


reconstruction as compared to weather prediction concerns the use of a model to generate the prior (“first guess”)

before assimilation. A key challenge is that the high operational costs of climate models render ensemble fore-

casting impractical, which has led to the use of “offline” DA approaches that randomly sample existing climate

model simulations. This approach of offline assimilation has considerable advantages: it requires dramatically

lower computational costs; random sampling from the outputs of climate model runs allows for a better estimation

of the uncertainty in the assimilation results; and it can yield better outcomes, especially when the predictive

capacity of climate models is limited. One key limitation of the offline method is its lack of memory in the prior.

Specifically, when assimilating data at a given time step, the method relies solely on concurrent observations, thus

omitting past and future observations. This is particularly disadvantageous in contexts like the ENSO, where the

system's memory extends approximately beyond a year. Such historical context could significantly enhance the

accuracy of DA but is unexploited in offline setups. This drawback has driven our exploration of an online

approach, which we believe offers a more robust framework by incorporating a broader temporal spectrum of

observational data.

Progress toward computationally feasible online paleoclimate DA has been demonstrated using a LIM (Penland

& Magorian, 1993) as an emulator for climate models in the forecast step (Perkins & Hakim, 2017, 2020). This

approach transfers climate information from one time step to the next, provides superior priors and more effective

use of sparse proxy data. This improvement in assimilation is primarily attributed to the coupled dynamics of the

ocean–atmosphere system (Perkins &Hakim, 2017), since the largest sources of proxy data, such as tree rings and

ice cores (PAGES2k Consortium et al., 2017), are primarily located on continents and largely reflect atmospheric

variability. Using DAwith a skillful coupled atmosphere–ocean model allows for this atmospheric information to

inform oceanic state estimates. Given that the predictability of the ocean is substantially higher than that of the

atmosphere, using the LIM effectively transmits information through the ocean's memory onto the atmosphere,

which benefits proxy assimilation at later times.

Recently, the emergence of DL provides a new approach (e.g., LeCun et al., 2015; Reichstein et al., 2019) to

computationally efficient online DA. Through complex network architectures, DL can fit nonlinear relation-

ships in data, thereby enabling more accurate predictions of future states. Moreover, many DL models have

demonstrated predictive capabilities that exceed those of LIMs, and even conventional Coupled Generak

Circulation Models (GCMs) (Gao et al., 2023; Ham et al., 2019; Sun et al., 2023; Zhang et al., 2024; Zhou &

Zhang, 2023). For instance, simple Convolutional Neural Networks (CNNs) have shown remarkable success in

predicting the time series of ENSO events with 17 months lead time (Ham et al., 2019), surpassing the best

seasonal prediction models. However, neural networks in this work (Ham et al., 2019) are designed to predict a

single variable, like Nino3.4 Index, not a field of variables. Therefore, to predict spatial fields for DA, we need

to select network architectures that are field‐to‐field. Recently, the work by Zhou and Zhang (2023) introduced

a neural network based on a transformer with self‐attention architecture (Vaswani et al., 2017), which they call

3D‐Geoformer. The 3D‐Geoformer effectively forecasts monthly ocean temperature anomalies in the upper

150 m and surface wind stress fields of the tropical Pacific to produce ENSO forecasts having skill comparable

to those of the aforementioned CNNs. Here we test the use of a version of this model in forecasting and DA

experiments to provide proof‐of‐concept for use in paleoclimate DA. Although this work is motivated by

paleoclimate DA, we note that the methods outlined here are also broadly applicable to assimilating instru-

mental observations.

The remainder of the paper is organized as follows. Section 2 details the data and methodologies employed in the

construction of the LIM and DL models, as well as the DA method. Section 3 delineates the sparse observational

network utilized for the DA experiments. Comparative analyses of forecasting performance between the LIM and

DLmodels are presented in Section 4, with the DA experiments elaborated in Section 5. Finally, Section 6 offers a

discussion of the findings and draws conclusions.

2. Data, Models, and Data Assimilation Methods

Here we provide a detailed description of the data andmethods used in our study, including the theory and training

procedures for the models, DA techniques, observations, and methods to address the loss of ensemble variance in

DL model forecasts.
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2.1. Data

The focus of our research is the Tropical Pacific (shown in Figure 3), with an emphasis on the dynamics of ENSO,

which is the dominant source of annual to interannual variability in this region (Cane et al., 1986; Timmermann

et al., 2018). Consequently, we adopt variables that are integral to understanding ENSO dynamics, namely SST,

surface zonal and meridional wind stress, and the temperature of the upper ocean on seven constant layers ranging

from 5 to 150 m depth (5, 20, 40, 60, 90, 120, and 150 m). The geographical scope of the data extends from 90°E

to 30°W and 20°N to 20°S. The zonal grid resolution is 2° and the meridional grid resolution is 0.5° (1°) between

(poleward of) 5°S and 5°N.

