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Abstract—Future 6G and beyond-6G cellular systems are
expected to operate in the sub-terahertz (0.1–0.3 THz) and
terahertz (THz, 0.3–3 THz) frequency bands. However, the small
wavelength coupled with large antenna apertures force a part
of the (sub-)THz access points coverage to be in the near
field. There, conventional far-field propagation models (e.g., free
space path loss, FSPL) are not applicable, as their use leads
to substantial errors in the analysis. At the same time, existing
exact near-field models following the electromagnetic principles
are relatively complex and require additional efforts when using
them for simple link budget predictions. In this paper, we fill
this gap by developing an accurate yet easy-to-use propagation
model for near-field THz communications. The proposed model
has a simple algebraic structure, is applicable to both near field
and far field, and requires no fine-tuning for different sets of
input parameters. We analyze the key dependencies in the THz
near field channel with the developed model and also contrast
the results with those by FSPL, noticing up to 20 dB difference.

Index Terms—THz, Near-field communications, 7G, Path loss.

I. INTRODUCTION

Forthcoming sixth-generation (6G) sub-terahertz (sub-THz,

100GHz–300GHz) and beyond-6G terahertz (THz, 300GHz–

3THz) wireless systems bring not only extraordinary promises

but also new challenges [1]. One of them is a non-negligible

length of the near-field zone in sub-THz and, especially, THz

systems [2]. The overwhelming majority of modern wireless

communication systems from 1G to 5G operate under the far-

field assumption, stating that the phase difference between the

component of the transmitted signal coming to one part of the

receiver antenna and the component received at the same time

by another part of the receiver antenna is negligible [3].

Meanwhile, the prospective (sub-)THz communication sys-

tems aiming for decisive coverage will have to maintain or

even increase the size of their antenna systems over those

used today in 4G and 5G [4]. Such design choice not only

makes these (sub-)THz antennas more directional but also

immediately increases the length of the near-field zone – the

range of distances between the communicating nodes, where

the said phase difference is not negligible anymore [5].

The exact formula for a widely-used near-field to the far-

field boundary, referred to as the Fraunhofer distance, dF,

depends on the setup and for the simplest case of a point

transmitter and a receiver antenna of maximum dimension

D it comes to dF = 2D2/λ, where λ stands for the signal

wavelength [3]. Canonical far-field models, including the free

space path loss (FSPL) model following the Friis law, cannot

be applied in the near field, thus calling for more complex

approaches to analyze near-field communication links. Impor-

tantly, due to notably shorter λ, envisioned sub-THz and THz

communication systems are characterized by the near-field

zone of up to several tens of or even hundreds of meters,

in contrast to cm-scale or meter-scale near-field zones at

lower frequencies [5], [6]. Hence, accounting for the near-field

propagation effects in THz communications is important [7].

A conventional approach to characterize the received power

in the near-field is the solution of Maxwell’s equations [8].

Accordingly, the intensities of the electric and magnetic field

are first calculated and then the power is obtained by utilizing

Poynting’s theorem via integration of the power flow of an

electromagnetic field over the arrays’ elements [3]. However,

the direct theoretical solution of Maxwell’s equation is rather

complex. In practical applications, the authors resort to nu-

merical approximations such as the finite element method

and other grid-based techniques [9] that are implemented in

modern software packages. However, such models need to be

calculated for a given array’s configurations and propagation

environments and are characterized by high computational

complexity. Thus, they cannot be easily utilized for first-order

approximations in performance evaluation and optimization

studies for forthcoming (sub-)THz cellular systems.

In this paper, by reformulating the near-field propagation

between the transmitter and the receiver antenna arrays as

a superposition of multiple far-field communication links

between individual array elements, we derive two geometric

antenna gain and propagation models for near-field THz com-

munications. These are referred to as Model 1, presenting a

direct approach, and Model 2 simplifying the analysis notably

without any loss in accuracy. Both models, by design, give

exact solutions and, notably, are formulated using the same

terms as canonical far-field models. Hence, there is no need

for electromagnetic (EM) theory formulas, so the proposed

approach is easy to use for communication engineers.

The main contributions of this paper are:

• An exact propagation model is derived for near-field THz

communications referred to as Model 2 and characterized

by lower complexity than direct calculations (Model 1).

• An illustrative numerical study is performed revealing

the key dependencies in the THz near field between the
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Fig. 1. The considered system model.

system parameters on one side and the antenna gain

together with the average received power on the other.

