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In-medium similarity renormalization group at finite temperature
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The study of nuclei at finite temperature is of immense interest for many areas of nuclear astrophysics and
nuclear-reaction science. A variety of ab initio methods are now available for computing the properties of
nuclei from interactions rooted in quantum chromodynamics, but applications have largely been limited to zero
temperature. In the present work, we extend one such method, the in-medium similarity renormalization group
(IMSRG), to finite temperature. Using an exactly solvable schematic model that captures essential features of
nuclear interactions, we show that the FT-IMSRG can accurately determine the energetics of nuclei at finite
temperature, and we explore the accuracy of the FT-IMSRG in different parameter regimes, e.g., strong and weak
pairing. In anticipation of FT-IMSRG applications for finite nuclei and infinite matter, we discuss differences
arising from the choice of working with the canonical and the grand-canonical ensembles. In future work, we
will apply the FT-IMSRG with realistic nuclear interactions to compute nuclear structure and reaction properties
at finite temperature, which are important ingredients for understanding nucleosynthesis in stellar environments,
or modeling reactions of hot compound nuclei.
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I. INTRODUCTION

Efforts to describe the properties of atomic nuclei based
on nuclear forces that are rooted in quantum chromodynamics
have made significant progress in recent decades. So-called ab
initio nuclear many-body calculations have been performed
for hundreds of nuclei up to the Z ∼ 50 region, and results for
even heavier nuclei are published with increasing frequency
[1–9]. The main challenge for most of the methods that are
used in these kinds of calculations is the sheer size of the
many-body Hilbert spaces, which need to encompass tens
or hundreds of nucleons and their degrees of freedom, as
modeled by a chosen single-particle basis. The dimension of
the many-body basis scales as

(N
A

)
with the number of (indis-

tinguishable) particles A and single-particle states N , hence
exact solutions of the (stationary) nuclear Schrödinger equa-
tion through diagonalization of the Hamiltonian matrix are
only feasible for nuclei of mass A ! 20. In order to efficiently
study heavier nuclei from first principles, it is necessary to de-
velop methods to approximate the solution to the many-body
problem in polynomial time. Several such methods have been
developed that can extract properties of specific energy eigen-
states, most frequently the ground state (see, e.g., Ref. [1] and
references therein).

The common first step in a large number of many-body
approaches is the construction of a reference state for the
many-body basis via a Hartree-Fock (HF) calculation (see,
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e.g., [10]). Hartree-Fock is a variational method to approxi-
mate the ground state of a many-body Hamiltonian as a single
Slater determinant by constructing an optimal single-particle
basis that minimizes the energy at the mean field level. The
HF solution then serves as the basis for so-called beyond
mean-field methods, which improve the approximation of the
ground state in a systematic fashion and converge to the exact
solution in a well-defined way. Approaches like many-body
perturbation theory (MBPT) or the nonperturbative coupled
cluster (CC) and self-consistent Green’s function (SCGF)
methods have been very successful in approximating solutions
to the nuclear many-body problem (see Refs. [1,11,12] and
references therein).

The beyond mean-field method we will focus on in this
work is the in-medium similarity renormalization group (IM-
SRG) [1,13–15]. The IMSRG applies a continuous unitary
transformation to the Hamiltonian, with the goal of extracting
the ground state energy, the energy of selected excited states
[16], or effective interactions and operators for subsequent
use in other many-body methods [17–19]. Its variants have
been used with great success in the prediction of ground
state and excited state properties in a wide range of nuclei
[6–8,14,15,17,20,21].

Thus far, applications of the IMSRG and other modern
beyond-mean field methods for finite nuclei have been
limited to zero temperature, although ab initio studies
of infinite matter at finite temperature based on modern
nuclear interactions have been performed with a number of
methods (see Ref. [22] and references therein). Extensions of
mean-field methods, e.g., the finite temperature HF (FT-HF)
and Hartree-Fock-Bogoliubov (FT-HFB) [23–25], and beyond
mean-field methods like shell-model Monte Carlo [26,27]
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have been developed decades ago, but they rely on schematic
Hamiltonians or effective interactions whose parameters are
fitted to data. More recently, several groups have studied
nuclear ground-state properties and their response at finite
temperature using both nonrelativistic and relativistic energy
density functionals as input [28–33].

In this work, we present the formalism for the finite-
temperature extension of the IMSRG (FT-IMSRG), and assess
its performance using an exactly solvable schematic model
[34]. Our goal is to set the stage for ab initio calcula-
tions of nuclear properties, decay and reaction rates at finite
temperatures. They are important ingredients for understand-
ing nucleosynthesis processes in hot, stellar environments
[35,36] or reactions involving hot compound nuclei, e.g.,
neutron-induced fission [37]. Such efforts will be aided by
the IMSRG’s capabilities for tracking how correlations are
resummed into effective in-medium interactions, akin to the
spirit of nuclear density functional theory (DFT) [14,38]. This
will allow us to link the aforementioned finite-temperature
DFT work and ab initio methodology, and provide insight into
the successes and failures of either approach.

Our discussion of the FT-IMSRG is organized as follows.
In Sec. II, we present a summary of the IMSRG at zero tem-
perature before describing our implementation of FT-HF in
Sec. III A and the FT-IMSRG flow equations in Sec. III B. In
Sec. IV, we assess the performance of the FT-IMSRG: We in-
troduce our schematic model in Sec. IV A and present results
for a system of four fermions in eight single-particle states
in Sec. IV B, before discussing larger systems in Sec. IV C.
In Sec. IV D, we compare results obtained by working in
the canonical and grand-canonical ensembles, respectively. In
Sec. IV E, we demonstrate the computation of free energy
from the FT-IMSRG results. Finally, we conclude in Sec. V.

II. ZERO-TEMPERATURE IMSRG

The first step in setting up a zero-temperature IMSRG
calculation is the choice of a reference state |!〉 [14], e.g., a
HF Slater determinant serving as a first approximation to the
system’s ground state. A complete many-body basis can then
be constructed from |!〉, its one-particle-one-hole excitations,
two-particle-two-hole excitations, and so on. The goal of the
IMSRG is to continuously apply a unitary transformation
U (s) to the Hamiltonian in order to decouple |!〉 from its
excitations as s → ∞, as shown schematically in Fig. 1. More
generally, this implies that the IMSRG reshuffles correlations
from the wave function into the evolved Hamiltonian so that
the reference state |!〉 becomes an eigenstate of H (∞) up
to truncation errors. U (∞) can be understood as a mapping
between an exact eigenstate of H (0)—usually the ground
state—and |!〉.

