

1 **Thermally stable and polar zwitterionic liquid stationary phases for gas**
2 **chromatography: Understanding the impact of chemical structure**

3 **Victoria R. Zeger^[1], Bhawana Thapa^[1], Jessica F. DeLair^[1], David S. Bell^[2], Daniel**
4 **Shollenberger^[3], Moubani Chakraborty^[3], Jason S. Herrington^[3], and**
5 **Jared L. Anderson*,^[1]**

6 ¹ *Department of Chemistry, Iowa State University, Ames, Iowa 50011 USA*

7 ² *ASKkPrime LLC, Bellefonte, Pennsylvania 16823, USA*

8 ³ *Restek Corporation, 110 Benner Circle, Bellefonte, Pennsylvania 16823, USA*

9

10 **Abstract**

11 The chemical structure of nine imidazolium sulfonate and triflimide zwitterionic liquids (ZILs)
12 were systematically tuned to increase their thermal stability for gas chromatography (GC)
13 separations. Substituents for imidazolium and 2-phenylimidazolium cation systems, comprised of
14 alkyl, benzyl, and oligoether groups of varying chain lengths, were studied as stationary phases in
15 GC. Propanesulfonate, ethanesulfonate, and propanetriflimide anions were examined to
16 understand the effect of linker length and nucleophilicity on ZIL thermal stability. Studies were
17 conducted to assess film stability and thermal lability of ZIL stationary phases on fused silica
18 capillaries when exposed to elevated temperatures for prolonged time periods. All stationary
19 phases exhibited relatively poor film stability on untreated capillary surfaces, but most showed
20 repeatable chromatographic retention after stepwise heating from 100 to 200 °C. To understand
21 the thermal degradation pathways of the ZILs, mass spectrometry (MS) was used to monitor the
22 degradation/volatilization of the stationary phase when heated from 40-250 °C. Salt-deactivated
23 surfaces were effective at mitigating stationary phase instability, but were observed to participate
24 in the degradation of alkyl functionalized ZILs via nucleophilic attack of the alkyl substituent. This
25 was not observed for oligoether substituted ZILs. Imidazolium propanesulfonate ZILs all
26 underwent degradation through the detachment of the anion system, resulting in the reformation
27 of 1,3-propanesultone. Most ZIL stationary phases degraded below 230 °C, but the cation
28 substituent was observed to play a significant role in overall ZIL thermal stability. For the
29 imidazolium propanetriflimide ZIL, degradation of the anion system occurred prior to the
30 detachment of the entire anion system via elimination and occurred at around 245 °C.

31

32 *Corresponding author: Jared L. Anderson, Department of Chemistry, Iowa State University.
33 andersoj@iastate.edu

34

35 **Keywords:** gas chromatography; stationary phase; zwitterionic liquid; thermal stability; mass
36 spectrometry.

37 **1. Introduction**

38 Ionic liquids (ILs) have gained considerable attention as green materials and have been
39 applied in the fields of chromatography [1], extractions and sample preparation [2,3],
40 electrochemistry [4,5], mass spectrometry [6], and spectroscopy [7]. Compared to traditional
41 classes of solvents, ILs possess low vapor pressures and higher thermal stabilities, making them
42 particularly useful in high temperature applications [8]. Some of their initial uses as stationary
43 phases in gas chromatography (GC) noted their unique separation selectivity but limited
44 temperature range, 110-160 °C for 1-ethylpyridinium bromide and 40-120 °C for ethylammonium
45 nitrate [1,9]. With the rapid development of room temperature ILs, their tunable physico-chemical
46 properties and wider temperature ranges have made them ideal for imparting selectivity in gas
47 phase separations [8,10], and many studies have sought to understand IL solvation properties by
48 making modifications to their chemical structures [11–13]. In general, it has been observed that
49 changing the anion of ILs affects retention of molecules the most in GC, with finer tuning possible
50 by modifying the substituents of the cation systems. Additionally, anions often have the greatest
51 influence on IL thermal stability, with large anions featuring delocalized charge being the most
52 thermally stable [14]. The higher thermal stability and unique retention of polar IL stationary
53 phases has led to their commercialization as wall-coated open tubular (WCOT) columns.

54 Zwitterionic liquids (ZILs), a subset of ILs possessing covalently bonded cations and
55 anions, have been applied for cellulose dissolution and as extraction solvents for polar molecules
56 due to their strong hydrogen bonding capability [15,16]. ZILs were also shown to possess higher
57 polarity and stronger hydrogen bonding interactions when compared to traditional IL homologues
58 [17]. In 2018, ZILs were reported as stationary phases in GC for the separation of volatile
59 carboxylic acids, where their strong retention was largely attributed to the high hydrogen bond

60 basicity of the anionic component [18]. The ZIL columns had higher retention factors and better
61 peak asymmetry factors than commercial polar columns used for fatty acid analysis, offering
62 limited thermal stability (ranging from 200-225 °C) compared to 270-280 °C for commercial
63 WCOT columns. These results have sparked an interest in developing more thermally stable ZIL
64 stationary phases to achieve selectivity of acidic analytes.

65 It is imperative that GC columns maintain high efficiency over hundreds of heating and
66 cooling cycles for repeatable, well-resolved separations and accurate analyte quantification. When
67 loss of separation efficiency occurs, peaks in chromatograms are observed to broaden, leading to
68 poorly resolved separations and lower signal-to-noise ratios. With substantial peak broadening, it
69 can also be challenging to discriminate peaks from the baseline, resulting in inaccurate peak areas
70 integrations. There are two possible mechanisms responsible for stationary phase instability that
71 result in loss of efficiency in GC. The first mechanism results in a phase rearrangement
72 phenomenon known as Rayleigh instability and the other involves thermal degradation of the
73 phase.

74 Phase rearrangement is often attributed to a surface energy mismatch between the
75 stationary phase and the capillary surface, leading to poor wetting of the surface and minimization
76 of the solid/liquid interfacial energy. Poor wettability is mainly thought to occur when the surface
77 energy of the capillary surface is below the critical surface tension of the stationary phase [19]. In
78 1987, Bartle et al. criticized this notion and proposed that phase rearrangement in GC occurs via
79 Rayleigh instability to “decrease the interfacial energy at the liquid/gas interface” [20]. In this case,
80 high efficiency thin films of stationary phases that were initially observed to wet the capillary
81 surface can break apart into low efficiency droplets over time. The theory is dependent not only

82 on surface tension, but also stationary phase viscosity, film thickness, and the inner diameter of
83 the capillary.

84 Loss of separation efficiency can also occur due to stationary phase loss from thermal
85 degradation or volatilization, often referred to as column bleed. In this case, molecules or
86 oligomers of the stationary phase may break apart and volatilize as the column is heated to higher
87 temperatures. Significant loss of the stationary phase results in decreased retention factors and
88 increased peak tailing as more of the capillary surface becomes exposed. While increased peak
89 tailing can also result from phase rearrangement, decreased retention factors can only result from
90 a loss of stationary phase. Significant effort has been made in characterizing the thermal stability
91 of ILs through thermogravimetric analysis (TGA) [21–24]. These studies have shown that the
92 degree of thermal stability for cations followed the trend: imidazolium > pyridinium > ammonium.
93 The most thermally stable anions also followed the trend of $[\text{PF}_6^-] > [\text{NTf}_2^-] > [\text{BF}_4^-] > [\text{TfO}^-] >$
94 $[\text{CH}_3\text{SO}_3^-] > [\text{NO}_3^-] > [\text{Br}^-] > [\text{Cl}^-] > [\text{Ac}^-]$. Another study assessed the thermal stability of sulfonic
95 acid ILs and found that methylimidazolium cations were more stable than triethanolammonium
96 and pyridinium cations [25]. While slower temperature ramp rates in TGA are expected to yield
97 more accurate results, it is impractical due to the time needed to conduct one experiment, and thus,
98 analyses are often collected using ramp rates of 5 or $10\text{ }^{\circ}\text{C min}^{-1}$. While these results are acceptable
99 for general comparisons, they are often in conflict with what is observed when monitoring
100 stationary phase bleed using sensitive chromatographic detectors, resulting in an over-estimation
101 of thermal stability. This is especially true for detectors kept under vacuum, such as GC-MS [26].
102 Therefore, an understanding of the thermal degradation pathway for ZILs under
103 chromatographically-relevant temperatures and conditions is needed to design more thermally
104 stable stationary phases.

105 To unravel the thermal degradation mechanism of ILs, studies using various forms of mass
106 spectrometry have been conducted [27–33]. For IL systems containing less nucleophilic halide
107 anions, loss of the alkyl substituent from the cation systems occurred in part through an elimination
108 reaction [34]. When the anions are more nucleophilic, loss of the alkyl substituent was observed
109 to occur through a reverse Menshutkin reaction by nucleophilic halide anions [35]. For ILs with
110 $[\text{NTf}_2^-]$ anions, elimination products were more abundant than substitution products and
111 degradation of the anion occurred [28]. By substituting an alkyl substituent for a benzyl moiety,
112 the thermal degradation mechanism may change from a $\text{S}_{\text{N}}2$ to $\text{S}_{\text{N}}1$ pathway, through which a
113 stable carbonium ion forms [36]. One study compared the thermal degradation mechanism of
114 oligoether-containing ILs for those with aliphatic groups using differential scanning calorimetry
115 (DSC) and TGA with infrared spectroscopy (TGA-IR) and noted that the presence of oligoether
116 groups led to a loss of the other alkyl substituent faster than the aliphatic IL [37]. These results
117 suggest that oligoether substituents may form less thermally stable ILs than alkyl substituents.
118 Studies have also explored 2-methylimidazolium cation systems, where increased thermal stability
119 was observed compared to imidazolium cations [38]. While some of these degradation
120 mechanisms may still hold true for ZILs, no study has specifically studied their thermal
121 degradation mechanisms and the role that restricted motion of the cation and anion systems plays
122 in their thermal stability.

123 This study explores both fundamental aspects of thermal stability with the intention of
124 designing thermally stable ZILs for use as GC stationary phases. Nine imidazolium sulfonate and
125 $[\text{NTf}_2^-]$ -based ZILs were systematically modified to identify key functional groups/substituents
126 that influence ZIL thermal stability. Octyl, decyl, benzyl, and oligoether (OE) substituents were
127 investigated using imidazolium and 2-phenylimidazolium cation systems. Ethanesulfonate (C_2S),

128 propanesulfonate (C₃S), and (propylsulfonyl)((trifluoromethyl)sulfonyl)imide (C₃NTf) anions
129 were also examined. In some cases, modifications to the capillary were made to alter the surface
130 energy of the inner capillary surface through the deposition of salt onto the capillary wall [19],
131 [39]. In this process, the deposited salt crystals provide a roughened surface that allows for more
132 interactions with the stationary phase material and provides a more uniform and stable coating.
133 This study also discusses the effects that salt treated surfaces have on stationary phase
134 rearrangement and thermal degradation for both alkyl and oligoether functionalized ZILs. The
135 knowledge and understanding of degradation mechanisms obtained in this study aids in guiding
136 the design of more thermally stable ZILs to meet the high temperature requirements of GC.

