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Abstract—Future 6G and beyond-6G cellular systems are
expected to operate in the sub-terahertz (0.1-0.3 THz) and
terahertz (THz, 0.3-3 THz) frequency bands. However, the small
wavelength coupled with large antenna apertures force a part
of the (sub-)THz access points coverage to be in the near
field. There, conventional far-field propagation models (e.g., free
space path loss, FSPL) are not applicable, as their use leads
to substantial errors in the analysis. At the same time, existing
exact near-field models following the electromagnetic principles
are relatively complex and require additional efforts when using
them for simple link budget predictions. In this paper, we fill
this gap by developing an accurate yet easy-to-use propagation
model for near-field THz communications. The proposed model
has a simple algebraic structure, is applicable to both near field
and far field, and requires no fine-tuning for different sets of
input parameters. We analyze the key dependencies in the THz
near field channel with the developed model and also contrast
the results with those by FSPL, noticing up to 20 dB difference.

Index Terms—THz, Near-field communications, 7G, Path loss.

I. INTRODUCTION

Forthcoming sixth-generation (6G) sub-terahertz (sub-THz,
100 GHz-300 GHz) and beyond-6G terahertz (THz, 300 GHz—
3 THz) wireless systems bring not only extraordinary promises
but also new challenges [1]. One of them is a non-negligible
length of the near-field zone in sub-THz and, especially, THz
systems [2]. The overwhelming majority of modern wireless
communication systems from 1G to 5G operate under the far-
field assumption, stating that the phase difference between the
component of the transmitted signal coming to one part of the
receiver antenna and the component received at the same time
by another part of the receiver antenna is negligible [3].

Meanwhile, the prospective (sub-)THz communication sys-
tems aiming for decisive coverage will have to maintain or
even increase the size of their antenna systems over those
used today in 4G and 5G [4]. Such design choice not only
makes these (sub-)THz antennas more directional but also
immediately increases the length of the near-field zone — the
range of distances between the communicating nodes, where
the said phase difference is not negligible anymore [5].

The exact formula for a widely-used near-field to the far-
field boundary, referred to as the Fraunhofer distance, dp,
depends on the setup and for the simplest case of a point
transmitter and a receiver antenna of maximum dimension
D it comes to dp = 2D? /A, where A stands for the signal
wavelength [3]. Canonical far-field models, including the free
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space path loss (FSPL) model following the Friis law, cannot
be applied in the near field, thus calling for more complex
approaches to analyze near-field communication links. Impor-
tantly, due to notably shorter A, envisioned sub-THz and THz
communication systems are characterized by the near-field
zone of up to several tens of or even hundreds of meters,
in contrast to cm-scale or meter-scale near-field zones at
lower frequencies [5], [6]. Hence, accounting for the near-field
propagation effects in THz communications is important [7].

A conventional approach to characterize the received power
in the near-field is the solution of Maxwell’s equations [8].
Accordingly, the intensities of the electric and magnetic field
are first calculated and then the power is obtained by utilizing
Poynting’s theorem via integration of the power flow of an
electromagnetic field over the arrays’ elements [3]. However,
the direct theoretical solution of Maxwell’s equation is rather
complex. In practical applications, the authors resort to nu-
merical approximations such as the finite element method
and other grid-based techniques [9] that are implemented in
modern software packages. However, such models need to be
calculated for a given array’s configurations and propagation
environments and are characterized by high computational
complexity. Thus, they cannot be easily utilized for first-order
approximations in performance evaluation and optimization
studies for forthcoming (sub-)THz cellular systems.

In this paper, by reformulating the near-field propagation
between the transmitter and the receiver antenna arrays as
a superposition of multiple far-field communication links
between individual array elements, we derive two geometric
antenna gain and propagation models for near-field THz com-
munications. These are referred to as Model 1, presenting a
direct approach, and Model 2 simplifying the analysis notably
without any loss in accuracy. Both models, by design, give
exact solutions and, notably, are formulated using the same
terms as canonical far-field models. Hence, there is no need
for electromagnetic (EM) theory formulas, so the proposed
approach is easy to use for communication engineers.

