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Accurate modeling of building energy use is important to support a diverse spectrum of its downstream appli-
cations, such as building energy efficiency assessment, resilience analysis, smart control, etc. As mainstream
approaches of building energy modeling, physics-based modeling builds on different fidelities of physics rules yet
are usually compromised in modeling accuracy due to insufficiency of physics rules to capture real-world dy-
namics and incomplete input information. Data-driven approaches are computationally efficient, but black box
(uninterpretable) in nature. For improved modeling of building energy use, this work proposes a physics-
informed ensemble learning approach in building energy prediction through residual modeling. Specifically,
we first analyze the components of building energy use data. Evidence suggests that the building energy use data
can be decomposed into physics-driven part, occupant-driven part, and white noise. Second, high-fidelity
physics-based building models (EnergyPlus) and low-fidelity ones (RC models) are developed to capture the
physics-driven part while time series methods are explored as the residual modeling approach to capture the
occupant-driven discrepancies between physics-based simulation and measured building energy use (ie., re-
siduals). Finally, the physics-informed ensemble learning is proposed to integrate physics-based and data-driven
models for enhanced accuracy and robustness of building energy modeling. Results demonstrate 40-90% in-
crease of accuracy between modeling and field observations compared to traditional physics-based modeling
methods. Moreover, when the training dataset size is small, the proposed ensemble model overperforms the pure
data-driven models, demonstrating its higher robustness in extrapolation scenarios. This work makes funda-
mental contributions to the development of convergent modeling approaches in the building modeling field.

1. Introduction

As global warming intensifies, reducing energy consumption and
addressing climate-related challenges become increasingly critical.
Buildings account for approximately 36 % of the global energy use and
almost 40 % of the greenhouse gas emissions [1]. Therefore, managing
building energy use plays a significant role in counteracting climate
change and moving towards sustainability. To realize this, it is crucial to
develop accurate building energy models for optimal building perfor-
mance [2-4]. As depicted in ASHRAE Handbook [5], building energy
models are predominantly utilized for three purposes: comparison,
compliance, and prediction. Specifically, Building Energy Modeling
(BEM) has been leveraged for a variety of applications, including eval-
uating alternative designs [6], allocating annual energy budgets [7],
automating demand response [8,9], predicting energy costs [10], and
detecting energy use anomalies [11,12]. Within these applications, BEM
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methodologies can be generally classified as physics-based and data-
driven modeling.

Physics-based models are based on input of detailed building pa-
rameters and solving the governing equations of mass, momentum, and
energy to adhere to physics rules. Commonly used models include
EnergyPlus [13,14], Modelica [15,16], and TRNSYS [17,18]. The
benefit of physics-based modeling lies in its strong interpretability, as
these models elucidate the relationship between inputs and outputs
through widely recognized physical rules. In contrast, data-driven
models are built on mathematical models and sufficient clean data to
uncover hidden relationships between inputs and outputs, thereby
reducing or even eliminating the need for detailed physical information
of buildings in modeling. Machine learning algorithms widely used in
data-driven modeling of buildings include Linear Regression (LR)
[19,20], Support Vector Machine (SVM) [21,22], Random Forest (RF)
[23,24], Recurrent Neural Network (RNN) [25-27]. However, these
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models also have notable drawbacks. A primary concern is their
dependence on high-quality training data: the presence of missing,
incorrect, or biased data can significantly compromise model perfor-
mance [28].

Physics-based models are highly reliant on detailed input parame-
ters, whereas data driven models lack interpretability and are sensitive
to the data quality. To make two approaches optimally complement each
other, the concept of physics-informed data-driven models, or Physics-
informed Machine Learning (PIML) models, has emerged as a new
building modeling approach. PIML integrates physics-based and data-
driven models by encoding physics knowledge into traditional data-
driven models, thereby these models can be trained with the historical
data while adhering to physical principles [29]. Therefore, PIML can
achieve improved prediction accuracy and interpretability simulta-
neously with physically consistent results.

Integrating physics information into architectural design is a popular
approach for PIML development in the building energy modeling field,
aiming to facilitate more robust training process and enhanced inter-
pretability of developed models. The modified structures are usually
based on Artificial Neural Network (ANN), RNN, Graph Neural Network
(GNN), and linear models [30-32]. For example, Wang et al. [33,34]
proposed a partially connected neural network to predict indoor tem-
perature thermal dynamics through directly modifying neurons con-
nections. In this design, neurons within each layer are organized into
different blocks, hence, only current and historical information are
considered in predictions of future time steps. The implementation of
this control-oriented model has realized substantial energy savings of
over 35 % while maintaining thermal comfort and air quality standards.
Xiao et al. [35,36] proposed a novel physics-informed RNN structure,
enhanced from the traditional Long Short-term Memory (LSTM) with
additional RNN cells, to enforce physically consistent dynamics in
modeling. The physical information is incorporated by constraining the
sign of the partial derivatives of indoor temperature Ty and relative
humidity RH; with respect to various inputs. For example, heating
power should logically increase indoor temperature (0T /0Uneqri—i > 0),
while cooling power should decrease it (0Tx/0Ucork—i < 0). Other than
neural network-based models, physical knowledge can be integrated
into linear models as well, whose linear terms can be assigned with
particular physical information. Mirfin et al. [31] added a solar gain
term into the traditional linear regression Time-Of-Week Temperature
(TOWT) model and proposed a Time-Of-Week, Solar, and Temperature
(TOWST) model for building energy consumption modeling, considering
the window area and building orientation. This TOWST model demon-
strates 30 %-72 % reduction in Mean Square Error (MSE) compared to
the TOWT model. Physics-informed ensemble models for joint predic-
tion is another promising approach of PIML. The rationale behind this
method is that the physics-based models are capable of modeling the
physical component of a system, whereas the data-driven models excel
in uncovering other hidden dynamics [37]. Dong et al. [38] combined
five data-driven models (e.g. ANN and SVM) with the 2R1C model to
predict energy consumption in residential buildings, where the 2R1C
model was used for Heating, Ventilation, and Air Conditioning (HVAC)
energy prediction, while the data-driven models addressed non-HVAC
energy (plug load, lighting, etc.). The results indicated that this model
outperformed data-driven models, showing improvements in the coef-
ficient of variance by 6-10 % and 2-15 % for hour ahead and day ahead
forecasting, respectively. These studies illustrate the considerable po-
tential of PIML models to leverage the strengths of both physics-based
and data-driven models, thereby enhancing accuracy and interpret-
ability of building energy modeling.