137 **2. Experimental**

138 **2.1 Materials and Reagents**

139 The following reagents were used in the synthesis of ZIL stationary phases. Triethylamine
140 ($\geq 99.5\%$), 1,3-propanesultone (98%), potassium hydroxide ($>90\%$), 1H-imidazole (99%), 1-
141 benzylimidazole (99%), triethylene glycol monomethyl ether (m-PEG-3) ($\geq 97\%$), diethylene
142 glycol monomethyl ether (m-PEG-2), hexanes ($\geq 98.5\%$), ethyl acetate ($\geq 99.5\%$), and methanol
143 ($\geq 99.9\%$) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Acrylonitrile ($\geq 99\%$) and
144 1-bromoocetane (99%) were obtained from Aldrich Chemical Company. Sodium 2-
145 bromoethanesulfonate (98%), methane sulfonyl chloride (98%), sodium hydroxide (98%), and 2-
146 phenylimidazole (98%) were purchased from Thermo Scientific (Waltham, MA, USA) while
147 dichloromethane ($\geq 99.5\%$), acetone ($\geq 99.5\%$), acetonitrile ($\geq 99.95\%$), and dimethyl sulfoxide
148 ($>99.9\%$) were from Fisher Scientific (Waltham, MA, USA). Additional reagents including 1-
149 octylimidazole ($>98.0\%$) from Tokyo Chemical Industry (TCI) (Tokyo, Japan), 1-octylimidazole
150 (99.90%) from AmBeed (Arlington Hts., IL, USA), 1-bromodecane ($>98\%$) from TCI, and 1,2-

151 dichloroethane ($\geq 99\%$) from Alfa Aesar (Ward Hill, MA, USA) were obtained. Deuterated NMR
152 solvents were either from Sigma-Aldrich (chloroform and heavy water) or Cambridge Isotope
153 Laboratory Incorporated (dimethyl sulfoxide) (Tewksbury, MA, USA). Untreated capillary tubing
154 (60 m x 0.25 mm i.d.) was obtained from Restek Corporation (Bellefonte, PA, USA) and PTFE
155 (0.012 ± 0.001 i.d.) tubing was obtained from Zeus (Orangeburg, SC, USA). Gases used in the
156 operation of GC-FID and GC-MS instruments included ultra-high purity helium, ultra-high purity
157 hydrogen, and Grade D breathing air from Matheson Tri-Gas (Irving, TX, USA). Standards for
158 studying the maximum allowable operating temperature of the stationary phase included $1000 \mu\text{g}$
159 mL^{-1} solutions of benzyl alcohol (Sigma-Aldrich, $\geq 99\%$) in 1,2-dichloroethane and propionic acid
160 (Sigma-Aldrich, $\sim 99\%$) in acetonitrile.

161 2.2 Instrumentation

162 Characterization of ZIL purity was accomplished using a Bruker Avance Neo 400 nuclear
163 magnetic resonance (NMR) spectrometer and a Varian MR 400 spectrometer to collect ^1H and ^{13}C
164 NMR spectra. A Gay Lussac bottle and stopper ($2.0 \pm 0.1 \text{ mL}$) from Corning Incorporated Life
165 Sciences was used to obtain density measurements of the ZILs via the pycnometer method. The
166 melting points of solid zwitterionic materials at room temperature were obtained using a MelTemp
167 apparatus and alcohol thermometer to confirm IL properties. Water baths equipped with a thermal
168 regulator and vacuum pump system, shown in Figure S1 of the supplementary information (SI),
169 were used to prepare 5 m GC columns. For efficiency determination, retention measurements, and
170 maximum allowable operating temperature (MAOT) studies, an Agilent 6890 gas chromatograph,
171 equipped with a 7683B automatic liquid sampler and a flame ionization detector (GC-FID), was
172 used. To construct stationary phase bleed profiles, an Agilent 6890 GC with a 5977A electron
173 ionization mass spectrometer (EI-MS) was used.

174 2.3 Synthesis of Zwitterionic Liquids

175 All ZIL synthesis procedures and conditions can be found in the SI. Reaction progression
176 was monitored daily using ^1H NMR. All final products were characterized using ^1H and ^{13}C
177 NMR.

178 2.4 Coating of Capillary Columns

179 WCOT columns were prepared using the static coating method. All coating solutions for
180 PEG-based stationary phases were prepared using a solvent mixture of 8% (v/v) solution of
181 methanol in dichloromethane (DCM). Coating solutions for stationary phases comprised of alkyl
182 imidazolium ZILs were prepared using a solvent mixture consisting of 0-5% (v/v) solutions of
183 methanol in DCM. All 5 m columns were coated at 45 °C and 23 inHg. Salt-deactivated capillary
184 tubing was prepared following a previously reported method [39] and were subsequently coated
185 using the static coating method.

186 2.5 Conditions for Testing Column Efficiency

187 All columns were conditioned at 100 °C for 1 h prior to assessing efficiency. To test column
188 efficiency, 1 μL of a 1000 $\mu\text{g mL}^{-1}$ standard solution of benzyl alcohol in 1,2-dichloroethane was
189 injected with a 20:1 split ratio and was carried out under the isothermal conditions listed in Table
190 1.

191 2.6 Maximum Allowable Operating Temperature Studies

192 MAOTs were determined using a similar method reported by Nan et al. [18]. Retention
193 data for propionic acid and benzyl alcohol were obtained in triplicate under isothermal conditions
194 (Tables S1 and S2) prior to baking the column at various temperatures. The column was initially
195 conditioned for one hour at 125 °C, followed by an isothermal separation of propionic acid and an
196 isothermal separation of benzyl alcohol at 100 °C. Subsequent baking steps were conducted at 150,

197 175, 200, 225, and 250 °C; all baking steps were followed by isothermal separations of propionic
198 acid and benzyl alcohol at 100 °C. GC conditions for baking the column are listed in Table 2.

199 **2.7 Thermal Degradation Experiments using GC-MS**

200 Bleed profiles for the ZIL columns were obtained by increasing the oven temperature from
201 40 °C to 250 °C at a ramp rate of 0.5 °C min⁻¹. A 5 m ZIL-coated column was attached to a 30 m
202 segment of empty capillary via a capillary connector; the other end of the empty capillary was
203 placed in the inlet and the coated capillary was fed through the transfer line of the MS. For the
204 C₈ImC₃S-Salt phase, a 20 m segment was cut and installed into the GC-MS without an additional
205 empty capillary. The GC inlet was held at 250 °C and the transfer line held at 280 °C. The MS
206 source and quadrupole were held at 230 and 150 °C, respectively. Other GC conditions used for
207 the stationary phase bleed study consisted of a split ratio of 20:1, flow rate of 1 mL min⁻¹, and UHP
208 helium as the carrier gas.

209 **3. Results and Discussion**

210 **3.1 Design of ZIL chemical structures**

211 To study the thermal stability of ZILs, nine ZILs with systematically tuned substituents
212 were designed based on those that have previously shown good separation selectivity as GC
213 stationary phases [18]. Chemical structures of the ZILs are shown in Figure 1 with their respective
214 abbreviations. Since ZILs possess tethered cations and anions, Figure 2 further breaks down the
215 ZIL chemical structure into their respective cation and anion systems for clarity. The cation system
216 refers to the positively charged imidazolium ring and its non-ionic sidechain or substituent; the
217 anion system refers to the negatively charged sulfonate or triflimide anion and the propane linker
218 that tethers it to the cation. Imidazolium cations are known for their vast structural tunability and
219 relatively high thermal stability compared to other cation systems, making them ideal to explore

220 many different substituents. ZILs containing octyl and decyl sidechains (i.e., C₈ImC₃S and
221 C₁₀ImC₃S) and oligoether sidechains of OE₂ and OE₃ (i.e., OE₂ImC₃S and OE₃ImC₃S) were
222 chosen to determine the effect of substituent chain length on thermal stability. The effect of polarity
223 on thermal stability can be assessed by comparing the C₁₀ImC₃S and OE₃ImC₃S ZILs, which
224 possess substituents featuring 10 atoms in the chain. A previous study compared zwitterion number
225 densities and molecular packing information obtained using small- and wide-angle x-ray scattering
226 of aliphatic and oligoether imidazolium sulfonate ZILs, concluding that oligoether ZILs exhibited
227 more homogenous packing due to dipole interactions between the lone pair electrons of oxygen
228 atoms and the cation system [40]. Thus, oligoether groups increase the polarity of ZILs due to their
229 ability to participate in dipole-dipole interactions, as opposed to their alkyl counterparts. The effect
230 of aromaticity on ZIL thermal stability was also explored by incorporating benzyl and phenyl
231 moieties into the ZIL chemical structure. Benzyl groups were previously shown to increase the
232 thermal stability of traditional ILs [41]. A phenyl substituent on the C2 carbon of the imidazolium
233 cation may be expected to hinder the loss of linear substituents by nucleophilic attack due to steric
234 effects. Lastly, studying the C₈ImC₂S and C₈ImC₃NTf ZILs allowed the effect of the anion system
235 on thermal stability to be explored. Traditional ILs comprised of [NTf₂⁻] anions have higher
236 thermal stability than ILs with methanesulfonate anions [23]. The effects of linker chain length on
237 thermal stability were also evaluated.

238 As stated previously, GC stationary phases should exist in a liquid state during separations
239 to facilitate an absorptive mechanism. Highly viscous ZILs that are liquids at room temperature
240 are generally ideal as GC stationary phases. Of the nine ZILs examined in this study, only four can
241 be considered as room temperature ZILs; these being C₈ImC₃S, C₈ImC₂S, OE₂ImC₃S, and
242 OE₃ImC₃S. Melting points for the other stationary phases are presented in Table 3. Photos of all

243 ZILs are shown in Figure S2a. Appending oligoether substituents to the ZIL chemical structure
244 was observed to significantly reduce their melting points. Specifically, the C₈(Ph)ImC₃S
245 zwitterions did not melt prior to undergoing thermal degradation at 190 °C, as evidenced by the
246 white powder that transformed into a clear liquid and an immiscible orange liquid of equal volume
247 (see Figure S2b). The orange liquid is believed to be the reformed C₈(Ph)Im reactant, whereas the
248 clear liquid is the reformed 1,3-propanesultone in a melted state. However, the OE₃(Ph)ImC₃S ZIL
249 had a melting point range of 92-98 °C, roughly 95 °C below the degradation temperature of the
250 C₈(Ph)ImC₃S zwitterion. Additionally, when the substituent was changed from the n-octyl group
251 to the aromatic benzyl group consisting of an equal number of carbon atoms, the BzImC₃S
252 zwitterion was able to withstand temperatures up to 230 °C without melting or degrading. This is
253 in striking contrast to the C₈ImC₃S ZIL that exists as a liquid at room temperature and can likely
254 be explained by the strong intermolecular forces and dense packing of planar aromatic molecules.
255 Additionally, the waxy C₁₀ImC₃S ZIL had a melting point range of 82-85 °C, whereas the
256 OE₃ImC₃S ZIL exists as a liquid at room temperature. The substituent groups appear to increase
257 the melting points of ZILs in the following order: aromatic > alkyl > oligoether.

