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HIGHLIGHTS

o Transformation of global technological developments by artificial intelligence (AI).
e Overview of Al fundamentals to enhance foundational understanding.

o Scope and status of Al research in materials science from discovery to optimization.
e Role of Al to characterize, fabricate, test and analyze fuel cells and electrolyzers.

e Challenges and future perspectives of Al in advancing clean energy technologies.

ARTICLE INFO ABSTRACT
Keywords: Artificial Intelligence (AI) has revolutionized technological development globally, delivering relatively more
Artificial Intelligence (AD) accurate and reliable solutions to critical challenges across various research domains. This impact is particularly

Machine Learning (ML)
Materials science
Electrochemical systems

notable within the field of materials science and engineering, where artificial intelligence has catalyzed the
discovery of new materials, enhanced design simulations, influenced process controls, and facilitated operational
analysis and predictions of material properties and behaviors. Consequently, these advancements have stream-

Fuel cells

Electrolyzers lined the synthesis, simulation, and processing procedures, leading to material optimization for diverse appli-
Proton Exchange Membrane Fuel Cells cations. A key area of interest within materials science is the development of hydrogen-based electrochemical
(PEMFCs) systems, such as fuel cells and electrolyzers, as clean energy solutions, known for their promising high energy

density and zero-emission operations. While artificial intelligence shows great potential in studying both fuel
cells and electrolyzers, existing literature often separates them, with a clear gap in comprehensive studies on
electrolyzers despite their similarities. This review aims to bridge that gap by providing an integrated overview
of artificial intelligence’s role in both technologies. This review begins by explaining the fundamental concepts of
artificial intelligence and introducing commonly used artificial intelligence-based algorithms in a simplified and
clearly comprehensible way, establishing a foundational knowledge base for further discussion. Subsequently, it
explores the role of artificial intelligence in materials science, highlighting the critical applications and drawing
on examples from recent literature to build on the discussion. The paper then examines how artificial intelligence
has propelled significant advancements in studying various types of fuel cells and electrolyzers, specifically
emphasizing proton exchange membrane (PEM) based systems. It thoroughly explores the artificial intelligence
tools and techniques for characterizing, manufacturing, testing, analyzing, and optimizing these systems.
Additionally, the review critically evaluates the current research landscape, pinpointing progress and prevailing
challenges. Through this thorough analysis, the review underscores the fundamental role of artificial intelligence
in advancing the generation and utilization of clean energy, illustrating its transformative potential in this area of
research.

* Corresponding author.
E-mail address: jasna.jankovic@uconn.edu (J. Jankovic).
! Both these authors contributed equally to this paper.

https://doi.org/10.1016/j.egyai.2024.100424

Available online 17 September 2024
2666-5468/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nec-nd/4.0/).


mailto:jasna.jankovic@uconn.edu
www.sciencedirect.com/science/journal/26665468
https://www.sciencedirect.com/journal/energy-and-ai
https://doi.org/10.1016/j.egyai.2024.100424

M. Batool et al.
1. Introduction

Technological advancement in the fields of science and engineering
nowadays is accompanied by the collection, handling, and analysis of
ever larger, more sophisticated, and complex data [1-3]. Such compli-
cated datasets are oftentimes too difficult or even impossible to process
manually or using conventional data processing approaches [4,5]. To
aid this process, artificial intelligence can be implemented. Artificial
intelligence (also referred to as AI) originates from the notion of
imparting the capability of “human-like thinking/intelligence” to com-
puters permitting them to analyze critical information and take appro-
priate problem-solving steps while evaluating their output with the
objective to learn from the process [6,7].

Al was initially theorized through fictional works during the first half
of the 20th century and the concept was later adopted and formally
recognized by scientists and mathematicians in the 1950s [8]. However,
from the conception to the actual implementation of the concept, it
faced many obstacles concerning social acceptance, financial feasibility,
technological capacity, and metacognitive accuracy [9,10]. However,
with the rapid progression in the field of computer sciences leading to
modern-day operating systems with improved problem-solving algo-
rithms, Al flourished [11,12].

In general, Al is divided into four different types based on its func-
tionality i.e., reactive, limited memory, theory of mind, and self-aware,
as shown in Fig. 1 [13].

Reactive Al is programmed to acquire a predictable outcome,
generating the same response to an identical situation each time, while
Limited Memory Al possesses the ability to learn from experience,
continually improving over time like neurons in the human brain.
Reactive and Limited Memory Al are the types that are most researched
these days, and most AI models available today are based on these two
types. Theory of Mind Al is still in the development stage and refers to
machines acquiring the capability of decision-making and emotional
intelligence like humans. The most advanced form of AI, which is to be
explored yet, is Self-awareness Al defined as machines achieving the
capability to not only judge and understand the mental and emotional
states of others, but also their own [14].

Nowadays, Al is broadly referred to as two important subsets: ma-
chine learning and deep learning [15]. Machine learning (ML) focuses
on performing specific tasks by utilizing available data through
continuous algorithmic optimization, while deep learning (DL) is a type
of advanced ML that consists of multiple layers of neural networks to
perform more complex tasks, reaching a logical conclusion on tasks
involving unstructured data and does not always require labeled data,
although labeled data is still commonly used for training [16]. The as-
sociation between Al and its subsets, ML and DL, can be explained using
the representation in Fig. 2 [17,18,19].

To realize Al in more depth, it is crucial to discuss some of the most
utilized AI techniques these days under the sub-classes of ML and DL.
The sub-classification of the most important types and algorithms in AI
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is given in Fig. 3 [21,22]. Traditional ML can be broadly divided into
four basic types, which are supervised, unsupervised, semi-supervised,
and reinforcement learning. However, DL encompassing advanced
techniques applicable across supervised, unsupervised, or hybrid
learning frameworks, is sometimes recognized as a distinct type of ML
[23].

1.1. Supervised learning

Supervised learning utilizes labeled datasets to train algorithms that
can be used for either data classification or prediction of results. These
models involve a cross-validation step to adjust the weight of the input
until an appropriate fitting is completed [24]. Supervised learning
models are based on mainly two sub-types: classification and regression
[25].

Classification is the type of supervised learning which categorizes the
input dataset into different classes based on the recognition of specific
characteristics of the dataset [26]. The most frequently used classifica-
tion algorithms include logistic regression, support vector machines
(SVM), decision trees, etc.

e Logistic regression is used to predict the probability of an event
occurring, providing results in a binary format. It is commonly
employed for binary classification problems [27].

e SVM algorithm is used to locate a hyperplane to categorize data

points in an n-dimensional space where ‘n’ refers to the number of

features [28].

Decision trees use different nodes where data is continuously split

according to certain parameters to predict the classification outcome

for a given input dataset. A collection of uncorrelated decision trees
referred to as random forest algorithm can also be used to generate

more accurate predictions with reduced variance [29,30].

The other type of supervised learning is regression, which involves
statistical approaches to identify the relationship between a dependent
target variable and one or more independent predictor variables. The
most common regression algorithms are linear regression and poly-
nomial regression [31].

e The linear regression model is based on predicting the best linear
fitting between a dependent and an independent variable [32].

e The polynomial regression algorithm involves modeling the rela-
tionship between a dependent target variable and an independent
predictor variable as an n degree polynomial [33].

1.2. Unsupervised learning
Unsupervised learning utilizes unlabeled datasets for identifying

patterns or data groups without any human intervention [34]. Unsu-
pervised learning models are based on three main types: clustering,
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Fig. 1. Types of AI depending upon functionalities. Reproduced with permission. Copyright 2020, Published by MDPI [13].



M. Batool et al.

dimensionality reduction, and anomaly detection [35].

Clustering is the type of unsupervised learning that groups unlabeled
data according to their similarities or differences [36]. The most used
algorithms of clustering are K-means and hierarchical clustering [37].

e K-means clustering categorizes ‘n’ observations into ‘k’ different
clusters and computes centroids by data averaging while performing
iterative calculations until optimal centroid stabilization has been
reached [38].

e Hierarchical clustering either uses agglomerative clustering i.e., re-
petitive iteration of initially isolated data points based on similarity
till a single cluster is achieved, or divisive clustering i.e., division of a
data cluster based on the differences between data points [39].

Dimensionality reduction is another type of unsupervised learning
which is specifically used when there are numerous features or di-
mensions associated with the input dataset and lowers the number of
data inputs while maintaining the dataset’s integrity [40]. The most
used dimensionality reduction algorithms include principal component
analysis (PCA) and independent component analysis (ICA) [41].

o The PCA algorithm generates a new representation of data identi-
fying the set of principal components through linear transformation
and is used to compress huge datasets through the extraction of
features [42].

e The ICA algorithm creates a new data representation by identifying
statistically independent components through linear transformation
and is employed to uncover hidden patterns, components, or sources
within complex datasets [43].

Anomaly detection is a separate type of unsupervised learning which

involves the identification of those data points or observations in the
input dataset that do not agree with the normal data patterns [44].

1.3. Semi-supervised learning

Semi-supervised learning utilizes both labeled data as well as
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unlabeled data for training models. Though, the amount of labeled data
involved is usually much less than the unlabeled data [45]. The
semi-supervised learning approach offers the advantages of both su-
pervised and unsupervised learning and is usually of two basic types:
Self-training models and low-density separation models.

Self-training models are initially trained with labeled data following
the supply of unlabeled data. The model then uses the labeled data to
categorize unlabeled data and iterates through the same steps until the
whole dataset is labeled while low-density separation models involve
finding a decision boundary separating different classes of labeled data
based on low and high-density regions [46,47].

1.4. Reinforcement learning

The reinforcement learning approach refers to the training of ML
models to reach the best possible outcome through an extended trial-
and-error method without the use of any labeled input [48]. Some
commonly utilized reinforcement algorithms include dynamic pro-
gramming and Monte Carlo methods.

Dynamic programming algorithm involves finding the optimal so-
lution for complex problems by subdividing them into smaller problems
while the Monte Carlo method involves learning only through repetitive
experiences and interactions with the environment [49,50].

1.5. Deep learning

DL is a subset of ML which is based on a network of more complex
algorithms called neural networks imitating the network of neurons in
the human brain [51]. DL can be both supervised and unsupervised as
well as a combination of both (hybrid). To ensure clarity and
acknowledge the unique architecture, attributes and capabilities of deep
learning, it is delineated as a distinct category in the machine learning
classification as presented in Fig. 3 [52,53].

The three common types of DL algorithms are convolutional neural
networks (CNNs), artificial neural networks (ANNs), and recurrent
neural networks (RNNs) [54].

CNNs utilize several artificial neuron layers involving mathematical

Deep Learning

Fig.. 2. The different subsets of Al Reproduced with permission, Copyright 2021, Published by MDPI [17-20].
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functions to process multiple inputs and produce output values which
are then fed to the next neuron layer as input until a decisive outcome is
achieved [55]. On the other hand, ANNSs are used to distinguish the class
of new observations on the training data basis, processing the observa-
tions one by one and learning by comparing their processed classifica-
tion to the definite known classification while RNNs only vary from
CNNs in the way that they can employ output from any preceding layer
of the neural network for sequential interpretation and optimization of
outcome [51].

2. Applications of Al in materials science

Such remarkable prospects of Al encouraged scientists to discover
and recognize many different avenues and aspects of research to which
Al could be applied to yield favorable results. In recent years, Al has
been successfully implemented in a plethora of applications across many
different sectors such as education, security, agriculture, technology,
healthcare, navigation, marketing, entertainment, research, etc.
[56-64]. In fact, research and development in various technologies and
engineering disciplines these days are contingent upon the continuous
evolution and implementation of innovative Al-based algorithms and
methodologies [65].

Likewise, materials development and optimization are the backbones
of all modern-day systems, which compelled researchers to explore and
utilize Al in the field of material science and engineering [66] [67],. In
general, materials scientists and engineers investigate and analyze cor-
relations between structure, processes, and properties at the micro- and
the nano-metric scale using a combination of high throughput experi-
mental and computational data. Therefore, the current bottleneck to
progress is not only limited by the processing of a wide range of infor-
mation and large datasets, but also by the automatic assessment and
critical problem-solving approach, which can aid in autonomous
experiment selection [68-70],. Therefore, as opposed to manual and
statistical data analysis, Al-based methods offer the advantage of not
only exponentially reducing the analysis time but also averting bias
during the decision-making process, leading to revolutionary progress in
materials discovery and optimization, which was previously not possible
[71-74].

Nowadays, ML is the branch of Al that is being explored and applied
for innovative research in materials science and engineering the most
[75]. Moreover, in the past few years, some promising DL models,
mainly for atomistic-level materials research, have also been introduced
[76]. A thorough literature survey on the utilization of Al, including ML
and DL, within the scope of materials science using Scopus, led to more
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than 35,000 research publications during the past 20 years. As shown in
Fig. 4, Al in materials research has become very active in the past 6 years
or so. Whereas Fig. 5 shows different applications to which ML- and
DL-based models have been applied in materials science. They are dis-
cussed in more detail below.

The development of innovative materials with the required charac-
teristics is a vital process for the development of advanced technologies
[77-81]Fig. 6.