II. SYSTEM MODEL

Our system model is illustrated in Fig. 1. It comprises

a single (sub-)THz transmitter (Tx) and a single (sub-)THz

receiver (Rx) separated by d meters. Both Tx and Rx are

equipped with planar antenna arrays of N ×N elements. The

arrays are centered and parallel to each other, providing a

perfect alignment of non-steered THz beams.

The transmitted signal has the frequency f and the total

transmit power PTx. The spacing between the antenna array

elements is λ/2, where λ = c/f is the wavelength and c
stands for the speed of light. The physical dimensions of the

Tx and Rx 2D arrays are thus D × D square meters, where

D = Nλ/2. For a clear illustration of the near-field effects, we

assume operation in one of the THz absorption windows [10],

where the impact of the atmospheric absorption is negligible.

For the reference far-field model we utilize the following

analytical expression for the received power, PRx,FF, as a

function of the separation distance d, the signal frequency f ,

and the antenna gains GTx = N2 and GRx = N2 [3] as:

PRx,FF = PTxGTxGRx

(

c

4πfd

)2

. (1)

For the proposed near-field models, we are interested in both

the received signal amplitude as a function of time, SRx(t), and

the average received power, PRx =
∫ T/2

−T/2
E[(SRx(t))

2], where

T = 1/f stands for the signal period.

III. NEAR FIELD PROPAGATION MODEL

A. Geometry of Near-Field Propagation

The canonical model in (1) holds only when the Rx is

located in the Tx’s far field. However, for distances d < dF,

where dF is the Fraunhofer distance [3], the Tx and Rx

antennas are in each other’s near field, thus compromising the

“plane” wave assumption utilized in (1). Thus, (1) cannot be

directly applied. The exact value of the near-field boundary by

the Fraunhofer distance definition depends on the setup and

in our case (two identical 2D arrays with perfect alignment)

is equal to dF = 16D2/λ [7].

To develop the simple and computationally efficient model,

we first decompose the Tx antenna array into N2 individual

antennas, each transmitting an attenuated copy of the original

signal with power PTx/N
2, see Fig. 1. We then do the same to

the antenna array at the Rx. Now, the setup presents N2×N2

individual propagation paths, where each of the paths is in the

far field, as the physical size of the element is small [3].

For tractability, we enumerate Tx antenna array elements

in the Tx array as (i, j), where i ∈ {1, 2, . . . , N} and

j ∈ {1, 2, . . . , N}. Similarly, the elements of the Rx ar-

ray are addressed as (a, b), where a ∈ {1, 2, . . . , N} and

b ∈ {1, 2, . . . , N}. By utilizing the propagation geometry in

Fig. 1, we observe that the received power at the Rx’s antenna

array element (a, b) induced by the emitted power of the Tx’s

antenna array element (i, j) is given by

PRx,(a,b) =
PTx

N2

(

c

4πfd(i,j)→(a,b)

)2

, (2)

where, d(i,j)→(a,b) is the distance between (i, j)-th element at

the Tx and (a, b)-th element at the Rx (see Fig. 1).

As the antenna array spacing is λ/2 = c/2f , we get

d(i,j)→(a,b) =

√

d2 +

(

c

2f
(a− i)

)2

+

(

c

2f
(b− j)

)2

. (3)

Note that these individual N2 signal components arrive at

the Rx antenna array element not in-phase. Hence, the actual

signal amplitude and phase become important.

As Tx splits the original signal of the average power

PTx and maximum amplitude ATx into N2 identical signal

components with the powers PC = PTx/N
2, then the cor-

responding maximum amplitudes of one signal component,

AC, is AC = ATx/N . Hence, the combined received signal,

SRx,1(t) is given in (4).

Recalling that the average signal power of a time-variant

amplitude SRx,1(t) is E
[

(SRx,1(t))
2
]

, we get the average

power of the receiver signal in the THz near field, PRx,1, as

in (5). We refer to (4) and (5) as Model 1.