The main contributions of this paper are:

o An exact propagation model is derived for near-field THz
communications referred to as Model 2 and characterized
by lower complexity than direct calculations (Model 1).

¢ An illustrative numerical study is performed revealing
the key dependencies in the THz near field between the
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Fig. 1. The considered system model.

system parameters on one side and the antenna gain
together with the average received power on the other.

II. SYSTEM MODEL

Our system model is illustrated in Fig. 1. It comprises
a single (sub-)THz transmitter (Tx) and a single (sub-)THz
receiver (Rx) separated by d meters. Both Tx and Rx are
equipped with planar antenna arrays of N X N elements. The
arrays are centered and parallel to each other, providing a
perfect alignment of non-steered THz beams.

The transmitted signal has the frequency f and the total
transmit power Pry. The spacing between the antenna array
elements is A/2, where A = ¢/f is the wavelength and ¢
stands for the speed of light. The physical dimensions of the
Tx and Rx 2D arrays are thus D x D square meters, where
D = N\/2. For a clear illustration of the near-field effects, we
assume operation in one of the THz absorption windows [10],
where the impact of the atmospheric absorption is negligible.

For the reference far-field model we utilize the following
analytical expression for the received power, Pryrr, as a
function of the separation distance d, the signal frequency f,
and the antenna gains G, = N2 and Ggx = N2 [3] as:

2
&
Px :Px X x|\ 5T 75 . 1
Re,FE = PrxGrxGr (47de> 1

For the proposed near-field models, we are interested in both

the received signal amplitude as a function of time, Sgx (), and
the average received power, Pryx = [ fﬁz E[(Srx(t))?], where
T =1/ f stands for the signal period.

III. NEAR FIELD PROPAGATION MODEL
A. Geometry of Near-Field Propagation

The canonical model in (1) holds only when the Rx is
located in the Tx’s far field. However, for distances d < df,
where dp is the Fraunhofer distance [3], the Tx and Rx
antennas are in each other’s near field, thus compromising the
“plane” wave assumption utilized in (1). Thus, (1) cannot be
directly applied. The exact value of the near-field boundary by
the Fraunhofer distance definition depends on the setup and
in our case (two identical 2D arrays with perfect alignment)
is equal to dp = 16D?/\ [7].

To develop the simple and computationally efficient model,
we first decompose the Tx antenna array into N? individual
antennas, each transmitting an attenuated copy of the original

signal with power Pr,/N?, see Fig. 1. We then do the same to
the antenna array at the Rx. Now, the setup presents N2 x N2
individual propagation paths, where each of the paths is in the
far field, as the physical size of the element is small [3].

For tractability, we enumerate Tx antenna array elements
in the Tx array as (i,j), where ¢ € {1,2,...,N} and
j € {1,2,...,N}. Similarly, the elements of the Rx ar-
ray are addressed as (a,b), where a € {1,2,...,N} and
b € {1,2,...,N}. By utilizing the propagation geometry in
Fig. 1, we observe that the received power at the Rx’s antenna
array element (a,b) induced by the emitted power of the Tx’s
antenna array element (7, j) is given by

PT C 2
Paciap) = 2 — ) 2
Ro(e0) 2 <47rfd<i,j>a<a,b>) @

where, d; ;) (a,p) is the distance between (i, j)-th element at
the Tx and (a, b)-th element at the Rx (see Fig. 1).
As the antenna array spacing is A\/2 = ¢/2f, we get

2 2
(i j)—(ab) = \/CP + <20f(a - i)) + (;(b j)> G

Note that these individual N? signal components arrive at
the Rx antenna array element not in-phase. Hence, the actual
signal amplitude and phase become important.

As Tx splits the original signal of the average power
Pr, and maximum amplitude Ar, into N? identical signal
components with the powers Pc = Pry/N?, then the cor-
responding maximum amplitudes of one signal component,
Ac, is Ac = Arx/N. Hence, the combined received signal,
Srx,1(t) is given in (4).

