

1 **Determination of parabens and bisphenol A in sludge samples using**
2 **hydrophobic deep eutectic solvents by gas chromatography coupled to**
3 **mass spectrometry and sample introduction via pyrolizer.**

4
5 Karen C. Ferreira ^a, Thais Rodrigues ^a, Guilherme Isquibola ^a, Saidy Cristina Ayala-Durán
6 ^a, Josias de Oliveira Merib ^b, Mario H. Gonzalez ^c, Jared L. Anderson ^d, Paulo Clairmont.
7 F. de Lima Gomes ^{a*}

8
9 ^a São Paulo State University (UNESP), Institute of Chemistry, Department of Analytical
10 Chemistry, National Institute of Alternative Technologies for the Detection,
11 Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-
12 DATREM), Rua Professor Francisco Degni 55, Araraquara, SP 14800-060, Brazil

13
14 ^b Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Grupo de
15 Estudos em Preparo de Amostras e Cromatografia (GEPAC), Rua Sarmento Leite, 245,
16 Centro Histórico, Porto Alegre, RS, 90050-170, Brazil

17
18 ^c São Paulo State University (UNESP), Department of Chemistry and Environmental
19 Science, National Institute for Alternative Technologies of Detection, Toxicological
20 Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Rua
21 Cristovão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil

22
23 ^d Department of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, IA 50011,
24 USA

41 * Corresponding author
42 E-mail address: paulo.clairmont@unesp.br (Paulo C. F. de Lima Gomes)

ABSTRACT

46

47

This study reports on the development and use of hydrophobic deep eutectic solvents (HDES) as environmentally-friendly solvents to address the demand for low-toxicity materials for analysts and the environment. The study involved the application of HDES in environmental matrices for extracting emerging contaminants. In this case, HDESs were used as extraction solvents in dispersive liquid-liquid microextraction (DLLME) to determine parabens and bisphenol A from sludge samples. Gas chromatography-mass spectrometry (GC-MS) featuring a pyrolyzer was used for sample introduction. Chemometric tools were utilized to optimize analysis conditions, considering the sample introduction and DLLME parameters. HDESs were characterized using Fourier-Transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analysis (TG). Univariate and multivariate strategies were employed to determine the optimal experimental conditions. In this case, the injection volume was fixed as 20 μ L, with a temperature of 320 °C and a pyrolyzer duration time of 0.5 minutes. For DLLME, full factorial design permitted identification of the best condition of each experimental variable, including the salting-out effect, pH, volume of dispersing solvent, and volume of extraction solvent. Optimal conditions for DLLME in sludge samples were determined as 300 μ L of HDES, 350 μ L of ACN, pH = 10, and the addition of NaCl at 27% m/v. Following optimization studies, a HDES was successfully applied as an extraction solvent to determine endocrine disruptors in sludge samples. Future work involves the analysis of additional sludge samples (both liquid and solid phases) using standard addition to quantify analytes using the developed methodology. The utilization of HDES within environmental samples facilitated the identification of emerging contaminants, aligning with the tenets of sustainable analytical chemistry. This was substantiated by applying the GREENness Analytical (AGREE) evaluation metric system, yielding values of 0.72 and 0.76 for the employed methodology and sample preparation, respectively.

74

75

76

77

78

79

75
80

80
81

81

82

83

84

85

86

87

88

89

89

50
01

91
92

92

92 *Keywords: Sample preparation; Hydrophobic Deep Eutectic Solvents; pyrolyzer; gas*
93 *chromatography*

94 **1. INTRODUCTION**

95
96 Over the years, human activities have been responsible for introducing
97 contaminants into various ecosystems, and especially in the last decade, studies on
98 emerging contaminants (ECs) in aquatic matrices have become a global concern due to
99 the demand for clean water. ECs originate from domestic, industrial, and agricultural
100 waste and are present at concentration levels ranging from $\mu\text{g L}^{-1}$ to ng L^{-1} and have been
101 monitored in various research studies [1–9]. Generally, wastewater treatment plants
102 (WWTPs) are inefficient in removing these contaminants from water. Therefore, the
103 harmful effects of these substances are imminent in the short and long term. Among the
104 harmful substances, endocrine-disrupting compounds (EDCs) can be highlighted.
105 Exogenous chemicals can affect the synthesis and release of substances in the body,
106 compromising essential functions. Bisphenol A (BPA), methylparaben (MeP),
107 propylparaben (PrP), and butylparaben (BuP) are examples of these substances [1,10].
108 Endocrine-disrupting compounds can be found in effluents at very low concentration
109 levels; however, their incidence is increasing worldwide. Table 1 shows the concentrations
110 found in aqueous matrices for MeP, PrP, BuP, and BPA that have been recently reported.
111

112 **Please insert Table 1 here**

113
114 The identification and tracking of these substances are relevant, and
115 environmentally sustainable analytical methods have become increasingly valuable due
116 to their sustainability and reduced reliance on toxic solvents. Harnessing hydrophobic
117 deep eutectic solvents (HDES) in microextraction techniques can provide numerous
118 advantages over traditional methods [1,10]. HDESs generally consist of two or three
119 precursors that can form intermolecular hydrogen bonds involving hydrogen bond donors
120 (HBD) and hydrogen bond acceptor (HBA) components. These interactions, along with
121 van der Waals forces, reduce the melting temperature of the mixture compared to the
122 melting temperature of individual components [11–15].

123 HDESs are widely used in aqueous two-phase systems, and provide high-
124 efficiency in the extraction of analytes even in low-concentration levels such as ng L^{-1} to
125 $\mu\text{g L}^{-1}$. HDESs provide essential characteristics such as viscosity below 100 mPa.s,
126 density differences from the aqueous phase, and limited pH change after introduction in
127 aqueous samples [11,16]. HDESs were used to extract Cd from sewage sludge [17] and
128 riboflavin from water [11], caffeine, tryptophan, isophthalic acid, and vanillin. Moreover,
129 they were found to recover furfural (FF) and hydroxymethylfurfural (HMF) in aqueous
130 solutions through hydrophobic membranes impregnated with HDES [18]. These solvents
131 offer advantages due to their low toxicity, biodegradability, stability of density or
132 viscosity, and ease of production.

133 The sample preparation stage can directly impact the precision and accuracy of the
134 proposed method. Among microextraction techniques, DLLME offers critical advantages
135 over traditional methods like liquid-liquid extraction (LLE), including reduced organic
136 solvent volume, low cost, high extraction efficiency, and a simple experimental workflow
137 [14,15,19]. Following the sample preparation stage, an instrumental technique is
138 generally adopted to separate and determine EDCs. Gas chromatography-mass
139 spectrometry (GC-MS) is a vital separation technique that can be used when thermally
140 stable compounds are analyzed [19,20].