258 3.2 Stationary Phase Rearrangement at Elevated Temperatures

259 One aspect of stationary phase stability often overlooked in GC is the ability of the molecules
260 to rearrange themselves into more thermodynamically favored orientations. As such, thin films of
261 a stationary phase on the capillary wall are transformed into spherical droplets to minimize the
262 surface area to volume ratio, resulting in efficiency losses that can occur over multiple heating and
263 cooling cycles. To monitor this effect, MAOT studies were performed for capillary columns by
264 baking at 125, 150, 175, 200, and 250 °C for 1 h and subsequently cooling to 100 °C. Results from
265 these studies are summarized in Table 4 and the full data sets can be found in Tables S1 and S2.

266 Chromatograms are also reported in the SI for each ZIL stationary phase studied (Figures S3-8),
267 showing changes in retention, peak shape, and peak width for benzyl alcohol and/or propionic acid
268 after each heating step. Additional chromatograms are provided showing the increased background
269 from ZIL columns that are caused by the elevated temperatures. The probes benzyl alcohol and
270 propionic acid were chosen due to their high retention factors and propensity for secondary
271 interactions with surface silanols on untreated capillary columns. Since rearrangement does not
272 result in stationary phase loss, it is expected that the retention times and calculated retention factors
273 should only be slightly altered due to additional interactions with the newly exposed silanol
274 surface. In such cases, rearrangement of the stationary phase on the capillary wall is thought to
275 occur at temperatures after which column efficiency decreased without an obvious drop in
276 retention factor. However, in cases where both the column efficiency and retention factor
277 decreased, the stationary phase is thought to have undergone thermal degradation. The onset of
278 stationary phase rearrangement was determined to be the temperature after which the measured
279 efficiency for benzyl alcohol and/or propionic acid dropped by ≥ 200 plates m^{-1} from an initial
280 efficiency measurement at 100 °C. Often, a continuous drop in efficiency was observed after each
281 heating step until loss of retention was observed. The MAOT for a particular ZIL stationary phase
282 was determined to be the recorded temperature prior to a measurable decrease in retention factor
283 for benzyl alcohol or propionic acid. For the C₈ImC₃S and C₁₀ImC₃S ZIL stationary phases on
284 untreated capillary, benzyl alcohol was observed to increase in retention after the heating cycles.
285 Therefore, the probe molecule with the most consistent retention factors was used to determine
286 values reported in Table 4. For most ZILs, propionic acid and benzyl alcohol were observed to
287 show similar trends in terms of efficiency and retention factor throughout the experiments.

288 All ZIL stationary phases appeared to suffer from Rayleigh instability to some degree on the
289 surface of untreated capillary and had MAOT values at or above 200 °C. Two stationary phases
290 also exhibited poor stability even at 100 °C; therefore, their MAOT values were not determined.
291 The C₈ImC₃NTf ZIL exhibited a loss of efficiency upon sitting overnight at room temperature. In
292 the case of the OE₃ImC₃S ZIL, the efficiency of benzyl alcohol dropped from 2200 to 1100 plates
293 m⁻¹ after heating at 100 °C for approximately 12 h. For oligoether substituted ZILs, the chain length
294 played an important role in the ZIL's propensity to undergo rearrangement with OE₃ImC₃S being
295 less stable than the OE₂ImC₃S ZIL on the untreated capillary surface and is likely due to the
296 decrease in viscosity that was observed previously for imidazolium sulfonate ZILs when the
297 oligoether substituents are increased in length [40,42]. However, by using a salt-deactivated
298 capillary in which a layer of sodium chloride is deposited prior to coating the stationary phase, the
299 OE₃ImC₃S ZIL was able to resist phase rearrangement with only small drops in efficiency
300 observed. Increased stability was also observed for the C₈ImC₃S ZIL coated on a salt surface.
301 Additionally, ZILs that were solid at room temperature (i.e., C₁₀ImC₃S, C₈ImC₃NTf, and
302 OE₃(Ph)ImC₃S) produced lower efficiency columns on untreated capillary compared to room
303 temperature ZILs. In these cases, it is unclear if the observed loss in efficiency is due to Rayleigh
304 instability or poor wettability.

305 As the stationary phase undergoes rearrangement and produces droplets, the silanol or salt
306 surface can be exposed and participate in adsorptive-type interactions with probe molecules.
307 Therefore, tailing peaks would be expected for benzyl alcohol and propionic acid. Increased peak
308 asymmetry factors were observed for both probes on oligoether ZIL stationary phases as the
309 efficiency was observed to decrease. Adsorptive hydrogen bonding interactions with the exposed
310 silica or support surface can increase peak asymmetry factors and confirm stationary phase

311 rearrangement and loss of the thin film coating. Interestingly, the peak asymmetry factors for
312 benzyl alcohol were quite large compared to propionic acid on the C₈ImC₃S ZIL columns, and this
313 was not observed for any other ZIL stationary phase, in which peak asymmetry factors mostly
314 ranged from 0.9-2.0. Peak asymmetry factors for benzyl alcohol were also observed to increase as
315 the efficiency dropped and more of the capillary surface became exposed. Improvements in peak
316 asymmetry factors for the salt surface may be due to the deactivation that occurs when the salt is
317 deposited. Conversely, propionic acid had slightly higher peak asymmetry factors on the C₈ImC₃S-
318 Salt column than on the C₈ImC₃S column featuring an untreated capillary surface. Additional
319 adsorptive-type interactions with the salt surface may have produced the increased peak
320 asymmetry factors for propionic acid, although not as significant as those observed for benzyl
321 alcohol on untreated capillary columns.

322 3.3 Thermal degradation of ZILs

323 To better understand ZIL thermal degradation, columns containing ZIL stationary phases
324 were subjected to elevated temperatures and mass spectrometry was employed to measure their
325 thermal degradation products. By assessing the thermal stability in this manner, the suitability of
326 a particular stationary phase for GC and GC-MS analysis can be better determined and the bleed
327 temperature compared to the degradation temperature measured by thermogravimetric analysis
328 (TGA) [26]. Previous studies have shown that higher temperature ramp rates used during TGA
329 provide higher T_{onset} values for ILs compared to slow ramp rates due to shorter exposure times
330 [24]. Since GC separations often require either lower temperature ramp rates and/or temperature
331 holds, TGA data collected using fast ramp rates (i.e., 10 K min⁻¹) often do not match the thermal
332 stabilities observed in separation studies. For this reason, a slow temperature ramp rate of 0.5 °C
333 min⁻¹ was chosen to obtain the most accurate T_{bleed}, at which the column bleed was observed to

334 reach an order of magnitude increase in counts using scan mode. Additionally, results from TGA
335 measure the bulk material whereas a bleed profile using GC-MS studies a thin film of the stationary
336 phase on a fused silica surface under constant flow of an inert gas using a highly sensitive detector.
337 Bleed profiles and the corresponding T_{bleed} temperatures obtained in this study are shown in Figure
338 3.

339 It is well understood that the thermal stability of ILs is highly dependent on the anion
340 component [21]. Substitution of the sulfonate anion for the $[\text{NTf}_2^-]$ -based anion was observed to
341 increase the thermal stability by approximately 16 °C. Similar observations were made when ILs
342 comprised of methanesulfonate anions were compared to ILs with $[\text{NTf}_2^-]$ anions, attributing their
343 higher thermal stability to the reduced basicity and lower nucleophilicity of the anion [23]. The
344 $\text{C}_8\text{ImC}_3\text{S}$ ZIL appeared to be more thermally stable (by approximately 35 °C) than the $\text{C}_{10}\text{ImC}_3\text{S}$
345 ZIL on untreated capillary. However, only a slight increase in the T_{bleed} temperature was observed
346 for $\text{OE}_2\text{ImC}_3\text{S}$ compared to the $\text{OE}_3\text{ImC}_3\text{S}$ ZIL. While the chain length may significantly affect
347 the thermal stability of alkyl substituents, this effect appears to be minimal for oligoether
348 substituents. By exchanging the octyl moiety for the benzyl group, the thermal stability was
349 significantly increased such that the bleed profile never crossed the T_{bleed} threshold set at 10^6 . This
350 is consistent with previous observations made during the melting point experiments and with the
351 literature, where a 45 °C increase in thermal stability was noted for the 1-benzyl-3-
352 methylimidazolium triflate IL compared to the 1-butyl-3-methylimidazolium triflate IL [41]. By
353 incorporating a phenyl moiety in place of a hydrogen at the C2 position of the imidazolium cation,
354 an increase in ZIL thermal stability was expected due to increased steric hindrance preventing
355 degradation via an anion substitution pathway, as observed previously by Cao and Mu with a
356 methyl group [22]. In this case, the opposite was observed and the thermal stability decreased by

357 approximately 20 °C compared to the OE₃ImC₃S ZIL on untreated capillary. Similarly, thermal
358 degradation observed at 190 °C during the melting point experiments for the C₈(Ph)ImC₃S ZIL
359 suggests that the phenyl moiety in the C2 position further reduced the thermal stability of ZILs. In
360 this case, the positioning of the aromatic moiety within the ZIL chemical structure plays a
361 significant role in modulating thermal stability.

362 By analyzing mass spectra obtained upon heating the ZILs to elevated temperatures,
363 thermal degradation products providing insight into ZIL thermal degradation mechanisms were
364 identified. Major thermal degradation products and their respective fragments are listed in Table
365 5. The mass spectra were acquired at 411-412 min (or 245.5-246 °C) to ensure a high signal-to-
366 noise ratio, which resulted in reduced background peaks from the polyimide coating of the
367 capillary, which were identified as ions possessing a mass-to-charge ratios (m/z) of 98 and 99 with
368 almost equal intensity. The mass spectra are shown in Figures S9-S17. No peaks were observed
369 for the ZIL molecular ion except for the C₈ImC₃NTf ZIL at lower temperatures, as shown in Figure
370 S9. The group of ions in the mass spectrum with the highest m/z were considered to belong to the
371 molecular ion of a thermal degradation product. Isotopic ratios were used to determine the
372 chemical formula and fragment ions were then assigned based on known fragmentation pathways.
373 In almost all cases, these ions were determined to originate from substituted imidazole precursors
374 resulting from a loss of the propanesulfonate anion. Ions that were unaccounted for were thought
375 to belong to other degradation products. Ions with m/z values corresponding to those observed in
376 the mass spectrum for 1,3-propanesultone in the National Institute of Standards and Technology
377 (NIST) Webbook database were present in all sulfonate ZILs (mainly 57, 58 and 122 m/z). For
378 these ZILs, substituted imidazoles were likely formed due to nucleophilic attack by the sulfonate
379 anion, resulting in the reformation of 1,3-propanesultone. In Figure S10 for the C₈ImC₃S ZIL, ions

380 with 180 and 179 m/z were observed and correspond to 1-octylimidazole (C₈Im) and [C₈Im-H]⁺.
381 Subsequent fragment ions resulted from σ -bond cleavage along the alkyl chain and corresponded
382 to 165, 151, 137, 123, 109, 95, and 81 m/z values in the mass spectrum. An additional peak at 153
383 m/z was present, which was also believed to be a fragment ion from C₈Im based on the work of
384 Sala et al. [27]. Upon determining possible fragments that could result from the substituted
385 imidazole precursors, the remaining ion peaks were analyzed in a similar manner.

