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A B S T R A C T

Calibrating building energy models (BEMs), i.e., closing discrepancy between modeling and 昀椀eld measurements, 
is of signi昀椀cance to support its applications in building sustainability and resilience analysis. However, as being 
widely used in practice, current Bayesian calibration is mostly performed in low-resolution (annual or monthly), 
instead of high-resolution (hourly or sub-hourly), which is crucial to support emerging BEM applications, such as 
building-renewable energy integration (demand response) and smart control. This is attributable to the gaps in 
current Bayesian calibration process, including (1) dif昀椀culty in supporting reliable high-resolution calibration 
with over-parameterization and multi-solution issues, (2) inadequacy of meta-model to capture temporal building 
dynamics in high-resolution, and (3) excessive computational burdens of covariance matrix calculation in 
Bayesian inference. Therefore, to close these gaps, this research proposes a novel deep learning-based Bayesian 
calibration framework, involving pre-calibration mechanism, Long Short-Term Memory as surrogate models, and 
simpli昀椀ed covariance matrix calculation, to calibrate BEMs in high temporal resolution (i.e., hourly) with 
enhanced accuracy and computational ef昀椀ciency. The case study demonstrates its effectiveness to match 
modeling outcomes with measurements and realize CV-RMSE of < 30 % and NMBE of < 6 % in hourly resolution, 
as well as a signi昀椀cant reduction of calibration time (by > 99 %, from > 600 h to ~ 1.5 h).

1. Introduction

1.1. Background

The energy consumption of buildings comprises a signi昀椀cant pro-
portion of the overall societal energy usage, accounting for approxi-
mately 36 % of global energy consumption [1]. For improved building 
performance, building energy modeling (BEM) has emerged as a pivotal 
tool for simulating and forecasting energy consumption, serving various 
purposes such as analysis of building retro昀椀tting and enhancement of 
energy ef昀椀ciency [2]. In recent years, new applications of BEM arise, 
such as demand response (DR), fault detection and diagnosis (FDD), and 
smart control [3–5]. These emerging applications requires building 
simulation to be able to capture building dynamics with higher accuracy 
and resolutions (e.g., hourly and sub-hourly), compared to application 
of building modeling in design scenarios that low resolution modeling 
(e.g., monthly or yearly predictions) are deemed suf昀椀cient. Therefore, 

the development of accurate BEM in high-resolution has become 
particularly important to further promote the application of BEM in 
practice. However, the escalating complexity of effectively capturing 
building operation dynamics in high resolution led to an increasing 
disparity between simulation outcomes and actual measurements in 
high-resolution prediction scenarios [6,7]. To address this, the inputs of 
BEM need to be meticulously adjusted. This process, known as model 
calibration, involves adjusting various inputs of BEM to ensure the close 
matching between modeling and measurements (i.e., 昀椀eld observations) 
[8].

1.2. Manual and automated calibration

Calibration methods in BEMs can be broadly categorized into manual 
calibration and automated calibration based on the techniques 
employed. Manual calibration is a commonly used approach in BEM 
calibration. This method involves a “trial and error” process that relies 
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on iterative manual tuning of model input parameters [9]. Most of the 
earlier methods are based on graphic comparisons, including plot and 
chart-based analysis [10–12], end-use disaggregation and analysis 
[13–18]. These manual calibrations can reduce the monthly modeling 
deviations of building models for energy ef昀椀ciency and retro昀椀ts 
leveraging engineering experience. However, manual calibration is 
time-consuming, heavily relying on expert judgments and comparisons, 
hence, challenging to be applied in complex calibration scenarios (e.g., 
calibration involving large number of parameters or in high-resolution). 
On the other hand, the advancement of computing powers and algo-
rithms contribute to the development of automated calibration, realized 
through optimization methods. Chong et al. [19] conducted a systematic 
review of automated model calibration in building simulation with a 
synthesis analysis and classi昀椀cation of simulation inputs and outputs, 
data types and resolutions, key calibration methods, and evaluations. 
The conclusions show that the existing calibration practice mostly uses 
monthly data and it is dif昀椀cult to consider building schedules in cali-
bration due to computational costs and over-parametrization issues, 
although the importance of schedule adjustment in model calibration 
has been demonstrated as important to build up accurate building en-
ergy models [20,21]. Vera-Piazzini et al. [22] also emphasized that low- 
resolution (monthly and annually) calibrations are prevalent in practice, 
while occupancy behavior relevant parameters are identi昀椀ed as the 
pivotal parameter for precise building modeling in high resolution (but 
dif昀椀cult to obtain through calibration). Using high-resolution data is 
expected to enhance calibration quality (to identify ground truth values 
of calibration parameters as well as improve model performance), ulti-
mately leading to more reliability building model in application and 
better understanding of building operation dynamics [7,23–25]. Coak-
ley et al. [9] indicate that due to the vast number of inputs required for 
detailed building energy simulations and limited available measure-
ments, calibration in high resolution is typically an uncertain process 
with over-parameterization, i.e., tuning input parameters to make 
modeling outcomes of the calibrated building model match actual 
measurements is a highly under-determined problem that involves 
multiple non-unique solutions. Given the challenges in building cali-
bration, multiple tools, e.g., data analysis, meta-model, and calibration 
techniques, are utilized to ensure reliable calibration practice [22].

1.3. Bayesian calibration

Among different automated calibration methods, the Bayesian cali-
bration [26], proposed by Kennedy and O’Hagan, emerges as a promi-
nent approach and becomes widespread used in various domains, 
including physics [27], materials science [28], biomedical engineering 
[29], energy storage [30], and ecology [31]. The Bayesian calibration is 
advantageous in (1) making full use of prior knowledge to close dis-
crepancies between observed data and model predictions, reducing 
system uncertainty; (2) not relying on speci昀椀c functions or assumptions, 
hence, being 昀氀exible to be applied in various complex scenarios and 
problems; and (3) providing probability distributions for calibration 
parameters instead of a single point estimate in inference, enabling 
Bayesian calibration to attain comprehensive parameter information to 
evaluate the reliability and uncertainty of parameters. As one of the 
pioneering works, Heo et al. [32] employed Bayesian calibration in BEM 
to assess building retro昀椀tting strategies and quantify associated risks. 
They utilized Gaussian Process to represent various uncertainty re-
lationships between the building energy model and observation data. 
The Bayesian rule was applied to determine the likelihood of calibration 
parameters, followed by the use of Markov chain Monte Carlo (MCMC) 
sampling to explore the posterior distribution of parameters.

Although Bayesian calibration has advantages in the calibration as 
mentioned, it is limited in calibrating BEM in the monthly resolution in 
the current practice. Current Bayesian calibrations typically only select a 
small number of calibration parameters and use a small amount of data 
(e.g., 12 months of energy use) to calibrate these parameters to avoid 

excessive computational burdens. It could take hours to days to com-
plete the model calibration in the monthly resolution, let alone cali-
brating parameters using 8,760 h of data in the hourly resolution. To 
balance the computational cost and calibration performance [33–35], 
researchers utilized sensitivity analysis to select the in昀氀uential param-
eters affecting building energy consumption, hence, reducing the num-
ber of parameters in calibration. By using techniques such as correlation 
analysis and clustering methods [35–38], reducing data redundancy can 
further mitigate computation time (though using fewer data may affect 
the accuracy of calibration [35]).

