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Calibrating building energy models (BEMs), i.e., closing discrepancy between modeling and field measurements,
is of significance to support its applications in building sustainability and resilience analysis. However, as being
widely used in practice, current Bayesian calibration is mostly performed in low-resolution (annual or monthly),
instead of high-resolution (hourly or sub-hourly), which is crucial to support emerging BEM applications, such as
building-renewable energy integration (demand response) and smart control. This is attributable to the gaps in
current Bayesian calibration process, including (1) difficulty in supporting reliable high-resolution calibration
with over-parameterization and multi-solution issues, (2) inadequacy of meta-model to capture temporal building
dynamics in high-resolution, and (3) excessive computational burdens of covariance matrix calculation in
Bayesian inference. Therefore, to close these gaps, this research proposes a novel deep learning-based Bayesian
calibration framework, involving pre-calibration mechanism, Long Short-Term Memory as surrogate models, and
simplified covariance matrix calculation, to calibrate BEMs in high temporal resolution (i.e., hourly) with
enhanced accuracy and computational efficiency. The case study demonstrates its effectiveness to match
modeling outcomes with measurements and realize CV-RMSE of < 30 % and NMBE of < 6 % in hourly resolution,
as well as a significant reduction of calibration time (by > 99 %, from > 600 h to ~ 1.5 h).

1. Introduction the development of accurate BEM in high-resolution has become

particularly important to further promote the application of BEM in

1.1. Background

The energy consumption of buildings comprises a significant pro-
portion of the overall societal energy usage, accounting for approxi-
mately 36 % of global energy consumption [1]. For improved building
performance, building energy modeling (BEM) has emerged as a pivotal
tool for simulating and forecasting energy consumption, serving various
purposes such as analysis of building retrofitting and enhancement of
energy efficiency [2]. In recent years, new applications of BEM arise,
such as demand response (DR), fault detection and diagnosis (FDD), and
smart control [3-5]. These emerging applications requires building
simulation to be able to capture building dynamics with higher accuracy
and resolutions (e.g., hourly and sub-hourly), compared to application
of building modeling in design scenarios that low resolution modeling
(e.g., monthly or yearly predictions) are deemed sufficient. Therefore,
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practice. However, the escalating complexity of effectively capturing
building operation dynamics in high resolution led to an increasing
disparity between simulation outcomes and actual measurements in
high-resolution prediction scenarios [6,7]. To address this, the inputs of
BEM need to be meticulously adjusted. This process, known as model
calibration, involves adjusting various inputs of BEM to ensure the close
matching between modeling and measurements (i.e., field observations)

[8].

1.2. Manual and automated calibration

Calibration methods in BEMs can be broadly categorized into manual
calibration and automated calibration based on the techniques
employed. Manual calibration is a commonly used approach in BEM
calibration. This method involves a “trial and error” process that relies
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on iterative manual tuning of model input parameters [9]. Most of the
earlier methods are based on graphic comparisons, including plot and
chart-based analysis [10-12], end-use disaggregation and analysis
[13-18]. These manual calibrations can reduce the monthly modeling
deviations of building models for energy efficiency and retrofits
leveraging engineering experience. However, manual calibration is
time-consuming, heavily relying on expert judgments and comparisons,
hence, challenging to be applied in complex calibration scenarios (e.g.,
calibration involving large number of parameters or in high-resolution).
On the other hand, the advancement of computing powers and algo-
rithms contribute to the development of automated calibration, realized
through optimization methods. Chong et al. [19] conducted a systematic
review of automated model calibration in building simulation with a
synthesis analysis and classification of simulation inputs and outputs,
data types and resolutions, key calibration methods, and evaluations.
The conclusions show that the existing calibration practice mostly uses
monthly data and it is difficult to consider building schedules in cali-
bration due to computational costs and over-parametrization issues,
although the importance of schedule adjustment in model calibration
has been demonstrated as important to build up accurate building en-
ergy models [20,21]. Vera-Piazzini et al. [22] also emphasized that low-
resolution (monthly and annually) calibrations are prevalent in practice,
while occupancy behavior relevant parameters are identified as the
pivotal parameter for precise building modeling in high resolution (but
difficult to obtain through calibration). Using high-resolution data is
expected to enhance calibration quality (to identify ground truth values
of calibration parameters as well as improve model performance), ulti-
mately leading to more reliability building model in application and
better understanding of building operation dynamics [7,23-25]. Coak-
ley et al. [9] indicate that due to the vast number of inputs required for
detailed building energy simulations and limited available measure-
ments, calibration in high resolution is typically an uncertain process
with over-parameterization, i.e., tuning input parameters to make
modeling outcomes of the calibrated building model match actual
measurements is a highly under-determined problem that involves
multiple non-unique solutions. Given the challenges in building cali-
bration, multiple tools, e.g., data analysis, meta-model, and calibration
techniques, are utilized to ensure reliable calibration practice [22].

1.3. Bayesian calibration

Among different automated calibration methods, the Bayesian cali-
bration [26], proposed by Kennedy and O’Hagan, emerges as a promi-
nent approach and becomes widespread used in various domains,
including physics [27], materials science [28], biomedical engineering
[29], energy storage [30], and ecology [31]. The Bayesian calibration is
advantageous in (1) making full use of prior knowledge to close dis-
crepancies between observed data and model predictions, reducing
system uncertainty; (2) not relying on specific functions or assumptions,
hence, being flexible to be applied in various complex scenarios and
problems; and (3) providing probability distributions for calibration
parameters instead of a single point estimate in inference, enabling
Bayesian calibration to attain comprehensive parameter information to
evaluate the reliability and uncertainty of parameters. As one of the
pioneering works, Heo et al. [32] employed Bayesian calibration in BEM
to assess building retrofitting strategies and quantify associated risks.
They utilized Gaussian Process to represent various uncertainty re-
lationships between the building energy model and observation data.
The Bayesian rule was applied to determine the likelihood of calibration
parameters, followed by the use of Markov chain Monte Carlo (MCMC)
sampling to explore the posterior distribution of parameters.

Although Bayesian calibration has advantages in the calibration as
mentioned, it is limited in calibrating BEM in the monthly resolution in
the current practice. Current Bayesian calibrations typically only select a
small number of calibration parameters and use a small amount of data
(e.g., 12 months of energy use) to calibrate these parameters to avoid
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excessive computational burdens. It could take hours to days to com-
plete the model calibration in the monthly resolution, let alone cali-
brating parameters using 8,760 h of data in the hourly resolution. To
balance the computational cost and calibration performance [33-35],
researchers utilized sensitivity analysis to select the influential param-
eters affecting building energy consumption, hence, reducing the num-
ber of parameters in calibration. By using techniques such as correlation
analysis and clustering methods [35-38], reducing data redundancy can
further mitigate computation time (though using fewer data may affect
the accuracy of calibration [35]).

