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Abstract—In this letter, we propose SCOPE—a novel, entropy-
weighted ensembling approach for material classification at
sub-Terahertz (THz) frequencies. Unlike existing methods that
primarily use dedicated radars, SCOPE builds upon an integrated
communication and sensing system and leverages information
from both penetrating and reflected signals to enhance spatial res-
olution and detection accuracy across environments. We adopted
spatial variability augmentation (SVA) to address the challenge of
generalization across varying transmission distances and antenna
gains. While most prior works are limited to radar systems or
simulations, SCOPE is implemented and validated in a real sub-
THz system working with a 10 GHz bandwidth. Our assessments
across different sensing distances, antenna gains, and channel
conditions demonstrate the efficacy of SCOPE, which reaches
up to 99% accuracy in detecting five materials—glass, wood,
metal, air, and plastic—outperforming existing techniques. To
facilitate reproducibility, our dataset and code are available at:
https://github.com/kfoysalhaque/SCOPE.

I. INTRODUCTION

The sub-Terahertz (THz) band (0.1-0.3 THz) is emerging
as a key resource for future communication and sensing
systems. The sub-THz spectrum offers a practical balance
between bandwidth availability and manageable propagation
effects, enabling high-data-rate communications and precise
wireless sensing. It is particularly suited for high-resolution
sensing applications—such as environmental mapping, secu-
rity screening, and material classification—that demand fine-
grained sensing data collection, which lower-frequency sys-
tems cannot provide [1]. However, the adoption of sub-THz
frequencies for sensing has been limited, with most approaches
relying on dedicated radars [1], [2]. Material classification
using radar and mmWave sensing has been widely explored for
applications such as security screening, industrial automation,
and biomedical sensing. Traditional methods, such as infrared
spectroscopy and X-ray diffraction, offer high accuracy but
require controlled scenarios and specialized hardware, limit-
ing their deployability [2]. Several studies have investigated
machine learning and deep learning techniques for mmWave
radar-based material classification. Skaria et al. applied CNN-
based feature extraction to mmWave radar sensor data for
this purpose [1]. Similarly, Weiss et al. demonstrated 60-GHz
radar-based material classification using deep convolutional
neural networks (DCNNSs), achieving promising results in con-
trolled environments [2]. He et al. explored contact-free ma-
terial recognition with mmWave radar, employing spatial en-
hancement and frequency-domain processing [3]. Additionally,
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Khushaba and Hill investigated wavelet scattering transforms
for radar-based material differentiation, comparing centimeter-
wave and millimeter-wave radar units to assess their classifica-
tion capabilities across different frequency ranges, highlighting
trade-offs between robustness and resolution [4]. However,
these approaches remain standalone sensing techniques, often
relying on pre-trained models that lack adaptability in dynamic
environments.

Despite these advancements, existing methods face four
critical limitations. First, most radar-based approaches operate
independently of communication systems, failing to lever-
age integrated sensing and communication (ISAC) frame-
works. Second, they predominantly rely on reflected signals,
overlooking penetrating signals, which can provide valuable
material-dependent features. Third, generalization across trans-
mission distances and antenna gains has not been extensively
studied, limiting robustness in practical scenarios. Fourth,
most prior works focus on mmWave frequencies, whereas our
proposed SCOPE framework operates in the sub-THz band at
130 GHz with 10 GHz of bandwidth, offering finer resolution
and enhanced material classification capabilities.

To address these limitations, we propose SCOPE, a sub-THz
integrated communication and sensing framework operating
at 130 GHz with a 10 GHz bandwidth, specifically designed
for high-precision material identification. Unlike conventional
radar-based approaches, SCOPE leverages the channel fre-
quency response (CFR) from both penetrating and reflected
signals through an entropy-weighted ensembling technique,
enhancing spatial resolution and material detection by utilizing
distinct features from each signal path.