Additionally, meta-models (or surrogate models) are used to save 
calibration time by employing reduced-order or data-driven building 
models to approximate BEM outputs in parameter evaluation, without 
compromising calibration accuracy [39]. Various experiments demon-
strate that employing meta-models accelerate the calibration process 
compared to iteratively running traditional physics-based models (e.g., 
EnergyPlus) while maintaining suf昀椀cient accuracy in calibration [34]. 
Lim [40] compared 昀椀ve meta-models to determine the impact of meta- 
model accuracy on Bayesian calibration. For monthly calibration, meta- 
models only need to capture the monthly building energy usage, hence, 
even using the simplest linear regression as the surrogate model is suf-
昀椀cient to achieve satisfactory calibration results [41]. However, for 
high-resolution (e.g., hourly) calibration, the situation is much more 
complex with a signi昀椀cantly growing number of outputs (8,760 h per 
year) by meta-models. The high-dimensional measurement data (hourly 
use of cooling, heating, and electricity across the year) and increasing 
number of parameters to calibrate (e.g., thermal properties, control 
parameters, occupant relevant parameters) not only increase the 
computational burden, but also enhance the dif昀椀culty of calibration. Gu 
et al. [6] developed a multi-output Gaussian surrogate model and 
compared monthly-resolution and hourly-resolution calibrations. For 
monthly calibration, the CV-RMSEs of calibrated energy use for 7 test 
buildings were below 10 %. However, these calibrated models present 
~ 50 %-70 % deviations of modelled energy use in the hourly resolution, 
failing to meet the ASHRAE requirements [42] for successful hourly- 
calibration. Moreover, the authors mentioned that, even with GPU ac-
celeration, these hourly calibrations still take several weeks. Kristensen 
et al. [7] conducted calibration of an ISO 13790 BEM based on the 
Bayesian approach, investigating the calibration performance in 
different temporal resolutions (6-hour, daily, weekly, and monthly). The 
validation results indicate that the reliability and applicability of cali-
brated models increase with higher resolution of calibration. Re-
searchers also attempt to make the Bayesian calibration a more ef昀椀cient 
process through sampling techniques (e.g., No-U-Turn [43] and HMC 
[44]), simpli昀椀ed physics models (e.g., reduced-equations [45], RC 
model [46], and ISO13790 [7,47,48], or approximate Bayesian infer-
ence [49,50] and meta-learning [51]. Nevertheless, in current practice, 
the Bayesian calibration can still only process a small number of building 
thermal performance parameters (typically 2–6) and targeting on one 
aspect of building energy uses, e.g., cooling or heating energy usage 
[7,43,45,49–54]. This signi昀椀cantly reduces the reliability of BEM to 
fully capture actual building dynamics in high resolution, hence, more 
broadly applicable in emerging applications such as DR, FDD, and 
control.

1.4. Existing gaps

Despite these efforts and advancements in building calibration, there 
remain limitations to the existing Bayesian approach to calibrate 
building energy models in high resolution, including challenges to deal 
with increasing number of data and calibration parameters (e.g., 
building operation schedules, control settings) along with the over- 
parameterization and multi-solution issue in high resolution calibra-
tion, insuf昀椀cient surrogate modeling to capture temporal dependencies 
of energy use in actual building operation, and computational burden 
(inef昀椀ciencies) when dealing with high-dimensional parameters and 
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large datasets (hourly data) in high-resolution calibration, as explained 
below.

(1) Dif昀椀culty of high resolution (hourly) calibration: Although 
hourly calibration can better support a broader range of advanced 
building applications, e.g., DR, FDD, and control, it also presents 
greater challenges. When conducting hourly calibration, careful 
consideration of building occupant behaviors and schedules be-
comes important, as they to some extent re昀氀ect the underlying 
operation patterns of buildings (hence, the energy usage of 
buildings). This requires collection of more measurement data 
(8,760 h in one year), calibration of more model input parameters 
(e.g., occupant relevant schedules), and deepened building sys-
tem analysis to capture the thermodynamic process and temporal 
correlations in building operation, hence, ensuring matching 
between modeling and observations in calibration. However, as 
the number of calibration parameters increases, the issue of over- 
parameterization and multiple solutions arises, i.e., different 
combinations of parameters are likely to produce similar 
modeling outcomes that match observations. In such cases, it 
becomes ambiguous for the calibration algorithm to determine 
the optimal sets of parameters, hence, uncovering ground-truth 
parameters that re昀氀ect the actual operating conditions of the 
building. This will directly affect the validity of high-resolution 
calibration. Fig. 1 provides a schematic diagram of multi- 
solutions in calibration due to over-parameterization. Although 
the values of parameter combinations 1 and 2 for lighting and 
equipment differ signi昀椀cantly, a similar calibration outcome 
(estimated Building Cooling Load) is obtained.

(2) Limitations of surrogate models: While surrogate models are 
employed to enhance the ef昀椀ciency of Bayesian calibration, they 
face challenges in capturing the temporal dependency and 
complexity of building operation in high-resolution calibration of 
building energy models. Building systems experience time- 
dependent in昀氀uences (e.g., thermal inertia) from human behav-
iors, weather conditions, and system operations. Moreover, in-
teractions between different sub-systems contribute to the 
complexity of system operation (e.g., the equipment load not only 
increases the electricity consumption, but also triggers a corre-
lated increase in heating and cooling load). The use of simple 

surrogate models (e.g., Gaussian Process or Linear regression 
models) ignore the temporal dependency as well as simplify the 
complexity of building operation, raising concerns about its 
reliability and validity to support BEM calibration in high reso-
lution. Models considering temporal dependency and multi- 
output can provide more accurate and consistent results 
[25,55]. No surrogate model has yet considered capturing these 
temporal dependencies and multi-output complexities for high 
resolution BEM calibration.

(3) Calculation ef昀椀ciency of Bayesian calibration: The computational 
burden of the Bayesian calibration method originates from ne-
cessity to compute covariance matrices and likelihoods in 
parameter evaluation. In cases of high-resolution calibration 
involving a multitude of parameters or substantial data volumes, 
the size of these covariance matrices grows exponentially. As a 
result, solving high-dimensional covariance matrices becomes 
problematic, leading to dif昀椀culty in high-resolution calibration 
with excessive computation burdens.

1.5. Proposed framework

To address the issues mentioned above, we propose a novel deep 
learning-based Bayesian calibration framework speci昀椀cally designed for 
high-resolution BEMs. This framework is novel in (1) involving a pre- 
calibration mechanism to derive informative priors as well as facilitate 
parameter selection and building operation schedule analysis that were 
not considered in current methods. This mechanism also helps alleviate 
over-parameterization issues, i.e., high posterior parameter identi昀椀-
ability [38], achieving reliable Bayesian calibration results in hourly 
resolution; (2) leveraging deep learning techniques, i.e., Long Short- 
Term Memory network (LSTM), as the surrogate model to capture 
thermo-dynamics and temporal-dependencies of energy use in high- 
resolution modeling and realize multi-channels of outputs (i.e., heat-
ing, cooling, and electricity), addressing limitations of surrogate model 
mentioned above; (3) simplifying the covariance matrix calculation to 
signi昀椀cantly reduce the computational burden. The proposed frame-
work aims to enhance reliability, applicability, computational ef昀椀-
ciency, and calibration resolution of the current Bayesian-based 
calibration approach, to make automated high-resolution calibration be 
possible to produce BEMs usable in broader applications (e.g., demand 
response and smart control).