Properly designed PIML models can improve interpretability, accu-
racy, adaptability, and computational efficiency of BEM simultaneously,
hence, promising to further promote applications of BEM in practice.
However, there remain research gaps to be bridged, including:

Energy & Buildings 323 (2024) 114853

(1) Understanding discrepancies between modeling and obser-
vations with decomposition of building energy use data.
Although physics-based models are widely used to predict
building energy consumption, there always exist discrepancies
between simulated and observed energy data. These discrep-
ancies sometimes are more than 100 % in high resolution
modeling (e.g., hourly or sub-hourly), even after the models are
detailly calibrated [39]. It is still unclear what factors explicitly
contribute to these discrepancies. Former arguments suggest that
the stochastic nature of occupants could be the major factor since
activities patterns are difficult to be easily captured by physical
governing equations in physics-based modeling [40]. However,
there is no evidence or analysis to confirm and demonstrate this.

(2) Model robustness in extrapolation scenarios. Sufficient
training data for BEM is curial but also challenging due to the
labor-intensive data collection process and privacy concerns
[41]. Obtaining data from buildings under or newly built build-
ings is particularly difficult [42]. However, a sufficient training
dataset is essential for training data-driven models, as inadequate
data prevents the model from learning effectively. Using data-
driven models that are not well-trained would ultimately result
in prediction failures, which is a significant concern in BEM [43].
Integrating physics information into machine learning models is a
potential solution, but rarely explored in existing literature.

(3) Computational efficiency vs. accuracy. In scenarios where
iterative computation of building energy models are essential,
such as in smart building operation [44], the computational ef-
ficiency of models becomes crucial. Thus, simplified building
energy models are needed due to their high computational effi-
ciency. However, such simplification compromises accuracy, e.g.,
RC models are lower fidelity models [45] with inferior accuracy
compared to high fidelity models (e.g., EnergyPlus) in capturing
building dynamics. The compromised level of accuracy could
increase as the time resolution of modeling increases, ie.,
simplified physics-based models are less accurate in sub-hourly
forecasting since these models usually adopt linear interpola-
tion (or other formats of simplification) in high resolution
modeling [46,47]. How to effectively address and balance the
trade-off between computational efficiency and model
complexity is a critical challenge in building modeling.

Motivated by these research gaps, this work aims to understand and
demonstrate the decomposition of the building energy use data, then
correspondingly develops an accurate and robust physics-informed
ensemble model to align modeling with observed energy use across
multiple time resolution through residual modeling. This work is orga-
nized as follows. Section 2 outlines the employed methodology,
including the target buildings to model and energy use dataset,
decomposition of building energy use, development of physics-based
and data-driven models for time series residual modeling, and model
ensemble for load prediction. Section 3 will present results of this work,
focusing on the results of energy use decomposition and the outcomes of
the proposed ensemble modeling. Then, we will discuss the insights from
energy use data decomposition, the trade-off between model complexity
and accuracy, together with the enhancement of BEM practical appli-
cation (Section 4). Finally, Section 5 will conclude this study.

2. Methodology

In this section, the principal methodology of the study is presented,
including data collection, building energy use decomposition, physics-
based building energy modeling, time series analysis for residual
modeling, and building energy prediction with the proposed ensemble
model. The workflow of this work is shown in Fig. 1. First, the observed
cooling and heating energy data of target buildings are collected
(Section 2.1). Then, the decomposition of energy use data is
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Fig. 1. Overall workflow for the proposed physics-informed ensemble model.
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Fig. 2. Target buildings. (a) Field picture and (b) geometry model of CSC. (c) Field picture and (d) geometry model of AEB.
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demonstrated in Section 2.2. Generally, building energy use data is ex-
pected to be decomposed into three parts: physics-driven part, occupant-
driven part, and white noise. The following sections will address each of
these aspects separately. First, the different fidelities of physics-based
models are developed for capturing the physics-driven part of energy
use (Section 2.2.1). Second, data-driven timeseries models are used for
modeling residuals, ie., the discrepancies between physics-based
modeling outcomes and field observations (Section 2.2.2). Subse-
quently, the correlation and white noise analysis presented in Sections
2.2.3-2.2.4 provides evidence and understanding of the building energy
use data decomposition. Finally, the ensemble learning framework is
proposed to enhance modeling performance by integrating physics-
based modeling and the data-driven residual modeling for predicting
building energy use in different time resolutions (Section 2.3).

2.1. Target buildings and observed dataset

The target buildings in the case study include the Crocker Science
Center (CSC) and Alfred Emery Building (AEB), both of which are
campus buildings at the University of Utah (Fig. 2). The four-story CSC
building spans a total area of roughly 11,437 square meters and un-
derwent retrofitting in 2016. It encompasses various spaces, including
offices, conference rooms, mechanical rooms, an auditorium, and lab-
oratories. The AEB is a three-story building with a total floor area of
4,101 square meters, including classrooms and offices. These buildings
are served by a Variable Air Volume (VAV) system for air conditioning,
comprising several Air Handling Units (AHUs). The cooling energy for
both buildings and heating energy for the AEB are supplied from a
central plant in campus, while the heating energy for the CSC is
generated by four standalone boilers inside the building. The observed
cooling and heating energy data are recorded in the SkySpark system
(January to December 2021 for CSC and January to December 2022 for
AEB). Specifically, cooling energy data involves space cooling, all-time
cooling of the mechanical room, and the chemistry laboratory (e.g.,
continuous cooling to support protein production in cell culture).
Heating energy data includes energy use for domestic hot water and
space heating. This dataset encompasses multiple sub-hourly time res-
olutions, including 5-minute, 15-minute, 30-minute, and 60-minute in-
tervals. There are approximately two months of missing data of CSC
(mainly in July and August 2021). Other than this period, the missing
values in other few data gaps are estimated based on data on similar days
nearby. In addition, the weather data files of 2021 and 2022 are pro-
vided by White Box Technologies [48].

2.2. Building energy data decomposition and modeling

This section presents the methods of building energy data decom-
position analysis for CSC and AEB. Building energy consumption is
highly influenced by various factors, including but not limited to
weather conditions, building envelope status, and HVAC and other
system parameters. These could be well-described by physical laws such
as heat transfer and thermal dynamics. As the internal heat source, oc-
cupants also play a pivotal role in the building energy usage, yet this part
is challenging to be captured by physics rules due to its stochasticity and
heterogeneity. As occupant activities are typically time-related with
strong periodicity but non physics relevance, time series-based data-
driven models are suitable for capturing this. Therefore, it is hypothe-
sized that the building energy use could be composed of three compo-
nents. i.e., physics-driven component, occupant-driven component, and
the white noise component (e.g., due to data or sensing errors) as
remaining. Based on the reasoning to understand this decomposition
and further enhance building modeling performance, this section is
organized as follows. First, different fidelities of physics-based building
models are presented, including high fidelity EnergyPlus model and low
fidelity RC model (Section 2.2.1). Then, the residuals between physics-
based modeling and observed data are analyzed and modeled using
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time series-based data-driven models (Section 2.2.2). Finally, the cor-
relation coefficients and white noise are introduced to understand
building energy use data with decomposition (Sections 2.2.3 and 2.2.4).

