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Abstract—Generative large language model (LLM) applications
are growing rapidly, leading to large-scale deployments of
expensive and power-hungry GPUs. Our characterization of LLM
inference shows that each inference request undergoes two phases:
a compute-intensive prompt computation phase and a memory-
intensive token generation phase, each with distinct latency,
throughput, memory, and power characteristics. Despite state-
of-the-art batching and scheduling, the token generation phase
underutilizes compute resources. Unlike prompt computation,
token generation does not need the compute capability of the
latest GPUs and can be run with lower power and cost.

Based on these insights, we propose Splitwise, a model
deployment and scheduling technique that splits the two phases of
LLM inference requests on to separate machines. Splitwise enables
phase-specific resource management using hardware that is well
suited for each phase. Request state is transferred efficiently
between machines using optimized network libraries on the
fast back-plane interconnects available in today’s GPU clusters.
Using Splitwise, we design homogeneous and heterogeneous LLM
inference clusters optimized for throughput, cost, and power.
Compared to current designs, Splitwise clusters achieve up to
1.4x higher throughput at 20% lower cost. Alternatively, they
can deliver 2.35x more throughput under the same power and
cost budgets.

I. INTRODUCTION

Recent advancements in generative large language models
(LLMs) have significantly improved their response quality and
accuracy [18], [71]. These trends have led to the widespread
adoption of LLMs across various domains [6], [21]. Most
modern LLMs are built using the transformer architecture [77],
[78] and exhibit similar characteristics [63]. Transformer model
sizes have grown steadily, from the early BERT models [36]
having 340 million parameters, to GPT-3 [28] with a staggering
175 billion parameters, and GPT-4 rumored to have even more.

LLMs typically run on expensive and power-hungry
GPUs [16]. The sudden and large-scale deployment of LLMs
has led to a worldwide GPU capacity crunch [14]. The
computational demand for LLM inference far exceeds that
of training due to the vast number of applications leveraging
LLMs. Furthermore, since training LLMSs requires expensive
and dedicated supercomputers [56], [60], a large number of
inferences are necessary to amortize the high training costs.
LLM inference jobs, although orders of magnitude smaller
than training, are still expensive given the compute involved.
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A100 H100 Ratio
TFLOPs 19.5 66.9 3.43x
HBM capacity 80GB 80GB 1.00x
HBM bandwidth 2039GBps  3352GBps  1.64x
Power 400W 700W 1.75%
NVLink 50Gbps 100Gbps 2.00x
Infiniband 200GBps 400GBps 2.00x
Cost per machine [5] $17.6/hr $38/hr 2.16x

TABLE I: NVIDIA A100 vs. H100 specifications.

Generative LLM inference for a single request consists of
several forward passes through the model, since the output
tokens are generated one by one. This inherently has two con-
trasting phases of computation. First, the prompt computation
phase, in which all the input prompt tokens run through the
forward pass of the model in parallel to generate the first output
token. This phase tends to be computationally intensive and
requires the high FLOPs (floating point operations per second)
of the latest GPUs today. Second, the foken generation phase,
in which subsequent output tokens are generated sequentially
based on the forward pass of the last token and all the cached
context from previous tokens in the sequence. Given the lack
of compute parallelism, this phase tends to be more memory
bandwidth and capacity bound, despite state-of-the-art batching.
Running both phases on the same machine often leads to
inconsistent end-to-end latencies due to the arbitrary batching
of prompt and token phases. Due to these challenges, services
need to over-provision expensive GPUs to meet tight inference
service level objectives (SLOs) for interactive applications. At
the same time, cloud service providers (CSPs) are having to
build a lot of new datacenters to meet the GPU demand, and
are running into a power wall [19].

The industry continues to release new computationally
powerful GPUs, each much more power hungry and expensive
than the last. However, as shown in Table I, the high-bandwidth
memory (HBM) capacity and bandwidth on these GPUs has not
scaled at the same rate recently. The latest NVIDIA H100 GPUs
have 3.43x more compute and 1.75x more power compared
to their predecessor A100 GPUs. However, their memory
bandwidth only grew by 1.6x, with no increase in memory
capacity.

Our work. Given the distinct properties of prompt computation
and token generation phases, we propose splitting the inference



request and running them on separate machines. Doing so
allows us to separately manage hardware resources for each
phase, thereby increasing the GPU utilization and the overall
efficiency of the system. It also enables using different, better-
suited hardware for each phase. To realize such a setup, the
cached context from the prompt computation needs to be
communicated over from the prompt processing machine to the
token generation machine at low latency. We implement these
transfers in an optimized manner over the back-end Infiniband
interconnects avaialble in datacenters today, allowing us to
increase efficiency without any perceived performance loss.

With Splitwise, we design clusters optimized for cost,
throughput, and power, using production traces of LLM
inference requests [4]. Given the diverging memory and
compute scaling rates across GPU generations, we also evaluate
different GPUs and power caps for the different inference
phases. This allows us to target better performance per dollar
(Perf/$) for users, and better performance per watt (Perf/W)
for CSPs. Additionally, users can target older GPUs, which
are likely more readily available to them.

We show that Splitwise-based LLM inference clusters can
achieve 1.4x higher throughput at 20% lower cost than existing
clusters. Alternatively, they can deliver 2.35x more throughput
with the same cost and power budgets.

Summary. We make the following contributions:

1) An extensive characterization of the differences in the
execution and utilization patterns of the prompt and token
generation phases in LLM inference on the NVIDIA A100
and H100 GPUs using production traces.

2) Splitwise, our technique for optimized utilization of avail-
able hardware, which splits the prompt computation and
token generation phases onto separate machines.

3) A design exploration of homogeneous and heterogeneous
cluster deployments with Splitwise to optimize the overall
cost, request throughput, and provisioned power.

4) An evaluation of the systems designed with Splitwise using
production traces.

II. BACKGROUND
A. Large Language Models

Modern LLMs are based on transformers. Transformer
models use attention [77] and multi-layer-perceptron layers to
understand the inputs and generate an output, respectively.
Transformer-based LLMs include encoder-only [36], [54],
decoder-only [67], [69], [71], and encoder-decoder [70] models.
Generative LLMs, the focus of this paper, are usually either
decoder-only, or encoder-decoder models.

