
Physics-informed ensemble learning with residual modeling for enhanced 
building energy prediction
Zhihao Ma , Gang Jiang , Jianli Chen *

Department of Civil and Environmental Engineering, The University of Utah, Salt Lake City, UT 84102, USA

A R T I C L E  I N F O

Keywords:
Residual modeling
Physics-informed machine learning
Building energy modeling
Time series analysis
Recurrent neural network

A B S T R A C T

Accurate modeling of building energy use is important to support a diverse spectrum of its downstream appli-
cations, such as building energy ef昀椀ciency assessment, resilience analysis, smart control, etc. As mainstream 
approaches of building energy modeling, physics-based modeling builds on different 昀椀delities of physics rules yet 
are usually compromised in modeling accuracy due to insuf昀椀ciency of physics rules to capture real-world dy-
namics and incomplete input information. Data-driven approaches are computationally ef昀椀cient, but black box 
(uninterpretable) in nature. For improved modeling of building energy use, this work proposes a physics- 
informed ensemble learning approach in building energy prediction through residual modeling. Speci昀椀cally, 
we 昀椀rst analyze the components of building energy use data. Evidence suggests that the building energy use data 
can be decomposed into physics-driven part, occupant-driven part, and white noise. Second, high-昀椀delity 
physics-based building models (EnergyPlus) and low-昀椀delity ones (RC models) are developed to capture the 
physics-driven part while time series methods are explored as the residual modeling approach to capture the 
occupant-driven discrepancies between physics-based simulation and measured building energy use (i.e., re-
siduals). Finally, the physics-informed ensemble learning is proposed to integrate physics-based and data-driven 
models for enhanced accuracy and robustness of building energy modeling. Results demonstrate 40–90% in-
crease of accuracy between modeling and 昀椀eld observations compared to traditional physics-based modeling 
methods. Moreover, when the training dataset size is small, the proposed ensemble model overperforms the pure 
data-driven models, demonstrating its higher robustness in extrapolation scenarios. This work makes funda-
mental contributions to the development of convergent modeling approaches in the building modeling 昀椀eld.

1. Introduction

As global warming intensi昀椀es, reducing energy consumption and 
addressing climate-related challenges become increasingly critical. 
Buildings account for approximately 36 % of the global energy use and 
almost 40 % of the greenhouse gas emissions [1]. Therefore, managing 
building energy use plays a signi昀椀cant role in counteracting climate 
change and moving towards sustainability. To realize this, it is crucial to 
develop accurate building energy models for optimal building perfor-
mance [2–4]. As depicted in ASHRAE Handbook [5], building energy 
models are predominantly utilized for three purposes: comparison, 
compliance, and prediction. Speci昀椀cally, Building Energy Modeling 
(BEM) has been leveraged for a variety of applications, including eval-
uating alternative designs [6], allocating annual energy budgets [7], 
automating demand response [8,9], predicting energy costs [10], and 
detecting energy use anomalies [11,12]. Within these applications, BEM 

methodologies can be generally classi昀椀ed as physics-based and data- 
driven modeling.

Physics-based models are based on input of detailed building pa-
rameters and solving the governing equations of mass, momentum, and 
energy to adhere to physics rules. Commonly used models include 
EnergyPlus [13,14], Modelica [15,16], and TRNSYS [17,18]. The 
bene昀椀t of physics-based modeling lies in its strong interpretability, as 
these models elucidate the relationship between inputs and outputs 
through widely recognized physical rules. In contrast, data-driven 
models are built on mathematical models and suf昀椀cient clean data to 
uncover hidden relationships between inputs and outputs, thereby 
reducing or even eliminating the need for detailed physical information 
of buildings in modeling. Machine learning algorithms widely used in 
data-driven modeling of buildings include Linear Regression (LR) 
[19,20], Support Vector Machine (SVM) [21,22], Random Forest (RF) 
[23,24], Recurrent Neural Network (RNN) [25–27]. However, these 
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models also have notable drawbacks. A primary concern is their 
dependence on high-quality training data: the presence of missing, 
incorrect, or biased data can signi昀椀cantly compromise model perfor-
mance [28].

Physics-based models are highly reliant on detailed input parame-
ters, whereas data driven models lack interpretability and are sensitive 
to the data quality. To make two approaches optimally complement each 
other, the concept of physics-informed data-driven models, or Physics- 
informed Machine Learning (PIML) models, has emerged as a new 
building modeling approach. PIML integrates physics-based and data- 
driven models by encoding physics knowledge into traditional data- 
driven models, thereby these models can be trained with the historical 
data while adhering to physical principles [29]. Therefore, PIML can 
achieve improved prediction accuracy and interpretability simulta-
neously with physically consistent results.

Integrating physics information into architectural design is a popular 
approach for PIML development in the building energy modeling 昀椀eld, 
aiming to facilitate more robust training process and enhanced inter-
pretability of developed models. The modi昀椀ed structures are usually 
based on Arti昀椀cial Neural Network (ANN), RNN, Graph Neural Network 
(GNN), and linear models [30–32]. For example, Wang et al. [33,34]
proposed a partially connected neural network to predict indoor tem-
perature thermal dynamics through directly modifying neurons con-
nections. In this design, neurons within each layer are organized into 
different blocks, hence, only current and historical information are 
considered in predictions of future time steps. The implementation of 
this control-oriented model has realized substantial energy savings of 
over 35 % while maintaining thermal comfort and air quality standards. 
Xiao et al. [35,36] proposed a novel physics-informed RNN structure, 
enhanced from the traditional Long Short-term Memory (LSTM) with 
additional RNN cells, to enforce physically consistent dynamics in 
modeling. The physical information is incorporated by constraining the 
sign of the partial derivatives of indoor temperature Tk and relative 
humidity RHk with respect to various inputs. For example, heating 
power should logically increase indoor temperature (∂Tk/∂Uheat,k−i > 0), 
while cooling power should decrease it (∂Tk/∂Ucool,k−i < 0). Other than 
neural network-based models, physical knowledge can be integrated 
into linear models as well, whose linear terms can be assigned with 
particular physical information. Mir昀椀n et al. [31] added a solar gain 
term into the traditional linear regression Time-Of-Week Temperature 
(TOWT) model and proposed a Time-Of-Week, Solar, and Temperature 
(TOWST) model for building energy consumption modeling, considering 
the window area and building orientation. This TOWST model demon-
strates 30 %-72 % reduction in Mean Square Error (MSE) compared to 
the TOWT model. Physics-informed ensemble models for joint predic-
tion is another promising approach of PIML. The rationale behind this 
method is that the physics-based models are capable of modeling the 
physical component of a system, whereas the data-driven models excel 
in uncovering other hidden dynamics [37]. Dong et al. [38] combined 
昀椀ve data-driven models (e.g. ANN and SVM) with the 2R1C model to 
predict energy consumption in residential buildings, where the 2R1C 
model was used for Heating, Ventilation, and Air Conditioning (HVAC) 
energy prediction, while the data-driven models addressed non-HVAC 
energy (plug load, lighting, etc.). The results indicated that this model 
outperformed data-driven models, showing improvements in the coef-
昀椀cient of variance by 6–10 % and 2–15 % for hour ahead and day ahead 
forecasting, respectively. These studies illustrate the considerable po-
tential of PIML models to leverage the strengths of both physics-based 
and data-driven models, thereby enhancing accuracy and interpret-
ability of building energy modeling.