To implement the IMSRG flow, we first express the
Hamiltonian as

Ĥ = K̂ + V̂ =
∑

pq

kpqa†
paq + 1

4

∑

pqrs

vpqrsa†
pa†

qasar . (1)

Here we use K̂ for the kinetic energy to avoid confusion with
the temperature later, and we adopt chemistry conventions for

FIG. 1. A schematic view of IMSRG decoupling [14]. The
many-body Hamiltonian is depicted in blocks, with the reference
state |!〉 and its one-particle-one-hole excitations, two-particle-two-
hole excitations, and three-particle-three-hole excitations (see text).
During the IMSRG flow, the reference state is decoupled from its
excitations.

labeling the HF single-particle states, where a, b, . . . refer to
unoccupied (particle) states, i, j, . . . to occupied (hole) states,
and p, q, . . . run over the entire basis. Next, we introduce
normal-ordering with respect to the reference state |!〉, de-
fined by

{a†
paq} ≡ a†

paq − 〈!|a†
paq|!〉 = a†

paq − ρpq, (2)

where 〈!|a†
paq|!〉 is also called the (Wick) contraction of a†

p
and aq, which is equal to the one-body density matrix ρpq
of the reference state. In the HF basis, this density matrix is
diagonal,

ρHF
pq = npδpq, (3)

and its eigenvalues, the occupation numbers np, are 1 when the
pth single-particle state is occupied in the reference state (hole
state) and 0 when the pth single-particle state is unoccupied
in the reference state (particle state). A detailed description of
this normal ordering scheme, including the normal ordering
of general A-body operators, can be found in Refs. [14,15].

We then write the Hamiltonian in terms of normal-ordered
operators:

Ĥ = Ê + f̂ + $̂

= E +
∑

pq

fpq{a†
paq} + 1

4

∑

pqrs

$pqrs{a†
pa†

qasar}. (4)

The zero-, one-, and two-body parts of the normal-ordered
Hamiltonian are respectively given by

E =
∑

p

kppnp + 1
2

∑

pq

vpqpqnpnq, (5)

fpq = kpq +
∑

p

vprqrnr, (6)

$pqrs = vpqrs, (7)

which can be derived directly from the n-body normal order-
ing in Ref. [14]. We see that E , f , and $ now depend on the
“medium” via the dependence on the occupation numbers of
the reference state. We note that

E = 〈!|Ĥ |!〉, (8)
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making E the expectation value of energy in the reference
state. When we evolve the Hamiltonian as shown in Fig. 1, E
will evolve towards an exact eigenvalue of Ĥ (up to truncation
effects), which is usually the desired ground-state energy. In
the present work, we only deal with schematic models which
include one- and two-body interactions in the initial Hamil-
tonian. Three-body interactions in the initial Hamiltonian can
also be accounted for in the normal ordered zero-, one-, and
two-body terms, see Refs. [14,15].

The IMSRG flow is defined through the operator differen-
tial equation,

d
ds

Ĥ (s) = [η̂(s), Ĥ (s)], (9)

where the generator η̂ is a function of the Hamiltonian that
is chosen to induce the wanted behavior out of the IMSRG
flow, as will be discussed below. We note that for this flow
to be unitary, the generator must be anti-Hermitian. Plugging
the Hamiltonian (1) and a similarly structured η̂ into the flow
Eq. (9) at s = 0, we immediately find that the commutator
includes three-body operators. These and further higher-rank
contributions to the Hamiltonian will be induced by the IM-
SRG flow as we evolve. In order to close the system of flow
equations, we truncate operators at the normal-ordered two-
body level in the so-called NO2B approximation. We then
have the IMSRG(2) flow equations:

dE
ds

=
∑

pq

(np − nq)ηpq fqp

+ 1
2

∑

pqrs

ηpqrs$rspqnpnqn̄r n̄s, (10)

dfpq

ds
=

∑

r

(1 + Ppq)ηpr frq

+
∑

rs

(nr − ns)(ηrs$sprq − frsηsprq )

+ 1
2

∑

rst

(nrnsn̄t + n̄r n̄snt )(1 + Ppq )ηt prs$rstq, (11)

d$pqrs

ds
=

∑

t

[
(1 − Ppq )(ηpt$tqrs − fptηtqrs)

− (1 − Prs)(ηtr$pqts − ftrηpqts)
]

+
∑

tu

[
1
2

(1 − nt − nu)(ηpqtu$turs − $pqtuηturs)

+ (nt − nu)(1 − Ppq)(1 − Prs)ηt pur$uqts

]
. (12)

Here n̄p = 1 − np is the hole occupation number and Ppq is
an operator which switches the p and q indices in subsequent
expressions. Naively, with a single-particle basis size N , these
equations scale computationally as O(N6), but by differenti-
ating between particle and hole states, it is possible to reduce
this to O(N4

p N2
h ), were Np and Nh are respectively the number

of particle and hole states [16].

There are several generators that can be used to achieve
the desired decoupling. We seek to decouple the reference
state and its particle-hole excitations, which means we want
to suppress the “off-diagonal” matrix elements of the form

〈!|Ĥ{a†
aai}|!〉 = fai (13)

and

〈!|Ĥ{a†
aa†

ba jai}|!〉 = $abi j . (14)

To this end, we use a generator of the form [14,15]

η̂ = η̂1B + η̂2B

=
∑

ai

ηai{a†
aai} + 1

4

∑

abi j

ηabi j{a†
aa†

ba jai} − H.c., (15)

where ηai and ηabi j are related respectively to the off-diagonal
matrix elements we seek to eliminate, fai and $abi j .

A simple yet effective generator is the so-called White
generator [14,39]

η̂W =
∑

ai

fai

&ai
{a†

aai} + 1
4

∑

abi j

$abi j

&abi j
{a†

aa†
ba jai} − H.c., (16)

where

&ai = 〈!|{a†
i aa}Ĥ{a†

aai}|!〉 − 〈!|Ĥ |!〉
= faa − fii − $aiai (17)

is the unperturbed energy difference between the reference
state and its p-h excitation, and

&abi j = 〈!|{a†
i a†

j abaa}Ĥ{a†
aa†

ba jai}|!〉 − 〈!|Ĥ |!〉

= faa + fbb − fii − f j j + $abab + $i ji j

− $aiai − $b jb j − $a ja j − $bibi (18)

is the unperturbed energy difference between the reference
state and its 2p-2h excitation. A variation, the White arctan
generator,

η̂arctan = 1
2

∑

ai

arctan
(

2 fai

&ai

)
{a†

aai}

+ 1
8

∑

abi j

arctan
(

2$abi j

&abi j

)
{a†

aa†
ba jai} − H.c., (19)

is useful in cases where the energy denominators &ai and
&abi j become small [15,39]. Using either of these generators
keeps the overall computational scaling of the IMSRG at
O(N4

p N2
h ).