B. Generative LLM inference phases

Figure 1 shows an example of generative LLM inference.
Once the prompt query is received, all the input tokens are
computed in parallel, within a single iteration, to generate the
first token. We call this the prompt processing phase. The
context generated from the attention layers during the prompt
computation is saved in the key-value (KV) cache, since it
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Fig. 1: An LLM inference example.
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Metric

End-to-end (E2E) latency
Time to first token (TTFT)
Time between tokens (TBT)

Throughput

Importance to user

Total query time that the user sees
How quickly user sees initial response
Average token streaming latency
Requests per second

TABLE II: Performance metrics for LLMs.

is needed for all the future token generation iterations. After
the first token is generated, the following tokens only use
the last generated token and the KV-cache as inputs to the
forward pass of the model. This makes the subsequent token
generation more memory bandwidth and capacity intensive
than the computationally heavy prompt phase.

C. Performance metrics for LLMs

Prior work has proposed three main metrics for LLM
inference: end-to-end (E2E) latency, time to first token (TTFT),
and throughput. We add another latency metric: time between
tokens (TBT), to track the online streaming throughput of the
tokens as they are generated serially. Table II summarizes the
key performance metrics that we consider in this work.

Generative LLMs may be used for a variety of tasks with
different kinds of SLOs. For batch tasks (e.g., summariza-
tion), TTFT or TBT latency metrics are less important than
throughput. On the other hand, for latency-sensitive tasks (e.g.,
conversational APIs), TTFT and TBT are the more important
metrics with tighter SLOs.

D. Batching of requests

Inference requests can be batched together for higher
throughput. Several prior works have explored batching [23],
[81]. Figure 2 shows the timelines for inference with three
common batching mechanisms. The default mechanism only
batches at the request-level (Figure 2(a)). In this case, ready
requests are batched together, but all the forward passes for
these requests are completed before any other requests are run.
Since requests can have long token generation phases, this
can lead to long wait times for requests arriving in between,
causing high TTFT and high E2E latencies. An optimization is
continuous batching [81] (Figure 2(b)). In this case, scheduling
decisions are made before each forward pass of the model.
However, any given batch comprises either only of requests
in their prompt phase or only requests in token phase. Prompt
phase is considered more important since it impacts TTFT.
Hence, a waiting prompt can preempt a token phase. Although
this leads to shorter TTFT, it can substantially increase the tail
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Fig. 2: Batching mechanisms and their latency impact on the
prompt and token phases.

(a) Request-level.

for TBT, and therefore the E2E latency. Finally, there is mixed
batching (Figure 2(c)) [23]. With this batching, the scheduling
decisions are made at each forward pass, and the prompt and
token phases can run together. This reduces the impact on TBT,
but does not eliminate it, since token phases scheduled with
prompt phases will experience a longer runtime. In the rest of
the paper, we use mixed batching unless stated otherwise.

E. Model parallelism

Model parallelism can be used to divide a model onto multi-
ple GPUs, and even multiple machines, for higher efficiency and
memory capacity. LLM inference typically uses pipeline and
tensor parallelism. Pipeline parallelism (PP) divides the layers
of the model among the GPUs, while keeping all the operators
and tensors within a layer on the same GPU. Tensor parallelism
(TP) divides the tensor across the GPUs, while replicating all
the layers on each GPU. Pipeline parallelism requires lower
communication across the participating GPUs, while tensor
parallelism requires high bandwidth communication for each
layer. In general, tensor parallelism performs better for GPUs
within the same machine, connected with high bandwidth
interconnects like e.g. NVLink [15]. In the rest of the paper,
we use tensor parallelism across 8 GPUs for the best latency.

FE. GPU clusters and interconnects

With the recent rise of LLM use cases, several cloud service
providers have expanded the GPU-based offerings, leading to
large GPU cluster deployments [5], [56], [57]. Each machine in
these Al clusters is generally comprised of 8 flagship NVIDIA
GPUs (A100 or H100). Each GPU is connected to all the
other GPUs in the cluster with a high bandwidth Mellanox
InfiniBand interconnect [10], [13], forming a high bandwidth
data plane network. The InfiniBand bandwidth offered in the
cloud today ranges from 25 to S0GBps per GPU pair [7], [10].

III. CHARACTERIZATION

In this section, we explore the performance and utilization
characteristics of LLM inference and draw key insights to
guide the design of Splitwise.

Production traces. We use production traces taken from two
Azure LLM inference services on November 11** 2023. Our
traces represent the most common scenarios in LLM inference
today: coding and conversation. We have released a subset of
our traces at https://github.com/Azure/AzurePublicDataset [4].
The traces we use for characterization are 20 minutes long and
include the arrival time, input size (number of prompt tokens),

Model #Layers Hidden size #Heads
Llama2-70B 80 8192 32
BLOOM-176B 70 14336 112

TABLE III: Models we evaluate and their parameters.
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Fig. 3: Distribution for prompt and generated tokens.

and output size (number of output tokens). Due to customer
privacy requirements (e.g., GDPR), we do not have visibility
into the content of the prompts. We instead use the production
traces to guide the input and output sizes, where we send the
input prompt with the required number of tokens, and force the
model to generate the corresponding number of output tokens
for each request. Note that the text of the inputs prompts
does not impact the performance metrics that we benchmark,
since they depend only on the input and output sizes. For
this characterization, we do not reuse the KV-cache between
requests to emulate a cloud service with security guarantees.

Models. Table III shows the models that we evaluate. Both
BLOOM [69] and Llama2 [71] are state-of-the-art open
source LLMs. Both models are decoder-only, transformer-based
models. We use the version of each model with the most
parameters, since these versions are the most representative
for production-class accuracy. Unless stated otherwise, we run
BLOOM-176B and Llama-70B on vLLM [51] on a machine
with 8 H100 [16] GPUs.

A. Number of prompt and generated tokens

To better understand our traces, we examine the distribution
of the number of prompt input and generated output tokens.
Figure 3a shows the distribution of number of prompt tokens.
Since the coding LLM inference service is generally used to
generate completions as the user is writing code, its input
prompt can include large chunks of the code written so far.
Thus, it has a large median prompt size of 1500 tokens. On
the other hand, the conversation service has a wider range of
input prompt tokens since it depends on the user. The median
number of prompt tokens for this trace is 1020 tokens.

Figure 3b shows the distribution of the number of generated
tokens. Since the coding service typically only generates the
next few words in the program as the user types, the median
number of output token is 13 tokens. On the other hand, the
conversation service has an almost bimodal distribution, with
a median of 129 tokens generated.