Properly designed PIML models can improve interpretability, accu-
racy, adaptability, and computational ef昀椀ciency of BEM simultaneously, 
hence, promising to further promote applications of BEM in practice. 
However, there remain research gaps to be bridged, including:

(1) Understanding discrepancies between modeling and obser-
vations with decomposition of building energy use data. 
Although physics-based models are widely used to predict 
building energy consumption, there always exist discrepancies 
between simulated and observed energy data. These discrep-
ancies sometimes are more than 100 % in high resolution 
modeling (e.g., hourly or sub-hourly), even after the models are 
detailly calibrated [39]. It is still unclear what factors explicitly 
contribute to these discrepancies. Former arguments suggest that 
the stochastic nature of occupants could be the major factor since 
activities patterns are dif昀椀cult to be easily captured by physical 
governing equations in physics-based modeling [40]. However, 
there is no evidence or analysis to con昀椀rm and demonstrate this.

(2) Model robustness in extrapolation scenarios. Suf昀椀cient 
training data for BEM is curial but also challenging due to the 
labor-intensive data collection process and privacy concerns 
[41]. Obtaining data from buildings under or newly built build-
ings is particularly dif昀椀cult [42]. However, a suf昀椀cient training 
dataset is essential for training data-driven models, as inadequate 
data prevents the model from learning effectively. Using data- 
driven models that are not well-trained would ultimately result 
in prediction failures, which is a signi昀椀cant concern in BEM [43]. 
Integrating physics information into machine learning models is a 
potential solution, but rarely explored in existing literature.

(3) Computational ef昀椀ciency vs. accuracy. In scenarios where 
iterative computation of building energy models are essential, 
such as in smart building operation [44], the computational ef-
昀椀ciency of models becomes crucial. Thus, simpli昀椀ed building 
energy models are needed due to their high computational ef昀椀-
ciency. However, such simpli昀椀cation compromises accuracy, e.g., 
RC models are lower 昀椀delity models [45] with inferior accuracy 
compared to high 昀椀delity models (e.g., EnergyPlus) in capturing 
building dynamics. The compromised level of accuracy could 
increase as the time resolution of modeling increases, i.e., 
simpli昀椀ed physics-based models are less accurate in sub-hourly 
forecasting since these models usually adopt linear interpola-
tion (or other formats of simpli昀椀cation) in high resolution 
modeling [46,47]. How to effectively address and balance the 
trade-off between computational ef昀椀ciency and model 
complexity is a critical challenge in building modeling.

Motivated by these research gaps, this work aims to understand and 
demonstrate the decomposition of the building energy use data, then 
correspondingly develops an accurate and robust physics-informed 
ensemble model to align modeling with observed energy use across 
multiple time resolution through residual modeling. This work is orga-
nized as follows. Section 2 outlines the employed methodology, 
including the target buildings to model and energy use dataset, 
decomposition of building energy use, development of physics-based 
and data-driven models for time series residual modeling, and model 
ensemble for load prediction. Section 3 will present results of this work, 
focusing on the results of energy use decomposition and the outcomes of 
the proposed ensemble modeling. Then, we will discuss the insights from 
energy use data decomposition, the trade-off between model complexity 
and accuracy, together with the enhancement of BEM practical appli-
cation (Section 4). Finally, Section 5 will conclude this study.

2. Methodology

In this section, the principal methodology of the study is presented, 
including data collection, building energy use decomposition, physics- 
based building energy modeling, time series analysis for residual 
modeling, and building energy prediction with the proposed ensemble 
model. The work昀氀ow of this work is shown in Fig. 1. First, the observed 
cooling and heating energy data of target buildings are collected 
(Section 2.1). Then, the decomposition of energy use data is 
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Fig. 1. Overall work昀氀ow for the proposed physics-informed ensemble model.

Fig. 2. Target buildings. (a) Field picture and (b) geometry model of CSC. (c) Field picture and (d) geometry model of AEB.
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demonstrated in Section 2.2. Generally, building energy use data is ex-
pected to be decomposed into three parts: physics-driven part, occupant- 
driven part, and white noise. The following sections will address each of 
these aspects separately. First, the different 昀椀delities of physics-based 
models are developed for capturing the physics-driven part of energy 
use (Section 2.2.1). Second, data-driven timeseries models are used for 
modeling residuals, i.e., the discrepancies between physics-based 
modeling outcomes and 昀椀eld observations (Section 2.2.2). Subse-
quently, the correlation and white noise analysis presented in Sections 
2.2.3-2.2.4 provides evidence and understanding of the building energy 
use data decomposition. Finally, the ensemble learning framework is 
proposed to enhance modeling performance by integrating physics- 
based modeling and the data-driven residual modeling for predicting 
building energy use in different time resolutions (Section 2.3).

2.1. Target buildings and observed dataset

The target buildings in the case study include the Crocker Science 
Center (CSC) and Alfred Emery Building (AEB), both of which are 
campus buildings at the University of Utah (Fig. 2). The four-story CSC 
building spans a total area of roughly 11,437 square meters and un-
derwent retro昀椀tting in 2016. It encompasses various spaces, including 
of昀椀ces, conference rooms, mechanical rooms, an auditorium, and lab-
oratories. The AEB is a three-story building with a total 昀氀oor area of 
4,101 square meters, including classrooms and of昀椀ces. These buildings 
are served by a Variable Air Volume (VAV) system for air conditioning, 
comprising several Air Handling Units (AHUs). The cooling energy for 
both buildings and heating energy for the AEB are supplied from a 
central plant in campus, while the heating energy for the CSC is 
generated by four standalone boilers inside the building. The observed 
cooling and heating energy data are recorded in the SkySpark system 
(January to December 2021 for CSC and January to December 2022 for 
AEB). Speci昀椀cally, cooling energy data involves space cooling, all-time 
cooling of the mechanical room, and the chemistry laboratory (e.g., 
continuous cooling to support protein production in cell culture). 
Heating energy data includes energy use for domestic hot water and 
space heating. This dataset encompasses multiple sub-hourly time res-
olutions, including 5-minute, 15-minute, 30-minute, and 60-minute in-
tervals. There are approximately two months of missing data of CSC 
(mainly in July and August 2021). Other than this period, the missing 
values in other few data gaps are estimated based on data on similar days 
nearby. In addition, the weather data 昀椀les of 2021 and 2022 are pro-
vided by White Box Technologies [48].

2.2. Building energy data decomposition and modeling

This section presents the methods of building energy data decom-
position analysis for CSC and AEB. Building energy consumption is 
highly in昀氀uenced by various factors, including but not limited to 
weather conditions, building envelope status, and HVAC and other 
system parameters. These could be well-described by physical laws such 
as heat transfer and thermal dynamics. As the internal heat source, oc-
cupants also play a pivotal role in the building energy usage, yet this part 
is challenging to be captured by physics rules due to its stochasticity and 
heterogeneity. As occupant activities are typically time-related with 
strong periodicity but non physics relevance, time series-based data- 
driven models are suitable for capturing this. Therefore, it is hypothe-
sized that the building energy use could be composed of three compo-
nents. i.e., physics-driven component, occupant-driven component, and 
the white noise component (e.g., due to data or sensing errors) as 
remaining. Based on the reasoning to understand this decomposition 
and further enhance building modeling performance, this section is 
organized as follows. First, different 昀椀delities of physics-based building 
models are presented, including high 昀椀delity EnergyPlus model and low 
昀椀delity RC model (Section 2.2.1). Then, the residuals between physics- 
based modeling and observed data are analyzed and modeled using 

time series-based data-driven models (Section 2.2.2). Finally, the cor-
relation coef昀椀cients and white noise are introduced to understand 
building energy use data with decomposition (Sections 2.2.3 and 2.2.4).