Finally, we note that the IMSRG can determine observable
quantities besides energy. Given any operator Ô written in the
HF basis

Ô = Ô1B + Ô2B

=
∑

pq

O1B
pq a†

paq + 1
4

∑

pqrs

O2B
pqrsa

†
pa†

qasar, (20)

the IMSRG flow equation for Ô is

d
ds

Ô(s) = [η̂(s), Ô(s)]. (21)
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The normal ordering [Eqs. (5)–(7)] remains unchanged, and
we simply need to replace K̂ and V̂ with Ô1B and Ô2B

respectively. The normal-ordered flow equations [Eqs. (10)–
(12)] also remain unchanged, replacing E , f̂ , and $̂ with the
normal-ordered zero-, one- and two-body parts of Ô. Note
that the generator is the same as in the Hamiltonian flow,
calculated based on the Hamiltonian’s normal-ordered matrix
elements, hence Eqs. (9) and (21) must be solved simul-
taneously. Alternatively, one can use the so-called Magnus
operator formulation of the IMSRG to extract a parametriza-
tion of the unitary transformation, which can then be used to
construct any Ô(s) at a later time [14,40].

III. FINITE-TEMPERATURE IMSRG

A. Finite-temperature Hartree-Fock

In order to extend the zero-temperature IMSRG frame-
work to finite temperature, we first consider the selection of
a reference ensemble for setting up our normal ordered op-
erators. Here, we employ the finite-temperature HF (FT-HF)
approach [25,41,42]. Conventionally, FT-HF is implemented
in the grand-canonical ensemble, whose density operator is
defined as

ρ̂ ≡ 1
Z

e−β(Ĥ−µÂ) (22)

with the partition function

Z ≡ Tre−β(Ĥ−µÂ). (23)

Here Â is the particle-number operator, β ≡ 1/T is the inverse
temperature (with kB = 1), and µ is the chemical potential. In
FT-HF, the grand partition function is approximated as

Z ≈
∑

{mi}
〈{mi}| e−β

∑
p(εp−µ)a†

pap |{mi}〉 , (24)

where εp are the single-particle energies associated with the
single-particle basis that spans the occupation number states
|{mi}〉. For a fermion system, the |{mi}〉 are Slater deter-
minants with mi ∈ {0, 1}. Since they are eigenstates of the
exponentiated one-body operator in Eq. (24), the approximate
partition function factorizes, and we can carry out the sum
over the occupation numbers to obtain

ZHF ∼
∏

p

(1 + e−β(εp−µ) ), (25)

as well as the usual Fermi-Dirac distribution for the thermal
average occupation numbers:

np = Tr(ρ̂a†
pap) = 1

1 + eβ(ep−µ) , n̄p ≡ 1 − np. (26)

The optimal single-particle energies εp and associated single-
particle wave functions are determined by minimizing the
grand potential

) = E − T S − µA, (27)

adjusting the chemical potential so that the constraint
∑

p

np = A (28)

is satisfied. The resulting optimal single-particle energies are
given by

εp = kpp +
∑

q

vpqpqnq, (29)

the (FT-)HF internal energy is given by

E =
∑

p

kpnp + 1
2

∑

pq

vpqpqnpnq ≡
∑

p

εpnp − VHF (30)

and the entropy is

SHF = −
∑

p

(np ln np + np ln np). (31)

Since the εp double count the contributions from the two-body
interaction, Eq. (30) is used to obtain the final form of the
partition function [42,43],

ZHF = eβVHF
∏

p

(1 + e−β(εp−µ) ). (32)

The grand-canonical FT-HF method is computationally
efficient due to the factorized form of ZHF: For any fixed
temperature T , the cost matches that of a constrained zero-
temperature HF calculation, which scales as O(N4) in the
single-particle basis size N . From a physical perspective,
however, the grand-canonical ensemble only provides an im-
perfect description of atomic nuclei, since the system can
exchange particles with its environment, and only the average
particle number, i.e., the expectation value 〈Â〉, is fixed by
the constraint (28). The more appropriate choice would be the
canonical ensemble, defined by

ρ̂A ≡ 1
ZA

e−βĤ , ZA ≡ Tre−βĤ , (33)

which describes a system with fixed particle number that can
exchange energy with an environment that is at a temperature
T . The canonical partition function is approximated as

ZA ≈
m1+...mN =A∑

{mi}
〈{mi}| e−βεp a†

pap |{mi}〉 . (34)

In contrast to the grand-canonical case [cf. Eq. (24)], the
particle-number condition prevents us from summing over
occupation numbers independently, and forces us to explicitly
perform the trace over a basis of

(N
A

)
Slater determinants in-

stead. In realistic applications, the associated exponential cost
can be avoided through the introduction of explicit particle-
number projection operators [26,42,43]. For the applications
to schematic models that are considered in this work, we ex-
plicitly work with a fixed-A Slater determinant basis, since we
will exactly diagonalize the Hamiltonians for benchmarking
in any case.

Using Boltzmann factors, the probability that the system is
in the many-body state where the energy levels εp1 , εp2 , ..., εpA

are occupied is

P({p1, . . . , pA}) = e−(εp1 +εp2 +...+εpA )β

ZA
, (35)
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and the occupation number np is the sum of these probabil-
ities for all many-body states in which the energy level εp
is occupied. Adopting the notation of Ref. [44], this can be
conveniently written as

np =
Z\{p}

A−1e−βεp

ZA
, (36)

where Z\{p}
A−1 is the partition function for A − 1 fermions where

the energy level εp is removed.
The canonical FT-HF single-particle energies and single-

particle wave functions can now be found by minimizing the
(Helmholtz) free energy

F = E − T S. (37)

The definitions of εp and E [Eqs. (29) and (30)] are unchanged
but are now understood in terms of the canonical occupation
numbers (36). Thus, the partition function for canonical FT-
HF is given as

ZHF
A = eβVHF

m1+...mN =A∑

{mi}
〈{mi}| e−βεp a†

pap |{mi}〉 . (38)

The canonical entropy can be computed as

SHF
A = ln ZHF

A + βE (39)

(see, e.g., Ref. [42]).
We conclude this discussion by describing our imple-

mentation of the FT-HF iteration procedure. We begin by
expressing the Hamiltonian as

Ĥ = K̂ + V̂ =
∑

αβ

kαβa†
αaβ + 1

4

∑

αβγ δ

vαβγ δa†
αa†

βaδaγ , (40)

where we use Greek indices to indicate a general working
basis of single-particle states. We will then define the effective
HF Hamiltonian f̂ , starting with the ansatz

f̂ (0) = k̂. (41)

We diagonalize f̂ , yielding eigenvalues {εp} and eigenstates
that define a unitary similarity transformation û.