141 It is important to note that studies applying HDES using Py-GC-MS, particularly
142 when pyrolysis is not applied directly. This gap in the literature indicates that optimizing
143 the technique remains a promising opportunity to enhance the analytical performance of

144 the developed methods. Furthermore, it is essential to highlight that the use of a pyrolyzer
145 represents an innovative approach for introducing the eluate, which consists solely of the
146 organic phase, primarily a viscous eluate. This type of eluate introduces certain
147 complexities due to the presence of HDES. In this study, it is essential to emphasize that
148 the compatibility of employing a pyrolyzer with viscous solvents like HDES enables the
149 transfer of analytes from the sample to the chromatography column. During the analyte
150 volatilization process by Py-GC-MS, it is essential to emphasize that there is no
151 degradation of the compounds, as the temperature used does not correspond to the
152 temperatures applied in commonly used pyrolysis processes. This method has proven to
153 be innovative because it injects HDES into the system without requiring extensive
154 dilution of the sample. The dry eluate in the crucible (HDES + analytes) means that liquid
155 portions are not injected directly into the system. Although HDES based on DL-menthol
156 exhibits lower viscosity than other eutectic solvents, these solvents should not be injected
157 directly into the system, thereby avoiding chromatographic column saturation. Therefore,
158 the use of the pyrolyzer for this purpose becomes efficient.

159 A recent trend in analytical chemistry involves creating methods that reduce
160 environmental impact by minimizing the use of harmful substances. Modern concepts,
161 such as Green Analytical Chemistry (GAC), have emerged to evaluate the environmental
162 friendliness of analytical methodologies. GAC encompasses 12 principles aimed at
163 addressing the requirements of analytical chemistry methods. The GREEEness Analytical
164 (AGREE) metric system evaluates the ecological aspects of analytical processes based on
165 established principles [21–23].

166 The aim of this study was to prepare, characterize, and apply HDESs in the sample
167 preparation step of domestic sludge samples using DLLME in the extraction of
168 methylparaben (MeP), propylparaben (PrP), butylparaben (BuP), and bisphenol A (BPA)
169 and quantification by GC-MS. A pyrolysis system was used as a sample introduction
170 system and green metrics were used to assess the proposed method's sustainability. This
171 study stands out from others due to its innovative approach that combines established
172 solid, semi-solid and viscous samples, such as the pyrolyzer, with DLLME and HDESs
173 used as an extraction solvent. The approach allows for a comprehensive exploration of the
174 technique, making it suitable for analyzing various complex samples including domestic
175 sewage sludge.

176 2. MATERIALS AND METHODS

177 2.1. Materials

178 DL-menthol (Sigma-Aldrich, purity \geq 98%); decanoic acid (Sigma-Aldrich,
179 purity \geq 98%); dodecanoic acid (Biosynth, purity \geq 98%); acetic acid (Sigma-Aldrich,
180 purity \geq 99%) were used for the preparation of HDES. The analytes methylparaben
181 (Sigma-Aldrich, purity \geq 98%); propylparaben (Sigma-Aldrich, purity \geq 98%);
182 butylparaben (Sigma-Aldrich, purity \geq 98%); bisphenol A (Sigma-Aldrich, purity \geq 98%)
183 were used for method development. The sample consisted of domestic sludge from an
184 office materials industry in São Paulo State, Brazil.

185 2.2. Preparation of HDES

186 DL-menthol was used as the hydrogen bond acceptor (HBA) in all solvents, where
187 it was combined with different hydrogen bond donors (HBDs), such as acetic acid (AcA),
188 decanoic acid (DecA), and dodecanoic acid (DoDecA). The proportions used for

194 preparation were DL-menthol:AcA (1:1), DL-menthol:DecA (1:1), and DL-
195 menthol:DoDecA (2:1). The structures of these compounds and their physicochemical
196 properties are provided in Table S1 of the supplementary material (SI). HDES was
197 prepared using a mixture of the two precursors (HBA and HBD) based on the processes
198 described by Ribeiro, Dwamena, and Caldeirão [14,15,24]. In this case, agitation of 60
199 rpm with heating at 60 °C was employed for 25 min. Masses of the precursors were
200 measured according to the molar ratios reported in the literature [13–15], with 5.00 g for
201 DL-menthol in all cases, and 5.50 g for DecA, 3.20 for DoDecA, and 1.92 g for AcA.
202

203 2.3. Density and viscosity measurements

204
205 HDES density (ρ) measurements were conducted using a pycnometer (5.00 mL)
206 calibrated with Milli-Q water at 25 °C for 30 minutes to stabilize the system temperature
207 and an analytical balance. Calibration determined the pycnometer's actual volume,
208 facilitating subsequent analysis with the HDES. Viscosity measurements were obtained
209 using an automatic vibrational viscometer (SV-10 A&D Company) with a precision of \pm
210 3% (1 to 1000 mPa·s), operating at a vibration frequency of 30 Hz at 25 °C. The viscosity
211 and density were the parameters used to assess the stability of HDES over one year, and
212 to find answers regarding the possibility of storing HDES for extended periods. For the
213 DL-menthol:AcA mixture, data collection occurred over 20 consecutive weeks and then
214 monthly for the next eight months, completing a one-year duration.
215

216 2.4. Fourier transform infrared spectroscopy (FTIR)

217
218 This analysis provides information about the formation of the HDES. It was
219 performed from 4000 to 400 cm^{-1} at a resolution of 4 cm^{-1} and 64 scans (VERTEX 70,
220 BRUKER), equipped with a DLaTGS detector at room temperature.
221

222 2.5. Thermal analysis

223
224 The melting points of each HDES and their precursors were determined using
225 DSC (Mettler-Toledo). In DSC, approximately 8 mg of the sample was added to
226 aluminum crucibles with a 40.0 μL capacity and analyzed under conditions involving
227 cooling and heating in a range of -40 to 60 °C at a rate of 5 °C min^{-1} in an N_2 flow of 50.0
228 mL min^{-1} . Mass loss steps were assessed using TG in conjunction with the DTA (TG/DTA
229 model SDT 2960, TA Instruments) in a dry air atmosphere with a flow rate of 50.0 mL
230 min^{-1} , heated in a temperature range of 30 to 800 °C at a heating rate of 10 °C min^{-1} . The
231 HDES samples were placed in α - Al_2O_3 crucibles with a volume of 90 μL . For Evolved
232 Gas Analysis (EGA), a TG/DSC (Mettler Toledo) coupled with FTIR (Nicolet IS10) was
233 used, with a gas analysis component heated to 175 °C. HDES samples were added to α -
234 Al_2O_3 crucibles with a capacity of 70.0 μL , with a heating rate of 10 °C min^{-1} in a dry air
235 atmosphere with a flow rate of 50.0 mL min^{-1} . The gases released in the first stage were
236 transferred to the gas analysis accessory through a 3 mm diameter stainless steel transfer
237 line heated to 150 °C. For FTIR analysis, 16 scans per spectrum were performed with a
238 resolution of 4 cm^{-1} .
239

240 2.6. Sludge sample measurements

241
242 The raw sludge collection was carried out in an industrial area located in the city
243 of São Carlos (22° 00' 00" S, 47° 53' 27" W), in the state of São Paulo (Brazil). The
244

244 sample was vacuum filtered, allowing particulate materials to be removed. The aqueous
245 phase of the collected sludge was analyzed to determine the sample pH, measured with a
246 pH meter (Meter Tec-2, Tecnal), conductivity with an S30 SevenEasy conductivity meter
247 (Mettler Toledo), and chemical oxygen demand (COD) and total organic carbon (TOC),
248 as detailed in Table S2 of the supplementary information.

