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A B S T R A C T

Arti昀椀cial Intelligence (AI) has revolutionized technological development globally, delivering relatively more 
accurate and reliable solutions to critical challenges across various research domains. This impact is particularly 
notable within the 昀椀eld of materials science and engineering, where arti昀椀cial intelligence has catalyzed the 
discovery of new materials, enhanced design simulations, in昀氀uenced process controls, and facilitated operational 
analysis and predictions of material properties and behaviors. Consequently, these advancements have stream-
lined the synthesis, simulation, and processing procedures, leading to material optimization for diverse appli-
cations. A key area of interest within materials science is the development of hydrogen-based electrochemical 
systems, such as fuel cells and electrolyzers, as clean energy solutions, known for their promising high energy 
density and zero-emission operations. While arti昀椀cial intelligence shows great potential in studying both fuel 
cells and electrolyzers, existing literature often separates them, with a clear gap in comprehensive studies on 
electrolyzers despite their similarities. This review aims to bridge that gap by providing an integrated overview 
of arti昀椀cial intelligence’s role in both technologies. This review begins by explaining the fundamental concepts of 
arti昀椀cial intelligence and introducing commonly used arti昀椀cial intelligence-based algorithms in a simpli昀椀ed and 
clearly comprehensible way, establishing a foundational knowledge base for further discussion. Subsequently, it 
explores the role of arti昀椀cial intelligence in materials science, highlighting the critical applications and drawing 
on examples from recent literature to build on the discussion. The paper then examines how arti昀椀cial intelligence 
has propelled signi昀椀cant advancements in studying various types of fuel cells and electrolyzers, speci昀椀cally 
emphasizing proton exchange membrane (PEM) based systems. It thoroughly explores the arti昀椀cial intelligence 
tools and techniques for characterizing, manufacturing, testing, analyzing, and optimizing these systems. 
Additionally, the review critically evaluates the current research landscape, pinpointing progress and prevailing 
challenges. Through this thorough analysis, the review underscores the fundamental role of arti昀椀cial intelligence 
in advancing the generation and utilization of clean energy, illustrating its transformative potential in this area of 
research.
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1. Introduction

Technological advancement in the 昀椀elds of science and engineering 
nowadays is accompanied by the collection, handling, and analysis of 
ever larger, more sophisticated, and complex data [1–3]. Such compli-
cated datasets are oftentimes too dif昀椀cult or even impossible to process 
manually or using conventional data processing approaches [4,5]. To 
aid this process, arti昀椀cial intelligence can be implemented. Arti昀椀cial 
intelligence (also referred to as AI) originates from the notion of 
imparting the capability of “human-like thinking/intelligence” to com-
puters permitting them to analyze critical information and take appro-
priate problem-solving steps while evaluating their output with the 
objective to learn from the process [6,7].

AI was initially theorized through 昀椀ctional works during the 昀椀rst half 
of the 20th century and the concept was later adopted and formally 
recognized by scientists and mathematicians in the 1950s [8]. However, 
from the conception to the actual implementation of the concept, it 
faced many obstacles concerning social acceptance, 昀椀nancial feasibility, 
technological capacity, and metacognitive accuracy [9,10]. However, 
with the rapid progression in the 昀椀eld of computer sciences leading to 
modern-day operating systems with improved problem-solving algo-
rithms, AI 昀氀ourished [11,12].

In general, AI is divided into four different types based on its func-
tionality i.e., reactive, limited memory, theory of mind, and self-aware, 
as shown in Fig. 1 [13].

Reactive AI is programmed to acquire a predictable outcome, 
generating the same response to an identical situation each time, while 
Limited Memory AI possesses the ability to learn from experience, 
continually improving over time like neurons in the human brain. 
Reactive and Limited Memory AI are the types that are most researched 
these days, and most AI models available today are based on these two 
types. Theory of Mind AI is still in the development stage and refers to 
machines acquiring the capability of decision-making and emotional 
intelligence like humans. The most advanced form of AI, which is to be 
explored yet, is Self-awareness AI de昀椀ned as machines achieving the 
capability to not only judge and understand the mental and emotional 
states of others, but also their own [14].

Nowadays, AI is broadly referred to as two important subsets: ma-
chine learning and deep learning [15]. Machine learning (ML) focuses 
on performing speci昀椀c tasks by utilizing available data through 
continuous algorithmic optimization, while deep learning (DL) is a type 
of advanced ML that consists of multiple layers of neural networks to 
perform more complex tasks, reaching a logical conclusion on tasks 
involving unstructured data and does not always require labeled data, 
although labeled data is still commonly used for training [16]. The as-
sociation between AI and its subsets, ML and DL, can be explained using 
the representation in Fig. 2 [17,18,19].

To realize AI in more depth, it is crucial to discuss some of the most 
utilized AI techniques these days under the sub-classes of ML and DL. 
The sub-classi昀椀cation of the most important types and algorithms in AI 

is given in Fig. 3 [21,22]. Traditional ML can be broadly divided into 
four basic types, which are supervised, unsupervised, semi-supervised, 
and reinforcement learning. However, DL encompassing advanced 
techniques applicable across supervised, unsupervised, or hybrid 
learning frameworks, is sometimes recognized as a distinct type of ML 
[23].

1.1. Supervised learning

Supervised learning utilizes labeled datasets to train algorithms that 
can be used for either data classi昀椀cation or prediction of results. These 
models involve a cross-validation step to adjust the weight of the input 
until an appropriate 昀椀tting is completed [24]. Supervised learning 
models are based on mainly two sub-types: classi昀椀cation and regression 
[25].

Classi昀椀cation is the type of supervised learning which categorizes the 
input dataset into different classes based on the recognition of speci昀椀c 
characteristics of the dataset [26]. The most frequently used classi昀椀ca-
tion algorithms include logistic regression, support vector machines 
(SVM), decision trees, etc.

" Logistic regression is used to predict the probability of an event 
occurring, providing results in a binary format. It is commonly 
employed for binary classi昀椀cation problems [27].

" SVM algorithm is used to locate a hyperplane to categorize data 
points in an n-dimensional space where ‘n’ refers to the number of 
features [28].

" Decision trees use different nodes where data is continuously split 
according to certain parameters to predict the classi昀椀cation outcome 
for a given input dataset. A collection of uncorrelated decision trees 
referred to as random forest algorithm can also be used to generate 
more accurate predictions with reduced variance [29,30].

The other type of supervised learning is regression, which involves 
statistical approaches to identify the relationship between a dependent 
target variable and one or more independent predictor variables. The 
most common regression algorithms are linear regression and poly-
nomial regression [31].

" The linear regression model is based on predicting the best linear 
昀椀tting between a dependent and an independent variable [32].

" The polynomial regression algorithm involves modeling the rela-
tionship between a dependent target variable and an independent 
predictor variable as an nth degree polynomial [33].

1.2. Unsupervised learning

Unsupervised learning utilizes unlabeled datasets for identifying 
patterns or data groups without any human intervention [34]. Unsu-
pervised learning models are based on three main types: clustering, 

Fig. 1. Types of AI depending upon functionalities. Reproduced with permission. Copyright 2020, Published by MDPI [13].

M. Batool et al.                                                                                                                                                                                                                                  Energy and AI 18 (2024) 100424 

2 



dimensionality reduction, and anomaly detection [35].
Clustering is the type of unsupervised learning that groups unlabeled 

data according to their similarities or differences [36]. The most used 
algorithms of clustering are K-means and hierarchical clustering [37].

" K-means clustering categorizes ‘n’ observations into ‘k’ different 
clusters and computes centroids by data averaging while performing 
iterative calculations until optimal centroid stabilization has been 
reached [38].

" Hierarchical clustering either uses agglomerative clustering i.e., re-
petitive iteration of initially isolated data points based on similarity 
till a single cluster is achieved, or divisive clustering i.e., division of a 
data cluster based on the differences between data points [39].

Dimensionality reduction is another type of unsupervised learning 
which is speci昀椀cally used when there are numerous features or di-
mensions associated with the input dataset and lowers the number of 
data inputs while maintaining the dataset’s integrity [40]. The most 
used dimensionality reduction algorithms include principal component 
analysis (PCA) and independent component analysis (ICA) [41].

" The PCA algorithm generates a new representation of data identi-
fying the set of principal components through linear transformation 
and is used to compress huge datasets through the extraction of 
features [42].

" The ICA algorithm creates a new data representation by identifying 
statistically independent components through linear transformation 
and is employed to uncover hidden patterns, components, or sources 
within complex datasets [43].

Anomaly detection is a separate type of unsupervised learning which 
involves the identi昀椀cation of those data points or observations in the 
input dataset that do not agree with the normal data patterns [44].

1.3. Semi-supervised learning

Semi-supervised learning utilizes both labeled data as well as 

unlabeled data for training models. Though, the amount of labeled data 
involved is usually much less than the unlabeled data [45]. The 
semi-supervised learning approach offers the advantages of both su-
pervised and unsupervised learning and is usually of two basic types: 
Self-training models and low-density separation models.

Self-training models are initially trained with labeled data following 
the supply of unlabeled data. The model then uses the labeled data to 
categorize unlabeled data and iterates through the same steps until the 
whole dataset is labeled while low-density separation models involve 
昀椀nding a decision boundary separating different classes of labeled data 
based on low and high-density regions [46,47].

1.4. Reinforcement learning

The reinforcement learning approach refers to the training of ML 
models to reach the best possible outcome through an extended trial- 
and-error method without the use of any labeled input [48]. Some 
commonly utilized reinforcement algorithms include dynamic pro-
gramming and Monte Carlo methods.

Dynamic programming algorithm involves 昀椀nding the optimal so-
lution for complex problems by subdividing them into smaller problems 
while the Monte Carlo method involves learning only through repetitive 
experiences and interactions with the environment [49,50].

1.5. Deep learning

DL is a subset of ML which is based on a network of more complex 
algorithms called neural networks imitating the network of neurons in 
the human brain [51]. DL can be both supervised and unsupervised as 
well as a combination of both (hybrid). To ensure clarity and 
acknowledge the unique architecture, attributes and capabilities of deep 
learning, it is delineated as a distinct category in the machine learning 
classi昀椀cation as presented in Fig. 3 [52,53].

The three common types of DL algorithms are convolutional neural 
networks (CNNs), arti昀椀cial neural networks (ANNs), and recurrent 
neural networks (RNNs) [54].

CNNs utilize several arti昀椀cial neuron layers involving mathematical 

Fig.. 2. The different subsets of AI. Reproduced with permission, Copyright 2021, Published by MDPI [17–20].
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functions to process multiple inputs and produce output values which 
are then fed to the next neuron layer as input until a decisive outcome is 
achieved [55]. On the other hand, ANNs are used to distinguish the class 
of new observations on the training data basis, processing the observa-
tions one by one and learning by comparing their processed classi昀椀ca-
tion to the de昀椀nite known classi昀椀cation while RNNs only vary from 
CNNs in the way that they can employ output from any preceding layer 
of the neural network for sequential interpretation and optimization of 
outcome [51].

2. Applications of AI in materials science

Such remarkable prospects of AI encouraged scientists to discover 
and recognize many different avenues and aspects of research to which 
AI could be applied to yield favorable results. In recent years, AI has 
been successfully implemented in a plethora of applications across many 
different sectors such as education, security, agriculture, technology, 
healthcare, navigation, marketing, entertainment, research, etc. 
[56–64]. In fact, research and development in various technologies and 
engineering disciplines these days are contingent upon the continuous 
evolution and implementation of innovative AI-based algorithms and 
methodologies [65].

Likewise, materials development and optimization are the backbones 
of all modern-day systems, which compelled researchers to explore and 
utilize AI in the 昀椀eld of material science and engineering [66] [67],. In 
general, materials scientists and engineers investigate and analyze cor-
relations between structure, processes, and properties at the micro- and 
the nano-metric scale using a combination of high throughput experi-
mental and computational data. Therefore, the current bottleneck to 
progress is not only limited by the processing of a wide range of infor-
mation and large datasets, but also by the automatic assessment and 
critical problem-solving approach, which can aid in autonomous 
experiment selection [68–70],. Therefore, as opposed to manual and 
statistical data analysis, AI-based methods offer the advantage of not 
only exponentially reducing the analysis time but also averting bias 
during the decision-making process, leading to revolutionary progress in 
materials discovery and optimization, which was previously not possible 
[71–74].

Nowadays, ML is the branch of AI that is being explored and applied 
for innovative research in materials science and engineering the most 
[75]. Moreover, in the past few years, some promising DL models, 
mainly for atomistic-level materials research, have also been introduced 
[76]. A thorough literature survey on the utilization of AI, including ML 
and DL, within the scope of materials science using Scopus, led to more 

than 35,000 research publications during the past 20 years. As shown in 
Fig. 4, AI in materials research has become very active in the past 6 years 
or so. Whereas Fig. 5 shows different applications to which ML- and 
DL-based models have been applied in materials science. They are dis-
cussed in more detail below.

The development of innovative materials with the required charac-
teristics is a vital process for the development of advanced technologies 
[77–81]Fig. 6.

The conventional methods of materials discovery and design i.e., 
experimental measurement and computational simulation, both involve 
the requirement for a wide range of different high-performance equip-
ment, resources, experimental environments, and expertise, and hence 
are very challenging and time-consuming procedures. However, with 
the introduction of the Materials Genome Initiative (MGI), a huge ma-
terials dataset has been collected and shared to facilitate swifter mate-
rials discovery and design process [83]. Thus, ML with its superb 
capability of handling and processing high dimensional data, such as 
that accessible via MGI, can thereby be employed with success [76,78, 
79]. Some of the examples of materials discovery using ML in 
conjunction with MGI include materials discovery for thermoelectric 
materials, metallic glasses, photocatalysts, prediction of staining cell 
ability of dyes, and functional defect discovery for quantum informa-
tion, to name a few [84–88]. Some of the most common aspects of the 
use of AI in material science for materials discovery are discussed below.