2. Methodology

2.1. Overview of the proposed framework

The proposed framework consists of two primary phases: Pre- 
Calibration and Rapid Auto-Calibration, as shown in Fig. 2. During the 
Pre-Calibration phase, the 昀椀rst step is Data Collection & Disaggregation, 
aiming to gather and disaggregate data to create more reliable datasets 
for subsequent schedule analysis and parameter selection. After disag-
gregation, schedule analysis and parameter selection steps (Steps 2 and 
3) are performed. These 2 steps focus on identifying speci昀椀c information 
to better de昀椀ne informative priors for schedules and important building 
physical parameters in calibration. After identifying calibrated param-
eters, we establish the high-昀椀delity physics-based model (EnergyPlus) as 
the initial building model to calibrate in this research (Step 4). Moving 
on to the Rapid Auto-Calibration phase, our framework employs a 
sampling method to generate the simulation dataset (Steps 5) for 
training the surrogate model to support calibration parameter evalua-
tion in the following step (Step 6). Subsequently, optimization steps for 
rapid auto-calibration can be conducted using the developed novel 
Bayesian structure integrating the surrogate model (Step 7). Finally, 
validation is performed to ensure the calibrated model meeting re-
quirements of ASHRAE guideline in hourly resolution (Step 8).

Fig. 1. Over-parameterization phenomenon: Parameters combination 1: 
Lighting is 7 W/m2, Equipment is 5 W/m2; Parameters combination 2: Lighting 
is 1 W/m2, Equipment is 9 W/m2.
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2.2. Pre-calibration

In optimization-based auto-calibration, modelers 昀椀rstly specify the 
number and range of parameters to be calibrated. In former practice, 
modelers typically don’t detailly analyze the building operation patterns 
and energy usage, e.g., related with the control strategy, operation 
schedule, and occupant behaviors while all calibration works (param-
eter adjustment) are automatically handled by the optimization algo-
rithms. This is acceptable for low-resolution calibration (e.g., monthly), 
as monthly calibration usually incorporates limited measurement data 
(e.g., 12 months for a year) with fewer calibration parameters (typically 
4–8). Therefore, it is relatively easy to auto-identify the optimal set of 
parameters in model calibration that accurately re昀氀ects monthly 
building energy use. However, for high-resolution calibration with 
hourly measurements (8,760 h of heating, cooling, and electric), 

calibration of larger number of parameters related to building con-
struction, control, and operation schedules are required to comprehen-
sively capture the building dynamics. De昀椀ning informative priors for 
these parameters with appropriate initial ranges is challenging due to 
the large volume of data and parameters involved, but important to 
facilitate the converging process during calibration and ensure reliable 
calibration performance. This is why high-resolution calibration neces-
sitates pre-calibration with a detailed analysis of building operation 
patterns and energy use in the 昀椀rst place.

2.2.1. Data collection and disaggregation
This task aims to gather 昀椀eld data and decompose it to extract 

detailed building energy consumption patterns to support high- 
resolution calibration. In general, the types of building consumption 
to analyze include cooling, heating, and electricity. Cooling 

Fig. 2. Proposed novel deep learning-based Bayesian calibration framework for high-resolution.

Fig. 3a. Disaggregation of heating consumption.
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consumption involves space cooling, continuous cooling of the me-
chanical room, and the chemistry laboratory (e.g., continuous cooling to 
support protein culture). Heating consumption includes energy use for 
domestic hot water and space heating. Electrical consumption covers 
equipment, appliances, and lighting usage. To improve calibration ac-
curacy, it is crucial to disaggregate and process these consumptions 
separately: (1) Disaggregation of Heating Consumption: In our case 
study, heating consumption persist even during the non-heating season, 
e.g., summer (Fig. 3a). This steady heat demand is attributed to hot 
water usage. Subtracting non-heating season heating from total heating 
yields space heating energy use. (2) Disaggregation of Cooling Con-
sumption: In our case study, there is a base cooling load throughout the 
year for mechanical rooms and chemistry laboratories (Fig. 3b). If this 
base load is not separated, it might lead to a signi昀椀cant overestimation 
of the cooling load (for space cooling), affecting calibration accuracy. 
Subtracting this constant base load from total cooling reveals actual 
energy use for space cooling. (3) Disaggregation of Electrical Con-
sumption: Without sub-metering, differentiating electricity consump-
tion between lighting and equipment could pose a challenge. Therefore, 
it is crucial to improve the auditing process and gather more compre-
hensive information on usage of sub-systems (e.g., lighting and equip-
ment usage), to effectively attribute aggregate energy consumption to 
different sectors and facilitate high-resolution calibration. Effective 
disaggregation of energy use provides accurate prior information on 
heating, cooling, and electricity usage, supporting the calibration pro-
cess. Particularly, separating the base load for laboratory cooling is 
crucial for accurate cooling load calibration and avoiding over-
estimation of cooling energy use (i.e., the base cooling load for me-
chanical room and laboratory is added to the regular load for space 
cooling).

2.2.2. Hourly schedules analysis
One of the barriers to realize high-resolution calibration of BEMs is 

failing to consider operation schedules and occupant behaviors in the 
calibration process [56]. Occupants and schedules have been recognized 
as important and in昀氀uencing factors affecting the accuracy of a cali-
brated BEM [19–22,57,58]. Consequently, reliable estimate of schedule 
fraction parameters of occupant behaviors (e.g., occupancy, plug load 
usage) are crucial to achieve accurate calibration of BEM in high reso-
lution. Even though the building energy usage (including lighting, 
equipment, plug-in loads, occupant, etc.) is 昀氀uctuating throughout its 
operation periods, there remains an underlying pattern. To explore this 
pattern, we analyzed the historical electricity data to derive these 

schedules as informative priori of these input parameters in high reso-
lution Bayesian calibration of BEM.

In this step, our objective is to obtain the prior of schedule fraction 
parameters (Sprior) in calibration by analyzing the uncertainty of 
schedule fractions (S =

[s1,s2,⋯,sq
], where q is the number of schedule 

fractions). This step mainly consists of three small steps to effectively 
approximate the prior of hourly schedule fraction parameters: (1) 
Clustering and Normalization of Daily Electricity Pro昀椀les: By clustering 
the normalized daily electricity consumption pro昀椀les using the Dynamic 
Time Warping (DTW) algorithm [59], we derive energy use patterns for 
different types of the day (e.g., weekdays or weekends) and obtain their 
respective daily schedules (Fig. 4). The strength of DTW algorithm lies in 
its insensitivity to local changes, making it robust in handling noise and 
deformation in time series data analysis, especially in complex scenarios 
[60]; (2) Quantifying the Range of Schedule Fractions: After completing 
the clustering and normalization of daily electricity pro昀椀les, we employ 
Box plots [61] to represent the uncertainty range of schedules. The 
utilization of the third quantile indicates the upper limit of hourly 
schedule fractions, while the 昀椀rst quantile represents the lower limit of 
hourly schedule fractions (Fig. 5). This approach provides a precise prior 
range for hourly schedule fractions; (3) Merging Hourly Schedule 
Fractions: Adjacent hourly schedules sometimes have similar operation 
modes, e.g., 1 AM to 5 AM all have similar schedule ranges. Therefore, 
we merge the hourly schedules of neighboring schedule modes, and the 
number of hourly schedule fractions is reduced from 48 to 22 interval 
schedule fractions (Fig. 6). The bene昀椀ts of this merging include reducing 
calibration parameters and avoiding over-parameterization, aiding in 
surrogate model training and the posterior distribution sampling. 
Following these steps, we can effectively approximate the uncertainty 
range of hourly schedule fraction parameters and derive meaningful 
interval schedule fractions for further analysis and modeling.