We train our models on data from the Coupled Model Inter‐comparison Project Phase 6 (CMIP6) historical

experiments (O’Neill et al., 2016), and verify and test results on data from the Simple Ocean Data Assimilation

(SODA) (Carton & Giese, 2008) products and the Global Ocean Data Assimilation System (GODAS) reanalysis.

We note that the reanalysis data period spanned by combining GODAS and SODA covers a span of only about

130 years, which is somewhat limited for training a neural network with a large number of parameters. Conse-

quently, we rely on the CMIP6 model data for training our network, consisting of 23 CMIP6 models (Figure 2).

We then use SODA data for validation and to fine‐tune the network architecture and hyper‐parameters (described

in the Section 2.2.3). The GODAS data set is used as the final test set for assessing model performance.

Considering the documented spin‐up issues and the scarcity of subsurface observations in the early periods (Xue

et al., 2012), we have excluded the first 2 years of GODAS data from our analysis metrics. It is crucial to note that

although there is a temporal overlap between the training and the testing & validation sets, the ENSO variability in

the CMIP6 models differs significantly from those in the reanalysis data sets. The common elements among the

models are external forcings, such as solar radiation and CO2 levels. This significant difference in temporal

evolution ensures that the overlap does not result in overfitting. In this context, the training, validation, and testing

data sets are derived from different sources, which helps to prevent overfitting and independently assess results.

Summary information about these data sets is provided in Table 1.

2.2. Models

2.2.1. Linear Inverse Model (LIM)

Linear Inverse Modeling (LIM) is an efficient, widely applied, and powerful model for SST prediction and

assimilation, especially for ENSO (e.g., Newman, 2013; Penland & Magorian, 1993; Penland & Sardesh-

mukh, 1995). The LIM is an empirically determined estimate of a dynamical system linearized about its mean

state:

dx

dt
= Lx + ξ, (1)

in which x is the state vector, typically cast in terms of a truncated set of Empirical Orthogonal Functions (EOFs),

L is the linear system operator, and ξ represents noise that is white in time but correlated in the state variables. Lx

represent the deterministic tendency of the system, and ξ a stochastic forcing that represents the net effect of

nonlinearity and unresolved processes. Integrating (Equation 1) over t = 0 : τ, for any τ, and taking the expected

value, gives

x(τ) = Gτx(0), (2)

Table 1

Data Set and Source

Type Source Period

Train set Coupled Model Inter‐comparison Project Phase 6 (CMIP6) January 1850 to December 2014

Validation set Simple Ocean Data Assimilation (SODA) products January 1871 to December 1979

Test set Global Ocean Data Assimilation System (GODAS) reanalysis January 1980 to December 2021
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whereGτ = exp(Lτ). Given sample training data,Gτ may be determined for a single τ from regular least‐squares

regression:

Gτ = C(τ)C(0)−1. (3)

here C(τ) is the lag covariance matrix of the state vector at lag time τ,

C(τ) = < x(τ)xT(0)>

and “<>” represents a sample average. Matrix L is then determined fromGτ. The stochastic noise ξ is assumed to

be a white noise process with a covariance matrixQ, meaning <ξξT
> = Q. Assuming stationary statistics, matrix

Q is constant and defined by

dC(0)
dt

= LC(0) + C(0)LT +Q = 0. (4)

Forecasts are computed using

xt+δt = (Lδt + I)xt + ÆQ
�������
Λδt

:
α (5)

xt+δt/2 =
1

2
(xt+δt + xt), (6)

in which α is a vector of independent standard normal random variables, Λ and ÆQ are the eigenvalues and ei-

genvectors of Q, respectively. In this study, τ is set to 1 month for the monthly DA and δt is set to 6 hr. In this

context, the LIM can be viewed as a linear system driven by spatially correlated, temporally white, noise, rep-

resenting nonlinear and unresolved fast processes. More details of the LIM can be found in Penland and

Magorian (1993) and Newman et al. (2011).

2.2.2. Deep Learning Model (DL)

Zhou and Zhang (2023) introduce a novel self‐attention‐based neural network specifically designed for predicting

the tropical Pacific upper ocean. The model is structured to take a 12‐month state vector as input, with fields

including SST, surface wind stresses, and upper ocean temperature on 7 vertical levels. The output of this model is

a state vector for the subsequent 12 months, which can be autoregressively extended indefinitely into the future:

Xoutt+1:t+12 = DL(Xint−12:t), (7)

in whichXint−12:t is the input state vector from time t − 12 to t,Xoutt+1:t+12 denotes the forecasted state vector covering

the period from time t + 1 to t + 12, and DL is the DL model operator.