2.1. Materials prediction

Materials prediction refers to using ML models to forecast the 
properties and behaviors of new materials based on their features, 
compositions, structures, or any other characteristics. Materials pre-
diction helps in forecasting how a material might perform under 
different conditions or different applications [89,90]. Numerous ML 
models have been successfully employed for the discovery and predic-
tion of materials with distinctive properties [91,92]. One example of 
such unique materials is ionic liquids (ILs), which are being explored due 
to their promising properties of low vapor pressure, low 昀氀ammability, 
and recyclability as cleaner alternatives to conventional volatile organic 
solvents [85]. However, the discovery of suitable ILs requires chemical 
structure optimization for compatibility with desired applications. An 
important class of ILs is guanidinium salts-based ILs, which were 
researched by Carrera et al. [93], who employed an ML-based model 
investigating quantitative structure-property relationships (QSPR) for 
the prediction of new guanidinium ILs belonging to four different ionic 
families, i.e., BPh4-, Br-, I- and Cl- with melting points ranging from −76 

Fig. 3. Sub-classi昀椀cation of machine learning types and algorithms. Reproduced with permission, Copyright 2021, published by MDPI [21,22].
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to 322 ⁰C. The ML model was based on a counter-propagation neural 
network (CPG NN), which carries out a non-linear projection of mo-
lecular structures facilitating 2D visualization of cationic structural 
features and the anionic in昀氀uence on melting point, giving a 
multi-dimensional output. The study claimed that the model aided in the 
discovery and prediction of six new salts, which were then experimen-
tally synthesized and tested, con昀椀rming the accuracy of the model. Fig. 7
shows the overview of the working of the CPG NN in the stated study.

In a similar study, Farrusseng et al. [94] used ML-based ANNs with a 
genetic algorithm to predict new catalytic materials with improved 
characteristics. The model implemented the QSPR approach using the 
activity dataset comprising of unconverted to converted propane ratio 
after reaction completion, type of oxidation products at 昀椀ve different 
reaction temperatures for a large number of solid catalysts for the re-
action of propylene (C3H6) oxidation to establish a relationship between 
their catalytic performance and structure, composition, and surface 
area. The study determined that the ML model could be successfully 
used as a screening tool for identifying potential catalytic materials 
before the actual synthesis and testing of a material by computing 

desirability factor based on formation of preferred partial oxidation 
products (e.g., acetone, propionaldehyde, acrolein, acrylic acid etc.). 
One such catalytic material with a high desirability factor (~294) the 
study predicted was a mixed oxide with 14% gallium and 16% niobium 
supported on an oxide support (either SiO2, TiO2 or MgO). In another 
study, Raccuglia et al. [95] discussed an ML-based approach consisting 
of SVM algorithms for predicting outcome reactions of 
inorganic-organic hybrid materials such as vanadium selenites from 
organic amines for the potential synthesis and prediction of new and 
better materials. The training dataset for the ML-based model was ac-
quired from various unsuccessful and failed hydrothermal synthesis 
experiments. The study reported an 89% success rate with the ML 
approach of accurate prediction of conditions necessary for the devel-
opment and synthesis of new inorganic-organic hybrid materials (e.g. 
[C3H12N2] [V3O5(SeO3)3]⋅H2O,[C6H22N4][VO(C2O4) (SeO3)]2⋅2H2O 
etc.) far superior to any traditional approaches. An interesting study by 
Meredig et al. [96] discussed the implementation of a combined 
heuristic-ML framework on a large input dataset of calculations of 
density functional theory (DFT) for the successful prediction of 4500 

Fig. 4. Bibliometric analysis of publications related to use of AI in materials science 昀椀eld.

Fig. 5. Overview of different applications of AI in materials science.

Fig. 6. Traditional process of materials discovery and deployment. Reprinted with permission, Copyright 2017, Published by Elsevier [82].
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thermally stable ternary compounds (AxByCz) out of 1.6 million different 
compositions using their formation energies as the criteria for discovery. 
A few examples of the ternary compound compositions, which the model 
predicted and later con昀椀rmed by the DFT database-search crystal 
structure prediction are given in Fig. 8.

2.2. Materials identi昀椀cation

ML models, usually with the help of classi昀椀cation and clustering 
algorithms analyzing data patterns, can also aid in identifying existing 
materials with the required properties and characteristics for a speci昀椀c 
application.

One such research is reported by Philips et al. [97] where an 

ML-based hierarchical pattern and shape recognition method was uti-
lized to automatically identify crystalline materials. The main inspira-
tion behind the study was the capability of ML-based models to process 
complex and large datasets comprising visual molecular simulations of 
2-D and 3-D Lennard-Jones-Gauss (LJG) systems and perform classi昀椀-
cation of structural trends based on a small number of training data as 
opposed to the limitations faced by computational and experimental 
methods in crystal structure prediction. The study concluded that the 
automated pattern analysis based on the analysis of peaks in radial 
function detected structural trends with more accuracy than visual 
comparison. ML has also been successfully employed to identify another 
important group of materials i.e., thermoelectric materials. Thermo-
electric materials have gained attention since they allow direct 

Fig.. 7. The mechanism of learning and prediction in a counter-propagation neural network (CPG NN) used for the discovery of new ionic liquids. Reprinted with 
permission, Copyright 2008, published by Elsevier [86].

Fig. 8. A few examples of thermodynamically stable ternary compounds as identi昀椀ed by a novel ML-based model. Reprinted with permission, Copyright 2014, 
published by APS [96].
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conversion of thermal energy into electricity and can be implemented in 
many heating and cooling applications [98]. A study by Parse et al. [99] 
utilized a regression model to identify the best doping elements for 
BiCuSeO compounds based on optimal Figure-of-Merit (ZT), a dimen-
sionless metric based on its thermal and electrical conductivity, oper-
ating temperature and voltage generated by a temperature difference as 
shown in Fig. 9. The authors found the feature with highest importance 
was the total number of un昀椀lled electrons in electronic shells indicating 
Si as best candidate because of its improved carrier mobility from 
decreased carrier scattering.

Apart from thermoelectric materials, ML was successfully employed 
to identify natural porous materials which are used as low-cost, green 
adsorbents and catalysts. A study by Dico et al. [101] used extremely 
randomized trees regressor algorithm to identify the best candidate for 
acid catalysis from a dataset consisting of surface activity and 
morphological properties of 9 different clay materials with different 
grades of purity. The model achieved a validation accuracy of 0.943 in 
terms of R2, thereby facilitating the identi昀椀cation of optimal materials 
for this application [101].

Similarly, using ML-based material identi昀椀cation and prediction 
techniques, certain materials with properties of interest among fuel cells 
and electrolyzer systems, such as electronic or ionic conductivity, 
catalyst stability, catalytic activity, electrolytic compositions, etc., could 
be identi昀椀ed or predicted, which could pave the way towards better 
performing electrochemical systems, as discussed later in more details.

ML has also found numerous applications in the manufacturing of 
different materials, especially for additive manufacturing (AM) of 
metals. AM has gained enormous attention due to its applicability in the 
ful昀椀lling the emerging industrial demands and involves the layer by 
layer three-dimensional (3D) deposition of metal to form parts for a 
variety of different industries such as healthcare, automotive, marine, 
aerospace, etc. [102]. Metal AM offers the advantage of producing 
user-speci昀椀c products with intricate structures, special features, and 
optimized properties [102,103]. For an in-depth study of the various 
types of additive manufacturing and their associated processes, readers 
are directed to the detailed study by Raja et al. [103].

However, careful control of certain parameters related to the metals 
(and metal alloys) AM process, such as the type of the printing process, 
process variables (e.g., beam power, feed rate, heat treatment temper-
ature, scanning speed, etc.), is essential to prevent damage and vari-
ability in the properties and structure of the 昀椀nal part, increasing the 
complexity of the whole process [104,105]. It is projected that the 
challenges faced by metal AM can be addressed effectively by using 
up-to-date mechanical models and ML. ML models, along with the 
knowledge of metallurgy, can be employed to design, process, monitor, 
and control the AM technique to yield the required results [106]. Some 

applications of ML-based metal AM are discussed below [102].

2.3. Design control

ML models have been successfully applied for AM where design 
control is of utmost importance to the serviceability of the product, such 
as in the fabrication of single crystal parts for metallic superalloys where 
a proper control of melting and solidi昀椀cation procedure parameters is 
necessary for achieving directional solidi昀椀cation and high-temperature 
creep resistance. Accordingly, Weber et al. [107] introduced a multi-
scale modeling process based on ML to develop a parametrically ho-
mogenized crystal plasticity model (PHCPM) for Ni-based super-alloys. 
ML-based techniques such as support vector regression, k-means clus-
tering, symbolic regression, and ANNs were applied at each develop-
ment stage of the PHCPM model development linking morphology and 
mechanism of intragranular γ - γ’ microstructures to crystal plasticity 
coef昀椀cients enabling ef昀椀cient and precise image-based polycrystalline 
microstructural simulations. In another study, Liu et al. [108] used an 
ML-based divide-and-conquer self-adaptive (DCSA) model for successful 
prediction of creep life of 266 different Ni-based single crystal superal-
loy samples keeping into consideration their composition, and heat 
treatment process involved, stress and temperature testing. The DCSA 
model was based on the automatic separation of alloys with different 
creep mechanisms followed by a self-adaptive selection of the optimal 
model as shown in Fig. 10.

ML-based models have also been used to manufacture metal AM 
parts with site-speci昀椀c properties (also referred to as functionally graded 
materials (FGMs)) such as in the case of crankshafts and gearboxes 
which require hard exteriors with soft internal cores. ML-based 
manufacturing of site-speci昀椀c AM metal parts is particularly useful as 
it can help avoid defects and the formation of unwanted brittle phases 
which can lead to mechanical failure. Such a type of ML-based model 
was introduced and employed by Eliseeva et al. [109] involving 
multi-dimensional mapping of compositions of unwanted phases in the 
composition-temperature space followed by a robotics planning algo-
rithm predicting an appropriate compositional gradient path mini-
mizing the formation of unwanted brittle phases in additive 
manufacturing of samples with the functional gradient of 316 L stainless 
steel to pure chromium [109]. In a similar study, Rankouhi et al. [110] 
implemented a multivariate Gaussian process-based ML algorithm for 
effective estimation of optimal process parameters i.e. laser power, laser 
speed and laser hatch spacing for AM of a 316L-Cu part with composi-
tional gradients using part density and surface roughness as input 
parameters.

Fig. 9. (a) Crystal structure of BiCuSeO consisting of conducting (Cu2Se2)2− layer, insulating (Bi2O3)2+ layer and the dopant substituted at the Bi site. (b) Predicted 
ZTnormalized values for the selected Bi0.98A0.02CuSeO compounds, where A represents dopants shown on y-axis. Reprinted with permission, Copyright 2022, published 
by MDPI [100].
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2.4. Process monitoring

ML has also been employed to help with in-process monitoring of 
manufacturing of high-performance components not only limited to 
metal AM [93]. For example, in a study by Denkana et al. [111], the 
authors aimed to enhance the end quality of the machined workpieces of 
friction-welded shaft materials (i.e., hybrid materials) by adaptation of 
changing process parameters via in-process material identi昀椀cation 
during the machining process. The reason for the continual alteration in 
process parameters is due the change in material properties and chem-
ical compositions during machining leading to deviation of cutting edge 
from the programmed tool path, changes in surface topography or 
cutting-edge displacement due to edges build-up. The study assessed the 
material monitoring quality of four different ML algorithms i.e., neural 
networks, k-nearest neighbor (kNN) algorithm, SVM, and decision trees 
by 昀椀rst training the algorithms on the dataset of signals measured for 
tool turret vibration, cutting force, feed force and passive force, spindle 
torque and motor current for each different composition of material 
followed by experimental validation. The results showed that the kNN 
algorithm showed the best performance for in-process material 
identi昀椀cation.

Another application of ML is in materials processing (e.g., welding) 
optimization through ML-aided data analysis, as described next. Nb- 
bearing nickel-based superalloys such as Inconel 625, due to their 
excellent anti-corrosive properties, have been widely implemented as a 
weld overlay for carbon steel pipes used for offshore oil and gas trans-
port [112]. However, during the welding process, micro-segregation and 
precipitation of secondary phases can lead to solidi昀椀cation cracking, 
which reduces the alloy’s resistance to corrosion. Therefore, optimal 
control of welding conditions during phase transformations is necessary 
[113]. To analyze the phase transformations in such materials, ultra-
sound testing is usually employed, which involves processing and 
analysis of a large dataset of backscattered ultrasound signals captured 
by direct contact techniques. To tackle this problem, Vejdannik et al. 
[114] used an independent component analysis (ICA) to reduce statis-
tical redundancy and a probabilistic neural network (PNN, a type of 
ANN) for the classi昀椀cation of selected features from the backscattered 
ultrasound signal data for successful automated in-process character-
ization of phase transformations kinetics. The study employed a bees 
algorithm (a population-based search algorithm to 昀椀nd best solution to 
an optimization problem) by selecting the smoothing parameters of 
pattern neurons for computing the probability distributions of training 
data for PNN. They concluded that, ICA components of cumulant co-
ef昀椀cients of ultrasound signals with the optimized PNN yielded highest 
average accuracy of 97% and 83.5% for thermally aged as-welded Nb 
base alloy at 650 and 950 ⁰C, respectively.

2.5. Quality control

ML can also be employed for checking for quality assurance and 
control of the 昀椀nal part during the manufacturing step [115]. For 
instance, Kwon et al. [116] reported the use of a neural network-based 
classi昀椀cation model to investigate the effect of six different laser powers 
in metal AM upon crack and pore formation in melt-pool images with a 
classi昀椀cation failure rate of 1.1% for over 13,200 test images. The study 
also concluded that the introduced model could also be effectively used 
to locate deformation for non-destructive separation of defective 
products.

It has been reported that the use of the laser power bed fusion (LPBF) 
method during the AM of high-strength metals can induce defects such 
as anisotropy and pores in the 昀椀nal part, which could be potentially 
avoided by the use of ML-based algorithms. For example, Zhang et al. 
[117] introduced two different ML-based approaches i.e., 
spatial-temporal sparse dictionary learning (STSDL) and 
spatial-temporal blind source separation (STBSS) to investigate the de-
fects in LPBF manufacturing of stainless steel 316 L and Inconel 718 
using their thermography images as data input. Flash thermography is 
commonly used for quality control of such parts but is prone to 
non-consistent sample illumination and experimental and imaging 
thermal noise which causes blurring of hot spots indicating defects. The 
STBSS method involved de-noising of wavelet transform followed by 
data decomposition using PCA and later defect separation by ICA. The 
STSDL method involved denoising of wavelet transform followed by 
data decomposition with sparse dictionary learning (SDL) method. The 
methods were evaluated using a test accuracy indicator called F-score 
and runtime of the execution and concluded that the STBSS method is 
better suited for the detection of smaller defects while the STSDL method 
is more suitable for 昀椀nding larger defects and increased accuracy for 
both methods is achievable through an increase in runtime [117]. In 
another study, Wu et al. [118] successfully used a random forest-based 
ML prediction model for determining the surface roughness with high 
accuracy of the products manufactured by the fused deposition 
modeling (FDM) manufacturing method [118].