2.2.3. Engineering-based parameter selection
After determining the schedules of building operation, the next step 

is to select other building calibration parameters that, in addition to 
schedules, need to be calibrated and are related to building thermal 
properties and control (θ = [θ1, θ2, ⋯, θk], where k is the number of 
calibration parameters) and determine parameters prior (θprior). The 
conventional parameter selection method typically involves calibrating 
a few parameters identi昀椀ed through sensitivity analysis that have a 
signi昀椀cant impact on the calibration results [36–38,62]. Due to the 
computational burden of the Bayesian calibration in high-dimensional 
parameter spaces, using fewer parameters can reduce the 

Fig. 3b. Disaggregation of cooling consumption.

G. Jiang et al.                                                                                                                                                                                                                                    Energy & Buildings 323 (2024) 114755 

5 



computational cost [37,38]. Sensitivity analysis is feasible for monthly 
calibration because a small number of parameters are suf昀椀cient to 昀椀t 
monthly building behavior, while too many parameters may lead to 
over昀椀tting since 12 points of monthly measurements in a year is a small 
dataset. However, selecting only a few important parameters are 
insuf昀椀cient to realize satisfactory performance in high-resolution 
building model calibration. Calibration of more parameters are needed 
to accurately describe the temporal dependencies of building dynamics 
in operation. Our experiments demonstrated that simply selecting 
representative parameters through sensitivity analysis proves chal-
lenging in meeting the requirements of high-resolution calibration (by 
ASHRAE guideline 14 [42]). Consequently, in order to capture the 
building operation status, more input parameters are selected in cali-
bration based on engineering experience, i.e., an engineering-based 
parameter selection. This typically involves model input parameters 
such as envelope properties, control settings, and schedule parameters 
re昀氀ecting building dynamics and operation patterns.

2.2.4. Initial model establishment
In this step, we create an initial EnergyPlus model based on selected 

calibration parameters (including schedules). This initial model serves 
as the basis for calibrating parameters to train the surrogate model and 
conduct auto-calibration. Table 1 illustrates the 38 calibration 

parameters determined through the engineering-based selection.

2.3. Rapid auto-calibration

2.3.1. Simulation dataset generation for surrogate modeling
In the auto-calibration process, iterating physics-based simulations 

(required to evaluate how different combinations of parameters could 
result in a matching between modeling and measurements) can be 
computationally intensive. To mitigate computational burdens in cali-
bration, a surrogate model or meta-model is typically used to emulate 
physics-based modeling (e.g., EnergyPlus) for evaluation of sampled 
combination of building parameters. To establish the surrogate model, 
the 昀椀rst step is to sample different sets of parameters and correspond-
ingly perform simulations to generate simulation datasets (Dc) for 
training of surrogate models.

To select design points in parameter sampling and surrogate model 
training, Latin hypercube sampling (LHS) [63] methodology is 
employed. The goal of using LHS is to comprehensively explore the 
multi-dimensional parameter space, covering a wide range of building 
operation scenarios possible in practice. Through Python scripts, we 
automatically sample and feed different parameter combinations into 
physics-based simulation programs (EnergyPlus) to generate corre-
sponding simulation outputs, as the training dataset for surrogate 

Fig. 4. Clusters of electricity consumption pro昀椀les (weekdays: left, weekends: right).

Fig. 5. Daily schedules (weekdays: left, weekends: right).

Fig. 6. Interval schedules (weekdays: left, weekends: right).
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modeling in the subsequent step. This training datasets consist of 38 
calibration parameters form pre-calibration and 5 weather relevant 
parameters (including dry bulb, humidity, wind speed, solar radiation, 
and day type) as inputs, and heating, cooling, and electricity use as 
outputs. Automating the simulation process and collecting simulation 
datasets expedite the calibration process while minimizing the needs of 
manual intervention.

2.3.2. High-resolution surrogate model
After generating training data for the surrogate model from the last 

step, we employ the Long Short-Term Memory (LSTM) algorithm [64] as 
the deep learning-based surrogate model for high-resolution calibration.

Auto-calibration work typically requires the use of optimization tools 
(e.g., Bayesian inference) to 昀椀nd the optimal sets of model parameters 
that describe actual building operation. However, the process of auto- 
identifying optimal sets of parameters always involves parameter eval-
uation, i.e., inputting candidate parameter sets into building models to 
determine if the sampled parameters make modeling outcomes match 
observations. This triggers signi昀椀cant computational burdens for itera-
tive running of models, especially when high 昀椀delity physics-based 
models (e.g., EnergyPlus) are involved. The use of surrogate (or meta) 
models in auto-calibration aims to simplify this iterative computing 
process during optimization [39]. The ef昀椀ciency and effectiveness of 
using surrogate models in Bayesian calibration have been extensively 
demonstrated through various methods such as multiple linear regres-
sion (MLR), Gaussian process (GP), multilayer perceptron (MLP), etc 
[34,40]. However, current surrogate models struggle to capture the 
nonlinear and time-dependent relationships in building operation, 
making them dif昀椀cult to be applied in high-resolution calibration.

To address these challenges and support high resolution calibration, 
a capable surrogate model is needed to effectively capture building 
dynamics in high resolution with temporal dependencies. Hence, the 
Long Short Term Memory (LSTM), as the widely used model for pro-
cessing time series data [55,65], is used as the surrogate model in this 
research. Fig. 7 is the high-level structure of one LSTM unit. Each LSTM 
unit has outputs (h) and a cell state (C). At step t, the input (ht−1, Ct−1, xt) 
consists of the output (ht−1, Ct−1) from the previous step t−1 and the 
input parameters (xt) for step t. By passing through the forgetting gate ft , 
updating gate it, and output gate ot, the new unit output ht and cell state 

Ct are obtained. This mechanism enables continuous forward propaga-
tion and captures long-term dependencies, addressing the coupling of 
sub-systems, human behavior, and thermal inertia in the building 
thermal processes.

The proposed surrogate model structure, as shown in Fig. 8, consists 
of an input layer, LSTM layers, a ReLU layer, and a fully connected (FC) 
layer. The input layer is derived from the raw dataset through reshaping 
and splitting, resulting in three dimensions: input size, time step, and 
batch size. Input size represents the number of input parameters for the 
model, time step represents the length of each time series data, and 
batch size represents the total number of time series data. The output 
layer has three outputs: cooling, heating, and electricity consumption. 
This deep LSTM architecture aims to capture the complex thermo- 
dynamics and temporal dependency of buildings in operation (i.e., 
8760 h of building operation). As suggested in the reference [66], a FC 
layer is typically added after the LSTM layer to map all the predicted 
sequence to the desired output size. Additionally, we innovatively 
introduced the ReLU [67] layer after the LSTM layer to eliminate 
negative values, as energy consumption cannot be negative. This ino-
vation enhances both the performance and robustness of the model. The 
ReLU function, de昀椀ned as y = max(0, y), where negative values are 
transformed to zero.

2.3.3. Proposed Bayesian framework for calibration
The proposed framework incorporates a novel Bayesian calibration 

method that optimizes the calibration process in a computationally 
ef昀椀cient manner. This method reduces the size of the covariance matrix 
and simpli昀椀es the covariance structure, achieving time ef昀椀cient 
computation.

