering of centrosomes [57],
and it would be interesting to understand what the S-model
predicts for aster arrangements in cells with nonuniform CFG
distributions.

Finally, in this paper, we also examined the role of cell
shape. Understanding how cell geometry regulates spindle
positioning and orientation is fundamental for understanding
embryonic development. For example, in C. elegans, em-
bryogenesis progresses from a single cell encapsulated in a
relatively rigid shell to about a thousand cells by successive

cell divisions, leading to changes in cell volume and shape.
During each division, the spindle forms and precisely orients
along the long axis of the cell, often referred to as Her-
twig’s rule in developmental biology [58]. The biophysical
mechanism behind Hertwig’s rule has been actively pursued
[59-61], and we are now testing predictions of the S-model for
spindle positioning and its 3D orientation during C. elegans
development, where we observed quantitative agreement with
experiments.
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APPENDIX A: ALGORITHM FOR UPDATING
THE MT FRONT

In Sec. II, we provided a general formulation of three-
dimensional MT front dynamics inside a cell surface I.
Here we provide details of evolving the front of leading MT
plus-ends in terms of a coordinate system centered on the cen-
trosome with polar angle ¢'(¢) € [0, 7] and azimuthal angle
0'(t) € [0, 27r). We focus on a convex cell surface I" so there
is a unique pair of coordinates (¢'(z), 6’(¢)) that corresponds
to coordinates of the force generators Y on I'. We assume that
the centrosomal array does not rotate, and represent the loca-
tion of the MT plus-end (MT front) as S = S'@®),0' (1)) =
X(t) 4+ Ds(¢'(1), 0'(1))E(¢'(2), 0'(¢)), where Dg is the dis-
tance from the centrosome to the MT front along the direction
é, pointing from the centrosome to CFGs at Y(¢',0’) at a
distance D = |Y — X]. The relation between Dg and D deter-
mines the state of the MT front; either

(i) the front reaches the cortex, i.e., Ds(¢'(t),6'(t)) >
D(¢'(t), 0'(t)). Centrosomal MTs are impinging on force gen-
erators in this direction, which implies Q(¢'(¢), 6'(t)) > 0; or

(ii)) the front grows toward the cortex, i.e.,
Ds(¢'(1),0'(t)) < D(¢'(t),0'(t)) and 0,Ds =V,. Centro-
somal MTs are not impinging on force generators, which
implies Q(¢’'(¢), 0'(t)) = 0.

In the following, we summarize the numerical algorithm
for evolving the three-dimensional centrosome motion with a
MT front. The superscripts denote the step in the time march-
ing, starting from initial data of the occupancy probability
P(t%), centrosome position X(#%), and the unit vector é(to)
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TABLE L. Characteristic microtubule length /. = V,/A, and number of microtubules at equilibrium Ny, = y /A = yI./V,.

Biophysical parameters of stoichiometric model

Biophysical Parameters Symbol Value References
spherical cell radius w 15 (um) [30]
microtubule growth rate Ve 1 (ums™") (0.5-1.5 ums™) [28]
microtubule catastrophe rate A 0.05 (s71) (0.025-0.05 s71) [11]
microtubule nucleation rate Y 300 (s71) (300-500 s71) [24]
force-generator detachment rate K 0.2 (s7') (0.1-0.5s71) [62]
force-generator radius T'm 1 (um) (1-1.5 um) [24]
force-generator pulling force Jfo 10 (pN) (5-10 pN [11]
centrosome drag n 150 (pN's um’l) (150-200 pN s um™") [18]

(from the initial centrosome position to a surface point Y),
and the MT front position S(¢’'(t?), 6/(t°)).

(1) Given a time step At, and (X(¢"), P(¢")), at time t" =
nAt for n > 0, compute X(+"!) as described in Sec. IT A, and
update the centrosome coordinates (¢’ (t" 1), 0'(t"*")) and the
distance D(¢’(t"*1), 6'(z"t1)).

(2) Compute Ds(¢'(z"), 0'(t")) = Di(¢'(t"), 0'(t")) +
AtVy; then compute Ds(¢'(z"*1), 6'(z"*1)) by interpolating
Dg(¢'(t"),0’(t")) at the new coordinates (target points)
((p/(t"Jrl), 9/(tn+l)).