Summary of Contributions:
e We develop SCOPE, the first sub-THz integrated communi-
cation and sensing system for material classification. Through
entropy-weighted ensembling, it dynamically integrates pene-
trating and reflected signal components, enabling fine-grained
feature extraction and precise material identification.
e We introduce spatial variability augmentation (SVA) to
improve the system’s ability to generalize across diverse
transmission distances and antenna gains, achieving up to a
63.6% improvement in accuracy across distance variations and
a 24-27% accuracy increase for different antenna gains.
e We rigorously evaluate SCOPE on the TeraNova testbed [5]
through extensive real-world experiments, achieving up to 99%
accuracy in detecting materials such as glass, wood, metal,
plastic, and air. We provide open-source access to our dataset
and code to facilitate further research.

II. SCOPE: SUB-THZ PRECISION SENSING SYSTEM

At sub-THz frequencies, signals fully penetrate transparent
materials (e.g., air) but reflect off dense ones (e.g., metal),
while materials like wood or glass exhibit both behaviors.
SCOPE employs an entropy-based ensembling approach to
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leverage CFR from both penetrating and reflected signals,
enhancing material detection and characterization.

A. SCOPE System Model

In this study, we employ a Linear Frequency Modulated
(LFM) pulse, commonly known as a chirp, as the transmitted
signal. An LFM pulse is characterized by a frequency that
varies linearly over time within the pulse duration. Mathemat-
ically, the transmitted signal s(¢) can be written as

S(t):A'GXp<j27T<f0t+[2(t2>)7 0<t<T, (D)

where ¢ is the time index, A and f; are the amplitude and
the starting frequency of the chirp respectively, and K =B/T
is the chirp rate, with bandwidth B and pulse duration 7.
This choice is motivated by the high-resolution sensing and
efficient communication requirements of SCOPE [6]. The
wide bandwidth of LFM pulses enables high-range resolution,
allowing precise estimation of material properties. The linear
frequency variation provides resilience against Doppler shifts
from relative motion, enabling sensing in dynamic environ-
ments. Furthermore, an LFM pulse can also be modulated to
carry communication information, making it highly suitable
for integrated sensing and communication (ISAC) applications.
In particular, Chirp-Spread M-ary Phase Shift Keying (CS-
MPSK) leverages the inherent structure of the LFM waveform
to support simultaneous communication and sensing without
requiring additional spectral resources [7]. By embedding data
into the chirp waveform using M-ary PSK, CS-MPSK allows
the same transmitted signal to be used for material classifica-
tion while maintaining efficient communication performance,
reinforcing the viability of LFM-based ISAC. While CS-
MPSK modulation is not experimentally implemented in this
study, the theoretical compatibility of the LFM pulse with such
schemes underscores its versatility and potential for advancing
integrated communication and sensing systems at sub-THz
and THz frequencies.

1) Channel Estimation: To achieve time synchronization
at the receiver, we cross-correlate the received signal 7(t)
with the transmitted chirp signal s(t), leveraging the chirp’s
sharp autocorrelation peak for accurate alignment. This pro-
cess ensures that the received and transmitted signals are
precisely synchronized in time. Once synchronized, we es-
timate the CFR as R(k)/S(k), where R(k) = F{r(t)} and
S(k)=F{s(t)} are the fast Fourier transforms (FFTs) of the
synchronized received and transmitted signals, respectively,
with k€ {0, N — 1} representing the frequency bin index. In

' Flg 1: A walkthrough of SCOPE

SCOPE, the CFR serves as the core sensing primitive, captur-
ing material-induced reflections, transmissions, and scattering
effects. While CFR is primarily used for material classifica-
tion, it also provides critical channel information for com-
munication. In ISAC systems, the estimated CFR facilitates
dynamic transmission adaptation, enabling techniques such
as beamforming optimization, power control, and waveform
selection. By continuously monitoring CFR variations, SCOPE
enhances both sensing accuracy and communication reliability,
establishing a unified ISAC framework.