2.2.1. Physics-based models

Physics-based models are first developed to capture the physics-
driven component in building energy use in various levels, including
high-fidelity EnergyPlus models and low-fidelity RC models. The target
variable being simulated is the cooling/heating load of the buildings.
Since the heating and cooling for the target buildings are provided by
the campus central mechanical system, rather than by standalone sys-
tems within the buildings, it is only possible to estimate the heating/
cooling load based on the hot/chilled water flow rate and temperature
change. In a certain sense, system efficiency metrics, e.g., coefficient of
performance, are not relevant and we are only focusing on modeling the
physics of buildings in this study.

High-fidelity physics-based building energy models of this research
are established based on EnergyPlus (version 23.1) according to the
construction plans of target buildings to model. To ensure that the high-
fidelity physics-based models accurately reflect the true building phys-
ics, we engaged in extensive communication with the campus facility
managers to gain a comprehensive understanding of the operational
conditions. This allowed us to further calibrate the models in detail
using Bayesian calibration based on all collected data at a high resolu-
tion [49] (See Supplementary Information S1.1). With calibrated
modeling input parameters, the HVAC system load can be calculated by
solving the ordinary differential equations pertinent to the heat balance
of the zone air:

dT; & Si
CZT: = ;qsi + thiAi(Tsi — T,) + Qinf + Qven + Qavac, (@)

i=1

where Cy is the heat capacitance of zone air [J/K]; T, is the temperature
of zone air [K]; g5 is the internal loads from occupants, appliances, and
lights, etc. [W1; hg is the convective heat transfer coefficient between
surface i and indoor air [W/(m? K)] ; A; is the surface area [mz]; T is the
surface temperature [K]; gi, and gyen are the heat flux from the outside
air infiltration and ventilation, respectively [W]; quvac is the air-
conditioning loads [W]. In addition to the high-fidelity EnergyPlus
models, low-fidelity RC models are also developed to describe building
physics of energy use (Fig. 3). As representative low-fidelity models, RC
models are illustrated as xRyC networks with lumped parameters in
analogy to an electrical circuit with x as the number of thermal re-
sistances and y of thermal capacities. The differential equations of the
building model are formulated according to the chosen model structure.
For this research, we developed two types of typical RC models with a
single external wall, i.e., the 3R2C model (three resistances and two
capacities) and the 2R1C model (two resistances and one capacities).
Then, the cooling and heating energy use are calculated by solving
partial derivative equations of building thermal dynamics (See Supple-
mentary Information S1.2).

2.2.2. Data-driven residual modeling

After development of physics-based models, data-driven approaches
are explored to model the residuals between physics-based energy
models and observed data. Residuals (as the terminology) in this paper
refer to the discrepancies between modeling outcomes of physics-based
models and actual field observations. These residuals are crucial in-
dicators of the inherent limitations of physics-based models. In this
research, even the established high-fidelity physics-based models are
detailly calibrated using the Bayesian method, there still exist discrep-
ancies between physics-based modeling outcomes and field observa-
tions. In the past, it is suspected that these deviations are attributable to
factors such as occupant behaviors, although no evidence was presented
to affirm this. The persistence of residuals also underscores a funda-
mental aspect of BEM: while physics-based approaches can approximate
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Fig. 3. Thermal network of (a) 3R2C and (b) 2R1C models of the target buildings. Ti,: indoor temperature; To,: outdoor temperature; T,,: outside layer temperature;
Tyi: inside layer temperature; R,: thermal resistance between the wall and the outdoor environment; R,,: thermal resistance within the wall;R;: thermal resistance
between the wall and the indoor environment; Q,: outside heat source; Q;: inside heat source.

the building energy consumption, there are always hidden dynamics
beyond the scope of designed physics rules to capture. Hence, ap-
proaches to complement physics-based modeling are expected to further
enhance modeling accuracy of energy use of real buildings.

The inherent periodicity in building operation makes time series
analysis effective in understanding and capturing temporal correlations
of historical data. Hence, data driven models arise to be appropriate
approaches in modeling these residuals [50]. Prominent time series
analysis techniques used in building energy consumption forecasting
include ANN [51], ARIMA [52], SVM [53], and RNN [54], etc. Therein,
the loop-based structure of RNN is designed to describe temporal dy-
namics of modelled systems. Therefore, the utilization of RNNs in energy
prediction has attracted increasing research interests in recent years [1].
In this section, both linear autoregressive model (AR, ARMA, and
ARIMA) and non-linear LSTM model are explored to fit with the re-
siduals between physics-based modeling and observed data.

The Autoregressive (AR) model is a fundamental and widely used
technique for time series forecasting [52,55,56]. An extension of the AR
model is the Autoregressive Moving Average (ARMA) model that in-
corporates terms of forecasted errors. However, both AR and ARMA
models are less effective to model data with large fluctuations. For non-
stationary data, the Autoregressive Integrated Moving Average (ARIMA)
model is usually used, extending the ARMA model by integrating a
differential form of the data:

Vi =Q0+mY, g+ Y, €1+ ekt e 2

where yt =¥ —Y¢1 is first-order differential. In model fitting, it is
crucial to determine relevant lags for the stationary time series data. The
Autocorrelation Function (ACF) and Partial Autocorrelation Function
(PACF) are utilized to identify related lag terms by calculating covari-
ance or conditional covariance. In addition, although adopting historical

data with more lags is possible to improve model accuracy but unnec-
essarily increase model complexity (affecting model application in
practice). Hence, Bayesian Information Criterion (BIC) is then used to
determine the optimal number of lags considering both accuracy and
complexity. Detailed order finding process for residual modeling are
shown in Supplementary Information S1.3.

While linear models could be insufficient to fully capture the auto-
correlation of a time series sequence, in this work, the deep learning
networks are also developed to capture the nonlinear relationships in
residuals. As a predominant variant of deep RNN network, LSTM is used
in our residual modeling. To start with, the max-min data pre-
processing is conducted, in which all training data and test data are
normalized to increase the calculation and convergence speed. After
that, the structure and detailed parameters of LSTM networks are
shown, together with the method for order finding.