Within the framework of KOH Bayesian calibration [26] for BEMs, 
the Bayesian inference can be expressed as the relationship between the 
building observation yi (measurement data, e.g., cooling, heating, and 
electricity), the true building operation process ζ(xi), and the physics- 
based model η(xi, θ) (the framework adjusts the initial parameters in 
EnergyPlus model to align with ground truth building operation), as 
described by Eq. 1: 
yi = ζ(xi)+ ei = η(xi, θ) + δ(xi)+ ei (1) 

where ei represents the observation error for the i th observation and 
δ(xi) is a model inadequacy function. We usually assume that the ei s are 
independently distributed as N

(
0, σ2y

)
. δ(xi) can be seen as modeling 

discrepancy between true building operation process ζ(xi) and physics- 
based simulation η(xi, θ). xi denotes the 昀椀eld weather data, and θ rep-
resents the model parameters to be calibrated.

In order to minimize computation time in parameter calibration, we 
employed a surrogate model (Section 2.3.2) to substitute iterative 
computing of physical-based model η(xi, θ), as described by Eq. 2. 

Table 1 
Calibration parameters.

Building information 
parameters

Control parameters Schedule parameters
Weekdays Weekends

Conductivity of wall 
insulation (W/m " K)

Cooling set-point at 
occupied hours (çC)

Interval 1 Interval 1

Conductivity of roof 
insulation (W/m " K)

Cooling set-point at 
unoccupied hours (çC)

Interval 2 Interval 2

Conductivity of window 
glass (W/m " K)

Heating set-point at 
occupied hours (çC)

Interval 3 Interval 3

SHGC Heating set-point at 
unoccupied hours (çC)

Interval 4 Interval 4

Electric equipment 
de昀椀nition (W/m2)

Chilled water supply 
temperature for AHU (çC)

Interval 5 Interval 5

Lights de昀椀nition (W/m2) Supply air temperature of 
each AHU (çC)

Interval 6 Interval 6

People de昀椀nition (m2/ 
person)

Outdoor air 昀氀ow at 
occupied hours (1/h)

Interval 7 Interval 7

Outdoor air 昀氀ow at 
unoccupied hours (1/h)

Interval 8 Interval 8

Hot water peak 昀氀ow rate 
(m3/s)

Interval 9 Interval 9

Interval 
10

Interval 
10

Interval 
11
Interval 
12

Fig. 7. LSTM unit structure.
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η(xi, θ) = fsur(xi, θ), η(xi, θ) > N(fsur, σ2
η

) (2) 

where ση is the RMSE of the surrogate model that is the discrepancy 
between the surrogate model fsur(xi, θ) and the physics-base model 
η(xi, θ), i.e., EnergyPlus model in our case study.

By specifying the structure of the covariance matrix, a typical 
Gaussian process (GP) (Eq. 3) can 昀氀exibly represent the model behavior 
and achieve an exact 昀椀t on the given observation samples yi. 
yi > N(μ,Σ), μ = η(xi, θ),Σ = Σy + Σδ + Ση (3) 

where, Σy is a n × n covariance matrix used to present for observation 
error ei, given n 昀椀eld observations. Σδ is a n × n covariance matrix used 
to present for model inadequacy with true building process δ(xi). Ση is a 
(m + n)×(m + n) covariance matrix used to present the error of physics- 
based simulation η(xi, θ), given m simulation sample points. The cali-
bration parameters include the model parameters θ in the mean matrix μ 

and the hyperparameters ϕ in the covariance matrix Σ. Following the 
Bayes’ rule, the posterior distribution p(θ,ϕ

òòyi
) can be derived from 

their priors p(θ), p(ϕ), and the likelihood of the observations p(yi
òòθ,ϕ

) as 
follows: 
p(θ,ϕ|yi)∝p(yi|θ,ϕ)⋅p(θ)⋅p(ϕ) (4) 

The likelihood p(yi
òòθ, ϕ

) can be expressed as: 

p(yi|θ,ϕ) = |Σ|
−

1
2exp

{
−

1
2
[
(yi − η)T

Σ
−1(yi − η)

]} (5) 

where priors p(θ) and p(ϕ) can be determined based on engineering 
experience and practical situations, with details provided in the 
engineering-based parameter selection and hourly schedule analysis 
sections.

As Eq. 1, the current traditional Bayesian calibration of physics- 
based simulation η(xi, θ) and model inadequacy δ(xi) typically assume 
a joint multivariate GP [32,38,41], requiring the 昀椀tting of 昀椀eld obser-
vations and simulation outputs. For hourly calibration, the dimension-
ality (m+n)*(m+n) of the covariance matrix Ση becomes enormous 
given n (n = 8,760 for hourly data) 昀椀eld observations and m physics- 
based simulation samples (easily exceeding 10,000 samples in prac-
tice). This leads to a substantial computational burden to compute Σ−1 in 
calculating likelihood p(yi

òòθ, ϕ
) (Eq. 5), making hourly calibration un-

feasible. Rather than employing GP as in the current traditional 
Bayesian calibration framework, we use a deep learning method (LSTM, 
in Section 2.3.2), as a high-resolution surrogate model effective in 
capture temporal correlations in hourly building modeling, to emulate 
η(xi, θ) (Eq. 6): 
η(xi, θ) = fLSTM(xi, θ), η(xi, θ) > N(fLSTM, σ2

η

) (6) 

where ση is the RMSE of the surrogate model that is the discrepancy 
between the LSTM surrogate model fLSTM(xi, θ) and the computer 
simulation η(xi, θ). This means that the Bayesian process in our approach 
no longer requires direct 昀椀tting to the m simulation sample points; 
instead, pre-trains the simulation data using a surrogate model. This 
strategy reduces the size of the covariance matrix Σ from m + n to n.

However, the computational burden remains unacceptably high due 
to the modeling of model inadequacy term δ(xi) as a GP (with large 
covariance matrix). The advantage of our high-resolution surrogate 
model, combined with an effective pre-calibration analysis, lies in its 
ability to handle the δ(xi) between the true building thermal process and 
physics-based simulation. As a result, instead of employing a multivar-
iate joint GP to 昀椀t the model inadequacy term δ(xi), we simplify the 
approach and assume that δ(xi) follows a Gaussian distribution: N(0,σ2

δ

).
In conclusion, by (1) reducing the size of Σ to n × n by 昀椀tting an 

LSTM surrogate model, and (2) assuming δ(xi) N(0, σ2
δ

) with our pre- 
calibration analysis to ensure the accuracy of the initial model. This 
simpli昀椀cation leads to the entire covariance matrix (Eq. 7) as follows: 
Σ = Σy +Σδ +Ση = (σ2

y+σ2
δ + σ2

η )⋅In = σ2
⋅In (7) 

In Bayesian calibration, after deriving the likelihood function, it is 
common to employ sampling to obtain posterior distributions of cali-
bration parameters, accelerating the Bayesian inference process. The 
Metropolis-Hastings (MH) method [68], as a common algorithm in the 
MCMC for sampling from intricate probability distributions, generates 
samples by introducing a proposal distribution of candidate parameter 
and utilizes an acceptance-rejection criterion to determine whether the 
candidate parameter should be accepted. Detailed elucidation and the 
procedural steps of the MH algorithm are presented in Algorithm 1. The 
validity and ef昀椀cacy of our previous simpli昀椀cation of covariance in the 
likelihood evaluation lies in the fact that this simpli昀椀cation does not 
signi昀椀cantly affect the acceptance ratio α. Consequently, our simpli昀椀-
cation preserves the integrity of subsequent inference and posterior 
distribution sampling processes.