249

250 2.7. Dispersive liquid-liquid microextraction (DLLME)

251

252 In the initial stage of DLLME, 300 μ L of the extraction solvent (HDES) and 350
253 μ L of the disperser solvent (ACN) were used. Subsequently, this mixture was added to a
254 falcon tube containing 4.00 mL of previously spiked filtered sludge sample with MeP,
255 PrP, BuP, and BPA each at concentrations of 3.00 mg L⁻¹ for the factorial design stage.
256 Later, concentrations ranged from 0.0830 mg L⁻¹ to 1.00 mg L⁻¹ for the method validation
257 step. After this process, the tube was vortexed for 20 seconds. At this stage, dispersion of
258 the extraction solvent into microdroplets in the aqueous phase was observed due to the
259 action of the disperser solvent. The system was then centrifuged at 8000 rpm with cooling
260 at 25 °C for 20 minutes, allowing for equilibrium between the organic phase, rich in
261 HDES, and the aqueous phase. A 20.0 μ L volume of the organic phase was collected and
262 diluted in 50.0 μ L of acetonitrile (ACN) for subsequent Py-GC-MS analysis.

263

264 2.8. Pyrolysis Gas Chromatography-Mass Spectrometry (Py-GC-MS)

265

266 Analyses were performed using the pyrolyzer (EGA/PY-3030D, Frontier
267 Laboratories, Japan), and the ceramic furnace temperature was programmed to 320 °C
268 with a hold time of 0.5 minutes. Chromatographic separation employed a capillary metal
269 column coated with a 5% diphenyl dimethylpolysiloxane stationary phase (Ultra
270 ALLOY®-Frontier Laboratories), with helium (99.99%) used as the carrier gas. The
271 pyrolyzer was coupled to a gas chromatograph (GC-2010 plus Shimadzu) with a mass
272 spectrometry detector (GCMS-QP2020, Shimadzu). It was operated at 40 °C for 1 minute,
273 then ramped to 250 °C at a rate of 30 °C min⁻¹ for 4 minutes, followed by an increase to
274 320 °C at a rate of 40 °C min⁻¹ and held for 4 minutes. For electron ionization (EI), the
275 mass spectrometer was operated at a temperature of 230 °C in the ion chamber and 320
276 °C in the detector interface. Analysis in SCAN mode was conducted in the range of 50 to
277 300 *m/z*, with compound identification based on the NIST library and the instrument's
278 software library. Retention times were determined experimentally by injecting standards.
279 SIM mode involved selecting specific ions for each analyte based on ions observed in
280 SCAN mode and literature data.

281

282 2.9. Design of experiments (DOE)

283

284 DOE was employed using a full factorial design for optimizing injection
285 conditions and a fractional factorial design for optimizing DLLME. Table S3 in the
286 supplementary material outlines the variables and levels for the fractional factorial design
287 in the sample preparation step. Univariate optimization refined the injection study,
288 followed by fine-tuning the best DLLME conditions using a central composite design, as
289 detailed in Table S4 of the supplementary material.

290

291 2.10. Evaluation of the analytical figures of merit.

292

Validation of the proposed method was conducted based on the guidelines of regulatory agencies [19,20]. The method's precision of the method was measured through repeatability, utilizing the same operating conditions (equipment, analyst, reagents, and environmental conditions). Nine experiments were carried out at different concentration levels (3 repetitions at low concentration, three repetitions at medium concentration, and three repetitions at high concentration). The method selectivity was determined by the comparison to identify or quantify the analyte in a sample against a blank. The limits of detection (LOD, S/N = 3), and limit of quantification (LOQ, S/N = 10), were determined by evaluating the signal-to-noise ratio in the chromatogram of the sample blank. Linearity was assessed by preparing solutions with varying concentrations and evaluating if the analytical responses were proportional to the analyte concentration, typically using at least five concentration points. Recovery (Rec %) was analyzed to determine the pre-concentration parameters of the analytes in the studied matrix, and the experiments were conducted in triplicate [9–11]. Initially, DLLME was performed without spiking analytes to the sample. The resulting eluate was fortified (B) with 415 $\mu\text{g L}^{-1}$ of MeP and 830 $\mu\text{g L}^{-1}$ of PrP, BuP, and BPA concentrations. Subsequently, the sample was fortified (C) under the same conditions mentioned earlier, and a new DLLME step was performed, with the eluate also collected and analyzed following Matuszewski et al. [25]. The results regarding the obtained area were applied in Equation 1 below.

$$Rec (\%) = \frac{C}{B} \times 100 \quad (1)$$

Enrichment factor (EF) was defined as the ratio of analyte concentration present in the organic phase (C_{org}) to the initial concentration (C_0) present in the aqueous phase. This value was obtained from the calibration curve and the initial concentration in the aqueous phase, respectively. The concentrations employed were 415 $\mu\text{g L}^{-1}$ for MeP and 830 $\mu\text{g L}^{-1}$ for PrP, BuP, and BPA. The results were then inserted into Equation 2 [26,27].

$$EF = \frac{C_{\text{org}}}{C_0} \quad (2)$$

2.11. Application of green metrics for the developed method and sample preparation.

Based on the AGREE metric system, each of the 12 input variables was assessed on a standard scale ranging from 0 to 1 [22,28,29]. The outcome of the final evaluation was represented by creating a clock-like chart with a color scale ranging from red to yellow and green. Calculations were performed using the Analytical Greenness Calculator software provided by Pena-Pereira and colleagues [23]. The inputs used for evaluating the method and sample preparation are described in Table S5 of the supplementary material.

3. RESULTS AND DISCUSSION

3.1. Preparation of hydrophobic deep eutectic solvents (HDES)

Eutectic mixtures using DL-menthol, as the HBA species, emerge as an alternative to replace toxic precursors and are widely studied for sample preparation applications. This precursor, extracted from the leaves of *Mentha sp.* species, is abundant and relatively

341 inexpensive compared to other precursors that serve the same purpose, making it an
342 advantageous option [15,30,31]. After preparation of the HDESs, the system was cooled
343 to room temperature, where the formation of transparent liquids could be observed. This
344 characteristic is one of the initial indicators of HDES formation [12,15]. The final
345 volumes of each produced HDES were approximately 12.3 mL (DL-menthol:DecA), 10.7
346 mL (DL-menthol:DoDecA), and 8.00 mL (DL-menthol:AcA). Only the mixture
347 containing DoDecA showed a yellowish color, which is highly characteristic of the
348 precursor.

349 According to Florindo [12], in the case of short-chain carboxylic acids such as
350 acetic acid, butyric acid, levulinic acid, hexanoic acid, and pyruvic acid, it is important to
351 use HBAs, such as DL-menthol or N₄₄₄₄-Cl, to vary the alkyl chain, and thus adjust the
352 polarity of the HDES for a defined application. Ribeiro and Florindo [12,15] reported that
353 some solvents exhibit less interference from their precursors in water. NMR analyses of
354 the aqueous phase described by Florindo (2017) confirmed some of these claims for DL-
355 menthol:DecA and DL-menthol:DoDecA. In contrast, for DL-menthol:AcA, a portion of
356 the HBD precursor (acetic acid) was observed in the aqueous phase. For the present study,
357 even if one of the HBDs is present in the phase, this factor does not directly interfere with
358 the analyzing the compounds of interest. With techniques such as mass spectrometry, only
359 ion fragments corresponding to the analytes are identified (SIM mode), and in this case,
360 none of the ions related to the precursors exhibit similarities with the analytes, thereby
361 avoiding any interference in the analytical response.

