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SCOPE: Cooperative Integrated Communications and Sensing for
Material Classification at Sub-Terahertz Frequencies

Khandaker Foysal Haque, Xavier Cantos-Roman, Francesca Meneghello,
Josep Miquel Jornet and Francesco Restuccia

Abstract—In this letter, we propose SCOPE—a novel, entropy-
weighted ensembling approach for material classification at
sub-Terahertz (THz) frequencies. Unlike existing methods that
primarily use dedicated radars, SCOPE builds upon an integrated
communication and sensing system and leverages information
from both penetrating and reflected signals to enhance spatial res-
olution and detection accuracy across environments. We adopted
spatial variability augmentation (SVA) to address the challenge of
generalization across varying transmission distances and antenna
gains. While most prior works are limited to radar systems or
simulations, SCOPE is implemented and validated in a real sub-
THz system working with a 10 GHz bandwidth. Our assessments
across different sensing distances, antenna gains, and channel
conditions demonstrate the efficacy of SCOPE, which reaches
up to 99% accuracy in detecting five materials—glass, wood,
metal, air, and plastic—outperforming existing techniques. To
facilitate reproducibility, our dataset and code are available at:
https://github.com/kfoysalhaque/SCOPE.

I. INTRODUCTION

The sub-Terahertz (THz) band (0.1–0.3 THz) is emerging

as a key resource for future communication and sensing

systems. The sub-THz spectrum offers a practical balance

between bandwidth availability and manageable propagation

effects, enabling high-data-rate communications and precise

wireless sensing. It is particularly suited for high-resolution

sensing applications—such as environmental mapping, secu-

rity screening, and material classification—that demand fine-

grained sensing data collection, which lower-frequency sys-

tems cannot provide [1]. However, the adoption of sub-THz

frequencies for sensing has been limited, with most approaches

relying on dedicated radars [1], [2]. Material classification

using radar and mmWave sensing has been widely explored for

applications such as security screening, industrial automation,

and biomedical sensing. Traditional methods, such as infrared

spectroscopy and X-ray diffraction, offer high accuracy but

require controlled scenarios and specialized hardware, limit-

ing their deployability [2]. Several studies have investigated

machine learning and deep learning techniques for mmWave

radar-based material classification. Skaria et al. applied CNN-

based feature extraction to mmWave radar sensor data for

this purpose [1]. Similarly, Weiss et al. demonstrated 60-GHz

radar-based material classification using deep convolutional

neural networks (DCNNs), achieving promising results in con-

trolled environments [2]. He et al. explored contact-free ma-

terial recognition with mmWave radar, employing spatial en-

hancement and frequency-domain processing [3]. Additionally,
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Khushaba and Hill investigated wavelet scattering transforms

for radar-based material differentiation, comparing centimeter-

wave and millimeter-wave radar units to assess their classifica-

tion capabilities across different frequency ranges, highlighting

trade-offs between robustness and resolution [4]. However,

these approaches remain standalone sensing techniques, often

relying on pre-trained models that lack adaptability in dynamic

environments.

Despite these advancements, existing methods face four

critical limitations. First, most radar-based approaches operate

independently of communication systems, failing to lever-

age integrated sensing and communication (ISAC) frame-

works. Second, they predominantly rely on reflected signals,

overlooking penetrating signals, which can provide valuable

material-dependent features. Third, generalization across trans-

mission distances and antenna gains has not been extensively

studied, limiting robustness in practical scenarios. Fourth,

most prior works focus on mmWave frequencies, whereas our

proposed SCOPE framework operates in the sub-THz band at

130 GHz with 10 GHz of bandwidth, offering finer resolution

and enhanced material classification capabilities.

To address these limitations, we propose SCOPE, a sub-THz

integrated communication and sensing framework operating

at 130 GHz with a 10 GHz bandwidth, specifically designed

for high-precision material identification. Unlike conventional

radar-based approaches, SCOPE leverages the channel fre-

quency response (CFR) from both penetrating and reflected

signals through an entropy-weighted ensembling technique,

enhancing spatial resolution and material detection by utilizing

distinct features from each signal path.