Algorithm 1 MCMC Sampling (Metropolis-Hastings)
Require: Target distribution P(θ

òòyi
), proposal distribution Q(

θ
òòyi

), number of samples 
N
1: Initialize sample set X = {}
2: for n = 1 to N do
3: Sample θ from proposal distribution Q(

θ
òòyi

)

4: Sample u form uniform distribution U(0,1)
5: Compute acceptance ratio α =

P(θn
òòyi

)Q(
θn
òòyi

)

P(θn−1
òòyi

)Q(
θn−1

òòyi
)

6: if u f α then
7: Add θn to sample set X
8: else
9: Add θn−1 to sample set X
10: end if
11: end for
12: return Sample set X

Fig. 8. High-resolution surrogate model framework.
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2.3.4. Model validation
The evaluation of BEMs often adheres to the ASHRAE guideline 14 

[42], as a standard for assessing the performance of BEM calibration. 
One of the metrics used is the coef昀椀cient of variation root mean square 
error (CV-RMSE) that quanti昀椀es the percentage error between the 
simulated and measured data. Additionally, the normalized mean bias 
error (NMBE) indicates the deviation percentage of actual data in cali-
bration, with either underestimate (NMBE>0) or overestimate 
(NMBE<0). According to the guideline, for hourly calibration results, 
NMBE should be below 10 %, and CV-RMSE should be less than 30 %. 
The CV-RMSE is calculated using the following: 

CV −RMSE =

��������������������
Σ

n
i=1(yi−�yi )

2
:

(n−p)
y × 100 (7) 

The NMBE is calculated as follows: 

NMBE =
Σ

n
i=1(yi − �yi )
(n − p) × y × 100 (8) 

where:
yi represents the value of the 昀椀eld observation.
y denotes the arithmetic mean of the sample comprising n observa-

tions.
�yi signi昀椀es the predicted value of y obtained through computer 

simulation.
n corresponds to the number of data points or periods in the baseline 

period.
p refers to the number of parameters or terms in the baseline model, 

which is developed through mathematical analysis of the baseline data. 
For building calibration, p = 1.

3. Case study

In this section, we present a case study to demonstrate and validate 
the effectiveness of the proposed Bayesian calibration framework. 
Firstly, we provide an overview of a campus building (the model of 
which we calibrated) in this study (Section 3.1). Subsequently, we 
describe the pre-calibration process to obtain accurate priors of pa-
rameters and schedules for constructing an initial model capable to 
capture the actual thermal processes of building operation (Section 3.2). 
Finally, in Section 3.3, we present the process of the rapid auto- 
calibration.

3.1. Building description

As depicted in Fig. 9a, the case study focuses on the Crocker Science 

Center (CSC) building, located in the main campus of the University of 
Utah. This four-story building spans a total area of roughly 11,437 
square meters. It encompasses various spaces, including of昀椀ces, con-
ference rooms, mechanical rooms, an auditorium, and laboratories. The 
building employs a variable air volume (VAV) system for air condi-
tioning, comprising two air handling units (AHUs). The cooling is sup-
plied by a central plant on the campus, while heating is generated by 
four boilers within the building. A BEM of the case study was con-
structed using EnergyPlus (Fig. 9b), leveraging the building information 
model (BIM) (Fig. 9c) and adhering to the building design code [69]. The 
weather data 昀椀les are provided by White Box Technologies [70].

The calibration process is based on hourly energy consumption data, 
including 8,760 h of heating, cooling, and electricity data collected from 
January to December 2021 (with ~ 800 missing data points in mainly 
July and August).

3.2. Pre-calibration process

The purpose of pre-calibration is to acquire accurate parameters and 
prior ranges, particularly schedule fraction parameters, in order to 
establish a high-resolution initial model that effectively captures dy-
namics of building operation. In this case, an hourly schedule analysis 
was conducted, resulting in the extraction of two types of daily sched-
ules with 22 schedule parameters (representing the dynamics of building 
operation and human behavior on weekdays and weekends as compre-
hensively as possible without over-parameterization, as Section 2.2.2). 
Additionally, by applying the engineering-base parameter selection 
method, a comprehensive set of 16 parameters were selected, encom-
passing thermal properties and control parameters of the building. The 
initial range of these parameters are set as triangular distributions in 
calibration, as detailed in Table 2.

3.3. Rapid auto-calibration process

In the automated Bayesian calibration process, an LHS approach is 
employed to generate 38 × 20 design points (Parameters = 38, LH 
design points = 20) based on the uncertainty range of the input pa-
rameters. These points are used to simulate hourly energy consumption, 
resulting in a simulation dataset (Dc) comprising 175,200 points with 38 
input building parameters, 5 weather parameters, and 3 outputs (cool-
ing, heating, and electricity use). The dataset is normalized and used as 
training data for the surrogate model. A two-layered multi-output LSTM 
model is 昀椀tted as the surrogate model to establish the relationship be-
tween the model inputs and the outputs of interest. The LSTM model 
parameters are speci昀椀ed in Table 3. It is important to note that for each 
unique building, the LSTM model needs to be retrained to re昀氀ect 
building dynamics. An MCMC sampling of 10,000 runs is implemented 
to derive the posterior distribution of calibrated parameters, with the 
昀椀rst 2,000 sample points discarded as burn-in. Towards the end, this 
case study is also compared with traditional Bayesian calibration 
methods (GP) [32] and lightweight Bayesian calibration methods 

Fig. 9a. CSC Building. Fig. 9b. Building energy model in EnergyPlus.
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(Linear Regression) [41] under the same con昀椀guration.

4. Results

4.1. Calibrated parameters

This section presents the acquisition of posterior distributions of 
calibration parameters through Bayesian inference. All prior distribu-
tions assigned to the calibration parameters are modeled as triangular 
distributions. Fig. 10 illustrates an example posterior distribution of 
calibrated parameters. The light blue triangle represents the uncertainty 
range (prior) of the calibration parameter listed in Table 2, and the dark 
“*” point denotes the estimated value of the calibrated parameter 
(Table 4) derived from the posterior distribution as inputs into the 
physics-based model for simulation. The posterior distribution demon-
strates that the calibration results for all the parameters are identi昀椀able, 
each exhibiting a distinct peak. This substantiates that our hourly cali-
bration results constitute a unique solution and do not suffer from the 
over-parametrization issue, and the calibrated parameters have strong 
validity [38].

4.2. Model validation

Fig. 11 compares hourly energy consumption observations with 
simulation outputs from the calibrated model. The cooling, heating, and 
electricity consumption simulation results closely match 昀椀eld observa-
tion data. Heating, cooling, and electricity exhibit NMBE values of 4.5 
%, −2.9 %, and 5.5 %, respectively (Table 5). The CV-RMSE for heating, 
cooling, and electricity are 23.9 %, 28.4 %, and 26.9 %, respectively. All 
energy consumption types demonstrate satisfactory performance ac-
cording the ASHRAE guideline [42]. We can 昀椀nd that our weekdays and 
weekends schedule work for most of the time. Due to data missing 
(~800 points, mainly around Jul 17th-Aug 17th), we have excluded this 
period from validation. As a result, there is a discontinuity around this 
missing period in Fig. 11. In Fig. 11a, since heating consumption in-
cludes domestic hot water and space heating. There is a period with 
repetitive patterns in summer (May-Sep). In Fig. 11b, the trend of 
cooling consumption of calibrated model aligns well with 昀椀eld obser-
vations of actual building operation. However, due to the complexity of 
building functions and uncertainties, there are still some deviations, 
particularly around the period of data missing. Regarding the electricity 
(Fig. 11c), setting typical schedules (one for weekday and one for 
weekend) is suf昀椀cient to realize decent calibration results for the ma-
jority of days. However, due to the multifunctionality (e.g., lab) of the 

Fig. 9c. Building information model in REVIT.

