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Abstract A deep learning (DL) model, based on a transformer architecture, is trained on a climate-model
data set and compared with a standard linear inverse model (LIM) in the tropical Pacific. We show that the DL
model produces more accurate forecasts compared to the LIM when tested on a reanalysis data set. We then
assess the ability of an ensemble Kalman filter to reconstruct the monthly averaged upper ocean from a noisy set
of 24 sea-surface temperature observations designed to mimic existing coral proxy measurements, and compare
results for the DL model and LIM. Due to signal damping in the DL model, we implement a novel inflation
technique by adding noise from hindcast experiments. Results show that assimilating observations with the DL
model yields better reconstructions than the LIM for observation averaging times ranging from 1 month to

1 year. The improved reconstruction is due to the enhanced predictive capabilities of the DL model, which map
the memory of past observations to future assimilation times.

Plain Language Summary We use a deep learning (DL) model to better predict climate patterns in
the tropical Pacific upper ocean, and to reconstruct past conditions from a sparse network of noisy observations.
The DL model forecasts are more accurate than a reference Linear Inverse Model (LIM), which has
approximately comparable computational demand. After we adjust DL model forecasts to better approximate
errors, we show that this model can more accurately reconstruct climate fields than the LIM. This success
highlights the significant potential of DL to improve our understanding and prediction of climate change
through reconstructing climate variables from sparse information such as from coral proxies.

1. Introduction

Owing to the limited time span of satellite observations, our understanding of climate variability on interdecadal
and longer timescales derives mainly from climate model simulations and reconstructions from paleoclimate
proxies. For example, the El Nifio Southern Oscillation (ENSO), one of the most significant drivers of interannual
variability in the Earth's system, has a profound impact on the global climate and robust teleconnections (Cane
et al., 1986; McPhaden et al., 2006; Timmermann et al., 2018). However, due to the short period of satellite
observations, our understanding of ENSO variability, such as in its intensity, spatial distribution of temperature
anomalies, and its interactions with other climate phenomena, is uncertain and poorly sampled (Ashok
et al., 2007; D’ Arrigo et al., 2005; Kug et al., 2009). To address this issue, a longer time span of data is needed to
better understand these variations in ENSO (Timmermann et al., 2018). Here we assess the potential of a deep-
learning model of the tropical Pacific ocean for assimilating a sparse network of noisy sea-surface temperature
(SST) observations, with the goal of reconstructing past climate states from coral proxies of SST. This work
provides proof of concept for this goal, and a benchmark comparison to similar approaches using linear inverse
models (LIMs).

Reconstructions using paleoclimate proxy data (e.g., De Maesschalck et al., 2000; Mann et al., 1998), such as tree
rings, ice core, and coral archives provide insights into past climate conditions. A major challenge with these data
sources is their uneven spatial and temporal distribution, which complicates interpretation of signals in climate
studies based on multiple proxies. To overcome this issue, the method of climate field reconstruction (CFR) has
been used to combine information from different proxies (e.g., Mann et al., 1998). The primary objective of this
approach is to use statistical methods to reconstruct regularly gridded climate fields from sparse and unevenly
distributed paleoclimate data. This facilitates studies of global or regional climate variability and may signifi-
cantly aid in understanding and predicting future climate change.

Recent studies have employed an objective framework for CFR based on data assimilation (DA) (e.g., Goosse
et al., 2010; Hakim et al., 2016; Valler et al., 2024). One notable difference in the DA approach to climate
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reconstruction as compared to weather prediction concerns the use of a model to generate the prior (“first guess™)
before assimilation. A key challenge is that the high operational costs of climate models render ensemble fore-
casting impractical, which has led to the use of “offline” DA approaches that randomly sample existing climate
model simulations. This approach of offline assimilation has considerable advantages: it requires dramatically
lower computational costs; random sampling from the outputs of climate model runs allows for a better estimation
of the uncertainty in the assimilation results; and it can yield better outcomes, especially when the predictive
capacity of climate models is limited. One key limitation of the offline method is its lack of memory in the prior.
Specifically, when assimilating data at a given time step, the method relies solely on concurrent observations, thus
omitting past and future observations. This is particularly disadvantageous in contexts like the ENSO, where the
system's memory extends approximately beyond a year. Such historical context could significantly enhance the
accuracy of DA but is unexploited in offline setups. This drawback has driven our exploration of an online
approach, which we believe offers a more robust framework by incorporating a broader temporal spectrum of
observational data.

Progress toward computationally feasible online paleoclimate DA has been demonstrated using a LIM (Penland
& Magorian, 1993) as an emulator for climate models in the forecast step (Perkins & Hakim, 2017, 2020). This
approach transfers climate information from one time step to the next, provides superior priors and more effective
use of sparse proxy data. This improvement in assimilation is primarily attributed to the coupled dynamics of the
ocean—atmosphere system (Perkins & Hakim, 2017), since the largest sources of proxy data, such as tree rings and
ice cores (PAGES2k Consortium et al., 2017), are primarily located on continents and largely reflect atmospheric
variability. Using DA with a skillful coupled atmosphere—ocean model allows for this atmospheric information to
inform oceanic state estimates. Given that the predictability of the ocean is substantially higher than that of the
atmosphere, using the LIM effectively transmits information through the ocean's memory onto the atmosphere,
which benefits proxy assimilation at later times.