The conventional methods of materials discovery and design i.e.,
experimental measurement and computational simulation, both involve
the requirement for a wide range of different high-performance equip-
ment, resources, experimental environments, and expertise, and hence
are very challenging and time-consuming procedures. However, with
the introduction of the Materials Genome Initiative (MGI), a huge ma-
terials dataset has been collected and shared to facilitate swifter mate-
rials discovery and design process [83]. Thus, ML with its superb
capability of handling and processing high dimensional data, such as
that accessible via MGI, can thereby be employed with success [76,78,
79]. Some of the examples of materials discovery using ML in
conjunction with MGI include materials discovery for thermoelectric
materials, metallic glasses, photocatalysts, prediction of staining cell
ability of dyes, and functional defect discovery for quantum informa-
tion, to name a few [84-88]. Some of the most common aspects of the
use of Al in material science for materials discovery are discussed below.

2.1. Materials prediction

Materials prediction refers to using ML models to forecast the
properties and behaviors of new materials based on their features,
compositions, structures, or any other characteristics. Materials pre-
diction helps in forecasting how a material might perform under
different conditions or different applications [89,90]. Numerous ML
models have been successfully employed for the discovery and predic-
tion of materials with distinctive properties [91,92]. One example of
such unique materials is ionic liquids (ILs), which are being explored due
to their promising properties of low vapor pressure, low flammability,
and recyclability as cleaner alternatives to conventional volatile organic
solvents [85]. However, the discovery of suitable ILs requires chemical
structure optimization for compatibility with desired applications. An
important class of ILs is guanidinium salts-based ILs, which were
researched by Carrera et al. [93], who employed an ML-based model
investigating quantitative structure-property relationships (QSPR) for
the prediction of new guanidinium ILs belonging to four different ionic
families, i.e., BPh*, Br’, I and CI" with melting points ranging from —76
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to 322 °C. The ML model was based on a counter-propagation neural
network (CPG NN), which carries out a non-linear projection of mo-
lecular structures facilitating 2D visualization of cationic structural
features and the anionic influence on melting point, giving a
multi-dimensional output. The study claimed that the model aided in the
discovery and prediction of six new salts, which were then experimen-
tally synthesized and tested, confirming the accuracy of the model. Fig. 7
shows the overview of the working of the CPG NN in the stated study.

In a similar study, Farrusseng et al. [94] used ML-based ANNs with a
genetic algorithm to predict new catalytic materials with improved
characteristics. The model implemented the QSPR approach using the
activity dataset comprising of unconverted to converted propane ratio
after reaction completion, type of oxidation products at five different
reaction temperatures for a large number of solid catalysts for the re-
action of propylene (C3Hg) oxidation to establish a relationship between
their catalytic performance and structure, composition, and surface
area. The study determined that the ML model could be successfully
used as a screening tool for identifying potential catalytic materials
before the actual synthesis and testing of a material by computing

desirability factor based on formation of preferred partial oxidation
products (e.g., acetone, propionaldehyde, acrolein, acrylic acid etc.).
One such catalytic material with a high desirability factor (~294) the
study predicted was a mixed oxide with 14% gallium and 16% niobium
supported on an oxide support (either SiO2, TiO2 or MgO). In another
study, Raccuglia et al. [95] discussed an ML-based approach consisting
of SVM algorithms for predicting outcome reactions of
inorganic-organic hybrid materials such as vanadium selenites from
organic amines for the potential synthesis and prediction of new and
better materials. The training dataset for the ML-based model was ac-
quired from various unsuccessful and failed hydrothermal synthesis
experiments. The study reported an 89% success rate with the ML
approach of accurate prediction of conditions necessary for the devel-
opment and synthesis of new inorganic-organic hybrid materials (e.g.
[CsH12N2]  [V305(Se03)3]-H20,[CeHoaN41 [VO(C204)  (SeO3)]2-2H20
etc.) far superior to any traditional approaches. An interesting study by
Meredig et al. [96] discussed the implementation of a combined
heuristic-ML framework on a large input dataset of calculations of
density functional theory (DFT) for the successful prediction of 4500
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thermally stable ternary compounds (AxByC,) out of 1.6 million different
compositions using their formation energies as the criteria for discovery.
A few examples of the ternary compound compositions, which the model
predicted and later confirmed by the DFT database-search crystal
structure prediction are given in Fig. 8.

2.2. Materials identification

ML models, usually with the help of classification and clustering
algorithms analyzing data patterns, can also aid in identifying existing
materials with the required properties and characteristics for a specific
application.

One such research is reported by Philips et al. [97] where an

Pa,0(SiO)

ML-based hierarchical pattern and shape recognition method was uti-
lized to automatically identify crystalline materials. The main inspira-
tion behind the study was the capability of ML-based models to process
complex and large datasets comprising visual molecular simulations of
2-D and 3-D Lennard-Jones-Gauss (LJG) systems and perform classifi-
cation of structural trends based on a small number of training data as
opposed to the limitations faced by computational and experimental
methods in crystal structure prediction. The study concluded that the
automated pattern analysis based on the analysis of peaks in radial
function detected structural trends with more accuracy than visual
comparison. ML has also been successfully employed to identify another
important group of materials i.e., thermoelectric materials. Thermo-
electric materials have gained attention since they allow direct
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Fig. 8. A few examples of thermodynamically stable ternary compounds as identified by a novel ML-based model. Reprinted with permission, Copyright 2014,

published by APS [96].
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conversion of thermal energy into electricity and can be implemented in
many heating and cooling applications [98]. A study by Parse et al. [99]
utilized a regression model to identify the best doping elements for
BiCuSeO compounds based on optimal Figure-of-Merit (ZT), a dimen-
sionless metric based on its thermal and electrical conductivity, oper-
ating temperature and voltage generated by a temperature difference as
shown in Fig. 9. The authors found the feature with highest importance
was the total number of unfilled electrons in electronic shells indicating
Si as best candidate because of its improved carrier mobility from
decreased carrier scattering.

Apart from thermoelectric materials, ML was successfully employed
to identify natural porous materials which are used as low-cost, green
adsorbents and catalysts. A study by Dico et al. [101] used extremely
randomized trees regressor algorithm to identify the best candidate for
acid catalysis from a dataset consisting of surface activity and
morphological properties of 9 different clay materials with different
grades of purity. The model achieved a validation accuracy of 0.943 in
terms of R, thereby facilitating the identification of optimal materials
for this application [101].

Similarly, using ML-based material identification and prediction
techniques, certain materials with properties of interest among fuel cells
and electrolyzer systems, such as electronic or ionic conductivity,
catalyst stability, catalytic activity, electrolytic compositions, etc., could
be identified or predicted, which could pave the way towards better
performing electrochemical systems, as discussed later in more details.

ML has also found numerous applications in the manufacturing of
different materials, especially for additive manufacturing (AM) of
metals. AM has gained enormous attention due to its applicability in the
fulfilling the emerging industrial demands and involves the layer by
layer three-dimensional (3D) deposition of metal to form parts for a
variety of different industries such as healthcare, automotive, marine,
aerospace, etc. [102]. Metal AM offers the advantage of producing
user-specific products with intricate structures, special features, and
optimized properties [102,103]. For an in-depth study of the various
types of additive manufacturing and their associated processes, readers
are directed to the detailed study by Raja et al. [103].

However, careful control of certain parameters related to the metals
(and metal alloys) AM process, such as the type of the printing process,
process variables (e.g., beam power, feed rate, heat treatment temper-
ature, scanning speed, etc.), is essential to prevent damage and vari-
ability in the properties and structure of the final part, increasing the
complexity of the whole process [104,105]. It is projected that the
challenges faced by metal AM can be addressed effectively by using
up-to-date mechanical models and ML. ML models, along with the
knowledge of metallurgy, can be employed to design, process, monitor,
and control the AM technique to yield the required results [106]. Some

(a) (b)

(Bi,0,)
insulating
layer

(Cu,Se)*
conducting
layer
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applications of ML-based metal AM are discussed below [102].
2.3. Design control

ML models have been successfully applied for AM where design
control is of utmost importance to the serviceability of the product, such
as in the fabrication of single crystal parts for metallic superalloys where
a proper control of melting and solidification procedure parameters is
necessary for achieving directional solidification and high-temperature
creep resistance. Accordingly, Weber et al. [107] introduced a multi-
scale modeling process based on ML to develop a parametrically ho-
mogenized crystal plasticity model (PHCPM) for Ni-based super-alloys.
ML-based techniques such as support vector regression, k-means clus-
tering, symbolic regression, and ANNs were applied at each develop-
ment stage of the PHCPM model development linking morphology and
mechanism of intragranular y - y’ microstructures to crystal plasticity
coefficients enabling efficient and precise image-based polycrystalline
microstructural simulations. In another study, Liu et al. [108] used an
ML-based divide-and-conquer self-adaptive (DCSA) model for successful
prediction of creep life of 266 different Ni-based single crystal superal-
loy samples keeping into consideration their composition, and heat
treatment process involved, stress and temperature testing. The DCSA
model was based on the automatic separation of alloys with different
creep mechanisms followed by a self-adaptive selection of the optimal
model as shown in Fig. 10.

ML-based models have also been used to manufacture metal AM
parts with site-specific properties (also referred to as functionally graded
materials (FGMs)) such as in the case of crankshafts and gearboxes
which require hard exteriors with soft internal cores. ML-based
manufacturing of site-specific AM metal parts is particularly useful as
it can help avoid defects and the formation of unwanted brittle phases
which can lead to mechanical failure. Such a type of ML-based model
was introduced and employed by Eliseeva et al. [109] involving
multi-dimensional mapping of compositions of unwanted phases in the
composition-temperature space followed by a robotics planning algo-
rithm predicting an appropriate compositional gradient path mini-
mizing the formation of unwanted brittle phases in additive
manufacturing of samples with the functional gradient of 316 L stainless
steel to pure chromium [109]. In a similar study, Rankouhi et al. [110]
implemented a multivariate Gaussian process-based ML algorithm for
effective estimation of optimal process parameters i.e. laser power, laser
speed and laser hatch spacing for AM of a 316L-Cu part with composi-
tional gradients using part density and surface roughness as input
parameters.

Doping BiCuSeO at Bi site

15 20
Predicted ZTnormalized

Fig. 9. (a) Crystal structure of BiCuSeO consisting of conducting (CuySes)?~ layer, insulating (Biy03)? layer and the dopant substituted at the Bi site. (b) Predicted
ZT normalized Values for the selected Big 9gAg 02CuSeO compounds, where A represents dopants shown on y-axis. Reprinted with permission, Copyright 2022, published
by MDPI [100].
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2.4. Process monitoring

ML has also been employed to help with in-process monitoring of
manufacturing of high-performance components not only limited to
metal AM [93]. For example, in a study by Denkana et al. [111], the
authors aimed to enhance the end quality of the machined workpieces of
friction-welded shaft materials (i.e., hybrid materials) by adaptation of
changing process parameters via in-process material identification
during the machining process. The reason for the continual alteration in
process parameters is due the change in material properties and chem-
ical compositions during machining leading to deviation of cutting edge
from the programmed tool path, changes in surface topography or
cutting-edge displacement due to edges build-up. The study assessed the
material monitoring quality of four different ML algorithms i.e., neural
networks, k-nearest neighbor (kNN) algorithm, SVM, and decision trees
by first training the algorithms on the dataset of signals measured for
tool turret vibration, cutting force, feed force and passive force, spindle
torque and motor current for each different composition of material
followed by experimental validation. The results showed that the kNN
algorithm showed the best performance for in-process material
identification.

Another application of ML is in materials processing (e.g., welding)
optimization through ML-aided data analysis, as described next. Nb-
bearing nickel-based superalloys such as Inconel 625, due to their
excellent anti-corrosive properties, have been widely implemented as a
weld overlay for carbon steel pipes used for offshore oil and gas trans-
port [112]. However, during the welding process, micro-segregation and
precipitation of secondary phases can lead to solidification cracking,
which reduces the alloy’s resistance to corrosion. Therefore, optimal
control of welding conditions during phase transformations is necessary
[113]. To analyze the phase transformations in such materials, ultra-
sound testing is usually employed, which involves processing and
analysis of a large dataset of backscattered ultrasound signals captured
by direct contact techniques. To tackle this problem, Vejdannik et al.
[114] used an independent component analysis (ICA) to reduce statis-
tical redundancy and a probabilistic neural network (PNN, a type of
ANN) for the classification of selected features from the backscattered
ultrasound signal data for successful automated in-process character-
ization of phase transformations kinetics. The study employed a bees
algorithm (a population-based search algorithm to find best solution to
an optimization problem) by selecting the smoothing parameters of
pattern neurons for computing the probability distributions of training
data for PNN. They concluded that, ICA components of cumulant co-
efficients of ultrasound signals with the optimized PNN yielded highest
average accuracy of 97% and 83.5% for thermally aged as-welded Nb
base alloy at 650 and 950 °C, respectively.

2.5. Quality control

ML can also be employed for checking for quality assurance and
control of the final part during the manufacturing step [115]. For
instance, Kwon et al. [116] reported the use of a neural network-based
classification model to investigate the effect of six different laser powers
in metal AM upon crack and pore formation in melt-pool images with a
classification failure rate of 1.1% for over 13,200 test images. The study
also concluded that the introduced model could also be effectively used
to locate deformation for non-destructive separation of defective
products.