LSTM networks are extensively used as the deep learning algorithm,
particularly for tasks involving sequential data in language modeling,
speech recognition, and time series prediction. As shown in Fig. 4a, a
typical LSTM network has value and state communication among units.
The input of a LSTM unit includes not only feature space parameters x
but also the cell state and the hidden state from previous unit. The cell
state C acts as the “memory” of the network, carrying information across
the sequence, while the hidden state h transfers information to subse-
quent LSTM cells and to the outputs. Each LSTM unit operates through
three specialized gates: Forget Gate, Input Gate, and Output Gate. These
gates collectively determine the updated cell state and hidden state,
which then serve as inputs for the subsequent unit. The Forget Gate
decides which information from the previous unit should be retained or
discarded and is calculated as follows:

fi= G(Wf'[ht—hxt} )7 3
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where o represents the sigmoid function, wy is the augmented wights.
[he—1, %] is the matrix formed by splicing the hidden state at time point t-
1 (h;-1) and the input feature space at time t (x;). The Input Gate selects
new information from x; to be stored in the cell state, calculated as:

i = O'(Wi'[ht—hxt] ) “4)

The cell state is then updated from C; ; to C;, where the old state is
multiplied by f; to selectively forget what is unnecessary. The new C; is
given by:

C; = fiC;1 +itanh(we-[he_1, %] ). %)

Eventually, based on C; and x;, Output Gate yields the new hidden state
h; as:

oy = 6(Wo+[ht_1,X¢] ), hy = 0,-tanhC;. 6)

In constructing a deep LSTM network, multiple LSTM units are
stacked. The network structure, therefore, is a critical factor in the LSTM
model. The RNN model in this work includes four LSTM layers, a fully
connected layer, and a regression layer, employing the ReLU activation
function. The training process involves a maximum of 1000 epochs, with
the Adam optimizer for objective function optimization. Detailed model
structures are defined according to Table 1. Lags are selected in
descending order of PACF, similar to the linear model. The number of lag
sequences in LSTM networks is determined by evaluating the loss
function on the test dataset, balancing network complexity. The crite-
rion for order selection is defined as:

1 & ~
L= Z i — ¥)*|Lso — La| < 3%, %)

Table 1
Detained parameters in LSTM network training process.

Parameters Value

Training method
Normalization method

Adaptive moment estimation
Max-min normalization

LSTM layer 4
Minimum batch size 20
Maximum epochs 1000
Initial learning rate 0.0001
Learning rate drop factor 0.5
Learning rate drop period 500

where L, is the loss function of the testing dataset with input parameters
number of n. For short-term building energy prediction, the dataset is
transformed by sliding window to represent the sequential characteris-
tics. As shown in Fig. 4b, datasets are reconstructed into sequential data
according to the size of sliding window, and then used for training and
testing of LSTM models.

2.2.3. Correlation coefficient analysis

To valid the proposed hypothesis of the building energy decompo-
sition, i.e., building energy consumption encompasses 1) physics-driven
part, 2) occupants-driven part, and 3) white noise, this section presents
the method to demonstrate the composition of provides part 1 and part 2
through weather-correlation (correlation coefficients between energy
use/residuals and weather data) and autocorrelation (correlation co-
efficients between current and history energy use/residuals data) anal-
ysis. The observed data should be strongly related to the weather data,
such as temperature, wind velocity, solar radiation intensity, and
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humidity level [57,58] if governed by the physics rules such as heat
transfer laws and air thermal dynamics. Therefore, if the residuals be-
tween the physics-based model and observation still contain such
physics components, it should be weather variables correlated.
Contrarily, the autocorrelation coefficients measure the correlation
among time series data, providing insights into the time-related patterns
within the data. The occupant schedule or activities of a building ex-
hibits strong time relevant patterns and periodicity [59,60]. Hence, if
the residual is not physics related but only autocorrelated, it indicates
that this component is driven by occupant behaviors or activities. In this
work, the Pearson correlation and the Spearman’s Rank correlation are
used to examine the linear and non-linear correlation between residuals
and weather data. The Pearson correlation coefficients (pp) and Spear-
man’s Rank correlation coefficients (p,) are calculated by equations
below:

cov(yr,
ﬂp(,Yl,)'z) = %J’;()ﬁdz)
Y1vy2

6> d?
—1_ L’ (8)
nn?-1)
where the cov(y1,Yy2) is the covariance between sequences y; and y»; o is
the standard deviation; d is the difference between the two ranks of each
sequence; n is the number of observations in the sequence.

2.2.4. White noise analysis

After decomposing the building energy use data into physics-driven
and occupants-driven parts, this section further demonstrates the com-
ponents as the remaining part (after subtracting physics-based and data-
driven components) of energy use, i.e., the observation remaining term,
via white noise analysis. The reasoning is that if the physics-based
component can be captured by physics-based models while occupant
driven component can be captured by residual modeling (data-driven
component), the observation remaining term should be a white noise
that refers to a sequence of uncorrelated random variables [61]. A key
feature of a white noise process is that the covariance between any
variable Y, and its historical data at any time lag k (Y, ) is zero. ie.,
cov(Y;, Y:«x) = 0. Consequently, in a standard white noise process, both
the ACF and PACF are identically equal to zero. After fitting a time series
model, if the ACF and PACF of the observation remaining fall inside the
confidence interval, one can consider that this process behaves like
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white noise, leaving behind this part that are random and not worth of
any further investigation. In this work, we calculate the ACF and PACF
of the observation remaining term, which is obtained by subtracting
results of physics-based and data-driven models from the observation, to
dictate whether this observation remaining term is white noise or not.

2.3. Ensemble learning with residuals modeling

Following analysis and decomposition of building energy use data,
ensemble learning by integrating data-driven residual models with
physics-based models is proposed to enhance BEM prediction accuracy,
following the logic and hypothesis that building energy use is composed
of physics-driven, occupant-driven, and white noise components. This
section presents the model ensembling process (Section 2.3.1), together
with the model performance evaluation (Section 2.3.2).

2.3.1. Ensemble learning framework

The detailed model ensembling process for building energy predic-
tion is illustrated in Fig. 5. For demonstration with an example, one can
consider the scenario that physics-based data are available and the data-
driven residuals model (discrepancy between physics-based models and
observations) incorporates lagged data from the previous n timesteps
(lag 1 to lag n) as the models to be ensembled. The detailed steps for
ensemble learning is as follows, 1) the estimated building energy con-
sumption Y is simulated using EnergyPlus or RC models; 2) based on the
observed data during time point t —n (y;_,) to t (y.), the residuals for
these time point (r._, to r;) are calculated by subtracting the simulated
values from the observed values (r, = y, —Y.); 3) The calculated re-
siduals are then used as the inputs to the residual model R(r¢—n, -, T¢),
and the predicted residual at the next timestep (t + 1) can be given as
re.1; 4) Finally, the predicted energy consumption data at time point
t+1 is derived by adding the predicted residual to the simulated value
Yes1 + 1. By implementing this procedure, the model is able to fore-
cast building energy consumption ahead by a time increment AT, where
AT is the time resolution defined as AT = Ty —T;.