ML algorithms have not only been successfully implemented for the 
discovery and manufacturing of materials but also for evaluating the 
performance and properties of developed materials [119]. Besides, in 
situations or experiments where exact operating and experimental 
conditions could not be anticipated beforehand, a detailed study of di-
agnostics and characterization data after being subjected to the actual 
conditions becomes the best option to optimize the performance of the 
material [120].

2.6. Performance assessment

Materials performance analysis via ML methods is being carried out 

Fig. 10. ML-based creep life prediction model for Ni-based single crystal superalloys. Reprinted with permission, Copyright 2020, Published by Elsevier [108].
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for a wide range of applications these days. For example, it has been 
recognized that the design of battery materials and their selection 
greatly impact the performance of lithium-ion (Li-ion) batteries, but 
owing to the complexity of design variables, the performance of batte-
ries is not easy to assess. Therefore, the use of the ML model based on 
association rule mining (ARM) was proposed by Kilic et al. [121] to 
study the effect of charging/discharging cycles and current on the per-
formance of lithium-sulfur batteries (Li-S) batteries. The study involved 
the accumulation of performance data from 1660 different cells which 
was processed by the ML-based ARM approach. The ARM method was 
used to investigate the associations of numerous performance variables 
with individual factors within the input dataset (including but not 
limited to discharge current density, material of encapsulation, anode, 
electrolyte, binder, type of current collector, separator, interlayer, 
electrolyte to sulfur (E/S) ratio, etc.) and identify factors resulting in 
high peak discharge capacity and superior cycle life ultimately leading 
to improved battery performance. The study concluded that solid-state 
carbon-based encapsulated cathodes with encapsulation material over 
40% as well as binder and conductive-free encapsulated cathodes, 
electrolyte materials with low electrolyte to sulfur (E/S) ratio, carbon 
interlayers, and carbon current collectors all contribute towards 
enhanced battery performance [121].

Metal-organic frameworks (MOFs) due to their inherent high inter-
stitial porosity are considered promising candidates for gas storage and 
separation applications [122]. With the development and implementa-
tion of robust computational methods, a large amount of simulated 
performance data for MOFs is easily available. However, the large 
dataset of simulated data requires speedy interpretation and analysis 
with high accuracy which can be facilitated by the application of ML 

algorithms. Different types of input descriptors can be used for ML-based 
performance prediction of MOFs as shown in Fig. 11 [123].

This strategy was used by Fernandez et al. [124] to successfully 
predict the methane storage capacity of MOFs using ML algorithms of 
multilinear regression, decision trees, and non-linear SVMs based on 
geometric descriptors data for MOFs.

Another important application of ML is the determination of the 
thermoelectric performance of layered IV-V-VI semiconductors. Gan 
et al. [125] utilized deep neural networks to predict the energy con-
version ef昀椀ciency and optimum doping type (p or n-type) for a family of 
layered IV-V-VI semiconductors at different temperatures from an input 
dataset containing information about number of atoms, atomic and co-
valent radii, valence electronic con昀椀gurations, electronegativities, lat-
tice constants average atomic mass, interatomic bond lengths, lattice 
constants etc., for 40 different compounds investigated at different 
temperatures (from 100 to 650 K). The study also compared the output 
values predicted by the introduced ML method with the DFT calculated 
values 昀椀nding a ML prediction accuracy above 90%.

2.7. Characterization data analysis

Study of materials usually involves the use of a wide range of 
advanced characterization techniques which results in a large dataset of 
information that typically requires further processing for extracting 
useful information [126]. ML models have been productively utilized to 
analyze such materials characterization data and can help researchers to 
correlate different microstructural descriptors and interactions to ma-
terial behaviors and properties [127].

An example of such an application is in the analysis of the weld heat- 

Fig. 11. Different types of descriptors that can be used in machine learning models for performance evaluation of MOFs. Reprinted with permission, Copyright 2020, 
Published by Elsevier [123].
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affected zone (HAZ), which plays an important role in determining the 
quality of the welding procedure in metallurgy. HAZ is de昀椀ned as the 
area of the welded metal which does not melt but undergoes a signi昀椀cant 
microstructural change due to high-temperature exposure [128]. 
Welding of austenitic steel also involves the formation of HAZ with 
different microstructures due to formation of different phases, such as 
ferrite, pearlite, bainite, and martensite, depending on different cooling 
rates as well as cementite precipitation. The quanti昀椀cation of di-
mensions, morphology, and volume fraction of these phases is important 
in predicting the mechanical properties of austenitic steel, but it is a long 
and laborious process if done manually. Therefore, Bulgarevich et al. 
[129] introduced an automated pattern recognition ML method via the 
implementation of random forest algorithms for automated segmenta-
tion of different types of austenitic steel microstructures in a large set of 
optical microscopy data. The study concluded that the developed 
framework, in combination with appropriate image processing methods, 
could be used as an accurate. In another study by Rettenburger et al. 
[130], DL-based instance segmentation of particles was carried out to 
predict particle sizes of powdered LiCoO2 was trained on a dataset of 90 
images and compared to segmentation results from a U-Net model 
trained on the same dataset. The performance of the models was eval-
uated using Aggregated Jaccard Index (AJI+) which takes into account 
the segmentation quality as well as localized segmentation accuracy. 
The authors reported that the R-CNN model signi昀椀cantly outperformed 
the U-net model by AJI+ of 0.81 vs. 0.55 for low magni昀椀cation and AJI 
of 0.51 vs. 0.34 at high magni昀椀cations, respectively (Fig. 12).

Another important application of ML is in the construction sector, 
particularly in the research of supplementary cementitious materials 
which can be used in conjunction with Portland cement (OPC) to 
enhance the properties of concrete contributing to low-carbon footprint 
and promoting sustainability [131,132]. Sui et al. [133] reported using 
DL based approach to investigate the pore morphology of one of such 
materials i.e. calcined limestone clay (LC3) using a dataset of scanning 
electron microscopy (SEM) and micro-computed tomography 
(micro-CT) images. The approach based on deep neural network (DNN) 
architecture helped compare the connectivity of pores and solid parti-
cles, identify stress concentration regions and quantify packing fraction 
in cured LC3 compared to OPC sample which is vital for future material 
design considerations. The authors reported that the increased physical 
size of the images led to an increase in CNN classi昀椀cation accuracy 
reaching ~ 74% and 96% for the micro-CT and SEM images, respectively 
for images of 81.12 × 81.12 μm.

2.8. Degradation studies

Machine learning has also been employed to study the effects of 
materials degradation to better predict and understand failure mecha-
nisms and potentially avoid them in the future. Understanding materials 
degradation mechanisms are, among others, particularly important for 
research and development in clean energy applications such as fuel cells, 
batteries, solar cells, etc. [134–136].

An example of application of ML in degradation studies in Li-ion 
batteries is described below. While characterized as key energy stor-
age technology, Li-ion batteries suffer from a progressive loss in per-
formance due to the battery aging process. Accumulation of a large 
quantity of aging data, vital for understanding involved material 
degradation mechanisms, is also a challenging process because of the 
long and extensive experimental procedures involved [137,138]. To 
tackle these issues, Tang et al. [139] presented a unique approach of 
combining accelerated aging test data with an industrial aging dataset 
via a migration-based ML approach facilitating the acquisition of a 
high-quality aging dataset that can be further employed for the 

Fig. 12. Flowchart depicting the R-CNN architecture based on ResNet-50 backbone to extract feature maps from SEM images. Reprinted with permission, Copyright 
2024, Published by Springer Nature [130].

Fig. 13. Overview of a unique method to recover large-scale battery aging 
dataset with the help of ML. Reprinted with permission, Copyright 2021, 
Published by Elsevier [139].
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degradation assessment of Li-ion batteries. The graphical overview of 
the whole process is given in Fig. 13.

Another example focuses on perovskite solar cells degradation. These 
cells have been explored due to their high performance and low-cost 
solar energy generation. However, they consist of halide perovskite 
materials that suffer from environmental instability preventing their 
widespread commercialization. It is suggested that signi昀椀cant develop-
ment in perovskite-based technology can be made possible through the 
examination of perovskite degradation data [140]. To address this 
problem, Naik et al. [141] introduced a scienti昀椀c ML approach 
combining differential equation modeling with a sparse regression 
model to correctly identify equations controlling the degradation of 
methylammonium lead iodide perovskite (MAPI) with an error per-
centage of only 6%.

Since the ultimate aim of research in the 昀椀eld of materials science 
and engineering is motivated by the development of novel materials 
which can outperform conventional materials, ML-based models can 
also assist with materials design optimization and experiment selection 
at each stage of the materials development and implementation process 
[142]. Similarly, since lifetime stability is a signi昀椀cant concern for all 
types of fuel cells and electrolyzer technologies, necessitating thorough 
microstructure and performance evaluations, ML could be particularly 
useful in addressing these challenges, as discussed later.

2.9. Materials optimization

In the past, the process of material optimization was solely depen-
dent on a combination of materials physical and chemical properties 
data and trial-and-error experimental procedures. However, with the 
development of ML approaches and high-performance computational 
techniques, the optimized designing of innovative materials has become 
easier and more ef昀椀cient. On this basis, a study is reported by Xie et al. 
[143] which involved the development of a crystal graph CNN frame-
work possessing the ability to learn properties of materials from the 

atomic con昀椀guration of atoms in the crystal structure. The study stated 
that the developed model provided DFT calculated properties for eight 
different crystalline properties for inorganic crystalline materials of 
various structures and compositions with high accuracy and can serve as 
a basis for advanced materials design.

Simulations of molecular dynamics can also be used for the compu-
tational designing of new materials by providing a speculative percep-
tion of the microstructure of condensed-phase materials. However, these 
atomistic simulations are dif昀椀cult to achieve because of the complexity 
of thermodynamic and kinetic phenomena in materials. To address this 
issue, Wang et al. [144] introduced ML-based methods for optimization 
of coarse-grained molecular modeling representation followed by deep 
neural networks-based 昀椀tting of coarse-grained potentials acquired from 
atomistic simulations to aid in the effective designing of materials.

2.10. Experiment selection

Progress in materials science had been led by experimental studies in 
the past which were usually time-taking and required the use of 
specialized equipment and numerous resources. Machine learning 
combined with the design of experiments (DoE) approach can help with 
the selection of experiments to facilitate materials optimization ef昀椀-
ciently as illustrated in Fig. 14 [145,146].

Particularly for research related to organic photovoltaic devices, 
which involve numerous complex components and processing condi-
tions, experiment selection can be extremely helpful. One such study has 
been reported by Kirkey et al. [147] that collectively employed DoE and 
machine learning models for optimization of bulk heterojunction (BHJ) 
layer in organic photovoltaic devices. The study involved the imple-
mentation of the DoE method on donor and acceptor ink solution con-
centrations and the temperature and duration of annealing used for the 
synthesis of 昀椀lms followed by the use of SVM algorithms to identify the 
optimal experimental parameters to ensure the development of 
high-ef昀椀ciency organic photovoltaics.

Fig. 14. . The representation of the design of experiments (DoE) approach combined with the ML-based approach. Reprinted with permission, Copyright 2022, 
Published by Wiley [146].

M. Batool et al.                                                                                                                                                                                                                                  Energy and AI 18 (2024) 100424 

11 



Electrical discharge machining (EDM) is an advanced material 
removal process for generating complex contours with high accuracy. 
EDM is a complex thermal process that can induce different micro-
structural changes and thermal stresses in the machined material 
affecting the durability of the processed part. To prevent this problem, 
Markopoulos et al. [148] employed an ANN model with a 
back-propagation algorithm trained on a series of EDM experiments on 
various steel grades using the pulse current, processed material, and 
pulse duration as input parameters to predict surface roughness with 
high precision, aiding the ef昀椀cient selection of experiments.

Similarly to other systems discussed above, fuel cells and electro-
lyzers are currently the focus of intensive research to improve perfor-
mance and durability through the synthesis of new catalytic materials, 
optimization of electrode composition and microstructure, and control 
of the operating conditions. Traditional methods, such as design modi-
昀椀cations, trial-and-error synthesis, and prolonged durability testing, can 
be both costly and resource-intensive. In this context, ML-based ap-
proaches offer a valuable alternative, potentially reducing the time, 
material, and energy required for effective research and development.

Below, we will focus speci昀椀cally on application of ML in fuel cells 
and electrolyzers, two systems of our interest. As these devices share 
common characteristics in their design and operations, the application 
of ML to these devices can enhance performance prediction, service life 
expectation, fault detection and design optimization. ML algorithms can 
ef昀椀ciently handle non-linear problems, as in the case of current-voltage 
performance curves, thereby leading to improved accuracy in predicting 
outcomes and optimizing design and operational parameters of these 
devices.

3. Application of Machine Learning in fuel cells and 
electrolyzers

Fuel cells and electrolyzers are clean energy, hydrogen-based, elec-
trochemical devices that have the potential to contribute to the reduc-
tion of carbon emission globally [149–151]. Electrolyzers are devices 
that use electricity to electrochemically split water, generating 
hydrogen [152,153]. Fuel cells, on the other hand, convert chemical 
energy of hydrogen through electrochemical oxidation on the anode, 
and oxygen reduction on the cathode, producing useful electrical energy 
and only water (vapor) as a by-product [154,155]. If the energy supplied 
to the electrolyzer comes from renewable systems, like solar [156,157], 
hydro or wind [158,159], the produced hydrogen is considered green, 
while produced energy in the fuel cell clean and renewable.

There are a number of different types of fuel cells and electrolyzers, 
depending on the type of electrolyte used and operating conditions [160, 
161]. Our main focus in this review will be proton exchange membrane 

(PEM) fuel cells (FCs) and water electrolyzers (WEs), although other 
types will be discussed as well. Both fuel cells and electrolyzers are 
crucial for advancing sustainable energy solutions, sharing many un-
derlying principles and challenges.

Despite these similarities, a clear discrepancy exists in the literature: 
while numerous reviews focus on the application of AI in fuel cells, there 
is a noticeable lack of similar studies on electrolyzers ], [162–167]. 
Moreover, there is an absence of comprehensive reviews that address 
both technologies simultaneously. One reason for this disparity could be 
that electrolyzer research is still in its early stages, whereas research on 
fuel cells has been relatively consistent over the past decade. To better 
understand this, a thorough literature survey was conducted using 
Scopus to assess the overall status of research in fuel cells and electro-
lyzers over the past 20 years, with a speci昀椀c focus on the use of AI, 
including ML and DL in these technologies over the past 4 years. The 
bibliometric data, presented in Fig. 15, reveals that AI applications in 
both fuel cells and electrolyzers account for only a small fraction 
(approximately 2%) of the total publications in these technologies. 
Moreover, within this subset, AI-related research on electrolyzers con-
stitutes merely about 5% of the total AI-focused publications in the 
combined 昀椀elds of fuel cells and electrolyzers. This highlights the cur-
rent state of AI-related research within these domains and underscores 
the need for a more integrated approach to reviewing AI applications 
across both technologies. This paper aims to address this gap by 
providing a comprehensive examination of AI’s role in both fuel cells 
and electrolyzers, offering insights into the current research landscape 
and identifying areas that warrant further investigation.