Additionally, meta-models (or surrogate models) are used to save
calibration time by employing reduced-order or data-driven building
models to approximate BEM outputs in parameter evaluation, without
compromising calibration accuracy [39]. Various experiments demon-
strate that employing meta-models accelerate the calibration process
compared to iteratively running traditional physics-based models (e.g.,
EnergyPlus) while maintaining sufficient accuracy in calibration [34].
Lim [40] compared five meta-models to determine the impact of meta-
model accuracy on Bayesian calibration. For monthly calibration, meta-
models only need to capture the monthly building energy usage, hence,
even using the simplest linear regression as the surrogate model is suf-
ficient to achieve satisfactory calibration results [41]. However, for
high-resolution (e.g., hourly) calibration, the situation is much more
complex with a significantly growing number of outputs (8,760 h per
year) by meta-models. The high-dimensional measurement data (hourly
use of cooling, heating, and electricity across the year) and increasing
number of parameters to calibrate (e.g., thermal properties, control
parameters, occupant relevant parameters) not only increase the
computational burden, but also enhance the difficulty of calibration. Gu
et al. [6] developed a multi-output Gaussian surrogate model and
compared monthly-resolution and hourly-resolution calibrations. For
monthly calibration, the CV-RMSEs of calibrated energy use for 7 test
buildings were below 10 %. However, these calibrated models present
~ 50 %-70 % deviations of modelled energy use in the hourly resolution,
failing to meet the ASHRAE requirements [42] for successful hourly-
calibration. Moreover, the authors mentioned that, even with GPU ac-
celeration, these hourly calibrations still take several weeks. Kristensen
et al. [7] conducted calibration of an ISO 13790 BEM based on the
Bayesian approach, investigating the calibration performance in
different temporal resolutions (6-hour, daily, weekly, and monthly). The
validation results indicate that the reliability and applicability of cali-
brated models increase with higher resolution of calibration. Re-
searchers also attempt to make the Bayesian calibration a more efficient
process through sampling techniques (e.g., No-U-Turn [43] and HMC
[44]), simplified physics models (e.g., reduced-equations [45], RC
model [46], and ISO13790 [7,47,48], or approximate Bayesian infer-
ence [49,50] and meta-learning [51]. Nevertheless, in current practice,
the Bayesian calibration can still only process a small number of building
thermal performance parameters (typically 2-6) and targeting on one
aspect of building energy uses, e.g., cooling or heating energy usage
[7,43,45,49-54]. This significantly reduces the reliability of BEM to
fully capture actual building dynamics in high resolution, hence, more
broadly applicable in emerging applications such as DR, FDD, and
control.

1.4. Existing gaps

Despite these efforts and advancements in building calibration, there
remain limitations to the existing Bayesian approach to calibrate
building energy models in high resolution, including challenges to deal
with increasing number of data and calibration parameters (e.g.,
building operation schedules, control settings) along with the over-
parameterization and multi-solution issue in high resolution calibra-
tion, insufficient surrogate modeling to capture temporal dependencies
of energy use in actual building operation, and computational burden
(inefficiencies) when dealing with high-dimensional parameters and
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large datasets (hourly data) in high-resolution calibration, as explained
below.

(1) Difficulty of high resolution (hourly) calibration: Although
hourly calibration can better support a broader range of advanced
building applications, e.g., DR, FDD, and control, it also presents
greater challenges. When conducting hourly calibration, careful
consideration of building occupant behaviors and schedules be-
comes important, as they to some extent reflect the underlying
operation patterns of buildings (hence, the energy usage of
buildings). This requires collection of more measurement data
(8,760 h in one year), calibration of more model input parameters
(e.g., occupant relevant schedules), and deepened building sys-
tem analysis to capture the thermodynamic process and temporal
correlations in building operation, hence, ensuring matching
between modeling and observations in calibration. However, as
the number of calibration parameters increases, the issue of over-
parameterization and multiple solutions arises, i.e., different
combinations of parameters are likely to produce similar
modeling outcomes that match observations. In such cases, it
becomes ambiguous for the calibration algorithm to determine
the optimal sets of parameters, hence, uncovering ground-truth
parameters that reflect the actual operating conditions of the
building. This will directly affect the validity of high-resolution
calibration. Fig. 1 provides a schematic diagram of multi-
solutions in calibration due to over-parameterization. Although
the values of parameter combinations 1 and 2 for lighting and
equipment differ significantly, a similar calibration outcome
(estimated Building Cooling Load) is obtained.

Limitations of surrogate models: While surrogate models are
employed to enhance the efficiency of Bayesian calibration, they
face challenges in capturing the temporal dependency and
complexity of building operation in high-resolution calibration of
building energy models. Building systems experience time-
dependent influences (e.g., thermal inertia) from human behav-
iors, weather conditions, and system operations. Moreover, in-
teractions between different sub-systems contribute to the
complexity of system operation (e.g., the equipment load not only
increases the electricity consumption, but also triggers a corre-
lated increase in heating and cooling load). The use of simple
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Fig. 1. Over-parameterization phenomenon: Parameters combination 1:
Lighting is 7 W/m?, Equipment is 5 W/m? Parameters combination 2: Lighting
is 1 W/m?, Equipment is 9 W/m?
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surrogate models (e.g., Gaussian Process or Linear regression
models) ignore the temporal dependency as well as simplify the
complexity of building operation, raising concerns about its
reliability and validity to support BEM calibration in high reso-
lution. Models considering temporal dependency and multi-
output can provide more accurate and consistent results
[25,55]. No surrogate model has yet considered capturing these
temporal dependencies and multi-output complexities for high
resolution BEM calibration.

Calculation efficiency of Bayesian calibration: The computational
burden of the Bayesian calibration method originates from ne-
cessity to compute covariance matrices and likelihoods in
parameter evaluation. In cases of high-resolution calibration
involving a multitude of parameters or substantial data volumes,
the size of these covariance matrices grows exponentially. As a
result, solving high-dimensional covariance matrices becomes
problematic, leading to difficulty in high-resolution calibration
with excessive computation burdens.

3

-

1.5. Proposed framework

To address the issues mentioned above, we propose a novel deep
learning-based Bayesian calibration framework specifically designed for
high-resolution BEMs. This framework is novel in (1) involving a pre-
calibration mechanism to derive informative priors as well as facilitate
parameter selection and building operation schedule analysis that were
not considered in current methods. This mechanism also helps alleviate
over-parameterization issues, i.e., high posterior parameter identifi-
ability [38], achieving reliable Bayesian calibration results in hourly
resolution; (2) leveraging deep learning techniques, i.e., Long Short-
Term Memory network (LSTM), as the surrogate model to capture
thermo-dynamics and temporal-dependencies of energy use in high-
resolution modeling and realize multi-channels of outputs (i.e., heat-
ing, cooling, and electricity), addressing limitations of surrogate model
mentioned above; (3) simplifying the covariance matrix calculation to
significantly reduce the computational burden. The proposed frame-
work aims to enhance reliability, applicability, computational effi-
ciency, and calibration resolution of the current Bayesian-based
calibration approach, to make automated high-resolution calibration be
possible to produce BEMs usable in broader applications (e.g., demand
response and smart control).