386 For all ZILs, ions at 96, 82, and 68 m/z may be the result of other significant thermal
387 degradation products or the result of radical site rearrangements [43,44]. In the case of alkyl
388 substituted ZILs, peaks at 55 and 69 m/z in Figures S4 and S5 support the idea of additional thermal
389 degradation products formed via C-C bond cleavage but may also be evidence of the Hofmann
390 elimination product, which results in an alkene being formed from the alkyl substituent. For
391 terminal alkenes, the low m/z fragments (i.e., 70, 56, 55, 43, and 41) are most abundant, making
392 it challenging to discern these products without confirmation by a soft ionization technique [45].
393 The Hofmann elimination product is a common thermal degradation product for quaternary
394 ammonium compounds and occurs when the anion abstracts a hydrogen atom from a β -carbon.
395 The free radical residing on the β -carbon forms a double bond with the α -carbon, which results in
396 liberation of the alkyl side chain. The elimination mechanism occurs more frequently when the
397 anion is a weak nucleophile [46]. Others have proposed an elimination route occurring from loss
398 of the acidic C2 proton of the imidazolium by the anion that is followed by hydrogen
399 rearrangement with the proton of the β -carbon [47]. In the mass spectrum for the C₁₀ImC₃S ZIL in
400 Figure S11, similar m/z values and respective thermal degradation products were observed, as
401 detailed in Table 5.

402 For oligoether ZILs (see Figure S12 and S13), the Hofmann elimination product was not
403 evident, but additional thermal degradation products were observed that are thought to result from
404 C-O and/or C-C bond cleavage and hydrogen rearrangement. This homolytic backbone cleavage
405 has been observed previously for polyethylene glycol polymers after pyrolysis by matrix-assisted
406 laser desorption/ionization MS and chemical ionization MS [48]. This mechanism is depicted in
407 Figure 4 for the $\text{OE}_2\text{ImC}_3\text{S}$ ZIL. Similar observations were made for the possible fragments of the
408 OE_3Im thermal degradation product. For the $\text{OE}_2\text{ImC}_3\text{S}$ ZIL, only products from C-O cleavage
409 were observed, but for the $\text{OE}_3\text{ImC}_3\text{S}$ ZIL, C-C bond cleavage products were also observed, with
410 the peak at 126 m/z being most abundant. Some evidence suggests that a second mechanism of
411 ZIL degradation occurs through the elimination of the sulfonate anion. In this case, the resulting
412 product was vinyl sulfonic acid at 108 m/z, which is moderately abundant in the mass spectrum
413 for the $\text{OE}_2\text{ImC}_3\text{S}$ ZIL. The ion peak at 108 m/z was only observed for the $\text{OE}_2\text{ImC}_3\text{S}$ ZIL and
414 suggests that this alternative mechanism does not occur for the $\text{OE}_3\text{ImC}_3\text{S}$ ZIL. For the
415 $\text{OE}_3(\text{Ph})\text{ImC}_3\text{S}$ ZIL, the substituted 2-phenylimidazole product was observed. In Figure S14, these
416 peaks correspond to 290, 275, 259, 245, 231, 215, 213, 201, 187, 171, 157, 103, 89, 77, and 59
417 m/z. Other thermal degradation products corresponding to homolytic cleavages were observed at
418 232, 202, 188, 186, 172, 158, 144, and 104 m/z, respectively. The high abundance of the 144 m/z
419 ion corresponding to 2-phenylimidazole (PhIm) indicates that loss of both the cation substituent
420 and anion component occurs readily with the 2-phenylimidazolium cation and may contribute to
421 lower thermal stability. No other alternative thermal degradation products were discerned for the
422 sulfonate anion other than those for 1,3-propanesultone.

423 For the $\text{C}_8\text{ImC}_3\text{NTf}$ ZIL, the ion with the highest m/z at 364 resulted from the loss of the -
424 CF_3 group. Although exhibiting low abundance at 411 min, this was the most abundant peak at

425 151 min (before the bleed profile began to deviate from the baseline and significant degradation
426 was observed). In the mass spectrum obtained at 151 min, the molecular ion is present at 433 m/z,
427 indicating that the observed 364 m/z ion is also the most favored fragment formed during
428 ionization. This also suggests that it is more stable, and less energy is required to produce this
429 fragment ion than others [46]. Similar fragmentation was also previously reported for ILs with
430 $[\text{NTf}_2^-]$ anions, in which the $-\text{CF}_3$ group facilitated an elimination reaction of the alkyl substituent
431 on the cation system [28]. Since $[\text{NTf}_2^-]$ anions are known to have lower nucleophilicity due to
432 their delocalized charge, they are not prone to facilitate degradation via nucleophilic attack.
433 Instead, 77% of IL degradation occurred via an elimination mechanistic pathway [28]. 1-
434 octylimidazole and respective fragment ions were also present, suggesting that the $-\text{CF}_3$ group may
435 have facilitated elimination of the remaining anion component, even though peaks corresponding
436 to the eliminated anion component (i.e., 183, 142, 105, 78 m/z) were not observed. Alternatively,
437 peaks at 253 and 184 m/z suggest that elimination occurs via proton abstraction by the negatively
438 charged nitrogen atom, where fragmentation of the product results in the loss of the $-\text{CF}_3$ group.
439 The higher thermal stability of the $\text{C}_8\text{ImC}_3\text{NTf}$ ZIL may be explained by the larger energy required
440 to facilitate an elimination reaction as opposed to the lower energy required for a nucleophilic
441 attack that occurs with the propanesulfonate anion systems. Regardless of the anion, degradation
442 of ZILs appear to be facilitated by the anion system, although through different degradation
443 pathways. Proposed thermal degradation routes for $\text{C}_8\text{ImC}_3\text{S}$ and $\text{C}_8\text{ImC}_3\text{NTf}$ ZILs are depicted in
444 Figure 5.

445 In the preparation of select GC columns featuring ZIL stationary phases, sodium chloride
446 was deposited on the capillary surface to mitigate phase rearrangement. To assess the influence of
447 the salt-deactivated surface on ZIL column thermal stability, the $\text{C}_8\text{ImCS-Salt}$ and $\text{OE}_3\text{ImC}_3\text{S-Salt}$

448 columns were also subjected to elevated temperatures using GC-MS. Comparison of the mass
449 spectra obtained from C₈ImC₃S-Salt and C₈ImC₃S volatilization/degredation at 411 min showed
450 similar m/z values, except for three ions of high abundance observed at 91, 92, and 93 m/z (see
451 Figure S10). Analysis of the 92 and 93 ion intensities to 91 m/z suggests the presence of a chlorine
452 atom within the molecular structure. The 91 m/z ion was determined to be a fragment resulting
453 from a 1-chlorooctane thermal degradation product, which was noted by McLafferty to be the most
454 abundant peak in mass spectra for larger chloroalkanes (C_nH_{2n}Cl, n ≥ 5) [46]. It has also been
455 previously reported that ILs with chloride anions produce chloroalkane thermal degradation
456 products [24,30]. In one case, the 1-chlorooctane molecular ion was also not detected [30]. The
457 high abundance of this thermal degradation product suggests that this degradation pathway may
458 be the culprit for lower observed T_{bleed} values for the C₈ImC₃S ZIL on salt-deactivated capillary
459 compared to untreated capillary. Similarly, analysis of the mass spectrum in Figure S15 for the
460 C₈ImC₂S ZIL at 412 min indicates the presence of a bromine-containing thermal degradation
461 product based on the isotopic ratios. Since the reaction used to synthesize the ZIL results in a
462 sodium bromide by-product, it is possible that some sodium bromide may remain dissolved in the
463 ZIL after purification. The most abundant ions at 135 and 137 m/z are likely a fragment of a 1-
464 bromooctane thermal degradation product. The T_{bleed} associated with this stationary phase is lower
465 than expected since the short linker length between the cation and anion components should not
466 result in the formation of a cyclic thermal degradation product, which occurs via nucleophilic
467 attack of the sulfonate group, as the resulting 4-membered ring would be rather unstable. However,
468 the presence of a bromide anion could account for this discrepancy, as observed with the C₈ImC₃S
469 ZIL on salt-deactivated and untreated capillary. In this case, the salt-deactivated surface is not a
470 suitable option to prevent stationary phase rearrangement for alkyl ZILs.

471 Upon comparing the mass spectra for the $\text{OE}_3\text{ImC}_3\text{S}$ -Salt and $\text{OE}_3\text{ImC}_3\text{S}$ columns, no new
472 high abundance ions were observed. The relative intensities of ions at 59 and 89 m/z were observed
473 to mostly increase, as observed in Figure S13. When the mass spectrum from the ZIL coated on
474 untreated capillary was subtracted from the ZIL coated on the salt-deactivated surface (see Figure
475 S16), ion peaks at 59, 89, 63, and 107 m/z were present. The most abundant ion in the subtracted
476 mass spectrum at 63 m/z has a relative abundance of 17.5% compared to the most abundant ion in
477 the mass spectrum for the ZIL on salt-deactivated capillary at 126.1 m/z. The low relative
478 abundance of these additional ions indicates that the formation of this thermal degradation product
479 is less favored, especially compared to the 1-chlorooctane thermal degradation product produced
480 from the $\text{C}_8\text{ImC}_3\text{S}$ -Salt column. This may explain the negligible effect on the T_{bleed} temperature.
481 Deducing the chemical structure of this thermal degradation product is more challenging since the
482 isotopic ratios determined from a subtracted mass spectrum may not be reliable. However, these
483 ions likely result from a thermal degradation product produced by sodium chloride. Since the 59
484 and 89 m/z ions are fragments of the oligoether sidechain, it is reasonable to suggest that the
485 thermal degradation product is a chlorinated oligoether. Additionally, the 63 and 107 m/z peaks
486 may represent fragment ions with the chemical composition of $\text{C}_2\text{H}_4\text{Cl}^+$ and $\text{C}_4\text{H}_8\text{ClO}^+$,
487 respectively. In this case, salt-deactivated capillary is a reasonable option to mitigate stationary
488 phase rearrangement of the oligoether ZILs as the salt does not appear to readily form chlorinated
489 oligoethers as it does with chloroalkanes.