The electrochemical reaction in both PEMFCs and WEs happens in 
membrane electrode assemblies (MEA), consisted of a porous cathode 
catalyst layer (CL) (typically platinum (Pt) nano-catalyst supported on 
carbon nanoparticles, bonded by proton-conductive ionomer), porous 
anode CL (similar composition in PEMFC, while containing Ir-based 
catalyst in PEMWEs), bonded to a polymer electrolyte membrane. 
Both MEAs contain additional layers for water and heat management 
(gas diffusion layer (GDL), microporous layer (MPL) and porous trans-
port layer (PTL). Fig. 16 represents the illustration of a PEMFC MEA. The 
major difference between the PEMWE and PEMFC MEA shown in Fig. 16
is the reverse electrochemical reaction that occurs both at the anode and 
cathode side of the electrochemical setup. Materials composition, 
microstructure and component distribution in MEAs, especially in the 
catalyst layers, signi昀椀cantly affect the performance and durability of 
these devices, having in mind that both PEM FCs and WEs are exposed to 
harsh operating conditions during their lifetime (e.g., high voltages, 
temperatures to 80–100 çC, corrosive environments).

Development of materials in these devices are in high need to meet 
the demand for clean and sustainable energy generation. In developing 

Fig. 15. Bibliometric analysis of publications related to use of AI in fuel cells and electrolyzers.
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these materials, their structural properties are of paramount importance 
as they determine the device’s activity and ef昀椀ciency [169–171]. In a 
nutshell, current research focuses on enhancing catalyst materials, 
improving membrane performance, extending durability and scaling up 
production methods to make these technologies more commercially 
viable ], [172–177]. However, challenges remain, including high costs 
of platinum-based catalysts, membrane degradation, and limited oper-
ational lifetime under varying conditions. Despite these challenges, 
PEMWEs and PEMFCs hold immense potential for applications in green 
hydrogen production, clean transportation, aerospace, underwater ap-
plications and grid energy storage, offering pathways to reduce carbon 
emissions and enhance energy security in the transition to a low-carbon 
economy [178]. Several decades ago, multilevel computational methods 
such as equivalent circuit, physics based, pseudo two-dimensional, 
computational chemistry, quantum mechanics, molecular dynamics, 
and many more, have been employed to understand materials either as a 
standalone or composite systems for various application processes in 
battery management systems, fuel cells and supercapacitors [179]. 
Widely used equivalent circuit models include Rint, Randles, Thevenin 
and hysteresis models while physics-based models are based on elec-
trode theory, such as Bulter-Volmer equation [180–183]. However, 
many of these methods are too idealistic and complex. Furthermore, the 
cost of computing is high, limiting the scale-up of these approaches to 
larger material volumes. As a result, it is imperative to 昀椀nd alternative 
methods for understanding and developing ef昀椀cient materials without 
spending an inordinate amount of time developing them. During fuel 
cell and electrolyzer operations, there exist sensors that collect data per 
time based on several operating parameters such as humidity, pressure, 
temperature, 昀氀ow rates of reaction gases etc. The application of arti昀椀cial 
intelligence is crucial to monitoring and controlling these operating 
conditions with the aim of achieving optimal performance. This is 
achieved when an arti昀椀cial intelligent system measures input data from 
a sensor unit, generates a model for predicting and controlling perfor-
mance of the fuel cell/electrolyzers through the learning and analysis of 
the collected data, compares the generated model with the data 
measured in real time and diagnoses a state of the fuel cell/electrolyzer 
stack, and generates a control signal for changing an operation condition 
of the fuel cell stack; and a control unit which changes the operation 
condition of the fuel cell stack according to the generated control signal. 
Examples of these arti昀椀cial intelligent systems include neural networks, 
fuzzy logic and neural fuzzy [184,185]. AI and ML can help in this sense, 
by employing the use of historical data in training, learning, identifying 
patterns and predicting futuristic properties, problems and/or possibil-
ities of concepts/processes, which can signi昀椀cantly speed up the process 
of understanding and development of fuel cells and electrolyzers 
[186–188].

3.1. Application of ML algorithms for MEA and performance optimization

The structural makeup of MEAs in fuel cells and electrolyzers poses a 
lot of challenges due to their design complexity and heterogeneous na-
ture. The right design of MEAs taking into account the electrode catalyst 
loadings, ink formulation techniques, catalyst-electrolyte interface, 
anode-membrane-cathode proton transport, transport of reactants in the 
electrodes, GDL, PTL and current 昀氀ow between the electrodes and cur-
rent collectors, are of great importance in determining the performance 
of fuel cells and electrolyzers [189]. ML algorithms, such as ANN, 
extreme gradient boost (XGBoost), KNN, random forest (RF), support 
vector machine/regressor (SVM/SVR), logistic regression (LR) and 
elastic net (EN), to mention just a few, can be used to predict and 
optimize the performance of fuel cells and electrolyzers based on 
compositional and structural parameters, and other MEA/system de-
scriptors. ML models combined with optimization algorithms, such as 
genetic algorithm (GA), can further optimize the design and operating 
parameters to achieve multiple optimization goals with high accuracy 
and ef昀椀ciency [190–194].

For example, Khajeh-Hosseini et al. [191] applied ANN to investigate 
the in昀氀uence of different CL structural parameters on the performance of 
CL in PEMFCs. The authors developed an agglomerate model (see 
Fig. 17a) based on laws governed by Fick’s law of diffusion and elec-
trochemical reaction equations to generate nine structural parameters 
that are responsible for in昀氀uencing the performance of CL. The struc-
tural parameters which include CL liquid saturation, ionomer 昀椀lm 
thickness, catalyst agglomerate radius, Pt and carbon loading, mem-
brane composition, extent of GDL penetration into the CL, and CL 
thickness were used as input parameters for the neural network to pre-
dict the activation overpotential associated with the electrochemical 
cell. The researchers encountered challenges in establishing a direct 
correlation between each independent physical property and output 
parameter using ANN. To address these challenges, they applied a linear 
superimposition approximation statical model to 昀椀nd these correlations, 
revealing that increase in ionomer thickness, increase in Pt, and carbon 
mass loadings, and GDL penetration into the CL impedes oxygen diffu-
sion into the CL due to less pores, thus increasing the activation po-
tential. On the other hand, large agglomerate radius allows for larger 
pores and high oxygen diffusion coef昀椀cient which could ultimately 
reduce the activation potential and hence increase the overall perfor-
mance of the cell. Despite these complexities, the neural network ach-
ieved a near-perfect correlation value of 0.8 with a mean square error of 
0.0016, showcasing its effectiveness as a modeling tool, as shown in 
Fig. 17c.

In another study by Wang et al. [195], the authors optimized the CL 
composition of a PEMFC with ANN based on data generated from 
computational 昀氀uid dynamics (CFD) agglomerate model. These 

Fig. 16. Illustration of a PEMFC MEA. Reprinted with permission, Copyright 2019, Published by Cambridge University Press [168].
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composition parameters include Pt loading, Pt weight percentage, ion-
omer to carbon weight ratio (I/C), electrolyte volume of carbon, and Pt 
and ionomer volume fraction, and porosity. Current density was used as 
the output parameter. In their study, ANN model achieved a high ac-
curacy with correlation coef昀椀cient (R2) greater than 95% for both 
training and validation data. With GA, the current density was opti-
mized from 2.1379 A/cm2 to 2.1729 A/cm2. The researchers went 
further to optimize for the maximum current density using similar input 
parameters but explored SVM coupled with GA for optimization pur-
poses. The R2 for both the training and test data was found to be about 
99% with an increase in power density after optimization from the 
starting values of 1.2647 and 1.2473 W/cm2.

Zhang et al. [196] studied the in昀氀uence of porous structure CL of 
MEA on the cell performance of a high temperature (HT) PEMFC using 
Monte Carlo method combined with Deep Neural Networks (DNN) and 
gaussian regression model. The accuracy metrics explored for this study 
were R2 and root mean square error (RMSE). In their investigation, they 
employed the Monte Carlo approach in combination with DNN and 
Gaussian Process Regression (GPR) model to analyze the cell perfor-
mance based on 11 structural parameters. With the Monte Carlo method 
approach, 11 porous structural layers were generated. These parameters 
include the thickness of the anode and cathode GDL, the porosity of the 
anode and cathode GDL, the thickness of the anode and cathode CL, 
porosity of anode and cathode, the electrolyte volume fraction, and the 
Pt content of the anode and cathode. These structural parameters were 
used as input parameters to train the neural networks regression model, 
which aimed to determine the optimal power density at different Pt 
loadings. The R2 performance of the DNN and GPR models was found to 
be 0.9993 and 0.995, respectively. Their study revealed that as the Pt 
loading is increased, the optimal GDL thickness and CL porosity 
decrease. Furthermore, cathode MEA parameters have a greater impact 
on cell performance than anode parameters. With bi-objective GA, these 
parameters were optimized to achieve maximum power densities at 0.4 
V and 0.6 V for platinum loadings of 0.3 mg/cm2 and 0.5 mg/cm2 

respectively.
Jienkulsawad et al. [190] applied ANN to determine the optimal 

polyvinyl alcohol (PVA)/Pt compositional weights that would be 
required as an additive to the cathode-side catalyst layer component of a 
PEMFC. PVA is an additive that is added to membrane or catalyst layer 

of PEMFCs to enhance hydrophilicity in low humid environments during 
operation. In their study, they predicted the PVC/Pt ratio that is suf昀椀-
cient for the design of PEMFC catalyst layer using cell voltage (V), 
current density (I), relative humidity (RH), and power density (P), I/V, 
I/RH, V/RH, P/RH, PI, PV, IRH, VRH, and PRH as input parameters. 
ANN based on Levenberge-Marquardt algorithm with 昀椀rst, second and 
third hidden layers of 9, 8 and 9 nodes respectively was used for the 
model development with root mean square error (RMSE) as an accuracy 
metric to determine how good is the model. The researchers found that 
ANN was able to predict the best PVA/Pt ratio in the CL with minimal 
RMSE of 0.1293 and 0.031 for the predictions of Pt and PVA respec-
tively, even with the use of the hidden layers. Indeed, when applying 
ANN to any ML task, the choice in the number of hidden layers used for 
such task plays a signi昀椀cant role in achieving high accuracy. Too many 
hidden layers in a neural network can slow down the training process. 
However, this approach can improve accuracy if time complexity is not a 
major concern. Furthermore, too many hidden layers in a neural 
network model can result in over昀椀tting of the training data causing the 
model to struggle with effective generalization on the test data. As a 
result, it is important that the training data is well analyzed to avoid 
model inaccuracy.

Mohamed et al. [197] investigated the prediction of hydrogen pro-
duction rate and cell current density of PEMWE using ANN, PR, SVM, 
KNN, Decision Trees. The 昀椀rst step of their investigation was to 
construct a database consisting of 1203 experimental data (1086 
assigned for training purposes and 117 for testing) and having 昀椀fteen 
input variables that includes anode and cathode support (porous tita-
nium, titanium, porous carbon, 304 stainless steel and carbon plate), 
membrane type (Na昀椀on 115, Na昀椀on 117, Na昀椀on 112, and Na昀椀on 110), 
anode/cathode catalyst (e.g. Pt, Ir, Ru), anolyte/catholyte composition, 
cell structure, electrode area, anode/cathode 昀氀ow path area, voltage, 
number of cells, power, water 昀氀ow rate, and cell temperature. Secondly, 
they used box and whisker plots as data analysis tools to get insights on 
the distribution of some input parameters such as anode/cathode sup-
port type, membrane type, and anode/cathode catalysts that signi昀椀-
cantly contribute to high current density. Their results showed that 
con昀椀gurations having —speci昀椀cally, Na昀椀on 115 and 117 membranes, 
porous titanium for anode/cathode support, platinum and ruthenium for 
anode catalyst, platinum for cathode catalyst, methanol for anolyte, and 

Fig. 17. (a) Agglomerate model design (b) schematic representation of ANN (c) Predicted activation overpotential versus actual activation potential from numerical 
simulation. Reprinted with permission, Copyright 2011, Published by Elsevier [191].
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deionized water for catholyte — played a substantial role in achieving 
high current density. Among the 昀椀ve ML algorithms studied, the ANN 
exhibited superior performance in predicting both hydrogen production 
rate and current density with the testing data mean squared error of 
5.0006 and 0.04026 respectively.

To the best of our literature search, the use of box and whisker plots 
as data analysis tool before the application of ML model is not often 
reported in most publications of fuel cells and electrolyzers application. 
However, these data analysis tools offer crucial insights into the re-
lationships between input and output parameters in data. Günay et al. 
[198] explored box and whisker plots prior to applying decision tree ML 
to model the performance of PEMWE. This comprehensive methodology 
not only deepens the understanding of the factors in昀氀uencing PEMWE 
performance, but also underscores the importance of integrating tradi-
tional statistical methods with advanced ML techniques for more robust 
predictive modeling. In their study, 789 data points from 30 publica-
tions were collected and analyzed, revealing signi昀椀cant correlations 
between cathode/anode support, catalyst mole fraction on support 
surface, catalyst loading, operating temperature, and PEMWE perfor-
mance. The box and whisker data analysis identi昀椀ed that the most sig-
ni昀椀cant elements contributing to high current densities for cathode and 
anode supports, and cathode surface were carbon, Ti, and pure Pt, 
respectively. This is attributed to the high electrochemical activity of 
pure Pt, the stability of the Ti support, and the high surface area and 
electrical conductivity of carbon. Following the statistical analysis, a 
decision tree was employed to evaluate the feature importance 
contributing to both current density and power density. The researchers 
found that the most in昀氀uential factors for current density were the nickel 
(Ni) catalyst mole fraction on the cathode surface, the Ir mole fraction on 
the anode surface, and the potential for operating conditions. For power 
density, the most critical parameters were catalyst to support surface 
ratio, Cobalt (Co) mole fraction on anode surface and operating 
potential.