It has been reported that the use of the laser power bed fusion (LPBF)
method during the AM of high-strength metals can induce defects such
as anisotropy and pores in the final part, which could be potentially
avoided by the use of ML-based algorithms. For example, Zhang et al.
[117] introduced two different ML-based approaches i.e.,
spatial-temporal  sparse dictionary learning (STSDL) and
spatial-temporal blind source separation (STBSS) to investigate the de-
fects in LPBF manufacturing of stainless steel 316 L and Inconel 718
using their thermography images as data input. Flash thermography is
commonly used for quality control of such parts but is prone to
non-consistent sample illumination and experimental and imaging
thermal noise which causes blurring of hot spots indicating defects. The
STBSS method involved de-noising of wavelet transform followed by
data decomposition using PCA and later defect separation by ICA. The
STSDL method involved denoising of wavelet transform followed by
data decomposition with sparse dictionary learning (SDL) method. The
methods were evaluated using a test accuracy indicator called F-score
and runtime of the execution and concluded that the STBSS method is
better suited for the detection of smaller defects while the STSDL method
is more suitable for finding larger defects and increased accuracy for
both methods is achievable through an increase in runtime [117]. In
another study, Wu et al. [118] successfully used a random forest-based
ML prediction model for determining the surface roughness with high
accuracy of the products manufactured by the fused deposition
modeling (FDM) manufacturing method [118].

ML algorithms have not only been successfully implemented for the
discovery and manufacturing of materials but also for evaluating the
performance and properties of developed materials [119]. Besides, in
situations or experiments where exact operating and experimental
conditions could not be anticipated beforehand, a detailed study of di-
agnostics and characterization data after being subjected to the actual
conditions becomes the best option to optimize the performance of the
material [120].

2.6. Performance assessment

Materials performance analysis via ML methods is being carried out
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for a wide range of applications these days. For example, it has been
recognized that the design of battery materials and their selection
greatly impact the performance of lithium-ion (Li-ion) batteries, but
owing to the complexity of design variables, the performance of batte-
ries is not easy to assess. Therefore, the use of the ML model based on
association rule mining (ARM) was proposed by Kilic et al. [121] to
study the effect of charging/discharging cycles and current on the per-
formance of lithium-sulfur batteries (Li-S) batteries. The study involved
the accumulation of performance data from 1660 different cells which
was processed by the ML-based ARM approach. The ARM method was
used to investigate the associations of numerous performance variables
with individual factors within the input dataset (including but not
limited to discharge current density, material of encapsulation, anode,
electrolyte, binder, type of current collector, separator, interlayer,
electrolyte to sulfur (E/S) ratio, etc.) and identify factors resulting in
high peak discharge capacity and superior cycle life ultimately leading
to improved battery performance. The study concluded that solid-state
carbon-based encapsulated cathodes with encapsulation material over
40% as well as binder and conductive-free encapsulated cathodes,
electrolyte materials with low electrolyte to sulfur (E/S) ratio, carbon
interlayers, and carbon current collectors all contribute towards
enhanced battery performance [121].

Metal-organic frameworks (MOFs) due to their inherent high inter-
stitial porosity are considered promising candidates for gas storage and
separation applications [122]. With the development and implementa-
tion of robust computational methods, a large amount of simulated
performance data for MOFs is easily available. However, the large
dataset of simulated data requires speedy interpretation and analysis
with high accuracy which can be facilitated by the application of ML
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algorithms. Different types of input descriptors can be used for ML-based
performance prediction of MOFs as shown in Fig. 11 [123].

This strategy was used by Fernandez et al. [124] to successfully
predict the methane storage capacity of MOFs using ML algorithms of
multilinear regression, decision trees, and non-linear SVMs based on
geometric descriptors data for MOFs.

Another important application of ML is the determination of the
thermoelectric performance of layered IV-V-VI semiconductors. Gan
et al. [125] utilized deep neural networks to predict the energy con-
version efficiency and optimum doping type (p or n-type) for a family of
layered IV-V-VI semiconductors at different temperatures from an input
dataset containing information about number of atoms, atomic and co-
valent radii, valence electronic configurations, electronegativities, lat-
tice constants average atomic mass, interatomic bond lengths, lattice
constants etc., for 40 different compounds investigated at different
temperatures (from 100 to 650 K). The study also compared the output
values predicted by the introduced ML method with the DFT calculated
values finding a ML prediction accuracy above 90%.

2.7. Characterization data analysis

Study of materials usually involves the use of a wide range of
advanced characterization techniques which results in a large dataset of
information that typically requires further processing for extracting
useful information [126]. ML models have been productively utilized to
analyze such materials characterization data and can help researchers to
correlate different microstructural descriptors and interactions to ma-
terial behaviors and properties [127].

An example of such an application is in the analysis of the weld heat-
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affected zone (HAZ), which plays an important role in determining the
quality of the welding procedure in metallurgy. HAZ is defined as the
area of the welded metal which does not melt but undergoes a significant
microstructural change due to high-temperature exposure [128].
Welding of austenitic steel also involves the formation of HAZ with
different microstructures due to formation of different phases, such as
ferrite, pearlite, bainite, and martensite, depending on different cooling
rates as well as cementite precipitation. The quantification of di-
mensions, morphology, and volume fraction of these phases is important
in predicting the mechanical properties of austenitic steel, but it is a long
and laborious process if done manually. Therefore, Bulgarevich et al.
[129] introduced an automated pattern recognition ML method via the
implementation of random forest algorithms for automated segmenta-
tion of different types of austenitic steel microstructures in a large set of
optical microscopy data. The study concluded that the developed
framework, in combination with appropriate image processing methods,
could be used as an accurate. In another study by Rettenburger et al.
[130], DL-based instance segmentation of particles was carried out to
predict particle sizes of powdered LiCoO, was trained on a dataset of 90
images and compared to segmentation results from a U-Net model
trained on the same dataset. The performance of the models was eval-
uated using Aggregated Jaccard Index (AJI+) which takes into account
the segmentation quality as well as localized segmentation accuracy.
The authors reported that the R-CNN model significantly outperformed
the U-net model by AJI+ of 0.81 vs. 0.55 for low magnification and AJI
of 0.51 vs. 0.34 at high magnifications, respectively (Fig. 12).

Another important application of ML is in the construction sector,
particularly in the research of supplementary cementitious materials
which can be used in conjunction with Portland cement (OPC) to
enhance the properties of concrete contributing to low-carbon footprint
and promoting sustainability [131,132]. Sui et al. [133] reported using
DL based approach to investigate the pore morphology of one of such
materials i.e. calcined limestone clay (LC3) using a dataset of scanning
electron microscopy (SEM) and micro-computed tomography
(micro-CT) images. The approach based on deep neural network (DNN)
architecture helped compare the connectivity of pores and solid parti-
cles, identify stress concentration regions and quantify packing fraction
in cured LC® compared to OPC sample which is vital for future material
design considerations. The authors reported that the increased physical
size of the images led to an increase in CNN classification accuracy
reaching ~ 74% and 96% for the micro-CT and SEM images, respectively
for images of 81.12 x 81.12 pm.
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2.8. Degradation studies

Machine learning has also been employed to study the effects of
materials degradation to better predict and understand failure mecha-
nisms and potentially avoid them in the future. Understanding materials
degradation mechanisms are, among others, particularly important for
research and development in clean energy applications such as fuel cells,
batteries, solar cells, etc. [134-136].

An example of application of ML in degradation studies in Li-ion
batteries is described below. While characterized as key energy stor-
age technology, Li-ion batteries suffer from a progressive loss in per-
formance due to the battery aging process. Accumulation of a large
quantity of aging data, vital for understanding involved material
degradation mechanisms, is also a challenging process because of the
long and extensive experimental procedures involved [137,138]. To
tackle these issues, Tang et al. [139] presented a unique approach of
combining accelerated aging test data with an industrial aging dataset
via a migration-based ML approach facilitating the acquisition of a
high-quality aging dataset that can be further employed for the

Recovering Large Scale Battery Ageing Data-
set by Fusing Experimental and Industrial Data
with Machine Learning
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Fig. 13. Overview of a unique method to recover large-scale battery aging
dataset with the help of ML. Reprinted with permission, Copyright 2021,
Published by Elsevier [139].
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degradation assessment of Li-ion batteries. The graphical overview of
the whole process is given in Fig. 13.

Another example focuses on perovskite solar cells degradation. These
cells have been explored due to their high performance and low-cost
solar energy generation. However, they consist of halide perovskite
materials that suffer from environmental instability preventing their
widespread commercialization. It is suggested that significant develop-
ment in perovskite-based technology can be made possible through the
examination of perovskite degradation data [140]. To address this
problem, Naik et al. [141] introduced a scientific ML approach
combining differential equation modeling with a sparse regression
model to correctly identify equations controlling the degradation of
methylammonium lead iodide perovskite (MAPI) with an error per-
centage of only 6%.

Since the ultimate aim of research in the field of materials science
and engineering is motivated by the development of novel materials
which can outperform conventional materials, ML-based models can
also assist with materials design optimization and experiment selection
at each stage of the materials development and implementation process
[142]. Similarly, since lifetime stability is a significant concern for all
types of fuel cells and electrolyzer technologies, necessitating thorough
microstructure and performance evaluations, ML could be particularly
useful in addressing these challenges, as discussed later.

2.9. Materials optimization

In the past, the process of material optimization was solely depen-
dent on a combination of materials physical and chemical properties
data and trial-and-error experimental procedures. However, with the
development of ML approaches and high-performance computational
techniques, the optimized designing of innovative materials has become
easier and more efficient. On this basis, a study is reported by Xie et al.
[143] which involved the development of a crystal graph CNN frame-
work possessing the ability to learn properties of materials from the
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atomic configuration of atoms in the crystal structure. The study stated
that the developed model provided DFT calculated properties for eight
different crystalline properties for inorganic crystalline materials of
various structures and compositions with high accuracy and can serve as
a basis for advanced materials design.

Simulations of molecular dynamics can also be used for the compu-
tational designing of new materials by providing a speculative percep-
tion of the microstructure of condensed-phase materials. However, these
atomistic simulations are difficult to achieve because of the complexity
of thermodynamic and kinetic phenomena in materials. To address this
issue, Wang et al. [144] introduced ML-based methods for optimization
of coarse-grained molecular modeling representation followed by deep
neural networks-based fitting of coarse-grained potentials acquired from
atomistic simulations to aid in the effective designing of materials.

2.10. Experiment selection

Progress in materials science had been led by experimental studies in
the past which were usually time-taking and required the use of
specialized equipment and numerous resources. Machine learning
combined with the design of experiments (DoE) approach can help with
the selection of experiments to facilitate materials optimization effi-
ciently as illustrated in Fig. 14 [145,146].

Particularly for research related to organic photovoltaic devices,
which involve numerous complex components and processing condi-
tions, experiment selection can be extremely helpful. One such study has
been reported by Kirkey et al. [147] that collectively employed DoE and
machine learning models for optimization of bulk heterojunction (BHJ)
layer in organic photovoltaic devices. The study involved the imple-
mentation of the DoE method on donor and acceptor ink solution con-
centrations and the temperature and duration of annealing used for the
synthesis of films followed by the use of SVM algorithms to identify the
optimal experimental parameters to ensure the development of
high-efficiency organic photovoltaics.
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Fig. 14. . The representation of the design of experiments (DoE) approach combined with the ML-based approach. Reprinted with permission, Copyright 2022,
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Electrical discharge machining (EDM) is an advanced material
removal process for generating complex contours with high accuracy.
EDM is a complex thermal process that can induce different micro-
structural changes and thermal stresses in the machined material
affecting the durability of the processed part. To prevent this problem,
Markopoulos et al. [148] employed an ANN model with a
back-propagation algorithm trained on a series of EDM experiments on
various steel grades using the pulse current, processed material, and
pulse duration as input parameters to predict surface roughness with
high precision, aiding the efficient selection of experiments.

Similarly to other systems discussed above, fuel cells and electro-
lyzers are currently the focus of intensive research to improve perfor-
mance and durability through the synthesis of new catalytic materials,
optimization of electrode composition and microstructure, and control
of the operating conditions. Traditional methods, such as design modi-
fications, trial-and-error synthesis, and prolonged durability testing, can
be both costly and resource-intensive. In this context, ML-based ap-
proaches offer a valuable alternative, potentially reducing the time,
material, and energy required for effective research and development.

Below, we will focus specifically on application of ML in fuel cells
and electrolyzers, two systems of our interest. As these devices share
common characteristics in their design and operations, the application
of ML to these devices can enhance performance prediction, service life
expectation, fault detection and design optimization. ML algorithms can
efficiently handle non-linear problems, as in the case of current-voltage
performance curves, thereby leading to improved accuracy in predicting
outcomes and optimizing design and operational parameters of these
devices.

3. Application of Machine Learning in fuel cells and
electrolyzers

Fuel cells and electrolyzers are clean energy, hydrogen-based, elec-
trochemical devices that have the potential to contribute to the reduc-
tion of carbon emission globally [149-151]. Electrolyzers are devices
that use electricity to electrochemically split water, generating
hydrogen [152,153]. Fuel cells, on the other hand, convert chemical
energy of hydrogen through electrochemical oxidation on the anode,
and oxygen reduction on the cathode, producing useful electrical energy
and only water (vapor) as a by-product [154,155]. If the energy supplied
to the electrolyzer comes from renewable systems, like solar [156,157],
hydro or wind [158,159], the produced hydrogen is considered green,
while produced energy in the fuel cell clean and renewable.

There are a number of different types of fuel cells and electrolyzers,
depending on the type of electrolyte used and operating conditions [160,
161]. Our main focus in this review will be proton exchange membrane
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(PEM) fuel cells (FCs) and water electrolyzers (WEs), although other
types will be discussed as well. Both fuel cells and electrolyzers are
crucial for advancing sustainable energy solutions, sharing many un-
derlying principles and challenges.