B. Simplified Theoretical Model

Although Model 1 is exact, (4) and (5) involve quadruple

sums making the model computationally intensive for large

values of N . Further simplifications arise from accounting for

the properties of the considered scenario in Fig. 1. First, both

the phase shift and the attenuation over an individual path

depend only on the length of that path, not its location. Second,

the length of the individual path d(i,j)→(a,b) depends not on the

absolute values of i, j, a, and b, but only on their differences

∆X = |i− a| and ∆Y = |j − b|, so for constant k and z:

d(i,j)→(a,b) = d(i−k,j−z)→(a−k,b−z) = d(0,0)→(∆X,∆Y ). (6)

Hence, as d(0,0)→(∆X,∆Y ) depends only on ∆X and ∆Y ,

we drop (0, 0) to simplify the notation and just use d(∆X,∆Y )

instead of d(0,0)→(∆X,∆Y ) further:

d(∆X,∆Y ) =

√

d2 +
c2

4f2
(∆X)

2
+

c2

4f2
(∆Y )

2
. (7)

Finally, as one may observe, the system in Fig. 1 features

inherent symmetry: there are many individual paths with
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SRx,1(t) =
N
∑

i=1

N
∑

j=1

N
∑

a=1

N
∑

b=1





1

N

√

2PTx

N2

(

c

4πfd(i,j)→(a,b)

)2

cos

(

2πf

[

t− d(i,j)→(a,b)

c

])



 =

=

√
2PTx

N2

(

c

4πf

) N
∑

i=1

N
∑

j=1

N
∑

a=1

N
∑

b=1





cos
(

2πf
[

t− d(i,j)→(a,b)

c

])

d(i,j)→(a,b)



 =

=

√
2PTx

N2

(

c

4πf

) N
∑

i=1

N
∑

j=1

N
∑

a=1

N
∑

b=1





cos
(

2πf
[

t− d(i,j)→(a,b)

c

])

d(i,j)→(a,b)



 . (4)

PRx,1 =
2PTx

N4T

(

c

4πf

)2 ∫ T/2

−T/2





N
∑

i=1

N
∑

j=1

N
∑

a=1

N
∑

b=1





cos
(

2πf
[

t− d(i,j)→(a,b)

c

])

d(i,j)→(a,b)









2

dt. (5)

SRx,2(t)=

√
2PTx

N2

(

c

4πf

)

[

N2

(

cos
(

2πf
[

t− d
c

])

d

)

+4

N−1
∑

∆X=1

N(N −∆X)





cos
(

2πf
[

t− d(∆X,0)

c

])

d(∆X,0)



+

+ 4

N−1
∑

∆X=1

N−1
∑

∆Y=1

(N −∆X)(N −∆Y )×





cos
(

2πf
[

t− d(∆X,∆Y )

c

])

d(∆X,∆Y )





]

. (11)

different i, j, a, and b, but the same ∆X and the same ∆Y .

There are K0 = N2 “direct” paths, (∆X = ∆Y = 0).

Deriving the number of other categories of paths is more

complicated but is still possible. We start with computing

the number of paths in the horizontal setup KH(∆X), where

∆Y = 0, while ∆X ̸= 0. For a given row index, the

number of available paths of length ∆X is equal to N −∆X .

As there are N equivalent rows in the Tx 2D array, the

quantity grows to N(N − ∆X). Further, for each of the

paths with the shifts (∆X, 0) (a > i), there is a “flipped”

(symmetric) path directing the other side a < i but leading

to the same ∆X = |i − a|. Hence, the total number of

horizontal shifts is twice larger than N(N − ∆X). Finally,

for square N × N arrays, all vertical shifts (0,∆Y ) are

equivalent to their corresponding horizontal shifts (∆X, 0),
where ∆X = ∆Y . Hence, all the vertical shifts can be

replaced with their identical horizontal shifts leading to the

total number of paths with shifts (∆X, 0) or (0,∆X) as

KH(∆X) = 4N(N −∆X). (8)

Having computed the number of available direct paths K0

and paths with a horizontal/vertical shift of ∆X , KH(∆X),
we proceed with the last category of available paths presented

in Fig. 1 – diagonal shifts with ∆X ̸= 0 and ∆Y ̸= 0. For

diagonal shifts, the number of available paths KD depends

on both ∆X and ∆Y , but can be computed using the same

approach as for horizontal shifts: for given (∆X,∆Y ) there

are (N − ∆X)(N − ∆Y ) possible combinations in Fig. 1.