This model initially employs an embedding layer to encode the data into smaller blocks based on latitude and

longitude, into a vector of length 256. Subsequently, it utilizes temporal self‐attention and spatial self‐attention

modules to extract features. Finally, the model outputs the predicted results through a fully connected layer. More

details of the model can be found in Zhou and Zhang (2023).

Compared with the LIM, there are two main advantages of DL model. First, the DL model can capture the

deterministic non‐linear relationships between the current and future states. Second, the DL model employs

nonlinear dimensional reduction, which retains more predictive capability. As we will show, the DL model has

better prediction skill than the LIM (see Section 4 for details).

2.2.3. Model Training and Configuration

LIM. The first step in LIM training employs multivariate EOFs (e.g., Hannachi et al., 2007; Lorenz, 1956). This is

achieved by first consolidating the normalized variables—Sea Surface Temperature (SST), wind stress, and ocean

temperature—into a unified matrix X:
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X = [XT
SST

σSST

,
XT
wind stress

σwind stress
,
XT
ocean temperature

σocean temperature
]T

(8)

here, σ represents the standard deviation of each variable. Subsequently, Singular Value Decomposition (SVD) is

employed to extract the leading modes U, such that X = UΣVT . The fields are then projected into this dimen-

sionally reduced Principal Component (PC) space using: ÆX = ÆU
T
X.

We then use this PC time sequences ( ÆX) to construct the LIM from Equation 3. To ensure that the LIM achieves

its best forecasting ability, we perform dimensional reduction on the data from each of the 23 CMIP6 models and

conduct an exhaustive search to identify the optimal number of PCs for training a LIM from each model. The

search objective is to identify the highest 12‐month mean Nino3.4 Index forecast correlation skill for each model.

We find that the first 12 PC sequences from the GFDL‐CM4 model yield the best forecasting results of the 23

LIMs evaluated. Therefore, we use the first 12 PC sequences from the GFDL‐CM4model (Adcroft et al., 2019) to

build our LIM. It is noteworthy that previous studies have constructed LIMs using only SST or a combination of

SST and Sea Surface Height (SSH) (Lou et al., 2020; Shin et al., 2020), rather than also predicting the mixed layer

as we do here. Thus, to provide a basis for comparison with previous work, we also construct a LIM using only

SST, which we refer to as LIMOsst. A comprehensive search again reveals that the LIM built with the first 12 PC

sequences of GFDL‐CM4 SST yields the best forecasting performance.

DL Model. As our objective is to predict the state of the entire field for the next time step, we have modified the

loss function of the original model described in (Zhou & Zhang, 2023). Instead of incorporating the Root Mean

Squared Error (RMSE) of the Nino3.4 index into the loss function as in the original study (Zhou & Zhang, 2023),

we have adopted the RMSE of the entire state vector as our loss function:

Loss = 1

Tout
3Tout
t=1

�����������������������������������������������������������������������������������
1

Nlat × Nlon × C
3Nlon
i=1

3Nlat
j=1

3C
k=1

(xoutt,k,j,i − xtruet,k,j,i)2
:::: , (9)

where xout represents the forecast states, which equals 12 in this research, while Tout, Nlat, and Nlon denote the

number of output time steps, the number of latitude grids, and the number of longitude grids, respectively.

Although this modification led to a slight decrease in Nino3.4 index prediction skill, it improves the Nino3.4

index DA skill by 5%. This adjustment aligns with our broader goal of enhancing DA through more robust

covariance relationships, reflecting teleconnections across the entire field.

For training we use the PyTorch framework (Paszke et al., 2019) and source code from Zhou and Zhang (2023).

To achieve optimal tuning of the network parameters, we use the Adam optimization algorithm (Kingma &

Ba, 2014), implementing a decaying learning rate strategy that starts at 0.0005 and decreases with ongoing

training. Moreover, we incorporate an early stopping mechanism (Prechelt, 2002) that halts training if there is no

reduction in the validation RMSE over four consecutive epochs. All training strategies are detailed with the code

accompanying this study (see Section 6).

2.3. Data Assimilation Methods

This section describes the assimilation methods used in this study, including augmenting the error of the DL

model ensemble forecasts.