Summary of Contributions:

• We develop SCOPE, the first sub-THz integrated communi-

cation and sensing system for material classification. Through

entropy-weighted ensembling, it dynamically integrates pene-

trating and reflected signal components, enabling fine-grained

feature extraction and precise material identification.

• We introduce spatial variability augmentation (SVA) to

improve the system’s ability to generalize across diverse

transmission distances and antenna gains, achieving up to a

63.6% improvement in accuracy across distance variations and

a 24–27% accuracy increase for different antenna gains.

• We rigorously evaluate SCOPE on the TeraNova testbed [5]

through extensive real-world experiments, achieving up to 99%

accuracy in detecting materials such as glass, wood, metal,

plastic, and air. We provide open-source access to our dataset

and code to facilitate further research.

II. SCOPE: SUB-THZ PRECISION SENSING SYSTEM

At sub-THz frequencies, signals fully penetrate transparent

materials (e.g., air) but reflect off dense ones (e.g., metal),

while materials like wood or glass exhibit both behaviors.

SCOPE employs an entropy-based ensembling approach to
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Fig. 1: A walkthrough of SCOPE

leverage CFR from both penetrating and reflected signals,

enhancing material detection and characterization.

A. SCOPE System Model

In this study, we employ a Linear Frequency Modulated

(LFM) pulse, commonly known as a chirp, as the transmitted

signal. An LFM pulse is characterized by a frequency that

varies linearly over time within the pulse duration. Mathemat-

ically, the transmitted signal s(t) can be written as

s(t) = A · exp
(

j2π

(

f0t+
K

2
t2
))

, 0 ≤ t ≤ T, (1)

where t is the time index, A and f0 are the amplitude and

the starting frequency of the chirp respectively, and K=B/T
is the chirp rate, with bandwidth B and pulse duration T .

This choice is motivated by the high-resolution sensing and

efficient communication requirements of SCOPE [6]. The

wide bandwidth of LFM pulses enables high-range resolution,

allowing precise estimation of material properties. The linear

frequency variation provides resilience against Doppler shifts

from relative motion, enabling sensing in dynamic environ-

ments. Furthermore, an LFM pulse can also be modulated to

carry communication information, making it highly suitable

for integrated sensing and communication (ISAC) applications.

In particular, Chirp-Spread M-ary Phase Shift Keying (CS-

MPSK) leverages the inherent structure of the LFM waveform

to support simultaneous communication and sensing without

requiring additional spectral resources [7]. By embedding data

into the chirp waveform using M-ary PSK, CS-MPSK allows

the same transmitted signal to be used for material classifica-

tion while maintaining efficient communication performance,

reinforcing the viability of LFM-based ISAC. While CS-

MPSK modulation is not experimentally implemented in this

study, the theoretical compatibility of the LFM pulse with such

schemes underscores its versatility and potential for advancing

integrated communication and sensing systems at sub-THz

and THz frequencies.

1) Channel Estimation: To achieve time synchronization

at the receiver, we cross-correlate the received signal r(t)
with the transmitted chirp signal s(t), leveraging the chirp’s

sharp autocorrelation peak for accurate alignment. This pro-

cess ensures that the received and transmitted signals are

precisely synchronized in time. Once synchronized, we es-

timate the CFR as R(k)/S(k), where R(k) = F{r(t)} and

S(k)=F{s(t)} are the fast Fourier transforms (FFTs) of the

synchronized received and transmitted signals, respectively,

with k∈{0, N − 1} representing the frequency bin index. In

SCOPE, the CFR serves as the core sensing primitive, captur-

ing material-induced reflections, transmissions, and scattering

effects. While CFR is primarily used for material classifica-

tion, it also provides critical channel information for com-

munication. In ISAC systems, the estimated CFR facilitates

dynamic transmission adaptation, enabling techniques such

as beamforming optimization, power control, and waveform

selection. By continuously monitoring CFR variations, SCOPE

enhances both sensing accuracy and communication reliability,

establishing a unified ISAC framework.

2) SCOPE Walkthrough: Figure 1 illustrates the main steps

of the SCOPE cooperative and integrated sensing approach.