2.3.2. Performance evaluation
The superiority of the proposed ensemble model encompasses two
aspects: 1) higher prediction accuracy compared to physics-based

Model ensembling based on physics-based models and data-driven residual models
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Fig. 5. Model ensembling framework based on the physics-based models and data-driven residual models.
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models, and 2) greater robustness in small training dataset scenarios
compared to the pure data-driven models. Therefore, the performance
evaluation includes two parts. First, two widely used metrics in statistics
are employed for assessing the prediction accuracy, namely Mean Ab-
solute Error (MAE) and the Coefficient of Variation of Root Mean Square
Error (CV-RMSE). Lower MAE and CV-RMSE indicates that the model
has a higher accuracy. These two indices are calculated as:

15K _ S -y /Xy
MAEfan/l ¥il,CV—RMSE = {/ o _— ©)

where y; and y; are the observed and simulated values, and n is the total
observation number. Notably, the CV-RMSE is highly influenced by the
magnitude of average. Therefore, to avoid the bias introduced by
average in CV-RMSE calculation and evaluate modeling outcomes of
cooling energy use more accurately, we only incorporate cooling energy
use in cooling season data (excluding periods with mostly 0 across the
year) for CV-RMSE calculation. Second, the robustness of the models is
examined by training them with different dataset sizes. In this study, we
selected two state-of-the-art data-driven models, namely the LSTM
model and SVM model, as benchmarks [62-64]. The testing dataset
consists of the annual energy consumption data, while the training
dataset ranging from 10 % to 100 % of the annual data in time series. For
example, a 10 % training dataset indicates that the model is trained
using 10 % of the annual energy consumption data, approximately
equivalent to the energy consumption in January. The trained models
are then tested with the entire annule dataset to assess their extrapola-
tion behavior.

3. Results

This section presents the modeling and analysis results. First, Section
3.1 briefly presents the modeling outcomes of physics-based building
energy models. Then, the analysis of building energy use data decom-
position is presented with correlation and white noise analysis in Section
3.2. Finally, Section 3.3 discusses the overall performance of the pro-
posed ensemble models, including the prediction accuracy and
robustness.

3.1. Physics-based modeling outcomes

This section shows the simulation results of physics-based models.
Considering modelled cooling and heating energy use of AEB is similar
with CSC, we only present the EnergyPlus and 3R2C modeling results of
CSC. The observed and simulated energy use of CSC is shown in Fig. 6,
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Q

—

—
O
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—Observed data 2(]0:L
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together with the discrepancies of these data, i.e., the residuals. These
figures predominantly feature data with a 60-minute time resolution,
and sub-hourly time resolution data (30-minute, 15-minute, and 5-min-
ute) are available in the Supplementary Information (Figs. S1-S2).
Detailed MAE and CV-RMSE indices are presented in Fig. 7. These fig-
ures and performance evaluation metrics highlight several important
aspects. First, even though the EnergyPlus model is capable of modeling
in the sub-hourly level, the resulting simulated outcomes are essentially
linear interpolations of hourly data (Fig. S1). This interpolation stems
from the fact that the weather data for EnergyPlus is interpolated over
one-hour periods. The similar limitation also applies to the 3R2C model
(Fig. S2) because the ordinary differential equations in 3R2C models are
linear as well. Secondly, both MAE and CV-RMSE show that the 3R2C
model has a lower modeling accuracy compared to the EnergyPlus
model as high-fidelity models. Especially regarding modeling of heating
energy use, both MAE and CV-RMSE are significantly higher for pre-
dictions from the 3R2C model compared to EnergyPlus. This is possibly
introduced by simplifications of the 3R2C model in capturing building
operation dynamics.

3.2. Building energy data decomposition

In this section, the analysis results of building energy data decom-
position are presented. To test our hypothesis that building energy use is
comprised of three components (physics-driven, occupant driven, and
white noise), we start by subtracting the physics-based modeling results
(including different fidelities of modeling) from the measured building
energy use to obtain residuals. Whether building energy use data can be
decomposed into three components could be reflected by two aspects: 1)
correlation of residuals with weather variables: the residuals should
exhibit no or small correlation with weather data if there is no physics-
driven component within the residuals; 2) the existence of white noise
after subtracting physics-driven and occupants-driven components from
measured energy use: the observation remaining part is essentially white
noise, indicating that all systematic variations are captured by ensemble
modeling (explained in Section 2.2.4).

The calculated Pearson correlation coefficient } pp| and the Spear-
man’s rank correlation coefficients |p,| are demonstrated in Fig. 8. Re-
sults of the weather correlation coefficients analysis of residuals show
that there is no obvious physics information uncaptured in residuals, i.e.,
the physics-driven part is well-captured by physics-based models. As
general rules of thumb, a threshold of |p| < 0.3 is employed to filter out
features with no or weak correlation with a target variable [65]. Taking
the cooling energy use of CSC as example (Fig. 8a), the original
measured energy use is strongly correlated with weather factors such as
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outdoor temperature, relative humidity, and solar radiation, indicating
that the original energy use involves the physics processes in buildings.
This physical component is then captured by physics-based models,
resulting in the significantly reduced correlation coefficients (ranges
from O to 0.2 for EnergyPlus models) between weather data and the
residuals after subtracting physics-based modeling outcomes from total
energy use. However, the autocorrelation coefficients between residuals
of consecutive timesteps are still high (over 0.6), indicating that the
physics-based models are insufficient to capture this periodicity and the
seasonality information in the building energy use data. The low physics
correlation and high autocorrelation in residuals synergistically
demonstrate the existence of the occupant driven part in residuals.
Timeseries based residual modeling process (presented in Section 2.2.2)
is intended as part of the ensemble learning approach to capture this
occupant driven part. Another observation is that correlations between
residuals and weather data increase as the fidelity of physics-based
modeling for residual calculation decreases (i.e., the residuals from
2R1C models are more correlated with weather data compared to re-
siduals from EnergyPlus models). This also clearly indicates the exis-
tence of physics-driven component in total energy use. As more physics-
driven energy use (from high-fidelity model) is sufficiently extracted
from total energy use, the residuals become auto-correlated (occupant
driven) instead of weather correlated.