2.3.1. Ensemble, Online and Offline Assimilation

We perform DA using an Ensemble Kalman Filter (EnKF) (Evensen, 2009), which has been shown to perform

well in paleo‐data assimilation tasks (Hakim et al., 2016; Perkins & Hakim, 2017; Tardif et al., 2019; Zhu

et al., 2023). The first part of the Kalman filter is the update step:

xa = xp +K[ y −H(xp)], (10)
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in which xa is the analysis state vector, xp is the prior state vector, y is the observation vector,H is the observation

operator, and K is the Kalman gain matrix defined by:

K = BHT[HBHT + R]−1, (11)

here, B is the prior covariance matrix, H is a linearized version of H, and R is the observation error covariance
matrix. In the Last Millennium Reanalysis (Hakim et al., 2016, LMR) framework, R is a diagonal matrix with

diagonal elements equal to the observational error variance. In this study, we use the Ensemble Square Root Filter

(EnSRF) method (Tippett et al., 2003) to solve Equations 10 and 11, including serial observation processing.

Since the covariance spatial length scales on annual to monthly time scales in this region are relatively long, we do

not impose covariance localization. The EnSRF method for the kth proxy, yk, is described in the following

equations. We separate the ensemble into two parts, the ensemble mean and ensemble perturbation. First, we

calculate the analysis ensemble mean by:

xa = xp +
cov(xp, ye,k)(var(ye,k) + Rk) (yk − ye,k). (12)

here the overbar (x) denotes an ensemble mean, and primes (x2) denotes an ensemble perturbation. Subscript “p”
denotes the prior state vector (forecast), subscript “a” the analysis state vector (posterior), ye,k is the kth proxy

estimate from the ensemble, and Rk is the kth proxy error variance. The “var” and “cov” are the variance and

covariance operators on the ensemble number dimension. Second, we calculate the analysis ensemble pertur-

bations from:

x2a = x2b − [1 + ���������������������������
Rk

var(ye,k) + Rk

: ]−1 cov(xp, ye,k)(var(ye,k) + Rk) (y2e,k) (13)

Finally, each ensemble member analysis state vector is calculated by adding the ensemble mean and ensemble

perturbation:

xa = xa + x2a (14)

One objective of this paper is to demonstrate that low‐frequency observations (averaged more than 1 month) can

be effectively assimilated to reconstruct monthly averaged climate fields. By employing the method mentioned

previously, we can update the monthly variables using 3, 6, or 12‐month averaged observations through the

covariance matrix cov(xp, ye,k) .
To assess the impact of the models on the DA results, we perform experiments using both online and offline DA,

as subsequently described. All experiments in this paper use 100 ensemble members, a number chosen to balance

good results with the constraints of limited computational resources. Results for the DL model improve modestly

for larger ensembles (tests for 50–400 members shown in Figure S3 in Supporting Information S1).

Online Assimilation. After the update step, in the online assimilation method, we perform the forecast step,

meaning a forecast initialized with the result of the update step:

xp,t+1 = M(xa,t), (15)

where M represents the model operator. We employ both the LIM and the DL model as the model operators.

Additionally, we evaluate the effect of different observation‐averaging periods on the analyses, since these vary

by climate proxy. Specifically, we consider time averages including 1, 3, 6, and 12 months. Consequently, when

assimilating observations, we adapt the model's forward prediction to align with the temporal length of the

averaging time of the observations. This allows us to compute the prior values for the proxy data, which are

subsequently assimilated using method described above (Huntley & Hakim, 2010; Steiger et al., 2014). To

initialize the ensemble at the start of each experiment, we randomly select 100 model output data fields from the
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CMIP6 data that correspond to the current month. After completing assimi-

lation for this randomly drawn ensemble, we make a forecast using this

assimilated field as initial condition to the next time for assimilation. This

forecast–assimilation cycle continues until the final time with observations.

Offline Assimilation. In the original LMR framework (Hakim et al., 2016;

Tardif et al., 2019), assimilation is executed offline. In the offline case, the prior

state vector comprises the same random ensemble drawn from a single CMIP6

model, with no intervening forecast step. To optimize the performance of this

offline assimilation, we conduct the assimilation process using data from all 23

CMIP6 models as the prior ensemble and select the most accurate outcome as

our final result, as defined by the highest reconstructed Nino3.4 Index corre-

lation. We find that the MRI‐ESM2‐0 simulation is the optimal source for the

offline prior ensemble. This approach ensures that all experiments can be used

to validate the relative outperformance of the Deep‐Learning–assimilation

method for reconstructing tropical Pacific climate fields.