2.2.1. Physics-based models
Physics-based models are 昀椀rst developed to capture the physics- 

driven component in building energy use in various levels, including 
high-昀椀delity EnergyPlus models and low-昀椀delity RC models. The target 
variable being simulated is the cooling/heating load of the buildings. 
Since the heating and cooling for the target buildings are provided by 
the campus central mechanical system, rather than by standalone sys-
tems within the buildings, it is only possible to estimate the heating/ 
cooling load based on the hot/chilled water 昀氀ow rate and temperature 
change. In a certain sense, system ef昀椀ciency metrics, e.g., coef昀椀cient of 
performance, are not relevant and we are only focusing on modeling the 
physics of buildings in this study.

High-昀椀delity physics-based building energy models of this research 
are established based on EnergyPlus (version 23.1) according to the 
construction plans of target buildings to model. To ensure that the high- 
昀椀delity physics-based models accurately re昀氀ect the true building phys-
ics, we engaged in extensive communication with the campus facility 
managers to gain a comprehensive understanding of the operational 
conditions. This allowed us to further calibrate the models in detail 
using Bayesian calibration based on all collected data at a high resolu-
tion [49] (See Supplementary Information S1.1). With calibrated 
modeling input parameters, the HVAC system load can be calculated by 
solving the ordinary differential equations pertinent to the heat balance 
of the zone air: 

CZ
dTZ
dt =

3Ni

i=1
qsi +

3Si

i=1
hciAi(Tsi − Tz) + qinf + qven + qHVAC, (1) 

where CZ is the heat capacitance of zone air [J/K]; Tz is the temperature 
of zone air [K]; qsi is the internal loads from occupants, appliances, and 
lights, etc. [W]; hci is the convective heat transfer coef昀椀cient between 
surface i and indoor air [W/(m2 K)]; Ai is the surface area [m2]; Tsi is the 
surface temperature [K]; qinf and qven are the heat 昀氀ux from the outside 
air in昀椀ltration and ventilation, respectively [W]; qHVAC is the air- 
conditioning loads [W]. In addition to the high-昀椀delity EnergyPlus 
models, low-昀椀delity RC models are also developed to describe building 
physics of energy use (Fig. 3). As representative low-昀椀delity models, RC 
models are illustrated as xRyC networks with lumped parameters in 
analogy to an electrical circuit with x as the number of thermal re-
sistances and y of thermal capacities. The differential equations of the 
building model are formulated according to the chosen model structure. 
For this research, we developed two types of typical RC models with a 
single external wall, i.e., the 3R2C model (three resistances and two 
capacities) and the 2R1C model (two resistances and one capacities). 
Then, the cooling and heating energy use are calculated by solving 
partial derivative equations of building thermal dynamics (See Supple-
mentary Information S1.2).

2.2.2. Data-driven residual modeling
After development of physics-based models, data-driven approaches 

are explored to model the residuals between physics-based energy 
models and observed data. Residuals (as the terminology) in this paper 
refer to the discrepancies between modeling outcomes of physics-based 
models and actual 昀椀eld observations. These residuals are crucial in-
dicators of the inherent limitations of physics-based models. In this 
research, even the established high-昀椀delity physics-based models are 
detailly calibrated using the Bayesian method, there still exist discrep-
ancies between physics-based modeling outcomes and 昀椀eld observa-
tions. In the past, it is suspected that these deviations are attributable to 
factors such as occupant behaviors, although no evidence was presented 
to af昀椀rm this. The persistence of residuals also underscores a funda-
mental aspect of BEM: while physics-based approaches can approximate 
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the building energy consumption, there are always hidden dynamics 
beyond the scope of designed physics rules to capture. Hence, ap-
proaches to complement physics-based modeling are expected to further 
enhance modeling accuracy of energy use of real buildings.

The inherent periodicity in building operation makes time series 
analysis effective in understanding and capturing temporal correlations 
of historical data. Hence, data driven models arise to be appropriate 
approaches in modeling these residuals [50]. Prominent time series 
analysis techniques used in building energy consumption forecasting 
include ANN [51], ARIMA [52], SVM [53], and RNN [54], etc. Therein, 
the loop-based structure of RNN is designed to describe temporal dy-
namics of modelled systems. Therefore, the utilization of RNNs in energy 
prediction has attracted increasing research interests in recent years [1]. 
In this section, both linear autoregressive model (AR, ARMA, and 
ARIMA) and non-linear LSTM model are explored to 昀椀t with the re-
siduals between physics-based modeling and observed data.

The Autoregressive (AR) model is a fundamental and widely used 
technique for time series forecasting [52,55,56]. An extension of the AR 
model is the Autoregressive Moving Average (ARMA) model that in-
corporates terms of forecasted errors. However, both AR and ARMA 
models are less effective to model data with large 昀氀uctuations. For non- 
stationary data, the Autoregressive Integrated Moving Average (ARIMA) 
model is usually used, extending the ARMA model by integrating a 
differential form of the data: 
y*

t = α0 + α1y*
t−1 +⋯+αky*

t−k + β1∊t−1 +⋯+ βk∊t−k +∊t , (2) 

where y*t = yt −yt−1 is 昀椀rst-order differential. In model 昀椀tting, it is 
crucial to determine relevant lags for the stationary time series data. The 
Autocorrelation Function (ACF) and Partial Autocorrelation Function 
(PACF) are utilized to identify related lag terms by calculating covari-
ance or conditional covariance. In addition, although adopting historical 

data with more lags is possible to improve model accuracy but unnec-
essarily increase model complexity (affecting model application in 
practice). Hence, Bayesian Information Criterion (BIC) is then used to 
determine the optimal number of lags considering both accuracy and 
complexity. Detailed order 昀椀nding process for residual modeling are 
shown in Supplementary Information S1.3.

While linear models could be insuf昀椀cient to fully capture the auto-
correlation of a time series sequence, in this work, the deep learning 
networks are also developed to capture the nonlinear relationships in 
residuals. As a predominant variant of deep RNN network, LSTM is used 
in our residual modeling. To start with, the max–min data pre- 
processing is conducted, in which all training data and test data are 
normalized to increase the calculation and convergence speed. After 
that, the structure and detailed parameters of LSTM networks are 
shown, together with the method for order 昀椀nding.