362

363 3.2. Density, viscosity, and measurements

364

365 The study investigated the properties of HDESs regarding density and viscosity
366 and their implications in extraction processes. All tested HDESs exhibited density values
367 lower than that of water (0.990 g cm⁻³), potentially resulting in longer separation times
368 during extraction due to having densities close to water. However, the optimal density
369 values for HDESs depend on the extraction method used. Viscosity also plays a crucial
370 role, with many HDESs showing higher viscosities than water thereby affecting their
371 mass transport during extraction [32].

372 The recorded densities for DL-menthol:DecA, DL-menthol:DoDecA, and DL-
373 menthol:AcA were 0.896 g cm⁻³, 0.895 g cm⁻³, and 0.917 g cm⁻³, respectively, with
374 corresponding viscosity values of 12.4 mPa·s, 20.4 mPa·s, and 7.88 mPa·s. Despite the
375 higher viscosity compared to water (0.890 mPa·s), these values were lower than typical
376 reported viscosities for HDESs, which can reach 100 mPa s. Lower viscosity values are
377 preferred for HDES as extractants to enhance dispersion in the aqueous medium [32,33].
378 This study also investigated the stability of HDES over one year, showing insignificant
379 changes in density and viscosity parameters. A stability study revealed minimal variation
380 in density (CV% = 0.42%), and viscosity (CV% = 2.5%) over one year, suggesting the
381 suitability of HDES for long-term applications in extraction processes, as demonstrated
382 in Fig 1. The dispersion of HDESs in the sample, combined with sample agitation,
383 facilitates mass transfer processes by reducing the distance between phases and enhancing
384 diffusion of analyte molecules [32,34–36].

385

386 Please insert Figure 1 here

387

388 Although viscosity and density values exhibit slight variation, other
389 characterization techniques were used to assess the mixture's stability. FTIR served as
390 another technique used to characterize HDESs. Intermolecular interactions primarily

391 determined the formation of bands corresponding to hydrogen bonding between DL-
392 menthol and organic acids. Extremely broad O—H absorption bands appeared from 3400
393 to 2400 cm⁻¹, originating from strong hydrogen bonding. Generally, at this wavelength,
394 the O—H absorption obscures the vibrations of C—H sp³ stretching (alkanes) found in the
395 same region [12,37]. All hydrogen bond donors used in eutectic mixtures possess a
396 carboxylic acid group in their structure, observed in the spectra by the representative band
397 (ketone or carbonyl group) around 1700 cm⁻¹. In the FTIR spectra of the hydrogen bond
398 acceptor (DL-menthol), only a band corresponding to the hydroxyl group, at around 3300
399 cm⁻¹, can be observed.

400 In the eutectic mixture containing DL-menthol:AcA, the most pronounced
401 characteristic in the spectrum that characterizes it as a carboxylic acid, in addition to the
402 O—H absorption, is the presence of the C=O bond. Acids in concentrated liquid solutions
403 tend to dimerize. Dimerization weakens the C=O bond, decreasing the frequency of the
404 carbonyl of saturated acids to approximately 1710-1700 cm⁻¹ [17]. The stretching
405 absorption of the carbonyl (C=O) is broader and more intense compared to an aldehyde
406 or a ketone. The C—O stretching vibrations in acids appear with medium intensity
407 between 1300-1000 cm⁻¹, as depicted in Figure S2 of the supplementary material
408 [11,12,14,37]. Results from FTIR provided significant information for the DL-
409 menthol:AcA mixture, where alterations in the characteristic functional groups of HDES
410 were observed. These alterations indicate possible modifications in the solvent
411 composition and suggest the formation of methyl acetate, a product of the esterification
412 reaction. In the observed case, a reduction in the amplitude of the O—H band was noted,
413 accompanied by an increase in the intensity of the C—H sp³ stretching absorption bands.
414 As a complementary technique to confirm compound formation, EGA was conducted by
415 heating the sample at a controlled temperature using TG. FTIR detected volatilized
416 compounds, and the corresponding spectrum of the supplementary material can be
417 observed in Figure S1. Comparison with literature spectra supports the possibility of
418 methyl acetate formation. However, the influence of this compound on the extraction
419 process using the solvent after storage was not evaluated.

420 Understanding the long-term stability of HDES has led to optimized storage
421 processes, ensuring its availability and enhancing the overall efficiency and sustainability
422 of analytical procedures. Investigations into HDES stability also offers valuable insights
423 for improving its formulation and application, driving significant advancements in
424 analytical chemistry and practical applications.

425 3.4. Thermal analysis characterization

426 3.4. Thermal analysis characterization

427 Thermal analysis was performed as a complementary method to FTIR to confirm
428 the preparation of HDES. From DSC analyses, it was possible to assign the endothermic
429 events to the corresponding melting points of each HDES. Evaluation of the data
430 suggested that eutectic mixtures were formed in all three cases, as evidenced by the lower
431 melting points obtained compared to their individual precursors, which corroborates the
432 studies described in the literature [12,14,15]. The values obtained for DL-menthol:AcA
433 were 12.3 °C; for DL-menthol:DecA, it was 1.15 °C; and for DL-menthol:DoDecA, it
434 was 11.5 °C, as illustrated in Figure S3.

435 Other analyses were employed for HDES characterization, such as
436 thermogravimetric analysis, allowing for the investigation of the HDESs and analytes'
437 thermal stability at extreme temperature. This facilitated the determination of temperature
438 values for the pyrolyzer to completely volatilize the extract after DLLME. Mass loss
439 stages and endothermic events related to these losses occurred between 140 and 210 °C.

441 A temperature of 320 °C was selected in the developed method, as it corresponds to the
442 complete volatilization of the analytes in the crucible, which, according to the analyses
443 conducted, undergoes this process within the temperature range of 200 to 300 °C.
444 Therefore, the chosen temperature proved to be suitable for the proposed analysis, as
445 illustrated in Figure S4 of the SI.

447 3.5. Sludge sample measurements

449 The collected domestic sludge sample was analyzed to provide important
450 information capable of influencing the sample preparation step, and an obtained pH value
451 of 7 complied with the standards established by official regulatory agencies. According
452 to Makós [38], information regarding the acidity properties of HDES is still limited. This
453 limitation is because the pH of the aqueous sample is more significant than the pH of the
454 extraction solvent in sample preparation methods. The optimal pH of the aqueous sample
455 needs to be determined for the group of analytes being studied. Solution pH can
456 profoundly impact extraction by influencing compounds' ionization degree, affecting the
457 analyte distribution coefficient (Kd) [39,40]. The sample's conductive capacity was
458 analyzed, and a value corresponding to the reference values in official documents was
459 obtained (Table S2). Generally, molecules of organic compounds do not dissociate in
460 aqueous solutions and, in most cases, exhibit low conductivity [19,41,42].

462 3.6. DOE applied to sample introduction and DLLME

464 In preliminary tests regarding optimization of the sample preparation step,
465 challenges arose regarding the use of solvents containing DecA and DoDecA. This
466 occurred mainly due to the ease of DL-menthol volatilization during the Py-GC-MS
467 analysis, whose intensity surpassed that of the analytes, as illustrated in Figure S5 and
468 Figure S6 of the SI. This limitation hindered clear conclusions in the chromatograms
469 when these two solvents were used. However, for the DL-menthol:AcA mixture, this
470 problem was not observed, as the signals corresponding to the eutectic mixture did not
471 appear at the same retention time as the analytes, thus not interfering with the analytical
472 response. Due to this factor, this HDES was chosen for optimizations in DLLME.