Next, we calculate the grand-canonical or canonical oc-
cupation numbers that minimize the grand potential or free
energy, respectively, assuming A independent fermions with
energy levels {εp}.

Using the occupation numbers np and the previously men-
tioned unitary transformation, we iteratively construct the
one-body density matrix

ρ (i)
αβ =

∑

p

n(i)
p u(i)

αpu(i)
βp, (42)

as well as a new f̂ and HF energy E using

f (i+1)
αβ = kαβ +

∑

γ δ

vαγβδρ
(i)
γ δ, (43)

E (i+1) =
∑

αβ

kαβρ (i)
αβ + 1

2

∑

αβγ δ

vαβγ δρ
(i)
αγ ρ (i)

βδ . (44)

Note that in the case of a diagonal density matrix (which will
occur if f̂ is diagonal), these equations resemble the normal
ordering of Eqs. (5) and (6).

We summarize the process below:

(1) Diagonalize f̂ , yielding eigenvalues {εp} and a unitary
transformation û.

(2) Calculate the (grand-)canonical occupation numbers
np based on the eigenvalues {εp}.

(3) Construct the density matrix via Eq. (42).
(4) Construct a new f̂ and HF energy E using Eqs. (43)

and (44).

We repeat these steps until the energy E is converged,
which we define to be the case once

|E (i+1) − E (i)|
A

! 10−5. (45)

Checking the convergence of E instead of F or ) is justified
because it can be shown that the FT-HF minima of these
quantities coincide for fixed thermal occupation numbers, see
[45,46].

Finally, we transform the Hamiltonian [Eq. (40)] to the FT-
HF basis [Eq. (1)], using the eigenvalues {np} and eigenstates
{Up} of the final density matrix:

Kpq =
∑

αβ

U ∗
pαkαβUβq (46)

and

Vpqrs =
∑

αβγ δ

U ∗
pαU ∗

qβvαβγ δUγ rUδs. (47)

B. The FT-IMSRG flow

Let us now consider the implementation of an IMSRG flow
at finite temperature. Since finite-temperature observables of
interest are defined as traces over many-body configurations,
decoupling a single state from the others like we did in the
zero-temperature IMSRG is no longer very useful. Note, how-
ever, that the same IMSRG transformation that decoupled
the reference state also eliminates couplings that change the
particle-hole excitations of a basis configuration by ±2 (up
to truncation errors), as indicated by the elimination of the
side-diagonals in Fig. 1. As discussed in Sec. II, this implicit
reshuffling of correlations will be our guiding principle for the
finite-temperature case as we will seek to construct an RG-
improved Hamiltonian for which the evaluation of thermal
expectation values is (greatly) simplified.

Let us first consider the grand-canonical ensemble. The
density operator and partition function are given by Eqs. (22)
and (23), respectively. We can partition the Hamiltonian as
Ĥ = Ĥ0 + Ĥ1, such that the ensemble consists of eigen-
states of Ĥ0, and Ĥ1 contains all remaining interactions.
Introducing a thermal interaction picture with operators
Ô(β ) = eβ(Ĥ0−µÂ)Ôe−β(Ĥ0−µÂ), the partition function can be
rewritten as [47]

Z = Z0

〈

T exp
∫ β

0
dτ (−Ĥ1(τ ))

〉

, (48)
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where T is a path-ordering operator, Z0 = Tre−β(Ĥ0−µN̂ ) and
the expectation value is taken with respect to ρ̂0:

〈Ô〉 ≡ Tr
(
ρ̂0Ô

)
= 1

Z0
Tr(e−β(Ĥ0−µÂ)Ô). (49)

We obtain analogous expressions when working with the
canonical ensemble by starting from ρA and ZA (33) and par-
titioning the Hamiltonian in the same way. The path-ordered
exponential in Eq. (48) can be treated with systematic pertur-
bative or nonperturbative expansion methods [47–52]. In our
case, Z0 and Ĥ0 will be given by FT-HF and the latter will
only consist of zero- and one-body operators, as discussed in
the previous section.

Using the grand-canonical FT-HF partition function and
density operator, the normal ordering and Wick’s theorem
used in Sec. II generalize to finite temperature in a straight-
forward way [47,53,54]. One-body density matrices and
occupation numbers simply need to be replaced by their finite-
temperature counterparts: For example,

(50)

(51)

and

〈a†
pa†

qasar〉 = 〈a†
par〉〈a†

qas〉 − 〈a†
pas〉〈a†

qar〉

= npnq(δprδqs − δpsδqr ), (52)

with the average thermal occupation numbers defined by
Eqs. (26) or (36).

As discussed in Sec. III A, the canonical ensemble is a
more appropriate choice for a finite system like a nucleus.
Even though the canonical FT-HF Hamiltonian and parti-
tion function still only involve up to one-body operators [cf.
Eqs. (29) and (38)], Wick’s theorem must be amended with
additional terms that ensure that the particle number is fixed
[54]. In our present implementation, the evalution of these
corrections would incur exponential computational cost be-
yond the computation of the canonical average occupation
numbers (cf. Sec III A), hence we neglect them in the normal
ordering and the FT-IMSRG flow equations, and only include
the standard contractions (50) and (51), but with the canonical
occupation numbers (36). Our results in Sec. IV justify this
procedure as a reasonable approximation.

Since explicit particle-number projection operators can be
used to switch from the grand canonical to the canonical
ensemble (cf. Sec. III A and Refs. [42,43], we expect that
the correction terms defined in Ref. [54] can be obtained
in a different way through the generalized normal-ordering
formalism and Wick’s theorem of Mukherjee and Kutzel-
nigg [55], which is designed for arbitrary wave functions
and ensembles. This framework has been used to imple-
ment zero-temperature multireference IMSRG with particle-
number projected Hartree-Fock Bogoliubov reference states
[1,15]. Consequently, the MR-IMSRG code platform al-
ready contains many ingredients for grand-canonical and
fully canonical FT-IMSRG calculations with realistic nuclear

Hamiltonians, and it will be straightforward to extend it to
finite temperature in the near future.