Even though the residuals are not correlated with the current
weather data, there is a concern that autocorrelative residuals may
contain model errors in the heating and cooling system, such as delays in
system response. If the residuals encompass these system delays, the
correlation coefficients between the residuals and the historical weather
data should be significantly high. To test this, we calculated the Peason
correlation coefficients between the residuals and the weather data
(temperature and relative humidity data) at three different time lags (1
h, 2 h, and 3 h) for both the CSC and AEB. For this analysis, we used
residuals based on the EnergyPlus model and the 3R2C model with a
time resolution of 60 min. The results, shown in Tables 2 and 3, indicate
that the correlation coefficients between the residuals and the historical
weather data are low, suggesting no obvious relationship between the
residuals and the delayed energy consumption data. However, the re-
siduals of the 3R2C model for the cooling energy data of the CSC exhibit
slightly high correlation coefficients with the historical temperature
data. This could be caused by the low fidelity of the 3R2C model, as the
correlation coefficients between the residuals and the current temper-
ature data are also high (Fig. 8a) while the correlations between re-
siduals of EnergyPlus model and weather data are much lower.
Therefore, the autocorrelation factors in the residuals should be attrib-
uted to the occupant activities rather than the delays in system response.

After the validation of physics-driven part and occupants-driven part
in building energy use data, the observation remaining term is demon-
strated as the white noise. The white noise analysis can be verified
through ACF and PACF analysis of the remain part of data beside the
physics-based and data-driven models. Fig. 9 and Fig. S3-6 demonstrate
that the observation remaining term sequences from these models with
hourly and sub-hourly time resolution exhibit negligible autocorrelation
(less than 0.1), behaving as white noise. Thus, these analysis results
collectively demonstrate that building energy use data can be decom-
posed into three parts (Fig. 10): 1) physical component well-described
by physics rules (e.g., external building thermal load), 2) stochastic
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component contributed by occupant activities, and 3) white noise. In
detail, the quantitative proportions of the residuals and the white noise
are shown in Fig. 11. The proportion of white noise is calculated by
dividing the CV-RMSE after model ensembling by the CV-RMSE of the
physics-based model. For example, in the case of cooling energy based
on EnergyPlus model with a time resolution of 60 min, the percentage of
residuals is 40 % while that of white noise is 60 %, indicating that the
CV-RMSE of the physics-based model would be reduced by 40 % after
model ensembling and residual modeling to capture the occupant driven
components. The proportion of residuals based on the EnergyPlus model
is lower than that of the 3R2C model because more physics information
is contained in the residuals of the low-fidelity model. Additionally, the
proportion of heating energy residuals increases with reduced time
resolution, demonstrating that the residuals model can capture more
occupant behavior information within heating energy dataset with
smaller time resolutions. Overall, such decomposition allows us to
develop an ensemble learning framework where the physics-based
models capture the physical information while the data-driven resid-
ual models capture the time-series information in building energy use
data. Results presented in Fig. 8e-f for AEB lead to the same conclusions
as this decomposition analysis for the CSC building.

3.3. Performance evaluation for ensemble models

With the determined optimal orders for both linear and nonlinear
models in residual modeling (See Supplementary Information §2.3), the
physics-informed ensemble model has been developed for modeling
building energy use. This section presents the performance of ensemble
model integrating EnergyPlus and 3R2C physics-based models with re-
sidual models for the CSC. The results of AEB are not presented to save
space since these are similar with CSC.

First, the prediction accuracy improvement is demonstrated,
compared to physics-based models. The residual models used in the
ensemble framework are trained using annual cooling and heating en-
ergy data from 2021. The CV-RMSE for the trained ensemble models
generally falls within the range of 0.1-0.3. The predicted building en-
ergy consumption is depicted in Figs. $20-24 and the detailed MAE and
CV-RMSE are presented in Tabs. S7-10 and Fig. S25. After the model
training, the cooling and heating energy data in 2022 are used for
testing. Results with time resolution of 60 min are shown in Fig. 12,
where the fitting performance of linear model is presented by the ARIMA
model for illustration. Results of AR and ARMA model fitting and sub-
hourly time resolution of modeling (30-minute, 15-minute, and 5-min-
ute) are similar to hourly modeling results based on ARIMA
(Supplementary Information (Figs. S26-29)). The outcomes of the
ensemble models fit observed data well, with detailed MAE and CV-
RMSE provided in Tabs. S11-S15. Fig. 13 illustrates the relationship of
MAE and CV-RMSE with the time resolution and model type. Results
reveal that the CV-RMSE of these models generally falls between 0.1 and
0.4, and there is a significant reduction in both MAE and CVRMSE by
40-90 % compared to the outputs from physics-based models, indicating
that the time series based residual modeling (integrated with physics-
based modeling through model ensembling) substantially enhances
the accuracy of building energy modeling. Furthermore, the perfor-
mance of ensemble modeling is robust regardless of fidelity of physics-
based models involved as part of model. Despite the lower accuracy of

Table 2

Pearson correlation coefficients between residuals and the historical weather data for CSC.
Correlation Coefficients Temp 1 Temp 2 Temp 3 Humid 1 Humid 2 Humid 3
Residuals_EnergyPlus_cooling 0.175 0.163 0.150 0.214 0.199 0.182
Residuals_EnergyPlus_heating 0.150 0.155 0.164 0.051 0.064 0.083
Residuals_3R2C_cooling 0.459 0.429 0.400 0.274 0.242 0.211
Residuals_3R2C_heating 0.180 0.178 0.177 0.085 0.078 0.074

Note: Temp n/Humid n represents the n time-lags temperature/relative humidity data.
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Table 3

Pearson correlation coefficients between residuals and the historical weather data for AEB.
Correlation Coefficients Temp 1 Temp 2 Temp 3 Humid 1 Humid 2 Humid 3
Residuals_EnergyPlus_cooling 0.110 0.092 0.074 0.084 0.063 0.041
Residuals_EnergyPlus_heating 0.202 0.205 0.209 0.086 0.091 0.099
Residuals_3R2C_cooling 0.044 0.079 0.111 0.039 0.077 0.114
Residuals_3R2C_heating 0.189 0.191 0.194 0.035 0.031 0.031

Note: Temp n/Humid n represents the n time-lags temperature/relative humidity data.

3R2C model compared to the EnergyPlus model, the accuracy level of
the ensemble models is similar after model integration (integrating
EnergyPlus or 3R2C with residual models). This implies that enhancing
the fidelity of physics-based models might not be critical when applying
the ensemble modeling approach with residual models in building en-
ergy modeling. Ensemble model performance varies across different
time resolution and the chosen data-driven models. Models with smaller
time resolutions typically exhibit lower MAE. This trend can be attrib-
uted to the fact that MAE is highly dependent on the magnitude of the
difference between simulated and observed data, which tends to be
smaller at finer time resolutions. For the chosen data-driven models, the
nonlinear LSTM models show no significant advantages over linear
models such as AR, ARMA, and ARIMA, except at a 5-minute resolution.
Compared to MAE, CV-RMSE is independent with the magnitude of the
data due to the normalization by dividing the average of observed data.
More details will be discussed in the Section 4 below.