(3) Update Dg and the impingement rate R according to the
following scheme.

(i) If  Ds(e/("t),0'("")) = D(g' "), 0'"t))
Ds(¢'(t"t1), 0'(t" 1)) = D(@'(t" 1), 0'(t" 1)) Q(g' ("),
0'(t"t")) = [Vs - ﬁ]+X(%)(Vlg€_D”")-

(i) Otherwise  (Ds(¢’ (™), 0/(¢t" 1)) < D(¢'(t"),
0'(t" 1)) Ds(¢'(t"*1),0'("t1)) = Ds(¢'(¢"t1), 6'(c" 1))
Q' ("), 0'¢" 1)) = 0.

We then update the MT front position to
S(¢' ("), 0’t"*")), and use the updated impingement
rate Q(¢'(#""), 8/(t"t")) to compute P! as described in
Sec. ITA:

P@"t) — P(t™)
At

n+ly _ n At 1o on+1 1 en+1
P@™) = P( )+—1+KAt(Q(¢(t ), 0°("))

= Q' "), 0/ ") (P")—k P(t"T),

XZ(P(")) — kP(t")). (AD)

This completes one time step, and the iteration repeats until
the end of the simulation.

APPENDIX B: SPECTRAL FORMULATION FOR THE
AXI-SYMMETRIC CENTROSOME DYNAMICS IN SPHERE

Here we recast Egs. (1)—(3) with axisymmetry (z axis as the
axis of symmetry) in Legendre polynomials. The centrosome
moves along the z axis with a position z(¢), and the occupancy
probability is a function of the polar angle ¢ € [0, 7]. We set
the areal density p(Y) = 1/|I"|. The equations of motion for
the axisymmetric system are

dz MfO/ﬂ . Wecosg—z
_— = — d sin —P ,t , Bl
T 2 /o psing D(g.2) (@,1) (B1)
dP(p, 1) | — ¢ o (I=P@:t)
t My

. V.(W — zcos
Qp,2) = |:zcosgo + u}
+

D(gp, 2)

_ D) ( T'm ) Y
X ek x L,
D((pﬂ Z) Vg

where D(p, z) = \/W2 — 2Wzcos ¢ + z2. We expand the oc-
cupancy probability P(¢, t) in Legendre polynomials P, (x) as
P(p,t) = Z;’io ci(t)P;(cos @), where P;(x = cos @) is the ith
order Legendre polynomial. To recast Egs. (B1) and (B2) into
a system of nonlinear equations in z(¢) and the coefficients
ci(t), we first expand the impingement rate in Legendre poly-
nomials as

dz
Q(x,z) = <Efl (x,2) + falx, z))

(B3)

v

Vg
o0

dz Yy

= —fii i | Pi(x)—,

;(dtfl +f2) (")vg

where P;(x) is the ith order Legendre polynomial, and
oo
_Db T'm _
fi=xe kx (B) = ;_0 Siibi(x),

V(W — o () _ v
fr= ue_ﬁx <%> = ;fziﬂ(X) (BS)

(B4)

D

Here, we truncate at c; to obtain a system of nonlinear equa-
tions for z(t), co(t), and ¢ (¢):

dz Mfy| 4 =z 2 2/z\°
) PPN ] a2 . (B6
T T 2 [ 3C0W+<3 5<W) >Cl} (B6)

deoo _ g Ro+ ~ciR (B7)
— =Qy—kco— | ¢ —c ,
T 0 0 oRo + Fc1R,

dC‘l 2

v Qp —«kcp — | coRy + 1Ry + gCle , (B8)

with Q; = (% fi; + fo)¥. Fori=0and i > 2, the linearized
8
equation of ¢; simply yields decaying dynamics:

dCi _
o= = + Io(P))ci, (B9)
IhP)y=e""x| —|v i >0, (B10)
W Mo

where P, the occupancy probability of the base state, satisfies

the equation P = loi‘}j(ii‘(. These results show that the linear

instability of a centrosome in a sphere in Sec. III A involves
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only c; and z, and all the other modes are linearly stable and
do not contribute to the instability.