Despite these similarities, a clear discrepancy exists in the literature:
while numerous reviews focus on the application of Al in fuel cells, there
is a noticeable lack of similar studies on electrolyzers ], [162-167].
Moreover, there is an absence of comprehensive reviews that address
both technologies simultaneously. One reason for this disparity could be
that electrolyzer research is still in its early stages, whereas research on
fuel cells has been relatively consistent over the past decade. To better
understand this, a thorough literature survey was conducted using
Scopus to assess the overall status of research in fuel cells and electro-
lyzers over the past 20 years, with a specific focus on the use of Al,
including ML and DL in these technologies over the past 4 years. The
bibliometric data, presented in Fig. 15, reveals that Al applications in
both fuel cells and electrolyzers account for only a small fraction
(approximately 2%) of the total publications in these technologies.
Moreover, within this subset, Al-related research on electrolyzers con-
stitutes merely about 5% of the total Al-focused publications in the
combined fields of fuel cells and electrolyzers. This highlights the cur-
rent state of Al-related research within these domains and underscores
the need for a more integrated approach to reviewing Al applications
across both technologies. This paper aims to address this gap by
providing a comprehensive examination of AI's role in both fuel cells
and electrolyzers, offering insights into the current research landscape
and identifying areas that warrant further investigation.

The electrochemical reaction in both PEMFCs and WEs happens in
membrane electrode assemblies (MEA), consisted of a porous cathode
catalyst layer (CL) (typically platinum (Pt) nano-catalyst supported on
carbon nanoparticles, bonded by proton-conductive ionomer), porous
anode CL (similar composition in PEMFC, while containing Ir-based
catalyst in PEMWEs), bonded to a polymer electrolyte membrane.
Both MEAs contain additional layers for water and heat management
(gas diffusion layer (GDL), microporous layer (MPL) and porous trans-
port layer (PTL). Fig. 16 represents the illustration of a PEMFC MEA. The
major difference between the PEMWE and PEMFC MEA shown in Fig. 16
is the reverse electrochemical reaction that occurs both at the anode and
cathode side of the electrochemical setup. Materials composition,
microstructure and component distribution in MEAs, especially in the
catalyst layers, significantly affect the performance and durability of
these devices, having in mind that both PEM FCs and WEs are exposed to
harsh operating conditions during their lifetime (e.g., high voltages,
temperatures to 80-100 °C, corrosive environments).

Development of materials in these devices are in high need to meet
the demand for clean and sustainable energy generation. In developing
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these materials, their structural properties are of paramount importance
as they determine the device’s activity and efficiency [169-171]. In a
nutshell, current research focuses on enhancing catalyst materials,
improving membrane performance, extending durability and scaling up
production methods to make these technologies more commercially
viable ], [172-177]. However, challenges remain, including high costs
of platinum-based catalysts, membrane degradation, and limited oper-
ational lifetime under varying conditions. Despite these challenges,
PEMWESs and PEMFCs hold immense potential for applications in green
hydrogen production, clean transportation, aerospace, underwater ap-
plications and grid energy storage, offering pathways to reduce carbon
emissions and enhance energy security in the transition to a low-carbon
economy [178]. Several decades ago, multilevel computational methods
such as equivalent circuit, physics based, pseudo two-dimensional,
computational chemistry, quantum mechanics, molecular dynamics,
and many more, have been employed to understand materials either as a
standalone or composite systems for various application processes in
battery management systems, fuel cells and supercapacitors [179].
Widely used equivalent circuit models include Rint, Randles, Thevenin
and hysteresis models while physics-based models are based on elec-
trode theory, such as Bulter-Volmer equation [180-183]. However,
many of these methods are too idealistic and complex. Furthermore, the
cost of computing is high, limiting the scale-up of these approaches to
larger material volumes. As a result, it is imperative to find alternative
methods for understanding and developing efficient materials without
spending an inordinate amount of time developing them. During fuel
cell and electrolyzer operations, there exist sensors that collect data per
time based on several operating parameters such as humidity, pressure,
temperature, flow rates of reaction gases etc. The application of artificial
intelligence is crucial to monitoring and controlling these operating
conditions with the aim of achieving optimal performance. This is
achieved when an artificial intelligent system measures input data from
a sensor unit, generates a model for predicting and controlling perfor-
mance of the fuel cell/electrolyzers through the learning and analysis of
the collected data, compares the generated model with the data
measured in real time and diagnoses a state of the fuel cell/electrolyzer
stack, and generates a control signal for changing an operation condition
of the fuel cell stack; and a control unit which changes the operation
condition of the fuel cell stack according to the generated control signal.
Examples of these artificial intelligent systems include neural networks,
fuzzy logic and neural fuzzy [184,185]. Al and ML can help in this sense,
by employing the use of historical data in training, learning, identifying
patterns and predicting futuristic properties, problems and/or possibil-
ities of concepts/processes, which can significantly speed up the process
of understanding and development of fuel cells and electrolyzers
[186-188].

13

3.1. Application of ML algorithms for MEA and performance optimization

The structural makeup of MEAs in fuel cells and electrolyzers poses a
lot of challenges due to their design complexity and heterogeneous na-
ture. The right design of MEAs taking into account the electrode catalyst
loadings, ink formulation techniques, catalyst-electrolyte interface,
anode-membrane-cathode proton transport, transport of reactants in the
electrodes, GDL, PTL and current flow between the electrodes and cur-
rent collectors, are of great importance in determining the performance
of fuel cells and electrolyzers [189]. ML algorithms, such as ANN,
extreme gradient boost (XGBoost), KNN, random forest (RF), support
vector machine/regressor (SVM/SVR), logistic regression (LR) and
elastic net (EN), to mention just a few, can be used to predict and
optimize the performance of fuel cells and electrolyzers based on
compositional and structural parameters, and other MEA/system de-
scriptors. ML models combined with optimization algorithms, such as
genetic algorithm (GA), can further optimize the design and operating
parameters to achieve multiple optimization goals with high accuracy
and efficiency [190-194].

For example, Khajeh-Hosseini et al. [191] applied ANN to investigate
the influence of different CL structural parameters on the performance of
CL in PEMFCs. The authors developed an agglomerate model (see
Fig. 17a) based on laws governed by Fick’s law of diffusion and elec-
trochemical reaction equations to generate nine structural parameters
that are responsible for influencing the performance of CL. The struc-
tural parameters which include CL liquid saturation, ionomer film
thickness, catalyst agglomerate radius, Pt and carbon loading, mem-
brane composition, extent of GDL penetration into the CL, and CL
thickness were used as input parameters for the neural network to pre-
dict the activation overpotential associated with the electrochemical
cell. The researchers encountered challenges in establishing a direct
correlation between each independent physical property and output
parameter using ANN. To address these challenges, they applied a linear
superimposition approximation statical model to find these correlations,
revealing that increase in ionomer thickness, increase in Pt, and carbon
mass loadings, and GDL penetration into the CL impedes oxygen diffu-
sion into the CL due to less pores, thus increasing the activation po-
tential. On the other hand, large agglomerate radius allows for larger
pores and high oxygen diffusion coefficient which could ultimately
reduce the activation potential and hence increase the overall perfor-
mance of the cell. Despite these complexities, the neural network ach-
ieved a near-perfect correlation value of 0.8 with a mean square error of
0.0016, showcasing its effectiveness as a modeling tool, as shown in
Fig. 17c.

In another study by Wang et al. [195], the authors optimized the CL
composition of a PEMFC with ANN based on data generated from
computational fluid dynamics (CFD) agglomerate model. These
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composition parameters include Pt loading, Pt weight percentage, ion-
omer to carbon weight ratio (I/C), electrolyte volume of carbon, and Pt
and ionomer volume fraction, and porosity. Current density was used as
the output parameter. In their study, ANN model achieved a high ac-
curacy with correlation coefficient ®?» greater than 95% for both
training and validation data. With GA, the current density was opti-
mized from 2.1379 A/cm? to 2.1729 A/cm? The researchers went
further to optimize for the maximum current density using similar input
parameters but explored SVM coupled with GA for optimization pur-
poses. The R? for both the training and test data was found to be about
99% with an increase in power density after optimization from the
starting values of 1.2647 and 1.2473 W/cm?.

Zhang et al. [196] studied the influence of porous structure CL of
MEA on the cell performance of a high temperature (HT) PEMFC using
Monte Carlo method combined with Deep Neural Networks (DNN) and
gaussian regression model. The accuracy metrics explored for this study
were R? and root mean square error (RMSE). In their investigation, they
employed the Monte Carlo approach in combination with DNN and
Gaussian Process Regression (GPR) model to analyze the cell perfor-
mance based on 11 structural parameters. With the Monte Carlo method
approach, 11 porous structural layers were generated. These parameters
include the thickness of the anode and cathode GDL, the porosity of the
anode and cathode GDL, the thickness of the anode and cathode CL,
porosity of anode and cathode, the electrolyte volume fraction, and the
Pt content of the anode and cathode. These structural parameters were
used as input parameters to train the neural networks regression model,
which aimed to determine the optimal power density at different Pt
loadings. The R? performance of the DNN and GPR models was found to
be 0.9993 and 0.995, respectively. Their study revealed that as the Pt
loading is increased, the optimal GDL thickness and CL porosity
decrease. Furthermore, cathode MEA parameters have a greater impact
on cell performance than anode parameters. With bi-objective GA, these
parameters were optimized to achieve maximum power densities at 0.4
V and 0.6 V for platinum loadings of 0.3 mg/cm? and 0.5 mg/cm?
respectively.

Jienkulsawad et al. [190] applied ANN to determine the optimal
polyvinyl alcohol (PVA)/Pt compositional weights that would be
required as an additive to the cathode-side catalyst layer component of a
PEMFC. PVA is an additive that is added to membrane or catalyst layer
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of PEMFCs to enhance hydrophilicity in low humid environments during
operation. In their study, they predicted the PVC/Pt ratio that is suffi-
cient for the design of PEMFC catalyst layer using cell voltage (V),
current density (I), relative humidity (RH), and power density (P), I/V,
I/RH, V/RH, P/RH, PI, PV, IRH, VRH, and PRH as input parameters.
ANN based on Levenberge-Marquardt algorithm with first, second and
third hidden layers of 9, 8 and 9 nodes respectively was used for the
model development with root mean square error (RMSE) as an accuracy
metric to determine how good is the model. The researchers found that
ANN was able to predict the best PVA/Pt ratio in the CL with minimal
RMSE of 0.1293 and 0.031 for the predictions of Pt and PVA respec-
tively, even with the use of the hidden layers. Indeed, when applying
ANN to any ML task, the choice in the number of hidden layers used for
such task plays a significant role in achieving high accuracy. Too many
hidden layers in a neural network can slow down the training process.
However, this approach can improve accuracy if time complexity is not a
major concern. Furthermore, too many hidden layers in a neural
network model can result in overfitting of the training data causing the
model to struggle with effective generalization on the test data. As a
result, it is important that the training data is well analyzed to avoid
model inaccuracy.

Mohamed et al. [197] investigated the prediction of hydrogen pro-
duction rate and cell current density of PEMWE using ANN, PR, SVM,
KNN, Decision Trees. The first step of their investigation was to
construct a database consisting of 1203 experimental data (1086
assigned for training purposes and 117 for testing) and having fifteen
input variables that includes anode and cathode support (porous tita-
nium, titanium, porous carbon, 304 stainless steel and carbon plate),
membrane type (Nafion 115, Nafion 117, Nafion 112, and Nafion 110),
anode/cathode catalyst (e.g. Pt, Ir, Ru), anolyte/catholyte composition,
cell structure, electrode area, anode/cathode flow path area, voltage,
number of cells, power, water flow rate, and cell temperature. Secondly,
they used box and whisker plots as data analysis tools to get insights on
the distribution of some input parameters such as anode/cathode sup-
port type, membrane type, and anode/cathode catalysts that signifi-
cantly contribute to high current density. Their results showed that
configurations having —specifically, Nafion 115 and 117 membranes,
porous titanium for anode/cathode support, platinum and ruthenium for
anode catalyst, platinum for cathode catalyst, methanol for anolyte, and
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deionized water for catholyte — played a substantial role in achieving
high current density. Among the five ML algorithms studied, the ANN
exhibited superior performance in predicting both hydrogen production
rate and current density with the testing data mean squared error of
5.0006 and 0.04026 respectively.

To the best of our literature search, the use of box and whisker plots
as data analysis tool before the application of ML model is not often
reported in most publications of fuel cells and electrolyzers application.
However, these data analysis tools offer crucial insights into the re-
lationships between input and output parameters in data. Giinay et al.
[198] explored box and whisker plots prior to applying decision tree ML
to model the performance of PEMWE. This comprehensive methodology
not only deepens the understanding of the factors influencing PEMWE
performance, but also underscores the importance of integrating tradi-
tional statistical methods with advanced ML techniques for more robust
predictive modeling. In their study, 789 data points from 30 publica-
tions were collected and analyzed, revealing significant correlations
between cathode/anode support, catalyst mole fraction on support
surface, catalyst loading, operating temperature, and PEMWE perfor-
mance. The box and whisker data analysis identified that the most sig-
nificant elements contributing to high current densities for cathode and
anode supports, and cathode surface were carbon, Ti, and pure Pt,
respectively. This is attributed to the high electrochemical activity of
pure Pt, the stability of the Ti support, and the high surface area and
electrical conductivity of carbon. Following the statistical analysis, a
decision tree was employed to evaluate the feature importance
contributing to both current density and power density. The researchers
found that the most influential factors for current density were the nickel
(N1i) catalyst mole fraction on the cathode surface, the Ir mole fraction on
the anode surface, and the potential for operating conditions. For power
density, the most critical parameters were catalyst to support surface
ratio, Cobalt (Co) mole fraction on anode surface and operating
potential.