LSTM networks are extensively used as the deep learning algorithm, 
particularly for tasks involving sequential data in language modeling, 
speech recognition, and time series prediction. As shown in Fig. 4a, a 
typical LSTM network has value and state communication among units. 
The input of a LSTM unit includes not only feature space parameters x 
but also the cell state and the hidden state from previous unit. The cell 
state C acts as the “memory” of the network, carrying information across 
the sequence, while the hidden state h transfers information to subse-
quent LSTM cells and to the outputs. Each LSTM unit operates through 
three specialized gates: Forget Gate, Input Gate, and Output Gate. These 
gates collectively determine the updated cell state and hidden state, 
which then serve as inputs for the subsequent unit. The Forget Gate 
decides which information from the previous unit should be retained or 
discarded and is calculated as follows: 
ft = σ

(wf ⋅[ht−1, xt ]
)
, (3) 

Fig. 3. Thermal network of (a) 3R2C and (b) 2R1C models of the target buildings. Tin: indoor temperature; Tout : outdoor temperature; Two: outside layer temperature; 
Twi: inside layer temperature; Ro: thermal resistance between the wall and the outdoor environment; Rw: thermal resistance within the wall;Ri: thermal resistance 
between the wall and the indoor environment; Qo: outside heat source; Qi: inside heat source.
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where σ represents the sigmoid function, wf is the augmented wights. 
[ht−1, xt ] is the matrix formed by splicing the hidden state at time point t- 
1 (ht−1) and the input feature space at time t (xt). The Input Gate selects 
new information from xt to be stored in the cell state, calculated as: 
it = σ(wi⋅[ht−1, xt ] ). (4) 

The cell state is then updated from Ct−1 to Ct , where the old state is 
multiplied by ft to selectively forget what is unnecessary. The new Ct is 
given by: 
Ct = ftCt−1 + ittanh(wC⋅[ht−1, xt ] ). (5) 

Eventually, based on Ct and xt, Output Gate yields the new hidden state 
ht as: 
ot = σ(wo⋅[ht−1, xt ] ), ht = ot⋅tanhCt . (6) 

In constructing a deep LSTM network, multiple LSTM units are 
stacked. The network structure, therefore, is a critical factor in the LSTM 
model. The RNN model in this work includes four LSTM layers, a fully 
connected layer, and a regression layer, employing the ReLU activation 
function. The training process involves a maximum of 1000 epochs, with 
the Adam optimizer for objective function optimization. Detailed model 
structures are de昀椀ned according to Table 1. Lags are selected in 
descending order of PACF, similar to the linear model. The number of lag 
sequences in LSTM networks is determined by evaluating the loss 
function on the test dataset, balancing network complexity. The crite-
rion for order selection is de昀椀ned as: 

L =
1
m

3m

i
(yi − �yi)

2|L50 − Ln| f 3%, (7) 

where Ln is the loss function of the testing dataset with input parameters 
number of n. For short-term building energy prediction, the dataset is 
transformed by sliding window to represent the sequential characteris-
tics. As shown in Fig. 4b, datasets are reconstructed into sequential data 
according to the size of sliding window, and then used for training and 
testing of LSTM models.

2.2.3. Correlation coef昀椀cient analysis
To valid the proposed hypothesis of the building energy decompo-

sition, i.e., building energy consumption encompasses 1) physics-driven 
part, 2) occupants-driven part, and 3) white noise, this section presents 
the method to demonstrate the composition of provides part 1 and part 2 
through weather-correlation (correlation coef昀椀cients between energy 
use/residuals and weather data) and autocorrelation (correlation co-
ef昀椀cients between current and history energy use/residuals data) anal-
ysis. The observed data should be strongly related to the weather data, 
such as temperature, wind velocity, solar radiation intensity, and 

Fig. 4. (a) LSTM network and its internal logic gates. (b) Transformation to sequential data framed by sliding window.

Table 1 
Detained parameters in LSTM network training process.

Parameters Value
Training method Adaptive moment estimation
Normalization method Max-min normalization
LSTM layer 4
Minimum batch size 20
Maximum epochs 1000
Initial learning rate 0.0001
Learning rate drop factor 0.5
Learning rate drop period 500

Z. Ma et al.                                                                                                                                                                                                                                      Energy & Buildings 323 (2024) 114853 

6 



humidity level [57,58] if governed by the physics rules such as heat 
transfer laws and air thermal dynamics. Therefore, if the residuals be-
tween the physics-based model and observation still contain such 
physics components, it should be weather variables correlated. 
Contrarily, the autocorrelation coef昀椀cients measure the correlation 
among time series data, providing insights into the time-related patterns 
within the data. The occupant schedule or activities of a building ex-
hibits strong time relevant patterns and periodicity [59,60]. Hence, if 
the residual is not physics related but only autocorrelated, it indicates 
that this component is driven by occupant behaviors or activities. In this 
work, the Pearson correlation and the Spearman’s Rank correlation are 
used to examine the linear and non-linear correlation between residuals 
and weather data. The Pearson correlation coef昀椀cients (ρp) and Spear-
man’s Rank correlation coef昀椀cients (ρs) are calculated by equations 
below: 

ρp(y1, y2) =
cov(y1, y2)

σy1 σy2
, ρs(y1, y2) = 1−

63 d2
i

n(n2 − 1), (8) 

where the cov(y1, y2) is the covariance between sequences y1 and y2; σ is 
the standard deviation; d is the difference between the two ranks of each 
sequence; n is the number of observations in the sequence.

2.2.4. White noise analysis
After decomposing the building energy use data into physics-driven 

and occupants-driven parts, this section further demonstrates the com-
ponents as the remaining part (after subtracting physics-based and data- 
driven components) of energy use, i.e., the observation remaining term, 
via white noise analysis. The reasoning is that if the physics-based 
component can be captured by physics-based models while occupant 
driven component can be captured by residual modeling (data-driven 
component), the observation remaining term should be a white noise 
that refers to a sequence of uncorrelated random variables [61]. A key 
feature of a white noise process is that the covariance between any 
variable Yt and its historical data at any time lag k (Yt−k) is zero. i.e., 
cov(Yt ,Yt−k) = 0. Consequently, in a standard white noise process, both 
the ACF and PACF are identically equal to zero. After 昀椀tting a time series 
model, if the ACF and PACF of the observation remaining fall inside the 
con昀椀dence interval, one can consider that this process behaves like 

white noise, leaving behind this part that are random and not worth of 
any further investigation. In this work, we calculate the ACF and PACF 
of the observation remaining term, which is obtained by subtracting 
results of physics-based and data-driven models from the observation, to 
dictate whether this observation remaining term is white noise or not.

2.3. Ensemble learning with residuals modeling

Following analysis and decomposition of building energy use data, 
ensemble learning by integrating data-driven residual models with 
physics-based models is proposed to enhance BEM prediction accuracy, 
following the logic and hypothesis that building energy use is composed 
of physics-driven, occupant-driven, and white noise components. This 
section presents the model ensembling process (Section 2.3.1), together 
with the model performance evaluation (Section 2.3.2).

2.3.1. Ensemble learning framework
The detailed model ensembling process for building energy predic-

tion is illustrated in Fig. 5. For demonstration with an example, one can 
consider the scenario that physics-based data are available and the data- 
driven residuals model (discrepancy between physics-based models and 
observations) incorporates lagged data from the previous n timesteps 
(lag 1 to lag n) as the models to be ensembled. The detailed steps for 
ensemble learning is as follows, 1) the estimated building energy con-
sumption �y is simulated using EnergyPlus or RC models; 2) based on the 
observed data during time point t−n (yt−n) to t (yt), the residuals for 
these time point (rt−n to rt) are calculated by subtracting the simulated 
values from the observed values (rt = yt −�yt); 3) The calculated re-
siduals are then used as the inputs to the residual model R(rt−n,⋯, rt), 
and the predicted residual at the next timestep (t + 1) can be given as 
rt+1; 4) Finally, the predicted energy consumption data at time point 
t+1 is derived by adding the predicted residual to the simulated value 
�yt+1 + rt+1. By implementing this procedure, the model is able to fore-
cast building energy consumption ahead by a time increment ΔT, where 
ΔT is the time resolution de昀椀ned as ΔT = Tt+1 −Tt.