Recently, the emergence of DL provides a new approach (e.g., LeCun et al., 2015; Reichstein et al., 2019) to
computationally efficient online DA. Through complex network architectures, DL can fit nonlinear relation-
ships in data, thereby enabling more accurate predictions of future states. Moreover, many DL models have
demonstrated predictive capabilities that exceed those of LIMs, and even conventional Coupled Generak
Circulation Models (GCMs) (Gao et al., 2023; Ham et al., 2019; Sun et al., 2023; Zhang et al., 2024; Zhou &
Zhang, 2023). For instance, simple Convolutional Neural Networks (CNNs) have shown remarkable success in
predicting the time series of ENSO events with 17 months lead time (Ham et al., 2019), surpassing the best
seasonal prediction models. However, neural networks in this work (Ham et al., 2019) are designed to predict a
single variable, like Nino3.4 Index, not a field of variables. Therefore, to predict spatial fields for DA, we need
to select network architectures that are field-to-field. Recently, the work by Zhou and Zhang (2023) introduced
a neural network based on a transformer with self-attention architecture (Vaswani et al., 2017), which they call
3D-Geoformer. The 3D-Geoformer effectively forecasts monthly ocean temperature anomalies in the upper
150 m and surface wind stress fields of the tropical Pacific to produce ENSO forecasts having skill comparable
to those of the aforementioned CNNs. Here we test the use of a version of this model in forecasting and DA
experiments to provide proof-of-concept for use in paleoclimate DA. Although this work is motivated by
paleoclimate DA, we note that the methods outlined here are also broadly applicable to assimilating instru-
mental observations.

The remainder of the paper is organized as follows. Section 2 details the data and methodologies employed in the
construction of the LIM and DL models, as well as the DA method. Section 3 delineates the sparse observational
network utilized for the DA experiments. Comparative analyses of forecasting performance between the LIM and
DL models are presented in Section 4, with the DA experiments elaborated in Section 5. Finally, Section 6 offers a
discussion of the findings and draws conclusions.

2. Data, Models, and Data Assimilation Methods

Here we provide a detailed description of the data and methods used in our study, including the theory and training
procedures for the models, DA techniques, observations, and methods to address the loss of ensemble variance in
DL model forecasts.
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Table 1

Data Set and Source

Type Source Period

Train set Coupled Model Inter-comparison Project Phase 6 (CMIP6) January 1850 to December 2014

Validation set Simple Ocean Data Assimilation (SODA) products January 1871 to December 1979

Test set Global Ocean Data Assimilation System (GODAS) reanalysis January 1980 to December 2021
2.1. Data

The focus of our research is the Tropical Pacific (shown in Figure 3), with an emphasis on the dynamics of ENSO,
which is the dominant source of annual to interannual variability in this region (Cane et al., 1986; Timmermann
et al., 2018). Consequently, we adopt variables that are integral to understanding ENSO dynamics, namely SST,
surface zonal and meridional wind stress, and the temperature of the upper ocean on seven constant layers ranging
from 5 to 150 m depth (5, 20, 40, 60, 90, 120, and 150 m). The geographical scope of the data extends from 90°E
to 30°W and 20°N to 20°S. The zonal grid resolution is 2° and the meridional grid resolution is 0.5° (1°) between
(poleward of) 5°S and 5°N.

We train our models on data from the Coupled Model Inter-comparison Project Phase 6 (CMIP6) historical
experiments (O’Neill et al., 2016), and verify and test results on data from the Simple Ocean Data Assimilation
(SODA) (Carton & Giese, 2008) products and the Global Ocean Data Assimilation System (GODAS) reanalysis.
We note that the reanalysis data period spanned by combining GODAS and SODA covers a span of only about
130 years, which is somewhat limited for training a neural network with a large number of parameters. Conse-
quently, we rely on the CMIP6 model data for training our network, consisting of 23 CMIP6 models (Figure 2).
We then use SODA data for validation and to fine-tune the network architecture and hyper-parameters (described
in the Section 2.2.3). The GODAS data set is used as the final test set for assessing model performance.
Considering the documented spin-up issues and the scarcity of subsurface observations in the early periods (Xue
etal., 2012), we have excluded the first 2 years of GODAS data from our analysis metrics. It is crucial to note that
although there is a temporal overlap between the training and the testing & validation sets, the ENSO variability in
the CMIP6 models differs significantly from those in the reanalysis data sets. The common elements among the
models are external forcings, such as solar radiation and CO2 levels. This significant difference in temporal
evolution ensures that the overlap does not result in overfitting. In this context, the training, validation, and testing
data sets are derived from different sources, which helps to prevent overfitting and independently assess results.
Summary information about these data sets is provided in Table 1.