Another algorithm that has been used to study the in昀氀uence of the 
structural components on the performance of fuel cells and electrolyzers 
is called the extreme gradient boost (XGBoost) algorithm. It is a 
powerful ML technique that has proven effective in both regression and 
classi昀椀cation tasks. This model combines the prediction of multiple 
models for decision making with capacity to handle high dimensional 
data [199]. For example, Uenishi and Imoto [200] investigated the 
correlation between the physical properties of PEMFC catalyst layer and 
generated voltage at low and high current density using XGBoost ML 
method, and optimized the output with GA. The input features that were 
used in training and testing the model were extracted from 99 MEAs 
with varying physical properties from the carbon support, catalyst and 
catalyst layer. The authors reported that the performance of the output 
voltage at low current depends largely on the features extracted from 
SEM cross-sectional image of the CL. These features include total pore 
volume, pore diameter and surface area of carbon in the CLs. The re-
searchers found that the characteristics (e.g. image contrast representing 
pore volume) generated from the SEM cross-sectional image are corre-
lated to the diffusion of oxygen in the CL. However, output voltage also 
depends on the catalyst loading. The authors observed, however, that 
the pore structure of the catalyst layer can be optimized for improved 
performance without necessary increasing catalyst loading, lowering the 
overall cost of production.

Zhang et al. [201] undertook a study utilizing ML, constructing a 
database comprising 58 MEAs and 16 input features related to the MEA 
fabrication (catalyst ink drying temperature, catalyst ink water content, 
ink 昀氀ow rate when coating, MEA hot-pressing time, cathode compres-
sion rate, anode PTL porosity, and MEA con昀椀guration) with 11,025 data 
points. Employing regression tasks coupled with GA, they developed 
machine learning models to optimize output voltage, utilizing algo-
rithms like ANN, XGBoost, AdaBoost, K-nearest neighbors, Random 
Forest, SVR, and Elastic Net. Among these algorithms, XGBoost had the 
highest R2 value of 0.99926, leading to an optimized output voltage of 

1.83107 V and achieving a 67.9% improvement in computation ef昀椀-
ciency. XGBoost model is known to be a complex ML algorithm. Com-
plex ML models are prone to over昀椀tting when applied to simple 
problems and simple ML models are susceptible to under昀椀tting in 
complex tasks. While simpler ML models like linear regression and ridge 
regression offer interpretability, complex ML models often function as 
black boxes, hindering interpretability. To address the lack of model 
interpretability in this work, the researchers applied the Shapley addi-
tive explanations (SHAP) method to rank features in order of their 
importance, revealing that operating temperature, anode ionomer con-
tent, anode catalyst loading, membrane thickness, and MEA hot pressing 
signi昀椀cantly in昀氀uence output voltage. This underscores the importance 
of employing interpretable methodologies to gain insights into 
feature-output relationships, particularly in the optimization of elec-
trolyzers performance.

SHAP method is an explainable AI method that provides qualitative 
insight into the interactions that exist between input features and pre-
dicted output feature(s). In Ding et al. [202] work, the SHAP method 
was used to deduce relationships between 21 input MEA parameters and 
performance (current density) of PEMWE. They explored 9 different ML 
algorithms to predict and optimize the performance in terms of current 
density and long-term durability of their fabricated MEAs. Of all the ML 
methods used, gradient boost regression model in conjunction with GA 
as an optimization tool was found to perform better with R2 of 0.943. 
Even though a higher electrochemical activity results in high current 
density, based on the interpretable capabilities of SHAP, their results 
suggested that the catalyst loading for Ir and Pt values for anode and 
cathode should not exceed 1.5 mg/cm2 and 0.2 mg/cm2 respectively. 
For the I/C ratio, the results suggested that the optimal value should be 
within 0.2–0.25 to avoid the possibility of proton conduction and oxy-
gen transfer resistances.

Using XGBoost algorithm, Lou et al. [193] investigated the structural 
and compositional parameters of cathode CL of PEMFC with Pt loading, 
Pt/C weight ratio, I/C weight ratio, Pt/C agglomerate size, Pt and carbon 
radii, pore diameters, cathode CL thickness, and surface tension of CL as 
input parameters. Their study utilizes a 2D, steady state physical model 
as data source for the XGBoost ML task. Their study showed that out of 
the 9 input features, the agglomerate radius greatly impacts the power 
density of PEMFC, having a feature importance greater than 0.4. The 
XGBoost algorithm was able to accurately predict the relationship be-
tween 9 input parameters and output power density parameter, with an 
MSE greater than 0.95 and RMSE error less than 0.05. Subsequently 
optimizing the Pt loading with GA, the researchers achieved 28% 
reduction in Pt loading without a decrease in performance of the 
PEMFC.

The application of SVM algorithm for predicting and optimizing 
structural components of fuel cells and electrolyzers cannot be over-
emphasized. SVM algorithm can be used for both regression and clas-
si昀椀cation tasks. SVM works by 昀椀nding the best hyperplane, or dividing 
line, in a high-dimensional space that either separates different classes of 
data or predicts values with minimal error. Although SVM is known as a 
complex model, it can give good results even when working with small 
datasets, thereby 昀椀nding a good balance between complexity and sam-
ple size [203]. For example, Wang et al. [194] explored the support 
vector machine model to predict the optimal catalyst layer compositions 
capable of generating maximum power density in PEMFCs. In their 
work, as shown in Fig. 18, the authors simulated the current density of 
PEMFCs under different output voltages and catalyst layer compositions, 
such as the Pt loading, Pt/C and I/C ratios, using a 3D CFD based 
agglomerate model and subsequently applied GA to determine the 
optimal catalyst composition for the PEMFC. The data generated from 
the CFD model was used as an input parameter for the SVM model 
development, achieving an R2 accuracy of 0.9908 with approximately 
3% as the mean percentage error (MPE). After optimization with GA, it 
was found that percentage error between the SVM prediction and the 3D 
CFD simulation of the maximum power densities under the optimal CL 
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composition was only 1.3950 % indicating that SVM could potentially 
predict and optimize CL composition and structural parameters of 
PEMFC and by extension to electrolyzers.

Arjmandi et al. [204] studied the parameters that affect the anode 
side catalyst of a PEMWE using linear regression, decision tree, and 
SVM. The researchers used two different data named Data1 and Data2 
for this study. Data1 consists of current density, water feed rate, catalyst 
loadings and high frequency resistance of the anode, while Data2 
focused on the characteristics of the PTL that includes the average pore 
diameter, average grain diameter, area surface porosity, average 
porosity and permeability. The combination of these data was used to 
make informed decisions on appropriate PTL types based on their 
characteristics and experimental performances. From their study, they 
deduced that performance of the linear regression model declines upon 
the addition of more data points, suggesting the non-昀氀exibility of the 
model albeit a simple model. Moreover, the SVM exhibited higher ac-
curacy with increasing data points, indicating its ability to handle more 
complex relationships within the dataset compared to linear regression. 
For decision tree model, different hyperparameter tuning of maximum 
depths 1, 2, 3 and 4 for modeling the algorithm were used. The 
maximum depth corresponds to the level of complexity and intricacy of 
the decision tree model, with higher depths allowing for more detailed 
splits in the data to capture 昀椀ner patterns and relationships. It was found 
that an accuracy of 100% was achieved with a maximum depth of 4, 
showcasing the model’s capability to capture intricate patterns within 
the dataset. Additionally, the decision tree model demonstrated 
robustness against over昀椀tting, as evidenced by consistent performance 
across different depths during hyperparameter tuning.

Ali et al. [205] also focused on the anode side catalyst in PEMWE, 
speci昀椀cally predicting the performance and durability of PEMWE using 
SVR, SVR-GA and ANN. The in昀氀uencing parameters such as operating 
temperature, PTL pore diameters, and catalyst loading of three anode 
catalysts (Ir-black, IrO2 and Ir0.7 Ru0.3Ox) were derived from experi-
mental studies of existing literatures [206] [207], [208], [209],. For the 
three catalysts datasets, temperature ranging between 30 and 90 çC and 
current density were used as the input features, and cell potential as the 
output feature. Their results indicated that the ANN has the capacity to 
predict the PEMWE behavior of Ir-black and IrO2 with R2 of 0.999228 
and 0.998646 respectively. On the other hand, SVR-GA showed effec-
tiveness in modelling the PEMWE behavior of Ir0.7 Ru0.3Ox when its 

hyperparameters are tuned. This highlights the importance of 
昀椀ne-tuning model parameters to optimize predictive accuracy when 
modeling PEMWE behavior. The researchers noted that the performance 
of ANN on catalyst Ir-black and IrO2 could be attributed to the large 
sample size of data collected as compared with smaller sample size of 
data used to model Ir0.7 Ru0.3Ox. This suggests that increasing the size 
of the dataset could potentially enhance the predictive capabilities of the 
ANN models for various catalyst materials. However, SVR/SVR-GA 
models are quite 昀氀exible in handling nonlinear relationships and may 
offer an alternative approach for modeling PEMWE behavior, especially 
when dealing with smaller datasets.

In concluding this session, the application of ML is a useful approach 
in predicting the performance and optimizing structural parameters of 
fuel cell and electrolyzers. Several key takeaways can be concluded: (i) 
The choice of model depends on the data complexity; (ii) Complex data 
requires complex models for generalization; (iii) When complex models 
are used, interpretability of the model is important and can be achieved 
with sensitivity analysis such as Pearson correlation. Other interpret-
ability methods include SHAP and PDP.

3.2. Application of ML algorithms in image segmentation for analysis of 
fuel cells and electrolyzers

Structural analysis of the materials and different layers in the PEM 
FCs, WEs (e.g. catalysts, CL, GDL, PTL, etc.), and solid oxide fuel cells 
(SOFCs) are of crucial importance in understanding their effect on per-
formance and durability. While signi昀椀cant attention has been given to 
PEMFCs and PEMWEs in previous sessions, it is noteworthy to empha-
size the importance of SOFCs in this session. Like PEMFCs and PEMWEs, 
SOFC is composed of complex porous anode and cathode electrode 
structure which determines its electrochemical performance. The anode, 
cathode and electrolyte structures often made of ceramic-metal com-
posite, mixed oxides and stabilized zirconia respectfully require optimal 
design for a highly ef昀椀cient performance especially when operated at 
elevated temperatures (600–1000 çC) [210]. Over the years, researchers 
have relied on the use of manual approach to extract information from 
microstructure of these electrochemical devices. Usually, this process is 
laborious, time-consuming, and prone to human inconsistency. The 
application of DL, a subset of ML that applies algorithms which mimic 
the structure and function of the human brain to learn and make 

Fig. 18. (a) CFD model design used for PEMFC performance simulation. SVM predicted and simulated current density of (b) training set and (c) test set. (d) 
Optimization result of the maximum power density by GA. Reprinted with permission, Copyright 2020, Published by Elsevier [194].
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predictions based on data supplied, can be used to automate this process. 
The success of DL in image processing could be attributed to its ability to 
identify, learn, and extract complex features from images using CNN, 
DNN, and RNN [211]. A DL approach that helps to analyze, understand, 
and recognize patterns in images is known as computer vision [212]. In 
fuel cells and electrolyzers, DL has been applied to identify and segment 
microstructural images captured from transmission electron microscope 
(TEM), focused ion beam-scanning electron microscopy (FIB-SEM) and 
X-ray computed tomography (XCT) images. This section will discuss 
various applications of deep learning for image segmentation of fuel 
cells and electrolyzers.

Phase segmentation. Phase segmentation is the process of dividing 
an image into distinct regions of similar morphological properties. 
Traditional methods such as Watershed and Weka segmentation 
methods have been used to extract valuable information from materials 
microstructure [213]. As stated earlier, DL algorithms are suitable to 
achieve phase segmentation of components of fuel cells and electro-
lyzers. For example, Liu et al. [192] demonstrated the application of 
Deeplab DL architecture to distinctly segment FIB images containing 
pore and carbon black phases in the CL of PEMFC. The Deeplab archi-
tecture works by extracting dense features of an image and uses char-
acteristics of the image to improve segmentation accuracy. 
Subsequently, they applied a deep convolutional generative adversarial 
network (DCGAN) DL algorithm to generate arti昀椀cial 2D microstruc-
tures from the originally segmented 600 images and reconstruct them 
into 3D form as shown in Fig. 19. The DCGAN algorithm comprises of 
the generator and discriminator models. It works by generating arti昀椀cial 
images during training process and subsequently deceives the discrim-
inator model that the image generated is real while making the 
discriminator model get better at classifying arti昀椀cial and real images. 
From 3D reconstructed images, the researchers found that the porosity 
signi昀椀cantly affects the diffusion of oxygen within the CL and that 
applying spherical linear interpolation of DCGAN, better 3D images 
were produced with good diffusion coef昀椀cients as compared to linear 
interpolation.

In another study, Hwang et al. [214], applied Deeplabv3+ DL al-
gorithm in combination with stereological analytical approach to 
semantically segment and quantify a 3-phase microstructure consisting 
of Gd2O3-doped CeO2 (GDC), La0.6Sr0.4CoO3-δ (LSC) and pores in a 
cathode composite material of a SOFC. Deeplabv3+ algorithm is an al-
gorithm built on the Deeplab architecture that utilizes CNN in 
conjunction with atrous spatial pyramid pooling to classify each pixel of 
an image into a category and distinctly segment objects within the image 
while the stereological analysis allows for the quanti昀椀cation of volume, 
shape and surface area of complex 2D images without necessarily un-
dergoing 3D reconstruction. In their work, they quanti昀椀ed the area of 
catalyst agglomerates occupied, compared to the total area, mean 
intercept length, and interconnectivity of the 3 phases. A total of 49 
FIB-SEM images were explored for this segmentation study with 40 of 
the images trained as the ground truth and 9 images used for testing. 
Although the dataset was small for a deep learning task, the authors 
accurately segmented the 3-phase microstructure with the blue area as 
GDC, green as LSC and red as the pores shown in Fig. 20b and c. 
Comparing their prediction with the ground truth obtained from image 
processing, they achieved a high mean Intersection over Union (mIoU) 
accuracy of 0.7 suggesting the potential applications of this algorithm to 
automatically segment different microstructural composition of a 2D 
image and more importantly its application in fuel cells and 
electrolyzers.