2.3.2. Performance evaluation
The superiority of the proposed ensemble model encompasses two 

aspects: 1) higher prediction accuracy compared to physics-based 

Fig. 5. Model ensembling framework based on the physics-based models and data-driven residual models.
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models, and 2) greater robustness in small training dataset scenarios 
compared to the pure data-driven models. Therefore, the performance 
evaluation includes two parts. First, two widely used metrics in statistics 
are employed for assessing the prediction accuracy, namely Mean Ab-
solute Error (MAE) and the Coef昀椀cient of Variation of Root Mean Square 
Error (CV-RMSE). Lower MAE and CV-RMSE indicates that the model 
has a higher accuracy. These two indices are calculated as: 

MAE =
1
n
3n

1
|�yi − yi|,CV −RMSE =

������������������������������3n
i=1(�yi − yi)

2

n

: /3n
i=1yi
n , (9) 

where yi and �yi are the observed and simulated values, and n is the total 
observation number. Notably, the CV-RMSE is highly in昀氀uenced by the 
magnitude of average. Therefore, to avoid the bias introduced by 
average in CV-RMSE calculation and evaluate modeling outcomes of 
cooling energy use more accurately, we only incorporate cooling energy 
use in cooling season data (excluding periods with mostly 0 across the 
year) for CV-RMSE calculation. Second, the robustness of the models is 
examined by training them with different dataset sizes. In this study, we 
selected two state-of-the-art data-driven models, namely the LSTM 
model and SVM model, as benchmarks [62–64]. The testing dataset 
consists of the annual energy consumption data, while the training 
dataset ranging from 10 % to 100 % of the annual data in time series. For 
example, a 10 % training dataset indicates that the model is trained 
using 10 % of the annual energy consumption data, approximately 
equivalent to the energy consumption in January. The trained models 
are then tested with the entire annule dataset to assess their extrapola-
tion behavior.

3. Results

This section presents the modeling and analysis results. First, Section 
3.1 brie昀氀y presents the modeling outcomes of physics-based building 
energy models. Then, the analysis of building energy use data decom-
position is presented with correlation and white noise analysis in Section 
3.2. Finally, Section 3.3 discusses the overall performance of the pro-
posed ensemble models, including the prediction accuracy and 
robustness.

3.1. Physics-based modeling outcomes

This section shows the simulation results of physics-based models. 
Considering modelled cooling and heating energy use of AEB is similar 
with CSC, we only present the EnergyPlus and 3R2C modeling results of 
CSC. The observed and simulated energy use of CSC is shown in Fig. 6, 

together with the discrepancies of these data, i.e., the residuals. These 
昀椀gures predominantly feature data with a 60-minute time resolution, 
and sub-hourly time resolution data (30-minute, 15-minute, and 5-min-
ute) are available in the Supplementary Information (Figs. S1-S2). 
Detailed MAE and CV-RMSE indices are presented in Fig. 7. These 昀椀g-
ures and performance evaluation metrics highlight several important 
aspects. First, even though the EnergyPlus model is capable of modeling 
in the sub-hourly level, the resulting simulated outcomes are essentially 
linear interpolations of hourly data (Fig. S1). This interpolation stems 
from the fact that the weather data for EnergyPlus is interpolated over 
one-hour periods. The similar limitation also applies to the 3R2C model 
(Fig. S2) because the ordinary differential equations in 3R2C models are 
linear as well. Secondly, both MAE and CV-RMSE show that the 3R2C 
model has a lower modeling accuracy compared to the EnergyPlus 
model as high-昀椀delity models. Especially regarding modeling of heating 
energy use, both MAE and CV-RMSE are signi昀椀cantly higher for pre-
dictions from the 3R2C model compared to EnergyPlus. This is possibly 
introduced by simpli昀椀cations of the 3R2C model in capturing building 
operation dynamics.

3.2. Building energy data decomposition

In this section, the analysis results of building energy data decom-
position are presented. To test our hypothesis that building energy use is 
comprised of three components (physics-driven, occupant driven, and 
white noise), we start by subtracting the physics-based modeling results 
(including different 昀椀delities of modeling) from the measured building 
energy use to obtain residuals. Whether building energy use data can be 
decomposed into three components could be re昀氀ected by two aspects: 1) 
correlation of residuals with weather variables: the residuals should 
exhibit no or small correlation with weather data if there is no physics- 
driven component within the residuals; 2) the existence of white noise 
after subtracting physics-driven and occupants-driven components from 
measured energy use: the observation remaining part is essentially white 
noise, indicating that all systematic variations are captured by ensemble 
modeling (explained in Section 2.2.4).

The calculated Pearson correlation coef昀椀cient òòρp
òò and the Spear-

man’s rank correlation coef昀椀cients |ρs| are demonstrated in Fig. 8. Re-
sults of the weather correlation coef昀椀cients analysis of residuals show 
that there is no obvious physics information uncaptured in residuals, i.e., 
the physics-driven part is well-captured by physics-based models. As 
general rules of thumb, a threshold of |ρ| < 0.3 is employed to 昀椀lter out 
features with no or weak correlation with a target variable [65]. Taking 
the cooling energy use of CSC as example (Fig. 8a), the original 
measured energy use is strongly correlated with weather factors such as 

Fig. 6. Observed cooling/heating energy data, physics-based model simulated data, and their residuals. (a-d) EnergyPlus model and their residuals. (e-h) 3R2C 
model and their residuals.
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Fig. 7. (a) MAE and (b) CV-RMSE of the cooling energy simulated by physics-based model with multi-time resolution (c) MAE and (d) CV-RMSE of the heating 
energy simulated by physics-based model with multi-time resolution.

Fig. 8. Pearson and Spearman’s rank correlation coef昀椀cient (absolute value) between cooling/heating energy and parameters for (a-d) CSC and (e-h) AEB.
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outdoor temperature, relative humidity, and solar radiation, indicating 
that the original energy use involves the physics processes in buildings. 
This physical component is then captured by physics-based models, 
resulting in the signi昀椀cantly reduced correlation coef昀椀cients (ranges 
from 0 to 0.2 for EnergyPlus models) between weather data and the 
residuals after subtracting physics-based modeling outcomes from total 
energy use. However, the autocorrelation coef昀椀cients between residuals 
of consecutive timesteps are still high (over 0.6), indicating that the 
physics-based models are insuf昀椀cient to capture this periodicity and the 
seasonality information in the building energy use data. The low physics 
correlation and high autocorrelation in residuals synergistically 
demonstrate the existence of the occupant driven part in residuals. 
Timeseries based residual modeling process (presented in Section 2.2.2) 
is intended as part of the ensemble learning approach to capture this 
occupant driven part. Another observation is that correlations between 
residuals and weather data increase as the 昀椀delity of physics-based 
modeling for residual calculation decreases (i.e., the residuals from 
2R1C models are more correlated with weather data compared to re-
siduals from EnergyPlus models). This also clearly indicates the exis-
tence of physics-driven component in total energy use. As more physics- 
driven energy use (from high-昀椀delity model) is suf昀椀ciently extracted 
from total energy use, the residuals become auto-correlated (occupant 
driven) instead of weather correlated.