2.2. Models
2.2.1. Linear Inverse Model (LIM)

Linear Inverse Modeling (LIM) is an efficient, widely applied, and powerful model for SST prediction and
assimilation, especially for ENSO (e.g., Newman, 2013; Penland & Magorian, 1993; Penland & Sardesh-
mukh, 1995). The LIM is an empirically determined estimate of a dynamical system linearized about its mean
state:

dx

in which x is the state vector, typically cast in terms of a truncated set of Empirical Orthogonal Functions (EOFs),
L is the linear system operator, and € represents noise that is white in time but correlated in the state variables. Lx
represent the deterministic tendency of the system, and & a stochastic forcing that represents the net effect of
nonlinearity and unresolved processes. Integrating (Equation 1) over ¢ = 0 : 7, for any 7, and taking the expected
value, gives

x(7) = G,x(0), @)
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where G, = exp(Lt). Given sample training data, G, may be determined for a single = from regular least-squares
regression:

G, = C(r)C(0)™L. (3)
here C(7) is the lag covariance matrix of the state vector at lag time z,
C(z) = <x(2)x7(0)>
and “<>" represents a sample average. Matrix L is then determined from G.. The stochastic noise £ is assumed to

be a white noise process with a covariance matrix Q, meaning <€€'> = Q. Assuming stationary statistics, matrix
Q is constant and defined by

dc(o
% =LC(0)+ CO)L" +Q =0. )
Forecasts are computed using
X5 = (LSt + Dx, + QVAGSa (5)
1
Xiys2 = E(xt+5t +x,), )

in which a is a vector of independent standard normal random variables, A and Q are the eigenvalues and ei-
genvectors of Q, respectively. In this study, 7 is set to 1 month for the monthly DA and 67 is set to 6 hr. In this
context, the LIM can be viewed as a linear system driven by spatially correlated, temporally white, noise, rep-
resenting nonlinear and unresolved fast processes. More details of the LIM can be found in Penland and
Magorian (1993) and Newman et al. (2011).

2.2.2. Deep Learning Model (DL)

Zhou and Zhang (2023) introduce a novel self-attention-based neural network specifically designed for predicting
the tropical Pacific upper ocean. The model is structured to take a 12-month state vector as input, with fields
including SST, surface wind stresses, and upper ocean temperature on 7 vertical levels. The output of this model is
a state vector for the subsequent 12 months, which can be autoregressively extended indefinitely into the future:

Xoitlzr+12 ZDL( ;n—IZ:r ° (7)

1
in which X" . is the input state vector from time # — 12 to £, X% ., |, denotes the forecasted state vector covering
the period from time 7 4+ 1 to ¢ 4+ 12, and DL is the DL model operator.

This model initially employs an embedding layer to encode the data into smaller blocks based on latitude and
longitude, into a vector of length 256. Subsequently, it utilizes temporal self-attention and spatial self-attention
modules to extract features. Finally, the model outputs the predicted results through a fully connected layer. More
details of the model can be found in Zhou and Zhang (2023).

Compared with the LIM, there are two main advantages of DL model. First, the DL model can capture the
deterministic non-linear relationships between the current and future states. Second, the DL model employs
nonlinear dimensional reduction, which retains more predictive capability. As we will show, the DL model has
better prediction skill than the LIM (see Section 4 for details).

2.2.3. Model Training and Configuration

LIM. The first step in LIM training employs multivariate EOFs (e.g., Hannachi et al., 2007; Lorenz, 1956). This is
achieved by first consolidating the normalized variables—Sea Surface Temperature (SST), wind stress, and ocean
temperature—into a unified matrix X:
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p P
OSST  Owind stress  Oocean temperature

here, o represents the standard deviation of each variable. Subsequently, Singular Value Decomposition (SVD) is
employed to extract the leading modes U, such that X = UXV’. The fields are then projected into this dimen-

sionally reduced Principal Component (PC) space using: X=0"x

We then use this PC time sequences (f() to construct the LIM from Equation 3. To ensure that the LIM achieves
its best forecasting ability, we perform dimensional reduction on the data from each of the 23 CMIP6 models and
conduct an exhaustive search to identify the optimal number of PCs for training a LIM from each model. The
search objective is to identify the highest 12-month mean Nino3.4 Index forecast correlation skill for each model.
We find that the first 12 PC sequences from the GFDL-CM4 model yield the best forecasting results of the 23
LIMs evaluated. Therefore, we use the first 12 PC sequences from the GFDL-CM4 model (Adcroft et al., 2019) to
build our LIM. It is noteworthy that previous studies have constructed LIMs using only SST or a combination of
SST and Sea Surface Height (SSH) (Lou et al., 2020; Shin et al., 2020), rather than also predicting the mixed layer
as we do here. Thus, to provide a basis for comparison with previous work, we also construct a LIM using only
SST, which we refer to as LIMOsst. A comprehensive search again reveals that the LIM built with the first 12 PC
sequences of GFDL-CM4 SST yields the best forecasting performance.