Recalling that the average signal power of a time-variant
amplitude Sgy1(t) is E { (SRX’I(t))zl]_,’ we get the average
power of the receiver signal in the THz near field, Pgy 1, as
in (5). We refer to (4) and (5) as Model 1.

B. Simplified Theoretical Model

Although Model 1 is exact, (4) and (5) involve quadruple
sums making the model computationally intensive for large
values of N. Further simplifications arise from accounting for
the properties of the considered scenario in Fig. 1. First, both
the phase shift and the attenuation over an individual path
depend only on the length of that path, not its location. Second,
the length of the individual path d(; ;) (4,») depends not on the
absolute values of 4, j, a, and b, but only on their differences
AX =i —a| and AY = |j — b], so for constant k and z:

d(ij)—(ap) = Aii—k,j—2)—(a—kb—2) = 4(0,0)=(aX,AY)- (6)

Hence, as d(o,0)—(ax,ay) depends only on AX and AY,
we drop (0, 0) to simplify the notation and just use d(ax,Ay)
instead of d(g,0y—(ax,ay) further:

02 2 C2 2
d =4/d?+ — (AX — (AY)". (7
(AX,AY) \/ +4f2( ) +4f2( ) (7N
Finally, as one may observe, the system in Fig. 1 features
inherent symmetry: there are many individual paths with
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different 4, j, a, and b, but the same AX and the same AY.
There are Ky = N? “direct” paths, (AX = AY = 0).

Deriving the number of other categories of paths is more
complicated but is still possible. We start with computing
the number of paths in the horizontal setup Ky(AX), where
AY 0, while AX # 0. For a given row index, the
number of available paths of length AX is equal to N —AX.
As there are N equivalent rows in the Tx 2D array, the
quantity grows to N(N — AX). Further, for each of the
paths with the shifts (AX,0) (a > i), there is a “flipped”
(symmetric) path directing the other side a < 4 but leading
to the same AX |¢ — a|. Hence, the total number of
horizontal shifts is twice larger than N(N — AX). Finally,
for square N x N arrays, all vertical shifts (0, AY") are
equivalent to their corresponding horizontal shifts (AX,0),
where AX AY. Hence, all the vertical shifts can be
replaced with their identical horizontal shifts leading to the
total number of paths with shifts (AX,0) or (0, AX) as

Ku(AX) = 4N(N — AX).

®)

Having computed the number of available direct paths K
and paths with a horizontal/vertical shift of AX, Ky(AX),
we proceed with the last category of available paths presented
in Fig. 1 — diagonal shifts with AX # 0 and AY # 0. For
diagonal shifts, the number of available paths Kp depends
on both AX and AY, but can be computed using the same
approach as for horizontal shifts: for given (AX, AY) there
are (N — AX)(N — AY') possible combinations in Fig. 1.
For each of those, there are three more rotations possible:
a<iUb>j,a>iUb< j;and a < iUb < j. Hence, the

total number of diagonal paths with shift (AX, AY'), Kp is
Kp(AX,AY) =4(N — AX)(N — AY). )

Finally, the computations in Model 1 can thus be simplified
using Ky, Ky, and Kp obtained above. Specifically, instead
of adding all N* paths individually as in (4) and (5), a simpler
approach is through a weighted sum of path categories as:

V2PTx C Nl
Swaat) =y | g7 ) [Folot > Kn(AX)Ly(AX)+
AX=1
N—-1 N-1

+ > Y Kp(AX,AY)Lp(AX,AY)
AX=1AY=1
where Lo, Ly(AX) and Lp(AX, AY) are the received signal
functions related to the length of the corresponding path
category (direct, horizontal, and diagonal, respectively).
After substituting Ko = N 2, Ky from (8), and Kp, from (9)
into (10) and performing simplifications, the following form
for Srx,2(t) (Simpler Model 2) is obtained in (11).
The received power following Model 2 is estimated as:

T /T/2

By cross-comparing (4) in Model 1 with (11) in Model 2,
one may observe that the approach in Model 2 still includes
summation over N. However, the quadruple sums in (4) are
now reduced to no more than double summation in (11).
Hence, despite a slightly more complex equation in the sum

(an extra multiplication) the asymptotic complexity over N de-
creases from O(N*) in Model 1 down to O(N?) in Model 2.