APPENDIX C: CENTROSOME ORBITING AROUND
SPHERE CENTER

Here we focus on a centrosome orbiting at a constant
speed and a constant distance to the sphere center. In

J

spherical coordinates, with the origin at the sphere cen-
ter, the centrosome position X, = o(#)(sin 6.(¢) cos ¢.(¢)&; +
sin O.(t) sin ¢ (¢ )&, + cosO.(t)€3) and the surface of the
sphere of radius W has coordinates Y = W (sin 6 cos ¢&; +
sin 0 sin ¢&, + cos 0&3), where the polar angles 9., 6 € [0, ],
and the azimuthal angles ¢., ¢ € [—m, w]. The governing
equations for the centrosome dynamics in spherical coordi-
nates (with areal density p(Y) = 1/|T"|) are

M PO, .t . . .
no = |Tf|0 / %(—Q + W cos 6 cos 8, + W sin 6 sin 6, cos(¢p — ¢.))W? sin 0d6d ¢, (CD
. M P@,p,t . . .
nob. = Tfo / %(cos 0. sin 6 cos(¢p — ¢.) — cos O sin HC)W3 sin0dfd¢, (C2)
. M PO, p,t) . . .
10 sin Oup = Tf" / % sin 0 sin(¢p — ¢ )W3 sin 0dOd¢, (C3)
oP . . .
o = |:Q(COS 6 cos 6, + sin 6 sin 0. cos(¢p — ¢p.))
+ Q@C(Cos 0. sin 0 cos(¢p — ¢p.) — sinb,. cos ) + o sin 90(1.)[. sin 6 sin(¢ — ¢.)
V. Xe_D/lf
+ Bg(W —ocosfcosf. — o sinb sinb, cos(¢p — ¢C))] yI(P) — kP, (C4)
+ g
D = W2+ 02 — 2Wocos 6 cos 6, — 2W o sin 6 sin 6, cos(¢ — ¢.), (C5)
1 _ )
=—|1- I(P)= C6
X=3 (P) MMy (Co)

1+ ()

We focus on the orbiting motion of a centrosome in the xy plane (where 6, = 7 /2) with a constant radius ¢ from the sphere

center and a constant angular frequency ¢. = w. With the change of variable ¢ = ¢ — .

P9, ¢,t) = P(6, ¢), we obtain the following equations:

= ¢ — wt and the assumption that

0= MTfO / P(9D¢)( o+ Wsinf cos())W? sin0dOdp, — 0= W— CN
I
now = MTfO/ P(égqb) sin @ sin(¢)W?> sin 0dOdd, — now = MTfOI,z, (C8)
—D/I,
3P(9 ¢) [Qa) sin 0 sin(¢) + E(W — osiné cos(é)):| yI(P) — kP, (C9)
3¢ D + g
D= \/WZ + 0% — 2Wosinf cos(), (C10)
where
I = / P.9) sin0dode, (C11)
L = / P(QDd)) sin Gcos(qb)d@dqb (C12)
L = / @W sin® 0 sin(¢)dOd . (C13)

Equation (C7) gives the radius of the orbit, and Eq. (C8)
gives the angular speed of the centrosome motion with the
occupancy probability P determined from Eq. (C9). Alto-
gether the system consists of two integrals and one differential
equation for the occupancy probability P.

(

This system of nonlinear integral-differential equations are
solved as follows. For an initial guess of (o', '), we solve
Eq. (C9) to find the occupancy probability P. We compute the
integrals I’s to update the value (o'*', '), and compute the
loss function E = In(1 + (60)* + (8w)?), with §o=0""'—0’,
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and dw = o™t — w'. We update (0, w) using an iterative
gradient method for nonlinear systems to minimize the loss

function within a set tolerance.

APPENDIX D: NUMERICS FOR THE LINEAR STABILITY
OF A CENTROSOME IN A SPHEROID

Here we present numerical details for the linear stability
analysis of a centrosome in a general spheroid. To obtain high-
order accuracy of the numerical linear stability analysis on
this differential-integral system, we need to compute surface
integral

f F(Y)dA,
r

with high-order spatial accuracy. We generate quadrature for
spheroidal surfaces via a differential function ¢, which maps
I' to the surface of the unit sphere (S?). We then transform a
surface integral on I to one on the unit sphere as