2.3.2. DL Model Ensemble Inflation

In the case of DL networks, particularly for tasks involving monthly or annual

forecasting, DL models tend to lose error associated with the unpredictable

signal. For example, when forecasts are initialized and verified using the

GODAS data set, the ratio of the SST variance between the predictions of the DL model and the target data in the

GODAS data set is less than 1. This ratio decreases with increasing prediction lead time, as illustrated by the blue

line in Figure 1. The variance of the forecast wind stress is also significantly lower than that of GODAS, and the

variance ratio of other variables are similarly smaller. The primary reason for this discrepancy is that the DL

model is not trained to capture unpredictable signals, which is especially evident in the atmosphere as seen in

Figure S1 in Supporting Information S1. This unpredictable noise may be caused by unresolved processes, or by

signals that originate outside of the forecast domain, such as the Pacific Meridional Mode (PMM) (Meng &

Li, 2024; Vimont et al., 2003) from mid‐latitudes, the Indian Ocean Dipole (IOD) (Saji et al., 1999), and from

other ocean basin and deep‐ocean dynamics.

Figure 1. Variance proportion of deep learning (DL) forecasts compared to

Global Ocean Data Assimilation System (GODAS) observations across

different variables over time. Illustrated here are the variance ratios for

predictions made by the DL model relative to actual observations from the

GODAS data set, covering variables such as the Nino3.4 Index, sea‐surface

temperature, wind stress, and ocean temperature, as a function of varying

lead times in months.

Figure 2. Comparison of standard deviation ratios: Simple Ocean Data Assimilation (SODA) versus CMIP6 Models for the

Nino3.4 Index. This graph displays the ratio of the Nino3.4 index standard deviation from the SODA data set to that of

various CMIP6 models, which is utilized as a scaling factor for noise based on the CMIP6 model data.
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While this is not an issue for forecasting tasks aimed at providing only the predictable future signal, it presents a

challenge for DA since it involves estimating errors. Underestimating errors in the forecast can lead to under

weighting the information from observations. To address this issue, we employ a variance inflation technique

(Evensen, 2009) by adding random errors to the DL forecast. Specifically, we assume that the unpredicted error is

a random process. We sample from an ensemble of these random vectors obtained by calculating the difference

between the DL forecast and the verifying fields from hindcasting experiments. The sample size of GODAS and

SODA data is not sufficient to obtain the statistical characteristics of this noise, so we use DL forecast errors from

initializing and predicting on the CMIP6 models. Since there is a significant difference between the intensity of

ENSO in CMIP6 and observations (SODA) (Beobide‐Arsuaga et al., 2021), we use the standard deviation of the

Nino3.4 Index (ENSO intensity) as a scaling factor on the errors from CMIP6 models hindcast. Specifically, the

random errors added to the DL forecasts are calculated by the following steps.

First, we calculate the ratio between the standard deviation of SODA Nino3.4 index and each CMIP6 model's

Nino3.4 index as the scaling factor αi,

αi =
σSODA

σi

. (16)

Here, σSODA is the standard deviation of the SODA Nino3.4 index and σi is the standard deviation of the i‐th

CMIP6 model's Nino3.4 index. The major reason for using Nino3.4 index as scale factor is that the Nino3.4 index

standard deviation is representative of the intensity of ENSO. Ratios for most models are less than 1 (Figure 2),

which means the variance of the CMIP6 models ENSO intensity is larger than in SODA. We apply the scaling

factor to the forecast errors from CMIP6 models, ηm,l,i, for the ith CMIP6 model, lth lead time and mth ensemble

member:

ηm,l,i = αi (xtruem,l,i − xoutm,l,i). (17)

The corrected forecast from the DL model is then defined by

xt+1 = xoutm,l + ηm,l. (18)

We note that, in comparison to adding noise directly, scaling the noise leads to an approximately 5% improvement

in the reconstruction results in terms of correlation. However, the scaling method cannot correct the large

Figure 3. Geographical distribution of coral δ18O proxy records in the tropical Pacific region from the PAGES2K database

(Outlined by the dashed blue box). The dashed blue box delineates the area of focused modeling and interest, the dashed red

box indicates the Nino3.4 region, and the brownish‐yellow dots represent the locations of coral δ18O proxy records.
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discrepancies in the power spectral density of the Nino3.4 index (Brown et al., 2020); which is a subject for future

research.

On the contrary, in the LIM, the variance of the deterministic part of the state vector also decays with time,

because the real part of the eigenvalues of L are less than 0. However, the random noise forcing component ξ

yields an unbiased forecast covariance (as seen in Equation 4). Therefore, the variance inflation technique is not

used for the LIM forecasts.

2.3.3. Evaluation Criteria

The major evaluation criteria used in this study for the prediction skill and reconstruction skill are sample time‐

series correlation and root‐mean‐squared error (RMSE). The correlation is calculated by the following equation:

corr = 1

T
3T
t=1

(ft − f̄ ) (vt − v̄)
σ f σv

, (19)

in which ft is the prediction result or reconstruction result, vt is the ground truth at time t, f̄ and v̄ are the mean of

prediction result and ground truth, σ f and σv are the standard deviation of prediction result and ground truth.