Next, we need to construct an appropriate generator for
the FT-IMSRG. In the zero-temperature case, we identified fai
and $abi j (and their Hermitian conjugates) as the components
of the Hamiltonian that should be eliminated to decouple the
reference state. These particular coefficients also appear in
all perturbative corrections to the ground-state energy and
other observables, since they are responsible for the initial
particle-hole excitation of the ground state and/or the eventual
deexcitation back to that state [14,56]. As they are driven to
zero by the IMSRG, the associated correlations are directly
built into the renormalized Hamiltonian.

This view of the IMSRG transformation readily general-
izes to the finite-temperature setting: We seek to achieve

Tr(ρ̂Ô) −−−→
s→∞

Tr(ρ̂0Ô(∞)) = 〈Ô(∞)〉. (53)

This is prompting us to suppress all expectation values of the
form

〈Ĥ{a†
paq}〉 = n̄pnq fpq (54)

and

〈Ĥ{a†
pa†

qasar}〉 = n̄pn̄qnrns$pqrs, (55)

in analogy to the off-diagonal matrix elements (13) and (14)
of the zero-temperature formalism [48,50].

Using these matrix elements, we construct generators of
the form

η̂ =
∑

pq

n̄pnqηpq{a†
paq}

+ 1
4

∑

pqrs

n̄pn̄qnrnsηpqrs{a†
pa†

qasar} − H.c. (56)

The energy denominators used in our generators will become

&pq = 〈{a†
qap}Ĥ{a†

paq}
〉
−

〈
Ĥ〉

= n̄pnq(n̄p fpp − nq fqq − n̄pnq$pqpq) (57)

and

&pqrs = 〈{a†
r a†

s aqap}Ĥ{a†
pa†

qasar}〉 − 〈Ĥ〉

= n̄pn̄qnrns(n̄p fpp + n̄q fqq − nr frr − ns fss

+ n̄pn̄q$pqpq + nrns$rsrs − n̄pnr$pr pr

− n̄qns$qsqs − n̄pns$psps − n̄qnr$qrqr ). (58)

We also insist that in the zero-temperature limit (where
the occupation numbers become 0 and 1), our generator
approaches a zero-temperature generator. If we naively at-
tempt to generalize the White generator to finite-temperature,
then we find that due to the occupation factors n̄pnq and
n̄pn̄qnrns appearing in both the numerators and denomina-
tors, taking the zero-temperature limit will leave us with
many nonzero and potentially divergent generator matrix
elements for non-ph or -pphh entries. To address this
problematic behavior, we use the arctan variant of the
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generator

η̂ = 1
2

∑

pq

n̄pnq arctan
(

2 fpq

&pq

)
{a†

paq}

+ 1
8

∑

pqrs

n̄pn̄qnrns arctan
(

2$pqrs

&pqrs

)
{a†

pa†
qasar} − H.c.,

(59)

which does behave properly in the zero-temperature limit. It
also regularizes potential singularities stemming from vanish-
ing &pq or &pqrs, although we did not encounter any in the
applications discussed in the present work.

Before we proceed, a few additional comments are in order.
First, we note that the computational scaling of the FT-IMSRG
is returned to O(N6), because we are no longer able to distin-
guish between particles and holes. Second, closer inspection
of the generator (59) shows that it does not directly drive
Eqs. (54) and (55) to zero. Splitting these expectation values
into commutator and anticommutator parts,

〈Ĥ (∞){a†
p . . . aq}〉 = 1

2 〈[Ĥ (∞), {a†
p . . . aq}]+〉

+ 1
2 〈[Ĥ (∞), {a†

p . . . aq}]〉, (60)

we see that only the latter is guaranteed to vanish as we evolve
s → ∞, although the former may be numerically reduced in
size:

〈[Ĥ (∞), {a†
paq}]〉 = 0, (61)

〈[Ĥ (∞), {a†
pa†

qasar}]〉 = 0. (62)

As discussed in detail in Refs. [1,15], this is the case for all
of the usual IMSRG generators. It is a direct consequence of
working with a unitary transformation, while implementing
Eqs. (54) and (55) would require a more general transforma-
tion [57]. This issue previously arose in the zero-temperature
MR-IMSRG due to the use of correlated reference states, but
it does not appear in the standard zero-temperature IMSRG
discussed in Sec. II, because it is easy to see that the distinct
particle or hole nature of the single-particle states immediately
results in

〈Ĥ{a†
p . . . aq}〉 = 〈[Ĥ , {a†

p . . . aq}]+〉 = 〈[Ĥ , {a†
p . . . aq}]〉

(63)

at arbitrary values of the flow parameter s.
The conditions (61) and (62) are known as the irreducible

one- and two-body Brillouin conditions, IBC(1) and IBC(2).
As discussed in Refs. [57–59], they define a systematic
many-body truncation hierarchy. Geometrically, the expecta-
tion values of the commutators are gradients of 〈Ĥ〉 under
unitary variations. Thus, 〈Ĥ (∞)〉 will be extremal—usually
minimal—when η̂ vanishes at the fixed point of the FT-
IMSRG evolution. To make a connection with our previous
discussion about the reshuffling of correlations, we also note
that (at least) the second-order FT-MBPT energy correction
can be rewritten in terms of the commutators appearing in
the IBC(1) and IBC(2), so Eqs. (61) and (62) imply that this
correction vanishes for the evolved Hamiltonian Ĥ (∞).

C. Particle number variance

One of the complications of using a thermal ensemble
as opposed to a single Slater determinant reference state is
that the ensemble can run over states with different particle
numbers, and the particle number variance &A = 〈Â2〉 − 〈Â〉2

may be nonzero.
We have

Â =
∑

p

a†
pap (64)

and thus

Â2 =
∑

pq

a†
papa†

qaq =
∑

pq

(a†
pa†

qaqap + δpqa†
paq )

=
∑

pq

a†
pa†

qaqap +
∑

p

a†
pap. (65)

We can then normal order the above operators:

Â =
∑

p

np +
∑

p

{a†
pap} = A +

∑

p

{a†
pap} (66)

and

Â2 =
∑

p

(
np − n2

p

)
+

∑

pq

npnq +
∑

p

{a†
pap}

+
∑

pq

{a†
pa†

qaqap} (67)

=
∑

p

n̄pnp + A2 +
∑

p

{a†
pap} +

∑

pq

{a†
pa†

qaqap}. (68)

This means that

〈Â〉 = A (69)

and

〈Â2〉 = A2 +
∑

p

n̄pnp, (70)

so that

&A = 〈Â2〉 − 〈Â〉2 =
∑

p

n̄pnp. (71)

While it appears that this result is in full generality,
the canonical ensemble is defined such that &A = 0. The
previously mentioned corrections to Wick’s theorem in the
canonical ensemble [54] enforce the condition &A = 0. As
explained above, we neglect them in our present implementa-
tion because because of their scaling with the exponential size
of the many-body basis, but they can be included in future re-
alistic calculations through the use of explicit particle-number
projection techniques (see Sec. III B and Refs. [1,15,42,43].