490 **4. Conclusions**

491 The thermal stabilities of imidazolium sulfonate and triflimide ZILs were investigated to
492 understand the importance of ZIL chemical structure on their thermal degradation mechanism. For
493 GC applications, it is also important for column stationary phases to maintain a thin film on the

494 wall of the open tubular capillary columns. Of the nine ZILs studied, five were assessed for film
495 stability. All exhibited signs of phase rearrangement based on the loss of column efficiency after
496 extended heating. The OE_3ImC_3S stationary phase was particularly unstable on untreated capillary
497 but was able to maintain high efficiency on a salt-deactivated capillary surface. Improvement in
498 phase stability was also observed for C_8ImC_3S on a salt-deactivated capillary surface. Significant
499 loss of the stationary phase for most ZIL columns occurred after extended heating at 225 °C,
500 putting the MAOT between 200-225 °C as further indicated by drops in analyte retention. To
501 further differentiate ZIL thermal stability, bleed profiles were conducted using GC-MS and suggest
502 that both the cation and anion can play a significant role in modulating ZIL thermal stability. For
503 the imidazolium sulfonate stationary phases, a benzyl moiety afforded the lowest background and
504 highest thermal stability but provides challenges since the zwitterion did not liquify at
505 chromatographically relevant temperatures when observed using a MelTemp apparatus. The
506 oligoether substituents had similar bleed profiles and were also comparable to C_8ImC_3S with
507 thermal stabilities around 225 °C. However, the $C_{10}ImC_3S$ and $OE_3(Ph)ImC_3S$ ZILs had reduced
508 thermal stability of approximately 200 °C. To better understand the role C2 substituents and
509 aromatic groups play in ZIL thermal stability, 2-methylimidazolium and benzimidazolium cation
510 systems should be investigated. Additionally, mixed results were observed for ZILs on salt-
511 deactivated surfaces, as the chloride anion of the salt accelerated the thermal degradation of the
512 C_8ImC_3S phase but not the OE_3ImC_3S phase.

513 Analysis of imidazolium sulfonate ZIL thermal degradation products suggests that most
514 degradation occurs from nucleophilic attack by the sulfonate anion on the α -carbon. When the
515 anion was changed to triflimide, higher thermal stability was achieved and a new thermal
516 degradation mechanism was observed. In this case, degradation of the anion occurred with the loss

517 of the CF_3 group that then facilitated the loss of the remaining anion system via an elimination
518 reaction. This anion system is a promising alternative for high temperature applications, but the
519 high melting point of the $\text{C}_8\text{ImC}_3\text{NTf}$ ZIL makes it less ideal as a GC stationary phase. Based on
520 melting point observations, incorporation of oligoether substituents into the ZIL chemical structure
521 will likely result in reduced melting points to a temperature more amenable for gas-liquid
522 separations. When thermal degradation products of ZILs on salt surfaces were analyzed, the
523 degradation product formed due to the chloride anion for the oligoether ZIL was in much lower
524 abundance than that observed for the alkyl ZIL. Therefore, oligoether substituted imidazolium
525 triflimide ZILs are expected to serve as suitable GC stationary phases as oligoether ZILs are more
526 compatible with different surface modifications and have low melting temperatures while
527 triflimide anions increase ZIL thermal stability.

528 **5. Acknowledgements**

529 The authors acknowledge partial funding of this work through the Chemical Measurement
530 and Imaging Program at the National Science Foundation (Grant No. CHE-2203891). The authors
531 thank Dr. Bruce Richter for his valuable input and discussions.

532 **6. References**

533 [1] F. Pacholec, H.T. Butler, C.F. Poole, Molten organic salt phase for gas-liquid
534 chromatography, *Anal. Chem.* 54 (1982) 1938–1941. <https://doi.org/10.1021/ac00249a006>.

535 [2] J.G. Huddleston, H.D. Willauer, R.P. Swatloski, A.E. Visser, R.D. Rogers, Room temperature
536 ionic liquids as novel media for ‘clean’ liquid–liquid extraction, *Chem Commun* (1998)
537 1765–1766. <https://doi.org/10.1039/A803999B>.

538 [3] J. Liu, Y. Chi, G. Jiang, C. Tai, J. Peng, J.-T. Hu, Ionic liquid-based liquid-phase
539 microextraction, a new sample enrichment procedure for liquid chromatography, *J.*
540 *Chromatogr. A* 1026 (2004) 143–147. <https://doi.org/10.1016/j.chroma.2003.11.005>.

541 [4] J.D. Wadhawan, U. Schroder, A. Neudeck, S.J. Wilkins, R.G. Compton, F. Marken, C.S.
542 Consorti, R.F. de Souza, J. Dupont, Ionic liquid modified electrodes. Unusual partitioning
543 and diffusion effects of $\text{Fe}(\text{CN})_6$ 4-/3- in droplet and thin layer deposits of 1-methyl-3-(2,6-
544 (S)-dimethylocten-2-yl)-imidazolium tetrafluoroborate, *J. Electroanal. Chem.* 493 (2000)
545 75–83. [https://doi.org/10.1016/S0022-0728\(00\)00308-9](https://doi.org/10.1016/S0022-0728(00)00308-9).

546 [5] P.B. Hitchcock, T.J. Mohammed, K.R. Seddon, J.A. Zora, 1-Methyl-3-ethylimidazolium
547 hexachlorouranate(IV) and 1-methyl-3-ethylimidazolium tetrachlorodioxo-uranate(V1):
548 Synthesis, structure, and electrochemistry in a room temperature ionic liquid, *Inorg. Chim.*
549 *Acta* 113 (1986) L25–L26. [https://doi.org/10.1016/S0020-1693\(00\)82244-6](https://doi.org/10.1016/S0020-1693(00)82244-6).

550 [6] M. Zabet-Moghaddam, E. Heinzle, A. Tholey, Qualitative and quantitative analysis of low
551 molecular weight compounds by ultraviolet matrix-assisted laser desorption/ionization mass
552 spectrometry using ionic liquid matrices, *Rapid Commun. Mass Spectrom.* 18 (2004) 141–
553 148. <https://doi.org/10.1002/rcm.1293>.

554 [7] J. Xia, L. Xia, K. Gong, Y. Liu, W. Liu, G. Wang, X. Su, Preparation of high SERS-active
555 silver films in an aqueous solution of room temperature ionic liquids, *Integr. Ferroelectr.* 135
556 (2012) 62–70. <https://doi.org/10.1080/10584587.2012.685386>.

557 [8] D.W. Armstrong, L. He, Y.-S. Liu, Examination of ionic liquids and their interaction with
558 molecules, when used as stationary phases in gas chromatography, *Anal. Chem.* 71 (1999)
559 3873–3876. <https://doi.org/10.1021/ac990443p>.

560 [9] F. Pacholec, C.F. Poole, Stationary phase properties of the organic molten salt
561 ethylpyridinium bromide in gas chromatography, *Chromatographia* 17 (1983) 370–374.
562 <https://doi.org/10.1007/BF02262375>.

563 [10] P. Bonhote, A.-P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Gra, Hydrophobic,
564 highly conductive ambient-temperature molten salts, *Inorg. Chem.* 35 (1996) 1168–1178.
565 <https://doi.org/10.1021/ic951325x>.

566 [11] M.H. Abraham, W.E. Acree, Jr., Comparative analysis of solvation and selectivity in
567 room temperature ionic liquids using the Abraham linear free energy relationship, *Green*
568 *Chem.* 8 (2006) 906. <https://doi.org/10.1039/b606279b>.

569 [12] J.L. Anderson, J. Ding, T. Welton, D.W. Armstrong, Characterizing ionic liquids on the
570 basis of multiple solvation interactions, *J. Am. Chem. Soc.* 124 (2002) 14247–14254.
571 <https://doi.org/10.1021/ja028156h>.

572 [13] S.K. Poole, C.F. Poole, Chemometric evaluation of the solvent properties of liquid
573 organic salts, *The Analyst* 120 (1995) 289. <https://doi.org/10.1039/an9952000289>.

574 [14] D.M. Fox, W.H. Awad, J.W. Gilman, P.H. Maupin, H.C. De Long, P.C. Trulove,
575 Flammability, thermal stability, and phase change characteristics of several
576 trialkylimidazolium salts, *Green Chem.* 5 (2003) 724. <https://doi.org/10.1039/b308444b>.

577 [15] K. Kuroda, H. Satria, K. Miyamura, Y. Tsuge, K. Ninomiya, K. Takahashi, Design of
578 wall-destructive but membrane-compatible solvents, *J. Am. Chem. Soc.* 139 (2017) 16052–
579 16055. <https://doi.org/10.1021/jacs.7b08914>.

580 [16] I. Pacheco-Fernández, M.J. Trujillo-Rodríguez, K. Kuroda, A.L. Holen, M.B. Jensen, J.L.
581 Anderson, Zwitterionic polymeric ionic liquid-based sorbent coatings in solid phase
582 microextraction for the determination of short chain free fatty acids, *Talanta* 200 (2019) 415–
583 423. <https://doi.org/10.1016/j.talanta.2019.03.073>.

584 [17] D. Moreno, M. Gonzalez-Miquel, V.R. Ferro, J. Palomar, Molecular and thermodynamic
585 properties of zwitterions versus ionic liquids: A comprehensive computational analysis to
586 develop advanced separation processes, *ChemPhysChem* 19 (2018) 801–815.
587 <https://doi.org/10.1002/cphc.201701093>.

588 [18] H. Nan, K. Kuroda, K. Takahashi, J.L. Anderson, Examining the unique retention
589 behavior of volatile carboxylic acids in gas chromatography using zwitterionic liquid
590 stationary phases, *J. Chromatogr. A* 1603 (2019) 288–296.
591 <https://doi.org/10.1016/j.chroma.2019.06.021>.

592 [19] G. Alexander, Surface characteristics of treated glasses for the preparation of glass
593 capillary columns in gas-liquid chromatography, *J. Chromatogr.* 99 (1974) 81–101.
594 [https://doi.org/10.1016/S0021-9673\(00\)90848-3](https://doi.org/10.1016/S0021-9673(00)90848-3).

595 [20] K.D. Bartle, C.L. Woolley, K.E. Markides, M.L. Lee, R.S. Hansen, Rayleigh instability of
596 stationary phase films in capillary column chromatography, *J. High Resolut. Chromatogr.* 10
597 (1987) 128–136. <https://doi.org/10.1002/jhrc.1240100305>.