2. Methodology
2.1. Overview of the proposed framework

The proposed framework consists of two primary phases: Pre-
Calibration and Rapid Auto-Calibration, as shown in Fig. 2. During the
Pre-Calibration phase, the first step is Data Collection & Disaggregation,
aiming to gather and disaggregate data to create more reliable datasets
for subsequent schedule analysis and parameter selection. After disag-
gregation, schedule analysis and parameter selection steps (Steps 2 and
3) are performed. These 2 steps focus on identifying specific information
to better define informative priors for schedules and important building
physical parameters in calibration. After identifying calibrated param-
eters, we establish the high-fidelity physics-based model (EnergyPlus) as
the initial building model to calibrate in this research (Step 4). Moving
on to the Rapid Auto-Calibration phase, our framework employs a
sampling method to generate the simulation dataset (Steps 5) for
training the surrogate model to support calibration parameter evalua-
tion in the following step (Step 6). Subsequently, optimization steps for
rapid auto-calibration can be conducted using the developed novel
Bayesian structure integrating the surrogate model (Step 7). Finally,
validation is performed to ensure the calibrated model meeting re-
quirements of ASHRAE guideline in hourly resolution (Step 8).
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Fig. 2. Proposed novel deep learning-based Bayesian calibration framework for high-resolution.

2.2. Pre-calibration

In optimization-based auto-calibration, modelers firstly specify the
number and range of parameters to be calibrated. In former practice,
modelers typically don’t detailly analyze the building operation patterns
and energy usage, e.g., related with the control strategy, operation
schedule, and occupant behaviors while all calibration works (param-
eter adjustment) are automatically handled by the optimization algo-
rithms. This is acceptable for low-resolution calibration (e.g., monthly),
as monthly calibration usually incorporates limited measurement data
(e.g., 12 months for a year) with fewer calibration parameters (typically
4-8). Therefore, it is relatively easy to auto-identify the optimal set of
parameters in model calibration that accurately reflects monthly
building energy use. However, for high-resolution calibration with
hourly measurements (8,760 h of heating, cooling, and electric),

calibration of larger number of parameters related to building con-
struction, control, and operation schedules are required to comprehen-
sively capture the building dynamics. Defining informative priors for
these parameters with appropriate initial ranges is challenging due to
the large volume of data and parameters involved, but important to
facilitate the converging process during calibration and ensure reliable
calibration performance. This is why high-resolution calibration neces-
sitates pre-calibration with a detailed analysis of building operation
patterns and energy use in the first place.

2.2.1. Data collection and disaggregation

This task aims to gather field data and decompose it to extract
detailed building energy consumption patterns to support high-
resolution calibration. In general, the types of building consumption
to analyze include cooling, heating, and electricity. Cooling
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consumption involves space cooling, continuous cooling of the me-
chanical room, and the chemistry laboratory (e.g., continuous cooling to
support protein culture). Heating consumption includes energy use for
domestic hot water and space heating. Electrical consumption covers
equipment, appliances, and lighting usage. To improve calibration ac-
curacy, it is crucial to disaggregate and process these consumptions
separately: (1) Disaggregation of Heating Consumption: In our case
study, heating consumption persist even during the non-heating season,
e.g., summer (Fig. 3a). This steady heat demand is attributed to hot
water usage. Subtracting non-heating season heating from total heating
yields space heating energy use. (2) Disaggregation of Cooling Con-
sumption: In our case study, there is a base cooling load throughout the
year for mechanical rooms and chemistry laboratories (Fig. 3b). If this
base load is not separated, it might lead to a significant overestimation
of the cooling load (for space cooling), affecting calibration accuracy.
Subtracting this constant base load from total cooling reveals actual
energy use for space cooling. (3) Disaggregation of Electrical Con-
sumption: Without sub-metering, differentiating electricity consump-
tion between lighting and equipment could pose a challenge. Therefore,
it is crucial to improve the auditing process and gather more compre-
hensive information on usage of sub-systems (e.g., lighting and equip-
ment usage), to effectively attribute aggregate energy consumption to
different sectors and facilitate high-resolution calibration. Effective
disaggregation of energy use provides accurate prior information on
heating, cooling, and electricity usage, supporting the calibration pro-
cess. Particularly, separating the base load for laboratory cooling is
crucial for accurate cooling load calibration and avoiding over-
estimation of cooling energy use (i.e., the base cooling load for me-
chanical room and laboratory is added to the regular load for space
cooling).

2.2.2. Hourly schedules analysis

One of the barriers to realize high-resolution calibration of BEMs is
failing to consider operation schedules and occupant behaviors in the
calibration process [56]. Occupants and schedules have been recognized
as important and influencing factors affecting the accuracy of a cali-
brated BEM [19-22,57,58]. Consequently, reliable estimate of schedule
fraction parameters of occupant behaviors (e.g., occupancy, plug load
usage) are crucial to achieve accurate calibration of BEM in high reso-
lution. Even though the building energy usage (including lighting,
equipment, plug-in loads, occupant, etc.) is fluctuating throughout its
operation periods, there remains an underlying pattern. To explore this
pattern, we analyzed the historical electricity data to derive these
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schedules as informative priori of these input parameters in high reso-
lution Bayesian calibration of BEM.

In this step, our objective is to obtain the prior of schedule fraction
parameters (Spr,r) in calibration by analyzing the uncertainty of
schedule fractions (S = [sl,sz, m,sq], where q is the number of schedule
fractions). This step mainly consists of three small steps to effectively
approximate the prior of hourly schedule fraction parameters: (1)
Clustering and Normalization of Daily Electricity Profiles: By clustering
the normalized daily electricity consumption profiles using the Dynamic
Time Warping (DTW) algorithm [59], we derive energy use patterns for
different types of the day (e.g., weekdays or weekends) and obtain their
respective daily schedules (Fig. 4). The strength of DTW algorithm lies in
its insensitivity to local changes, making it robust in handling noise and
deformation in time series data analysis, especially in complex scenarios
[60]; (2) Quantifying the Range of Schedule Fractions: After completing
the clustering and normalization of daily electricity profiles, we employ
Box plots [61] to represent the uncertainty range of schedules. The
utilization of the third quantile indicates the upper limit of hourly
schedule fractions, while the first quantile represents the lower limit of
hourly schedule fractions (Fig. 5). This approach provides a precise prior
range for hourly schedule fractions; (3) Merging Hourly Schedule
Fractions: Adjacent hourly schedules sometimes have similar operation
modes, e.g., 1 AM to 5 AM all have similar schedule ranges. Therefore,
we merge the hourly schedules of neighboring schedule modes, and the
number of hourly schedule fractions is reduced from 48 to 22 interval
schedule fractions (Fig. 6). The benefits of this merging include reducing
calibration parameters and avoiding over-parameterization, aiding in
surrogate model training and the posterior distribution sampling.
Following these steps, we can effectively approximate the uncertainty
range of hourly schedule fraction parameters and derive meaningful
interval schedule fractions for further analysis and modeling.