/ F(Y)dA(Y)
r

= /S2 F(p(X))| det(J, (X)), (X)a(X)|dAX), (D1)

where J, is the Jacobian and 7 is the outward normal of
the sphere. This transformation allows us to efficiently com-
pute the force on the centrosome by spatially discretizing the
surface using a quadrature rule for the sphere. In particular,
we put three nonoverlapping patches, two caps and a ring,
described by

Alz{XeS2|cos_1(X-2)<%}, (D2)

A2:{XES2|%<005_1(X-2)<3T”}, (D3)
) . . 3

Az = {X € §%] cos (X~z)>T . (D4

Patches A; and A3 can be discretize as a Disk, noting that
%ﬁ‘” is smooth, hence, for the integral ) f ((p)%(pd(p we
can use the same quadrature rules used for the Disk [63],
where ¢ takes the role of the radius. For 4, in the periodic
direction a trapezoidal rule is used, on the nonperiodic one a
Legendre quadrature rule is used. For A; 3 we use 10 x 10
quadrature points, for A, we use 15 x 10 quadrature points,
periodic and height direction, respectively. Figure 9 is an
example of the three nonoverlapping patches of quadrature.

APPENDIX E: GEOMETRIC INTUITION
OF TWO SOLUTIONS

Here we provide an intuitive argument for no more than
two eigenvalues in Eq. (21). We start with a similar equation

1
y x+1
= L dt=— In(——). (E1
ax ﬁ+[1x+t ﬁ+yn<x 1) (E1)

This problem can be reduced to ask the number of solution of

equation
1
ax+b=ln()hL l>'

(E2)

X —

FIG. 9. An illustration of patched quadrature. Yellow is for the
ring patch A,, and blue (pink) is for the top (bottom) cap patch A,
(A3). Note that there is an accumulation of quadrature points around
the union of the patches.

From simple analysis, we can see that ln(ff}) has two
vertical and one horizontal asymptotes. As we can see in
Fig. 10, there are only two cases when there are not two real
solutions. Two of them are the degenerate case, where we
have that the curve is tangent to the equation of the line and
the other is when the line goes through exactly between the
vertical asymptotes.

APPENDIX F: STABLE SINGULAR SPECTRUM

In the main text we left out some interesting characteris-
tics of the stable spectrum. It turns out that it has a diverse
complicated structure for the slightest perturbation of the
sphere, i.e., ratio « = 1 £ € with 0 < € <« 1. We start this
discussion for the case when there is no centrosome dynamics,

5t

-3 0 3

FIG. 10. The blue lines are the right-hand side of Eq. (E2), and
the dash lines are their two vertical asymptotes. The red, black and
green lines are the left-hand side of Eq. (E2), giving rise to three
types of roots that Eq. (E2) can have: Two roots at the intersections
between the red line and the blue curve (in either the first or the third
quadrant), two roots at the intersections between the black line and
the blue curves, or no roots when the green curve crosses in between
the asymptotes.
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FIG. 11. Graphical representation of p“*(z, 0) for a spheroid
with o = 1.5. The curves over the surface represent the eigenfunc-
tion that is either O or infinity times a trigonometric function, as in
Eq. (F4). The red sphere denotes the stably centered aster.

corresponding to v = 0 in Eqgs. (18) and (19) and the eigen-
value equation is reduced to

/ p(Y)YdAy =0, (F1)
r

(0 +Qo(Y))p(Y) = 0. (F2)

Note that if p is a continuous function, the only solution to
the system is p = 0. To find the rest of the spectrum we need
to consider tempered distributions. To understand this eigen-
function, we see the following simpler eigenfunction system,
given by

Afx)=x+¢e)f(x) xe[-1,1] (F3)

The solutions to this problem is given by the pair (§(x —
X0), Xo), Where xo € [—1, 1] [64]. We can generalize this solu-
tion by thinking in cylindrical coordinates. To start, remember
that all the level sets A, = {Y € I'| Q¢(Y) = —c} from ax-
ial symmetry are given by symmetric off center circles,
which leads us to define z. > 0, such that €,((0, 0, z.)) =
—c. Using these, we can conclude that if there is a sin-
gular eigenfunction of the system, its eigenvalues need to
be o € [— maxyer ©20(Y)), — minyer 0(Y))] and its eigen-
function, p,, has sing supp(p,) C A,. With this idea in
mind we can determine the eigenvalue spectrum {o} =
[— maxyer $0(Y)), — minyer Q0(Y))], with the correspond-
ing generalized eigenfunctions

e 8(z £+ z.) nez,n =2
Prt0)= e 0z —z2)—8(+z)) n=1
8(z —z.) + 8(z+z¢) n=0
(F4)