RMSE is calculated by:

RMSE =

����������������������������
1

T
3T
t=1

(ft − vt)2
:::

. (20)

Correlation and RMSE results are averaged over the entire domain to provide summary measures of skill. To

quantify the improvement of DL over the LIM and offline DA approaches, we use the improvement ratio (IR):

IR = SDL − Straditional

Straditional

, (21)

in which SDL and Straditional are the skill scores of the DL model and the traditional model (the LIM, or the offline

method), respectively. The skill score is defined by first computing the domain‐averaged correlation or RMSE,

and then the IR. For consistency with RMSE, the IR is multiplied by −1, so that smaller values mean better skill.

3. Observing Network

Here we describe the design of the DA experiments, including the locations of the pseudoproxies, the types of

pseudoproxies, the error characteristics for the pseudoproxies, and the experimental setup.

To simulate the real assimilation process as closely as possible, we use the locations of stable oxygen isotope

composition (δ18O) coral proxy locations from the widely utilized PAGES2K database. We take the average

number of coral sites available in the tropical Pacific domain from 1600 to 2000, which amounts to 24, as the

locations for the pseudoproxy data (Figure 3). In the assimilation of paleoclimate data, the proxy data averaging

time varies from monthly to annual. Therefore, assimilating these proxies, which represent climatic data over

periods longer than a month, to obtain monthly average climate data poses a significant challenge to the forecast

model's ability to predict the duration of climate information. To test this capability, we set the duration of the

pseudoproxy data averaging time to 1, 3, 6, and 12 months, respectively, and conduct separate assimilation

experiments for each duration.

We take observations from the GODAS data set as ground truth, interpolating to the proxy location and time

averaging:

yavg,N = 1

N
3k+N

i=k+1
yi, (22)
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with N taking values of 1, 3, 6, and 12 in this study. To synchronize with ENSO seasonality, we compute 3‐month

averages corresponding to MAM (March–April–May), JJA (June–July–August), SON (September–October–

November), and DJF (December–January–February). The 6‐month averages are MAMJJA (March to August)

and SONDJF (September to February), while the 12‐month average spans MAMJJASONDJF (March to

February).

After completing interpolation and averaging, we simulate random errors in the data drawn from a Gaussian

distribution with a mean of 0. The Signal‐to‐Noise Ratio (SNR) (Zhu et al., 2023), defined in terms of standard

deviation, is set to 1. Additionally, we tested the sensitivity to SNR by conducting additional experiments for

SNR = 0.2, 0.5, 2, and 5, and find that the amplitude of the SNR does not significantly impact the results

(Supporting Information S1). We simulate observation error by

y2avg,N = yavg,N + ζ, (23)

in which ζ > N(0,σ2), and σ is the standard deviation of the real data divided by the SNR. The error simulation is

performed for each proxy location and each time‐averaging duration.

4. Forecasting Results

We now compare the forecast skill of DL, LIM and LIMOsst forecasts by initializing and verifying with the

GODAS data set. In terms of the domain‐averaged correlation and RMSE metric of all variables, and the Nino3.4

Index, the DL forecasts consistently outperform both the LIM and LIMOsst forecasts across all variables and at all

lead times (Figure 4). Spatial maps of DL‐forecast skill improvement reveal SST and ocean temperature spatial

patterns similar to El‐Niño (La‐Niña) (Figures 5 and 6). Specifically, from 1‐month to 12‐month lead time, the

region with improved predictions evolves from off the equator to the equatorial region, accompanied by ocean

Figure 4. Forecast skill of Deep Learning model (red), Linear InverseModel (blue) & LIMOsst (green) in terms of correlation

(solid lines) and Root Mean Squared Error (RMSE) (dashed lines) across lead time for the Nino3.4 Index (a), sea‐surface

temperature field (b), ocean temperature field (c), and the wind stress field (d). The correlation scale is provided on the left y‐

axis and RMSE on the right y‐axis, as the function of forecast lead time.
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temperature anomalies that tilt from the lower western to the upper eastern surface along the sloping thermocline

(also as shown in the Figures S5–S8 in Supporting Information S1). For surface wind stress, the DL model

forecast‐skill improvement is located in the central and western equatorial Pacific region, aligning with the region

of improved skill for ocean temperature. This indicates that the DL model is able to better simulate the dynamics

of ENSO compared to the LIMs.