Even though the residuals are not correlated with the current 
weather data, there is a concern that autocorrelative residuals may 
contain model errors in the heating and cooling system, such as delays in 
system response. If the residuals encompass these system delays, the 
correlation coef昀椀cients between the residuals and the historical weather 
data should be signi昀椀cantly high. To test this, we calculated the Peason 
correlation coef昀椀cients between the residuals and the weather data 
(temperature and relative humidity data) at three different time lags (1 
h, 2 h, and 3 h) for both the CSC and AEB. For this analysis, we used 
residuals based on the EnergyPlus model and the 3R2C model with a 
time resolution of 60 min. The results, shown in Tables 2 and 3, indicate 
that the correlation coef昀椀cients between the residuals and the historical 
weather data are low, suggesting no obvious relationship between the 
residuals and the delayed energy consumption data. However, the re-
siduals of the 3R2C model for the cooling energy data of the CSC exhibit 
slightly high correlation coef昀椀cients with the historical temperature 
data. This could be caused by the low 昀椀delity of the 3R2C model, as the 
correlation coef昀椀cients between the residuals and the current temper-
ature data are also high (Fig. 8a) while the correlations between re-
siduals of EnergyPlus model and weather data are much lower. 
Therefore, the autocorrelation factors in the residuals should be attrib-
uted to the occupant activities rather than the delays in system response.

After the validation of physics-driven part and occupants-driven part 
in building energy use data, the observation remaining term is demon-
strated as the white noise. The white noise analysis can be veri昀椀ed 
through ACF and PACF analysis of the remain part of data beside the 
physics-based and data-driven models. Fig. 9 and Fig. S3-6 demonstrate 
that the observation remaining term sequences from these models with 
hourly and sub-hourly time resolution exhibit negligible autocorrelation 
(less than 0.1), behaving as white noise. Thus, these analysis results 
collectively demonstrate that building energy use data can be decom-
posed into three parts (Fig. 10): 1) physical component well-described 
by physics rules (e.g., external building thermal load), 2) stochastic 

component contributed by occupant activities, and 3) white noise. In 
detail, the quantitative proportions of the residuals and the white noise 
are shown in Fig. 11. The proportion of white noise is calculated by 
dividing the CV-RMSE after model ensembling by the CV-RMSE of the 
physics-based model. For example, in the case of cooling energy based 
on EnergyPlus model with a time resolution of 60 min, the percentage of 
residuals is 40 % while that of white noise is 60 %, indicating that the 
CV-RMSE of the physics-based model would be reduced by 40 % after 
model ensembling and residual modeling to capture the occupant driven 
components. The proportion of residuals based on the EnergyPlus model 
is lower than that of the 3R2C model because more physics information 
is contained in the residuals of the low-昀椀delity model. Additionally, the 
proportion of heating energy residuals increases with reduced time 
resolution, demonstrating that the residuals model can capture more 
occupant behavior information within heating energy dataset with 
smaller time resolutions. Overall, such decomposition allows us to 
develop an ensemble learning framework where the physics-based 
models capture the physical information while the data-driven resid-
ual models capture the time-series information in building energy use 
data. Results presented in Fig. 8e-f for AEB lead to the same conclusions 
as this decomposition analysis for the CSC building.

3.3. Performance evaluation for ensemble models

With the determined optimal orders for both linear and nonlinear 
models in residual modeling (See Supplementary Information S2.3), the 
physics-informed ensemble model has been developed for modeling 
building energy use. This section presents the performance of ensemble 
model integrating EnergyPlus and 3R2C physics-based models with re-
sidual models for the CSC. The results of AEB are not presented to save 
space since these are similar with CSC.

First, the prediction accuracy improvement is demonstrated, 
compared to physics-based models. The residual models used in the 
ensemble framework are trained using annual cooling and heating en-
ergy data from 2021. The CV-RMSE for the trained ensemble models 
generally falls within the range of 0.1–0.3. The predicted building en-
ergy consumption is depicted in Figs. S20-24 and the detailed MAE and 
CV-RMSE are presented in Tabs. S7-10 and Fig. S25. After the model 
training, the cooling and heating energy data in 2022 are used for 
testing. Results with time resolution of 60 min are shown in Fig. 12, 
where the 昀椀tting performance of linear model is presented by the ARIMA 
model for illustration. Results of AR and ARMA model 昀椀tting and sub- 
hourly time resolution of modeling (30-minute, 15-minute, and 5-min-
ute) are similar to hourly modeling results based on ARIMA 
(Supplementary Information (Figs. S26-29)). The outcomes of the 
ensemble models 昀椀t observed data well, with detailed MAE and CV- 
RMSE provided in Tabs. S11-S15. Fig. 13 illustrates the relationship of 
MAE and CV-RMSE with the time resolution and model type. Results 
reveal that the CV-RMSE of these models generally falls between 0.1 and 
0.4, and there is a signi昀椀cant reduction in both MAE and CVRMSE by 
40–90 % compared to the outputs from physics-based models, indicating 
that the time series based residual modeling (integrated with physics- 
based modeling through model ensembling) substantially enhances 
the accuracy of building energy modeling. Furthermore, the perfor-
mance of ensemble modeling is robust regardless of 昀椀delity of physics- 
based models involved as part of model. Despite the lower accuracy of 

Table 2 
Pearson correlation coef昀椀cients between residuals and the historical weather data for CSC.

Correlation Coef昀椀cients Temp 1 Temp 2 Temp 3 Humid 1 Humid 2 Humid 3
Residuals_EnergyPlus_cooling 0.175 0.163 0.150 0.214 0.199 0.182
Residuals_EnergyPlus_heating 0.150 0.155 0.164 0.051 0.064 0.083
Residuals_3R2C_cooling 0.459 0.429 0.400 0.274 0.242 0.211
Residuals_3R2C_heating 0.180 0.178 0.177 0.085 0.078 0.074

Note: Temp n/Humid n represents the n time-lags temperature/relative humidity data.
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3R2C model compared to the EnergyPlus model, the accuracy level of 
the ensemble models is similar after model integration (integrating 
EnergyPlus or 3R2C with residual models). This implies that enhancing 
the 昀椀delity of physics-based models might not be critical when applying 
the ensemble modeling approach with residual models in building en-
ergy modeling. Ensemble model performance varies across different 
time resolution and the chosen data-driven models. Models with smaller 
time resolutions typically exhibit lower MAE. This trend can be attrib-
uted to the fact that MAE is highly dependent on the magnitude of the 
difference between simulated and observed data, which tends to be 
smaller at 昀椀ner time resolutions. For the chosen data-driven models, the 
nonlinear LSTM models show no signi昀椀cant advantages over linear 
models such as AR, ARMA, and ARIMA, except at a 5-minute resolution. 
Compared to MAE, CV-RMSE is independent with the magnitude of the 
data due to the normalization by dividing the average of observed data. 
More details will be discussed in the Section 4 below.