Insight I: Different inference services may have widely
different prompt and token distributions.
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B. Batch utilization

To understand how much can these requests be batched, we
measure how often machines run at a given batch size. We use
mixed continuous batching as shown in Figure 2. To fit into a
single machine, we run a scaled-down version of the coding
and conversation traces with 2 requests per second.

Figure 4 shows the distribution of the time spent by the
machine running various number of active tokens in a batch.
Note that if a prompt of 100 tokens is running in its prompt
phase, we count the active tokens as 100. However, once the
request is in the token phase, we count it as one active token,
since the tokens are generated one at a time (assuming a
beam search size of one [51]). We find that most of the time
(60-70%) for conversation is spent running only 20 tokens or
fewer. Since the coding service has very few output tokens, it
experiences even worse batching in the token phase and runs
with a single token for more than 20% of the time. Both the
LLMs show very similar trends.

Insight I1: Mixed continuous batching spends most of the time
with very few active tokens batched.

C. Latency

TTFT. Figure 5a shows the impact of the number of prompt
tokens on TTFT. The range of sizes was chosen based on the
coding and conversation traces. We find that TTFT for both
models grows almost linearly as the prompt size increases.
This behavior is due to the prompt phase having high GPU
utilization and being computationally bound.

TBT. Figure 5b shows the impact of forcefully batching the
output tokens of different requests together on the TBT. We
observe very little impact on TBT as the batch size grows.
With a batch size of 64, there is only 2x impact on TBT.
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Fig. 7: Required memory with batching in prompt/token phases.

E2E. Figure 5c shows various percentiles of E2E latency for
both models, with no batching. The variability between the
request input and output sizes is apparent. Furthermore, we
see that most of the E2E time is spent running the token phase.
This holds true even for the coding trace, where prompt sizes
are large and generated tokens few. In fact, we find that for
BLOOM-176B, a prompt phase with 1500 input tokens takes
the same time as token phase with only 6 output tokens.

Insight III: For most requests, the majority of the E2E time
is spent in the token generation phase.

D. Throughput

Figure 6 shows the impact of batching on the throughput
(measured as tokens per second). For the prompt phase, we
define the throughput as the number of prompt input tokens
that are processed per second. We see that the throughput
decreases after 2048 prompt tokens, which corresponds to a
batch size of less than 2 for the median prompt sizes from the
traces. On the other hand, Figure 6b shows that the throughput
in the token phase keeps increasing with batching until 64
batch-size, at which point, the machine runs out of memory.

Insight IV: The prompt phase batch size should be limited
to ensure good performance. In contrast, batching the token
generation phase yields high throughput without any downside.

E. Memory utilization

During an LLM inference, the GPU memory is used to host
the model weights and activations, as well as the KV caches
(Section II-B). As the number of tokens in a batch increase,
the memory capacity required for the KV cache also increases.
Figure 7 shows the memory capacity utilization during each
phase as the number of tokens in the batch increases. During
the prompt phase, the input prompt tokens generate the KV
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Fig. 9: Impact of power cap on the prompt and token generation
latency with the maximum batch size possible.

cache. During the output token phase, each active generated
token that is being processed accesses the KV cache of its
entire context so far.

Insight V: Batching during the prompt phase is compute-bound,
whereas the token phase is limited by memory capacity.

E. Power utilization

When hosting machines, cloud providers need to consider
the peak power draw, which has direct impact in the datacenter
cost [26]. This is especially important when building GPU
clusters, since GPUs consume much higher power than regular
compute machines [63], [64]. Figure 8 shows the GPU power
draw normalized to the thermal design power (TDP) when
running prompt and token generation phases. Since the the
prompt phase is compute intensive, its power draw increases
with batch size. On the other hand, the token phase is memory
bound and its power draw does not vary when increasing the
number of tokens to process.

Providers can cap the power usage of the machines to reduce
the peak power. Figure 9 shows the impact to latency when

increasing the power caps for both prompt and token phases.

The prompt phase is highly sensitive to the power cap and the
latency increases substantially. On the other hand, the token
generation phase incurs almost no latency impact when power
capping by over 50% (i.e., 700 to 350W).

Insight VI: While the prompt phase utilizes the power budget
of the GPU efficiently, the token phase does not.
G. GPU hardware variations

Given the different characteristics of prompt and token
generation phases, we measure the performance impact on

Coding Conversation
A100 H100 Ratio A100 H100 Ratio
TTFT 185 ms 95 ms 0.51x 155 ms 84 ms 0.54x
TBT 52 ms 31 ms 0.70x 40 ms 28 ms 0.70x
E2E 856 ms 493 ms 0.58x 4957 ms 3387 ms  0.68x
Cost [5] $0.42 $0.52 1.24x $2.4 $3.6 1.5%
Energy 1.37 Whr  1.37 Whr 1x 7.9 Whr 9.4 Whr 1.2x

TABLE IV: P50 request metrics on A100 vs. H100 without
batching on Llama-70B.

the two from running on different hardware. Table 1 shows the
specifications for DGX-A100 [15] and DGX-H100 [16]. The
memory-to-compute ratio favors A100 over H100. Table IV
shows our findings. We see a lower performance impact on the
token generation phase (TBT) as compared to the Prompt phase
(TTFT). Since coding requests are dominated by prompt phase,
by having very few generated tokens, the E2E latency impact
from A100 is worse on coding than conversation. Furthermore,
we see that A100 has better or equal inference cost and energy
overall compared to H100.

Insight VII: Token generation can be run on less compute-
capable hardware for better Perf/W and Perf/$ efficiencies.

IV. SPLITWISE

Based on our characterization insights, we propose Splitwise,
a technique to split the prompt and generation phases in the
LLM inference on to separate machines.

Figure 10 shows the high-level overview of Splitwise. We
maintain two separate pools of machines for prompt and token
processing. A third machine pool, the mixed pool, expands and
contracts as needed by the workload. All machines are pre-
loaded with the model of choice. When a new inference request
arrives, the scheduler allocates it to a pair of machines (i.e.,
prompt and token). The prompt machines are responsible for
generating the first token for an input query, by processing all
the input prompt tokens in the prompt phase and generating the
KV-cache. The prompt machine also sends over the KV-cache
to the token machine, which continues the token generation
until the response is complete. We use continuous batching at
the token machines to maximize their utilization. Machines in
mixed pool use mixed continuous batching.