Finally, we note that Eq. (66) holds in both ensembles, and
we can use it to determine the IMSRG flow of Â by calculating
[η̂, Â]. At s = 0, the zero-body part is

[η̂, Â]0B =
∑

pq

(np − nq)ηpqδpq = 0, (72)
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the one-body part is

[η̂, Â]1B
pq =

∑

r

(1 + Ppq )ηprδrq −
∑

rs

(nr − ns)δrsηsprq

= ηpq + ηqp = 0 (73)

due to the anti-Hermiticity of η̂, and the two-body part is

[η̂, Â]2B
pqrs = −

∑

t

((1 − Ppq )δptηtqrs − (1 − Prs)δtrηpqts)

= −(ηpqrs − ηqprs + ηpqrs − ηpqsr ) = 0. (74)

This implies that the there is no change to Â from the ini-
tial derivative at s = 0, especially no induced two-body (or
higher-rank) contribution. This also means that Â remains a
pure one-body operator through the evolution, so Eqs. (72)–
(74) will be valid for any s and we see that

d
ds

Â = [η̂(s), Â] = 0. (75)

Using this result, it is easy to prove that

[η̂, Â2] = Â[η̂, Â] + [η̂, Â]Â = 0. (76)

Thus, the average particle number as well as the particle
number variance are invariant under the FT-IMSRG flow and
entirely determined by the reference ensemble.

IV. RESULTS

A. The P3H Hamiltonian

To test the FT-IMSRG, we employ the pairing-plus-
particle-hole (P3H) model, which is exactly solvable and
qualitatively captures important features of nuclear interac-
tions [34]. We work with single-particle states {(α, σ )} where
α = 1, 2, 3, . . . , N/2 is the principal quantum number and
σ = +,− represents the spin. We do not make any assump-
tions about the form of the single-particle wave functions, and
we do not impose any symmetries in our calculations.

The P3H Hamiltonian is governed by the parameters δ, g,
and b, and, in the notation of Eq. (40), has the one- and two-
body parts

K̂P3H = δ
∑

ασ

(α − 1)a†
ασ aασ (77)

and

V̂P3H = − g
2

∑

αβ

a†
α+a†

α−aβ−aβ+

− b
2

∑

α,β,γ +=β

(a†
α+a†

α−aβ−aγ+ + a†
γ+a†

β−aα−aα+).

(78)

Here δ is the (constant) spacing between single-particle en-
ergy levels, g is the strength of pairing interaction, and b
controls the strength of pair-breaking, particle-hole type ex-
citations. The structure of the eigenstates will be driven by
the competition between the pairing and pair-breaking inter-
actions, as well as the ratios g/δ and b/δ, i.e., the ability of the
interaction terms to overcome the level spacing. Because of

FIG. 2. Internal energy versus inverse temperature with A = 4
and N = 8 for g = 0.3, b = −0.1 (left) and g = −0.1, b = −0.4
(right). The bottom panels show the low-temperature range, β " 5.0.
The FT-IMSRG results (blue) are much closer to the exact results
(orange) than the FT-HF results (green) are. The FT-IMSRG re-
sults successfully replicate the behavior of the exact results at low
temperatures.

the latter observation, for the remainder of this paper we ex-
press all quantities in natural units defined by δ = 1, without
loss of generality.

B. Four particles in eight states

We first consider the case of four fermions in eight possible
single-particle states (i.e., A = 4, N = 8). The many-body
basis will have dimension 70, so the exact solution can be
easily computed for comparison. Note that for this section,
occupation numbers will be computed in the canonical ensem-
ble so that the FT-IMSRG can be tested with the most accurate
FT-HF input possible.

Figure 2 plots E versus β for different coupling strengths.
In general, the FT-IMSRG significantly improves the FT-HF
results in accuracy. Particularly at low temperatures (high β),
the FT-IMSRG results are extremely close to the exact internal
energies.

As would be expected, the FT-IMSRG performs best for
weak coupling in the Hamiltonian (i.e., low |g| and |b|). For
|g|, |b| ! 0.5, the FT-IMSRG results consistently demonstrate
good agreement with the exact results. This can be seen in
Fig. 3. At lower temperature, we see strong agreement for
the widest range of parameters. The performance of the FT-
IMSRG is weakest at mid-range temperatures, around β = 1,
and is improved as β → 0. This is because at these temper-
atures a wider range of single-particle states have significant
nonzero occupation numbers, and thus the decoupling con-
ditions (54) and (55) become more demanding. However, as
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FIG. 3. Relative error in internal energy in parameter space for
various inverse temperatures with a logarithmic color scale. Shades
of red denote less than 1% error. The FT-IMSRG results display
the most accuracy for lower temperatures and parameters of lower
magnitude.

β → 0, the thermal energy becomes much greater than the in-
teraction strength, and we approach the limit of a free theory.
While the FT-IMSRG still improves on the FT-HF results for
mid-range temperatures, to achieve a similar accuracy to that
achieved at lower temperatures further improvements to the
FT-IMSRG truncation scheme would be necessary (see, e.g.,
Refs. [60–62] for recent discussions).

When |g| and |b| become too large, specifically when
they are of opposite sign, the FT-IMSRG frequently diverges
(shown in deep blue in Fig. 3). This is because positive g
encourages pairing, and negative b discourages pair breaking,
and vice versa, leading to a mutual reinforcement.

The relative error of the internal energy as a function
of β is shown on a logarithmic plot for various coupling
strengths in Fig. 4. Once again, we see the strong agree-
ment between the FT-IMSRG and the exact results, which
is strongest with weaker coupling and lower temperatures.
The less smooth results in the bottom panel are likely due
to numerical complications that arise from the pair-breaking
term of the Hamiltonian. The relative errors seen here are
comparable to those of finite-temperature coupled cluster for
similar schematic models (see, e.g., Refs. [63,64]).