The authors went further to explore the utilization of the same 
Deeplabv3+ algorithm to segment the microstructural components of 
Ni/Y2O3-stabilized ZrO2 (Ni/YSZ) anodes of a SOFC using 120 image 
datasets from FIB-SEM. The segmentation of these phases assisted in 
quantifying the intercept lengths, volume fractions, and inter-
connectivity of constituent phases. In their result, they achieved an 
mIoU accuracy of 0.87, an accuracy scores greater than their previous 
study. This better performance could be attributed to 120 images used in 
this study as compared to their previous work as this provides the al-
gorithm to opportunity to learn on a large and diverse dataset. Further 
validation of their segmentation with pixel-based matching method, a 

Fig. 19. (a) 2D FIB-SEM image (left), segmented image with Deeplab (middle) and generated microstructure by DCGAN (right) wherein the black phases represent 
carbon black and the white indicate pores; (b) 3D reconstruction from 2D continuous sectional slice images. Reprinted with permission, Copyright 2022, Published by 
Elsevier [192].
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process that quanti昀椀es the degree of accuracy between the predicted 
segmented images and ground truth, yielded accuracies ranging be-
tween 0.919 to 0.957. The authors noted that factors such as undesired 
artifacts, unavoidable curtain effects, charging effects, and unclear 
interphase boundaries from FIB-SEM could negatively impact the pre-
diction performance of the algorithm. This implies that if the ground 
truths (training images) are not well prepared, incorrect identi昀椀cation 
and classi昀椀cation of microstructural phases is bound to occur [215].

Another DL algorithm that has been widely used for semantic seg-
mentation tasks is UNet architecture. The UNet architecture is a type of 
CNN that was initially designed for segmentation of biomedical images 
but has now gained prominence in segmentation of microstructural 
components of metals, rock, fuel cells, and electrolyzers. The architec-
ture consists of a downsampling and upsampling path as shown in 
Fig. 21. The downsampling path reduces spatial dimensions of the im-
ages captured but increases the depth of the feature maps. On the other 
hand, the upsampling path ensures the recovery of the reduced spatial 
dimensions of image by increasing the resolution of features maps to 
enable precise localization, which implies accurate segmentation.

For instance, Rena et al. [217] applied the conventional 
encoder-decoder and UNet algorithms to segment Ni and YSZ phases in 
SOFCs from low resolution laser microscope images capture in an 
operando situation. With these algorithms, they calculated the phase 
fractions and triple phase boundary (TPB) of the phases. In their work, it 
was observed that the two algorithms were able to segment these phases. 
However, tiny microstructural details of each phase were lost due to the 

low resolution of the laser microscope as seen Fig. 22. To improve the 
resolution, pix2pix GAN architecture was explored to convert low res-
olution laser microscope images to an SEM-like images with high reso-
lution. It was deduced that the segmentation of low-resolution images 
can be attained through the utilization of UNet architecture, yielding 
outcomes that closely approximate the ground truth. However, for a 
more accurate prediction and analysis of the phases, it was necessary to 
enhance the image resolution using the pix2pix GAN DL algorithm, with 
the performances of the conventional encoder-decoder, UNet, and 
pix2pix architectures as 0.867, 0.889, and 0.897 respectively.

It is widely known that the performance of fuel cells and electro-
lyzers rely strongly on the microstructural properties of GDLs and PTLs 
respectively. These properties include pore size, tortuosity, GDL thick-
ness, 昀椀ber diameter, porosity, etc. [218]. Previous studies have shown 
that the increased porosity of GDLs and PTLs results in better perfor-
mance of these electrochemical devices [219,220]. The ability to 
quantitively measure these physical properties can give insight to the 
mass transport properties or diffusion behavior as the reactant species 
(hydrogen and oxygen) pass through the GDL/PTL to the catalyst layers. 
Mehdi et al. [221] investigated the 昀氀uid 昀氀ow mechanism that occurs in a 
GDL having varying percentages (5, 20, 40, and 60 wt%) of coated hy-
drophobic polytetra昀氀uoroethylene (PTFE). In order to study these 
mechanisms, they utilized 2D and 3D UNet DL algorithms to segment the 
water, air, and PTFE coated 昀椀ber phases of the GDL component from 
X-ray computed tomography (XCT) images. The outcomes obtained 
from the DL algorithms were compared to the traditional Watershed and 

Fig. 20. (a) DL-assisted 昀氀ow process for semantic segmentation of solid oxide fuel cells (b) Test images for validating the deep learning method and, (c) Obtained 
deep learning images (left) and ground truth obtained from image processing (right). Blue areas are GDC, green areas are LSC, and red areas are pores. Reprinted with 
permission, Copyright 2020, Published by Elsevier [214].

Fig. 21. Representation of a UNet architecture. Reprinted with permission, Copyright 2021, Published by Elsevier [216].
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Weka segmentation process, which is commonly employed for phase 
segmentation. The results indicated that both DL algorithms effectively 
classi昀椀ed the three phases, with the 3D UNet algorithm demonstrating 
superior performance compared to the 2D UNet, Watershed and Weka 
segmentation methods. This distinction can be observed in Fig. 23c, 
which visually represents the discrepancies captured by each segmen-
tation process. The 3D model’s performance is re昀氀ected in higher 
Intersection over Union (IoU) values and F1-scores when compared to 
the 2D model, indicating a more precise segmentation of the different 
phases within the GDLs. While UNet algorithm has the capability to 
capture intricate information from XCT images, it has been found that 
the performance of U-Net model degrades when the network is too deep 
[222].

In order to mitigate this challenge, the U-ResNet model that com-
bines the long skip feature connection of the U-Net architecture and the 
short residual bock of the RestNet architecture that preserve shallow 
domain information in images has been developed for ef昀椀cient seg-
mentation of materials which offers better performance than each of the 
standalone models. For instance, Tang et al. [223] classi昀椀ed speci昀椀c 
features such as carbon 昀椀bers, void, MPL, CL, membrane, and binder 
phases of a PEMFC GDL using grayscale, manual and U-ResNet seg-
mentation methods. 19 XCT high quality slices cropped of 128 by 128 
pixels were used for the study. The training data used 70% of the data 

(slices) and the rest were used for assessing the performance of the 
model. In their study, the U-ResNet architecture could detect and clas-
sify different phases of the GDL structure. However, the grayscale 
method inaccurately classi昀椀ed the phases due to differences in pixel 
intensity while the manual segmentation method over-segmented the 
GDL due to the variation in contrast of MPL, CL and membrane layers as 
a function of material density (see Fig. 24).

The advantage of the U-RestNet model is its ability to segment in-
terfaces bordering the fuel cell MPL, CL and membrane layers, which is 
an enormous task with manual segmentation. This could be attributed to 
the additional residual connections which help in addressing the van-
ishing gradient problem, allowing for the training of deeper networks by 
enabling the 昀氀ow of gradients through the network more effectively. As 
previously discussed, improving the resolution of images captured from 
XCT, SEM, TEM, and other microscopy techniques enhances the accu-
rate segmentation of phases. With low resolution images, critical com-
ponents of a MPL and GDL will be inaccurately segmented leading to 
inaccurate physical representation of phases. Wang et al. [224] 
employed the dual enhanced deep super-resolution (DualEDSR) DL al-
gorithm to improve the resolution of their XCT images (see Fig. 25b) and 
then subsequently apply the U-ResNet DL architecture to segment voids, 
昀椀bers with different orientation (parallel or perpendicular), CL, MPL and 
membrane as seen in Fig. 25c. This high segmentation accuracy, 

Fig. 22. (a) Conventional encoder-decoder network (b) U-net with encoder-decoder network (c) Low resolution laser image (top-left), ground truth segmented image 
(top-middle), segmented images with conventional encoder-decoder network (bottom-left) and segmented images with UNet with encoder-decoder (bottom-middle), 
high resolution SEM image (top-right), pix2pix GAN output (bottom-right). Reprinted with permission, Copyright 2021, Published by IOP Publishing [217].

Fig. 23. (a) Process 昀氀ow for DL development (b) 2D UNet architecture (c) Comparison between trainable Weka and the U-Net 2D network performance with blue, 
red, and green colours representing water, air, and 昀椀bre phases respectively. Color back in column four depicts zero differences. Comparison between U-Net 3D 
network, trainable Weka, and watershed segmentation for identi昀椀cation of (d) water (e) 昀椀bres and (f) air in the GDL images. Reprinted with permission, Copyright 
2023, Published by Elsevier [221].
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quanti昀椀ed at 93% for most phases and 86% for the membrane, was 
crucial for the subsequent heterogeneity analysis and 昀氀ow simulation.

In their subsequent study, they classi昀椀ed CL ink images using two 
different CNN architectures. The 昀椀rst CNN architecture was built from 
scratch as a custom network while mini-VGG, a pre-trained model was 
explored as the second CNN architecture for their study. The 昀椀rst CNN 
architecture was observed to be shallow and could only achieve a low 
validation score of 0.25. The low validation suggested the simplicity of 
the model as it was built having limited convolution layers. In order to 
improve on this accuracy, min-VGG architecture was explored to extract 
features from the images, which were then used to train a logistic 
regression model for classi昀椀cation task and thereby achieving an accu-
racy of approximately 0.98.

Particle segmentation. The accurate quanti昀椀cation of the catalyst 
particle sizes in fuel cells and electrolyzers is crucial in understanding 
the catalytic activity and stability of a CL which impacts the ef昀椀ciency of 
the system. For instance, Colliard-Granero et al. [225] applied DL to 
segment, identify, and automate the particle size distribution of the Pt 
catalyst nanoparticles within the CL of PEMFCs. They employed U-Net 

architecture combined with StarDist, an algorithm that identi昀椀es 
densely packed and overlapped objects for the particle segmentation 
process. The DL pipeline involves the annotation of TEM images of the 
CL containing Pt nanoparticles, segmentation of the TEM images into 
different phases, diameter measurement of segmented particles and 
statistical visualization of particulate distribution within the catalyst 
layers. 40 images with varying diameters (10 nm, 20 nm, 50 nm and 100 
nm) were employed in the training process to achieve robust model 
development. Their method yielded a high accuracy of 86% compared to 
manual measurements, with the ability to classify, detect and auto-
matically measure the particle size distribution of Pt particles (see 
Fig. 26). Saaim et al. [226] compared the performance of U-Net, with 
R2U-Net, Attention U-Net, BDC U-Net, U-Net++, U-Net 3+, Attention 
W-Net, and K-means clustering models to determine Pt particle sizes of a 
PEMFC using 150 bright 昀椀eld TEM images containing approximately 
3629 Pt particles. They found that U-Net, R2U-Net, and U-Net++

demonstrated similar performance, while BDC U-Net showed reduced 
effectiveness, particularly in handling larger nanoparticles due to its 
Bi-ConvLSTM layer. Attention U-Net, despite its design to enhance 

Fig. 24. (a) U-ResNet architecture (b) manual grey scale image segmentation (top-left to top-right) and U-ResNet image segmentation (bottom-left to bottom-right). 
Reprinted with permission, Copyright 2022, Published by Elsevier [223].

Fig. 25. PEMFC images acquired from a micro-CT (a) full 昀椀eld low-resolution image @ 2.8 μm (top), subsection of low resolution (bottom-left), subsection of high 
resolution from DualEDSR algorithm (botto-right), (b) process 昀氀ow of DualEDSR algorithm and (c) U-ResNet architecture with parallel 昀椀ber, perpendicular 昀椀ber, 
void, microporous layer, catalyst layer, and membrane segmented as blue, green, grey, yellow, pick and pale blue colors respectively. Reprinted with permission, 
Copyright 2023, Published by Springer Nature [224].
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feature mixing, fell short of U-Net’s results. In unsupervised segmenta-
tion, Attention W-Net underperformed, missing many nanoparticles, 
whereas K-means clustering was generally more reliable. U-Net 3+
outperformed all other methods, including traditional algorithms and 
earlier U-Net variations, in terms of IoU, showcasing its superior ar-
chitecture for segmenting bright 昀椀eld TEM Pt nanoparticles. Table 1
shows the summary of all the accuracies of models explored in their 
study.

Another application of DL for phase segmentation is the screening of 
catalyst layer inks for PEMFC. Eslamibidgoli et al. [227] were the 昀椀rst to 
use a DL architecture called ConVNets to automatically segment and 
quantify the agglomerate size distribution in catalyst inks. The inks used 
for their study were based on commercial Tanaka EA50, F50, and V50 
catalysts with Na昀椀on and Aquivion supports. These inks were imaged 
with high resolution TEM and were used for training the ConVNets 
model. Their 昀椀rst task was to annotate the imaged inks, and subse-
quently apply region-based object detection algorithm that could 
effectively identify regions of the inks and enhance detection accuracy. 
With the ConVNets architecture, features such as edges and other spatial 
details were extracted from the images and fed into the convolution as 
input parameters. A transfer learning approach using pre-trained model 
was then implemented to 昀椀ne-tune the ConVNets speci昀椀cally for 
detecting the unique characteristics of the catalyst inks, resulting in a 
signi昀椀cant improvement in detection performance. Gradient-weighted 
Class Activation Mapping (Grad-CAM) was then to visualize 
segmented regions containing ink agglomerates. Based on the 昀椀ndings, 
the ConVNets succesful segmented the catalyst ink having a F1-score of 
not less than 99% for all the inks. They also observed that the V50 has 
the largest agglomerates followed by the EA50 and F50.

Image-based defect detection of fuel cells and electrolyzers with DL. 
In energy devices, the life cycle prediction needs to be evaluated to avoid 
failure in service [228]. In fuel cells and electrolyzers, failure arises from 
the inability of the system to adjust to electrical, temperature and 
gas-delivering -time variation during operation. The inability for fuel 

cell system to adjust under these conditions can lead to thermal shock, 
the overrun of system temperature, or insuf昀椀cient supply of fuel [229, 
230]. As a result, the need to predict the state of health of a fuel cell 
system using various ML algorithms is paramount to avoiding a cata-
strophic failure [231]. ML models have also aided the diagnosis of in-
ternal defects such as cracks, pin holes, and catalyst contamination. It 
has also been explored for the diagnosis of external defects which in-
cludes failure of heating units, fuel, and air supply [232]. Defects are 
characterized as a form of imperfections and abysmal pattern observed 
in the CL or any part of a fuel cell/electrolyzers that can potentially 
reduce the overall ef昀椀ciency of the system. They can occur in interfaces 
of materials used for electrode fabrication leading to cracks, agglomer-
ates, scratches, debris, scuffs, and delaminated surface [233–235], de-
fects in structural components [236], and pin holes in membranes [237]. 
Several approaches have been used to detect and evaluate forms of de-
fects that exist in fuel cells and electrolyzers. One of the main traditional 
methods that have been used to detect defects in these systems is the 
application of infrared thermography [238–242]. Infrared thermog-
raphy is a non-destructive technique approach for quality assurance or 
in-line inspection of fabricated products in most industries. In fuel cells 
and electrolyzers industry, it is used to detect anomalies by applying a 
wide range of electromagnetic rays ranging from visible light to mi-
crowave (750 nm – 1 mm) on a material. Irregularities that cannot be 
visually observed on material surfaces are scanned with the infrared 
camera and documented. Other diagnostic methods explored in defect 
detections of electrode materials in fuel cells and electrolyzers include 
optical inspection, X-ray, and microscopy techniques. The optical tech-
niques include the use of optical cameras for visual defect detection, 
X-ray 昀氀uorescence for catalyst loading and chemical compositions 
measurements, while the microscopy techniques include the use of SEM 
to visualize defects on 昀椀lm surfaces [243]. While these traditional 
methods are good in detecting defects, they are compounded with the 
limitation to acquire defects at a faster rate, ability to detect defects 
during in-service roll to roll process, and the ability to cover large sur-
face area of materials. The use of object detection, also known as com-
puter vision, is a DL technique that helps identify localized information 
in objects and videos. It goes beyond simple object classi昀椀cation and 
helps provide a better understanding of the object in question. With 
object detection, the images are 昀椀rst classi昀椀ed into different classes 
called labels using image annotation tools and subsequently subjected to 
training using DL algorithms. It is imperative to state that the adoption 
of object detection in defect detection is promising and more impor-
tantly, it is a cost effective, and reliable technique [244].