A schematic of the generalized eigenfunctions is shown in
Fig. 11. We remark how much the structure of the eigen-
vectors change with a perturbation of the sphere. For the
sphere, there was only one eigenvalue associated with modes
that do not generate centrosome motion. Its corresponding
eigenspace could be decomposed into a countable set of
spherical harmonics. Meanwhile, for the ellipsoidal case, we
have a continuum spectrum of modes that do not generate
centrosome motion, where each eigenspace is spanned by a
countable set of generalized functions.

Incredibly, we find more structure of the solution when we
depart from the standard analysis and reinterpret the integrals
in Eq. (23) as principal value integrals, opening the possibility
to find new nonlinear solutions of the equation in the range
[— maxyer ©20(Y)), — minyer Q0(Y)]. Numerically we can
find there is at least one solution for each index on the param-
eter range that we studied. That being said, the corresponding
eigenvectors are decaying modes and take singular values,
hence not of physical interest.

APPENDIX G: PROBABILISTIC DERIVATION
OF THE OVERLAP MODEL

Here we provide detailed derivations of the exponential
model for the interaction between force generators and the as-
tral MTs. We present two different approaches. One is a direct,
explicit derivation with all the hypothesis of the problem and
substantial algebraic details, and the other simpler calculation
making an analogy to picking balls of different colors, with
less details. To simplify the notation, we introduce the follow-
ing events.

(i) Ay = MT hits CFGy (CFG centered at point Y).

(i1)) By = MT binds to CFGy.

(iii) Cy = CFGy is occupied.

(iv) D§, = There are n other CFG competing for the same
MT that already binds to a CFGy.

Note that in this notation P(Y) = P(Cy).

Let U be a patch over the surface I', centered at Y,
of area Ay such that VX € U, |P(X) — P(Y)| << 1. In the
patch, the total number of force generators is given by Ny =
M fU o(X)dA ~ MAy p(Y). To start the derivation, we see
that the change in P(Y) in a time step At is given by

dP(Y) = —kP(Y)At + P(MT binds to CFGy in At).
(GD)

By the law of total probabilities, we have
P(MT binds to CFGy in At) = Q(Y) P(By|Ay) At. (G2)

The details of modeling CFG will be expressed through the
term P(By|Ay). For stochiometric interactions, i.e., a free
astral MT cannot bind to a CFG that is already occupied, we
have P(By|Cy) = 0. Therefore, by the law of total probabili-
ties, we have

P(By|Ay) = (1 - P(Y))P(By|Ay,Cy).  (G3)

We first note that if there was no interaction with other
CFGs, then P(By|C§) = 1, yielding the independent motor
model. However in this work, we consider situations where
there can be overlap between CFGs. To be specific we con-
sider that if a MT hits a point where there is an overlap
between n unoccupied CFGs, this MT will bind randomly
to only one of these. In terms of probabilities, it means that
P(By|Ay, Cy,Dy) = ﬁ Now, for a CFGy to be available
to compete for the MT it needs to be unbound and there has to
be overlap between CFGx and CFGy. Since these two events
are independent, we just need to approximate the probability
that there is overlap between different CFGs in the patch U.
For this, we do a simple homogeneity approximation. From
here, we can see that Dy is a binomial distribution (in n)
of parameters (Ny — 1, iu(l — P(Y))), where a = nrﬁl is the
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discal area of the CFG binding domain. In other words, we
have
NU -1 a "
P(Dy|Ay) = 1—-P)—
w) = (%, ) (0-07)

Ny—1—n
x(1-1-pL
All ’

Putting these together using the law of total probabilities, we
then have to evaluate the sum

Ny—1

1 Ny — 1
PByl|Ay) = (1 — P(Y)) —( )
g 1+n n

n Ny—1—n
a a
x ((1 —P)A—> (1 — —P)A—> .

(G4)

This sum can be easily evaluated by first letting g = (1 —
P(Y)Aiy) and J = Ny — 1, then we have

d J qn J—n 1 E ! J n J—n
ng:;(n)n+l(l_q) :5/()n2:;<n)x(l—q) dx.