At a lower request rate, we target better latency in Splitwise,
while, at a higher request rate, we target avoiding any
performance or throughput reduction due to the fragmentation
between prompt and token machine pools.

Splitwise uses a hierarchical two-level scheduling as shown
in Figure 10. The cluster-level scheduler (CLS) @ is respon-
sible for machine pool management and for routing incoming
inference requests. The machine-level scheduler (MLS)
maintains the pending queue and manages batching of requests
at each machine.

A. Cluster-level scheduling

Machine pool management. The CLS maintains the prompt,
token, and mixed machine pools . Splitwise initially assigns
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Fig. 10: High-level system diagram of Splitwise.

machines to the prompt or token pool depending on the

expected request load and input/output token distributions.

Machines from the prompt or token pools may be dynamically
moved into and out of the mixed pool to reduce fragmentation
and meet SLOs at higher loads. A machine in the mixed pool
retains its identity as a prompt or token machine and goes
back to its original pool once there are no tasks of the opposite
kind in its pending queue. Switching pools does not incur any
noticeable latency. If the load distribution deviates considerably
from initial assumptions, Splitwise employs a coarse grained
re-purposing of machines and moves machines between the
prompt and token pools. Re-purposing of machines is done
infrequently, typically only if they stay in the mixed pool for
a considerable amount of time.

Request routing. CLS uses Join the Shortest Queue (JSQ)
scheduling [39], [85] to assign a prompt and a token machine
to each request. Queue lengths are defined by the number
of pending tokens. Each machine regularly communicates to

the CLS changes in its memory capacity or pending queue.
Note that this does not happen at every iteration boundary.

We simultaneously assign both the prompt and token machine
when scheduling requests, since we can then overlap KV-cache
transfers with prompt computation to reduce transfer overheads
(Section IV-C).

When routing requests, if the pending queue is bigger than
a certain threshold, the CLS looks for target machines in the
mixed pool. If the mixed pool is also full, it proceeds to look
in the opposite pool (i.e., a token machine to run prompts

and vice versa) and moves the machine into the mixed pool.

Machines in the mixed pool operate exactly as a non-Splitwise
machine would, with mixed batching. Once the queue of mixed
requests is drained, the CLS transitions the machine back to
its original pool. For example, when the queue is too long, we
can move a prompt machine to the mixed pool to run tokens;

(- r-
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hil Machine! KV-cache
transfer per
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(a) Serialized KV-cache transfer. (b) Optimized KV-cache transfer
per-layer during prompt phase.

Fig. 11: Optimizing KV-cache transfer in Splitwise.

once the machine is done running tokens, we transition the
machine back into the prompt pool.

B. Machine-level scheduling

The MLS runs on each machine and is responsible for
tracking the GPU memory utilization, maintaining the pending
queue @, deciding the batch for each iteration, and reporting
the relevant status to the CLS.

Prompt machines. The MLS simply uses first-come-first-serve
(FCFS) to schedule prompts. The results in Figure 6a show
that after 2048 prompt tokens, the throughput degrades. For
this reason, the MLS restricts the batching of multiple prompts
together to 2048 tokens in total. This is a configurable value,
and can change for a different model or hardware.

Token machines. The MLS uses FCFS to schedule tokens and
batches as much as possible. Figure 6b shows that the token
generation throughput keeps scaling up with the batch size
until the machine runs out of memory. For this reason, the
MLS tracks the memory and starts queueing tokens once the
machine is close to running out of memory.

Mixed machines. To meet the TTFT SLO, the MLS must
prioritize running prompts and schedule any new prompts in
the pending queue immediately. If the machine is running token
phases and has no additional capacity to run the prompt phase,
the MLS will preempt tokens. To avoid starvation of the token
phase due to preemption, we increase the priority of the token
with age and limit the number of preemptions that each request
can have.

C. KV-cache transfer

As discussed in Section II, the K'V-cache is generated during
the prompt phase of the request, and it continuously grows
during the token generation phase. In Splitwise, we need
to transfer the KV-cache from the prompt machine to the
token machine @ (shown in Figure 10) to complete the
inference. This transfer delay is the main overhead associated
with Splitwise. In this section, we discuss the impact of KV-
cache transfer and how we optimize it.

Figure 11a shows the Gantt chart for the prompt phase, the
KV-cache transfer, and the token generation phase for a single
batch of requests when naively transferring the KV cache in
a serialized way. The KV-cache transfer starts only after the
prompt phase has finished and the first token is generated.
Further, it needs to complete before the next output token



can be generated in the token generation phase. This directly
impacts the maximum TBT and end-to-end latency of inference.

The time required for the transfer depends on the size of
the KV cache (which is directly proportional to the number
of prompt tokens) and on the bandwidth of the interconnect
between the prompt and the token machines. Even when using
fast InfiniBand links, the transfer overhead for large prompt
sizes could become a significant fraction of the TBT.

In Splitwise, we optimize the KV-cache transfer by overlap-
ping it with the computation in the prompt phase. As each layer
in the LLM gets calculated in the prompt machine, the KV
cache corresponding to that layer is also generated. At the end
of each layer, we trigger an asynchronous transfer of the KV-
cache for that layer while the prompt computation continues
to the next layer. Figure 11b shows this asynchronous transfer
which reduces the transfer overheads. Layer-wise transfer also
enables other optimizations, such as earlier start of the token
phase in the token machines, as well as earlier release of
KV-cache memory on the prompt machines.

Layer-wise KV-cache transfer happens in parallel with the
prompt computation for the next layer. This requires fine-
grained synchronization per layer for correctness. Thus, it is
possible to incur performance interference and increase the
TTFT, especially for smaller prompts. However, for small
prompts the total KV-cache size is small and does not need
the layer-wise transfer to hide the latency. Since the number of
tokens in a batch is already known at the start of computation,
Splitwise picks the best technique for KV-cache transfer. It
uses serialized KV-cache transfer for smaller prompts and
layer-wise transfer and for larger prompts. We show that the
overall transfer and interference overheads are relatively small
in Section VI-A.

D. Provisioning with Splitwise
We leverage Splitwise to optimize LLM inference cluster
deployments for power, cost, and throughput.