473 The full factorial design (2^k) was initially conducted to assess the influence of
474 parameters such as time, temperature, and injection volume on sample introduction
475 through the pyrolyzer. At this stage, a MeOH solution containing analytical standards of
476 parabens and bisphenol A at a concentration of 3.00 mg L⁻¹ was used. After eight
477 experiments, it was observed that the analytical response tends to be more efficient with
478 an increase in the injection volume, with this variable being the most significant,
479 indicating an optimal volume of 10.0 µL in this initial evaluation.

480 Univariate optimization was carried out to confirm the response from the previous
481 analysis. Therefore, variables corresponding to temperatures (320 °C) and times (0.50
482 min) remained fixed, and the values of volumes varied from 2.00 µL to 20.0 µL,
483 generating a total of ten experiments. After this analysis, the influence of volume was
484 again observed, proving that 20.0 µL offered the best response, used for all subsequent
485 tests. For DLLME, the sludge sample was fortified at concentration of 3.00 mg L⁻¹ of
486 analytes, and variables that could influence the analytical responses of the factorial design
487 were evaluated, such as pH, salting-out, volume of the disperser solvent, volume of the
488 extracting solvent, and sludge dilution. Firstly, a fractional factorial design (2^{5-1}) was
489 carried out in triplicate at the central point.

490 A central composite design was applied for optimize DLLME, and the study range
491 of each variable was altered. This allowed for a precise analysis of the optimal working
492 conditions corresponding to critical points of 300 μ L volume for HDES, 350 μ L volume
493 for ACN, and 27% m/v of NaCl. The response surfaces generated in this stage are
494 depicted in Fig. 2.

495

496 **Please insert Figure 2 here**

497

498 The volume of the collected organic phase (20.0 μ L) was diluted in 50.0 μ L of ACN to
499 eliminate aqueous phase residues that may be present in the organic phase, thus
500 minimizing the chances of potential contamination in the Py-GC-MS system. The volume
501 added after dilution in the crucible was 20.0 μ L, corresponding to the optimized injection
502 value.

503

504 **3.7. Py-GC-MS**

505

506 After injecting the analytical standards, the chromatograms obtained in SCAN
507 mode were compared with the literature to identify corresponding fragment ions for each
508 analyte. Additionally, retention times, fragment ions, and their relative intensities were
509 used in subsequent SIM mode analyses to aid in identifying each analyte in a fortified
510 sample. Fragment ions for MeP (m/z 121, 152, 93, and 65), PrP (m/z 121, 180, 93, and
511 65), BuP (m/z 121, 194, 93, and 65), and BPA (m/z 213, 119, and 138) were chosen based
512 on literature data and experimental considerations (data not shown). The obtained
513 retention times were 8.31 min for MeP, 9.05 min for PrP, 9.54 min for BuP, and 12.7 min
514 for BPA. In Fig. 3, chromatograms are provided for the mixture containing analytes at a
515 concentration of 3.00 mg L⁻¹ in MeOH in SIM mode of analytical standards (Fig. 3a) and
516 under the optimized conditions for both injection and DLLME in the sludge samples (Fig.
517 3b).

518

519 **Please insert Figure 3 here**

520

521 **3.8. Analytical performance**

522

523 The application of HDESs in the sample preparation step using Py-GC-MS was
524 validated in filtered domestic sludge samples, considering the performance parameters
525 described by the Food and Drug Administration (FDA) [20]. Linearity was assessed in
526 the solvent (MeOH) and filtered sludge samples were fortified with the analytes. Five
527 calibrants points were used to generate the analytical curve in triplicate, with the
528 analytical response being the signal intensity of the m/z = 121 ion for parabens and the
529 m/z = 213 ion for bisphenol A. The concentration range used for MeP was from 83 to 500
530 μ g L⁻¹, and for the other analytes, it was from 166 to 1000 μ g L⁻¹. Results for the analytical
531 curve after DLLME and with MeOH are presented in Table 2 and Table 3.

532 For the intra-day and inter-day precision tests, low, medium, and high
533 concentrations were used at different times in triplicate. The figures of merit for the
534 applying of the DLLME analytical method to samples of domestic sludge spiked with
535 MeP, PrP, BuP, and BPA. The coefficient of determination (R^2) resulted in values
536 between 0.961 and 0.996 indicating suitable linearity following the FDA validation
537 guideline [19]. The LOD between 25.0 and 50.0 μ g L⁻¹, with recovery % between 92.4 –
538 99.3 values, and variances were between 3.07 to 10.5 as described in Table 2.

Please insert Table 2 here

Please insert Table 3 here

Although the inter-day precision for bisphenol A (BPA) showed a variation of 15%, which was higher compared to other analytes, as shown in Table S6 of the supplementary material, this value is within the limits established by official guidelines, which can range from 15% to 20%. However, the HDES (DL-menthol:AcA) used in this study is considered a low-viscosity solvent, according to Ribeiro [15], and is an effective alternative for the extraction and quantification of compounds of interest in the sample, as its volatilization temperature is higher than that of methanol and ACN. Therefore, the use of HDES in this study favored the analytes' transport from the crucible to GC column, consequently, a more reliable analytical response was produced. Hence, knowledge about solvent and analytes volatility and the HDES thermal characteristics and chemical properties is crucial to optimize and obtain the best efficient using the pyrolyzer during the sample introduction.

Selectivity assessment confirmed that only signals corresponding to the analytes with specific ions were detected for each analyte (Fig. 4a), suggesting the absence of significant interferents during the analysis compared with the same raw sludge sample chromatogram on the same specific ions (Fig. 4b). This indicates the method's selectivity for the compounds of interest, with minimal interference from other substances. This is supported by different retention times of these compounds compared to the analytes. Comparison between the chromatograms obtained after DLLME and from the sludge affirmed the method's selectivity exclusively for the compounds of interest.

The efficiency of HDES (DL-menthol:AcA 1:1) as an extraction solvent in DLLME was tested after 24 months of storage in a desiccator. The diluted sludge sample was spiked with analytes at concentration levels of 415 $\mu\text{g L}^{-1}$ for MeP, and 830 $\mu\text{g L}^{-1}$ for PrP, BuP, and BPA, under the conditions optimized by the experimental design. The data showed that HDES, in addition to providing high stability as demonstrated in Figure 1, also exhibited excellent performance in the efficiency of DLLME after storage for 24 months, showing an intra-day CV% between 2.82 and 7.48 compared to those obtained in the first extraction with 1.05 to 8.22 for the different analytes (Table S8). These findings, combined with stability data related to density and viscosity, supports the use of these solvents due to their capability for long-term applications.

Please insert Figure 4 here

The analysis provided EF values of 183, 102, 93, and 92 for MeP, PrP, BuP, and BPA, respectively. The obtained values are consistent with the data described in the literature for parabens and bisphenol A [4,43–45]. EF values were considered high considering the notable reduction in the volume of solvent used (μL). These results demonstrate the efficiency of the HDES preconcentration method, associated with the versatility of the Py-GC-MS technique used, with excellent LOD, LOQ, extraction recoveries, and stability for parabens and bisphenol A, present in low concentrations in aquatic matrices.