598 [21] H.L. Ngo, K. LeCompte, L. Hargens, A.B. McEwen, Thermal properties of imidazolium
599 ionic liquids, *Thermochim. Acta* 357–358 (2000) 97–102. [https://doi.org/10.1016/S0040-6031\(00\)00373-7](https://doi.org/10.1016/S0040-6031(00)00373-7).

600 [22] Y. Cao, T. Mu, Comprehensive investigation on the thermal stability of 66 ionic liquids
601 by thermogravimetric analysis, *Ind. Eng. Chem. Res.* 53 (2014) 8651–8664.
602 <https://doi.org/10.1021/ie5009597>.

603 [23] D.M. Blake, L. Moens, D. Rudnicki, H. Pilath, Lifetime of imidazolium salts at elevated
604 temperatures, *J. Sol. Energy Eng.* 128 (2006) 54–57. <https://doi.org/10.1115/1.2148976>.

605 [24] Y. Huang, Z. Chen, J.M. Crosthwaite, S. N.V.K. Aki, J.F. Brennecke, Thermal stability of
606 ionic liquids in nitrogen and air environments, *J. Chem. Thermodyn.* 161 (2021) 106560.
607 <https://doi.org/10.1016/j.jct.2021.106560>.

608 [25] A.S. Amarasekara, O.S. Owereh, Thermal properties of sulfonic acid group
609 functionalized Brönsted acidic ionic liquids, *J. Therm. Anal. Calorim.* 103 (2011) 1027–
610 1030. <https://doi.org/10.1007/s10973-010-1101-5>.

611 [26] R.L. Levy, H.D. Gesser, T.S. Herman, F.W. Hougen, Application of column bleed
612 absorption in high sensitivity gas chromatography and in gas chromatography-mass
613 spectrometry, *Anal. Chem.* 41 (1969) 1480–1483. <https://doi.org/10.1021/ac60280a041>.

614 [27] A. Sala, F. Ferrario, E. Rizzi, S. Catinella, P. Traldi, Electron ionization mass
615 spectrometry of some 1-and 2-alkylimidazoles and 1,3-dialkylimidazole iodides, *Rapid
616 Commun. Mass Spectrom.* 6 (1992) 388–393. <https://doi.org/10.1002/rcm.1290060607>.

617 [28] Y. Chen, Y. Cao, Y. Shi, Z. Xue, T. Mu, Quantitative research on the vaporization and
618 decomposition of [EMIM][Tf₂N] by thermogravimetric analysis–mass spectrometry, *Ind.
619 Eng. Chem. Res.* 51 (2012) 7418–7427. <https://doi.org/10.1021/ie300247v>.

620

621 [29] A. Deyko, K.R.J. Lovelock, P. Licence, R.G. Jones, The vapour of imidazolium-based
622 ionic liquids: a mass spectrometry study, *Phys. Chem. Chem. Phys.* 13 (2011) 16841.
623 <https://doi.org/10.1039/c1cp21821b>.

624 [30] K.R.J. Lovelock, J.P. Armstrong, P. Licence, R.G. Jones, Vaporisation and thermal
625 decomposition of dialkylimidazolium halide ion ionic liquids, *Phys Chem Chem Phys* 16
626 (2014) 1339–1353. <https://doi.org/10.1039/C3CP52950A>.

627 [31] C. Neise, C. Rautenberg, U. Bentrup, M. Beck, M. Ahrenberg, C. Schick, O. Keßler, U.
628 Kragl, Stability studies of ionic liquid [EMIIm][NTf₂] under short-term thermal exposure,
629 *RSC Adv.* 6 (2016) 48462–48468. <https://doi.org/10.1039/C6RA06129J>.

630 [32] M.T. Clough, K. Geyer, P.A. Hunt, J. Mertes, T. Welton, Thermal decomposition of
631 carboxylate ionic liquids: trends and mechanisms, *Phys. Chem. Chem. Phys.* 15 (2013)
632 20480. <https://doi.org/10.1039/c3cp53648c>.

633 [33] R.A. Patil, M. Talebi, A. Berthod, D.W. Armstrong, Dicationic ionic liquid thermal
634 decomposition pathways, *Anal. Bioanal. Chem.* 410 (2018) 4645–4655.
635 <https://doi.org/10.1007/s00216-018-0878-0>.

636 [34] H. Ohtani, S. Ishimura, M. Kumai, Thermal decomposition behaviors of imidazolium-
637 type ionic liquids studied by pyrolysis-gas chromatography, *Anal. Sci.* 24 (2008) 1335–1340.
638 <https://doi.org/10.2116/analsci.24.1335>.

639 [35] M. Sawada, Y. Takai, C. Chong, T. Hanafusa, S. Misumi, Pyridinium ion reactivities:
640 Substituent effect on the reverse menschutkin reaction of 1-methylpyridinium cations with
641 iodide anion, *Tetrahedron Letters* 26 (1985) 5065–5068. [https://doi.org/10.1016/S0040-4039\(01\)80854-6](https://doi.org/10.1016/S0040-4039(01)80854-6).

642 [36] B. Chan, N. Chang, M. Grimmett, The synthesis and thermolysis of imidazole quaternary
643 salts, *Aust. J. Chem.* 30 (1977) 2005. <https://doi.org/10.1071/CH9772005>.

644 [37] M. Mahrova, M. Conte, E. Roman, R. Nevshupa, Critical insight into mechanochemical
645 and thermal degradation of imidazolium-based ionic liquids with alkyl and
646 monomethoxypoly(ethylene glycol) side chains, *J. Phys. Chem. C* 118 (2014) 22544–22552.
647 <https://doi.org/10.1021/jp504946h>.

648 [38] W.H. Awad, J.W. Gilman, M. Nyden, R.H. Harris, T.E. Sutto, J. Callahan, P.C. Trulove,
649 H.C. DeLong, D.M. Fox, Thermal degradation studies of alkyl-imidazolium salts and their
650 application in nanocomposites, *Thermochim. Acta* 409 (2004) 3–11.
651 [https://doi.org/10.1016/S0040-6031\(03\)00334-4](https://doi.org/10.1016/S0040-6031(03)00334-4).

652 [39] S.C. Dhanesar, M.E. Coddensr, C.F. Poole, Surface roughening by sodium chloride
653 deposition for the preparation of organic molten salt open tubular columns, *J. Chromatogr.*
654 *Sci.* 23 (1985) 320–324. <https://doi.org/10.1093/chromsci/23.7.320>.

655 [40] W. Mei, A. Han, R.J. Hickey, R.H. Colby, Effect of chemical substituents attached to the
656 zwitterion cation on dielectric constant, *J. Chem. Phys.* 155 (2021) 244505.
657 <https://doi.org/10.1063/5.0074100>.

658 [41] J.L. Anderson, D.W. Armstrong, High-stability ionic liquids. A new class of stationary
659 phases for gas chromatography, *Anal. Chem.* 75 (2003) 4851–4858.
660 <https://doi.org/10.1021/ac0345749>.

661 [42] I. Grossereid, K.C. Lethesh, V. Venkatraman, A. Fiksdahl, New dual functionalized
662 zwitterions and ionic liquids; Synthesis and cellulose dissolution studies, *J. Mol. Liq.* 292
663 (2019) 111353. <https://doi.org/10.1016/j.molliq.2019.111353>.

664 [43] A. Efimova, J. Varga, G. Matuschek, M.R. Saraji-Bozorgzad, T. Denner, R.
665 Zimmermann, P. Schmidt, Thermal resilience of imidazolium-based ionic liquids—studies
666

667 on short- and long-term thermal stability and decomposition mechanism of 1-alkyl-3-
668 methylimidazolium halides by thermal analysis and single-photon ionization time-of-flight
669 mass spectrometry, *J. Phys. Chem. B* 122 (2018) 8738–8749.
670 <https://doi.org/10.1021/acs.jpcb.8b06416>.

671 [44] F.W. McLafferty, Mass spectrometric analysis. Molecular rearrangements, *Anal. Chem.*
672 31 (1959) 82–87. <https://doi.org/10.1021/ac60145a015>.

673 [45] J.H. Gross, Fragmentation of Organic Ions and Interpretation of EI Mass Spectra, in:
674 *Mass Spectrom.*, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011: pp. 249–350.
675 https://doi.org/10.1007/978-3-642-10711-5_6.

676 [46] F.W. McLafferty, *Interpretation of Mass Spectra*, third, University Science Books, Mill
677 Valley, California, 1980.

678 [47] E. Thomas, D. Thomas, K.P. Vijayalakshmi, B.K. George, Mechanistic outlook on
679 thermal degradation of 1,3-dialkyl imidazolium ionic liquids and organoclays, *RSC Adv.* 6
680 (2016) 9421–9428. <https://doi.org/10.1039/C5RA24907D>.

681 [48] R.P. Lattimer, Mass spectral analysis of low-temperature pyrolysis products from
682 poly(tetrahydrofuran), *J. Anal. Appl. Pyrolysis* 57 (2001) 57–76.
683 [https://doi.org/10.1016/S0165-2370\(00\)00106-6](https://doi.org/10.1016/S0165-2370(00)00106-6).

684

685 **Figure Legends**

686 Figure 1. Chemical structures of the ZIL stationary phases synthesized and evaluated in this
687 study.

688 Figure 2. Breakdown of ZIL chemical structure based on cation and anion system and additional
689 terminology referenced throughout the manuscript.

690 Figure 3. Bleed diagrams of ZIL stationary phases acquired using GC-MS. T_{bleed} was determined
691 to be the temperature at which the bleed profile reached 10^6 counts, an approximate order of
692 magnitude increase in counts from the baseline. Values for T_{bleed} are listed for each ZIL.

693 Figure 4: Proposed thermal degradation mechanism of oligoether ZIL stationary phases.

694 Figure 5. Proposed thermal degradation mechanisms of sulfonate and triflimide ZIL stationary
695 phases.

696 Table 1. GC conditions for isothermal separations

Conditions	
Inlet Temperature	250 °C
Flow Rate	1 mL min ⁻¹
Oven Temperature	100 °C
Carrier Gas	Helium
FID Temperature	250 °C
Air Flow	395 mL min ⁻¹
Fuel Flow	35 mL min ⁻¹
Makeup Flow	25 mL min ⁻¹

697

698 Table 2. GC conditions for MAOT column baking at 125, 150, 175, 200, 225, and 250 °C

Conditions	
Inlet Temperature	250 °C
Flow Rate	1 mL min ⁻¹
Oven Temperature	100 °C to 125 °C @ 20 °C min ⁻¹ (hold 1 h) back to 100 °C @ 20 °C min ⁻¹
Carrier Gas	Helium
FID Temperature	250 °C
Air Flow	300 mL min ⁻¹
Fuel Flow	40 mL min ⁻¹
Makeup Flow	25 mL min ⁻¹

699

700 Table 3. List of ZIL stationary phases, including abbreviations, physical descriptions, densities
 701 and melting points.