Type of machines. We propose four main variants of Splitwise-
based systems: Splitwise-AA, Splitwise-HH, Splitwise-HA, and
Splitwise-HHcap. The nomenclature is simply drawn from the
first letter representing the Prompt machine type, and the second
letter representing the Token machine type. “A” represents a
DGX-A100 machine, “H” represents a DGX-H100 machine,
and “Hcap” represents a power-capped DGX-H100 machine.
Table V shows a summary of the cost, power, and hardware
in each of our evaluated systems.

Splitwise-AA uses DGX-A100 for both prompt and token
pools, while Splitwise-HH uses DGX-H100 for both. These two
variants represent the commonly available setups in providers
where machines are homogeneous and interchangeable.

Splitwise-HA uses DGX-H100 for the prompt pool and
DGX-A100 for the token pool. We choose this configuration
based on Table IV, and the Insight VII (i.e., A100s can be
more cost- and power-efficient for the token phase).

Splitwise-HHcap uses DGX-H100 machines for both prompt
and token pools. However, we power cap the token machines
down to 70% of their rated power, with each GPU capped by
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Fig. 12: Design space for provisioning a Splitwise-HH cluster.
Cluster configurations targets a peak throughput of 70 RPS.
The cost-optimal Splitwise-HH configuration is marked with %
(27 prompt and 3 token machines).

50% of the power. We propose this design based on Figure 9
and Insight VII (i.e., the prompts phase is impacted by power
caps while token has no performance impact with 50% lower
power cap per GPU).

Number of machines. The LLM inference cluster deployment
must be sized with the appropriate number of prompt and token
machines. Our methodology involves searching the design space
using our event-driven cluster simulator, which is described in
detail in Section V. We need to provide as input: (1) the target
cluster design (e.g., Splitwise-HA or Splitwise-HHcap), (2) an
LLM-specific performance model that can estimate the TTFT
and TBT at various input, output, and batch sizes, (3) a short
trace derived from the target prompt and token size distributions
for the service (e.g., Figure 3), (4) the SLOs (e.g., Table VI), (5)
the constraints (e.g., throughput), and (6) the optimization goal
(e.g., minimize cost). Using this information, our provisioning
framework searches the space for the desired optimal point.
For example, searching with a throughput constraint and a
cost minimization goal gives us iso-throughput cost-optimized
clusters across different designs.

Search space. Figure 12 shows an example of the two-
dimensional search space for the number of prompt and token
machines under Splitwise-HH for the coding workload (using
a 2-minute trace). The simulator outputs the various percentiles
for TTFT, TBT, and E2E latencies. Then, we select the clusters
that meet the SLOs for each of these metrics and optimize
our target function. For example, Figure 12 shows a » for the
setup with 27 prompt and 3 token machines with the lowest
cost that achieves 70 RPS. We call this setup iso-throughput
cost-optimized.

Optimization. We can use three optimization goals: throughput,
cost, and power. Throughput optimization is important for both,



Prompt Machine

Token Machine Prompt-Token

Type Cost  Power Type Cost Power Interconnect Bandwidth
Splitwise-AA DGX-A100 1x 1x DGX-A100 1x 1x 1x
Splitwise-HH DGX-HI100  2.35x 1.75x  DGX-H100  2.5x 1.75% 2x
Splitwise-HHcap DGX-H100  2.35x 1.75x  DGX-H100  2.5x 1.23x 2x
Splitwise-HA DGX-HI100  2.35x 1.75x  DGX-A100 1x 1x 1x

TABLE V: Evaluated Splitwise designs all normalized to DGX-A100

the cloud service provider (CSP) and the user. Cost optimization
has different importance levels to the CSP and the user. For
the CSP, a higher cost for the same throughput might be
acceptable if there are gains in power and space requirements
for the cluster. However, for the end-user, a higher cost at
the same throughput is generally unacceptable. Finally, power
optimization is attractive for a CSP, since it enables more GPUs
to be deployed in the same datacenter [62], [63], but it may not
be as important to the user. We only consider the provisioned
power, and not the dynamic power utilization, in our study.

E. Practical Considerations

Accuracy impact. Splitwise does not impact accuracy since
it uses lossless KV-cache transfer and does not add any
randomization. It executes inference with the same parameters
and state as on a single machine.

Scalability. Since LLM requests are much longer than typical
ML requests [37], [38], they incur lower scheduling overhead
for similar cluster sizes. However, the CLS may become a
scalability bottleneck for large clusters. Insights from prior
work on partitioned or replicated scheduling could help improve
scalability [27], [61], [72] and are orthogonal to Splitwise.

Reliability and fault tolerance. If the prompt or the token
machine fail, Splitwise simply restarts requests from scratch,
similar to today’s LLM serving systems [44], [S1]. Alternatively,
Splitwise could checkpoint the KV-cache generated after
prompt computation into an in-memory database. To recover,
Splitwise can use this cache to skip prompt recomputation, and
start right away with the token phase. The KV-cache could also
be checkpointed periodically during the token phase. Designing
safe and efficient failure recovery is out of scope for our paper.

V. METHODOLOGY
A. Experimental setup

To evaluate our proposal on real hardware, we implement

Splitwise’s KV-cache transfer mechanism on top of vLLM [51].

Our implementation is open source [1]. We run this modified
vLLM on two DGX-A100 and two DGX-H10 virtual machines
(VMs) on Microsoft Azure with specifications from Table 1.
These are the VMs used to collect the characterization data in
Section III. These machines are connected with InfiniBand and
the DGX-H100s have double the bandwidth (i.e., 400 Gbps).

Since vanilla vLLM only supports continuous batching with
token preemption which can lead to much higher TBT, we
implement state-of-the-art mixed continuous batching [81] as
discussed earlier in Figure 2(c).
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Fig. 13: Overview of the design of the Splitwise simulator.

Our implementation of the Splitwise technique assigns
machines either a prompt role, or a token role. As the
prompt machine generates the first token, it transfers the KV-
cache to the token machine using the technique described in
Section IV-C. We use MSCCL++ [11], an optimized GPU-
driven communication library, to implement the naive and
layer-wise KV cache transfers.

In our implementation, the prompt machine uses the zero-
copy one-sided put primitive of MSCCL++ to send KV-cache
data over InfiniBand as soon as it is ready, without requiring
the token machine to issue any receive instructions. Once
we have issued a put for all layers, the prompt machine
signals a semaphore that the token machine waits on. The
synchronization done with the help of semaphores uses the
same InfiniBand connection used to send KV-cache data.
When processing a batch of prompts, each request is assigned
a different semaphore since it may be routed to different
token machines. We ship the KV-caches block-by-block in
vLLM. To minimize the number of transfers, we also consider
the contiguity of KV blocks as long as they use the same
semaphore.