2) SCOPE Walkthrough: Figure 1 illustrates the main steps
of the SCOPE cooperative and integrated sensing approach.
The system consists of a sub-THz transmitter and two sub-
THz receivers, one of which collects the signal that penetrates
through the material while the other collects the reflected
signal. The material to be identified is interposed between
the transmitter and the receiver measuring the penetrating
signal. The second receiver is placed on the same side as
the transmitter. Depending on the material properties, the
transmitted signal (Step I) either penetrates through the object,
reflects off the surface, or both, and is subsequently received
by the sub-THz receivers (Step II). The received signal is
then down-converted, synchronized (see Section II-A), and
demodulated. Hence, the data is passed through the data
pre-processing block (Step III in Figure 1) consisting of
three main steps—channel estimation, data reshaping, and
data augmentation. The CFR is first obtained as presented
in Section II-A1l. To reduce the computational complexity of
the learning algorithm, Principal Component Analysis (PCA)
is applied to the N-dimensional complex vector, reducing its
dimensionality to N'. Specifically, starting from N = 160, 000
elements, PCA allows reducing the relevant components to
N’ = 20,000, squeezing N by more than 87.5%, while
retaining 95% of the variance. The reduced vector is then
reshaped into a three-dimensional tensor of size n X n X c,
where n = int(v/N’) and ¢ = 2, representing the real
and imaginary components of the complex samples. For our
learning algorithm (see Section II-C), which is based on three
VGG blocks, this transformation reduces the computational
complexity by approximately 50%, enabling efficient pro-
cessing while preserving critical frequency-domain features.
Next, the CFR vectors representing both the penetrating and
reflected channels are augmented using the SVA approach
presented in Section II-B to help the model learn variations
linked with different transmission distances and antenna gains.
Indeed, while the data captured on the oscilloscope represents
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real signals, they are inherently linked with the experimental
conditions, such as specific transmission distances and antenna
configurations. SVA mitigates this limitation by simulating
spatial variations that naturally occur in practical deployments,
enriching the dataset while preserving the fundamental char-
acteristics of the signals. This augmentation ensures that the
training dataset contains more diverse realistic conditions,
enabling the model to learn a more robust feature space that
improves online classification performance. The original data
along with the augmented data create two datasets—Dpe, and
D, for penetrating and reflected signals respectively (Step
IV in Figure 1). Two separate convolutional neural network
(CNN)-based feature extractors (described in Section II-C) are
trained on these datasets, obtaining a penetrating model M.,
and a reflected model M, (Step V). During inference, these
models independently produce probability distributions over
the possible material classes. These probabilities are passed
through the entropy-weighted-ensembling block which com-
bines the outputs from both models, ensuring that the final pre-
diction takes into account both penetrating and reflected signal
characteristics, weighing more the more confident model (Step
VI, see Section II-D).

B. SVA for Sub-THz Material Detection

Distance Scaling for Path Loss and Phase Shift. This ap-
proach applies path loss and phase adjustments independently
to the CFRs associated with the penetrating and reflected
signals, capturing the specific ways each signal is affected by
propagation.

The path loss represents the reduction in signal strength as
the wave propagates from the transmitter to the receiver. In
this study, we model path loss using the log-distance equation
L(d) =
at a reference distance dy and n is the path loss exponent,
which characterizes the rate of signal attenuation. Sen et
al. provide an extensive empirical study on sub-THz indoor
line-of-sight propagation, demonstrating its effectiveness in
accurately characterizing real-world channel behavior [8].

Considering this model, the CFR magnitude is adjusted for

both penetrating and reflected signals using
(d)—
|CFRpen(d)| = ‘CFRPen(doﬂ ) IO,L 0)-Lg

L(d

ICFR,e¢(d)| = |CFRe(do)| - 1035

Lo + 10nlog, (%), where Lo is the path loss

2)

Lo
. L(d)—Lg .
The adjustment factor 107~ 20 scales the CFR magnitude
to reflect the amplitude attenuation due to the path loss.
The factor is derived from the path loss expression and the
division by 20 is because the CFR magnitude represents signal
amplitude, which is proportional to the square root of power.
In addition to the path loss, the transmitted signal undergoes
a phase shift as the wavefront propagates. This causes a change
in the phase of the CFR. For a target distance d, the phase
shift A¢ is approximated as A¢= z%d. Although this assumes
a far-field planar wave, it reasonably approximates near-field
conditions as long as the target distance d < %. The phase-
adjusted penetrating and reflected CFR is obtained as

CFR ey () = |CFR ey (d) | - €7 (“CFRra(do)+26)

CFRl—ef(d) _ ‘CFRref(d” . ej(éCFRm-(dO)+A¢) ) (3)