Then, the enhanced prediction robustness of the proposed ensemble 
model is evident when compared to purely data-driven models (LSTM 
and SVM as the baselines). For this study, we selected the CSC building 
and time resolution of 60 min as an example. The physics-informed 
ensemble model incorporates the EnergyPlus model as the physical 
component and the LSTM model as the data-driven component, while 
the LSTM and SVM are used as the baseline data-driven models for 
comparison. For a fair comparison, the features used in the pure data- 
driven models include not only the three time-lags of historical data 
but also weather data, such as outdoor temperature, wind velocity, solar 
radiation, and outdoor relative humidity. In contrast, the LSTM model 
within the ensemble framework uses only the three time-lags of histor-
ical data. The results for cooling and heating energy predictions are 
shown in Fig. 14a-b and Fig. 14c-d, respectively. The proposed ensemble 
model consistently outperforms the LSTM and SVM models, especially 
with smaller training datasets. Taking cooling energy prediction as 
instance, when using the entire dataset for training, the CV-RMSE of the 
three models are similar: 0.254 for the LSTM model, 0.225 for the SVM 
model, and 0.210 for the physics-informed ensemble model. However, 
when using just 10 % of the annual data for training, the CV-RMSE of 
both the LSTM and SVM model is 1.231, whereas that of physics- 
informed ensemble model remains acceptable as 0.300. Therefore, 
although the pure data-driven models show similar prediction accuracy 
as the proposed ensemble model with a full dataset, their performance 
signi昀椀cantly deteriorates with smaller training datasets, indicating that 
pure data-driven models struggle to learn useful information from 
limited data, while the ensemble model remains robust. Furthermore, 
even without any training data, the baseline performance of the 
ensemble model would approximately converge to that of the physics- 
based model (with a CV-RMSE of 0.289 for cooling energy perdition 
using EnergyPlus model alone), showcasing the great potential of the 
physics-informed ensemble model for application in extrapolation sce-
narios. Overall, this physics-informed ensemble learning by residuals 
modeling shows effectiveness for improving both the accuracy and 
robustness of building energy modeling.

4. Discussion

" Building energy use data decomposition and ensemble 
modeling

Physics-based models have been widely used for BEM since the 
1960s, yet signi昀椀cant discrepancies between model predictions and 
ground observations still exist while being challenging to explain and 
close. In this work, we 昀椀rstly decompose the building energy use data by 
correlation and white noise analysis, and correspondingly demonstrate 
that the building energy consumption can be composed of three parts: 1) 
a physics-driven component governed by physics rules, such as heat 
transfer and thermodynamics; 2) a stochastic component driven by 
occupant activities that exhibits certain periodicity and uncertainty; 3) a 
white noise component caused by unexpected or unknown sources (e.g., 
anomalies in the data collection process). The low correlations between 
residuals (difference between physics-based modeling and 昀椀eld obser-
vations) and weather variables and the high auto-correlation of residuals 
suggest that it is the occupant behaviors contribute to these residuals, 
which are hard to be captured by physics-based models. The validation 
of white noise as observation remaining components provides further 
evidence. This decomposition aligns with Norford et al. [66], attributing 
88 % of the prediction discrepancies to unexpected occupant energy use 
and HVAC systems operation. Another similar idea was proposed by 
Chen et al. [67], i.e., the building energy use data can be divided into a 
linear component obtained by prior physical knowledge and a nonlinear 
component from unpredictable factors such as environment noise. 
However, no strict evidence was provided for such decomposition. Ac-
cording to correlation analysis, we 昀椀nd the autocorrelation coef昀椀cients 
of the residuals between physics-based modeling and observation are 
still as high as over 0.5, indicating that it is necessary to further describe 
the nonlinear component with the occupants-relevant (data-driven) 
model and white noise.

Given these insights, it is natural to use the ensemble modeling 
approach for building energy modeling. On one hand, using physics- 
based model would result in inevitable accuracy compromise since the 
stochastic component is hard to capture by physics-based model even 
with dedicated model calibration. On the other hand, compared with the 
pure data-driven model, such ensemble approach ensures the reliability 
and robustness when the data for training a model is limited.

" Model complexity for ensemble modeling

Using the physics-informed ensemble learning approach to enhance 
BEM accuracy, selecting appropriate model complexity for both physics- 
based models and data-driven residual modeling is worthy of discussion. 
The similar MAE and CV-RMSE of ensemble models based on EnergyPlus 
and RC models as physics-based models suggests that enhancing the 昀椀-
delity of physics-based models as part of ensemble models may not be 
necessary to realize decent model performance if the ensemble modeling 
approach is adopted. Instead, employing low-昀椀delity physics-based 
models is suf昀椀cient to encapsulate basic physics dynamics, while data- 
driven models could address the remaining gaps introduced by 
occupant-driven dynamics without compromising modeling accuracy. 
Furthermore, based on our tests, the highly complex data-driven models 
for residual modeling are also unnecessary to realize a decent building 
energy modeling performance in the proposed ensemble learning 
approach. For the analyzed dataset, linear models such as AR, ARMA, 
and ARIMA (with CV-RMSE of ~ 0.17–0.57) generally outperform the 
nonlinear LSTM model (with CV-RMSE of ~ 0.18–0.6), except at a 5- 
minute resolution, possibly due to the predominantly linear nature of 

Table 3 
Pearson correlation coef昀椀cients between residuals and the historical weather data for AEB.

Correlation Coef昀椀cients Temp 1 Temp 2 Temp 3 Humid 1 Humid 2 Humid 3
Residuals_EnergyPlus_cooling 0.110 0.092 0.074 0.084 0.063 0.041
Residuals_EnergyPlus_heating 0.202 0.205 0.209 0.086 0.091 0.099
Residuals_3R2C_cooling 0.044 0.079 0.111 0.039 0.077 0.114
Residuals_3R2C_heating 0.189 0.191 0.194 0.035 0.031 0.031

Note: Temp n/Humid n represents the n time-lags temperature/relative humidity data.
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autoregression in the residuals. Additionally, the volume of data in-
昀氀uences residual model performance. While nonlinear LSTM models 
perform better with large datasets, linear models achieve accuracy with 
smaller data volumes. This 昀椀nding aligns with research about the impact 

of data volume on performance of ARIMA and LSTM models [68–70]. 
Consequently, for modeling of low temporal resolutions (60, 30, and 15 
min), linear models are not only suf昀椀cient to capture information in 
residual data, but also offer superior computational ef昀椀ciency.

Fig. 9. ACF and PACF of the residuals (observation remaining term) of these hybrid models based on EnergyPlus model. (a) Cooling and (b) heating energy by 
ARIMA model. (c) Cooling and (d) heating energy by LSTM model. The time resolution is 60 min.
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In detail, for a regular computer equipped with 12-core Intel(R) Core 
(TM) i5-10400F CPU @ 2.90 GHz and NVIDA GeForce RTX 2060 GPU, 
the computational ef昀椀ciency of each model is listed in Table 4. The 
EnergyPlus model (high 昀椀delity model) requires signi昀椀cant more 
computation time than simple RC models (low 昀椀delity model), espe-
cially when the time resolution is small (164 s for the EnergyPlus model 
and 44.8 s for the 2R1C model), not to mention the time-consuming 
parameter collection process and complex model development pro-
cesses required for a high-昀椀delity EnergyPlus model. The accuracy 

evaluation indicates that using a low-昀椀delity model as the physics 
component in the ensemble model does not compromise the prediction 
performance. Thus, the proposed ensemble learning framework could 
have much higher computational ef昀椀ciency (with time cost of 5.6 s to 
46.2 s) compared to EnergyPlus models (with time cost of 32 s to 164 s) 
by combining 2R1C and ARIMA models. This approach not only en-
hances prediction accuracy but also reduces computation time, which is 
particularly advantageous for building energy optimization, typically 
involving heavy iterative tasks. Therefore, in building energy modeling, 

Fig. 10. Building energy use data decomposition.

Fig. 11. The percentage of error factors, i.e., residuals (occupant-driven part) and white noise, for cooling and heating energy with different time resolution. (a) 
Residuals (occupant-driven part) based on EnergyPlus model. (b) Residuals (occupant-driven part) based on 3R2C model. Note that the data-driven model for 
training the residuals is LSTM. Note that Cn/Hn represents cooling/heating energy data with n-minute time resolution.