For each of those, there are three more rotations possible:

a < i ∪ b > j, a > i ∪ b < j; and a < i ∪ b < j. Hence, the

total number of diagonal paths with shift (∆X,∆Y ), KD is

KD(∆X,∆Y ) = 4(N −∆X)(N −∆Y ). (9)

Finally, the computations in Model 1 can thus be simplified

using K0, KH, and KD obtained above. Specifically, instead

of adding all N4 paths individually as in (4) and (5), a simpler

approach is through a weighted sum of path categories as:

SRx,2(t)=

√
2PTx

N2

(

c

4πf

)

[

K0L0+

N−1
∑

∆X=1

KH(∆X)LH(∆X)+

+

N−1
∑

∆X=1

N−1
∑

∆Y=1

KD(∆X,∆Y )LD(∆X,∆Y )

]

, (10)

where L0, LH(∆X) and LD(∆X,∆Y ) are the received signal

functions related to the length of the corresponding path

category (direct, horizontal, and diagonal, respectively).

After substituting K0 = N2, KH from (8), and KD from (9)

into (10) and performing simplifications, the following form

for SRx,2(t) (Simpler Model 2) is obtained in (11).

The received power following Model 2 is estimated as:

PRx,2 =
1

T

∫ T/2

−T/2

[

S2
Rx,2(t)

]

dt. (12)

By cross-comparing (4) in Model 1 with (11) in Model 2,

one may observe that the approach in Model 2 still includes

summation over N . However, the quadruple sums in (4) are

now reduced to no more than double summation in (11).

Hence, despite a slightly more complex equation in the sum

(an extra multiplication) the asymptotic complexity over N de-

creases from O(N4) in Model 1 down to O(N2) in Model 2.
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Fig. 2. Antenna gain, G, as a function of key input parameters in the THz near field.

We finally use the structure in (1) and derive antenna gains

in the THz near field for Model 1, G1, and Model 2, G2:

G1 =
4πfd

c

√

PRx,1

PTx

, G2 =
4πfd

c

√

PRx,2

PTx

. (13)

IV. NUMERICAL RESULTS

Recall, that the total power loss of a THz communication

link in the THz near field can be decomposed into: (i) conven-

tional far-field spreading loss and (ii) distance-dependent value

of the antenna gains in the THz near field. The first component

– spreading loss – depends only on the signal frequency, f ,

and the separation distance between the Tx and Rx antennas,

d. However, the second component – near-field antenna gain

– depends not just on the number of array elements per row

and column, N (as it is the case in the far field [3]), but

on the combination of three parameters: (i) number of array

elements, N , (ii) carrier frequency, f , and (iii) the distance

between the Tx and Rx THz arrays, d. Hence, as per (13), the

gain of the THz antenna gain in the near field also becomes

frequency-dependent and distance-dependent.

A. The effect of separation distance, d

We start the numerical analysis with Fig. 2(a) illustrating

the effective gain of the THz Tx antenna array in the THz

near field as a function of the separation distance between the

Tx and Rx, d. We particularly compare the canonical far-field

gain value from (1) with the near-field results derived in this

paper, GTx,1 for Model 1 and GTx,2 for simplified Model 2

using (13). For illustrative purposes, we set the frequency in-

between sub-THz and THz bands at f = 300GHz and also

compare two sizes of antenna arrays: N = 100 and N = 200.

As observed from Fig. 2(a), the far-field gain values for

N = 100 and N = 200 expectedly stay constant over

distance, d, as they depend only on the number of antenna

elements. Contrarily, the effective gain results in the THz

near field are notably less trivial. First, for short-range THz

communication scenarios (distances under 10 m) the curves

stay up to 10 dB lower than the far-field model predicts. Hence,

this figure illustrates the importance of accounting for the near-

field propagation effects when analyzing THz communication

links over short distances. On the opposite side, with the

distance increase (getting closer to the far-field boundary),

the results following our near-field models expectedly tend

to the level set by the far-field model. Finally, it is worth

noting that (as Model 2 presents just a simplified version of the

equation giving the exact solution in Model 1) the results of

both models match over the entire range of input parameters.

B. The effect of the number of antenna elements, N

We now proceed with Fig. 2(b) showing the one side (Tx

or Rx) antenna gain in the THz near-field as a function of

the number of antenna array elements. For illustration, we set

the Tx-Rx separation distance to d = 3m and compare two

frequencies in the sub-THz range: (i) f = 100GHz and (ii)

f = 300GHz. The far-field gain, GFF, in this figure grows

linearly over the total number of array elements, N2. Notably,

GFF is the same for 100GHz and 300GHz (as well as any

other carrier frequency), as the far-field antenna gain depends

only on the number of elements in the array, not the frequency.