FIG. 4. Relative error in internal energy versus inverse tempera-
ture for b = 0 (top) and b = 0.2 (bottom) with various values of g on
a logarithmic scale. The FT-HF results are shown with dotted lines
and the FT-IMSRG results are shown with solid lines. In all cases,
the FT-IMSRG results show a significant improvement compared to
the FT-HF results, with better results for weaker coupling.

We also show plots of the correlation energy

Ecorr = E − EHF (79)

versus the pairing strength g for different β and b values in
Fig. 5. Interestingly, at higher temperatures, more deviations
are observed for negative g (attractive pairing), and at lower
temperatures, more deviations are observed for positive g
(repulsive pairing). This trend is apparent in Fig. 3 as well.
The behavior at low temperature can be explained from the
fact that the IMSRG(2) is known to under count a subset
of fourth-order perturbation theory contributions by a factor
of 1/2, see Refs. [14,62]. Higher temperatures weaken the
effects of heavily favored pairing but exacerbate the effects
of heavily disfavored pairing so that the interaction cannot
be fully accounted for by the IMSRG. This leads to the be-
havior we observe in the correlation energies as temperature
increases.

It is also informative to look at how the FT-IMSRG decou-
ples the many-body Hamiltonian matrix at different tempera-
tures (recall the decoupling behavior of the zero-temperature
IMSRG shown in Fig. 1). In Fig. 6, we show this for the exam-
ple of a pure pairing Hamiltonian with g = 0.5, as well as the
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FIG. 5. Correlation energy versus g for various values of b and β.
At low temperature, the FT-IMSRG results (blue) and exact results
(orange) are in great agreement. Weaker coupling in both b and g
produce more accurate FT-IMSRG results.

same Hamiltonian when a pair-breaking term is added with
b = 0.2. The normal-ordered pieces of the Hamiltonian after
the FT-IMSRG flow are denormal ordered and used to build
the full many-body Hamiltonian matrix. At low temperatures,
the FT-IMSRG decouples only the lowest-energy states as
is the case in the zero-temperature IMSRG, while at higher
temperatures the FT-IMSRG decouples many more states.
However, this comes at the cost of truncation errors. After
computing the eigenvalues of these matrices, we compare the
exact free energies. At β = 20 (very low temperature), the
truncation error is under 0.25% for the pure pairing Hamil-
tonian, and under 0.55% once the pair-breaking interaction is
added. At higher temperature, with β = 2, the truncation error
is about 0.86% for the pure pairing Hamiltonian but grows to a
little less than 3% once the pair-breaking interaction is added.
These truncation errors can help explain the decrease in the
FT-IMSRG’s accuracy at high temperatures.

C. Increasing particle number and basis size

We now turn to cases with larger values of A and N , once
again computing occupation numbers in the canonical ensem-
ble. In Fig. 7, we show a the relative error in internal energy
in parameter space at β = 5.0 and various values for A and N .
We see a similar pattern to before, where weaker couplings
generally lead to better agreement between the FT-IMSRG
and exact energies.

In the plots on the left of Fig. 7, we show the case where the
single-particle states are half filled. Other than convergence
issues for some parameters at A = 8 and N = 16, these plots
are quite similar to each other. We see improvement in the

FIG. 6. The full 70 × 70 many-body Hamiltonian matrix for A =
4 and N = 8 and two sets of parameters. We compare the unevolved
Hamiltonian at zero temperature (β → ∞, row), to the FT-IMSRG
evolved Hamiltonian for β = 20 (middle row), and for β = 2 (bot-
tom row). Darker colors correspond to matrix elements with larger
absolute values, and matrix elements with a value of zero are shown
in white. At low temperatures, the FT-IMSRG decouples only the
lowest-energy states, while at higher temperatures the FT-IMSRG
decouples many more states.

FT-IMSRG’s accuracy for nearly all parameters when N is
fixed and A increases. When N is increased for fixed A, how-
ever, the relative error increases slightly for most parameters.
This can be understood by noting that the P3H interactions
are analogous to unregulated delta function potentials, since
the two-body matrix elements do not fall off in strength as
the number of single-particle states N is increased. There-
fore, increasing N effectively makes the interactions “harder,”
resulting in larger errors. Unsurprisingly, this effect is much
more pronounced for stronger couplings in the Hamiltonian.
Note that in applications of the FT-IMSRG to nuclei, N will
be increased with a fixed A to converge the result with respect
to the basis size. In contrast, for the P3H model the N → ∞
limit is not well defined without renormalization.

The behavior of the FT-IMSRG error with respect to
changing A and N can be seen clearly in Fig. 8, which plots
the relative error versus β on a logarithmic scale for various
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FIG. 7. Relative error in internal energy in parameter space for
β = 5.0 and various values of A and N with a logarithmic color scale.
Shades of red denote less than 1% error. The FT-IMSRG results
display the most accuracy for higher A and lower N .

values of g, b, A, and N . We see a significant increase in
the FT-IMSRG’s accuracy as A is increased, and a smaller
decrease in its accuracy as N is increased. The FT-IMSRG
typically improves on the FT-HF results, except for a few
instances at high temperature/low β, which likely result from
truncation errors. For the pure pairing interaction in the top
row, the results are nearly identical as N is increased—this
is because the pure pairing interaction couples fewer single-
particle states than when the pair-breaking interaction is added
[65]. It is also notable in the bottom two rows that as N
is increased, the errors appear to converge from below to a
fixed value. Since we would expect the error to converge from
above as N increases, we suspect that this behavior is caused
by the use of the zero-range interaction. We will revisit this
result in the future with a renormalized zero-range interaction.

D. Comparing the canonical and grand-canonical ensembles

As mentioned previously, while it is a more accurate
description of nuclei at finite temperature, the canonical en-
semble is too computationally expensive to use for general
realistic applications, but we can compute the canonical oc-
cupation numbers for the P3H model. Thus, we can explore

FIG. 8. Relative error in internal energy versus inverse temper-
ature on a logarithmic scale for various values of g, b, A, and N .
The FT-HF results are shown with dotted lines and the FT-IMSRG
results are shown with solid lines. In the bottom left panel (g = 0.2,
b = −0.1, N = 16), we encountered numerical instability at A = 6,
β = 1. The results for neighboring values of β are plotted, with the
unstable result at β = 1 marked with an x.

the differences between canonical and grand-canonical FT-HF
and FT-IMSRG results for different model parameters to gain
some insight for future applications.