DL Model. As our objective is to predict the state of the entire field for the next time step, we have modified the
loss function of the original model described in (Zhou & Zhang, 2023). Instead of incorporating the Root Mean
Squared Error (RMSE) of the Nino3.4 index into the loss function as in the original study (Zhou & Zhang, 2023),
we have adopted the RMSE of the entire state vector as our loss function:

1 Tou 1 Nion Nt C )
out  __ . true
N IR 5 g

out s—1 i=1 j=1 k=1

Loss =

where x°" represents the forecast states, which equals 12 in this research, while T,,,, Ny, and N,,, denote the
number of output time steps, the number of latitude grids, and the number of longitude grids, respectively.
Although this modification led to a slight decrease in Nino3.4 index prediction skill, it improves the Nino3.4
index DA skill by 5%. This adjustment aligns with our broader goal of enhancing DA through more robust
covariance relationships, reflecting teleconnections across the entire field.

For training we use the PyTorch framework (Paszke et al., 2019) and source code from Zhou and Zhang (2023).
To achieve optimal tuning of the network parameters, we use the Adam optimization algorithm (Kingma &
Ba, 2014), implementing a decaying learning rate strategy that starts at 0.0005 and decreases with ongoing
training. Moreover, we incorporate an early stopping mechanism (Prechelt, 2002) that halts training if there is no
reduction in the validation RMSE over four consecutive epochs. All training strategies are detailed with the code
accompanying this study (see Section 6).

2.3. Data Assimilation Methods

This section describes the assimilation methods used in this study, including augmenting the error of the DL
model ensemble forecasts.

2.3.1. Ensemble, Online and Offline Assimilation

We perform DA using an Ensemble Kalman Filter (EnKF) (Evensen, 2009), which has been shown to perform
well in paleo-data assimilation tasks (Hakim et al., 2016; Perkins & Hakim, 2017; Tardif et al., 2019; Zhu
et al., 2023). The first part of the Kalman filter is the update step:

X, = xp + K[y - H(xp)]a (10)
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in which x, is the analysis state vector, x,, is the prior state vector, y is the observation vector, H is the observation

operator, and K is the Kalman gain matrix defined by:
K =BH"[HBH" + R| ™, (11)

here, B is the prior covariance matrix, H is a linearized version of H, and R is the observation error covariance
matrix. In the Last Millennium Reanalysis (Hakim et al., 2016, LMR) framework, R is a diagonal matrix with
diagonal elements equal to the observational error variance. In this study, we use the Ensemble Square Root Filter
(EnSRF) method (Tippett et al., 2003) to solve Equations 10 and 11, including serial observation processing.
Since the covariance spatial length scales on annual to monthly time scales in this region are relatively long, we do
not impose covariance localization. The EnSRF method for the kth proxy, y;, is described in the following
equations. We separate the ensemble into two parts, the ensemble mean and ensemble perturbation. First, we
calculate the analysis ensemble mean by:

- cov(xp, Ve k) .
X, =X+ ——2 (5. 12
P (Var(ye,k) + Rk) (yk Y .k) ( )

€9

here the overbar (x¥) denotes an ensemble mean, and primes (x/) denotes an ensemble perturbation. Subscript “p
denotes the prior state vector (forecast), subscript “a” the analysis state vector (posterior), y, is the kth proxy
estimate from the ensemble, and R, is the kth proxy error variance. The “var” and “cov” are the variance and
covariance operators on the ensemble number dimension. Second, we calculate the analysis ensemble pertur-

R
x,=x,— |1+ k
var(y,;) + Ry

Finally, each ensemble member analysis state vector is calculated by adding the ensemble mean and ensemble
perturbation:

bations from:

-1

COv(X), ye,k) { ’
(var(ye;) + Rk) \ye,k> (]3)

X, =X, +x, (14)

One objective of this paper is to demonstrate that low-frequency observations (averaged more than 1 month) can
be effectively assimilated to reconstruct monthly averaged climate fields. By employing the method mentioned
previously, we can update the monthly variables using 3, 6, or 12-month averaged observations through the
covariance matrix cov(x,,, y,x) .

To assess the impact of the models on the DA results, we perform experiments using both online and offline DA,
as subsequently described. All experiments in this paper use 100 ensemble members, a number chosen to balance
good results with the constraints of limited computational resources. Results for the DL model improve modestly
for larger ensembles (tests for 50—400 members shown in Figure S3 in Supporting Information S1).

Online Assimilation. After the update step, in the online assimilation method, we perform the forecast step,
meaning a forecast initialized with the result of the update step:

xp,t+1 = M(xa,t)v (15)

where M represents the model operator. We employ both the LIM and the DL model as the model operators.
Additionally, we evaluate the effect of different observation-averaging periods on the analyses, since these vary
by climate proxy. Specifically, we consider time averages including 1, 3, 6, and 12 months. Consequently, when
assimilating observations, we adapt the model's forward prediction to align with the temporal length of the
averaging time of the observations. This allows us to compute the prior values for the proxy data, which are
subsequently assimilated using method described above (Huntley & Hakim, 2010; Steiger et al., 2014). To
initialize the ensemble at the start of each experiment, we randomly select 100 model output data fields from the
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Figure 1. Variance proportion of deep learning (DL) forecasts compared to
Global Ocean Data Assimilation System (GODAS) observations across
different variables over time. Illustrated here are the variance ratios for
predictions made by the DL model relative to actual observations from the
GODAS data set, covering variables such as the Nino3.4 Index, sea-surface
temperature, wind stress, and ocean temperature, as a function of varying
lead times in months.