Fig. 12. Comparing observed data and prediction data based on EnergyPlus models. (a) Cooling energy predicted by ARIMA and (b) LSTM model. (c) Heating energy 
predicted by ARIMA and (b) LSTM model.
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it is reasonable to use ensemble models composed of simple physics- 
based and data-driven models, avoiding excessive time and efforts in 
modeling instead of high-昀椀delity physics-based modeling or complex 
deep learning-based algorithms in data-driven residual modeling. The 
combination of these simple models could realize even higher accuracy, 
as demonstrated in Section 3.3.

" Performance of ensemble modeling of different time resolution

When BEM is widely used in building energy use prediction, analysis 
of its performance in prediction of different time resolution is usually 
overlooked. Coarse time resolution, such as monthly, weekly, daily, or 
even hourly ahead prediction are inadequate for precise demand control 
and system optimization [71], calling for a need of sub-hourly ahead 
prediction. However, building energy use in smaller time resolution 
typically exhibits increased randomness and uncertainties. The signi昀椀-
cantly increased CV-RMSE in the 15-minute and 5-minute prediction for 

Fig. 13. MAE and CV-RMSE of the ensemble models prediction results versus time resolution and type of time series models. (a-b) EnergyPlus model. (c-d) 3R2C 
model. Baselines are the prediction of physics-based models.
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both EnergyPlus and 3R2C modeling (in Section 3.3) implies that it is 
challenging for physics-based models to effectively capture such un-
certainties. The proposed physics-informed ensemble model addresses 
these challenges by effectively capturing stochastic component through 
residual modeling, demonstrating robustness against the inherent 
randomness and uncertainty in high-time resolution data of building 
energy use. For example, in prediction of 5-minute time resolution, this 
ensemble model approach signi昀椀cantly reduces the coef昀椀cient of vari-
ation of CV-RMSE by 50–60 % for cooling energy and 60–90 % for 
heating energy prediction. This underscores the effectiveness of high- 
resolution ensemble modeling in enhancing the performance of build-
ing energy use predictions in 昀椀ne time resolution, suggesting signi昀椀cant 
impacts on further pushing BEM to support applications demanding 
accuracy in 昀椀ne temporal resolution, such as smart control, demand 
response, and fault detection and diagnosis [72–74].

" Insights for practical application

Although there has been signi昀椀cant advancement in the research on 
Internet of Things (IOT), data collection for BEM is still time-consuming 
due to the installation and maintenance of sensors. Additionally, privacy 
concerns [41] and data limitation for buildings in the design phase and 
newly built buildings [42] present signi昀椀cant challenges. Data-driven 
models for BEM are usually restricted to the speci昀椀c building oper-
ating conditions for which they are trained, leading to prediction fail-
ures when the training data is limited in certain situations [75]. 
Therefore, the limited availability of data hinders the application of 
machine leaning models in BEM. As demonstrated in Section 3.3, the 
performance of the proposed physics-informed ensemble model over-
performs that of pure data-driven models, particularly when the training 
dataset size is small. For instance, when dealing with a building with 
limited observed energy use data, data-driven models are not the 昀椀rst 

choice in such situations. While physics-based models can be used, they 
also suffer from compromised prediction accuracy. Hence, in this 
circumstance, the proposed ensemble model could serve as a more ac-
curate and robust alternative to both physics-based and data-driven 
models, effectively avoiding prediction failures when data is limited.

" Limitations and future studies

Finally, we summarize the limitations of this study and suggest di-
rections for future research. First, the generalizability of the physics- 
informed ensemble model can be further addressed. This study was 
conducted on two speci昀椀c educational buildings at the University of 
Utah. As building operation could vary signi昀椀cantly across different 
types of buildings and climate conditions, it is important to examine the 
generalizability of the proposed model for other types of buildings such 
as residential and commercial buildings in more climate zones. Evalu-
ating the performance of the model across different climate zones is also 
worthy investigating. Then, the proposed method was evaluated using 
an HVAC system that operates 24 h per day. Future study could focus on 
the performance of physics-informed ensemble models for buildings 
with HVAC systems that operate intermittently. Finally, the case study 
presented in this work demonstrated that the residuals between physics- 
based simulation data and observations are primarily attributed to 
occupant activities. However, in other building modeling scenarios 
without detailed building operation information and calibrated building 
energy models, other factors may contribute to the modeling residuals in 
different case studies, such as system delays, time-related COP for 
electricity use prediction, and HVAC operation schedules. These auto-
correlated terms should be further explored in future research.

5. Conclusion

This study introduces a novel physics-informed ensemble modeling 
that integrates physics-based modeling and data-driven residual 
modeling as the joint model for building energy use prediction. First, we 
demonstrate the decomposition of building energy use into physics- 
driven component, occupant-driven component, and white noise based 
on correlation and white noise analysis. Then, physics-based models 
such as EnergyPlus and RC models are developed to capture the physics- 
driven component in building energy use. Subsequently, the residuals 
between physics-based simulated and observed data are modeled by 
linear and nonlinear data-driven time series-based models. Finally, the 

Fig. 14. MAE and CV-RMSE of the ensemble models prediction results versus size of training dataset. (a-b) Cooling energy prediction. (c-d) Heating energy pre-
diction. Baselines are the outcomes from LSTM model and SVM model.

Table 4 
Computational ef昀椀ciency of different physics-based and data-driven models.

Time resolutionModel 60 min 30 min 15 min 5 min
EnergyPlus 32 s 41 s 64 s 164 s
3R2C 6.8 s 11.5 s 20.7 s 59.1 s
2R1C 4.9 s 8.3 s 15.7 s 44.8 s
ARIMA 0.7 s 0.7 s 0.9 s 1.4 s

Note: The inputs for the ARIMA models include three time-lags of historical data.
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ensemble modeling approach demonstrates excellent performance for 
enhanced building energy modeling. Compered to physics-based 
models, the proposed ensemble model achieves a CV-RMSE of less 
than 0.3 for cooling energy prediction and less than 0.2 for heating 
energy prediction, showcasing accuracy improvements of 40–90 % in 
both MAE and CV-RMSE. The proposed ensemble model also shows 
greater robustness than pure data-driven models. The CV-RMSE of 
cooling and heating energy prediction based on the proposed ensemble 
model are 0.300 and 0.172, respectively, when using just 10 % of the 
annual dataset for model training, whereas those for LSTM model are 
1.231 and 0.412, respectively. Such robustness enhancement highlights 
the great potential of applying the physics-informed ensemble model in 
extrapolation scenarios.

The signi昀椀cant insight from this work is that the 昀椀eld observations of 
building energy use data can be decomposed into different parts, sug-
gesting ensemble modeling as an effective and natural approach for 
enhanced modeling performance. Moreover, the ensemble approach 
based on different 昀椀delities physics-based models show similar predic-
tion performance, indicating that in certain scenarios, it may not be 
necessary to develop a high-昀椀delity physics-based model. The study also 
昀椀nds that linear models, which are computationally ef昀椀cient, tend to be 
more accurate in ensemble modeling compared to LSTM models, except 
at a 5-minute time resolution. Overall, this physics-informed ensemble 
learning framework based on residual modeling is effective for 
enhancing the accuracy and robustness of building energy predictions, 
offering valuable insights for both research and practical applications in 
the 昀椀eld of building energy modeling.
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