B. Simulator setup

We build a simulator to explore cluster designs and evaluate
Splitwise at scale. The simulator code is open source [20].

Figure 13 shows the design of our simulator. The simulator is
event-driven and faithfully models the Splitwise machine pools,
schedulers, machine-level memory and queues, and KV-cache
transfer. We first profile the LLM on the target hardware with
various input/output sizes . Based on the characterization
profiles, we build a performance model. The simulator takes
as input the request traces, SLOs, the performance model,
and the configurations for cluster and scheduler . For our



P50 P9 P99

TTFT 2x 3x 6x
TBT 1.25x  1.5x 5x
E2E 1.25x  1.5x S5x

TABLE VI: SLO expressed as slowdown compared to a request
running on DGX-A100 under no contention.

evaluation, we use the prompt and token size distributions from
the production traces in Section III. We tune the Poisson arrival
rate to increase and decrease the load (requests per second)
for cluster sizing. The simulator provides the achieved metrics
per request (TTFT, TBT, E2E), and the machine utilization
levels . We cross-validated the performance model with
hardware experiments to ensure accuracy; we also validated
the simulator end-to-end using production load with over 50K
iterations to ensure fidelity @

Performance model. We build a piece-wise linear performance
model using performance profiles at various batch sizes, input
sizes, output sizes, in the required parallelism configuration
on A100 and H100 machines from Section III. We validate
that our performance model has high accuracy; it incurs a
mean absolute percentage error (MAPE) of less than 3% when
evaluated with a 80:20 train:test dataset split.

Communication model. In our evaluation, KV-cache transfers
cause inter-machine communication, whereas tensor parallelism
only causes intra-machine communication. We model inter-
machine communication overheads by benchmarking our KV-
cache transfer implementation over Infiniband in Section VI-A.

SLOs. To determine the maximum throughput that can be
supported by a given cluster design, we use P50, P90, and
P99 SLOs for TTFT, TBT, and E2E latency metrics. Table VI
shows our SLO definition using DGX-A100 as a reference. We
require all nine SLOs to be met. SLOs on TTFT are slightly
looser, since it has a much smaller impact on the E2E latency.

Baselines. We compare our Splitwise designs against Baseline-
A100 and Baseline-H100. The clusters in these baselines
consist of just DGX-A100s and DGX-H100s, respectively. Both
baselines use the same mixed continuous batching that Splitwise
uses for mixed pool machines (described in Section IV-A).

VI. EVALUATION

A. Experimental results

KV-cache transfer latency. We first measure the latency to
transfer the KV-cache as the prompt size grows. Figure 14
shows the visible transfer latency on both A100 and H100
setups with the naive and optimized transfer design as discussed
in Figure 11. Compared to the prompt computation time, the
overhead is minimal (< 7%). The time for serialized transfers
linearly increases with the prompt size since the size of the
KV-cache also increases. The optimized per-layer transfer, on
the other hand, hides much of the latency. For these transfers,
we see a constant non-overlapped transfer time of around 8ms
for the A100 and around 5Sms for the H100 setup. The H100
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Fig. 14: Overhead of the KV-cache transfer as the prompt size
increases on A100s and H100s.
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setup has double the bandwidth of the A100 setup (i.e., 200
vs 400 Gbps), and the impact of this can be clearly seen with
transfers in the H100 setup happening about twice as fast as
those in the A100 setup.

As discussed in Section IV-C, for small prompt sizes (< 512
in H100), Splitwise uses the serialized KV-cache transfer and
for larger prompts, it uses per-layer transfers.

End-to-end impact. Next, we run the coding trace on the
2-machine Splitwise setups without batching, and compare the
observed latency metrics to a 1-machine baseline setup with
no batching. Figure 15 shows our results. The latency impact
of serially transferring the KV-cache grows up to 3% of the
E2E with large prompts. However, Splitwise only incurs 0.8%
of E2E. In a user-facing inference, the only visible impact
of KV-cache transfer overhead is the latency for the second
token. Splitwise adds a 16.5% latency to the second token,
as compared to the 64% overhead from a serialized transfer.
Overall, the transfer impact in Splitwise is hardly perceivable
even in a user-facing inference.

B. Iso-power throughput-optimized clusters

Cluster provisioning. We provision clusters using the method-
ology described in Section IV-D. We target a specific workload
(e.g., conversation) at a peak load with the same power (i.e.,
iso-power) for each cluster design. For the baseline, we use the
power for 40 DGX-H100 machines as our target peak power.
For the A100 baseline, we can fit 70 DGX-A100 machines
under the same power budget. We denote these two designs
as 40P/T and 70P/T respectively, since they both use mixed
batching in all machines.



For Splitwise cluster designs under the coding trace,
Splitwise-AA provisions 55 prompt machines and 15 for the
token pool, denoted as (55P, 15P). Note that like Baseline-
A100, Splitwise-AA also provisions 75% more machines than
Baseline-H100. The legends in Figure 16 show the different
provisioning choices under coding and conversation workloads.
Request size distributions reflect in the machine pool sizing. For
example, we provision more prompt machines under Splitwise-
HH (35P, 5T) for the coding trace, while we provision more
token machines (25P, 15T) for the conversation trace.

Latency and throughput. Figure 16 shows a deep dive
into all the latency metrics at different input load for each
cluster design with the same power (i.e., iso-power). For the
coding trace (Figure 16a), Splitwise-HH, Splitwise-HHcap, and
Splitwise-AA all perform better than Baseline-H100. As the
load increases, Baseline-H100 suffers from high TBT due to
mixed batching with large prompt sizes. Although Splitwise-
AA can support higher throughput, its TTFT is consistently
higher than most designs. Splitwise-HA clearly bridges the
gap by providing low TTFT and E2E at high throughput. The
mixed machine pool in Splitwise becomes useful at higher
loads to use all the available hardware without fragmentation.
This benefit can be seen clearly in the P50 TBT chart for
Splitwise-HA, where after 90 RPS, H100 machines jump into
the mixed machine pool and help reduce TBT.