Abbreviation	Description	Density ^a (g mL ⁻¹)	Melting Point (°C)
C ₈ ImC ₃ S	Viscous clear liquid	1.14 ± 0.05	RTIL
C ₁₀ ImC ₃ S	White waxy solid	1.14 ± 0.06	85-87
OE ₂ ImC ₃ S	Viscous clear liquid with slight yellow tint	1.27 ± 0.09	RTIL
OE ₃ ImC ₃ S	Viscous clear liquid with slight yellow tint	1.21 ± 0.08	RTIL
OE ₃ (Ph)ImC ₃ S	White crystalline solid	1.38 ± 0.08	92-98
C ₈ (Ph)ImC ₃ S	White crystalline solid	n.d.	T.D.
C ₈ ImC ₂ S	Viscous clear liquid	n.d.	RTIL
C ₈ ImC ₃ N Tf	White crystalline solid	1.22 ± 0.06	91-93

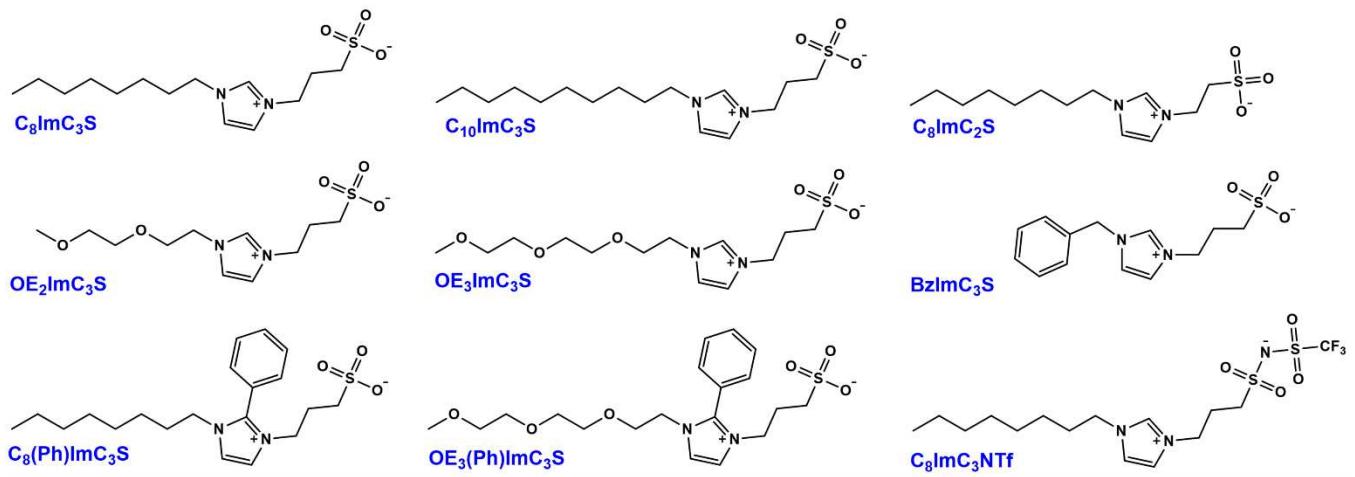
702 ^a pycnometer method at 20-21 °C; n.d. not determines; T.D. thermally degraded at 190 °C

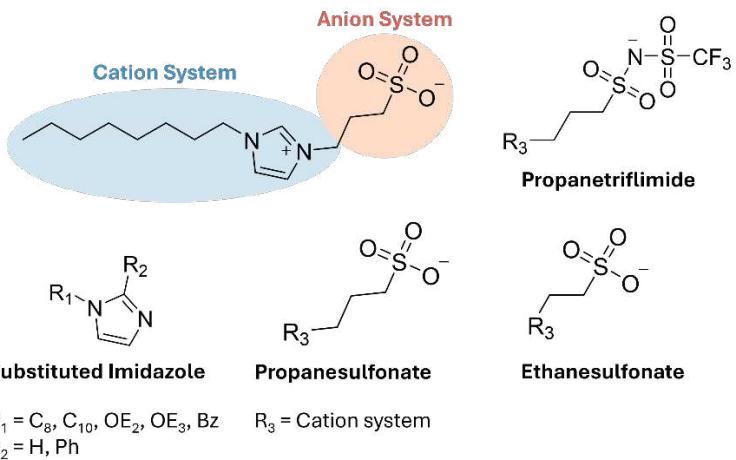
703 Table 4. Maximum allowable operating temperature (MAOT) values for alkyl and oligoether
 704 substituted ZILs on untreated and salt-deactivated capillary.

Phase	Rearrangement Temperatures	Thermal Degradation Temperature ^a
C ₈ ImC ₃ S	125-225 °C	225-250 °C ^b
C ₈ ImC ₃ S-Salt	n.r.	200-225 °C
C ₁₀ ImC ₃ S	125-225 °C	225-250 °C ^{b,c}
C ₈ ImC ₃ NTf	≤ 100 °C	n.d.
OE ₂ ImC ₃ S	150-200 °C	200-225 °C
OE ₃ ImC ₃ S	≤ 100 °C	n.d.
OE ₃ ImC ₃ S-Salt	150-200 °C	200-225 °C ^b
OE ₃ (Ph)ImC ₃ S	100-175 °C	175-200 °C

705 ^a Thermal degradation temperature range indicates the temperature before and at which the
 706 retention factor of benzyl alcohol or propionic acid dropped by more than 2% from the initial
 707 value.

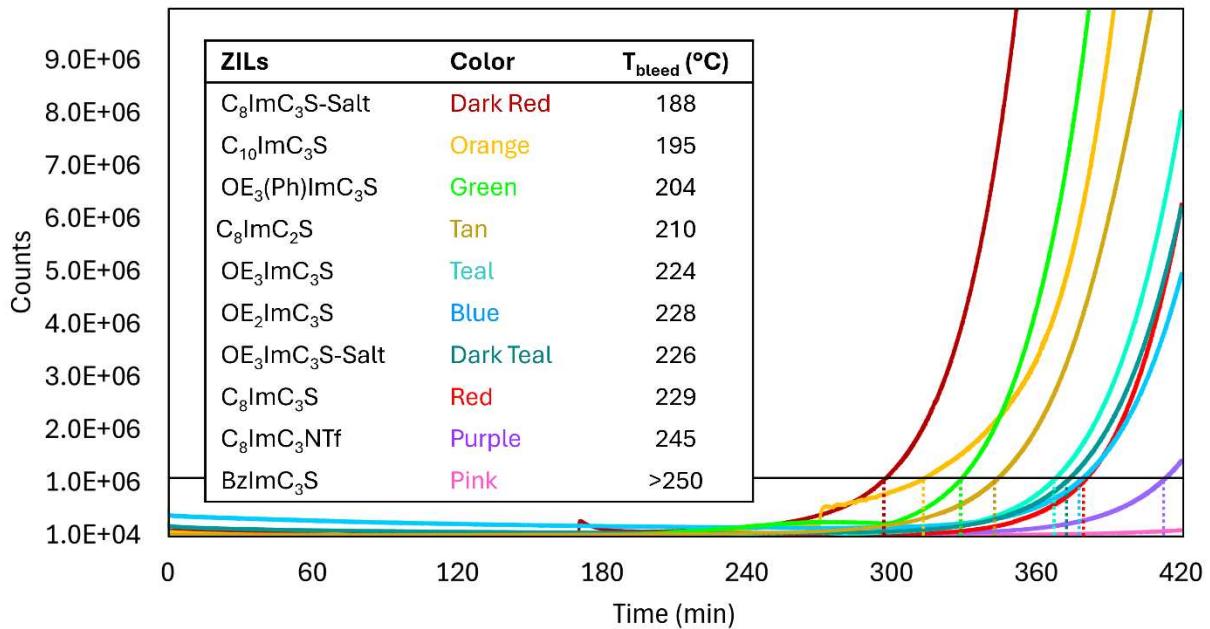
708 ^b Temperature ranges are based on the results of propionic acid instead of benzyl alcohol.


709 ^c For the C₁₀ImC₃S ZIL column, retention factors were observed to increase for both benzyl
 710 alcohol and propionic acid after heating, so MAOT may be higher than the true value.