Lu et al. [245] applied the use of computer vision in defect recog-
nition of ceramic chips used in high temperature solid oxide fuel cells. 
Generally, object detection requires copious amounts of data for 
training. Since there was limited amount of data of ceramic chips con-
taining defects, the researchers developed a system to physically acquire 
these images containing defects (as shown in Fig. 27) for training and 

Fig. 26. DL assisted Pt particles segmentation and particle size distribution analysis in TEM images of the catalyst layers in PEMFCs. Left: raw TEM image; Middle: 
Annotated image using DL; Right: Particle size distribution results. Reprinted with permission, Copyright 2022, Published by RSC Publishing [225].

Table 1 
Summary of models with 45 testing images [226].

Model Accuracy Precision Recall TPR IoU Dice 
coef昀椀cient

U-Net 99.26 96.65 96.22 93.11 92.96 96.43
R2U-Net 99.27 96.42 96.56 93.20 92.92 96.48
Attention U- 

Net
99.16 97.41 94.47 92.14 91.95 95.91

BDC U-Net 99.00 96.79 93.71 90.84 90.96 95.18
UNet++ 99.24 97.65 94.94 92.82 92.86 96.27
UNet 3+ 99.42 97.30 97.09 94.54 94.45 97.19
Attention W- 

Net
95.19 97.68 59.31 58.38 58.38 72.99

K-means 
clustering

96.95 87.42 82.65 73.87 80.66 84.97
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test purposes. Firstly, features from these ceramic chips were extracted 
using feature extraction networks such as VGG-16, VGG-16+ FPN, 
ResNet-50, ResNet-101. These networks are known for their ability to 
extract high-level semantic information from small objects. Images 
extracted from these networks were used as training data for the SSD, 
YOLOv5, Faster R-CNN and improved Faster R-CNN DL models. In their 
study, an optimized version of the Faster R-CNN (improved Faster 
R-CNN) model based on the VGG-16 feature extraction had better per-
formance of 89.39% than other models used in detecting breakage, 
scratch, impurity, stains, and blow hole. The performance of the 
improved Faster R-CNN was ascribed to the enhancement of the algo-
rithm through region of interest (ROI) pooling and, feature pyramid 
networks (FPN). The utilization of ROI pooling presents the opportunity 
to achieve accurate localization of objects across a wide range of image 
scales. In addition, FPN detects objects of different sizes more accurately 
by creating pyramids of feature maps. The selection of algorithms for 
computer vision applications depends upon two competing factors. 
These factors include the computational time and the pursuit of 
achieving a high of model accuracy. For instance, when opting for al-
gorithms with the objective of achieving high accuracy, Faster R-CNN 
and SDD present themselves as a great choice. On the other hand, YOLO 
is excellent for achieving faster computational speed.

Yan et al. [246] investigated two DL techniques in identifying in-line 
defect in PEMFC catalyst coated membrane (CCM) layers. The two al-
gorithms explored in this research are patch distribution modelling 
(PaDiM) and Faster R-CNN DL algorithms, which focused on defects 
such as scratches, scuffs, and pinholes. Faster RCNN and PaDiM are 
supervised and unsupervised algorithms respectively that are used for 
object detection and with capabilities of achieving high accuracy. In 
their research optical images were used for labeling of defects while 
model performances were evaluated using the leave-one-out cross--
validation (LOOCV). For PaDiM, the model performs better in identi-
fying pin holes than scratches and scuffs with more possibility of 
detecting contaminations. However, Faster R-CNN could not detect faint 
defects as PaDiM does. However, it classi昀椀ed defects into different types. 
In the electrolyzers industry, the application of object detection in 
detecting faults has not been explored to its full potential. Based on 
literature search, the 昀椀rst research group that explored this technique 
for identifying faults in electrolyzers is Zhu et al’s group [242]. They 
applied the use of Mask R-CNN with ResNet-50 backbone network to 
investigate the detection of faults on infrared captured electrolyzers 
plates. A total of 2000 infrared images were used for the analysis of 
which 1280, 320 and 400 datasets were used for training, validation and 
testing, respectively. Three variations of Mask R-CNN were adopted for 
the study which includes original Mask R-CNN, original Mask R-CNN 
with bounding box (Mask R-CNN + G2-IoU) and improved Mask RCNN. 

The improved Mask RCNN had a better performance than the other 
Mask RCNN algorithms with precision of 86.8% (10% higher than the 
original Mask RCNN). The researchers demonstrated that the reason for 
the better performance is attributed to the introduction of a globally 
generalized intersection over union (G2-IoU) loss function. The G2-IoU 
loss function improves object detection by accurately characterizing the 
position and scale relationship between the predicted bounding box and 
the target bounding box. It considers the coincidence rate, distance, and 
scale relationship between the two boxes, leading to better detection 
accuracy.

3.3. Application of ML algorithms in degradation studies

Widespread commercialization of electrochemical devices such as 
fuel cells and electrolyzers are limited by their durability issues which 
require extensive analysis of aging and degradation mechanisms now 
possible through ML models [247]. With recurrent neural network 
(RNN) machine learning algorithm, we can predict the performance 
evolution also referred to as the remaining use life (RUL) and voltage 
degradation of these devices based on the operating time and system 
conditions without any dependence on complex modelling from phys-
ical laws and electrochemical equations [248–250]. A RNN is a form of 
arti昀椀cial neural network that processes input data recurrently and al-
lows output from one step to be fed back as input to the network at the 
next time step thereby capturing dynamic relationships between input 
and output data [251]. In a simpler term, it means that the input features 
fed into system A produces output features and the output features from 
system A now serves as an input feature into system B with the goal of 
capturing dynamic relationships between the sequential input features 
and 昀椀nal output. An example of RNN is echo state network (ESN), a 
reservoir computing neural network known for its unique architecture 
that randomly generate a reservoir with static internal weights and re-
places the hidden layer found in traditional neural networks, making it 
computational cost-effective for degradation prediction as shown in 
Fig. 28. The advantage of ESN is that the output layer of the network is 
optimized by multiple linear regression [252].

A study by Vichard et al. [254] involved executing a 5000-hour 
durability test on a PEMFC system to understand the performance evo-
lution, concluding that lower ambient temperature leads to better hu-
midi昀椀cation, ultimately resulting in lower voltage degradation rates. 
While this PEMFC application was designed as a postal delivery vehicle, 
the operation of fuel cells under ambient temperature is bene昀椀cial for 
aerospace application [255]. In their study, the researchers segmented 
the operating time for the durability test into 6 stages at different 
operating time and temperatures for each stage. The operating ambient 
temperatures for stages 1–6 are 20 çC, 30 çC, 20 çC, 7 çC, 20 çC and 10 çC 

Fig. 27. (i) Various surface defects of acquired ceramic chips (ii) detected defects. Reprinted with permission, Copyright 2022, IEEE [245].
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respectively. For stage 1, the input parameter for the ESN network was 
operating time and ambient temperature while the output parameter 
was the initial degraded output voltage. Based on the working principles 
of ESN model and its capabilities to predict non-linear relationships, the 
output parameter of the initial step will serve as an input parameter for 
other steps. In this case, the model has three input parameters that are 
the output voltage of the previous step combined with the operating 
time and ambient temperature current step serves as an input parameter 
for subsequent steps. This data was then used as training in an ESN 
model for output voltage degradation prediction. The study reported 
that the developed degradation model showed promising results with a 
low normalized RMSE value of 0.098 and computing time of 2 s. The 
authors also addressed the signi昀椀cance of learning rate as a hyper-
parameter tuning in ESN for the prediction of voltage degradation. They 
observed that the application of 33% and 60% learning rates resulted in 
the prediction of the end of life of the PEMFC system to be about 3000 h 
and 6000 h respectively. Morando et al. [256] developed an ageing al-
gorithm based on the combination of signal 昀椀ltering and prognostic 
analysis using ESN algorithm to predict the voltage degradation of 
PEMFC. Firstly, the authors conducted an experiment to evaluate the 
mean cell voltage of a PEMFC based on current density (constant load), 
absolute pressure of air and H2, operating temperature and cathode and 
anode relative humidity parameters over a period of 1700 h. The output 
signal (mean cell voltage) from these experiments was then 昀椀ltered with 
wavelet transform and preprocess with Hurst coef昀椀cient to ensure 
temporal dependencies (relationship between data points) before used 
as an input parameter into the ESN algorithm to forecast what the output 
voltage of PEMFC will be at a given period. In their study, they achieved 
good accuracy with a mean average percentage error (MAPE of less than 
5% and also showing that the 昀椀rst 340 h of the data acquired under 
constant load is suf昀椀cient to predict the degradation of fuel cells 
(remaining use life) for at least 1000 h (6 weeks). Mezzi et al. [257] 
proposed multi-reservoir ESN (MR-ESN) and classical ESN algorithm to 
predict the cell voltage degradation of 5-cell PEMFC stack based on 
temperature, stoichiometry and relative humidity operated continu-
ously over a duration of 1700 h under constant load condition. While the 
MAPE accuracy errors for both algorithms were less than 10%, the 
MR-ESN performed better than the classical ESN as its prediction 
matches closely with the real RUL. A study by Zhang et al. [258] 
improved on the MR-ESN architecture by incorporating a mini-reservoir 

into main MR-ESN architecture to enhance the network’s ability to 
process and predict degradation of 5-single cell PEMFC stack based 
having an active surface area of 100 cm2 and power density of 0.7 A/cm2 

under static and dynamic test conditions. Their study sought to also 
understand how the length of training set affects the accuracy prediction 
made by MR-ESN using the 昀椀rst 350 h, 450 h, 550 h, and 650 h of data 
respectively for training, and tested the model’s predictions against the 
remaining data within the 昀椀rst 1000 h. In order to improve the quality of 
data fed into the neural network, Savitzky-Golay (SG) 昀椀lter was used for 
data preprocessing. The pre-processing step using the Savitzky-Golay 
昀椀lter helped to smooth out noise and artifacts in the raw data, 
ensuring a cleaner input for the algorithm to work effectively on pre-
dicting performance degradation accurately. Furthermore, the effect of 
main reservoir and main reservoir neurons were evaluated and opti-
mized using particle swarm optimization algorithm (PSO). Their 昀椀nd-
ings showed that the shorter training set of 350 h had the highest 
prediction accuracy for the static test condition. In addition, the optimal 
main reservoir and main reservoir neurons achieved by PSO was 20,550 
and 10,800 for static and dynamic test conditions respectively. 
Compared to other forms of recurrent neural networks such as Long 
Short-Term Memory (LSTM) and Bidirectional Long Short-Term Mem-
ory (Bi-LSTM) used for this study, MRM performed better for both test 
conditions.

Another algorithm that has gained wide prominence in investigating 
the degradation of fuel cells and electrolyzers is LSTM. The LSTM model, 
a form of RNN, was developed in Hochreiter and Schmidhuber in 1997 
[259]. The model captures patterns and relationships in a time series 
sequential data. It is designed to address the problem of vanishing 
gradient associated with traditional RNN by introducing complex gates 
(input, forget, and output gates) to regulate information 昀氀ow thereby 
maintaining long term dependencies in data processed. For instance, Liu 
et al. [260] developed an LSTM framework to predict the durability of a 
vehicle PEMFC based on 1155 h experimental data (see Fig. 29a and b). 
In designing their framework, they utilized regular interval sampling 
and locally weighted scatterplot smoothing (LOESS) for data recon-
struction and data smoothing in order to preserve the integrity of the 
original data. Their study demonstrates the capability of this algorithm 
to forecast the RUL of PEMFC having achieved a high accuracy of 
99.23% as compared to the traditional back propagation neural network 
(BPNN) of 70.77% accuracy. Furthermore, the LSTM model predicted 

Fig. 28. The architecture of standard Echo State Network (ESN). Reprinted with permission, Copyright 2015, Published by MDPI [253].
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the RUL of the PEMFC stack to be 260 h which was close to the actual 
end of life estimated as 261 h using 511 h as the testing starting point.

Xu et al. [261] applied CNN-LSTM algorithm to predict the voltage 
degradation of PEM WE from data carried out experimentally under 
constant and start-stop load operating conditions (current densities). 
The constant load condition was operated for 1140 hr (900 h for training 
and 240 h for testing) while the start-stop-stop load condition was 
conducted for 660 hr (528 h for training and 132 h for testing) to 
evaluate the algorithm’s performance. From the experimental study, the 
output voltage was recorded every minute and 1.5 min for constant and 
start-stop load conditions. The measured output voltages from these two 
experimental conditions are now used as input parameters for the 
CNN-LSTM algorithm. The CNN-LSTM combines CNN and LSTM algo-
rithms. In this case, CNN extracts input feature (measured output volt-
ages at intervals) from the raw data, while the LSTM processes the 
sequential information to predict the performance degradation of the 
PEM water electrolyzers accurately over time. Before the application of 
these combined algorithms, the raw data was pre-processed using the 
Savitzky-Golay 昀椀lter method. From their 昀椀ndings, the authors observed 
an initial decline followed by an increase in output voltage over the 
operating time both load condition which is consistent with the 
behaviour exhibited from the experimental study carried out. The au-
thors attributed this behavior to IrO2 exhibiting an initial redox cycle 
which increases its active surface area and improves performance. Their 
昀椀ndings revealed that the CNN-LSTM achieved an average absolute 
error of 0.39 mV and 2.1 × 10–2 mV for constant and start-stop load 
conditions respectively. Furthermore, the researchers compared the 
performance of the algorithm with traditional LSTM models and GRU, 
showing that the CNN-LSTM outperformed these models in terms of 
prediction accuracy and generalization capability across different load 
conditions.