For the conversation trace (Figure 16b), Splitwise-HHcap
clearly does better on all fronts, including latency. This is
because its token generation phases typically run for much
longer than in the coding trace, which is beneficial for the
token machines.

Impact on batched tokens. Figure 17 shows the cumulative
distribution of time spent processing a varying number of
batched active tokens in an iso-power throughput-optimized
cluster. The distributions are collected by running the conver-
sation trace at low (70 RPS) and high (130 RPS) loads.

At low load, all 40 Baseline-H100 machines spend 70%
of the time running <15 tokens, and the rest running mixed
batches with large prompts, which affects TBT and E2E. The
35 Splitwise-HH prompt machines are mostly idle, and when
active, run much larger batches of tokens. The 15 Splitwise-
HH token machines also do a better job at batching. Overall,
Splitwise machines have better batching and latency at 70 RPS.
At high load, since the mixed pool is utilized more, the batch
sizes start looking similar across prompt and token machines.

Summary plot. Figure 18a summarizes the results across all
cluster metrics for iso-power throughput-optimized designs for
the conversation trace. We use Baseline-A100 as the baseline.
Compared to Baseline-A100, Splitwise-AA delivers 2.15x more
throughput at the same power and cost. Splitwise-HA delivers
1.18x more throughput at 10% lower cost and the same power.

C. Other cluster optimizations

We have described iso-power throughput-optimized clusters
in detail. For the rest of the cluster optimization evaluation,
we only discuss the summary plots.
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Fig. 16: Latency metrics across input loads for iso-power
throughput optimized clusters. Dashed red lines indicate SLO.

Iso-cost throughput-optimized. Figure 18b shows the sum-
mary plot for iso-cost clusters, with their space, throughput,
and power requirements. We find that Splitwise-AA provides
the best throughput for the same cost, namely 1.4x more
throughput than Baseline-H100, running at 25% more power,
and 2x the space. This is an interesting operational point for
most customers who may not care about power and space,
instead preferring the 40% higher throughput using older, more
easily available GPUs. In contrast, the preferable choice for
the CSP is less clear.

Iso-throughput power-optimized. Figure 19a shows cluster
designs that yield same throughput at the least power. Splitwise-
HHcap can achieve the same throughput as Baseline-H100 at
25% lower power at the same cost and space. This can be a
clear win for the CSPs.

Iso-throughput cost-optimized. Figure 19b shows the cost-
optimized versions of the iso-throughput design. Note that there
are no changes to any of the homogeneous designs between
Figures 19a and 19b. This is because the prompt and token
machines have the same cost and power. However, Splitwise-
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Fig. 18: Summary of throughput-optimized cluster designs.

HA and Splitwise-HHcap arrive at slightly different results
with the cost and power optimizations. Figure 19b shows that
with Splitwise-AA, customers can achieve the same throughput

as Baseline-H100 at 25% lower cost.

D. Impact of workload changes

So far, we have tested a trace and a model on clusters
optimized for a specific workload pattern and model. To test
the Splitwise’ robustness, we now run conversation trace on a
cluster meant for coding service, and Llama-70B on a cluster
meant for BLOOM-176B. Figure 20 shows these results for
iso-power throughput-optimized clusters.

Changing workload trace. Compared to Figure 16b, we find
that in Figure 20a, the Baseline clusters are similarly sized
and incur no throughput or latency impact. Splitwise-AA and
Splitwise-HH with the mixed pool morph well to meet the
requirements of the new workload, and they see no throughput
or latency impact. Since Splitwise-HA and Splitwise-HHcap
have different types of machines in the prompt and token pools,
they experience a throughput setback of 7% from the respective
cluster optimized designs for conversation trace. Note that all
the Splitwise designs still perform much better than any of the
Baseline designs.

Changing model. Figure 20b shows that Llama-70B can
support much higher throughput in the same cluster design
than BLOOM-176B, given its fewer parameters (Table IIT). All
the Splitwise designs out-perform both the Baseline designs at
higher load. Furthermore, Splitwise-HH and Splitwise-HHcap
consistently achieve the best latency, even as the load increases.
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Fig. 20: Latency impact of running a workload on a cluster
designed for another workload. Dashed red lines indicate SLO.

Summary. Based on these two experiments, we conclude
that Splitwise can morph according to the requirements of the
workload using its smart scheduling, and it is robust to changes
in the LLMs, request load, and token distributions.

E. Cluster design for batch job

We design various clusters with Splitwise under strict latency
SLOs, even when we are optimizing for throughput. This is
unnecessary for batch jobs, which can be stressed to high
load for a high token generation throughput. We find that upon
stressing our iso-power throughput-optimized clusters, Baseline-
A100 and Splitwise-AA have the best throughput per cost at
0.89 RPS/$. At high load, Splitwise devolves into the iso-count
Baseline, since it starts mixed batching with all the machines
in the mixed pool. The same holds true for Splitwise-HH and
Baseline-H100, which achieve 0.75 RPS/$.

VII. DISCUSSION

Extensibility to new models. Despite the plethora of model
sizes from 2B parameters [47], [84] to 176B parameters [69]
or more [18], all modern transformer-based generative LLMs
have the distinct prompt processing and token generation
phases. Similarly, even modifications and flavors like Mixture-
of-Experts (MoEs) have these phases. Since Splitwise is built
solely by exploiting these phases, it is applicable to all of the



current and upcoming LLMs, as long as the auto-regressive
nature of the workload requires these two phases. Note that
as shown in Section VI-D, clusters provisioned with Splitwise
for one model can also efficiently serve other models.

Alternative compute hardware. In this work, we use NVIDIA
H100 and A100 GPUs since they are commonly used for
LLM inference in datacenters today [17]. Smaller datacenter
GPUs like NVIDIA T4 lack enough memory to run modern
LLMs efficiently. In general, our methodology is applicable
to any hardware (including CPUs, FPGAs, ASICs [33]) that
aligns with the computational requirements of prompt and
token phases. Our characterization suggests that prompt phases
need high compute capability and memory bandwidth with low
memory capacity, whereas token phases need moderate compute
capability with high memory capacity and bandwidth. Thus,
GPUs like AMD MI-250 [2] and CPUs like Intel Sapphire-
Rapids (with HBM) [9] could be effective token machines.
Since we do not have access to such hardware and/or optimized
LLM implementations, we leave this to future work.