Proceeding with the near-field curves for 100GHz and

300GHz, we observe that until approximately N ≈ 50, the

values follow the same trend as the far-field model. The

reason is that the physical size of the sub-THz antenna of

e.g., 10× 10 elements is still too small to imply the near-field

propagation effects at 3m (as the near-field zone is still too

short). In contrast, beginning from approximately N ≈ 50, the

corresponding near-field values start deviating notably from

the ones following the far-field gain curve. The deviation

further grows with N reaching around 1 dB for N = 55
at 100GHz and to extremely noticeable 11.5 dB difference

(on each side, so 23 dB difference for both Tx and Rx gains

together) for 100GHz and 200× 200 array.

The results for the higher frequency of 300GHz follow the

same trend, but are slightly less drastic: the visible deviation

from the far-field model results starts at larger N values and

the maximum difference at N = 200 is around 6 dB versus

11.5 dB at 100GHz. This is because the physical dimensions

of the sub-THz antenna array (with λ/2 element spacing)

with the same number of elements are three times smaller at

300GHz than at 100GHz leading to nine times shorter near-

field zone as per Fraunhofer distance [3] and thus notably

less profound near-field effects at a given d. Still, the 6 dB

difference in the gain leads to the 12 dB difference in the link

budget, which is a huge deviation from the far-field theory.
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Fig. 3. Received power, PRx, in the THz near field; N = 200.

C. The effect of the signal frequency, f

We finally analyze Fig. 2(c) presenting the antenna gain as

a function of the signal frequency, f , for a given size of the

antenna array, N = 200, and two Tx-Rx separation distances:

(i) d = 3m and (ii) d = 5m. As observed from Fig. 2(c), the

far-field gain does not depend on the separation distance, as

per (1), hence the far-field results for 3m and 5m are same.

This is however not the case for the gains in the THz near-

field. As illustrated in the same figure the difference is 2 dB–

3 dB between the results at 3m and 5m across the selected

frequency range. We finally note that the deviation between the

canonical far-field path loss and the proposed detailed near-

field models in the THz near-field is noticeable across the

entire range of sub-THz/THz frequencies in Fig. 2(c). The

difference is especially large at shorter distances (d = 3m)

and lower frequencies, e.g., closer to 100GHz, as the physical

dimensions of the array are larger there implying more severe

near-field effects on the received THz signal. Still, even at

f = 1,THz, where the 200×200 antenna array is only 6 cm ×
6 cm, there is still a visible difference of ≈ 2 dB and ≈ 0.8 dB

on each side for 3m and 5 distances respectively.

D. Received power in the THz near field, PRx

We conclude the numerical study with Fig. 3 exploring

the dependency between the received power over a THz

communication link for N = 200 and three signal frequencies:

300GHz, 500GHz, and 1THz, respectively. We observe the

non-monotonic behavior of the received power in the THz

near field, especially in the range between 1m and 5m. This

behavior is caused by effects similar to those observed for two-

ray propagation models, where the signal components from

different Tx antenna array elements come at the Rx either in-

phase or out-of-phase depending on the separation distance.

As also observed from Fig. 3, the deviation between the

existing far-field model and the proposed near-field models is

up to 20 dB and more for shorter distances and gets under

1 dB only after approximately 20m. This range is expected

to constitute a significant part of prospective sub-THz 6G

and beyond 6G THz access networks. Hence, in selected

future scenarios (e.g., THz WLANs), the near-field-specific

propagation effects must be accounted for.

V. CONCLUSIONS

Near-field propagation effects present one of the principal

novelties when upgrading from state-of-the-art 5G-grade mil-

limeter wave mobile communication systems to prospective

6G/beyond-6G wireless systems operating in the sub-THz and

THz bands. In this article, an accurate-by-design approach is

presented to mathematically characterize the effective gain of

the THz antenna and the corresponding received power for

a given separation distance between the transmitter and the

receiver in the THz near field. Our study reveals that applying

the canonical far-field models when analyzing the THz near-

field propagation leads to substantial errors, as the mismatch

between the presented two near-field-specific models and the

conventional far-field ones may reach several tens of decibels.

The proposed near-field models are much easier to use

for telecommunication engineers than existing EM simulation

techniques based on Maxwell’s equations, as they only operate

well-established parameters, such as the separation distance,

the frequency, and the antenna array size without the need to

parameterize and perform full-fetched EM simulations. The

contributed approach can be further extended to account for

beam steering or more sophisticated scenario geometries thus

forming a solid base for further research on near-field sub-THz

and THz communication systems in 6G and beyond.
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