The system consists of a sub-THz transmitter and two sub-

THz receivers, one of which collects the signal that penetrates

through the material while the other collects the reflected

signal. The material to be identified is interposed between

the transmitter and the receiver measuring the penetrating

signal. The second receiver is placed on the same side as

the transmitter. Depending on the material properties, the

transmitted signal (Step I) either penetrates through the object,

reflects off the surface, or both, and is subsequently received

by the sub-THz receivers (Step II). The received signal is

then down-converted, synchronized (see Section II-A), and

demodulated. Hence, the data is passed through the data

pre-processing block (Step III in Figure 1) consisting of

three main steps—channel estimation, data reshaping, and

data augmentation. The CFR is first obtained as presented

in Section II-A1. To reduce the computational complexity of

the learning algorithm, Principal Component Analysis (PCA)

is applied to the N -dimensional complex vector, reducing its

dimensionality to N ′. Specifically, starting from N = 160, 000
elements, PCA allows reducing the relevant components to

N ′ = 20, 000, squeezing N by more than 87.5%, while

retaining 95% of the variance. The reduced vector is then

reshaped into a three-dimensional tensor of size n × n × c,
where n = int(

√
N ′) and c = 2, representing the real

and imaginary components of the complex samples. For our

learning algorithm (see Section II-C), which is based on three

VGG blocks, this transformation reduces the computational

complexity by approximately 50%, enabling efficient pro-

cessing while preserving critical frequency-domain features.

Next, the CFR vectors representing both the penetrating and

reflected channels are augmented using the SVA approach

presented in Section II-B to help the model learn variations

linked with different transmission distances and antenna gains.

Indeed, while the data captured on the oscilloscope represents
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real signals, they are inherently linked with the experimental

conditions, such as specific transmission distances and antenna

configurations. SVA mitigates this limitation by simulating

spatial variations that naturally occur in practical deployments,

enriching the dataset while preserving the fundamental char-

acteristics of the signals. This augmentation ensures that the

training dataset contains more diverse realistic conditions,

enabling the model to learn a more robust feature space that

improves online classification performance. The original data

along with the augmented data create two datasets—Dpen and

Dref for penetrating and reflected signals respectively (Step

IV in Figure 1). Two separate convolutional neural network

(CNN)-based feature extractors (described in Section II-C) are

trained on these datasets, obtaining a penetrating model Mpen

and a reflected model Mref (Step V). During inference, these

models independently produce probability distributions over

the possible material classes. These probabilities are passed

through the entropy-weighted-ensembling block which com-

bines the outputs from both models, ensuring that the final pre-

diction takes into account both penetrating and reflected signal

characteristics, weighing more the more confident model (Step

VI, see Section II-D).

B. SVA for Sub-THz Material Detection

Distance Scaling for Path Loss and Phase Shift. This ap-

proach applies path loss and phase adjustments independently

to the CFRs associated with the penetrating and reflected

signals, capturing the specific ways each signal is affected by

propagation.

The path loss represents the reduction in signal strength as

the wave propagates from the transmitter to the receiver. In

this study, we model path loss using the log-distance equation

L(d) = L0 + 10n log10

(

d
d0

)

, where L0 is the path loss

at a reference distance d0 and n is the path loss exponent,

which characterizes the rate of signal attenuation. Sen et

al. provide an extensive empirical study on sub-THz indoor

line-of-sight propagation, demonstrating its effectiveness in

accurately characterizing real-world channel behavior [8].

Considering this model, the CFR magnitude is adjusted for

both penetrating and reflected signals using

|CFRpen(d)| = |CFRpen(d0)| · 10−
L(d)−L0

20 ,

|CFRref(d)| = |CFRref(d0)| · 10−
L(d)−L0

20 .
(2)

The adjustment factor 10−
L(d)−L0

20 scales the CFR magnitude

to reflect the amplitude attenuation due to the path loss.

The factor is derived from the path loss expression and the

division by 20 is because the CFR magnitude represents signal

amplitude, which is proportional to the square root of power.