Interconnect between prompt and token machines. In this
work, we assume Infiniband connection between the prompt
and token machines in all the designs (albeit, lower bandwidth
when A100s were involved). Although this is common for all
homogenous machines, Splitwise-HA is not be readily available
with an Infiniband connection between H100s and A100s, even
though technically feasible. The alternative could be HPC
clouds, with Infiniband connections through the CPU [3], or
Ethernet, using RoCE [58]. Given our optimized KV-cache
transfer that helps reduce critical latency, an interconnect with
10x lower bandwidth would likely still be beneficial. To further
reduce our bandwidth utilization, we could also compress the
KV-cache before transferring it across the network [55].

Heterogeneous prompt/token machines. Although Splitwise
is robust to varied models and input traces, we recognize that
fragmenting a data center with different types of GPUs (e.g.,
Splitwise-HA) may bring its own challenges for the CSP.

Conversation back and forth. Chat APIs for LLMs today
require the user to send the complete context of the conversation
so far [18]. However, in the future, services may have enough
GPU capacity to cache the context and avoid recomputation.
This could sway the memory utilization pattern of the prompt
phase from our characterization. Furthermore, it may require
transferring the KV-cache back to a prompt machine to be
ready for the next conversation request.

VIII. RELATED WORK

Heterogeneous scheduling and dataflow systems. Prior
work has studied heterogeneous scheduling for a variety of
interactive services [65], [68], [83]. These works exploit
hardware heterogeneity to strike a balance between different
objectives such as cost, energy, and performance. However,
they run the entire workload on the same machine. Research
on heterogeneous multiprocessor CPU scheduling attempts to
match workload heterogeneity to hardware heterogeneity [29],
[40], [41], [50], [76], [80]. These works use profiling or
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online monitoring with metrics like request length or hardware
performance counters to identify workload phases and allocate
them appropriately on heterogeneous processors. However, they
do not consider the complexities with batching. Distributed
dataflow systems orchestrate large-scale computational graphs
and aim to provide general-purpose programmability [34], [46],
[75], [82]. LLM inference under Splitwise can be viewed as
a static computational graph with two stages, so it could be
implemented using distributed frameworks that provide efficient
GPU abstractions [59]. Splitwise differs from these works since
it uses a specialized two-phase design for generative LLM
inference and leverages phase-aware resource management
with efficient batching.

Model serving systems. LLM inference serving is a rapidly
developing field, with several recent works optimizing batch-
ing [23], [25], [51], [53], [81], scheduling [22], [42], [51], [66],
[73], [79], and memory usage [32], [35], [51], [74]. Prior work
has also proposed using CPUs and lower compute capability
devices for LLM serving [8], [12]. These approaches use the
same machine for both prompt and token phase. With Splitwise,
they could improve throughput and latency by splitting phases.

Prior work on video and ML serving focuses on scheduling
model chains with data dependencies under latency con-
straints [24], [31], [43], [49], [68]. Such schedulers rely on
model profiling to make efficient allocation decisions and
manage requests across machines. Recommendation system
inference exhibits compute/memory heterogeneity both within
and across models. Prior work exploits such heterogeneity
to selectively schedule requests between CPUs and accelera-
tors [38], [52], colocate models with complementary memory
usage [30], and partition compute/memory on heterogeneous
hardware resources [45], [48]. Similarly, Splitwise exploits the
heterogeneity within LLM inference requests. However, it uses
different optimizations due to the differences in LLM workload
characteristics and requirements.

IX. CONCLUSION

We extensively characterized the prompt computation and
token generation phases of LLM inference to draw out
differences in their system utilization patterns. Based on
our insights, we designed Splitwise to separate these phases
onto different machines and enable phase-specific resource
management. Using Splitwise, we explored cluster designs
optimized for throughput, cost, and power, and showed that
they perform well even as workloads change. Splitwise clusters
under performance SLOs achieve 1.76x better throughput with
15% lower power at the same cost, or 2.35x better throughput
with same the cost and power than existing designs.
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APPENDIX

A. Abstract

We open source critical components needed to evaluate
Splitwise; these could be repurposed to also evaluate future
LLM inference serving systems. Our artifact includes:

Production traces from two LLM inference services at
Microsoft Azure.

A prototype implementation of Splitwise’s KV-cache
transfer mechanism in vLLM [51].

SplitwiseSim, a discrete event simulator to evaluate model
serving in LLM inference clusters.

Artifact functionality was only tested for the traces and
SplitwiseSim due to limited hardware availability.

B. Artifact check-list (meta-information)

Data set: Production traces available as a part of the artifact.
Run-time environment: Linux / Ubuntu.

Hardware: Two machines connected over GPU Infiniband
for the vLLM prototype (e.g. NVIDIA DGX-A100, NVIDIA
DGX-H100). x86-64 CPU machine for SplitwiseSim.

Publicly available?: Yes.

Code licenses (if publicly available)?: MIT.

Data licenses (if publicly available)?: CC-BY.

Archived (provide DOI)?: 10.5281/zenodo.11003049.

C. Description

How to access. The entire artifact is available as an archive on
Zenodo: https://doi.org/10.5281/zenodo.11003049. Individual
components are also available online as follows:

The production traces can be downloaded from the Azure
Public Dataset GitHub repository [4].

The KV-cache transfer prototype can be downloaded from
the vLLM GitHub repository, currently available as a pull
request [1].



« SplitwiseSim, and the associated experiment and plotting
scripts, can be downloaded from a separate GitHub
repository [20].

Hardware dependencies. The KV-cache transfer prototype
requires two GPU machines connected over Infiniband, such as
NVIDIA DGX-A100s or NVIDIA DGX-H100s. SplitwiseSim
requires a standard x86-64 CPU machine; multiple machines
may be used to parallelize simulation runs.

Software dependencies. The KV-cache transfer prototype is
built on top of vVLLM [51] and MSCCL++ [11]. SplitwiseSim
depends on a small set of publicly available Python packages,
which can be installed via the included requirements.txt.

Data sets. Coding and conversation traces from Microsoft
Azure are available online as a part of the artifact release [4].

D. Installation and Experiment Workflow

Please refer to the README files within the artifact for
installation and usage instructions.

E. Methodology
Submission, reviewing and badging methodology:
« https://www.acm.org/publications/policies/
artifact-review-and-badging-current
« http://cTuning.org/ae/submission-20201122.html
« http://cTuning.org/ae/reviewing-20201122.html
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