Table 2 
Uncertainty range of calibration parameters.

Thermal 
parameters

Min Mode Max Control 
parameters

Min Mode Max Schedule parameters
Weekdays Min Mode Max Weekends Min Mode Max

Conductivity of 
wall insulation 
(W/m " K)

0.03 0.04 0.05 Cooling set-point at 
occupied hours (çC)

20 24 26 Interval 1 0.1 0.2 0.3 Interval 1 0.1 0.15 0.2

Conductivity of 
roof insulation 
(W/m " K)

0.08 0.09 0.10 Cooling set-point at 
unoccupied hours 
(çC)

24 26 28 Interval 2 0.1 0.35 0.6 Interval 2 0.1 0.25 0.4

Conductivity of 
window glass 
(W/m " K)

0.01 0.015 0.02 Heating set-point at 
occupied hours (çC)

18 21 24 Interval 3 0.4 0.5 0.6 Interval 3 0.2 0.35 0.5

SHGC 0.3 0.5 0.8 Heating set-point at 
unoccupied hours 
(çC)

12 18 20 Interval 4 0.4 0.55 0.7 Interval 4 0.2 0.35 0.5

Electric equipment 
de昀椀nition (W/ 
m2)

10 17.5 25 Chilled water 
supply temperature 
for AHU ()

3 6 9 Interval 5 0.5 0.65 0.8 Interval 5 0.3 0.45 0.6

Lights de昀椀nition 
(W/m2)

5 10 15 Supply air 
temperature of 
each AHU (çC)

10 14 18 Interval 6 0.5 0.7 0.9 Interval 6 0.3 0.45 0.6

People de昀椀nition 
(m2/person)

5 10 15 Outdoor air 昀氀ow at 
occupied hours (1/ 
h)

0.8 1.1 1.4 Interval 7 0.5 0.65 0.8 Interval 7 0.2 0.35 0.5

Outdoor air 昀氀ow at 
unoccupied hours 
(1/h)

0.4 0.595 0.79 Interval 8 0.4 0.55 0.7 Interval 8 0.1 0.25 0.4

Hot water peak 
昀氀ow rate (m3/s)

0 0.0015 0.003 Interval 9 0.3 0.45 0.6 Interval 9 0.1 0.25 0.4

Interval 10 0.3 0.4 0.5 Interval 10 0.1 0.2 0.3
Interval 11 0.2 0.3 0.4
Interval 12 0.1 0.2 0.3

Table 3 
LSTM model parameters.

Training data size 140,158
Test data size 35,040
Input dimension 43
Lookback 3
Output dimension 3
Hidden dimension 128
LSTM Layers 2
Epochs 200
Learning rate 0.001
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building, deviations between modeling and measurements are more 
obvious in certain days than others.

Notably, for the cooling consumption, it exhibits the lowest NMBE 
(−2.9 %), while the CVRMSE is the highest, reaching 28.4 %. 
Conversely, for the electricity, it shows the highest NMBE (5.5 %), while 
the CVRMSE is relatively better at 26.9 %. This distinction is clearly 
evident in Fig. 11b and Fig. 11c. We will further explore the potential 
reasons behind this phenomenon in the discussion, Section 5.2.

4.3. Computational time comparisons

For comparison of computational ef昀椀ciency, the computational time 
of different Bayesian calibration approaches in calibration (assuming 
that the calibration approaches converge with 10,000 iterations) is 
estimated by multiplying the computing time of a limited number of 
iterations (10 in this case) with a factor of 1,000 to save computational 

efforts on comparison. Table 6 presents the comparison results, depicted 
by the computation times of our Proposed Bayesian Approach (using 
LSTM surrogate and simplifying covariance matrix), the Traditional 
Bayesian Approach (using Gaussian process model as surrogates) [32], 
and the Lightweight Bayesian Approach (using Gaussian process and 
linear regression model as surrogates) [41]. The Proposed Bayesian 
Approach is able to perform hourly calibration automatically and 
rapidly, completing the process within 1.67 h, compared to > 3,600 h 
using the traditional Bayesian method and > 600 h for lightweight 
Bayesian methods in performing the same calibration task. Additionally, 
the former methods only support a single output, while the proposed 
method can handle calibration of multiple outputs (heating, cooling, 
and electricity) simultaneously. The computational ef昀椀ciency of our 
proposed approach is almost independent of the simulation data di-
mensions and the number of parameters because we simpli昀椀ed the 
structure of covariance matrix, making the covariance size just relate to 

Fig. 10. Example posterior distribution of calibrated parameters.
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the number of 昀椀eld observations n during Bayesian inference (Eq. 7).

5. Discussion

5.1. Signi昀椀cance of pre-calibration for high-resolution

With trials and errors to calibrate BEM in high-resolution, we 昀椀nd the 
pre-calibration to derive accurate priors is of paramount importance, as 

it not only de昀椀nes the informative priors to inform the parameter sam-
pling and tuning process, but also facilitates the construction of a reli-
able initial model and surrogate model to help calibration. Pre- 
calibration is not a conventional manual trial-and-error process; 
rather, it is driven by knowledge mined from collected building data in 
general (operation data, construction drawings, etc.), to uncover the 
hidden building operation pattern from data. Automated calibration can 
be viewed as the process of identifying optimal parameters from a range 
of potential (candidate) combinations to achieve calibration objectives. 
However, the successful implementation of this process hinges on the 
existence of such a set of calibration parameters as candidate parameters 
and better de昀椀nition of initial parameter set that accurately align 
modeling outcomes with 昀椀eld observations (ground truth). A successful 
pre-calibration process helps identify the potential set of parameters that 
make modeling closely match observations while de昀椀ning better initial 
calibration parameters to initiate the calibration process (similar to 
de昀椀ning better initial parameters in training of machine learning algo-
rithms), hence, facilitating the calibration process with enhanced ac-
curacy and convergence speed in high resolution calibration. When pre- 
calibration was not carried out, although we embarked on a series of 

Table 4 
The estimated values of the calibrated parameters.

Thermal parameters Estimated 
value

Control parameters Estimated 
value

Schedule parameters
Weekdays Estimated 

value
Weekends Estimated 

value
Conductivity of wall insulation 

(W/m " K)
0.0493 Cooling set-point at occupied hours 

(çC)
22.22 Interval 1 0.29 Interval 1 0.17

Conductivity of roof insulation 
(W/m " K)

0.0885 Cooling set-point at unoccupied hours 
(çC)

26.67 Interval 2 0.55 Interval 2 0.12

Conductivity of window glass (W/ 
m " K)

0.0194 Heating set-point at occupied hours 
(çC)

20 Interval 3 0.58 Interval 3 0.256

SHGC 0.65 Heating set-point at unoccupied hours 
(çC)

12.78 Interval 4 0.63 Interval 4 0.45

Electric equipment de昀椀nition (W/ 
m2)

23 Chilled water supply temperature for 
AHU (çC)

5.5 Interval 5 0.73 Interval 5 0.425

Lights de昀椀nition (W/m2) 5.6 Supply air temperature of each AHU 
(çC)

11.5 Interval 6 0.81 Interval 6 0.485

People de昀椀nition (m2/person) 14.7 Outdoor air 昀氀ow at occupied hours (1/ 
h)

1.37 Interval 7 0.68 Interval 7 0.42

Outdoor air 昀氀ow at unoccupied hours 
(1/h)

0.41 Interval 8 0.64 Interval 8 0.2

Hot water peak 昀氀ow rate (m3/s) 0.00025 Interval 9 0.56 Interval 9 0.18
Interval 
10

0.34 Interval 
10

0.12

Interval 
11

0.34

Interval 
12

0.18

Table 5 
CV-RMSE and NMBE values.