2.2.3. Engineering-based parameter selection

After determining the schedules of building operation, the next step
is to select other building calibration parameters that, in addition to
schedules, need to be calibrated and are related to building thermal
properties and control (6 = [01, 6, -+, 6|, where k is the number of
calibration parameters) and determine parameters prior (6pr.r). The
conventional parameter selection method typically involves calibrating
a few parameters identified through sensitivity analysis that have a
significant impact on the calibration results [36-38,62]. Due to the
computational burden of the Bayesian calibration in high-dimensional
parameter spaces, using fewer parameters can reduce the
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computational cost [37,38]. Sensitivity analysis is feasible for monthly
calibration because a small number of parameters are sufficient to fit
monthly building behavior, while too many parameters may lead to
overfitting since 12 points of monthly measurements in a year is a small
dataset. However, selecting only a few important parameters are
insufficient to realize satisfactory performance in high-resolution
building model calibration. Calibration of more parameters are needed
to accurately describe the temporal dependencies of building dynamics
in operation. Our experiments demonstrated that simply selecting
representative parameters through sensitivity analysis proves chal-
lenging in meeting the requirements of high-resolution calibration (by
ASHRAE guideline 14 [42]). Consequently, in order to capture the
building operation status, more input parameters are selected in cali-
bration based on engineering experience, i.e., an engineering-based
parameter selection. This typically involves model input parameters
such as envelope properties, control settings, and schedule parameters
reflecting building dynamics and operation patterns.

2.2.4. Initial model establishment

In this step, we create an initial EnergyPlus model based on selected
calibration parameters (including schedules). This initial model serves
as the basis for calibrating parameters to train the surrogate model and
conduct auto-calibration. Table 1 illustrates the 38 calibration

parameters determined through the engineering-based selection.

2.3. Rapid auto-calibration

2.3.1. Simulation dataset generation for surrogate modeling

In the auto-calibration process, iterating physics-based simulations
(required to evaluate how different combinations of parameters could
result in a matching between modeling and measurements) can be
computationally intensive. To mitigate computational burdens in cali-
bration, a surrogate model or meta-model is typically used to emulate
physics-based modeling (e.g., EnergyPlus) for evaluation of sampled
combination of building parameters. To establish the surrogate model,
the first step is to sample different sets of parameters and correspond-
ingly perform simulations to generate simulation datasets (D) for
training of surrogate models.

To select design points in parameter sampling and surrogate model
training, Latin hypercube sampling (LHS) [63] methodology is
employed. The goal of using LHS is to comprehensively explore the
multi-dimensional parameter space, covering a wide range of building
operation scenarios possible in practice. Through Python scripts, we
automatically sample and feed different parameter combinations into
physics-based simulation programs (EnergyPlus) to generate corre-
sponding simulation outputs, as the training dataset for surrogate



G. Jiang et al.

Table 1
Calibration parameters.

Building information

Control parameters

Schedule parameters

parameters Weekdays Weekends
Conductivity of wall Cooling set-point at Interval 1 Interval 1
insulation (W/m e K) occupied hours (°C)
Conductivity of roof Cooling set-point at Interval 2 Interval 2
insulation (W/m e K) unoccupied hours (°C)
Conductivity of window Heating set-point at Interval 3 Interval 3
glass (W/m e K) occupied hours (°C)
SHGC Heating set-point at Interval 4 Interval 4
unoccupied hours (°C)
Electric equipment Chilled water supply Interval 5 Interval 5
definition (W/m?) temperature for AHU (°C)
Lights definition (W/m?  Supply air temperature of Interval 6 Interval 6
each AHU (°C)
People definition (m?/ Outdoor air flow at Interval 7 Interval 7
person) occupied hours (1/h)
Outdoor air flow at Interval 8 Interval 8
unoccupied hours (1/h)
Hot water peak flow rate Interval 9 Interval 9
(m%/s)
Interval Interval
10 10
Interval
11
Interval
12

modeling in the subsequent step. This training datasets consist of 38
calibration parameters form pre-calibration and 5 weather relevant
parameters (including dry bulb, humidity, wind speed, solar radiation,
and day type) as inputs, and heating, cooling, and electricity use as
outputs. Automating the simulation process and collecting simulation
datasets expedite the calibration process while minimizing the needs of
manual intervention.

2.3.2. High-resolution surrogate model

After generating training data for the surrogate model from the last
step, we employ the Long Short-Term Memory (LSTM) algorithm [64] as
the deep learning-based surrogate model for high-resolution calibration.

Auto-calibration work typically requires the use of optimization tools
(e.g., Bayesian inference) to find the optimal sets of model parameters
that describe actual building operation. However, the process of auto-
identifying optimal sets of parameters always involves parameter eval-
uation, i.e., inputting candidate parameter sets into building models to
determine if the sampled parameters make modeling outcomes match
observations. This triggers significant computational burdens for itera-
tive running of models, especially when high fidelity physics-based
models (e.g., EnergyPlus) are involved. The use of surrogate (or meta)
models in auto-calibration aims to simplify this iterative computing
process during optimization [39]. The efficiency and effectiveness of
using surrogate models in Bayesian calibration have been extensively
demonstrated through various methods such as multiple linear regres-
sion (MLR), Gaussian process (GP), multilayer perceptron (MLP), etc
[34,40]. However, current surrogate models struggle to capture the
nonlinear and time-dependent relationships in building operation,
making them difficult to be applied in high-resolution calibration.

To address these challenges and support high resolution calibration,
a capable surrogate model is needed to effectively capture building
dynamics in high resolution with temporal dependencies. Hence, the
Long Short Term Memory (LSTM), as the widely used model for pro-
cessing time series data [55,65], is used as the surrogate model in this
research. Fig. 7 is the high-level structure of one LSTM unit. Each LSTM
unit has outputs (h) and a cell state (C). At step t, the input (h;_1, C;_1, X¢)
consists of the output (h;_1, C;_1) from the previous step t —1 and the
input parameters (x,) for step t. By passing through the forgetting gate f;,
updating gate i;, and output gate o;, the new unit output h; and cell state
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Fig. 7. LSTM unit structure.

C; are obtained. This mechanism enables continuous forward propaga-
tion and captures long-term dependencies, addressing the coupling of
sub-systems, human behavior, and thermal inertia in the building
thermal processes.