Another algorithm that has been used to study the influence of the
structural components on the performance of fuel cells and electrolyzers
is called the extreme gradient boost (XGBoost) algorithm. It is a
powerful ML technique that has proven effective in both regression and
classification tasks. This model combines the prediction of multiple
models for decision making with capacity to handle high dimensional
data [199]. For example, Uenishi and Imoto [200] investigated the
correlation between the physical properties of PEMFC catalyst layer and
generated voltage at low and high current density using XGBoost ML
method, and optimized the output with GA. The input features that were
used in training and testing the model were extracted from 99 MEAs
with varying physical properties from the carbon support, catalyst and
catalyst layer. The authors reported that the performance of the output
voltage at low current depends largely on the features extracted from
SEM cross-sectional image of the CL. These features include total pore
volume, pore diameter and surface area of carbon in the CLs. The re-
searchers found that the characteristics (e.g. image contrast representing
pore volume) generated from the SEM cross-sectional image are corre-
lated to the diffusion of oxygen in the CL. However, output voltage also
depends on the catalyst loading. The authors observed, however, that
the pore structure of the catalyst layer can be optimized for improved
performance without necessary increasing catalyst loading, lowering the
overall cost of production.

Zhang et al. [201] undertook a study utilizing ML, constructing a
database comprising 58 MEAs and 16 input features related to the MEA
fabrication (catalyst ink drying temperature, catalyst ink water content,
ink flow rate when coating, MEA hot-pressing time, cathode compres-
sion rate, anode PTL porosity, and MEA configuration) with 11,025 data
points. Employing regression tasks coupled with GA, they developed
machine learning models to optimize output voltage, utilizing algo-
rithms like ANN, XGBoost, AdaBoost, K-nearest neighbors, Random
Forest, SVR, and Elastic Net. Among these algorithms, XGBoost had the
highest R? value of 0.99926, leading to an optimized output voltage of
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1.83107 V and achieving a 67.9% improvement in computation effi-
ciency. XGBoost model is known to be a complex ML algorithm. Com-
plex ML models are prone to overfitting when applied to simple
problems and simple ML models are susceptible to underfitting in
complex tasks. While simpler ML models like linear regression and ridge
regression offer interpretability, complex ML models often function as
black boxes, hindering interpretability. To address the lack of model
interpretability in this work, the researchers applied the Shapley addi-
tive explanations (SHAP) method to rank features in order of their
importance, revealing that operating temperature, anode ionomer con-
tent, anode catalyst loading, membrane thickness, and MEA hot pressing
significantly influence output voltage. This underscores the importance
of employing interpretable methodologies to gain insights into
feature-output relationships, particularly in the optimization of elec-
trolyzers performance.

SHAP method is an explainable Al method that provides qualitative
insight into the interactions that exist between input features and pre-
dicted output feature(s). In Ding et al. [202] work, the SHAP method
was used to deduce relationships between 21 input MEA parameters and
performance (current density) of PEMWE. They explored 9 different ML
algorithms to predict and optimize the performance in terms of current
density and long-term durability of their fabricated MEAs. Of all the ML
methods used, gradient boost regression model in conjunction with GA
as an optimization tool was found to perform better with R2 of 0.943.
Even though a higher electrochemical activity results in high current
density, based on the interpretable capabilities of SHAP, their results
suggested that the catalyst loading for Ir and Pt values for anode and
cathode should not exceed 1.5 mg/cm? and 0.2 mg/cm? respectively.
For the I/C ratio, the results suggested that the optimal value should be
within 0.2-0.25 to avoid the possibility of proton conduction and oxy-
gen transfer resistances.

Using XGBoost algorithm, Lou et al. [193] investigated the structural
and compositional parameters of cathode CL of PEMFC with Pt loading,
Pt/C weight ratio, I/C weight ratio, Pt/C agglomerate size, Pt and carbon
radii, pore diameters, cathode CL thickness, and surface tension of CL as
input parameters. Their study utilizes a 2D, steady state physical model
as data source for the XGBoost ML task. Their study showed that out of
the 9 input features, the agglomerate radius greatly impacts the power
density of PEMFC, having a feature importance greater than 0.4. The
XGBoost algorithm was able to accurately predict the relationship be-
tween 9 input parameters and output power density parameter, with an
MSE greater than 0.95 and RMSE error less than 0.05. Subsequently
optimizing the Pt loading with GA, the researchers achieved 28%
reduction in Pt loading without a decrease in performance of the
PEMEC.

The application of SVM algorithm for predicting and optimizing
structural components of fuel cells and electrolyzers cannot be over-
emphasized. SVM algorithm can be used for both regression and clas-
sification tasks. SVM works by finding the best hyperplane, or dividing
line, in a high-dimensional space that either separates different classes of
data or predicts values with minimal error. Although SVM is known as a
complex model, it can give good results even when working with small
datasets, thereby finding a good balance between complexity and sam-
ple size [203]. For example, Wang et al. [194] explored the support
vector machine model to predict the optimal catalyst layer compositions
capable of generating maximum power density in PEMFCs. In their
work, as shown in Fig. 18, the authors simulated the current density of
PEMFCs under different output voltages and catalyst layer compositions,
such as the Pt loading, Pt/C and I/C ratios, using a 3D CFD based
agglomerate model and subsequently applied GA to determine the
optimal catalyst composition for the PEMFC. The data generated from
the CFD model was used as an input parameter for the SVM model
development, achieving an R? accuracy of 0.9908 with approximately
3% as the mean percentage error (MPE). After optimization with GA, it
was found that percentage error between the SVM prediction and the 3D
CFD simulation of the maximum power densities under the optimal CL
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Fig. 18. (a) CFD model design used for PEMFC performance simulation. SVM predicted and simulated current density of (b) training set and (c) test set. (d)
Optimization result of the maximum power density by GA. Reprinted with permission, Copyright 2020, Published by Elsevier [194].

composition was only 1.3950 % indicating that SVM could potentially
predict and optimize CL composition and structural parameters of
PEMFC and by extension to electrolyzers.

Arjmandi et al. [204] studied the parameters that affect the anode
side catalyst of a PEMWE using linear regression, decision tree, and
SVM. The researchers used two different data named Datal and Data2
for this study. Datal consists of current density, water feed rate, catalyst
loadings and high frequency resistance of the anode, while Data2
focused on the characteristics of the PTL that includes the average pore
diameter, average grain diameter, area surface porosity, average
porosity and permeability. The combination of these data was used to
make informed decisions on appropriate PTL types based on their
characteristics and experimental performances. From their study, they
deduced that performance of the linear regression model declines upon
the addition of more data points, suggesting the non-flexibility of the
model albeit a simple model. Moreover, the SVM exhibited higher ac-
curacy with increasing data points, indicating its ability to handle more
complex relationships within the dataset compared to linear regression.
For decision tree model, different hyperparameter tuning of maximum
depths 1, 2, 3 and 4 for modeling the algorithm were used. The
maximum depth corresponds to the level of complexity and intricacy of
the decision tree model, with higher depths allowing for more detailed
splits in the data to capture finer patterns and relationships. It was found
that an accuracy of 100% was achieved with a maximum depth of 4,
showcasing the model’s capability to capture intricate patterns within
the dataset. Additionally, the decision tree model demonstrated
robustness against overfitting, as evidenced by consistent performance
across different depths during hyperparameter tuning.

Ali et al. [205] also focused on the anode side catalyst in PEMWE,
specifically predicting the performance and durability of PEMWE using
SVR, SVR-GA and ANN. The influencing parameters such as operating
temperature, PTL pore diameters, and catalyst loading of three anode
catalysts (Ir-black, IrO2 and Ir0.7 Ru0.30x) were derived from experi-
mental studies of existing literatures [206] [207], [208], [209],. For the
three catalysts datasets, temperature ranging between 30 and 90 °C and
current density were used as the input features, and cell potential as the
output feature. Their results indicated that the ANN has the capacity to
predict the PEMWE behavior of Ir-black and IrO2 with R2 of 0.999228
and 0.998646 respectively. On the other hand, SVR-GA showed effec-
tiveness in modelling the PEMWE behavior of Ir0.7 Ru0.30x when its
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hyperparameters are tuned. This highlights the importance of
fine-tuning model parameters to optimize predictive accuracy when
modeling PEMWE behavior. The researchers noted that the performance
of ANN on catalyst Ir-black and IrO2 could be attributed to the large
sample size of data collected as compared with smaller sample size of
data used to model Ir0.7 Ru0.30x. This suggests that increasing the size
of the dataset could potentially enhance the predictive capabilities of the
ANN models for various catalyst materials. However, SVR/SVR-GA
models are quite flexible in handling nonlinear relationships and may
offer an alternative approach for modeling PEMWE behavior, especially
when dealing with smaller datasets.

In concluding this session, the application of ML is a useful approach
in predicting the performance and optimizing structural parameters of
fuel cell and electrolyzers. Several key takeaways can be concluded: (i)
The choice of model depends on the data complexity; (ii) Complex data
requires complex models for generalization; (iii) When complex models
are used, interpretability of the model is important and can be achieved
with sensitivity analysis such as Pearson correlation. Other interpret-
ability methods include SHAP and PDP.

3.2. Application of ML algorithms in image segmentation for analysis of
fuel cells and electrolyzers

Structural analysis of the materials and different layers in the PEM
FCs, WEs (e.g. catalysts, CL, GDL, PTL, etc.), and solid oxide fuel cells
(SOFCs) are of crucial importance in understanding their effect on per-
formance and durability. While significant attention has been given to
PEMFCs and PEMWE:s in previous sessions, it is noteworthy to empha-
size the importance of SOFCs in this session. Like PEMFCs and PEMWEs,
SOFC is composed of complex porous anode and cathode electrode
structure which determines its electrochemical performance. The anode,
cathode and electrolyte structures often made of ceramic-metal com-
posite, mixed oxides and stabilized zirconia respectfully require optimal
design for a highly efficient performance especially when operated at
elevated temperatures (600-1000 °C) [210]. Over the years, researchers
have relied on the use of manual approach to extract information from
microstructure of these electrochemical devices. Usually, this process is
laborious, time-consuming, and prone to human inconsistency. The
application of DL, a subset of ML that applies algorithms which mimic
the structure and function of the human brain to learn and make
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predictions based on data supplied, can be used to automate this process.
The success of DL in image processing could be attributed to its ability to
identify, learn, and extract complex features from images using CNN,
DNN, and RNN [211]. A DL approach that helps to analyze, understand,
and recognize patterns in images is known as computer vision [212]. In
fuel cells and electrolyzers, DL has been applied to identify and segment
microstructural images captured from transmission electron microscope
(TEM), focused ion beam-scanning electron microscopy (FIB-SEM) and
X-ray computed tomography (XCT) images. This section will discuss
various applications of deep learning for image segmentation of fuel
cells and electrolyzers.

Phase segmentation. Phase segmentation is the process of dividing
an image into distinct regions of similar morphological properties.
Traditional methods such as Watershed and Weka segmentation
methods have been used to extract valuable information from materials
microstructure [213]. As stated earlier, DL algorithms are suitable to
achieve phase segmentation of components of fuel cells and electro-
lyzers. For example, Liu et al. [192] demonstrated the application of
Deeplab DL architecture to distinctly segment FIB images containing
pore and carbon black phases in the CL of PEMFC. The Deeplab archi-
tecture works by extracting dense features of an image and uses char-
acteristics of the image to improve segmentation accuracy.
Subsequently, they applied a deep convolutional generative adversarial
network (DCGAN) DL algorithm to generate artificial 2D microstruc-
tures from the originally segmented 600 images and reconstruct them
into 3D form as shown in Fig. 19. The DCGAN algorithm comprises of
the generator and discriminator models. It works by generating artificial
images during training process and subsequently deceives the discrim-
inator model that the image generated is real while making the
discriminator model get better at classifying artificial and real images.
From 3D reconstructed images, the researchers found that the porosity
significantly affects the diffusion of oxygen within the CL and that
applying spherical linear interpolation of DCGAN, better 3D images
were produced with good diffusion coefficients as compared to linear
interpolation.

(a)
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In another study, Hwang et al. [214], applied Deeplabv3+ DL al-
gorithm in combination with stereological analytical approach to
semantically segment and quantify a 3-phase microstructure consisting
of Gd203-doped CeO2 (GDC), La0.6Sr0.4Co03-5 (LSC) and pores in a
cathode composite material of a SOFC. Deeplabv3+ algorithm is an al-
gorithm built on the Deeplab architecture that utilizes CNN in
conjunction with atrous spatial pyramid pooling to classify each pixel of
an image into a category and distinctly segment objects within the image
while the stereological analysis allows for the quantification of volume,
shape and surface area of complex 2D images without necessarily un-
dergoing 3D reconstruction. In their work, they quantified the area of
catalyst agglomerates occupied, compared to the total area, mean
intercept length, and interconnectivity of the 3 phases. A total of 49
FIB-SEM images were explored for this segmentation study with 40 of
the images trained as the ground truth and 9 images used for testing.
Although the dataset was small for a deep learning task, the authors
accurately segmented the 3-phase microstructure with the blue area as
GDC, green as LSC and red as the pores shown in Fig. 20b and c.
Comparing their prediction with the ground truth obtained from image
processing, they achieved a high mean Intersection over Union (mIoU)
accuracy of 0.7 suggesting the potential applications of this algorithm to
automatically segment different microstructural composition of a 2D
image and more importantly its application in fuel cells and
electrolyzers.