CMIP6 data that correspond to the current month. After completing assimi-
lation for this randomly drawn ensemble, we make a forecast using this
assimilated field as initial condition to the next time for assimilation. This
forecast—assimilation cycle continues until the final time with observations.

Offline Assimilation. In the original LMR framework (Hakim et al., 2016;
Tardifetal.,2019), assimilation is executed offline. In the offline case, the prior
state vector comprises the same random ensemble drawn from a single CMIP6
model, with no intervening forecast step. To optimize the performance of this
offline assimilation, we conduct the assimilation process using data from all 23
CMIP6 models as the prior ensemble and select the most accurate outcome as
our final result, as defined by the highest reconstructed Nino3.4 Index corre-
lation. We find that the MRI-ESM2-0 simulation is the optimal source for the
offline prior ensemble. This approach ensures that all experiments can be used
to validate the relative outperformance of the Deep-Learning—assimilation
method for reconstructing tropical Pacific climate fields.

2.3.2. DL Model Ensemble Inflation

In the case of DL networks, particularly for tasks involving monthly or annual
forecasting, DL models tend to lose error associated with the unpredictable
signal. For example, when forecasts are initialized and verified using the

GODAS data set, the ratio of the SST variance between the predictions of the DL model and the target data in the
GODAS data set is less than 1. This ratio decreases with increasing prediction lead time, as illustrated by the blue
line in Figure 1. The variance of the forecast wind stress is also significantly lower than that of GODAS, and the
variance ratio of other variables are similarly smaller. The primary reason for this discrepancy is that the DL

model is not trained to capture unpredictable signals, which is especially evident in the atmosphere as seen in

Figure S1 in Supporting Information S1. This unpredictable noise may be caused by unresolved processes, or by
signals that originate outside of the forecast domain, such as the Pacific Meridional Mode (PMM) (Meng &
Li, 2024; Vimont et al., 2003) from mid-latitudes, the Indian Ocean Dipole (IOD) (Saji et al., 1999), and from
other ocean basin and deep-ocean dynamics.
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Figure 2. Comparison of standard deviation ratios: Simple Ocean Data Assimilation (SODA) versus CMIP6 Models for the
Nino3.4 Index. This graph displays the ratio of the Nino3.4 index standard deviation from the SODA data set to that of
various CMIP6 models, which is utilized as a scaling factor for noise based on the CMIP6 model data.
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Locations of Coral records
in the Pages2K database (n = 24)

O Locations =
1 Nino3.4 Region
* Region of Interest

Figure 3. Geographical distribution of coral 5'30 proxy records in the tropical Pacific region from the PAGES2K database
(Outlined by the dashed blue box). The dashed blue box delineates the area of focused modeling and interest, the dashed red
box indicates the Nino3.4 region, and the brownish-yellow dots represent the locations of coral 5'80 proxy records.

While this is not an issue for forecasting tasks aimed at providing only the predictable future signal, it presents a
challenge for DA since it involves estimating errors. Underestimating errors in the forecast can lead to under
weighting the information from observations. To address this issue, we employ a variance inflation technique
(Evensen, 2009) by adding random errors to the DL forecast. Specifically, we assume that the unpredicted error is
a random process. We sample from an ensemble of these random vectors obtained by calculating the difference
between the DL forecast and the verifying fields from hindcasting experiments. The sample size of GODAS and
SODA data is not sufficient to obtain the statistical characteristics of this noise, so we use DL forecast errors from
initializing and predicting on the CMIP6 models. Since there is a significant difference between the intensity of
ENSO in CMIP6 and observations (SODA) (Beobide-Arsuaga et al., 2021), we use the standard deviation of the
Nino3.4 Index (ENSO intensity) as a scaling factor on the errors from CMIP6 models hindcast. Specifically, the
random errors added to the DL forecasts are calculated by the following steps.

First, we calculate the ratio between the standard deviation of SODA Nino3.4 index and each CMIP6 model's
Nino3.4 index as the scaling factor «;,

@ = O'SODA‘ (16)
o

Here, ogop4 is the standard deviation of the SODA Nino3.4 index and o; is the standard deviation of the i-th
CMIP6 model's Nino3.4 index. The major reason for using Nino3.4 index as scale factor is that the Nino3.4 index
standard deviation is representative of the intensity of ENSO. Ratios for most models are less than 1 (Figure 2),
which means the variance of the CMIP6 models ENSO intensity is larger than in SODA. We apply the scaling
factor to the forecast errors from CMIP6 models, N tis for the ith CMIP6 model, /th lead time and mth ensemble

member:
Wi = Qi (x;l,lzi - x?,:tz,i)- a7
The corrected forecast from the DL model is then defined by
X1 = xfnu,tl + N (18)

We note that, in comparison to adding noise directly, scaling the noise leads to an approximately 5% improvement
in the reconstruction results in terms of correlation. However, the scaling method cannot correct the large
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discrepancies in the power spectral density of the Nino3.4 index (Brown et al., 2020); which is a subject for future
research.