The proposed surrogate model structure, as shown in Fig. 8, consists
of an input layer, LSTM layers, a ReLU layer, and a fully connected (FC)
layer. The input layer is derived from the raw dataset through reshaping
and splitting, resulting in three dimensions: input size, time step, and
batch size. Input size represents the number of input parameters for the
model, time step represents the length of each time series data, and
batch size represents the total number of time series data. The output
layer has three outputs: cooling, heating, and electricity consumption.
This deep LSTM architecture aims to capture the complex thermo-
dynamics and temporal dependency of buildings in operation (i.e.,
8760 h of building operation). As suggested in the reference [66], a FC
layer is typically added after the LSTM layer to map all the predicted
sequence to the desired output size. Additionally, we innovatively
introduced the ReLU [67] layer after the LSTM layer to eliminate
negative values, as energy consumption cannot be negative. This ino-
vation enhances both the performance and robustness of the model. The
ReLU function, defined as y = max(0, y), where negative values are
transformed to zero.

2.3.3. Proposed Bayesian framework for calibration

The proposed framework incorporates a novel Bayesian calibration
method that optimizes the calibration process in a computationally
efficient manner. This method reduces the size of the covariance matrix
and simplifies the covariance structure, achieving time efficient
computation.

Within the framework of KOH Bayesian calibration [26] for BEMs,
the Bayesian inference can be expressed as the relationship between the
building observation y; (measurement data, e.g., cooling, heating, and
electricity), the true building operation process {(x;), and the physics-
based model 7(x;,0) (the framework adjusts the initial parameters in
EnergyPlus model to align with ground truth building operation), as
described by Eq. 1:

Yi = C(x) +e = n(x;, 0) +5(x;) + e (@]

where e; represents the observation error for the i th observation and
8(x;) is a model inadequacy function. We usually assume that the e; s are

independently distributed as N (07 aﬁ). 5(x;) can be seen as modeling

discrepancy between true building operation process ¢(x;) and physics-
based simulation #(x;, #). x; denotes the field weather data, and 6 rep-
resents the model parameters to be calibrated.

In order to minimize computation time in parameter calibration, we
employed a surrogate model (Section 2.3.2) to substitute iterative
computing of physical-based model #(x;, 8), as described by Eq. 2.
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where ¢, is the RMSE of the surrogate model that is the discrepancy
between the surrogate model fqr(x;,0) and the physics-base model
n(xi,0), i.e., EnergyPlus model in our case study.

By specifying the structure of the covariance matrix, a typical
Gaussian process (GP) (Eq. 3) can flexibly represent the model behavior
and achieve an exact fit on the given observation samples y;.

yiNN(ﬂvz)vﬂ:n(xi¢9)7222y+25+2q (3)

where, X, is a n x n covariance matrix used to present for observation
error e;, given n field observations. ¥; is a n x n covariance matrix used
to present for model inadequacy with true building process 5(x;). =, is a
(m + n)x(m + n) covariance matrix used to present the error of physics-
based simulation #5(x;,#), given m simulation sample points. The cali-
bration parameters include the model parameters 6 in the mean matrix y
and the hyperparameters ¢ in the covariance matrix X. Following the
Bayes’ rule, the posterior distribution p(6, ¢|y;) can be derived from
their priors p(6), p(¢), and the likelihood of the observations p(y;|¢, ¢) as
follows:

p(6, dlyi)op(yil6, )-p(6)-p() 4

The likelihood p(y;|6, ¢) can be expressed as:
1 1
p0il0.9) = = Rep{ ~ 3 00— "= -] | )

where priors p(0) and p(¢) can be determined based on engineering
experience and practical situations, with details provided in the
engineering-based parameter selection and hourly schedule analysis
sections.

As Eq. 1, the current traditional Bayesian calibration of physics-
based simulation 7(x;, §) and model inadequacy §(x;) typically assume
a joint multivariate GP [32,38,41], requiring the fitting of field obser-
vations and simulation outputs. For hourly calibration, the dimension-
ality (m-+n)*(m+n) of the covariance matrix X, becomes enormous
given n (n = 8,760 for hourly data) field observations and m physics-
based simulation samples (easily exceeding 10,000 samples in prac-
tice). This leads to a substantial computational burden to compute 7! in
calculating likelihood p(y;|6, #) (Eq. 5), making hourly calibration un-
feasible. Rather than employing GP as in the current traditional
Bayesian calibration framework, we use a deep learning method (LSTM,
in Section 2.3.2), as a high-resolution surrogate model effective in
capture temporal correlations in hourly building modeling, to emulate
n(xi, 0) (Eq. 6):

n(x;, 9) = frsm(xi,0),1(x;, 0) ~ N(fLSTM-r ‘73) )

where o, is the RMSE of the surrogate model that is the discrepancy
between the LSTM surrogate model frsmm(x;,6) and the computer
simulation 7(x;, 6). This means that the Bayesian process in our approach
no longer requires direct fitting to the m simulation sample points;
instead, pre-trains the simulation data using a surrogate model. This
strategy reduces the size of the covariance matrix X from m + n to n.
However, the computational burden remains unacceptably high due
to the modeling of model inadequacy term &(x;) as a GP (with large
covariance matrix). The advantage of our high-resolution surrogate
model, combined with an effective pre-calibration analysis, lies in its
ability to handle the §(x;) between the true building thermal process and
physics-based simulation. As a result, instead of employing a multivar-
iate joint GP to fit the model inadequacy term &(x;), we simplify the
approach and assume that §(x;) follows a Gaussian distribution: N(0,62).
In conclusion, by (1) reducing the size of ¥ to n x n by fitting an
LSTM surrogate model, and (2) assuming 5(x;) N(0,02) with our pre-
calibration analysis to ensure the accuracy of the initial model. This
simplification leads to the entire covariance matrix (Eq. 7) as follows:

=3, 43%+%, = (67405 + 07) I = o™ I, @)

In Bayesian calibration, after deriving the likelihood function, it is
common to employ sampling to obtain posterior distributions of cali-
bration parameters, accelerating the Bayesian inference process. The
Metropolis-Hastings (MH) method [68], as a common algorithm in the
MCMC for sampling from intricate probability distributions, generates
samples by introducing a proposal distribution of candidate parameter
and utilizes an acceptance-rejection criterion to determine whether the
candidate parameter should be accepted. Detailed elucidation and the
procedural steps of the MH algorithm are presented in Algorithm 1. The
validity and efficacy of our previous simplification of covariance in the
likelihood evaluation lies in the fact that this simplification does not
significantly affect the acceptance ratio a. Consequently, our simplifi-
cation preserves the integrity of subsequent inference and posterior
distribution sampling processes.