The authors went further to explore the utilization of the same
Deeplabv3+ algorithm to segment the microstructural components of
Ni/Y20s-stabilized ZrO, (Ni/YSZ) anodes of a SOFC using 120 image
datasets from FIB-SEM. The segmentation of these phases assisted in
quantifying the intercept lengths, volume fractions, and inter-
connectivity of constituent phases. In their result, they achieved an
mloU accuracy of 0.87, an accuracy scores greater than their previous
study. This better performance could be attributed to 120 images used in
this study as compared to their previous work as this provides the al-
gorithm to opportunity to learn on a large and diverse dataset. Further
validation of their segmentation with pixel-based matching method, a

2048 nm

Fig. 19. (a) 2D FIB-SEM image (left), segmented image with Deeplab (middle) and generated microstructure by DCGAN (right) wherein the black phases represent
carbon black and the white indicate pores; (b) 3D reconstruction from 2D continuous sectional slice images. Reprinted with permission, Copyright 2022, Published by

Elsevier [192].
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Fig. 20. (a) DL-assisted flow process for semantic segmentation of solid oxide fuel cells (b) Test images for validating the deep learning method and, (c) Obtained
deep learning images (left) and ground truth obtained from image processing (right). Blue areas are GDC, green areas are LSC, and red areas are pores. Reprinted with

permission, Copyright 2020, Published by Elsevier [214].

process that quantifies the degree of accuracy between the predicted
segmented images and ground truth, yielded accuracies ranging be-
tween 0.919 to 0.957. The authors noted that factors such as undesired
artifacts, unavoidable curtain effects, charging effects, and unclear
interphase boundaries from FIB-SEM could negatively impact the pre-
diction performance of the algorithm. This implies that if the ground
truths (training images) are not well prepared, incorrect identification
and classification of microstructural phases is bound to occur [215].

Another DL algorithm that has been widely used for semantic seg-
mentation tasks is UNet architecture. The UNet architecture is a type of
CNN that was initially designed for segmentation of biomedical images
but has now gained prominence in segmentation of microstructural
components of metals, rock, fuel cells, and electrolyzers. The architec-
ture consists of a downsampling and upsampling path as shown in
Fig. 21. The downsampling path reduces spatial dimensions of the im-
ages captured but increases the depth of the feature maps. On the other
hand, the upsampling path ensures the recovery of the reduced spatial
dimensions of image by increasing the resolution of features maps to
enable precise localization, which implies accurate segmentation.

For instance, Rena et al. [217] applied the conventional
encoder-decoder and UNet algorithms to segment Ni and YSZ phases in
SOFCs from low resolution laser microscope images capture in an
operando situation. With these algorithms, they calculated the phase
fractions and triple phase boundary (TPB) of the phases. In their work, it
was observed that the two algorithms were able to segment these phases.
However, tiny microstructural details of each phase were lost due to the
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low resolution of the laser microscope as seen Fig. 22. To improve the
resolution, pix2pix GAN architecture was explored to convert low res-
olution laser microscope images to an SEM-like images with high reso-
lution. It was deduced that the segmentation of low-resolution images
can be attained through the utilization of UNet architecture, yielding
outcomes that closely approximate the ground truth. However, for a
more accurate prediction and analysis of the phases, it was necessary to
enhance the image resolution using the pix2pix GAN DL algorithm, with
the performances of the conventional encoder-decoder, UNet, and
pix2pix architectures as 0.867, 0.889, and 0.897 respectively.

It is widely known that the performance of fuel cells and electro-
lyzers rely strongly on the microstructural properties of GDLs and PTLs
respectively. These properties include pore size, tortuosity, GDL thick-
ness, fiber diameter, porosity, etc. [218]. Previous studies have shown
that the increased porosity of GDLs and PTLs results in better perfor-
mance of these electrochemical devices [219,220]. The ability to
quantitively measure these physical properties can give insight to the
mass transport properties or diffusion behavior as the reactant species
(hydrogen and oxygen) pass through the GDL/PTL to the catalyst layers.
Mehdi et al. [221] investigated the fluid flow mechanism that occurs in a
GDL having varying percentages (5, 20, 40, and 60 wt%) of coated hy-
drophobic polytetrafluoroethylene (PTFE). In order to study these
mechanisms, they utilized 2D and 3D UNet DL algorithms to segment the
water, air, and PTFE coated fiber phases of the GDL component from
X-ray computed tomography (XCT) images. The outcomes obtained
from the DL algorithms were compared to the traditional Watershed and
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Fig. 21. Representation of a UNet architecture. Reprinted with permission, Copyright 2021, Published by Elsevier [216].
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Fig. 22. (a) Conventional encoder-decoder network (b) U-net with encoder-decoder network (c) Low resolution laser image (top-left), ground truth segmented image
(top-middle), segmented images with conventional encoder-decoder network (bottom-left) and segmented images with UNet with encoder-decoder (bottom-middle),
high resolution SEM image (top-right), pix2pix GAN output (bottom-right). Reprinted with permission, Copyright 2021, Published by IOP Publishing [217].

Weka segmentation process, which is commonly employed for phase
segmentation. The results indicated that both DL algorithms effectively
classified the three phases, with the 3D UNet algorithm demonstrating
superior performance compared to the 2D UNet, Watershed and Weka
segmentation methods. This distinction can be observed in Fig. 23c,
which visually represents the discrepancies captured by each segmen-
tation process. The 3D model’s performance is reflected in higher
Intersection over Union (IoU) values and F1-scores when compared to
the 2D model, indicating a more precise segmentation of the different
phases within the GDLs. While UNet algorithm has the capability to
capture intricate information from XCT images, it has been found that
the performance of U-Net model degrades when the network is too deep
[222].

In order to mitigate this challenge, the U-ResNet model that com-
bines the long skip feature connection of the U-Net architecture and the
short residual bock of the RestNet architecture that preserve shallow
domain information in images has been developed for efficient seg-
mentation of materials which offers better performance than each of the
standalone models. For instance, Tang et al. [223] classified specific
features such as carbon fibers, void, MPL, CL, membrane, and binder
phases of a PEMFC GDL using grayscale, manual and U-ResNet seg-
mentation methods. 19 XCT high quality slices cropped of 128 by 128
pixels were used for the study. The training data used 70% of the data
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(slices) and the rest were used for assessing the performance of the
model. In their study, the U-ResNet architecture could detect and clas-
sify different phases of the GDL structure. However, the grayscale
method inaccurately classified the phases due to differences in pixel
intensity while the manual segmentation method over-segmented the
GDL due to the variation in contrast of MPL, CL and membrane layers as
a function of material density (see Fig. 24).

The advantage of the U-RestNet model is its ability to segment in-
terfaces bordering the fuel cell MPL, CL and membrane layers, which is
an enormous task with manual segmentation. This could be attributed to
the additional residual connections which help in addressing the van-
ishing gradient problem, allowing for the training of deeper networks by
enabling the flow of gradients through the network more effectively. As
previously discussed, improving the resolution of images captured from
XCT, SEM, TEM, and other microscopy techniques enhances the accu-
rate segmentation of phases. With low resolution images, critical com-
ponents of a MPL and GDL will be inaccurately segmented leading to
inaccurate physical representation of phases. Wang et al. [224]
employed the dual enhanced deep super-resolution (DualEDSR) DL al-
gorithm to improve the resolution of their XCT images (see Fig. 25b) and
then subsequently apply the U-ResNet DL architecture to segment voids,
fibers with different orientation (parallel or perpendicular), CL, MPL and
membrane as seen in Fig. 25c. This high segmentation accuracy,
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Fig. 23. (a) Process flow for DL development (b) 2D UNet architecture (c) Comparison between trainable Weka and the U-Net 2D network performance with blue,
red, and green colours representing water, air, and fibre phases respectively. Color back in column four depicts zero differences. Comparison between U-Net 3D
network, trainable Weka, and watershed segmentation for identification of (d) water (e) fibres and (f) air in the GDL images. Reprinted with permission, Copyright

2023, Published by Elsevier [221].
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Fig. 24. (a) U-ResNet architecture (b) manual grey scale image segmentation (top-left to top-right) and U-ResNet image segmentation (bottom-left to bottom-right).
Reprinted with permission, Copyright 2022, Published by Elsevier [223].
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Fig. 25. PEMFC images acquired from a micro-CT (a) full field low-resolution image @ 2.8 pm (top), subsection of low resolution (bottom-left), subsection of high
resolution from DualEDSR algorithm (botto-right), (b) process flow of DualEDSR algorithm and (c) U-ResNet architecture with parallel fiber, perpendicular fiber,
void, microporous layer, catalyst layer, and membrane segmented as blue, green, grey, yellow, pick and pale blue colors respectively. Reprinted with permission,
Copyright 2023, Published by Springer Nature [224].

quantified at 93% for most phases and 86% for the membrane, was architecture combined with StarDist, an algorithm that identifies
crucial for the subsequent heterogeneity analysis and flow simulation. densely packed and overlapped objects for the particle segmentation

In their subsequent study, they classified CL ink images using two process. The DL pipeline involves the annotation of TEM images of the
different CNN architectures. The first CNN architecture was built from CL containing Pt nanoparticles, segmentation of the TEM images into
scratch as a custom network while mini-VGG, a pre-trained model was different phases, diameter measurement of segmented particles and
explored as the second CNN architecture for their study. The first CNN statistical visualization of particulate distribution within the catalyst
architecture was observed to be shallow and could only achieve a low layers. 40 images with varying diameters (10 nm, 20 nm, 50 nm and 100
validation score of 0.25. The low validation suggested the simplicity of nm) were employed in the training process to achieve robust model
the model as it was built having limited convolution layers. In order to development. Their method yielded a high accuracy of 86% compared to
improve on this accuracy, min-VGG architecture was explored to extract manual measurements, with the ability to classify, detect and auto-
features from the images, which were then used to train a logistic matically measure the particle size distribution of Pt particles (see
regression model for classification task and thereby achieving an accu- Fig. 26). Saaim et al. [226] compared the performance of U-Net, with
racy of approximately 0.98. R2U-Net, Attention U-Net, BDC U-Net, U-Net++, U-Net 3+, Attention

Particle segmentation. The accurate quantification of the catalyst W-Net, and K-means clustering models to determine Pt particle sizes of a
particle sizes in fuel cells and electrolyzers is crucial in understanding PEMFC using 150 bright field TEM images containing approximately
the catalytic activity and stability of a CL which impacts the efficiency of 3629 Pt particles. They found that U-Net, R2U-Net, and U-Net++
the system. For instance, Colliard-Granero et al. [225] applied DL to demonstrated similar performance, while BDC U-Net showed reduced
segment, identify, and automate the particle size distribution of the Pt effectiveness, particularly in handling larger nanoparticles due to its

catalyst nanoparticles within the CL of PEMFCs. They employed U-Net Bi-ConvLSTM layer. Attention U-Net, despite its design to enhance

20
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Fig. 26. DL assisted Pt particles segmentation and particle size distribution analysis in TEM images of the catalyst layers in PEMFCs. Left: raw TEM image; Middle:
Annotated image using DL; Right: Particle size distribution results. Reprinted with permission, Copyright 2022, Published by RSC Publishing [225].

feature mixing, fell short of U-Net’s results. In unsupervised segmenta-
tion, Attention W-Net underperformed, missing many nanoparticles,
whereas K-means clustering was generally more reliable. U-Net 3+
outperformed all other methods, including traditional algorithms and
earlier U-Net variations, in terms of IoU, showcasing its superior ar-
chitecture for segmenting bright field TEM Pt nanoparticles. Table 1
shows the summary of all the accuracies of models explored in their
study.

Another application of DL for phase segmentation is the screening of
catalyst layer inks for PEMFC. Eslamibidgoli et al. [227] were the first to
use a DL architecture called ConVNets to automatically segment and
quantify the agglomerate size distribution in catalyst inks. The inks used
for their study were based on commercial Tanaka EA50, F50, and V50
catalysts with Nafion and Aquivion supports. These inks were imaged
with high resolution TEM and were used for training the ConVNets
model. Their first task was to annotate the imaged inks, and subse-
quently apply region-based object detection algorithm that could
effectively identify regions of the inks and enhance detection accuracy.
With the ConVNets architecture, features such as edges and other spatial
details were extracted from the images and fed into the convolution as
input parameters. A transfer learning approach using pre-trained model
was then implemented to fine-tune the ConVNets specifically for
detecting the unique characteristics of the catalyst inks, resulting in a
significant improvement in detection performance. Gradient-weighted
Class Activation Mapping (Grad-CAM) was then to visualize
segmented regions containing ink agglomerates. Based on the findings,
the ConVNets succesful segmented the catalyst ink having a F1-score of
not less than 99% for all the inks. They also observed that the V50 has
the largest agglomerates followed by the EA50 and F50.