Wang et al. [262], proposed a bi-directional long short-term memory 
recurrent neural network couple with an attention mechanism (BILST-
M-AT) model to predict the voltage degradation of the PEMFC stack 
under static and dynamic load conditions. Out of 24 input parameters 
measured experimentally, random forest was used to rank important 
features that signi昀椀cantly contribute to the voltage degradation of the 
PEMFC system. These important features include ageing time, 5-cell 

voltages, outlet temperature of H2 gas, inlet and outlet temperatures 
of air, outlet temperatures of cooling water, outlet 昀氀ow rate of H2 and 
Inlet 昀氀ow rate of air. The output voltage pro昀椀le is then used to predict 
the voltage degradation based on the operating time. The authors 
observed that the RUL of the PEMFC with dynamic test condition was 
less than that of static test conditions. With respect to the performance of 
the model, the BILSTM-AT outperforms other models with relative er-
rors for both testing conditions ranging between 0.09% to 0.29%.

Other forms of ML algorithms that have been reported in the inves-
tigation of degradation studies of fuel cells include support vector ma-
chine (SVM), relevance machine vector (RVM) [263,264], and least 
square support vector machine (LS-SVM) [265]. RVM is a Bayesian 
approach to machine learning that offers the ability to produce sparse 
models, which means it relies on fewer data points (relevance vectors) 
without compromising the prediction accuracy. It has shown superior 
performance in predicting the RUL of lithium-ion batteries [266,267], 
demonstrating its effectiveness in online battery prognostics and prac-
tical applications.

Integration of ML algorithms can also help to handle complex, non- 
linear patterns found in these energy systems. Lee et al. [268] applied a 
data driven approach as a prognostic and health management system for 
voltage predictions of alkaline water electrolyzers (AEM) using SVM and 
GPR. In their work, an in-house experiment was conducted for 480 h at 
an operating temperature of 80 çC and 昀氀ow rate of 330 ccm. The re-
searchers monitored measured parameters such as time, current, and 
power density as input parameters and measured voltage as output 
performance. After the analysis of the measured parameters using SVM 
and GPR, they achieved a performance of 1.28 × 10–3 and 8.03 × 10–6 

respectively. While the algorithm performed excellently well based on 
the input data, they observed that an introduction of an input data with 
large deviation from the original data could result in an inaccurate 
prediction. To address this limitation, it is expedient that researchers 
implement these algorithms on wide range of input parameters that can 
predict voltage degradation in an AEM system.

To the best of our literature search, ML focus on the degradation or 
aging performance of PEM FC and especially WE are still limited and 
needs further extensive investigation for better understanding of the 
short and long-term durability and ef昀椀ciency of these systems. Table 2

Fig. 29. (a) RUL prognostic framework based on LSTM RNN (b) Degradation data of PEMFC stack (c) Prognostic results of LSTM RNN. Reprinted with permission, 
Copyright 2019, Published by Elsevier [260].
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Table 2 
Summary of literatures of machine learning for degradation studies of PEMFC and electrolyzers with their respective references.

Case study Energy 
device

Cell con昀椀guration Data source/Test 
duration

Data 昀椀ltering 
method

ML method Model accuracy Findings

Vichard 
et al. 
[254]

PEMFC Fuel cell stack 
composed of 28 
cells with open air 
cathode cooling

Experimental, 
5000 h`

Nil ESN RMSE: 0.098 Lower temperatures lead to better 
humidi昀椀cation conditions thereby 
reducing rate of degradation.

Morando 
et al. 
[256]

PEMFC 5-cell PEMFC stack Experimental, 
1700 h

Wavelet 
transform & 
Hurst 
coef昀椀cient.

ESN MAPE: <5% 20% of the data was suf昀椀cient to 
accurately predict the RUL of 
PEMFC. ESN can capture the 
complex dynamics of PEMFC 
degradation which is not fully 
understood or modelled yet.

Mezzi et al. 
[257]

PEMFC 5-cell PEMFC stack Experimental, 
1700 h

Nil Classical ESN & 
MR-ESN

Both MAPEs are < 10 % The integration of multi-reservoirs 
in the ESN architecture improves 
the predictive capability of the 
model as compared to single 
reservoir in a classical ESN 
network.

Zhang 
et al. 
[258]

PEMFC 5-cell PEMFC stack Experimental Savitzky- 
Golay

MR-ESN + mini- 
reservoir

For static test condition data 
RMSE:1.412e-4 

MAPE: 3.065e-3 

For dynamic test condition 
data 
RMSE: 1.298e-4 

MAPE – 1.824e-3

The multi-reservoir component 
architecture of the ESN algorithm 
coupled with a mini-reservoir 
architecture enhanced the 
predictive capability of the 
algorithm.

Liu et al. 
[260]

PEMFC 5-cell PEMFC stack 
with water cooling 
system

Experimental, 
1155 h

Locally 
weighted 
scatterplot 
smoothing

LSTM RMSE: 0.003 
MAE: 0.026 
Accuracy: 99.23%

The use of regular interval 
sampling and (LOESS) for data 
reconstruction and smoothing 
ensures that the primary trend of 
the original data is preserved 
while effectively removing noise 
and spikes, which is crucial for 
maintaining the reliability of 
PEMFC systems in practical 
applications.

BPNN RMSE: 0.0203 
MAE: 0.0234 
Accuracy: 70.77%

Wang et al. 
[262] 
[87]

PEMFC 5-cell PEMFC stack Experimental Nil BILSTM-AT & 
Random Forest for 
feature selection

RMSE < 0.0029 The inclusion of an attention 
mechanism to the BILSTM 
algorithms contributed to the 
model’s predictive capability by 
focusing on the most relevant 
features of the data, thus 
enhancing the accuracy of the 
degradation predictions.

Zuo et al. 
[269]

PEMFC Single cell Experimental Moving 
average 
smoothing 
method.

LSTM, gated 
recurrent unit 
(GRU), attention- 
based LSTM and 
attention-based 
GRU.

RSME for attention-based 
LSTM, attention-based GRU, 
LSTM and GRU models are 
0.016409, 0.015518, 
0.017637 and 0.018206, 
respectively.

Attention-based LSTM RNN model 
achieves higher prediction 
accuracy, making it particularly 
suitable for fuel cell performance 
degradation prognosis.

Wang et al. 
[270]

PEMFC 5-cell PEMFC stack Experimental, 
>1000 h

Singular 
Spectrum 
Analysis (SSA)

LSTM, Gaussian 
process regression 
(GPR) and LSTM- 
GPR

LSTM 
RMSE: 0.0066 
MAPE: 0.0016 
MAE: 0.0053 
GPR 
RMSE: 0.0072 
MAPE: 0.0018 
MAE: 0.0058 
LSTMþGPR 
RMSE: 0.0049 
MAPE: 0.0011 
MAE: 0.0036

LSTM-GPR showed excellent 
performance over other models by 
accurately predicting the voltage 
degradation of the system. The 
deep structure displayed by this 
model enhances its learning 
capabilities for non-linear patterns 
of PEMFC degradation trends.

Wu et al. 
[263]

PEMFC 1.2 kW PEMFC 
stack

Experimental, 
400 h

Data down- 
sampling

RVM and SVM RVM 
RMSE: 0.1751 
MAPE: 0.0044 
R2: 0.9153 
SVM 
RMSE: 0.2022 
MAPE: 0.0054 
R2: 0.8896

The RVM algorithm can 
accurately predict the ageing of a 
PEMFC when fed with limited 
training data and with relatively 
fewer input vectors (features).

Zhong 
et al. 
[265]

PEMFC 36 cells fuel cell 
stack

Experimental 
data from 
Ref. [271,272]

Nil LS-SVM MAE: 0.0002 
R2: 98.98%

The model displayed higher 
predictive accuracy. Higher 
current densities lead to increased 
voltage degradation.

(continued on next page)
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provides a concise overview of ML algorithms for performance and 
degradation evaluation studies of PEM FCs and WEs. Even though 
studies are evolving, more focus on correlating the changes of the 
structural and compositional parameters in the MEAs of these systems to 
their performance, as they degrade is needed.

4. Current challenges and future aspects

Apart from numerous advantages, there are so some roadblocks to 
the successful implementation of AI technology in materials and espe-
cially in the energy industry. A few of the critical issues are listed below 
[273–276]:

AI-based methods typically require the collection of large amounts of 
data to accurately predict reliable outcomes while the acquisition of 
materials data, such as various forms of materials characterization, is 
itself a quite expensive process and sometimes the tradeoff between time 
and cost is not achieved. Another challenge faced in using AI-based 
methods is the under-representation of high complexity data by 
simpler models or the overestimation of trivial data by high-capacity 
models. AI-based approaches are also typically very sensitive to small 
variations in the system, environment, or parameters and a little offset 
can signi昀椀cantly the quality of output.

The operation and interpretation mechanism of AI-based models 
cannot be easily understood and is frequently referred to as a black box, 
limiting users from successfully identifying weaknesses of the model. 
The application of SHAP method is a new method in the interpretation of 
black box models. However, it has not been widely explored in ML for 
fuel cells and electrolyzers applications.

Despite the current challenges, AI has shown immense progress over 
the last few years and continues to excite researchers with its unique 
capabilities. Moreover, since ML is intrinsically a data-driven approach, 
therefore, we can state with absolute certainty that the surfeit of 
knowledge and data continually being extracted from advanced data 
mining techniques will undoubtedly bene昀椀t AI-based models in mate-
rials science to meet and even exceed performance demands. Further-
more, AI-based models, which are highly ef昀椀ciently trained on smaller 
datasets, are being introduced, which can eliminate the need for the 
collection of larger input datasets altogether, especially for applications 
where data collection is a long, dif昀椀cult, and exhaustive process. 
Furthermore, by combining AI-based models with high-performance 
computational approaches, ef昀椀cient screening methods, and evolu-
tionary algorithms, we can perceive signi昀椀cant advancement in mate-
rials research in the near future [277–279].

In conclusion, the advancement of ML algorithms in fuel cells and 
electrolyzers is currently evolving, presenting numerous research op-
portunities, particularly in exploring data-driven degradation mecha-
nisms with focus on internal interactions between MEA parameters and 
RUL, as well as the study of defect detection, phase segmentation.

5. Conclusions

The presented paper offers a comprehensive discussion on the 
introduction and application of AI, particularly ML and DL, within 
material science and engineering, with a special focus on energy systems 

like fuel cells and electrolyzers. The advancement of ML algorithms in 
fuel cells and electrolyzers is evolving rapidly, presenting numerous 
research opportunities, particularly in exploring data-driven degrada-
tion mechanisms with a focus on internal interactions between MEA 
parameters and durability, as well as the study of defect detection and 
phase segmentation. The need for processing large, complex datasets 
ef昀椀ciently and automating experimental selection processes is a central 
challenge for researchers in these 昀椀elds and an area where AI, ML, and 
DL can offer a signi昀椀cant contribution. Hence, the paper discusses how 
innovative AI-based algorithms predict and optimize material behavior 
in these high-demand applications. It highlights how AI techniques like 
support vector machines, gradient-boosting, and recurrent neural net-
works help improve the accuracy and ef昀椀ciency of predicting material 
degradation and lifespan. Additionally, model interpretability offers 
insights into critical parameters affecting material performance. The 
application of AI, especially ML models, has shown immense potential in 
expediting the materials discovery process and optimizing designs for 
speci昀椀c needs in these PEM-based systems. For example, algorithms like 
XGBoost and CNN-LSTM demonstrated high accuracy in predicting fuel 
cell and electrolyzer degradation with mean absolute errors (MAE) as 
low as 0.0002 and improved decision-making in material selection. 
These advancements allow for more ef昀椀cient material design and 
enhanced performance predictions, crucial for energy sustainability. 
The future research scope includes developing AI models that require 
smaller datasets, making AI accessible for resource-limited applications. 
Integrating AI with advanced computational techniques, such as 
evolutionary algorithms, is expected to further revolutionize materials 
research by offering faster, more accurate predictions. Thus, collec-
tively, these advancements mark signi昀椀cant strides in materials science 
and clean energy technologies’ progression.
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Table 2 (continued )
Case study Energy 

device
Cell con昀椀guration Data source/Test 

duration
Data 昀椀ltering 
method

ML method Model accuracy Findings

Xu et al. 
[261]

PEMWE
-

Experimental Savitzky- 
Golay

CNN-LSTM Average absolute error 
Constant – 0.39 mV 
Start–stop – 2.1 × 10–2

The model performed better than 
GRU and LSTM with predicted 
RUL for constant and start-stop 
condition of 2550 h and 11,736 h 
respectively.

Lee et al. 
[80,268]

AWE AWE stack with are 
34.56 cm2

Experimental 
data, 480 h

Nil SVM and GPR RMSE for SVM and GPR is 
1.28 × 10–3 and 8.03 × 10–6 

respectively

Better performance of both 
models. However, the prediction 
capability on new data is low.
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[136] Odabaşı Ç, Yıldırım R. Machine learning analysis on stability of perovskite solar 
cells. Solar Energy Mater Solar Cells 2020;205(August 2019). https://doi.org/ 
10.1016/j.solmat.2019.110284.

[137] Stephan AK. The age of Li-ion batteries. Joule 2019;3(11):2583–4. https://doi. 
org/10.1016/j.joule.2019.11.004.

[138] He W, Williard N, Osterman M, Pecht M. Prognostics of lithium-ion batteries 
based on Dempster-Shafer theory and the Bayesian Monte Carlo method. J Power 
Sources 2011;196(23):10314–21. https://doi.org/10.1016/j. 
jpowsour.2011.08.040.

[139] Tang X, Liu K, Li K, Widanage WD, Kendrick E, Gao F. Recovering large-scale 
battery aging dataset with machine learning. Patterns 2021;2(8):100302. https:// 
doi.org/10.1016/j.patter.2021.100302.

[140] Al-Mashhadani R, et al. Deep learning methods for solar fault detection and 
classi昀椀cation: a review. Inf Sci Lett 2021;10(2):323–31. https://doi.org/ 
10.18576/isl/100213.

[141] Naik RR, Tiihonen A, Thapa J, Batali C, Sun S, Liu Z. Discovering the underlying 
equations governing perovskite solar-cell degradation using scienti昀椀c machine 
learning. NeurIPS 2020:1–8.

[142] R. Battiti, Y.D. Sergeyev, and D.E. Kvasov, Learning and intelligent optimization, vol. 
10556 LNCS. 2017. doi: 10.1007/978-3-319-69404-7_35.

[143] Xie T, Grossman JC. Crystal graph convolutional neural networks for an accurate 
and interpretable prediction of material properties. Phys Rev Lett 2018;120(14): 
145301. https://doi.org/10.1103/PhysRevLett.120.145301.
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