Figure 9 shows the relative difference between the
canonical and grand-canonical results for both FT-HF and
FT-IMSRG. The differences are very similar in both methods,
which is not surprising given that the choice of ensemble pri-
marily affects the values of the occupation numbers prodcued
by the FT-HF, which then serve as input for the FT-IMSRG,
but remain unchanged during the flow. As a comparison of
the center and bottom rows shows, the differences seem to be
slightly more pronounced in FT-IMSRG than in FT-HF, which
is likely the result of truncation effects.

As expected, there is a noticeable decrease in the differ-
ence between the ensembles on increasing A (see Sec. III
and Ref. [54]). Changing N , however, has a significantly
smaller effect on the comparison between the ensembles. This
suggests that, as expected, the two ensembles will become
equivalent in the thermodynamic limit, where A and N both
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FIG. 9. Relative difference between the canonical ensemble and
grand-canonical ensemble results versus inverse temperature on a
logarithmic scale, using the same parameters as Fig. 8. The FT-HF
results are shown with dotted lines and the FT-IMSRG results are
shown with solid lines. As with Fig. 8, in the bottom left panel
(g = 0.2, b = −0.1, N = 16) we encountered numerical instability at
A = 6, β = 1 for the canonical ensemble. The results for neighboring
values of β are plotted, with the unstable result at β = 1 marked
with an x.

become very large. For systems with A " 8, it seems safe to
use the grand-canonical ensemble, but for systems with fewer
particles, this approximation does introduce an error in the
1–10% range.

With all of this discussion, it is worth recalling that FT-
IMSRG in the grand-canonical ensemble does produce more
accurate results than FT-HF in the grand-canonical ensemble
when compared to exact results. Thus, the FT-IMSRG remains
successful as a post-HF method even in this approximation.

E. Entropy and free energy

Finally, we calculate entropy and free energy, quanti-
ties of much thermodynamic interest, from the FT-HF and
FT-IMSRG results. Due to the FT-IMSRG evolution, the
Hamiltonian has an implicit temperature dependence that is
more complex than in the FT-HF case, and we cannot simply
obtain S by using Eqs. (31) or (39). Following the general idea
in Ref. [64], we compute the entropy via integration. After

FIG. 10. Relative error in entropy versus inverse temperature for
A = 4 and N = 8 with various values of g and b on a logarithmic
scale. The FT-HF results are shown with dotted lines and the FT-
IMSRG results are shown with solid lines. The 100% error at β = 10
is a result of assuming E (∞) = E (10) in the integration limits of
Eq. (80). Entropy results are more accurate for weaker coupling, and
the difference between FT-IMSRG and FT-HF in terms of entropy is
generally small.

performing the FT-IMSRG evolution for different values of
β, we can express the internal energy as a function E (β ). This
can be inverted to give β as a function β(E ). We then have

S(β ) =
∫ E (β )

E (∞)
β ′(E ′)dE ′. (80)

Since the integrand β(E ) would be infinite in the zero-
temperature limit, but the FT-IMSRG energy is insensitive
to variations of β in this regime, we use E (∞) ≈ E (10),
which gives an excellent (and controllable, if necessary)
approximation.

Figure 10 shows the relative error in entropy for both FT-
HF and FT-IMSRG, going back to the A = 4, N = 8 model.
Notice that the E (∞) ≈ E (βmax) scheme necessitates a 100%
error in the entropy at β = βmax, which is seen in the figure.
Outside of β close to 10, the entropy calculations for both
FT-HF and FT-IMSRG hover around 5–10% error, except for
the case of weak coupling. This is very similar to what was
found for finite-temperature coupled cluster calculations [63].
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FIG. 11. Relative error in Helmholtz free energy versus inverse
temperature for A = 4 and N = 8 with various values of g and b on
a logarithmic scale. The FT-HF results are shown with dotted lines
and the FT-IMSRG results are shown with solid lines. Beyond β ≈ 2,
the FT-IMSRG results are consistently more accurate than the FT-HF
results.

The Helmholtz free energy F can then be calculated via
Eq. (37). Figure 11 shows the relative error in F for both
FT-HF and FT-IMSRG (once again with A = 4 and N = 8).
We find that the FT-IMSRG calculation of F significantly
improves on that of FT-HF, which is expected as this is heavily
influenced by the accuracy of the internal energy calculations.
Thus it is sensible that the relative error in F resembles the
relative error in E (see Fig. 4).

The free energy is of significant importance because of its
relationship to the canonical partition function ZA itself:

ln ZA = −βF. (81)

This allows most thermodynamic properties of interest to be
computed solely in terms of F , β, and derivatives of F . As
we have shown that the FT-IMSRG can accurately calcu-
late F , it can be used to reliably calculate these ensemble
averages.

V. CONCLUSION

In this work, we have extended the IMSRG to finite tem-
perature, and demonstrated that the FT-IMSRG is a useful
tool for calculating properties of many-fermion systems at
finite temperature. Using the schematic model pairing-plus-
particle-hole model that captures essential features of nuclear
interactions, we performed a thorough assessment of the prop-
erties of FT-HF and FT-IMSRG, setting the stage for realistic
applications of the FT-IMSRG to nuclei. We found the best
agreement between FT-IMSRG and exact solutions at low
temperatures and with weak coupling in the Hamiltonian, but
the FT-IMSRG produced highly accurate results for a wide
range of parameters and temperatures, improving on FT-HF.

As we looked at models with various different particle
numbers A and single-particle basis sizes N , we showed that
the FT-IMSRG results improve in accuracy with higher A.
We then demonstrated that the choice between the canonical
and grand-canonical ensembles in the setup of the FT-HF
optimized occupation numbers can have noticeable effects on
the FT-IMSRG results, but these effects become significantly
lessened as the particle number increases. Finally, we used
the FT-HF and FT-IMSRG results to calculate entropy and
free energy, showing that the FT-IMSRG produces accurate
results.

As our next steps, we will perform FT-IMSRG calculations
for atomic nuclei with modern nuclear interaction derived
from chiral effective field theory. We will investigate the evo-
lution of nuclear structure features like the neutron driplines
with increasing temperature, and compute reaction and decay
rates that are relevant for understanding nuclear processes
in stellar environments, including nucleosynthesis. In paral-
lel, we will pursue the implementation of finite temperature
in other IMSRG variants and IMSRG-based hybrid methods
[15,17–19,66].
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