3.9. Analytical GREENness Assessment (AGREE) for the proposed method

588 The final score of the metric indicates that a predominantly green color suggests
589 the assigned score of 0.72 for the developed method aligns with environmentally
590 sustainable expectations. Lower scores in criteria 3 and 10 were attributed to the use of
591 solvents, such as ACN, to dilute the HDES in the stage preceding the GC-MS analysis.
592 Although ACN is necessary, the volume used (in μ L) does not significantly compromise
593 the method's sustainability, which is considered green. Principle 9 evaluated the energy
594 consumption of the GC-MS analysis, revealing a higher value compared to GC using
595 other types of detectors.

596 A score of 0.76 was achieved in the sample preparation step, indicating a relatively
597 low environmental impact. However, criteria 2, 3, 7, and 10, highlighted in yellow,
598 received lower scores due to the sample amount, waste generation after extraction, and
599 the absence of renewable reagents throughout the procedure. These assessments are
600 shown in Fig. 5.

601

602 **Please insert Figure 5 here**

603

604 Both processes effectively minimized environmental impacts, as assessed by the AGREE
605 method. This result emphasizes the importance of considering the overall picture of
606 evaluating the 12 principles, as optimizing these criteria can offset any individual
607 disagreements, aiming to increase the method's efficiency and sustainability over time. In
608 this context, using HDES with miniaturized sample preparation techniques, such as
609 DLLME, emerges as a valuable alternative to promote more sustainable analytical
610 practices.

611

612 **3.10. Comparative analysis of the proposed method and other approaches**
613 mentioned in the literature

614

615 In other studies employing DLLME, an evaluation of recovery was conducted on
616 various samples, including biological samples and food, as illustrated in Table S7 of the
617 SI. Evaluating the recovery (Rec %) from these studies, the effectiveness of DLLME in
618 biological and food samples is evident, reflecting the behavior observed in sludge with
619 high recovery values obtained. One of the crucial parameters for implementing DLLME
620 is the use of reduced volumes throughout the process. Table 4 details the specific values
621 used for DLLME in the literature. These values are considerably low, reflecting the
622 fundamental premise of this method. In this study, the employed volumes were smaller
623 than those described in existing literature.

624

625 **Please insert Table 4 here**

626

627 In all studies used in the comparison, the absence of tools related to the green
628 metric was observed. Applying this assessment is essential as it promotes using methods
629 to make experiments more sustainable in current practices. Many of these works
630 employed some planning or optimization in the extraction step. Overall, the method
631 developed in this study proved efficient in using smaller volumes of solvents, aligning
632 with the principles of Green Analytical Chemistry (GAC). Although the limits of
633 quantification (LOQ) are higher than those evaluated in the literature, it is essential to
634 consider the innovative proposal of using the pyrolyzer, which can influence potential
635 losses of analytes during sample introduction.

637 **4. CONCLUSIONS**

638

639 The study confirmed the stability of eutectic mixture formation in HDES solvents
640 for over a year using thermoanalytical and FTIR analyses. Challenges arose in sample
641 preparation optimization due to DL-menthol volatilization, especially with DecA and
642 DoDecA. However, DL-menthol:AcA demonstrated notable extraction efficiency in
643 DLLME, with recoveries exceeding 90%, validating its selectivity and robustness.
644 Overall, the study underscores the potential of the proposed HDES and Py-GC-MS
645 method for monitoring contaminants in sludge samples, contributing significantly to the
646 sustainable extractor and analytical methods. Using a pyrolyzer for sample introduction is
647 innovative, mitigating contamination risks associated with the continuous use of viscous
648 liquids like HDES. Its effectiveness in injecting small liquid sample quantities minimizes
649 contamination issues, enhancing its appeal for such sample types.

650 The developed approach in this study has the potential to advance more effective
651 and sensitive analytical methods for detecting contaminants in environmental samples. It
652 also opens avenues for creating new HDES capable of monitoring other contaminants,
653 thereby enhancing environmental management and monitoring practices. The use of
654 AGREE to assess method sustainability directly facilitates the exploration of new
655 approaches and optimization of the analytical method to meet the demands of GAC.
656 Future perspectives include applying HDES, DL-menthol:DecA, and DL-
657 menthol:DoDecA in the DLLME technique and explore the development of new
658 magnetic solvents for extracting different compounds from various samples.

659

660 **Credit authorship contribution statement**

661

662 Karen C. Ferreira: Conceptualization, Methodology, Formal analysis, Investigation,
663 Writing – original draft. Thais Rodrigues: Review & editing. Guilherme Isquibola:
664 Review & editing. Saidy Cristina Ayala-Durán: Writing – review & editing. Josias de
665 Oliveira Merib: Writing – review & editing. Jared L. Anderson: Writing – review &
666 editing. Mario H. Gonzalez: Writing – review & editing. Paulo C. F. Lima Gomes:
667 Conceptualization, Supervision, Project administration, Funding acquisition, Writing –
668 review & editing.

669

670 **Conflicts of interest**

671

672 The authors declare that they have no known competing financial interests or personal
673 relationships that could have appeared to influence the work reported in this paper.

674

675 **Acknowledgments**

676

677 The authors wish to acknowledge the financial support from the Fundação de Amparo à
678 Pesquisa do Estado de São Paulo (FAPESP grants #2022/02991-3 and INCT-DATREM
679 #2014/50945-4), Conselho Nacional de Desenvolvimento Científico e Tecnológico
680 (CNPq, grant #465571/2014-0), Coordenação de Aperfeiçoamento de Pessoal de Nível
681 Superior (CAPES #88887136426/2017/00), and São Paulo State University, Institute of
682 Chemistry (Araraquara, Brazil). S.C.A.D. for the scholarship granted in the scope of the
683 Program CAPES-PrInt (#88887.891984/2023-00). J.L.A. acknowledges support from the
684 Chemical Measurement and Imaging Program at the National Science Foundation (Grant
685 number CHE-2203891).

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

721 **References**

722
723

724 [1] C. Pironti, M. Ricciardi, A. Proto, P.M. Bianco, L. Montano, O. Motta,
725 Endocrine-disrupting compounds: An overview on their occurrence in the
726 aquatic environment and human exposure, *Water (Switzerland)* 13 (2021).
727 <https://doi.org/10.3390/w13101347>.

728 [2] S.D. Richardson, T.A. Ternes, *Water Analysis: Emerging Contaminants and*
729 *Current Issues, Anal Chem* 90 (2018) 398–428.
730 <https://doi.org/10.1021/acs.analchem.7b04577>.

731 [3] G. Reichert, A. Mizukawa, J. Antonelli, F. de Almeida Brehm Goulart, T.C.
732 Philippe, J.C. Rodrigues de Azevedo, Determination of Parabens, Triclosan,
733 and Lipid Regulators in a Subtropical Urban River: Effects of Urban
734 Occupation, Water Air Soil Pollut 231 (2020).
735 <https://doi.org/10.1007/s11270-020-04508-y>.