Algorithm 1 MCMC Sampling (Metropolis-Hastings)

Require: Target distribution P(6]y;), proposal distribution Q(6|y;), number of samples
N
1: Initialize sample set X = {}
2:forn=1to N do
3: Sample ¢ from proposal distribution Q(6]y;)
4: Sample u form uniform distribution U(0,1)
5: Compute acceptance ratio a = w
P(6n11y:)Q(6n1|y:)
6: ifu < athen
7. Add 6, to sample set X
8: else
9: Add 6,1 to sample set X
10: end if
11: end for
12: return Sample set X
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2.3.4. Model validation

The evaluation of BEMs often adheres to the ASHRAE guideline 14
[42], as a standard for assessing the performance of BEM calibration.
One of the metrics used is the coefficient of variation root mean square
error (CV-RMSE) that quantifies the percentage error between the
simulated and measured data. Additionally, the normalized mean bias
error (NMBE) indicates the deviation percentage of actual data in cali-
bration, with either underestimate (NMBE>0) or overestimate
(NMBE<0). According to the guideline, for hourly calibration results,
NMBE should be below 10 %, and CV-RMSE should be less than 30 %.
The CV-RMSE is calculated using the following:

) (yi’;)z

CVfRMSE:%X 100 %)

The NMBE is calculated as follows:

NMBE = T2 =YD 40 ®)
(n—p)xy

where:

y; represents the value of the field observation.

¥ denotes the arithmetic mean of the sample comprising n observa-
tions.

y: signifies the predicted value of y obtained through computer
simulation.

n corresponds to the number of data points or periods in the baseline
period.

p refers to the number of parameters or terms in the baseline model,
which is developed through mathematical analysis of the baseline data.
For building calibration, p = 1.

3. Case study

In this section, we present a case study to demonstrate and validate
the effectiveness of the proposed Bayesian calibration framework.
Firstly, we provide an overview of a campus building (the model of
which we calibrated) in this study (Section 3.1). Subsequently, we
describe the pre-calibration process to obtain accurate priors of pa-
rameters and schedules for constructing an initial model capable to
capture the actual thermal processes of building operation (Section 3.2).
Finally, in Section 3.3, we present the process of the rapid auto-
calibration.

3.1. Building description

As depicted in Fig. 9a, the case study focuses on the Crocker Science

Fig. 9a. CSC Building.

Energy & Buildings 323 (2024) 114755

Center (CSC) building, located in the main campus of the University of
Utah. This four-story building spans a total area of roughly 11,437
square meters. It encompasses various spaces, including offices, con-
ference rooms, mechanical rooms, an auditorium, and laboratories. The
building employs a variable air volume (VAV) system for air condi-
tioning, comprising two air handling units (AHUs). The cooling is sup-
plied by a central plant on the campus, while heating is generated by
four boilers within the building. A BEM of the case study was con-
structed using EnergyPlus (Fig. 9b), leveraging the building information
model (BIM) (Fig. 9¢) and adhering to the building design code [69]. The
weather data files are provided by White Box Technologies [70].

The calibration process is based on hourly energy consumption data,
including 8,760 h of heating, cooling, and electricity data collected from
January to December 2021 (with ~ 800 missing data points in mainly
July and August).

3.2. Pre-calibration process

The purpose of pre-calibration is to acquire accurate parameters and
prior ranges, particularly schedule fraction parameters, in order to
establish a high-resolution initial model that effectively captures dy-
namics of building operation. In this case, an hourly schedule analysis
was conducted, resulting in the extraction of two types of daily sched-
ules with 22 schedule parameters (representing the dynamics of building
operation and human behavior on weekdays and weekends as compre-
hensively as possible without over-parameterization, as Section 2.2.2).
Additionally, by applying the engineering-base parameter selection
method, a comprehensive set of 16 parameters were selected, encom-
passing thermal properties and control parameters of the building. The
initial range of these parameters are set as triangular distributions in
calibration, as detailed in Table 2.

3.3. Rapid auto-calibration process

In the automated Bayesian calibration process, an LHS approach is
employed to generate 38 x 20 design points (Parameters = 38, LH
design points = 20) based on the uncertainty range of the input pa-
rameters. These points are used to simulate hourly energy consumption,
resulting in a simulation dataset (D¢) comprising 175,200 points with 38
input building parameters, 5 weather parameters, and 3 outputs (cool-
ing, heating, and electricity use). The dataset is normalized and used as
training data for the surrogate model. A two-layered multi-output LSTM
model is fitted as the surrogate model to establish the relationship be-
tween the model inputs and the outputs of interest. The LSTM model
parameters are specified in Table 3. It is important to note that for each
unique building, the LSTM model needs to be retrained to reflect
building dynamics. An MCMC sampling of 10,000 runs is implemented
to derive the posterior distribution of calibrated parameters, with the
first 2,000 sample points discarded as burn-in. Towards the end, this
case study is also compared with traditional Bayesian calibration
methods (GP) [32] and lightweight Bayesian calibration methods

Fig. 9b. Building energy model in EnergyPlus.
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Fig. 9c. Building information model in REVIT.

(Linear Regression) [41] under the same configuration.
4. Results
4.1. Calibrated parameters

This section presents the acquisition of posterior distributions of
calibration parameters through Bayesian inference. All prior distribu-
tions assigned to the calibration parameters are modeled as triangular
distributions. Fig. 10 illustrates an example posterior distribution of
calibrated parameters. The light blue triangle represents the uncertainty
range (prior) of the calibration parameter listed in Table 2, and the dark
«“* point denotes the estimated value of the calibrated parameter
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4.2. Model validation

Fig. 11 compares hourly energy consumption observations with
simulation outputs from the calibrated model. The cooling, heating, and
electricity consumption simulation results closely match field observa-
tion data. Heating, cooling, and electricity exhibit NMBE values of 4.5
%, —2.9 %, and 5.5 %, respectively (Table 5). The CV-RMSE for heating,
cooling, and electricity are 23.9 %, 28.4 %, and 26.9 %, respectively. All
energy consumption types demonstrate satisfactory performance ac-
cording the ASHRAE guideline [42]. We can find that our weekdays and
weekends schedule work for most of the time. Due to data missing
(~800 points, mainly around Jul 17th-Aug 17th), we have excluded this
period from validation. As a result, there is a discontinuity around this
missing period in Fig. 11. In Fig. 11a, since heating consumption in-
cludes domestic hot water and space heating. There is a period with
repetitive patterns in summer (May-Sep). In Fig. 11b, the trend of
cooling consumption of calibrated model aligns well with field obser-
vations of actual building operation. However, due to the complexity of
building functions and uncertainties, there are still some deviations,
particularly around the period of data missing. Regarding the electricity
(Fig. 11c), setting typical schedules (one for weekday and one for
weekend) is sufficient to realize decent calibration results for the ma-
jority of days. However, due to the multifunctionality (e.g., lab) of the

Table 3
LSTM model parameters.