On the contrary, in the LIM, the variance of the deterministic part of the state vector also decays with time,
because the real part of the eigenvalues of L are less than 0. However, the random noise forcing component &
yields an unbiased forecast covariance (as seen in Equation 4). Therefore, the variance inflation technique is not
used for the LIM forecasts.

2.3.3. Evaluation Criteria

The major evaluation criteria used in this study for the prediction skill and reconstruction skill are sample time-
series correlation and root-mean-squared error (RMSE). The correlation is calculated by the following equation:

1< (fz_f)("t_v)
—_E LA 19
COIT Z ; ( )

v

in which £, is the prediction result or reconstruction result, v, is the ground truth at time ¢, f and ¥ are the mean of
prediction result and ground truth, 6, and o, are the standard deviation of prediction result and ground truth.

RMSE is calculated by:
1< >
RMSE = ?Z (f—v)~ (20)
t=1

Correlation and RMSE results are averaged over the entire domain to provide summary measures of skill. To
quantify the improvement of DL over the LIM and offline DA approaches, we use the improvement ratio (IR):

IR = SDL - Stradirianal , (21)

Straditianal

in which Sp; and S, 4iriona; are the skill scores of the DL model and the traditional model (the LIM, or the offline
method), respectively. The skill score is defined by first computing the domain-averaged correlation or RMSE,
and then the IR. For consistency with RMSE, the IR is multiplied by —1, so that smaller values mean better skill.

3. Observing Network

Here we describe the design of the DA experiments, including the locations of the pseudoproxies, the types of
pseudoproxies, the error characteristics for the pseudoproxies, and the experimental setup.

To simulate the real assimilation process as closely as possible, we use the locations of stable oxygen isotope
composition (5180) coral proxy locations from the widely utilized PAGES2K database. We take the average
number of coral sites available in the tropical Pacific domain from 1600 to 2000, which amounts to 24, as the
locations for the pseudoproxy data (Figure 3). In the assimilation of paleoclimate data, the proxy data averaging
time varies from monthly to annual. Therefore, assimilating these proxies, which represent climatic data over
periods longer than a month, to obtain monthly average climate data poses a significant challenge to the forecast
model's ability to predict the duration of climate information. To test this capability, we set the duration of the
pseudoproxy data averaging time to 1, 3, 6, and 12 months, respectively, and conduct separate assimilation
experiments for each duration.

We take observations from the GODAS data set as ground truth, interpolating to the proxy location and time
averaging:

1 k+N
Yaveg N = N Z Yis (22)

i=k+1
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Figure 4. Forecast skill of Deep Learning model (red), Linear Inverse Model (blue) & LIMOsst (green) in terms of correlation
(solid lines) and Root Mean Squared Error (RMSE) (dashed lines) across lead time for the Nino3.4 Index (a), sea-surface
temperature field (b), ocean temperature field (c), and the wind stress field (d). The correlation scale is provided on the left y-
axis and RMSE on the right y-axis, as the function of forecast lead time.

with N taking values of 1, 3, 6, and 12 in this study. To synchronize with ENSO seasonality, we compute 3-month
averages corresponding to MAM (March—April-May), JJA (June-July—August), SON (September—October—
November), and DJF (December—January—February). The 6-month averages are MAMIJJA (March to August)
and SONDJF (September to February), while the 12-month average spans MAMIJJASONDIJF (March to
February).

After completing interpolation and averaging, we simulate random errors in the data drawn from a Gaussian
distribution with a mean of 0. The Signal-to-Noise Ratio (SNR) (Zhu et al., 2023), defined in terms of standard
deviation, is set to 1. Additionally, we tested the sensitivity to SNR by conducting additional experiments for
SNR = 0.2, 0.5, 2, and 5, and find that the amplitude of the SNR does not significantly impact the results
(Supporting Information S1). We simulate observation error by

y:wg,N = yavg,N + C, (23)

inwhich{ ~ N (0,02), and o is the standard deviation of the real data divided by the SNR. The error simulation is
performed for each proxy location and each time-averaging duration.