; (10)

Pres = (12)

lS]%X’Q(t)] dt.
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Fig. 2. Antenna gain, G, as a function of key input parameters in the THz near field.

We finally use the structure in (1) and derive antenna gains
in the THz near field for Model 1, G, and Model 2, G5:

_47de PRx,l G _47de\/m
o c PTx’ 2= Cc PT .

IV. NUMERICAL RESULTS

Gy (13)

Recall, that the total power loss of a THz communication
link in the THz near field can be decomposed into: (i) conven-
tional far-field spreading loss and (ii) distance-dependent value
of the antenna gains in the THz near field. The first component
— spreading loss — depends only on the signal frequency, f,
and the separation distance between the Tx and Rx antennas,
d. However, the second component — near-field antenna gain
— depends not just on the number of array elements per row
and column, N (as it is the case in the far field [3]), but
on the combination of three parameters: (i) number of array
elements, IV, (ii) carrier frequency, f, and (iii) the distance
between the Tx and Rx THz arrays, d. Hence, as per (13), the
gain of the THz antenna gain in the near field also becomes
frequency-dependent and distance-dependent.

A. The effect of separation distance, d

We start the numerical analysis with Fig. 2(a) illustrating
the effective gain of the THz Tx antenna array in the THz
near field as a function of the separation distance between the
Tx and Rx, d. We particularly compare the canonical far-field
gain value from (1) with the near-field results derived in this
paper, Gtx,1 for Model 1 and Grx 2 for simplified Model 2
using (13). For illustrative purposes, we set the frequency in-
between sub-THz and THz bands at f = 300 GHz and also
compare two sizes of antenna arrays: /N = 100 and N = 200.

As observed from Fig. 2(a), the far-field gain values for
N 100 and N 200 expectedly stay constant over
distance, d, as they depend only on the number of antenna
elements. Contrarily, the effective gain results in the THz
near field are notably less trivial. First, for short-range THz
communication scenarios (distances under 10m) the curves
stay up to 10 dB lower than the far-field model predicts. Hence,
this figure illustrates the importance of accounting for the near-
field propagation effects when analyzing THz communication
links over short distances. On the opposite side, with the
distance increase (getting closer to the far-field boundary),

the results following our near-field models expectedly tend
to the level set by the far-field model. Finally, it is worth
noting that (as Model 2 presents just a simplified version of the
equation giving the exact solution in Model 1) the results of
both models match over the entire range of input parameters.

B. The effect of the number of antenna elements, N

We now proceed with Fig. 2(b) showing the one side (Tx
or Rx) antenna gain in the THz near-field as a function of
the number of antenna array elements. For illustration, we set
the Tx-Rx separation distance to d = 3m and compare two
frequencies in the sub-THz range: (i) f = 100 GHz and (ii)
f = 300GHz. The far-field gain, Gpg, in this figure grows
linearly over the total number of array elements, N2. Notably,
GFrr is the same for 100 GHz and 300 GHz (as well as any
other carrier frequency), as the far-field antenna gain depends
only on the number of elements in the array, not the frequency.

Proceeding with the near-field curves for 100 GHz and
300 GHz, we observe that until approximately N = 50, the
values follow the same trend as the far-field model. The
reason is that the physical size of the sub-THz antenna of
e.g., 10 x 10 elements is still too small to imply the near-field
propagation effects at 3m (as the near-field zone is still too
short). In contrast, beginning from approximately N ~ 50, the
corresponding near-field values start deviating notably from
the ones following the far-field gain curve. The deviation
further grows with N reaching around 1dB for N 55
at 100GHz and to extremely noticeable 11.5dB difference
(on each side, so 23 dB difference for both Tx and Rx gains
together) for 100 GHz and 200 x 200 array.