Training data size 140,158
(Tab?e 4) derived from t.he pos.terlor dlstrlbut.lon ?15 {npll.ts into the Test data size 35,040
physics-based model for simulation. The posterior distribution demon- Input dimension 43
strates that the calibration results for all the parameters are identifiable, Lookback 3
each exhibiting a distinct peak. This substantiates that our hourly cali- Output dimension 3
bration results constitute a unique solution and do not suffer from the Hidden dimension 128
P . . LSTM Layers 2
over-parametrization issue, and the calibrated parameters have strong Epochs 200
validity [38]. Learning rate 0.001
Table 2
Uncertainty range of calibration parameters.
Thermal Min Mode Max  Control Min  Mode Max Schedule parameters
parameters parameters Weekdays Min Mode Max Weekends Min Mode Max
Conductivity of 0.03  0.04 0.05  Cooling set-pointat 20 24 26 Interval 1 0.1 0.2 0.3 Interval 1 0.1 0.15 0.2
wall insulation occupied hours (°C)
(W/m e K)
Conductivity of 0.08  0.09 0.10  Cooling set-pointat 24 26 28 Interval 2 0.1 0.35 0.6 Interval 2 0.1 0.25 0.4
roof insulation unoccupied hours
(W/m e K) Q)
Conductivity of 0.01 0.015 0.02 Heating set-pointat 18 21 24 Interval 3 0.4 0.5 0.6 Interval 3 0.2 0.35 0.5
window glass occupied hours (°C)
(W/m e K)
SHGC 0.3 0.5 0.8 Heating set-pointat 12 18 20 Interval 4 0.4 0.55 0.7 Interval 4 0.2 0.35 0.5
unoccupied hours
(9]
Electric equipment 10 17.5 25 Chilled water 3 6 9 Interval 5 0.5 0.65 0.8 Interval 5 0.3 0.45 0.6
definition (W/ supply temperature
m?) for AHU ()
Lights definition 5 10 15 Supply air 10 14 18 Interval 6 0.5 0.7 0.9 Interval 6 0.3 0.45 0.6
(W/m?) temperature of
each AHU (°C)
People definition 5 10 15 Outdoor air flow at 0.8 1.1 1.4 Interval 7 0.5 0.65 0.8 Interval 7 0.2 0.35 0.5
(m?/person) occupied hours (1/
h)
Outdoor air flow at 0.4 0.595 0.79 Interval 8 0.4 0.55 0.7 Interval 8 0.1 0.25 0.4
unoccupied hours
(1/h)
Hot water peak 0 0.0015  0.003 Interval 9 0.3 0.45 0.6 Interval 9 0.1 0.25 0.4
flow rate (m®/s)
Interval 10 0.3 0.4 0.5 Interval 10 0.1 0.2 0.3
Interval 11 0.2 0.3 0.4
Interval 12 0.1 0.2 0.3

10
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Fig. 10. Example posterior distribution of calibrated parameters.

building, deviations between modeling and measurements are more
obvious in certain days than others.

Notably, for the cooling consumption, it exhibits the lowest NMBE
(—2.9 %), while the CVRMSE is the highest, reaching 28.4 %.
Conversely, for the electricity, it shows the highest NMBE (5.5 %), while
the CVRMSE is relatively better at 26.9 %. This distinction is clearly
evident in Fig. 11b and Fig. 11c. We will further explore the potential
reasons behind this phenomenon in the discussion, Section 5.2.

4.3. Computational time comparisons

For comparison of computational efficiency, the computational time
of different Bayesian calibration approaches in calibration (assuming
that the calibration approaches converge with 10,000 iterations) is
estimated by multiplying the computing time of a limited number of
iterations (10 in this case) with a factor of 1,000 to save computational

11

efforts on comparison. Table 6 presents the comparison results, depicted
by the computation times of our Proposed Bayesian Approach (using
LSTM surrogate and simplifying covariance matrix), the Traditional
Bayesian Approach (using Gaussian process model as surrogates) [32],
and the Lightweight Bayesian Approach (using Gaussian process and
linear regression model as surrogates) [41]. The Proposed Bayesian
Approach is able to perform hourly calibration automatically and
rapidly, completing the process within 1.67 h, compared to > 3,600 h
using the traditional Bayesian method and > 600 h for lightweight
Bayesian methods in performing the same calibration task. Additionally,
the former methods only support a single output, while the proposed
method can handle calibration of multiple outputs (heating, cooling,
and electricity) simultaneously. The computational efficiency of our
proposed approach is almost independent of the simulation data di-
mensions and the number of parameters because we simplified the
structure of covariance matrix, making the covariance size just relate to
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Table 4

The estimated values of the calibrated parameters.
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Thermal parameters Estimated Control parameters Estimated Schedule parameters
I 1
vaiue vatue Weekdays Estimated Weekends Estimated
value value
Conductivity of wall insulation 0.0493 Cooling set-point at occupied hours 22.22 Interval 1 0.29 Interval 1 0.17
(W/m e K) (@]
Conductivity of roof insulation 0.0885 Cooling set-point at unoccupied hours  26.67 Interval 2 0.55 Interval 2 0.12
(W/m e K) (9]
Conductivity of window glass (W/  0.0194 Heating set-point at occupied hours 20 Interval 3 0.58 Interval 3 0.256
m e K) Q)
SHGC 0.65 Heating set-point at unoccupied hours ~ 12.78 Interval 4 0.63 Interval 4 0.45
[§9)
Electric equipment definition (W/ 23 Chilled water supply temperature for 5.5 Interval 5 0.73 Interval 5 0.425
m?) AHU (°C)
Lights definition (W/m?) 5.6 Supply air temperature of each AHU 11.5 Interval 6 0.81 Interval 6 0.485
[§9)
People definition (m?/person) 14.7 Outdoor air flow at occupied hours (1/  1.37 Interval 7 0.68 Interval 7 0.42
h)
Outdoor air flow at unoccupied hours  0.41 Interval 8 0.64 Interval 8 0.2
1/h)
Hot water peak flow rate (m%/s) 0.00025 Interval 9 0.56 Interval 9 0.18
Interval 0.34 Interval 0.12
10 10
Interval 0.34
11
Interval 0.18
12
it not only defines the informative priors to inform the parameter sam-
Table 5 pling and tuning process, but also facilitates the construction of a reli-
CV-RMSE and NMBE values. o . .
able initial model and surrogate model to help calibration. Pre-
Error Heating (kWh) Cooling (kWh) Electricity (kWh) calibration is not a conventional manual trial-and-error process;
NMBE cv- NMBE  CV- NMBE Cv- rather, it is driven by knowledge mined from collected building data in
(%) RMSE (%) RMSE (%) RMSE general (operation data, construction drawings, etc.), to uncover the
o) (%) (%) hidden building operation pattern from data. Automated calibration can
Initial 138.9 145.8 13.2 56.9 8.7 27.7 be viewed as the process of identifying optimal parameters from a range
model of potential (candidate) combinations to achieve calibration objectives.
Cai‘;z:ed 45 9 —29 284 55 269 However, the successful implementation of this process hinges on the

the number of field observations n during Bayesian inference (Eq. 7).
5. Discussion
5.1. Significance of pre-calibration for high-resolution