Image-based defect detection of fuel cells and electrolyzers with DL.
In energy devices, the life cycle prediction needs to be evaluated to avoid
failure in service [228]. In fuel cells and electrolyzers, failure arises from
the inability of the system to adjust to electrical, temperature and
gas-delivering -time variation during operation. The inability for fuel

Table 1
Summary of models with 45 testing images [226].
Model Accuracy  Precision  Recall TPR IoU Dice
coefficient
U-Net 99.26 96.65 96.22 93.11 92.96 96.43
R2U-Net 99.27 96.42 96.56 93.20 92.92 96.48
Attention U- 99.16 97.41 94.47 92.14 91.95 95.91
Net
BDC U-Net 99.00 96.79 93.71 90.84 90.96 95.18
UNet+-+ 99.24 97.65 94.94 92.82 92.86 96.27
UNet 3+ 99.42 97.30 97.09 94.54 94.45 97.19
Attention W- 95.19 97.68 59.31 58.38 58.38 72.99
Net
K-means 96.95 87.42 82.65 73.87 80.66 84.97
clustering
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cell system to adjust under these conditions can lead to thermal shock,
the overrun of system temperature, or insufficient supply of fuel [229,
230]. As a result, the need to predict the state of health of a fuel cell
system using various ML algorithms is paramount to avoiding a cata-
strophic failure [231]. ML models have also aided the diagnosis of in-
ternal defects such as cracks, pin holes, and catalyst contamination. It
has also been explored for the diagnosis of external defects which in-
cludes failure of heating units, fuel, and air supply [232]. Defects are
characterized as a form of imperfections and abysmal pattern observed
in the CL or any part of a fuel cell/electrolyzers that can potentially
reduce the overall efficiency of the system. They can occur in interfaces
of materials used for electrode fabrication leading to cracks, agglomer-
ates, scratches, debris, scuffs, and delaminated surface [233-235], de-
fects in structural components [236], and pin holes in membranes [237].
Several approaches have been used to detect and evaluate forms of de-
fects that exist in fuel cells and electrolyzers. One of the main traditional
methods that have been used to detect defects in these systems is the
application of infrared thermography [238-242]. Infrared thermog-
raphy is a non-destructive technique approach for quality assurance or
in-line inspection of fabricated products in most industries. In fuel cells
and electrolyzers industry, it is used to detect anomalies by applying a
wide range of electromagnetic rays ranging from visible light to mi-
crowave (750 nm — 1 mm) on a material. Irregularities that cannot be
visually observed on material surfaces are scanned with the infrared
camera and documented. Other diagnostic methods explored in defect
detections of electrode materials in fuel cells and electrolyzers include
optical inspection, X-ray, and microscopy techniques. The optical tech-
niques include the use of optical cameras for visual defect detection,
X-ray fluorescence for catalyst loading and chemical compositions
measurements, while the microscopy techniques include the use of SEM
to visualize defects on film surfaces [243]. While these traditional
methods are good in detecting defects, they are compounded with the
limitation to acquire defects at a faster rate, ability to detect defects
during in-service roll to roll process, and the ability to cover large sur-
face area of materials. The use of object detection, also known as com-
puter vision, is a DL technique that helps identify localized information
in objects and videos. It goes beyond simple object classification and
helps provide a better understanding of the object in question. With
object detection, the images are first classified into different classes
called labels using image annotation tools and subsequently subjected to
training using DL algorithms. It is imperative to state that the adoption
of object detection in defect detection is promising and more impor-
tantly, it is a cost effective, and reliable technique [244].

Lu et al. [245] applied the use of computer vision in defect recog-
nition of ceramic chips used in high temperature solid oxide fuel cells.
Generally, object detection requires copious amounts of data for
training. Since there was limited amount of data of ceramic chips con-
taining defects, the researchers developed a system to physically acquire
these images containing defects (as shown in Fig. 27) for training and
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Fig. 27. (i) Various surface defects of acquired ceramic chips (ii) detected defects. Reprinted with permission, Copyright 2022, IEEE [245].

test purposes. Firstly, features from these ceramic chips were extracted
using feature extraction networks such as VGG-16, VGG-16+ FPN,
ResNet-50, ResNet-101. These networks are known for their ability to
extract high-level semantic information from small objects. Images
extracted from these networks were used as training data for the SSD,
YOLOVS5, Faster R-CNN and improved Faster R-CNN DL models. In their
study, an optimized version of the Faster R-CNN (improved Faster
R-CNN) model based on the VGG-16 feature extraction had better per-
formance of 89.39% than other models used in detecting breakage,
scratch, impurity, stains, and blow hole. The performance of the
improved Faster R-CNN was ascribed to the enhancement of the algo-
rithm through region of interest (ROI) pooling and, feature pyramid
networks (FPN). The utilization of ROI pooling presents the opportunity
to achieve accurate localization of objects across a wide range of image
scales. In addition, FPN detects objects of different sizes more accurately
by creating pyramids of feature maps. The selection of algorithms for
computer vision applications depends upon two competing factors.
These factors include the computational time and the pursuit of
achieving a high of model accuracy. For instance, when opting for al-
gorithms with the objective of achieving high accuracy, Faster R-CNN
and SDD present themselves as a great choice. On the other hand, YOLO
is excellent for achieving faster computational speed.

Yan et al. [246] investigated two DL techniques in identifying in-line
defect in PEMFC catalyst coated membrane (CCM) layers. The two al-
gorithms explored in this research are patch distribution modelling
(PaDiM) and Faster R-CNN DL algorithms, which focused on defects
such as scratches, scuffs, and pinholes. Faster RCNN and PaDiM are
supervised and unsupervised algorithms respectively that are used for
object detection and with capabilities of achieving high accuracy. In
their research optical images were used for labeling of defects while
model performances were evaluated using the leave-one-out cross--
validation (LOOCV). For PaDiM, the model performs better in identi-
fying pin holes than scratches and scuffs with more possibility of
detecting contaminations. However, Faster R-CNN could not detect faint
defects as PaDiM does. However, it classified defects into different types.
In the electrolyzers industry, the application of object detection in
detecting faults has not been explored to its full potential. Based on
literature search, the first research group that explored this technique
for identifying faults in electrolyzers is Zhu et al’s group [242]. They
applied the use of Mask R-CNN with ResNet-50 backbone network to
investigate the detection of faults on infrared captured electrolyzers
plates. A total of 2000 infrared images were used for the analysis of
which 1280, 320 and 400 datasets were used for training, validation and
testing, respectively. Three variations of Mask R-CNN were adopted for
the study which includes original Mask R-CNN, original Mask R-CNN
with bounding box (Mask R-CNN + G2-IoU) and improved Mask RCNN.
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The improved Mask RCNN had a better performance than the other
Mask RCNN algorithms with precision of 86.8% (10% higher than the
original Mask RCNN). The researchers demonstrated that the reason for
the better performance is attributed to the introduction of a globally
generalized intersection over union (G2-IoU) loss function. The G2-IoU
loss function improves object detection by accurately characterizing the
position and scale relationship between the predicted bounding box and
the target bounding box. It considers the coincidence rate, distance, and
scale relationship between the two boxes, leading to better detection
accuracy.

3.3. Application of ML algorithms in degradation studies

Widespread commercialization of electrochemical devices such as
fuel cells and electrolyzers are limited by their durability issues which
require extensive analysis of aging and degradation mechanisms now
possible through ML models [247]. With recurrent neural network
(RNN) machine learning algorithm, we can predict the performance
evolution also referred to as the remaining use life (RUL) and voltage
degradation of these devices based on the operating time and system
conditions without any dependence on complex modelling from phys-
ical laws and electrochemical equations [248-250]. A RNN is a form of
artificial neural network that processes input data recurrently and al-
lows output from one step to be fed back as input to the network at the
next time step thereby capturing dynamic relationships between input
and output data [251]. In a simpler term, it means that the input features
fed into system A produces output features and the output features from
system A now serves as an input feature into system B with the goal of
capturing dynamic relationships between the sequential input features
and final output. An example of RNN is echo state network (ESN), a
reservoir computing neural network known for its unique architecture
that randomly generate a reservoir with static internal weights and re-
places the hidden layer found in traditional neural networks, making it
computational cost-effective for degradation prediction as shown in
Fig. 28. The advantage of ESN is that the output layer of the network is
optimized by multiple linear regression [252].

A study by Vichard et al. [254] involved executing a 5000-hour
durability test on a PEMFC system to understand the performance evo-
lution, concluding that lower ambient temperature leads to better hu-
midification, ultimately resulting in lower voltage degradation rates.
While this PEMFC application was designed as a postal delivery vehicle,
the operation of fuel cells under ambient temperature is beneficial for
aerospace application [255]. In their study, the researchers segmented
the operating time for the durability test into 6 stages at different
operating time and temperatures for each stage. The operating ambient
temperatures for stages 1-6 are 20 °C, 30 °C, 20 °C, 7 °C,20°Cand 10 °C
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Fig. 28. The architecture of standard Echo State Network (ESN). Reprinted with permission, Copyright 2015, Published by MDPI [253].

respectively. For stage 1, the input parameter for the ESN network was
operating time and ambient temperature while the output parameter
was the initial degraded output voltage. Based on the working principles
of ESN model and its capabilities to predict non-linear relationships, the
output parameter of the initial step will serve as an input parameter for
other steps. In this case, the model has three input parameters that are
the output voltage of the previous step combined with the operating
time and ambient temperature current step serves as an input parameter
for subsequent steps. This data was then used as training in an ESN
model for output voltage degradation prediction- The study reported
that the developed degradation model showed promising results with a
low normalized RMSE value of 0.098 and computing time of 2 s. The
authors also addressed the significance of learning rate as a hyper-
parameter tuning in ESN for the prediction of voltage degradation. They
observed that the application of 33% and 60% learning rates resulted in
the prediction of the end of life of the PEMFC system to be about 3000 h
and 6000 h respectively. Morando et al. [256] developed an ageing al-
gorithm based on the combination of signal filtering and prognostic
analysis using ESN algorithm to predict the voltage degradation of
PEMFC. Firstly, the authors conducted an experiment to evaluate the
mean cell voltage of a PEMFC based on current density (constant load),
absolute pressure of air and Hj, operating temperature and cathode and
anode relative humidity parameters over a period of 1700 h. The output
signal (mean cell voltage) from these experiments was then filtered with
wavelet transform and preprocess with Hurst coefficient to ensure
temporal dependencies (relationship between data points) before used
as an input parameter into the ESN algorithm to forecast what the output
voltage of PEMFC will be at a given period. In their study, they achieved
good accuracy with a mean average percentage error (MAPE of less than
5% and also showing that the first 340 h of the data acquired under
constant load is sufficient to predict the degradation of fuel cells
(remaining use life) for at least 1000 h (6 weeks). Mezzi et al. [257]
proposed multi-reservoir ESN (MR-ESN) and classical ESN algorithm to
predict the cell voltage degradation of 5-cell PEMFC stack based on
temperature, stoichiometry and relative humidity operated continu-
ously over a duration of 1700 h under constant load condition. While the
MAPE accuracy errors for both algorithms were less than 10%, the
MR-ESN performed better than the classical ESN as its prediction
matches closely with the real RUL. A study by Zhang et al. [258]
improved on the MR-ESN architecture by incorporating a mini-reservoir
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into main MR-ESN architecture to enhance the network’s ability to
process and predict degradation of 5-single cell PEMFC stack based
having an active surface area of 100 cm? and power density of 0.7 A/cm?
under static and dynamic test conditions. Their study sought to also
understand how the length of training set affects the accuracy prediction
made by MR-ESN using the first 350 h, 450 h, 550 h, and 650 h of data
respectively for training, and tested the model’s predictions against the
remaining data within the first 1000 h. In order to improve the quality of
data fed into the neural network, Savitzky-Golay (SG) filter was used for
data preprocessing. The pre-processing step using the Savitzky-Golay
filter helped to smooth out noise and artifacts in the raw data,
ensuring a cleaner input for the algorithm to work effectively on pre-
dicting performance degradation accurately. Furthermore, the effect of
main reservoir and main reservoir neurons were evaluated and opti-
mized using particle swarm optimization algorithm (PSO). Their find-
ings showed that the shorter training set of 350 h had the highest
prediction accuracy for the static test condition. In addition, the optimal
main reservoir and main reservoir neurons achieved by PSO was 20,550
and 10,800 for static and dynamic test conditions respectively.
Compared to other forms of recurrent neural networks such as Long
Short-Term Memory (LSTM) and Bidirectional Long Short-Term Mem-
ory (Bi-LSTM) used for this study, MRM performed better for both test
conditions.

Another algorithm that has gained wide prominence in investigating
the degradation of fuel cells and electrolyzers is LSTM. The LSTM model,
a form of RNN, was developed in Hochreiter and Schmidhuber in 1997
[259]. The model captures patterns and relationships in a time series
sequential data. It is designed to address the problem of vanishing
gradient associated with traditional RNN by introducing complex gates
(input, forget, and output gates) to regulate information flow thereby
maintaining long term dependencies in data processed. For instance, Liu
et al. [260] developed an LSTM framework to predict the durability of a
vehicle PEMFC based on 1155 h experimental data (see Fig. 29a and b).
In designing their framework, they utilized regular interval sampling
and locally weighted scatterplot smoothing (LOESS) for data recon-
struction and data smoothing in order to preserve the integrity of the
original data. Their study demonstrates the capability of this algorithm
to forecast the RUL of PEMFC having achieved a high accuracy of
99.23% as compared to the traditional back propagation neural network
(BPNN) of 70.77% accuracy. Furthermore, the LSTM model predicted
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Fig. 29. (a) RUL prognostic framework based on LSTM RNN (b) Degradation data of PEMFC stack (c) Prognostic results of LSTM RNN. Reprinted with permission,

Copyright 2019, Published by Elsevier [260].

the RUL of the PEMFC stack to be 260 h which was close to the actual
end of life estimated as 261 h using 511 h as the testing starting point.