In addition to the path loss, the transmitted signal undergoes

a phase shift as the wavefront propagates. This causes a change

in the phase of the CFR. For a target distance d, the phase

shift ∆φ is approximated as ∆φ= 2πd
λ

. Although this assumes

a far-field planar wave, it reasonably approximates near-field

conditions as long as the target distance d< 2D2

λ
. The phase-

adjusted penetrating and reflected CFR is obtained as

CFRpen(d) = |CFRpen(d)| · ej(∠CFRpen(d0)+∆φ),

CFRref(d) = |CFRref(d)| · ej(∠CFRref(d0)+∆φ).
(3)

Algorithm 1: SCOPE Entropy Weighted Ensembling

Require: input samples Xpen and Xref, trained models Mpen

and Mref, number of classes m.
Ensure: Final class prediction yensemble.

1: Ypen ←Mpen(Xpen), Yref ←Mref(Xref)
2: Calculate Hpen and Href following Equation 4
3: wpen ← σ(Hpen −Hpen), wref ← σ(Hpen −Href)
4: Y

′

pen ← wpen ·Ypen, Y
′

ref ← wref ·Yref

5: yensemble ← argmax(Y′

pen +Y
′

ref)
6: return yensemble

By incorporating both path loss and phase shifts for different

target distances ranging from 1 to 10 meters, SVA approxi-

mates distance scaling for CFR, aiding data augmentation to

capture the effects of varying transmission distances in the

near-field sub-THz band.

Antenna Gain Adjustment. In sub-THz systems, the re-

ceived signal strength varies with the antenna gain, influenced

by the angle of arrival. We collected real data using horn

antennas with gains G0 = 20 and 40 dBi. Additionally,

assuming a near-zero incident angle in our setup, we applied

a gain factor for data augmentation to simulate different

scenarios, varying the transmit and receive antenna gains from

10 to 40 dBi. This selection represents a broad spectrum

of realistic antenna configurations, enabling the model to

generalize effectively across diverse propagation scenarios. By

adjusting these gains, SVA captures signal strength variations

for both penetrating and reflected signals. The gain-adjusted

CFRs are CFRpen, gain(d) = CFRpen(d)·G0, CFRref, gain(d) =
CFRref(d) ·G0.

C. Feature Extractor Architecture

The CNN-based feature extractor (Step V in Figure 1)

entails three stacked convolutional blocks (conv-block) and

a max-pooling (MaxPool) layer. Softmax is applied to the

flattened output to obtain the probability distribution over the

classes of materials. Each conv-block comprises two 2D

convolutional layers with the same number of 3 × 3 kernels

(filters) and a step size of 1, following the VGG design [9].

Specifically, we used 32, 64, and 128 filters, for the three

conv-block.

D. Entropy Weighted Ensembling

The entropy-weighted ensembling method aims to dynami-

cally balance the contributions of the penetrating model Mpen

and reflected model Mref based on their prediction confidence.

For an input sample Xpen or Xref, representing fea-

tures obtained from the penetrating or reflected signals re-

spectively, each model Mpen and Mref produces a prob-

ability distribution over the m classes (line 1 of Algo-

rithm 1). These distributions are represented as probabil-

ity vectors Ypen = [Ypen,1,Ypen,2, . . . ,Ypen,m] and Yref =
[Yref,1,Yref,2, . . . ,Yref,m], where each element Ypen,j and

Yref,j denotes the probability assigned by the penetrating or

reflected model to class j, respectively. Hence, the entropy

values Hpen and Href are calculated for each model’s output

distribution (line 2) and serve as a measure of the prediction
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Fig. 2: Experimental setup with the TeraNova testbed for sub-
THz material detection. The setup includes a transmitter (Tx),
a penetrating receiver (PRx), and a reflection receiver (RRx).
The material under test (MUT) is positioned between the
transmitter and the penetrating receiver, while the reflection
receiver captures reflected signals.

uncertainty of the penetrating and the reflected models. Math-

ematically, they are defined as

Hpen = −

m∑

j=1

Ypen,j log(Ypen,j); Href = −

m∑

j=1

Yref,j log(Yref,j),

(4)

where lower values of Hpen and Href correspond to higher

confidence. This entropy calculation is key to weighing each

model’s prediction based on its reliability for the specific input.

Specifically, to determine the weights of the penetrating and

reflected model—identified by wpen and wref respectively—we

set the entropy of the penetrating model, Hpen, as a reference.