With trials and errors to calibrate BEM in high-resolution, we find the
pre-calibration to derive accurate priors is of paramount importance, as

existence of such a set of calibration parameters as candidate parameters
and better definition of initial parameter set that accurately align
modeling outcomes with field observations (ground truth). A successful
pre-calibration process helps identify the potential set of parameters that
make modeling closely match observations while defining better initial
calibration parameters to initiate the calibration process (similar to
defining better initial parameters in training of machine learning algo-
rithms), hence, facilitating the calibration process with enhanced ac-
curacy and convergence speed in high resolution calibration. When pre-
calibration was not carried out, although we embarked on a series of
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Fig. 11a. Comparison of heating consumption.
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Fig. 11c. Comparison of electricity consumption.

Table 6

Comparison of time results.
Method Time
Traditional Bayesian Approach [32] 3,646.39 h
Lightweight Bayesian Approach [41] 615.14 h
The Proposed Bayesian Approach 1.67h

parameter fitting process, it is likely that the outcomes of the high-
resolution calibration were not ideal, i.e., did not meet the re-
quirements of ASHRAE guideline 14 [42]. Previous research [6,7,71]
also confirmed this. The calibrated model without pre-calibration as the
preliminary step is hard to capture of intricate building dynamics (e.g.,
energy consumption trends, fluctuations, peak and off-peak periods)
within the day, with one example presented in Fig. 12 (calibration using
informative priors defined by vs. calibration using the default schedules
of large office operation from ASHRAE).

In the context of monthly calibration, the objective function only
encompasses 12 months of energy consumption. As such, the task of
matching monthly energy consumption with actual field observed data
is relatively straightforward, without the need to ensure matching
hourly or daily operating records. On the contrary, the complexity of
calibrating high-resolution models is significantly enhanced,

13

considering a much larger observation dataset with hourly measure-
ments of heating, cooling, and electricity use data across the year (8,760
h) and increasing number of parameters to calibrate. The selection of
incorrect parameters or in appropriate boundaries of parameters (e.g.,
with a far deviated schedules) can result in the persistent mismatch
between simulation and ground truth (easily stuck at local minima in
objective function) and un-convergence.

Hence, to address the challenges outlined earlier, we find a knowl-
edge and engineering-driven pre-calibration process significant for high
resolution building model calibration. As introduced in Section 2.2, this
involves a systematic disaggregation of loads, meticulous analysis of
schedules, and an engineering-based parameter selection process.
Furthermore, we leveraged cluster analysis and schedule reduction
methodologies, to prevent over-parameterization and mitigate the
emergence of multi-solution issue in the calibration process.

5.2. Evaluation indicators applicable to hourly calibration

Through the case study, we also recognize a potential issue of current
evaluation indicators, i.e., CV-RMSE, in quantifying the accuracy of
calibration. It is possible that CV-RMSE could result in an exaggerated
deviation of calibration results since its calculation is highly influenced
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small average field measurement y could directly lead to high CV-RMSE
for cooling load calibration in cold climate or heating load in hot
climate, considering a significant portion of the hourly cooling/heating
load is at or near zero throughout the year because of climate conditions.
In our case study, since the average annual cooling consumption is
relatively small, it is easier to observe more significant deviations of
modeling to observations in calibration of cooling energy use compared
to heating and electricity usage, using CV-RMSE as a measure.

As demonstrated in Fig. 13a, although the trend of modeled and
measured cooling is well-matched (with an MBE of only —2.9 %), the
CV-RMSE value for cooling energy use was relatively high, i.e., 28.4 %.
In contrast, although more significant deviations of heating and elec-
tricity energy use trends are observed (as demonstrated in Figs. 13b and
13c), higher average heating and electricity usage across the year result
in smaller CV-RMSE values (23.9 % and 26.9 %, respectively), consid-
ering the fact that in the cold climate zone of our test building, heating
and electricity energy use could be much higher compared to the cooling

). Hence, a

energy use. Hence, the deviation of modelled building energy use could
possibly be exaggerated using CV-RMSE as the indicator, depending on
the climate the calibrated building is located in.

6. Conclusion

This research presents a novel deep learning-based Bayesian cali-
bration framework, involving Pre-Calibration and Rapid Auto-
Calibration, to calibrate BEMs in high resolution (hourly level).
Compared to the traditional Bayesian calibration framework, the pro-
posed approach utilizes deep learning to construct high-resolution sur-
rogate models, capturing complexity of building in operation.
Additionally, we simplify the calculation of covariance matrix, hence,
significantly reducing the computational burden of the Bayesian cali-
bration process. To enhance robustness and reliability of calibration, we
implement a pre-calibration mechanism, including data disaggregation,
hourly schedule analysis, engineering-based parameter selection, and
initial model establishment. These steps lead to informative priors to
avoid over-parameterization and enhance calibration accuracy. Then, a
case study is presented to demonstrate satisfactory calibration
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Fig. 13a. Hourly cooling consumption distribution.
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performance of applying the developed high-resolution BEM calibration
approach in practice. The calibration results indicate that cooling,
heating, and electricity consumption all meet the requirements specified
in ASHRAE guideline 14. Moreover, our framework exhibits the capa-
bility and efficiency to handle high-dimensional parameters and large
datasets by reducing > 99 % computational burden compared to tradi-
tional Bayesian methods. Through case study and discussion, we
recognize the importance of pre-calibration for initial specification of
calibration parameter and insufficiency of current indicators to describe
the model calibration performance due to strong reliance on average
values.

For the limitations of this study, as discussed earlier in the parameter
selection, it is tricky to use traditional parameter selection methods (e.
g., sensitivity analysis) to identify certain important parameters in high-
resolution calibration, such as schedules and building operation pa-
rameters at unoccupied hours. Therefore, we mainly rely on engineering
experience and communication with facility managers (for information

15

collection) to choose calibration parameters. This process is case spe-
cific, depending on the judgment of engineers and may involve subjec-
tivity. Moreover, more case studies should be conducted on different
types of buildings to further verify the effectiveness of the proposed
framework. Although we utilized the proposed framework that enables
Bayesian calibration to be applicable in high-resolution calibration with
reduced computational burden, there is still potential to further reduce
the computational burden of Bayesian calibration (e.g., more efficient
calibration methods and more suitable surrogate models). Additionally,
we encourage researchers to develop more flexible and customized
evaluation indicators to meet the growing demand of high-resolution
building model calibration.
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