Algorithm 1: SCOPE Entropy Weighted Ensembling

Require: input samples X, and Xer, trained models Mpe,
and M., number of classes m.
Ensure: Final class prediction Yepsemble-
1: Ypen — Mpen (Xpen>7 Yref «— Mref(Xref)
Calculate Hpe, and Hyer following Equation 4
Wpen < G(Hpen - Hpen)a Wref < U(Hpen - Href)
Yllgen — Wpen * Ypena Y;ef £ Wref * Yref
Yensemble < arg maX(Y]/Jen + Y;ef)
return Yensemble

AR I

By incorporating both path loss and phase shifts for different
target distances ranging from 1 to 10 meters, SVA approxi-
mates distance scaling for CFR, aiding data augmentation to
capture the effects of varying transmission distances in the
near-field sub-THz band.

Antenna Gain Adjustment. In sub-THz systems, the re-
ceived signal strength varies with the antenna gain, influenced
by the angle of arrival. We collected real data using horn
antennas with gains Go = 20 and 40 dBi. Additionally,
assuming a near-zero incident angle in our setup, we applied
a gain factor for data augmentation to simulate different
scenarios, varying the transmit and receive antenna gains from
10 to 40 dBi. This selection represents a broad spectrum
of realistic antenna configurations, enabling the model to
generalize effectively across diverse propagation scenarios. By
adjusting these gains, SVA captures signal strength variations
for both penetrating and reflected signals. The gain-adjusted
CFRs are CFRpen! gain(d) = CFRpen(d) 'GO, CFRref’ gain(d) =
CFR.¢(d) - Go.

C. Feature Extractor Architecture

The CNN-based feature extractor (Step V in Figure 1)
entails three stacked convolutional blocks (conv-block) and
a max-pooling (MaxPool) layer. Softmax is applied to the
flattened output to obtain the probability distribution over the
classes of materials. Each conv-block comprises two 2D
convolutional layers with the same number of 3 x 3 kernels
(filters) and a step size of 1, following the VGG design [9].
Specifically, we used 32, 64, and 128 filters, for the three
conv-block.

D. Entropy Weighted Ensembling

The entropy-weighted ensembling method aims to dynami-
cally balance the contributions of the penetrating model M,
and reflected model M, based on their prediction confidence.

For an input sample Xp., or Xy, representing fea-
tures obtained from the penetrating or reflected signals re-
spectively, each model M., and Mys produces a prob-
ability distribution over the m classes (line 1 of Algo-
rithm 1). These distributions are represented as probabil-
ity vectors Ypen = [Ypen,1; Ypen,2, -« -5 Ypen,m] and Y =
(Yeet1, Yier,2, -+, Yrer,m|, Where each element Y., ; and
Yer,; denotes the probability assigned by the penetrating or
reflected model to class j, respectively. Hence, the entropy
values Hye, and H,ep are calculated for each model’s output
distribution (line 2) and serve as a measure of the prediction
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Fig. 2: Experimental setup with the TeraNova testbed for sub-
THz material detection. The setup includes a transmitter (Tx),
a penetrating receiver (PRx), and a reflection receiver (RRx).
The material under test (MUT) is positioned between the
transmitter and the penetrating receiver, while the reflection
receiver captures reflected signals.

uncertainty of the penetrating and the reflected models. Math-
ematically, they are defined as

Hpen = — Z Ypen,j log(Ypen,j)§ Href = - ZYref,j 1Og(Yvref,jL

j=1

’ o
where lower values of He, and Hys correspond to higher
confidence. This entropy calculation is key to weighing each
model’s prediction based on its reliability for the specific input.
Specifically, to determine the weights of the penetrating and
reflected model—identified by wpe, and wyr respectively—we
set the entropy of the penetrating model, Hpe,, as a reference.
Next, each model’s weight is calculated using the logistic
sigmoid function (o) applied to the entropy difference, i.e.,
Wpen = 0 (Hpen — Hpen) and Wyes = 0(Hpen — Hyer) (line 3
of Algorithm 1). The sigmoid function effectively prioritizes
models with lower entropy, assigning them higher weights.
Thus, the entropy-weighted ensembling method adaptively
balances Mpen and M models based on their confidence,
enhancing classification robustness. Each model’s probability
vector is then scaled by its corresponding weight to form a
confidence-weighted distribution (line 4 of Algorithm 1):