711 n.r. no rearrangement was observed

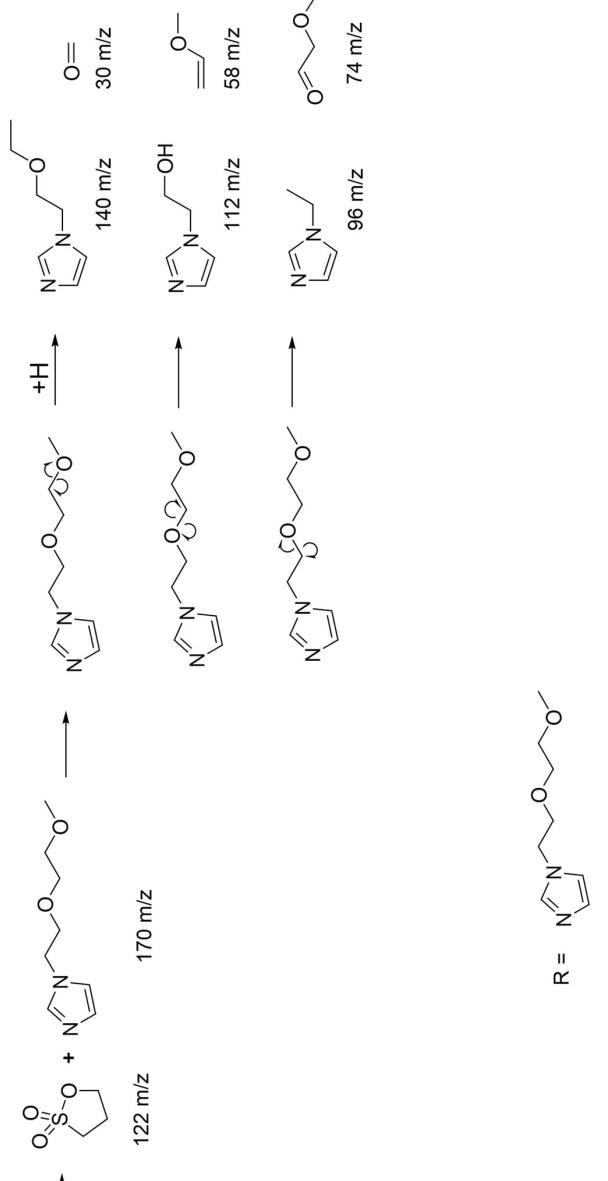
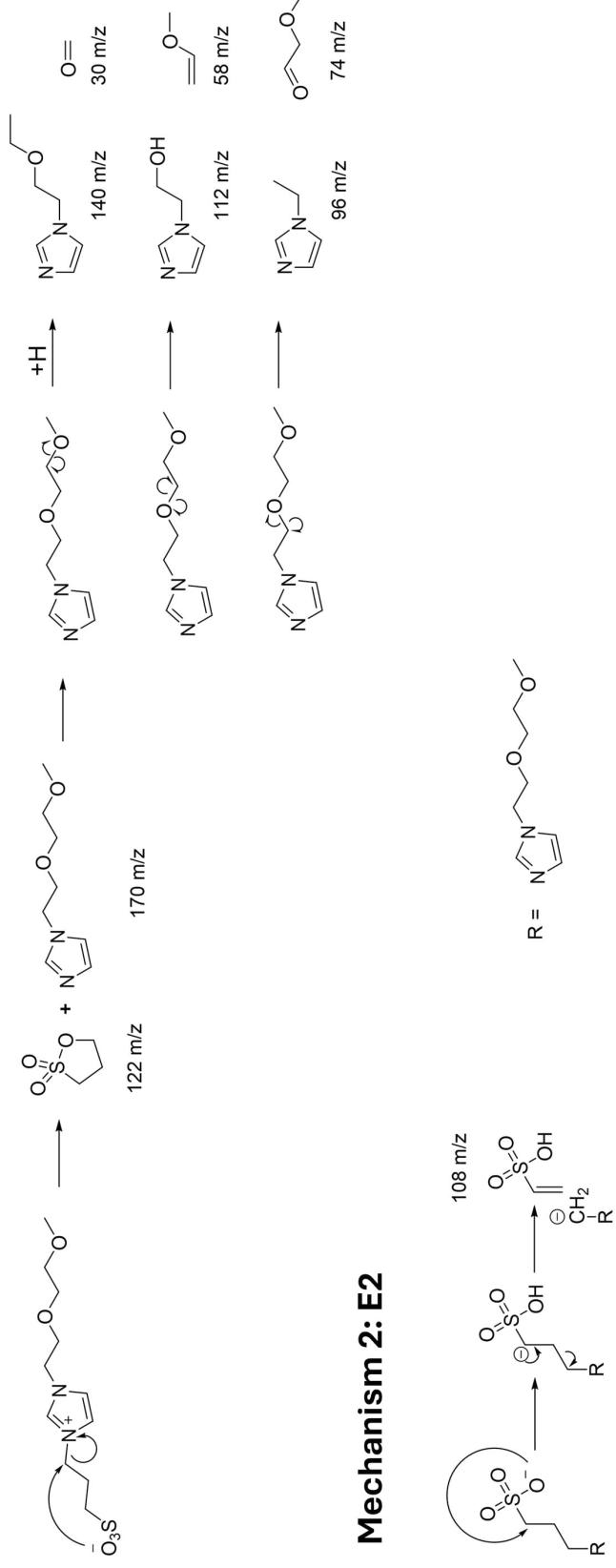
712 n.d. not determined due to significant phase rearrangement at 100 °C

713 Table 5. Molecular ions and their fragments obtained from bleed profiles at 411-412 min (245.5-
 714 246 °C).

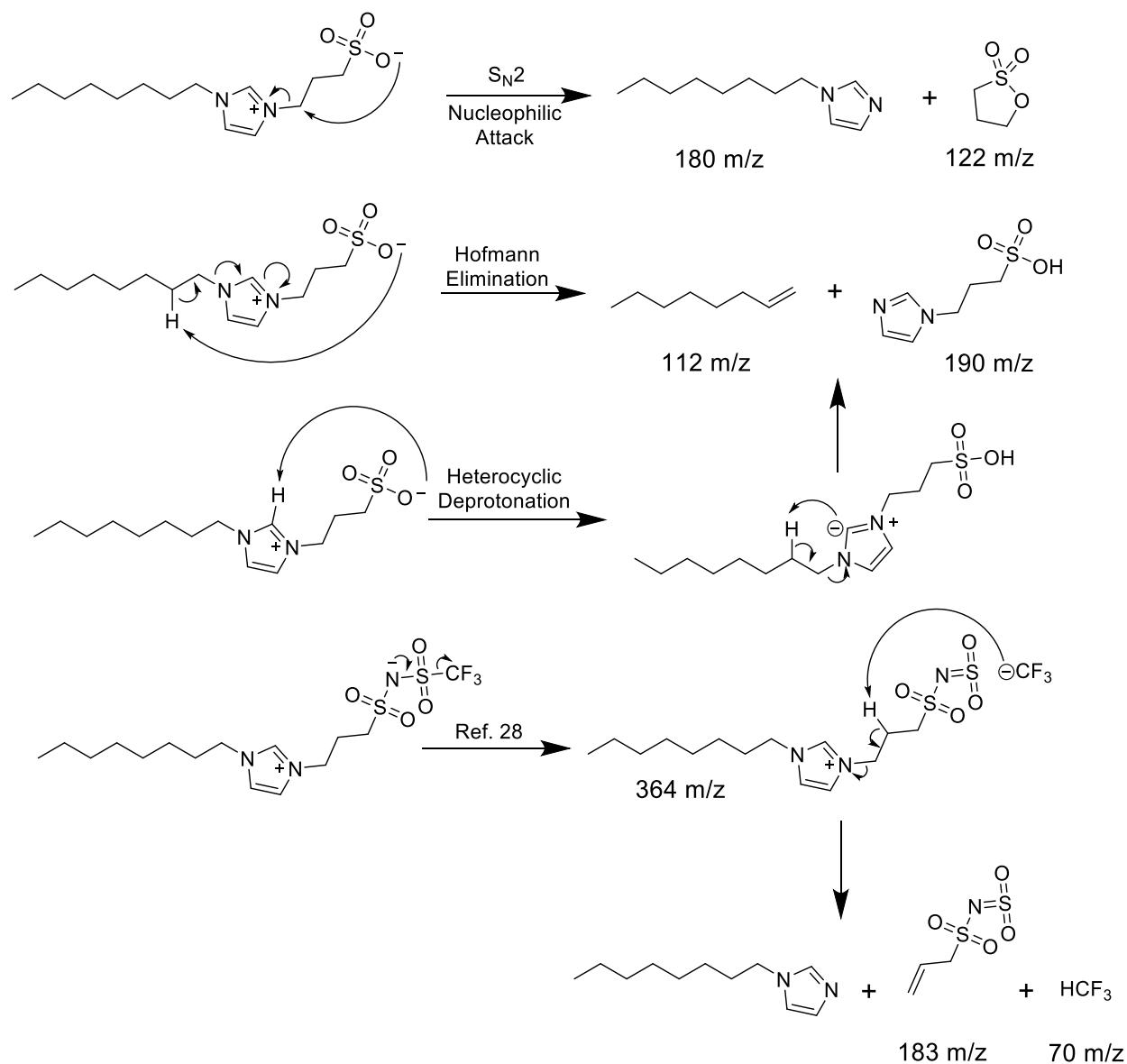

ZIL Phase	Molecular Ion (m/z)	Molecular Ion Fragments (m/z)
C ₈ ImC ₃ S	C ₈ Im (m/z 180)	179, 165, 153, 151, 137, 123, 109, 96, 95, 82, 81, 69, 68
	C ₁ Im (m/z 82)	55
	1-chlorooctane (m/z 134)	107, 105, 93, 91
C ₁₀ ImC ₃ S	C ₁₀ Im (m/z 208)	207, 193, 181, 179, 165, 151, 137, 123, 109, 96, 95, 82, 81, 69, 68, 67
C ₈ ImC ₃ NTf	C ₈ ImC ₃ NTf-CF ₃ (m/z 364)	184, 180
	C ₈ Im (m/z 180)	179, 165, 153, 151, 137, 123, 109, 95, 81, 54
	C=C ₂ NTf (m/z 253)	184, 133, 120, 69
C ₈ ImC ₂ S	C ₈ Im (m/z 180)	179, 165, 153, 151, 137, 123, 109, 95, 71, 57
	1-bromoocetane (m/z 192)	194, 151, 149, 137, 135, 109, 107, 71, 57
	1-octene (m/z 112)	97, 83, 69, 57, 55
OE ₂ ImC ₃ S	OE ₂ Im (m/z 170)	169, 155, 139, 138, 125, 111, 95, 94, 89, 81, 68, 67, 59, 58
	C ₇ H ₁₂ N ₂ O (m/z 140)	111, 95, 81, 73, 67, 59
	C ₅ H ₈ N ₂ O (m/z 112)	95, 94, 81, 67
	C ₅ H ₈ N ₂ (m/z 96)	69, 67
	C ₁ Im (m/z 82)	55
	C ₂ H ₄ SO ₃ (m/z 108)	108
OE ₃ ImC ₃ S	OE ₃ Im (m/z 214)	213, 199, 183, 169, 155, 139, 125, 124, 111, 95, 94, 89, 81, 67, 59
	C ₇ H ₁₂ N ₂ O ₂ (m/z 156)	138, 125, 111, 95, 94, 89, 81, 67
	C ₆ H ₁₀ N ₂ O (m/z 126)	95, 94, 81, 67, 59
	C ₅ H ₈ N ₂ O (m/z 112)	95, 94, 81, 67
	C ₅ H ₈ N ₂ (m/z 96)	69, 67
	C ₁ Im (m/z 82)	55
OE ₃ (Ph)ImC ₃ S	OE ₃ (Ph)Im (m/z 290)	275, 259, 245, 232, 215, 213, 201, 187, 171, 170, 157, 143, 103, 89, 77, 59
	C ₁₃ H ₁₆ N ₂ O ₂ (m/z 232)	215, 214, 201, 187, 171, 170, 157, 143, 89, 77
	C ₁₂ H ₁₄ N ₂ O (m/z 202)	171, 170, 157, 143, 77, 59
	C ₁₁ H ₁₂ N ₂ O (m/z 188)	170, 157, 143, 77
	C ₁₁ H ₁₀ N ₂ O (m/z 186)	157, 143, 77
	C ₁₁ H ₁₂ N ₂ (m/z 172)	143, 77
	C ₁₀ H ₁₀ N ₂ (m/z 158)	77, 55
	PhIm (m/z 144)	117, 116, 77
	C ₅ H ₁₂ O ₂ (m/z 104)	59
BzImC ₃ S	BzIm (m/z 158)	91, 77, 65
Anion system	1,3-propanesultone (m/z 122)	58, 57

719

720 Figure 2. Breakdown of ZIL chemical structure based on cation and anion system and additional
721 terminology referenced throughout the manuscript.

722


723 Figure 3. Bleed diagrams of ZIL stationary phases acquired using GC-MS. T_{bleed} was determined
 724 to be the temperature at which the bleed profile reached 10⁶ counts, an approximate order of
 725 magnitude increase in counts from the baseline. Values for T_{bleed} are listed for each ZIL.

726

Mechanism 1: S_N2

729

730

731 Figure 5. Proposed thermal degradation mechanisms of sulfonate and triflimide ZIL stationary
 732 phases.

733