Then, the enhanced prediction robustness of the proposed ensemble
model is evident when compared to purely data-driven models (LSTM
and SVM as the baselines). For this study, we selected the CSC building
and time resolution of 60 min as an example. The physics-informed
ensemble model incorporates the EnergyPlus model as the physical
component and the LSTM model as the data-driven component, while
the LSTM and SVM are used as the baseline data-driven models for
comparison. For a fair comparison, the features used in the pure data-
driven models include not only the three time-lags of historical data
but also weather data, such as outdoor temperature, wind velocity, solar
radiation, and outdoor relative humidity. In contrast, the LSTM model
within the ensemble framework uses only the three time-lags of histor-
ical data. The results for cooling and heating energy predictions are
shown in Fig. 14a-b and Fig. 14c-d, respectively. The proposed ensemble
model consistently outperforms the LSTM and SVM models, especially
with smaller training datasets. Taking cooling energy prediction as
instance, when using the entire dataset for training, the CV-RMSE of the
three models are similar: 0.254 for the LSTM model, 0.225 for the SVM
model, and 0.210 for the physics-informed ensemble model. However,
when using just 10 % of the annual data for training, the CV-RMSE of
both the LSTM and SVM model is 1.231, whereas that of physics-
informed ensemble model remains acceptable as 0.300. Therefore,
although the pure data-driven models show similar prediction accuracy
as the proposed ensemble model with a full dataset, their performance
significantly deteriorates with smaller training datasets, indicating that
pure data-driven models struggle to learn useful information from
limited data, while the ensemble model remains robust. Furthermore,
even without any training data, the baseline performance of the
ensemble model would approximately converge to that of the physics-
based model (with a CV-RMSE of 0.289 for cooling energy perdition
using EnergyPlus model alone), showcasing the great potential of the
physics-informed ensemble model for application in extrapolation sce-
narios. Overall, this physics-informed ensemble learning by residuals
modeling shows effectiveness for improving both the accuracy and
robustness of building energy modeling.

4. Discussion

e Building energy use data decomposition and ensemble
modeling

11

Physics-based models have been widely used for BEM since the
1960s, yet significant discrepancies between model predictions and
ground observations still exist while being challenging to explain and
close. In this work, we firstly decompose the building energy use data by
correlation and white noise analysis, and correspondingly demonstrate
that the building energy consumption can be composed of three parts: 1)
a physics-driven component governed by physics rules, such as heat
transfer and thermodynamics; 2) a stochastic component driven by
occupant activities that exhibits certain periodicity and uncertainty; 3) a
white noise component caused by unexpected or unknown sources (e.g.,
anomalies in the data collection process). The low correlations between
residuals (difference between physics-based modeling and field obser-
vations) and weather variables and the high auto-correlation of residuals
suggest that it is the occupant behaviors contribute to these residuals,
which are hard to be captured by physics-based models. The validation
of white noise as observation remaining components provides further
evidence. This decomposition aligns with Norford et al. [66], attributing
88 % of the prediction discrepancies to unexpected occupant energy use
and HVAC systems operation. Another similar idea was proposed by
Chen et al. [67], i.e., the building energy use data can be divided into a
linear component obtained by prior physical knowledge and a nonlinear
component from unpredictable factors such as environment noise.
However, no strict evidence was provided for such decomposition. Ac-
cording to correlation analysis, we find the autocorrelation coefficients
of the residuals between physics-based modeling and observation are
still as high as over 0.5, indicating that it is necessary to further describe
the nonlinear component with the occupants-relevant (data-driven)
model and white noise.

Given these insights, it is natural to use the ensemble modeling
approach for building energy modeling. On one hand, using physics-
based model would result in inevitable accuracy compromise since the
stochastic component is hard to capture by physics-based model even
with dedicated model calibration. On the other hand, compared with the
pure data-driven model, such ensemble approach ensures the reliability
and robustness when the data for training a model is limited.

e Model complexity for ensemble modeling

Using the physics-informed ensemble learning approach to enhance
BEM accuracy, selecting appropriate model complexity for both physics-
based models and data-driven residual modeling is worthy of discussion.
The similar MAE and CV-RMSE of ensemble models based on EnergyPlus
and RC models as physics-based models suggests that enhancing the fi-
delity of physics-based models as part of ensemble models may not be
necessary to realize decent model performance if the ensemble modeling
approach is adopted. Instead, employing low-fidelity physics-based
models is sufficient to encapsulate basic physics dynamics, while data-
driven models could address the remaining gaps introduced by
occupant-driven dynamics without compromising modeling accuracy.
Furthermore, based on our tests, the highly complex data-driven models
for residual modeling are also unnecessary to realize a decent building
energy modeling performance in the proposed ensemble learning
approach. For the analyzed dataset, linear models such as AR, ARMA,
and ARIMA (with CV-RMSE of ~ 0.17-0.57) generally outperform the
nonlinear LSTM model (with CV-RMSE of ~ 0.18-0.6), except at a 5-
minute resolution, possibly due to the predominantly linear nature of
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Fig. 9. ACF and PACF of the residuals (observation remaining term) of these hybrid models based on EnergyPlus model. (a) Cooling and (b) heating energy by
ARIMA model. (c) Cooling and (d) heating energy by LSTM model. The time resolution is 60 min.

autoregression in the residuals. Additionally, the volume of data in-
fluences residual model performance. While nonlinear LSTM models
perform better with large datasets, linear models achieve accuracy with
smaller data volumes. This finding aligns with research about the impact

12

of data volume on performance of ARIMA and LSTM models [68-70].
Consequently, for modeling of low temporal resolutions (60, 30, and 15
min), linear models are not only sufficient to capture information in
residual data, but also offer superior computational efficiency.
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Fig. 12. Comparing observed data and prediction data based on EnergyPlus models. (a) Cooling energy predicted by ARIMA and (b) LSTM model. (c) Heating energy

predicted by ARIMA and (b) LSTM model.