Compared to the correlation metric, the improvement in RMSE by the DL model is not as significant, as illus-

trated in Figure 4. An inherent advantage of the LIM at long lead times derives from the negative eigenvalues of

L, trending the forecasts toward zero anomaly as lead time increases. This means that the RMSE converges on the

climatological standard deviation. In contrast, the DL model lacks this constraint and exhibits systematic errors

that increase the RMSE as shown in Figure S9 in Supporting Information S1, potentially to values larger than

climatology.

Figure 5. Difference in forecast skill as measured by correlation between Deep Learning and Linear Inverse Models as a function of lead time (τ). The first row (a–d)
shows zonal‐wind stress, the second row (e–h) meridional wind stress, the third row (i–l) sea‐surface temperature, and fourth row (m–p) equatorial (5°N–5°S) ocean

temperature.

Figure 6. Comparison of spatial patterns in normalized Root Mean Squared Error (normalization by the domain‐averaged standard deviation of the corresponding

variables) skill between Deep Learning and Linear Inverse Models as a function of lead time (τ). The first row (a–d) shows zonal‐wind stress, the second row (e–h)
meridional wind stress, the third row (i–l) sea‐surface temperature, and fourth row (m–p) equatorial (5°N–5°S) ocean temperature.
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It is noteworthy that in the equatorial western Pacific (near 135°E), DL forecast skill for SST and ocean tem-

perature fields decreases with lead time. This appears to be a consequence of a systematic bias due to the

exaggerated westward extension of the equatorial cold tongue in the CMIP6 models (Beobide‐Arsuaga

et al., 2021; Jiang et al., 2021; Zhou & Zhang, 2023). The LIM, trained exclusively on GFDL‐CM4 data,

demonstrates a mitigated version of this bias, owing to the relatively minor extent of the issue in GFDL‐CM4

simulations. Conversely, the DL model, informed by a wider array of CMIP6 historical outputs, tends to

accentuate the cold‐tongue bias.

The strength of our DL forecasts partly stems from the use of multi‐time input and auto‐regression outputs. Unlike

recurrent neural network (RNN) models (Medsker & Jain, 2001) and LIM, which incorporate outputs back to

inputs, our approach ensures that each output is derived from a complete 12‐month analysis of inputs, capturing

the dynamic processes of the Pacific more effectively than single‐instance inputs.

5. Data Assimilation Results

Assimilation experiments for a sparse network of noisy GODAS‐sampled SST observations show that cycling

with the DL model outperforms the others (LIM, LIMOsst, and offline) by around from 10% to 30% in recon-

structing the Nino3.4 index (Figure 7, top panels). Similar results are found for skill in the prior forecast before

DA (Figure 7, bottom panels). Improvement using the DL model increases with observation averaging time,

which we attribute to the increase of forecast skill with lead time shown in Section 4. We find that these results are

not sensitive to the SNR (see Figure S2 in Supporting Information S1). In terms of skill across the entire domain,

the DL model outperforms the LIMs for all observation averaging times and variables, most notably for corre-

lation, and less so for RMSE Figure 8. Two key factors contribute to the modest improvement in the RMSE

metrics. First, the enhancement in forecast skill in terms of RMSE is limited, as demonstrated in Figure 4. The

RMSE improvement for SST, upper ocean temperature, and wind stress is relatively smaller compared to the

improvement in correlation, as discussed in Section 4. Secondly, as discussed previously, the LIM system is

constrained by the fluctuation–dissipation relationship (Equation 4), which limits RMSE growth; the DL model

does not have such constraint. Another possible contribution is the noise we have introduced to manage the loss of

forecast variance and the limited number of ensemble members, since the DL model results improve modestly for

larger ensembles (see Figure S3 in Supporting Information S1).

Figure 7. Correlation (left panel, left y‐axis) and Root Mean Squared Error (right panel, left y‐axis) for the prior (lower panel)& posterior (lower pannel) Nino3.4 index

and Global Ocean Data Assimilation System data set Nino3.4 index in 1‐month, 3‐month, 6‐month and 12‐month experiment. Red bars show deep learning (DL) model

result, blue bars are linear inverse model (LIM) result, the purple bars are the LIMOsst model result, and the gray bars are the offline method result. The bars with

diagonal hatching (right y‐axis) show the improvement ratio of the DL model compared to the LIM, LIMOsst model and offline method.
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The reconstruction correlation and RMSE spatial differences between DL and LIM is shown in the Figures 9 and

10, respectively. Improvement of the DL results over the LIM in zonal wind stress and SST are located primarily

off the equator, which is not the same as for the forecasting experiments (cf. Figures 5 and 6). This suggests that,

relative to the LIM, the DL covariance estimates allow for more information extraction from the observations,

which are located primarily closer to the equator. Improvements in the meridional wind stress are more closely

confined to the equator relative to the forecasting experiments, suggesting a local influence of the observations.