736 [4] C.A. Galinaro, F.M. Pereira, E.M. Vieira, Determination of parabens in
737 surface water from Mogi Guaçu River (São paulo, Brazil) using dispersive
738 liquid-liquid microextraction based on low density solvent and LC-DAD, J
739 Braz Chem Soc 26 (2015) 2205–2213. <https://doi.org/10.5935/0103-5053.20150206>.

741 [5] A. Mizukawa, Avaliação de contaminantes emergentes na água e sedimento
742 na bacia do Alto Iguaçu/PR/PR. Tese de Doutorado. Universidade Federal
743 do Paraná, Setor de Tecnologia, Programa de Pós-Graduação em Engenharia
744 de Recursos Hídricos e Ambiental. CURITIBA 2016., n.d.

745 [6] M.M. dos Santos, F. de A. Brehm, T.C. Philippe, H.G. Knapik, J.C.R. de
746 Azevedo, Ocorrência e avaliação de risco de parabenos e triclosan em águas
747 superficiais na região sul do Brasil: Um problema de poluentes emergentes
748 em um país emergente, Revista Brasileira de Recursos Hídricos 21 (2016)
749 603–617. <https://doi.org/10.1590/2318-0331.011616018>.

750 [7] S.A.H. Shah, S. Asman, Evaluation of deep eutectic solvent as a new
751 monomer for molecularly imprinted polymers for removal of bisphenol A,
752 Journal of Polymer Research 30 (2023). <https://doi.org/10.1007/s10965-023-03581-1>.

754 [8] C.B. Godiya, B.J. Park, Removal of bisphenol A from wastewater by
755 physical, chemical and biological remediation techniques. A review,
756 Environ Chem Lett 20 (2022) 1801–1837. <https://doi.org/10.1007/s10311-021-01378-6>.

758 [9] C. Mahugo-Santana, Z. Sosa-Ferrera, M.E. Torres-Padrón, J.J. Santana-
759 Rodríguez, Application of new approaches to liquid-phase microextraction
760 for the determination of emerging pollutants, TrAC - Trends in Analytical
761 Chemistry 30 (2011) 731–748. <https://doi.org/10.1016/j.trac.2011.01.011>.

762 [10] D.S. Chormey, B.T. Zaman, T.B. Kustanto, S. Erarpat Bodur, S. Bodur, E.Ö.
763 Er, S. Bakırdere, Deep eutectic solvents for the determination of endocrine
764 disrupting chemicals, Talanta 268 (2024).
765 <https://doi.org/10.1016/j.talanta.2023.125340>.

766 [11] D.J.G.P. Van Osch, C.H.J.T. Dietz, J. Van Spronsen, M.C. Kroon, F.
767 Gallucci, M. Van Sint Annaland, R. Tuinier, A Search for Natural
768 Hydrophobic Deep Eutectic Solvents Based on Natural Components, ACS
769 Sustain Chem Eng 7 (2019) 2933–2942.
770 <https://doi.org/10.1021/acssuschemeng.8b03520>.

771 [12] C. Florindo, L.C. Branco, I.M. Marrucho, Development of hydrophobic
772 deep eutectic solvents for extraction of pesticides from aqueous

773 environments, *Fluid Phase Equilib* 448 (2017) 135–142.
774 <https://doi.org/10.1016/j.fluid.2017.04.002>.

775 [13] C. Florindo, N. V. Monteiro, B.D. Ribeiro, L.C. Branco, I.M. Marrucho,
776 Hydrophobic deep eutectic solvents for purification of water contaminated
777 with Bisphenol-A, *J Mol Liq* 297 (2020).
778 <https://doi.org/10.1016/j.molliq.2019.111841>.

779 [14] A.K. Dwamena, Recent advances in hydrophobic deep eutectic solvents for
780 extraction, *Separations* 6 (2019).
781 <https://doi.org/10.3390/separations6010009>.

782 [15] B.D. Ribeiro, C. Florindo, L.C. Iff, M.A.Z. Coelho, I.M. Marrucho,
783 Menthol-based eutectic mixtures: Hydrophobic low viscosity solvents, *ACS*
784 *Sustain Chem Eng* 3 (2015) 2469–2477.
785 <https://doi.org/10.1021/acssuschemeng.5b00532>.

786 [16] N.P.E. Hikmawanti, F.C. Saputri, A. Yanuar, I. Jantan, R.A. Ningrum, A.B.
787 Juanssilfero, A. Mun'im, Choline chloride-urea-based natural deep eutectic
788 solvent for highly efficient extraction of polyphenolic antioxidants from
789 *Pluchea indica* (L.) Less leaves, *Arabian Journal of Chemistry* 17 (2024).
790 <https://doi.org/10.1016/j.arabjc.2023.105537>.

791 [17] R.S. Lamarca, S. dos S. Ferreira, É.R. Paganini, N. dos S. Ferreira, S.C.
792 Ayala-Durán, G. Isquibola, P.C.F. de Lima Gomes, C.D.B. Amaral, M.
793 Magnani, D.F. Franco, J.O. Fernandes, S.C. Cunha, M.H. Gonzalez,
794 Sustainable cadmium extraction from sewage sludge samples: A novel
795 approach with hydrophobic deep eutectic solvents and ultrasound-assisted
796 extraction (HDES-UAE) prior to ICP-MS analysis, *J Mol Liq* 398 (2024).
797 <https://doi.org/10.1016/j.molliq.2024.124264>.

798 [18] C.H.J.T. Dietz, M.C. Kroon, M. Di Stefano, M. Van Sint Annaland, F.
799 Gallucci, Selective separation of furfural and hydroxymethylfurfural from
800 an aqueous solution using a supported hydrophobic deep eutectic solvent
801 liquid membrane, *Faraday Discuss* 206 (2018) 77–92.
802 <https://doi.org/10.1039/c7fd00152e>.

803 [19] EPA, U.S. Environmental Protection Agency-EPA. Office of Water. Method
804 1698: Steroids and Hormones in Water, Soil, Sediment, and Biosolids by
805 HRGC/HRMS. EPA-821-R-08-003. December, 2007., 2007.
806 <http://www.epa.gov/waterscience>.

807 [20] FDA, U.S. Department of Health and Human Services Food and Drug
808 Administration. Analytical Procedures and Methods Validation for Drugs
809 and Biologics Guidance for Industry. July, 2015, 2015.
810 <http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm> and
811 <http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/default.htm>.
812

813 [21] P.T. Anastas, Green Chemistry and the role of analytical methodology
814 development, *Crit Rev Anal Chem* 29 (1999) 167–175.
815 <https://doi.org/10.1080/10408349891199356>.

816 [22] S. Armenta, S. Garrigues, M. de la Guardia, Green Analytical Chemistry,
817 TrAC - Trends in Analytical Chemistry 27 (2008) 497–511.
818 <https://doi.org/10.1016/j.trac.2008.05.003>.

819 [23] F. Pena-Pereira, W. Wojnowski, M. Tobiszewski, AGREE - Analytical
820 GREENess Metric Approach and Software, *Anal Chem* 92 (2020) 10076–
821 10082. <https://doi.org/10.1021/acs.analchem.0c01887>.

822 [24] L. Caldeirão, J.O. Fernandes, M.H. Gonzalez, H.T. Godoy, S.C. Cunha, A
823 novel dispersive liquid-liquid microextraction using a low density deep
824 eutectic solvent-gas chromatography tandem mass spectrometry for the
825 determination of polycyclic aromatic hydrocarbons in soft drinks, *J
826 Chromatogr A* 1635 (2021). <https://doi.org/10.1016/j.chroma.2020.461736>.