In detail, for a regular computer equipped with 12-core Intel(R) Core
(TM) i5-10400F CPU @ 2.90 GHz and NVIDA GeForce RTX 2060 GPU,
the computational efficiency of each model is listed in Table 4. The
EnergyPlus model (high fidelity model) requires significant more
computation time than simple RC models (low fidelity model), espe-
cially when the time resolution is small (164 s for the EnergyPlus model
and 44.8 s for the 2R1C model), not to mention the time-consuming
parameter collection process and complex model development pro-
cesses required for a high-fidelity EnergyPlus model. The accuracy
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evaluation indicates that using a low-fidelity model as the physics
component in the ensemble model does not compromise the prediction
performance. Thus, the proposed ensemble learning framework could
have much higher computational efficiency (with time cost of 5.6 s to
46.2 s) compared to EnergyPlus models (with time cost of 32 s to 164 s)
by combining 2R1C and ARIMA models. This approach not only en-
hances prediction accuracy but also reduces computation time, which is
particularly advantageous for building energy optimization, typically
involving heavy iterative tasks. Therefore, in building energy modeling,
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Fig. 13. MAE and CV-RMSE of the ensemble models prediction results versus time resolution and type of time series models. (a-b) EnergyPlus model. (c-d) 3R2C

model. Baselines are the prediction of physics-based models.

it is reasonable to use ensemble models composed of simple physics-
based and data-driven models, avoiding excessive time and efforts in
modeling instead of high-fidelity physics-based modeling or complex
deep learning-based algorithms in data-driven residual modeling. The
combination of these simple models could realize even higher accuracy,
as demonstrated in Section 3.3.

e Performance of ensemble modeling of different time resolution

14

When BEM is widely used in building energy use prediction, analysis
of its performance in prediction of different time resolution is usually
overlooked. Coarse time resolution, such as monthly, weekly, daily, or
even hourly ahead prediction are inadequate for precise demand control
and system optimization [71], calling for a need of sub-hourly ahead
prediction. However, building energy use in smaller time resolution
typically exhibits increased randomness and uncertainties. The signifi-
cantly increased CV-RMSE in the 15-minute and 5-minute prediction for
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Fig. 14. MAE and CV-RMSE of the ensemble models prediction results versus size of training dataset. (a-b) Cooling energy prediction. (c-d) Heating energy pre-

diction. Baselines are the outcomes from LSTM model and SVM model.

Table 4

Computational efficiency of different physics-based and data-driven models.
Time resolutionModel 60 min 30 min 15 min 5 min
EnergyPlus 32s 41s 64s 164 s
3R2C 6.8s 11.5s 20.7 s 59.1s
2R1C 49s 83s 15.7 s 44.8 s
ARIMA 0.7 s 0.7 s 09s 1.4s

Note: The inputs for the ARIMA models include three time-lags of historical data.

both EnergyPlus and 3R2C modeling (in Section 3.3) implies that it is
challenging for physics-based models to effectively capture such un-
certainties. The proposed physics-informed ensemble model addresses
these challenges by effectively capturing stochastic component through
residual modeling, demonstrating robustness against the inherent
randomness and uncertainty in high-time resolution data of building
energy use. For example, in prediction of 5-minute time resolution, this
ensemble model approach significantly reduces the coefficient of vari-
ation of CV-RMSE by 50-60 % for cooling energy and 60-90 % for
heating energy prediction. This underscores the effectiveness of high-
resolution ensemble modeling in enhancing the performance of build-
ing energy use predictions in fine time resolution, suggesting significant
impacts on further pushing BEM to support applications demanding
accuracy in fine temporal resolution, such as smart control, demand
response, and fault detection and diagnosis [72-74].

e Insights for practical application

Although there has been significant advancement in the research on
Internet of Things (I0T), data collection for BEM is still time-consuming
due to the installation and maintenance of sensors. Additionally, privacy
concerns [41] and data limitation for buildings in the design phase and
newly built buildings [42] present significant challenges. Data-driven
models for BEM are usually restricted to the specific building oper-
ating conditions for which they are trained, leading to prediction fail-
ures when the training data is limited in certain situations [75].
Therefore, the limited availability of data hinders the application of
machine leaning models in BEM. As demonstrated in Section 3.3, the
performance of the proposed physics-informed ensemble model over-
performs that of pure data-driven models, particularly when the training
dataset size is small. For instance, when dealing with a building with
limited observed energy use data, data-driven models are not the first
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choice in such situations. While physics-based models can be used, they
also suffer from compromised prediction accuracy. Hence, in this
circumstance, the proposed ensemble model could serve as a more ac-
curate and robust alternative to both physics-based and data-driven
models, effectively avoiding prediction failures when data is limited.

e Limitations and future studies

Finally, we summarize the limitations of this study and suggest di-
rections for future research. First, the generalizability of the physics-
informed ensemble model can be further addressed. This study was
conducted on two specific educational buildings at the University of
Utah. As building operation could vary significantly across different
types of buildings and climate conditions, it is important to examine the
generalizability of the proposed model for other types of buildings such
as residential and commercial buildings in more climate zones. Evalu-
ating the performance of the model across different climate zones is also
worthy investigating. Then, the proposed method was evaluated using
an HVAC system that operates 24 h per day. Future study could focus on
the performance of physics-informed ensemble models for buildings
with HVAC systems that operate intermittently. Finally, the case study
presented in this work demonstrated that the residuals between physics-
based simulation data and observations are primarily attributed to
occupant activities. However, in other building modeling scenarios
without detailed building operation information and calibrated building
energy models, other factors may contribute to the modeling residuals in
different case studies, such as system delays, time-related COP for
electricity use prediction, and HVAC operation schedules. These auto-
correlated terms should be further explored in future research.

5. Conclusion

This study introduces a novel physics-informed ensemble modeling
that integrates physics-based modeling and data-driven residual
modeling as the joint model for building energy use prediction. First, we
demonstrate the decomposition of building energy use into physics-
driven component, occupant-driven component, and white noise based
on correlation and white noise analysis. Then, physics-based models
such as EnergyPlus and RC models are developed to capture the physics-
driven component in building energy use. Subsequently, the residuals
between physics-based simulated and observed data are modeled by
linear and nonlinear data-driven time series-based models. Finally, the
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ensemble modeling approach demonstrates excellent performance for
enhanced building energy modeling. Compered to physics-based
models, the proposed ensemble model achieves a CV-RMSE of less
than 0.3 for cooling energy prediction and less than 0.2 for heating
energy prediction, showcasing accuracy improvements of 40-90 % in
both MAE and CV-RMSE. The proposed ensemble model also shows
greater robustness than pure data-driven models. The CV-RMSE of
cooling and heating energy prediction based on the proposed ensemble
model are 0.300 and 0.172, respectively, when using just 10 % of the
annual dataset for model training, whereas those for LSTM model are
1.231 and 0.412, respectively. Such robustness enhancement highlights
the great potential of applying the physics-informed ensemble model in
extrapolation scenarios.

The significant insight from this work is that the field observations of
building energy use data can be decomposed into different parts, sug-
gesting ensemble modeling as an effective and natural approach for
enhanced modeling performance. Moreover, the ensemble approach
based on different fidelities physics-based models show similar predic-
tion performance, indicating that in certain scenarios, it may not be
necessary to develop a high-fidelity physics-based model. The study also
finds that linear models, which are computationally efficient, tend to be
more accurate in ensemble modeling compared to LSTM models, except
at a 5-minute time resolution. Overall, this physics-informed ensemble
learning framework based on residual modeling is effective for
enhancing the accuracy and robustness of building energy predictions,
offering valuable insights for both research and practical applications in
the field of building energy modeling.
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