4. Forecasting Results

We now compare the forecast skill of DL, LIM and LIMOsst forecasts by initializing and verifying with the
GODAS data set. In terms of the domain-averaged correlation and RMSE metric of all variables, and the Nino3.4
Index, the DL forecasts consistently outperform both the LIM and LIMOsst forecasts across all variables and at all
lead times (Figure 4). Spatial maps of DL-forecast skill improvement reveal SST and ocean temperature spatial
patterns similar to El-Nifio (La-Nifia) (Figures 5 and 6). Specifically, from 1-month to 12-month lead time, the
region with improved predictions evolves from off the equator to the equatorial region, accompanied by ocean
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Figure 5. Difference in forecast skill as measured by correlation between Deep Learning and Linear Inverse Models as a function of lead time (7). The first row (a—d)
shows zonal-wind stress, the second row (e—h) meridional wind stress, the third row (i-1) sea-surface temperature, and fourth row (m—p) equatorial (5°N-5°S) ocean

temperature.
temperature anomalies that tilt from the lower western to the upper eastern surface along the sloping thermocline
(also as shown in the Figures S5-S8 in Supporting Information S1). For surface wind stress, the DL model
forecast-skill improvement is located in the central and western equatorial Pacific region, aligning with the region
of improved skill for ocean temperature. This indicates that the DL model is able to better simulate the dynamics
of ENSO compared to the LIMs.
Compared to the correlation metric, the improvement in RMSE by the DL model is not as significant, as illus-
trated in Figure 4. An inherent advantage of the LIM at long lead times derives from the negative eigenvalues of
L, trending the forecasts toward zero anomaly as lead time increases. This means that the RMSE converges on the
climatological standard deviation. In contrast, the DL model lacks this constraint and exhibits systematic errors
that increase the RMSE as shown in Figure S9 in Supporting Information S1, potentially to values larger than
climatology.
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Figure 6. Comparison of spatial patterns in normalized Root Mean Squared Error (normalization by the domain-averaged standard deviation of the corresponding
variables) skill between Deep Learning and Linear Inverse Models as a function of lead time (7). The first row (a—d) shows zonal-wind stress, the second row (e-h)
meridional wind stress, the third row (i-1) sea-surface temperature, and fourth row (m—p) equatorial (5°N-5°S) ocean temperature.
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Figure 7. Correlation (left panel, left y-axis) and Root Mean Squared Error (right panel, left y-axis) for the prior (lower panel)& posterior (lower pannel) Nino3.4 index
and Global Ocean Data Assimilation System data set Nino3.4 index in 1-month, 3-month, 6-month and 12-month experiment. Red bars show deep learning (DL) model
result, blue bars are linear inverse model (LIM) result, the purple bars are the LIMOsst model result, and the gray bars are the offline method result. The bars with
diagonal hatching (right y-axis) show the improvement ratio of the DL model compared to the LIM, LIMOsst model and offline method.

It is noteworthy that in the equatorial western Pacific (near 135°E), DL forecast skill for SST and ocean tem-
perature fields decreases with lead time. This appears to be a consequence of a systematic bias due to the
exaggerated westward extension of the equatorial cold tongue in the CMIP6 models (Beobide-Arsuaga
et al.,, 2021; Jiang et al., 2021; Zhou & Zhang, 2023). The LIM, trained exclusively on GFDL-CM4 data,
demonstrates a mitigated version of this bias, owing to the relatively minor extent of the issue in GFDL-CM4
simulations. Conversely, the DL model, informed by a wider array of CMIP6 historical outputs, tends to
accentuate the cold-tongue bias.

The strength of our DL forecasts partly stems from the use of multi-time input and auto-regression outputs. Unlike
recurrent neural network (RNN) models (Medsker & Jain, 2001) and LIM, which incorporate outputs back to
inputs, our approach ensures that each output is derived from a complete 12-month analysis of inputs, capturing
the dynamic processes of the Pacific more effectively than single-instance inputs.

5. Data Assimilation Results

Assimilation experiments for a sparse network of noisy GODAS-sampled SST observations show that cycling
with the DL model outperforms the others (LIM, LIMOsst, and offline) by around from 10% to 30% in recon-
structing the Nino3.4 index (Figure 7, top panels). Similar results are found for skill in the prior forecast before
DA (Figure 7, bottom panels). Improvement using the DL model increases with observation averaging time,
which we attribute to the increase of forecast skill with lead time shown in Section 4. We find that these results are
not sensitive to the SNR (see Figure S2 in Supporting Information S1). In terms of skill across the entire domain,
the DL model outperforms the LIMs for all observation averaging times and variables, most notably for corre-
lation, and less so for RMSE Figure 8. Two key factors contribute to the modest improvement in the RMSE
metrics. First, the enhancement in forecast skill in terms of RMSE is limited, as demonstrated in Figure 4. The
RMSE improvement for SST, upper ocean temperature, and wind stress is relatively smaller compared to the
improvement in correlation, as discussed in Section 4. Secondly, as discussed previously, the LIM system is
constrained by the fluctuation—dissipation relationship (Equation 4), which limits RMSE growth; the DL model
does not have such constraint. Another possible contribution is the noise we have introduced to manage the loss of
forecast variance and the limited number of ensemble members, since the DL model results improve modestly for
larger ensembles (see Figure S3 in Supporting Information S1).
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Figure 8. Domain-averaged reconstructed (posterior) correlation and Root Mean Squared Error results for the Deep-learning model & linear inverse model (LIM)
verified on the Global Ocean Data Assimilation System data set. Red bars represent the Deep Learning (DL) model, blue bars the LIM (LIM); bars with diagonal
hatching indicate the improvement ratio of the results for the DL model relative to those for the LIM. The upper panel shows the sea-surface temperature field, the
middle panel shows the wind stress field, and the lower panel shows the ocean temperature field.