827 [25] B.K. Matuszewski, M.L. Constanzer, C.M. Chavez-Eng, Strategies for the
828 assessment of matrix effect in quantitative bioanalytical methods based on
829 HPLC-MS/MS, *Anal Chem* 75 (2003) 3019–3030.
830 <https://doi.org/10.1021/ac020361s>.

831 [26] B.M.C. Botrel, D.C.P. Abreu, A.A. Saczk, M.J.F. Bazana, C. de F.
832 Nascimento, P.V. e Rosa, Dispersive liquid-liquid microextraction for the
833 determination of menthol residue in fish by GC–MS, *Microchemical Journal*
834 133 (2017) 70–75. <https://doi.org/10.1016/j.microc.2017.03.008>.

835 [27] H.M. Al-Saidi, A.A.A. Emara, The recent developments in dispersive
836 liquid-liquid microextraction for preconcentration and determination of
837 inorganic analytes, *Journal of Saudi Chemical Society* 18 (2014) 745–761.
838 <https://doi.org/10.1016/j.jscs.2011.11.005>.

839 [28] L.H. Keith, L.U. Gron, J.L. Young, Green analytical methodologies, *Chem
840 Rev* 107 (2007) 2695–2708. <https://doi.org/10.1021/cr068359e>.

841 [29] A. Gałuszka, Z. Migaszewski, J. Namieśnik, The 12 principles of green
842 analytical chemistry and the SIGNIFICANCE mnemonic of green
843 analytical practices, *TrAC - Trends in Analytical Chemistry* 50 (2013) 78–
844 84. <https://doi.org/10.1016/j.trac.2013.04.010>.

845 [30] Y. An, K.H. Row, Evaluation of Menthol-Based Hydrophobic Deep Eutectic
846 Solvents for the Extraction of Bisphenol A from Environment Water, *Anal
847 Lett* 54 (2021) 1533–1545.
848 <https://doi.org/10.1080/00032719.2020.1811716>.

849 [31] L. Khare, T. Karve, R. Jain, P. Dandekar, Menthol based hydrophobic deep
850 eutectic solvent for extraction and purification of ergosterol using response
851 surface methodology, *Food Chem* 340 (2021).
852 <https://doi.org/10.1016/j.foodchem.2020.127979>.

853 [32] P. Makoś, E. Ślupek, J. Gębicki, Hydrophobic deep eutectic solvents in
854 microextraction techniques—A review, *Microchemical Journal* 152 (2020).
855 <https://doi.org/10.1016/j.microc.2019.104384>.

856 [33] Q. Zhang, K. De Oliveira Vigier, S. Royer, F. Jérôme, Deep eutectic
857 solvents: Syntheses, properties and applications, *Chem Soc Rev* 41 (2012)
858 7108–7146. <https://doi.org/10.1039/c2cs35178a>.

859 [34] M.M. Amin, M. Hashemi, K. Ebrahimpour, A. Chavoshani, Determination
860 of parabens in wastewater and sludge in a municipal wastewater treatment
861 plant using microwave-assisted dispersive liquid-liquid microextraction
862 coupled with gas chromatography-mass spectrometry, *Environmental
863 Health Engineering and Management* 6 (2019) 215–224.
864 <https://doi.org/10.15171/EHEM.2019.24>.

865 [35] M.L. Martins, E.G. Primel, S.S. Caldas, O.D. Prestes, M.B. Adaime, R.
866 Zanella, Microextração Líquido-Líquido Dispersiva (DLLME):
867 Fundamentos e aplicações, *Scientia Chromatographica* 4 (2012) 29–45.
868 <https://doi.org/10.4322/sc.2012.004>.

869 [36] Y. Na, X. Gao, J. Hong, X. Zhou, N. Liang, L. Zhao, Vortex-assisted
870 dispersive liquid–liquid microextraction based on the hydrophobic deep
871 eutectic solvent-based ferrofluid for extraction and detection of
872 myclobutanil, *Microchimica Acta* 190 (2023).
873 <https://doi.org/10.1007/s00604-023-05884-y>.

874 [37] D. L. Pavia, G. M. Lampman, G. S. Kriz, J. R. Vyvyan, *Introdução à
875 Espectroscopia*. Tradução da 4^a edição norte-americana. Cengage Learning,
876 2010.

877 [38] P. Makoś, A. Fernandes, G. Boczkaj, Method for the determination of
878 carboxylic acids in industrial effluents using dispersive liquid-liquid
879 microextraction with injection port derivatization gas chromatography–
880 mass spectrometry, *J Chromatogr A* 1517 (2017) 26–34.
881 <https://doi.org/10.1016/j.chroma.2017.08.045>.

882 [39] M.K. AlOmar, M.A. Alsaadi, M. Hayyan, S. Akib, M. Ibrahim, M.A.
883 Hashim, Allyl triphenyl phosphonium bromide based DES-functionalized
884 carbon nanotubes for the removal of mercury from water, *Chemosphere* 167
885 (2017) 44–52. <https://doi.org/10.1016/j.chemosphere.2016.09.133>.

886 [40] L.M. Parron, D. Heloisa De Freitas Muniz, C.M. Pereira, Empresa Brasileira
887 de Pesquisa Agropecuária Embrapa Florestas Ministério da Agricultura,
888 Pecuária e Abastecimento, (2011). www.cnnpf.embrapa.br.

889 [41] CONSELHO NACIONAL DO MEIO AMBIENTE (CONAMA), BRASIL.
890 Ministério do Meio Ambiente (MMA). Conselho Nacional do Meio
891 Ambiente (CONAMA). Resolução CONAMA No 430, de 13/05/2011.
892 Dispõe sobre as condições e padrões de lançamento de efluentes,
893 complementa e altera a Resolução no 357, de 17 de março de 2005, do
894 Conselho Nacional do Meio Ambiente-CONAMA., 2011.

895 [42] M.P. Marques, ; N S Araújo, ; P F Gomes, ; H C Ruggeri Júnior, M. De, P.
896 Marques, N. Santos Araújo, P. Fernandes Gomes3, H. Carlos, R. Júnior, P.F.
897 Gomes, Evaluation of the efficiency of the treatment of the effluent of a
898 stamping by chemical coagulation., 2017.

899 [43] A. Prichodko, E. Janenaitė, V. Smidienė, V. Vickackaitė, Gas
900 chromatographic determination of parabens after in-situ derivatization and
901 dispersive liquid-liquid microextraction, *Acta Chromatogr* 24 (2012) 589–
902 601. <https://doi.org/10.1556/AChrom.24.2012.4.6>.

903 [44] M. Villar-Navarro, M.D.C. Moreno-Carballo, R. Fernández-Torres, M.
904 Callejón-Mochón, M.Á. Bello-López, Electromembrane extraction for the
905 determination of parabens in water samples, *Anal Bioanal Chem* 408 (2016)
906 1615–1621. <https://doi.org/10.1007/s00216-015-9269-y>.

907 [45] A. Prichodko, V. Šakočiūtė, V. Vičkačkaitė, Dispersive liquid-liquid
908 microextraction of parabens, 2010.