For the ocean temperature field, the reconstruction skill improvement of the DL model predominantly manifests

in the mid‐Pacific region at a depth of 100–150 m, with extensions upward and eastward along the sloping

thermocline. This spatial concentration roughly corresponds with the forecast skill improvements, especially for

the 12‐month observation averaging time. Areas where the DL model results are worse than the LIM are

concentrated near South America and the land areas around the western Pacific warm pool, which corresponds

with the forecast skill differences in RMSE and correlation (Figures 5 and 6), but these areas are smaller in

magnitude compared with skill enhancements elsewhere.

Figure 8. Domain‐averaged reconstructed (posterior) correlation and Root Mean Squared Error results for the Deep‐learning model & linear inverse model (LIM)

verified on the Global Ocean Data Assimilation System data set. Red bars represent the Deep Learning (DL) model, blue bars the LIM (LIM); bars with diagonal

hatching indicate the improvement ratio of the results for the DL model relative to those for the LIM. The upper panel shows the sea‐surface temperature field, the

middle panel shows the wind stress field, and the lower panel shows the ocean temperature field.
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Figure 11 presents a comparison of the evolution of SST and zonal wind stress in the GODAS reanalysis and the

DL DA results. The reconstruction achieves remarkable accuracy, faithfully capturing the peaks and troughs of

central‐east Pacific SST as observed in the reanalysis, along with the corresponding zonal‐wind stress. This is

particularly notable in the 12‐month averaged experiment, which utilizes only 24 observations per year, yet still

largely captures the observed patterns. Notable differences include excessive easterly wind stress, and cooler

SSTs, around 1996 and 2000, in the DL results when compared to GODAS.

6. Conclusion and Discussion

We have evaluated the potential of using a deep‐learning model for cycling DA on sparse observations to

reconstruct the upper ocean and surface wind stress of the tropical Pacific ocean. The DL model is trained on

CMIP6 model data following Zhou and Zhang (2023), and validated by forecasting on SODA reanalysis data. A

significant drawback of the DLmodel for DA is a bias for small forecast error variance. Therefore, we employed a

Figure 9. The reconstructed result correlation skill difference between Deep‐learning model and Linear InverseModel of δ–month experiment in zonal wind stress (a–d),

meridional wind stress (e–h), sea‐surface temperature (i–l) and equatorial ocean temperature (from 5°N to 5°S) (m–p) field in 1,3,6 and 12 months‐averaged

experiments.

Figure 10. The reconstructed, normalized Root Mean Squared Error (normalization by the domain‐averaged standard deviation of the corresponding variables) skill

difference between Deep‐learning model and Linear Inverse Model of δ–month experiment in zonal wind stress (a–d), meridional wind stress (e–h), sea‐surface

temperature (i–l) and equatorial ocean temperature (from 5°N to 5°S) (m–p) field in 1,3,6 and 12‐month experiment.
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approach to restore ensemble forecast variance by adding scaled samples from a library of DL model forecast

errors to the DL model forecasts. We compare the performance of the DL model in forecasting and DA exper-

iments to control experiments using LIMs trained on the same CMIP6 data set, and an offline DA experiment that

samples only from CMIP6 without a forecast model.

Overall, the results show that the DL model provides better forecasts compared to the LIM, especially in the

central and eastern Pacific where ENSO dominates variability. The DL model outperformance is most notable in

correlation (signal timing), and smaller in RMSE. For the DA experiments, the results also show improvement

using the DL model relative to the LIM, but the spatial distribution of these improvements differs from the

forecasting results. In particular, relative to the LIM DA results, we find larger improvements off‐equator in

zonal‐wind stress and SST, near the equator in ocean temperatures, and near the thermocline in the mid Pacific.

These improvements reflect a combination of the forecast‐skill improvements, which better retain the memory of

past observations, and improved spatial covariance, which spread information from the sparse network of ob-

servations, which are more abundant over the equatorial western Pacific.

Based on this proof‐of‐concept study, we conclude that a deep‐learning model can provide computationally

efficient forecast priors for online paleoclimate DA, leading to improved reconstruction outcomes. Future

research will consider the application of these models to assimilating real proxy data, and extending the approach

outside the tropics.

Data Availability Statement

GODAS data set can be found: https://psl.noaa.gov/data/gridded/data.godas.html. SODA data set can be found:

http://www.soda.umd.edu. CMIP6 Data set can be found: https://pcmdi.llnl.gov/CMIP6/. Plotting tools can be

found in SACPY: https://zenodo.org/records/13227070 (Meng et al., 2023). The main codes can be found: https://

zenodo.org/records/13896365.
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