The results for the higher frequency of 300 GHz follow the
same trend, but are slightly less drastic: the visible deviation
from the far-field model results starts at larger N values and
the maximum difference at N = 200 is around 6dB versus
11.5dB at 100 GHz. This is because the physical dimensions
of the sub-THz antenna array (with A/2 element spacing)
with the same number of elements are three times smaller at
300 GHz than at 100 GHz leading to nine times shorter near-
field zone as per Fraunhofer distance [3] and thus notably
less profound near-field effects at a given d. Still, the 6 dB
difference in the gain leads to the 12 dB difference in the link
budget, which is a huge deviation from the far-field theory.
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Fig. 3. Received power, Prx, in the THz near field; N = 200.

C. The effect of the signal frequency, f

We finally analyze Fig. 2(c) presenting the antenna gain as
a function of the signal frequency, f, for a given size of the
antenna array, N = 200, and two Tx-Rx separation distances:
(1) d = 3m and (ii) d = 5m. As observed from Fig. 2(c), the
far-field gain does not depend on the separation distance, as
per (1), hence the far-field results for 3m and 5m are same.
This is however not the case for the gains in the THz near-
field. As illustrated in the same figure the difference is 2 dB-
3dB between the results at 3m and 5m across the selected
frequency range. We finally note that the deviation between the
canonical far-field path loss and the proposed detailed near-
field models in the THz near-field is noticeable across the
entire range of sub-THz/THz frequencies in Fig. 2(c). The
difference is especially large at shorter distances (d = 3m)
and lower frequencies, e.g., closer to 100 GHz, as the physical
dimensions of the array are larger there implying more severe
near-field effects on the received THz signal. Still, even at
f = 1,THz, where the 200 x 200 antenna array is only 6 cm x
6 cm, there is still a visible difference of ~ 2dB and =~ 0.8 dB
on each side for 3m and 5 distances respectively.

D. Received power in the THz near field, Py,

We conclude the numerical study with Fig. 3 exploring
the dependency between the received power over a THz
communication link for N = 200 and three signal frequencies:
300 GHz, 500 GHz, and 1THz, respectively. We observe the
non-monotonic behavior of the received power in the THz
near field, especially in the range between 1 m and 5m. This
behavior is caused by effects similar to those observed for two-
ray propagation models, where the signal components from
different Tx antenna array elements come at the Rx either in-
phase or out-of-phase depending on the separation distance.

As also observed from Fig. 3, the deviation between the
existing far-field model and the proposed near-field models is
up to 20dB and more for shorter distances and gets under
1dB only after approximately 20 m. This range is expected
to constitute a significant part of prospective sub-THz 6G
and beyond 6G THz access networks. Hence, in selected

future scenarios (e.g., THz WLANS), the near-field-specific
propagation effects must be accounted for.

V. CONCLUSIONS

Near-field propagation effects present one of the principal
novelties when upgrading from state-of-the-art 5G-grade mil-
limeter wave mobile communication systems to prospective
6G/beyond-6G wireless systems operating in the sub-THz and
THz bands. In this article, an accurate-by-design approach is
presented to mathematically characterize the effective gain of
the THz antenna and the corresponding received power for
a given separation distance between the transmitter and the
receiver in the THz near field. Our study reveals that applying
the canonical far-field models when analyzing the THz near-
field propagation leads to substantial errors, as the mismatch
between the presented two near-field-specific models and the
conventional far-field ones may reach several tens of decibels.

The proposed near-field models are much easier to use
for telecommunication engineers than existing EM simulation
techniques based on Maxwell’s equations, as they only operate
well-established parameters, such as the separation distance,
the frequency, and the antenna array size without the need to
parameterize and perform full-fetched EM simulations. The
contributed approach can be further extended to account for
beam steering or more sophisticated scenario geometries thus
forming a solid base for further research on near-field sub-THz
and THz communication systems in 6G and beyond.
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