The reconstruction correlation and RMSE spatial differences between DL and LIM is shown in the Figures 9 and
10, respectively. Improvement of the DL results over the LIM in zonal wind stress and SST are located primarily
off the equator, which is not the same as for the forecasting experiments (cf. Figures 5 and 6). This suggests that,
relative to the LIM, the DL covariance estimates allow for more information extraction from the observations,
which are located primarily closer to the equator. Improvements in the meridional wind stress are more closely
confined to the equator relative to the forecasting experiments, suggesting a local influence of the observations.
For the ocean temperature field, the reconstruction skill improvement of the DL model predominantly manifests
in the mid-Pacific region at a depth of 100-150 m, with extensions upward and eastward along the sloping
thermocline. This spatial concentration roughly corresponds with the forecast skill improvements, especially for
the 12-month observation averaging time. Areas where the DL model results are worse than the LIM are
concentrated near South America and the land areas around the western Pacific warm pool, which corresponds
with the forecast skill differences in RMSE and correlation (Figures 5 and 6), but these areas are smaller in
magnitude compared with skill enhancements elsewhere.
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Figure 9. The reconstructed result correlation skill difference between Deep-learning model and Linear Inverse Model of 5—month experiment in zonal wind stress (a—d),
meridional wind stress (e-h), sea-surface temperature (i-1) and equatorial ocean temperature (from 5°N to 5°S) (m—p) field in 1,3,6 and 12 months-averaged
experiments.

Figure 11 presents a comparison of the evolution of SST and zonal wind stress in the GODAS reanalysis and the
DL DA results. The reconstruction achieves remarkable accuracy, faithfully capturing the peaks and troughs of
central-east Pacific SST as observed in the reanalysis, along with the corresponding zonal-wind stress. This is
particularly notable in the 12-month averaged experiment, which utilizes only 24 observations per year, yet still
largely captures the observed patterns. Notable differences include excessive easterly wind stress, and cooler
SSTs, around 1996 and 2000, in the DL results when compared to GODAS.

6. Conclusion and Discussion

We have evaluated the potential of using a deep-learning model for cycling DA on sparse observations to
reconstruct the upper ocean and surface wind stress of the tropical Pacific ocean. The DL model is trained on
CMIP6 model data following Zhou and Zhang (2023), and validated by forecasting on SODA reanalysis data. A
significant drawback of the DL model for DA is a bias for small forecast error variance. Therefore, we employed a
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Figure 10. The reconstructed, normalized Root Mean Squared Error (normalization by the domain-averaged standard deviation of the corresponding variables) skill
difference between Deep-learning model and Linear Inverse Model of 5—month experiment in zonal wind stress (a—d), meridional wind stress (e-h), sea-surface
temperature (i-1) and equatorial ocean temperature (from 5°N to 5°S) (m—p) field in 1,3,6 and 12-month experiment.
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Figure 11. The equatorial (5°N-5°S) evolution of sea-surface temperature (shading) and zonal wind stress anomalies (vectors) during 1980-2010 in 6—month
experiment. (a) Global Ocean Data Assimilation System data set. (b—e) DL-model reconstruction for experiments assimilating observations averaged over 1, 3, 6, and

12 months.
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approach to restore ensemble forecast variance by adding scaled samples from a library of DL model forecast
errors to the DL model forecasts. We compare the performance of the DL model in forecasting and DA exper-
iments to control experiments using LIMs trained on the same CMIP6 data set, and an offline DA experiment that
samples only from CMIP6 without a forecast model.

Overall, the results show that the DL model provides better forecasts compared to the LIM, especially in the
central and eastern Pacific where ENSO dominates variability. The DL model outperformance is most notable in
correlation (signal timing), and smaller in RMSE. For the DA experiments, the results also show improvement
using the DL model relative to the LIM, but the spatial distribution of these improvements differs from the
forecasting results. In particular, relative to the LIM DA results, we find larger improvements off-equator in
zonal-wind stress and SST, near the equator in ocean temperatures, and near the thermocline in the mid Pacific.
These improvements reflect a combination of the forecast-skill improvements, which better retain the memory of
past observations, and improved spatial covariance, which spread information from the sparse network of ob-
servations, which are more abundant over the equatorial western Pacific.

Based on this proof-of-concept study, we conclude that a deep-learning model can provide computationally
efficient forecast priors for online paleoclimate DA, leading to improved reconstruction outcomes. Future
research will consider the application of these models to assimilating real proxy data, and extending the approach
outside the tropics.

Data Availability Statement

GODAS data set can be found: https://psl.noaa.gov/data/gridded/data.godas.html. SODA data set can be found:
http://www.soda.umd.edu. CMIP6 Data set can be found: https://pcmdi.llnl.gov/CMIP6/. Plotting tools can be
found in SACPY: https://zenodo.org/records/13227070 (Meng et al., 2023). The main codes can be found: https://
zenodo.org/records/13896365.
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