Y}/,en = [wpen : Ypen,h Wpen * Ypen,27 <oy Wpen * Ypen,m}

j=1

o)
Y;ef = [wref . Yref,h Wref - Yref,27 cooy Wref * Yref,m];
where each probability Y., ; and Y7 ; is weighted according

to the confidence-based factors wpen, and wyes. This adjustment
allows the more confident model to exert greater influence on
the ensemble outcome. The final ensemble prediction Yepsemble
is determined by selecting the class with the highest combined
weighted probability (line 5 of Algorithm 1), i.e., Yensemble =
arg max(Y e, + Y/ ) and each class probability is defined by
Yensemble,j = aT'g max(wpen : Ypen,j7 Wref * Yref,j) .

III. EXPERIMENTAL SETUP AND DATA COLLECTION

In this section, we describe the experimental setup for THz
material detection using the TeraNova testbed [5], consisting
of a transmitter (Tx), a penetrating receiver (PRx), and a
reflection receiver (RRx), as shown in Figure 2. An LFM
pulse is generated in MATLAB and converted to an analog
signal via an Arbitrary Waveform Generator (AWG), capable
of generating baseband (BB) or intermediate frequency (IF)
signals up to 32 GHz. We generate a 1 ps pulse with 10 GHz
IF bandwidth. The pulse is then upconverted to a 130 GHz

N Im 3m Pen. Signal SCOPE
~ ¥ 2m EH 4m ~ Ref. Signal
IS IS
=100 100
Q Q
g I~
g7 : 37 4
< & ® 8 < :
50730 80 160 30 _ 3
Sampling Rate (GHz) Transmission Distance (m)

(a) Impact of sampling rate (b) Effect of transmission distance
Fig. 3: SCOPE performance illustrating (a) impact of sampling
rates on accuracy at different transmission distances and (b)
effect of transmission distances on accuracy for penetrating
(‘Pen.’), reflected (‘Ref.’), and combined (‘SCOPE’) signals.

passband signal by a THz RF front-end, with a transmit power
of 13 dBm, ensuring sufficient signal strength for robust ma-
terial classification while accounting for sub-THz propagation
losses. At the receiver, an RF front-end downconverts the
received passband signal, which is then captured by a Digital
Storage Oscilloscope (DSO) with a 63.2 GHz operational
bandwidth. The average noise floor of the setup is measured at
—31 dBm, ensuring a sufficient signal-to-noise ratio (SNR) for
accurate CFR estimation. The recorded signals undergo offline
processing in MATLAB, including time synchronization and
channel estimation, as detailed in Section II-A1.

The material under test (MUT) is placed midway between
the transmitter and the penetrating receiver. Tested materials
include air (no material), metal, plastic, wood, and glass. While
metal fully reflects the sub-THz signal, plastic, wood, and glass
allow partial penetration and reflection. Transmission distances
between the transmitter and receivers are set at 1, 2, 3, and 4
meters, with 40 dBi gain at both ends. Additional configura-
tions with 40 dBi at the transmitter and 20 dBi at the receiver,
as well as 20 dBi at both ends, are tested at a 2-meter distance.
The half-power beamwidth (HPBW) of the antennas are 1.6
and 13 degrees respectively, ensuring directional transmission
and reception, optimizing both penetrating and reflected signal
capture.

IV. PERFORMANCE EVALUATION

The classification of materials such as air, wood,
plastic, glass, and metal is central to evaluating SCOPE
’s performance, as their unique material-level properties
significantly influence sub-THz signal interactions. Factors
such as density, electromagnetic characteristics, and surface
structure determine how signals penetrate, reflect, and scatter,
directly impacting detection accuracy. Air serves as a baseline
with minimal interaction, while wood and plastic, with
moderate density and partial transparency, challenge the
system due to subtle distortions from partial penetration
and reflection. Glass introduces strong reflection with partial
penetration, and metal, being fully reflective, poses the most
stringent challenge. Evaluating these materials highlights the
system’s ability to adapt to diverse material properties.