Error Heating (kWh) Cooling (kWh) Electricity (kWh)
NMBE 
(%)

CV- 
RMSE 
(%)

NMBE 
(%)

CV- 
RMSE 
(%)

NMBE 
(%)

CV- 
RMSE 
(%)

Initial 
model

138.9 145.8 13.2 56.9 8.7 27.7

Calibrated 
model

4.5 23.9 −2.9 28.4 5.5 26.9

Fig. 11a. Comparison of heating consumption.
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parameter 昀椀tting process, it is likely that the outcomes of the high- 
resolution calibration were not ideal, i.e., did not meet the re-
quirements of ASHRAE guideline 14 [42]. Previous research [6,7,71]
also con昀椀rmed this. The calibrated model without pre-calibration as the 
preliminary step is hard to capture of intricate building dynamics (e.g., 
energy consumption trends, 昀氀uctuations, peak and off-peak periods) 
within the day, with one example presented in Fig. 12 (calibration using 
informative priors de昀椀ned by vs. calibration using the default schedules 
of large of昀椀ce operation from ASHRAE).

In the context of monthly calibration, the objective function only 
encompasses 12 months of energy consumption. As such, the task of 
matching monthly energy consumption with actual 昀椀eld observed data 
is relatively straightforward, without the need to ensure matching 
hourly or daily operating records. On the contrary, the complexity of 
calibrating high-resolution models is signi昀椀cantly enhanced, 

considering a much larger observation dataset with hourly measure-
ments of heating, cooling, and electricity use data across the year (8,760 
h) and increasing number of parameters to calibrate. The selection of 
incorrect parameters or in appropriate boundaries of parameters (e.g., 
with a far deviated schedules) can result in the persistent mismatch 
between simulation and ground truth (easily stuck at local minima in 
objective function) and un-convergence.

Hence, to address the challenges outlined earlier, we 昀椀nd a knowl-
edge and engineering-driven pre-calibration process signi昀椀cant for high 
resolution building model calibration. As introduced in Section 2.2, this 
involves a systematic disaggregation of loads, meticulous analysis of 
schedules, and an engineering-based parameter selection process. 
Furthermore, we leveraged cluster analysis and schedule reduction 
methodologies, to prevent over-parameterization and mitigate the 
emergence of multi-solution issue in the calibration process.

5.2. Evaluation indicators applicable to hourly calibration

Through the case study, we also recognize a potential issue of current 
evaluation indicators, i.e., CV-RMSE, in quantifying the accuracy of 
calibration. It is possible that CV-RMSE could result in an exaggerated 
deviation of calibration results since its calculation is highly in昀氀uenced 

Fig. 11b. Comparison of cooling consumption.

Fig. 11c. Comparison of electricity consumption.

Table 6 
Comparison of time results.

Method Time
Traditional Bayesian Approach [32] 3,646.39 h
Lightweight Bayesian Approach [41] 615.14 h
The Proposed Bayesian Approach 1.67 h
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by the average of 昀椀eld data y (Where CV −RMSE =

�����������������
Σ

n
i=1(yi−�yi )2

:

(n−p)
y ). Hence, a 

small average 昀椀eld measurement y could directly lead to high CV-RMSE 
for cooling load calibration in cold climate or heating load in hot 
climate, considering a signi昀椀cant portion of the hourly cooling/heating 
load is at or near zero throughout the year because of climate conditions. 
In our case study, since the average annual cooling consumption is 
relatively small, it is easier to observe more signi昀椀cant deviations of 
modeling to observations in calibration of cooling energy use compared 
to heating and electricity usage, using CV-RMSE as a measure.

As demonstrated in Fig. 13a, although the trend of modeled and 
measured cooling is well-matched (with an MBE of only −2.9 %), the 
CV-RMSE value for cooling energy use was relatively high, i.e., 28.4 %. 
In contrast, although more signi昀椀cant deviations of heating and elec-
tricity energy use trends are observed (as demonstrated in Figs. 13b and 
13c), higher average heating and electricity usage across the year result 
in smaller CV-RMSE values (23.9 % and 26.9 %, respectively), consid-
ering the fact that in the cold climate zone of our test building, heating 
and electricity energy use could be much higher compared to the cooling 

energy use. Hence, the deviation of modelled building energy use could 
possibly be exaggerated using CV-RMSE as the indicator, depending on 
the climate the calibrated building is located in.

6. Conclusion

This research presents a novel deep learning-based Bayesian cali-
bration framework, involving Pre-Calibration and Rapid Auto- 
Calibration, to calibrate BEMs in high resolution (hourly level). 
Compared to the traditional Bayesian calibration framework, the pro-
posed approach utilizes deep learning to construct high-resolution sur-
rogate models, capturing complexity of building in operation. 
Additionally, we simplify the calculation of covariance matrix, hence, 
signi昀椀cantly reducing the computational burden of the Bayesian cali-
bration process. To enhance robustness and reliability of calibration, we 
implement a pre-calibration mechanism, including data disaggregation, 
hourly schedule analysis, engineering-based parameter selection, and 
initial model establishment. These steps lead to informative priors to 
avoid over-parameterization and enhance calibration accuracy. Then, a 
case study is presented to demonstrate satisfactory calibration 

Fig. 12. In昀氀uences of the schedule on daily load pro昀椀le pattern.

Fig. 13a. Hourly cooling consumption distribution.
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performance of applying the developed high-resolution BEM calibration 
approach in practice. The calibration results indicate that cooling, 
heating, and electricity consumption all meet the requirements speci昀椀ed 
in ASHRAE guideline 14. Moreover, our framework exhibits the capa-
bility and ef昀椀ciency to handle high-dimensional parameters and large 
datasets by reducing > 99 % computational burden compared to tradi-
tional Bayesian methods. Through case study and discussion, we 
recognize the importance of pre-calibration for initial speci昀椀cation of 
calibration parameter and insuf昀椀ciency of current indicators to describe 
the model calibration performance due to strong reliance on average 
values.

For the limitations of this study, as discussed earlier in the parameter 
selection, it is tricky to use traditional parameter selection methods (e. 
g., sensitivity analysis) to identify certain important parameters in high- 
resolution calibration, such as schedules and building operation pa-
rameters at unoccupied hours. Therefore, we mainly rely on engineering 
experience and communication with facility managers (for information 

collection) to choose calibration parameters. This process is case spe-
ci昀椀c, depending on the judgment of engineers and may involve subjec-
tivity. Moreover, more case studies should be conducted on different 
types of buildings to further verify the effectiveness of the proposed 
framework. Although we utilized the proposed framework that enables 
Bayesian calibration to be applicable in high-resolution calibration with 
reduced computational burden, there is still potential to further reduce 
the computational burden of Bayesian calibration (e.g., more ef昀椀cient 
calibration methods and more suitable surrogate models). Additionally, 
we encourage researchers to develop more 昀氀exible and customized 
evaluation indicators to meet the growing demand of high-resolution 
building model calibration.
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