Xu et al. [261] applied CNN-LSTM algorithm to predict the voltage
degradation of PEM WE from data carried out experimentally under
constant and start-stop load operating conditions (current densities).
The constant load condition was operated for 1140 hr (900 h for training
and 240 h for testing) while the start-stop-stop load condition was
conducted for 660 hr (528 h for training and 132 h for testing) to
evaluate the algorithm’s performance. From the experimental study, the
output voltage was recorded every minute and 1.5 min for constant and
start-stop load conditions. The measured output voltages from these two
experimental conditions are now used as input parameters for the
CNN-LSTM algorithm. The CNN-LSTM combines CNN and LSTM algo-
rithms. In this case, CNN extracts input feature (measured output volt-
ages at intervals) from the raw data, while the LSTM processes the
sequential information to predict the performance degradation of the
PEM water electrolyzers accurately over time. Before the application of
these combined algorithms, the raw data was pre-processed using the
Savitzky-Golay filter method. From their findings, the authors observed
an initial decline followed by an increase in output voltage over the
operating time both load condition which is consistent with the
behaviour exhibited from the experimental study carried out. The au-
thors attributed this behavior to IrO2 exhibiting an initial redox cycle
which increases its active surface area and improves performance. Their
findings revealed that the CNN-LSTM achieved an average absolute
error of 0.39 mV and 2.1 x 102 mV for constant and start-stop load
conditions respectively. Furthermore, the researchers compared the
performance of the algorithm with traditional LSTM models and GRU,
showing that the CNN-LSTM outperformed these models in terms of
prediction accuracy and generalization capability across different load
conditions.

Wang et al. [262], proposed a bi-directional long short-term memory
recurrent neural network couple with an attention mechanism (BILST-
M-AT) model to predict the voltage degradation of the PEMFC stack
under static and dynamic load conditions. Out of 24 input parameters
measured experimentally, random forest was used to rank important
features that significantly contribute to the voltage degradation of the
PEMFC system. These important features include ageing time, 5-cell
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voltages, outlet temperature of Hy gas, inlet and outlet temperatures
of air, outlet temperatures of cooling water, outlet flow rate of Hy and
Inlet flow rate of air. The output voltage profile is then used to predict
the voltage degradation based on the operating time. The authors
observed that the RUL of the PEMFC with dynamic test condition was
less than that of static test conditions. With respect to the performance of
the model, the BILSTM-AT outperforms other models with relative er-
rors for both testing conditions ranging between 0.09% to 0.29%.

Other forms of ML algorithms that have been reported in the inves-
tigation of degradation studies of fuel cells include support vector ma-
chine (SVM), relevance machine vector (RVM) [263,264], and least
square support vector machine (LS-SVM) [265]. RVM is a Bayesian
approach to machine learning that offers the ability to produce sparse
models, which means it relies on fewer data points (relevance vectors)
without compromising the prediction accuracy. It has shown superior
performance in predicting the RUL of lithium-ion batteries [266,267],
demonstrating its effectiveness in online battery prognostics and prac-
tical applications.

Integration of ML algorithms can also help to handle complex, non-
linear patterns found in these energy systems. Lee et al. [268] applied a
data driven approach as a prognostic and health management system for
voltage predictions of alkaline water electrolyzers (AEM) using SVM and
GPR. In their work, an in-house experiment was conducted for 480 h at
an operating temperature of 80 °C and flow rate of 330 ccm. The re-
searchers monitored measured parameters such as time, current, and
power density as input parameters and measured voltage as output
performance. After the analysis of the measured parameters using SVM
and GPR, they achieved a performance of 1.28 x 10~ and 8.03 x 107°
respectively. While the algorithm performed excellently well based on
the input data, they observed that an introduction of an input data with
large deviation from the original data could result in an inaccurate
prediction. To address this limitation, it is expedient that researchers
implement these algorithms on wide range of input parameters that can
predict voltage degradation in an AEM system.

To the best of our literature search, ML focus on the degradation or
aging performance of PEM FC and especially WE are still limited and
needs further extensive investigation for better understanding of the
short and long-term durability and efficiency of these systems. Table 2
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Table 2
Summary of literatures of machine learning for degradation studies of PEMFC and electrolyzers with their respective references.

Case study Energy Cell configuration Data source/Test Data filtering ML method Model accuracy Findings

device duration method

Vichard PEMFC Fuel cell stack Experimental, Nil ESN RMSE: 0.098 Lower temperatures lead to better
et al. composed of 28 5000 h* humidification conditions thereby
[254] cells with open air reducing rate of degradation.

cathode cooling

Morando PEMFC 5-cell PEMFC stack Experimental, Wavelet ESN MAPE: <5% 20% of the data was sufficient to
et al. 1700 h transform & accurately predict the RUL of
[256] Hurst PEMFC. ESN can capture the

coefficient. complex dynamics of PEMFC
degradation which is not fully
understood or modelled yet.

Mezzietal. PEMFC 5-cell PEMFC stack  Experimental, Nil Classical ESN & Both MAPEs are < 10 % The integration of multi-reservoirs
[257] 1700 h MR-ESN in the ESN architecture improves

the predictive capability of the
model as compared to single
reservoir in a classical ESN
network.

Zhang PEMFC 5-cell PEMFC stack  Experimental Savitzky- MR-ESN + mini- For static test condition data ~ The multi-reservoir component
et al. Golay reservoir RMSE:1.412¢™* architecture of the ESN algorithm
[258] MAPE: 3.065¢ coupled with a mini-reservoir

For dynamic test condition architecture enhanced the
data predictive capability of the
RMSE: 1.298¢™* algorithm.

MAPE - 1.824e7

Liu et al. PEMFC 5-cell PEMFC stack  Experimental, Locally LSTM RMSE: 0.003 The use of regular interval

[260] with water cooling 1155 h weighted MAE: 0.026 sampling and (LOESS) for data
system scatterplot Accuracy: 99.23% reconstruction and smoothing
smoothing BPNN RMSE: 0.0203 ensures that the primary trend of
MAE: 0.0234 the original data is preserved
Accuracy: 70.77% while effectively removing noise
and spikes, which is crucial for
maintaining the reliability of
PEMFC systems in practical
applications.

Wangetal. PEMFC 5-cell PEMFC stack  Experimental Nil BILSTM-AT & RMSE < 0.0029 The inclusion of an attention
[262] Random Forest for mechanism to the BILSTM
[87] feature selection algorithms contributed to the

model’s predictive capability by
focusing on the most relevant
features of the data, thus
enhancing the accuracy of the
degradation predictions.

Zuo et al. PEMFC Single cell Experimental Moving LSTM, gated RSME for attention-based Attention-based LSTM RNN model
[269] average recurrent unit LSTM, attention-based GRU,  achieves higher prediction

smoothing (GRU), attention- LSTM and GRU models are accuracy, making it particularly
method. based LSTM and 0.016409, 0.015518, suitable for fuel cell performance
attention-based 0.017637 and 0.018206, degradation prognosis.
GRU. respectively.

Wangetal. PEMFC 5-cell PEMFC stack  Experimental, Singular LSTM, Gaussian LSTM LSTM-GPR showed excellent

[270] >1000 h Spectrum process regression RMSE: 0.0066 performance over other models by

Analysis (SSA)  (GPR) and LSTM- MAPE: 0.0016 accurately predicting the voltage
GPR MAE: 0.0053 degradation of the system. The

GPR deep structure displayed by this
RMSE: 0.0072 model enhances its learning
MAPE: 0.0018 capabilities for non-linear patterns
MAE: 0.0058 of PEMFC degradation trends.
LSTM-+GPR
RMSE: 0.0049
MAPE: 0.0011
MAE: 0.0036

Wu et al. PEMFC 1.2 kW PEMFC Experimental, Data down- RVM and SVM RVM The RVM algorithm can

[263] stack 400 h sampling RMSE: 0.1751 accurately predict the ageing of a
MAPE: 0.0044 PEMFC when fed with limited
R* 0.9153 training data and with relatively
SVM fewer input vectors (features).
RMSE: 0.2022
MAPE: 0.0054
R% 0.8896

Zhong PEMFC 36 cells fuel cell Experimental Nil LS-SVM MAE: 0.0002 The model displayed higher
et al. stack data from R 98.98% predictive accuracy. Higher
[265] Ref. [271,272] current densities lead to increased
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voltage degradation.

(continued on next page)
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Case study Energy Cell configuration Data source/Test  Data filtering ML method Model accuracy Findings
device duration method
Xu et al. PEMWE Experimental Savitzky- CNN-LSTM Average absolute error The model performed better than
[261] Golay Constant — 0.39 mV GRU and LSTM with predicted
Start-stop — 2.1 x 1072 RUL for constant and start-stop
condition of 2550 h and 11,736 h
respectively.
Lee et al. AWE AWE stack with are ~ Experimental Nil SVM and GPR RMSE for SVM and GPR is Better performance of both
[80,268] 34.56 cm? data, 480 h 1.28 x 102 and 8.03 x 10°®  models. However, the prediction

respectively capability on new data is low.

provides a concise overview of ML algorithms for performance and
degradation evaluation studies of PEM FCs and WEs. Even though
studies are evolving, more focus on correlating the changes of the
structural and compositional parameters in the MEAs of these systems to
their performance, as they degrade is needed.

4. Current challenges and future aspects

Apart from numerous advantages, there are so some roadblocks to
the successful implementation of Al technology in materials and espe-
cially in the energy industry. A few of the critical issues are listed below
[273-276]:

Al-based methods typically require the collection of large amounts of
data to accurately predict reliable outcomes while the acquisition of
materials data, such as various forms of materials characterization, is
itself a quite expensive process and sometimes the tradeoff between time
and cost is not achieved. Another challenge faced in using Al-based
methods is the under-representation of high complexity data by
simpler models or the overestimation of trivial data by high-capacity
models. Al-based approaches are also typically very sensitive to small
variations in the system, environment, or parameters and a little offset
can significantly the quality of output.

The operation and interpretation mechanism of Al-based models
cannot be easily understood and is frequently referred to as a black box,
limiting users from successfully identifying weaknesses of the model.
The application of SHAP method is a new method in the interpretation of
black box models. However, it has not been widely explored in ML for
fuel cells and electrolyzers applications.

Despite the current challenges, AI has shown immense progress over
the last few years and continues to excite researchers with its unique
capabilities. Moreover, since ML is intrinsically a data-driven approach,
therefore, we can state with absolute certainty that the surfeit of
knowledge and data continually being extracted from advanced data
mining techniques will undoubtedly benefit Al-based models in mate-
rials science to meet and even exceed performance demands. Further-
more, Al-based models, which are highly efficiently trained on smaller
datasets, are being introduced, which can eliminate the need for the
collection of larger input datasets altogether, especially for applications
where data collection is a long, difficult, and exhaustive process.
Furthermore, by combining Al-based models with high-performance
computational approaches, efficient screening methods, and evolu-
tionary algorithms, we can perceive significant advancement in mate-
rials research in the near future [277-279].

In conclusion, the advancement of ML algorithms in fuel cells and
electrolyzers is currently evolving, presenting numerous research op-
portunities, particularly in exploring data-driven degradation mecha-
nisms with focus on internal interactions between MEA parameters and
RUL, as well as the study of defect detection, phase segmentation.

5. Conclusions

The presented paper offers a comprehensive discussion on the
introduction and application of Al, particularly ML and DL, within
material science and engineering, with a special focus on energy systems
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like fuel cells and electrolyzers. The advancement of ML algorithms in
fuel cells and electrolyzers is evolving rapidly, presenting numerous
research opportunities, particularly in exploring data-driven degrada-
tion mechanisms with a focus on internal interactions between MEA
parameters and durability, as well as the study of defect detection and
phase segmentation. The need for processing large, complex datasets
efficiently and automating experimental selection processes is a central
challenge for researchers in these fields and an area where AI, ML, and
DL can offer a significant contribution. Hence, the paper discusses how
innovative Al-based algorithms predict and optimize material behavior
in these high-demand applications. It highlights how AI techniques like
support vector machines, gradient-boosting, and recurrent neural net-
works help improve the accuracy and efficiency of predicting material
degradation and lifespan. Additionally, model interpretability offers
insights into critical parameters affecting material performance. The
application of Al, especially ML models, has shown immense potential in
expediting the materials discovery process and optimizing designs for
specific needs in these PEM-based systems. For example, algorithms like
XGBoost and CNN-LSTM demonstrated high accuracy in predicting fuel
cell and electrolyzer degradation with mean absolute errors (MAE) as
low as 0.0002 and improved decision-making in material selection.
These advancements allow for more efficient material design and
enhanced performance predictions, crucial for energy sustainability.
The future research scope includes developing Al models that require
smaller datasets, making Al accessible for resource-limited applications.
Integrating Al with advanced computational techniques, such as
evolutionary algorithms, is expected to further revolutionize materials
research by offering faster, more accurate predictions. Thus, collec-
tively, these advancements mark significant strides in materials science
and clean energy technologies’ progression.
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