Next, each model’s weight is calculated using the logistic

sigmoid function (σ) applied to the entropy difference, i.e.,

wpen = σ(Hpen − Hpen) and wref = σ(Hpen − Href) (line 3

of Algorithm 1). The sigmoid function effectively prioritizes

models with lower entropy, assigning them higher weights.

Thus, the entropy-weighted ensembling method adaptively

balances Mpen and Mref models based on their confidence,

enhancing classification robustness. Each model’s probability

vector is then scaled by its corresponding weight to form a

confidence-weighted distribution (line 4 of Algorithm 1):

Y
′

pen = [wpen ·Ypen,1, wpen ·Ypen,2, . . . , wpen ·Ypen,m]

Y
′

ref = [wref ·Yref,1, wref ·Yref,2, . . . , wref ·Yref,m],
(5)

where each probability Y
′

pen,j and Y
′

ref,j is weighted according

to the confidence-based factors wpen and wref. This adjustment

allows the more confident model to exert greater influence on

the ensemble outcome. The final ensemble prediction yensemble

is determined by selecting the class with the highest combined

weighted probability (line 5 of Algorithm 1), i.e., yensemble =
argmax(Y′

pen +Y
′

ref) and each class probability is defined by

yensemble,j = argmax(wpen ·Ypen,j , wref ·Yref,j) .

III. EXPERIMENTAL SETUP AND DATA COLLECTION

In this section, we describe the experimental setup for THz

material detection using the TeraNova testbed [5], consisting

of a transmitter (Tx), a penetrating receiver (PRx), and a

reflection receiver (RRx), as shown in Figure 2. An LFM

pulse is generated in MATLAB and converted to an analog

signal via an Arbitrary Waveform Generator (AWG), capable

of generating baseband (BB) or intermediate frequency (IF)

signals up to 32 GHz. We generate a 1 µs pulse with 10 GHz

IF bandwidth. The pulse is then upconverted to a 130 GHz
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Fig. 3: SCOPE performance illustrating (a) impact of sampling
rates on accuracy at different transmission distances and (b)
effect of transmission distances on accuracy for penetrating
(‘Pen.’), reflected (‘Ref.’), and combined (‘SCOPE’) signals.

passband signal by a THz RF front-end, with a transmit power

of 13 dBm, ensuring sufficient signal strength for robust ma-

terial classification while accounting for sub-THz propagation

losses. At the receiver, an RF front-end downconverts the

received passband signal, which is then captured by a Digital

Storage Oscilloscope (DSO) with a 63.2 GHz operational

bandwidth. The average noise floor of the setup is measured at

–31 dBm, ensuring a sufficient signal-to-noise ratio (SNR) for

accurate CFR estimation. The recorded signals undergo offline

processing in MATLAB, including time synchronization and

channel estimation, as detailed in Section II-A1.

The material under test (MUT) is placed midway between

the transmitter and the penetrating receiver. Tested materials

include air (no material), metal, plastic, wood, and glass. While

metal fully reflects the sub-THz signal, plastic, wood, and glass

allow partial penetration and reflection. Transmission distances

between the transmitter and receivers are set at 1, 2, 3, and 4

meters, with 40 dBi gain at both ends. Additional configura-

tions with 40 dBi at the transmitter and 20 dBi at the receiver,

as well as 20 dBi at both ends, are tested at a 2-meter distance.

The half-power beamwidth (HPBW) of the antennas are 1.6

and 13 degrees respectively, ensuring directional transmission

and reception, optimizing both penetrating and reflected signal

capture.

IV. PERFORMANCE EVALUATION

The classification of materials such as air, wood,

plastic, glass, and metal is central to evaluating SCOPE

’s performance, as their unique material-level properties

significantly influence sub-THz signal interactions. Factors

such as density, electromagnetic characteristics, and surface

structure determine how signals penetrate, reflect, and scatter,

directly impacting detection accuracy. Air serves as a baseline

with minimal interaction, while wood and plastic, with

moderate density and partial transparency, challenge the

system due to subtle distortions from partial penetration

and reflection. Glass introduces strong reflection with partial

penetration, and metal, being fully reflective, poses the most

stringent challenge. Evaluating these materials highlights the

system’s ability to adapt to diverse material properties.