A. Performance of SCOPE at Different Sampling Frequencies

We evaluate SCOPE’s material classification accuracy on
data sampled at various rates across different transmission dis-
tances to analyze the impact of sampling frequency. Figure 3a
illustrates how accuracy improves with higher sampling rates
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Fig. 4: Performance comparison of SCOPE in generalizing across transmission distances and transmit antenna gains

of 40 GHz, 80 GHz, and 160 GHz, tested at distances of 1, 2,
3, and 4 meters. The results demonstrate that higher sampling
frequencies substantially enhance accuracy, particularly at
greater distances. For example, at a sampling rate of 40 GHz,
accuracy drops from 86.29% at 1 m to 83.60% at 4 m, whereas
at 160 GHz, accuracy remains consistently high, achieving
99.66% at 1 m and 98.88% at 4 m.

B. Evaluating SCOPE’s Entropy-Weighted Ensembling

Figure 3b compares material detection performance using
three information sources: (i) the penetrating signal alone,
(ii) the reflected signal alone, and (iii) the combination of
both signals through SCOPE’s entropy-weighted ensembling
method. The results clearly demonstrate the superiority of
the proposed ensembling approach. Using the penetrating
signal alone allows achieving accuracies of 78.98% at 1 m,
which decreases to 77.12% at 3 m, while the reflected signal
provides 73.60% accuracy at 1 m, which drops to 71.29% at
3 m. Instead, SCOPE’s entropy-weighted ensembling achieves
consistently high accuracy, exceeding 99% across distances
from 1 to 3 meters. These results indicate that by dynamically
balancing the contributions of the penetrating and reflected
signals based on their confidence levels, the entropy-weighted
ensembling approach allows performing accurate material
classification under varying transmission conditions.

C. Generalization Performance of SCOPE

Figure 4 highlights the critical role of SVA in enabling
SCOPE to generalize across transmission distances and an-
tenna gains. The selected distances (1—4 meters) represent
a practical near-field range for sub-THz systems, capturing
meaningful signal variations while balancing experimental
feasibility. In Figure 4a, the model trained on data from 1
meter distance exhibits a substantial drop in accuracy when
tested on data from 2—4 meters distance without applying
SVA, reaching as low as 54.05% at 4 meters. In contrast,
by applying SVA, SCOPE improves performance, boosting
accuracy to 88.43%—a relative improvement of up to 63.6%.
Competing methods such as DCNN [2] and SF [3], which
rely solely on reflected signals, perform worse under the same
conditions, achieving only 47.5% and 41.5% accuracy at 4
meters, respectively. Similarly, in Figure 4b, when trained on
4-meter data and tested on other distances, the results follow
a similar trend, further underscoring SVA’s importance for
robust generalization.

Figure 4c evaluates generalization across antenna gains,
where the model is trained with one gain (e.g., 20 dBi) and
tested with another (e.g., 40 dBi), and vice versa. Without
SVA, significant accuracy degradation occurs, while SVA

improves accuracy by 24--27%. Comparatively, DCNN [2]
and SF [3] experience even sharper declines, achieving only
65.5% and 60.3% accuracy, respectively, when tested across
different antenna gains.

While SCOPE demonstrates robust generalization across
varying distances and antenna gains, evaluations were con-
ducted within the range of 1-4 meters and with antenna gains
of 20 dBi and 40 dBi. These configurations represent typical
sub-THz systems but they may not fully capture extreme
long-range scenarios or hardware setups with significantly
different antenna gains. Additionally, SCOPE’s performance in
highly dynamic environments with rapidly changing channel
conditions requires further investigations.

V. CONCLUSIONS

This letter presents SCOPE, a robust sub-THz cooperative
sensing system that employs entropy-weighted ensembling and
SVA to achieve high-accuracy material detection by gener-
alizing across different transmission distances and antenna
gains. It adaptively balances the contributions of penetrating
and reflected signals by weighting them according to the
confidence of the CNN-based material predictions. Experimen-
tal evaluations with the TeraNova testbed show that SCOPE
achieves up to 99% accuracy when trained and tested with
the same transmission distance and antenna gains, and up to
94% accuracy when generalizing across different distances and

transmission antenna gains.
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