(G5)

Using Newton’s binomial theorem and integrating, we obtain
the final expression

" (4 1P“NU G6

From this expression, we obtain the following three interest-
ing results.

(1) If there is no overlap between CFGs, A, = a and Ny =
1, and we recover the independent CFG model where

P(By|Ay) =

P(BylAy)=1-P. (G7)
(2) Taking the limit when &~ — 0, we obtain the interac-
tion probability Z(P) used in this work

_ p—aMp(1-P)

e
= I(P).

P(By|Ay) = My

(G8)

(3) If the CFGs are perfectly stacked one over each other
(instead of being randomly distributed), this means that Ny is
independent of a, so we can just call it N and we get

1— PV
P(By|Ay) = N

(G9)

Below we present a second derivation, simpler in the alge-
bra, that hides many of the details of the interactions. First we
define the event

Ey = MT hits patch U,

using law of total probabilities we have
PBy|Ey) = P(By|Ey, Ay)P(Ay|Ey)

+P(By|Ey, AY)P(A|Ey).  (G10)

The probability of binding to CFGy with no MT hitting
the area that it covers, is 0. Further, conditioning over Ey; and
Ay is redundant, since the latter implies the former. Thus the
expression is simplified to

P(By|Ey) = P(By|Ay)P(Ay|Ey). (G1D)

We are interested in (re)determining P (By|Ay), but
P(By|Ey) has the advantage that every CFG within patch
U can be treated equally. To simplify the computation of
this quantity, we set up an equivalent but simpler problem.
Take Ny balls, with one of them being red, and put them
in two different boxes, each ball with probability (1 — P) Ai“
being in box one, and in the other box with the complement
probability. Next, one ball is picked from box one (if there is
any ball). We pose the question: What is the probability that
the red ball is picked?

It is not difficult to see that getting the red ball has a proba-
bility of P(By|Ey ). In this setting, we just need to determine
the probability that there is at least one ball in box one and that
the picked ball is red. Since all of the balls are the same, these
two probabilities are independent, so it is straightforward that

1 a \W
PBy|Ey) = N—U(l — <1 - —P)A—) )

Noting that P(Ay|Ey) = Aiy finalizes the proof.

APPENDIX H: ASTER DYNAMICS INSIDE A CUBOID

We conducted simulations of the S-model with a centro-
some placed inside a cuboid of dimensions 15 x 15 x 3 um?
with CFGs positioned exclusively on the peripheral sides [see
Fig. 12(a)], imitating the microchamber in the experiments
[15-17]. For a given characteristic MT length, we com-
pute the pulling force distribution minus the force needed to
keep the centrosome at a given point inside the chamber.
When the average MT length (I, = 20 um) is comparable
to the length of the microchamber, a singular fixed point
emerges at the chamber’s center [Fig. 12(b)]. For shorter MTs,
a constellation of fixed points appears, distributed around the
central region [Fig. 12(c)]. The central fixed point becomes
unstable, while eight additional fixed points formed, with
those near the chamber’s corners exhibiting stability [red in
Fig. 12(c)], and the intermediates acting as saddle points [yel-
low in Fig. 12(c)]. Previous theoretical models successfully
explained the positioning of the aster in these microchambers
by a balance of pulling forces from motors and pushing forces
from MT growth and friction with the chamber periphery
[15-17]. Our findings provide an alternative explanation for
the positioning of centrosomes in microchambers, suggest-
ing it results from the combined effect of pulling forces and
the stoichiometric interactions between MTs and molecular
motors.
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FIG. 12. Distribution of pulling force on a centrosome in a square slablike cell. (a) A square chamber with CFGs on the sidewall, similar
to the microfabricated chamber with dynein motors attached on the sidewalls in Ref. [15]. [(b) and (c)] By computing the force required to fix
the centrosome at a point inside the chamber, we obtain the direction fields of the pulling force on the centrosome inside a square chamber
for characteristic MT length of /. = 20 and 7 um, respectively. Red circles are for stable fixed points (where the net forces converge), yellow
circles are for saddle fixed points (where the net forces converge in one direction and diverge in another), and orange circles denote unstable

fixed points (where the net forces diverge).
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