A. Performance of SCOPE at Different Sampling Frequencies

We evaluate SCOPE’s material classification accuracy on

data sampled at various rates across different transmission dis-

tances to analyze the impact of sampling frequency. Figure 3a

illustrates how accuracy improves with higher sampling rates
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Fig. 4: Performance comparison of SCOPE in generalizing across transmission distances and transmit antenna gains

of 40 GHz, 80 GHz, and 160 GHz, tested at distances of 1, 2,

3, and 4 meters. The results demonstrate that higher sampling

frequencies substantially enhance accuracy, particularly at

greater distances. For example, at a sampling rate of 40 GHz,

accuracy drops from 86.29% at 1 m to 83.60% at 4 m, whereas

at 160 GHz, accuracy remains consistently high, achieving

99.66% at 1 m and 98.88% at 4 m.

B. Evaluating SCOPE’s Entropy-Weighted Ensembling

Figure 3b compares material detection performance using

three information sources: (i) the penetrating signal alone,

(ii) the reflected signal alone, and (iii) the combination of

both signals through SCOPE’s entropy-weighted ensembling

method. The results clearly demonstrate the superiority of

the proposed ensembling approach. Using the penetrating

signal alone allows achieving accuracies of 78.98% at 1 m,

which decreases to 77.12% at 3 m, while the reflected signal

provides 73.60% accuracy at 1 m, which drops to 71.29% at

3 m. Instead, SCOPE’s entropy-weighted ensembling achieves

consistently high accuracy, exceeding 99% across distances

from 1 to 3 meters. These results indicate that by dynamically

balancing the contributions of the penetrating and reflected

signals based on their confidence levels, the entropy-weighted

ensembling approach allows performing accurate material

classification under varying transmission conditions.

C. Generalization Performance of SCOPE

Figure 4 highlights the critical role of SVA in enabling

SCOPE to generalize across transmission distances and an-

tenna gains. The selected distances (1—4 meters) represent

a practical near-field range for sub-THz systems, capturing

meaningful signal variations while balancing experimental

feasibility. In Figure 4a, the model trained on data from 1

meter distance exhibits a substantial drop in accuracy when

tested on data from 2–4 meters distance without applying

SVA, reaching as low as 54.05% at 4 meters. In contrast,

by applying SVA, SCOPE improves performance, boosting

accuracy to 88.43%—a relative improvement of up to 63.6%.

Competing methods such as DCNN [2] and SF [3], which

rely solely on reflected signals, perform worse under the same

conditions, achieving only 47.5% and 41.5% accuracy at 4

meters, respectively. Similarly, in Figure 4b, when trained on

4-meter data and tested on other distances, the results follow

a similar trend, further underscoring SVA’s importance for

robust generalization.

Figure 4c evaluates generalization across antenna gains,

where the model is trained with one gain (e.g., 20 dBi) and

tested with another (e.g., 40 dBi), and vice versa. Without

SVA, significant accuracy degradation occurs, while SVA

improves accuracy by 24-–27%. Comparatively, DCNN [2]

and SF [3] experience even sharper declines, achieving only

65.5% and 60.3% accuracy, respectively, when tested across

different antenna gains.

While SCOPE demonstrates robust generalization across

varying distances and antenna gains, evaluations were con-

ducted within the range of 1–4 meters and with antenna gains

of 20 dBi and 40 dBi. These configurations represent typical

sub-THz systems but they may not fully capture extreme

long-range scenarios or hardware setups with significantly

different antenna gains. Additionally, SCOPE’s performance in

highly dynamic environments with rapidly changing channel

conditions requires further investigations.

V. CONCLUSIONS

This letter presents SCOPE, a robust sub-THz cooperative

sensing system that employs entropy-weighted ensembling and

SVA to achieve high-accuracy material detection by gener-

alizing across different transmission distances and antenna

gains. It adaptively balances the contributions of penetrating

and reflected signals by weighting them according to the

confidence of the CNN-based material predictions. Experimen-

tal evaluations with the TeraNova testbed show that SCOPE

achieves up to 99% accuracy when trained and tested with

the same transmission distance and antenna gains, and up to

94% accuracy when generalizing across different distances and

transmission antenna gains.
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