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Abstract—Mobility scooters are popular among people with
limited mobility, providing convenient transportation in their
communities and thus enhancing their life quality. However, due
to various reasons, a high number of mobility scooter accidents
have been reported. In this paper, we tackle its safety issues by
performing riding behavior stability analysis using both video
and motion sensor data. We design a transformer-based cross-
modal encoder to generate the embeddings representing the
riding stability and develop a binary classifier based on the
embeddings to classify riding behaviors as stable or unstable.
The advantage of this work is that the multimodal contrastive
learning approach enables the neural network to understand the
correlations across two modalities for the same events, and to
distinguish the unstable riding behaviors from stable, so that in-
context stability analysis becomes possible. We have conducted
extensive experiments based on real-world mobility scooter riding
data labeled by medical practitioners. The results have shown a
high level of classification accuracy of our system, across different
settings, in ablation study as well as comparative study.

Index Terms—Multimodal learning; Contrastive learning; Mo-
bility Scooter Safety; Vision and Motion Sensor Data Fusion

I. INTRODUCTION

Mobility scooters are a popular assistive tool that provides
convenient transportation for people with limited mobility
[17]. However, due to various reasons such as scooter design
limitations, environmental and road conditions, there are safety
hazards (e.g., tipping over, collisions with pedestrians) associ-
ated with their use [4], and a high number of mobility scooter
accidents have been reported [2], [6].

One factor in mobility scooter safety issues is related to
the riders. Mobility scooter users usually suffer from different
medical conditions such as stroke, neuropathy, and brain injury
that may lead to upper and/or lower extremity impairments
and affect their ability to safely ride a mobility scooter. For
example, a user with neuropathy may have slower response
speed due to weak muscles and pain, causing accidents
especially in crowded or dynamic environments. Hence it
is critical to have effective safety assessments of the user’s
riding behavior, especially from the medical practitioner’s
perspective. As many mobility scooter users’ symptoms are
progressive, it is desirable to provide such assessments in a
timely manner so that unsafe riding can be intervened and
accidents can be prevented. Therefore in this work we consider
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to perform safety assessments by analyzing riders’ upperbody
movements while riding the mobility scooter.

To analyze rider’s body motions, unlike existing study in
Kinesiology using multiple wearable inertial sensors [19], we
mainly rely on cameras (e.g., those on smart phones), trying
to achieve a higher level of usability. The camera mounted on
the scooter handle facing the rider allows us to collect real-
time riding behavior data and perform deep learning based
analysis. In our prior work [11], an LSTM based autoencoder
was built to learn the embedding representation for stable
riding behaviors of upperbody in the video frames labelled
by kinesiologists. In tests, the autoencoder can effectively
distinguish video frames with stable riding behaviors from
unstable riding based on the loss values.

Although using video data has been shown effective in
assessing the stability of mobility scooter riding, it has lim-
itations in reflecting the riders’ true ability. For example, a
significant posture sway of the rider will make the kine-
siologists to label the video frames as unstable, indicating
the observed unstable riding behavior. However, it does not
distinguish whether the posture sway is caused by a speed
bump on the road, or because of the rider’s mild cognitive
impairment, which should be categorized differently in riding
safety assessment.

To solve this problem, in this paper, in addition to video
data, we bring in the gyroscope and accelerometer sensor data
of the mobility scooter, to provide the context information of
the upperbody movements, so that stability analysis can be
more accurate. The challenge is to find a way to generate a
representation of riding stability in different contexts while
using multimodal data. The representation in the latent space
should not only reflect the correlations across the two modali-
ties (such as body shakes when riding on uneven road surface),
but also discriminate between stable riding and unstable riding.

To tackle this challenge, we apply multimodal contrastive
learning in this work. In particular, we train a transformer-
based encoder using the sequential data from the two modali-
ties (i.e., videos and motion sensors). The cross-modal training
is enabled by a custom contrastive loss function, where pos-
itive pairs are those that appear in the same time window,
and negative pairs as those with opposite labels. In this way,
the encoder can generate embedding vectors that are effective
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representations of in-context riding behavior stability.
The contributions of this paper include the following:

+ We develop a multimodal mobility scooter riding stability
analysis system based on video and motion sensor data,
which has high usability with the sensors easily mount-
able on scooters.

o Our system effectively aligns and fuses the data from the
two modalities after the riders’ upperbody keypoints co-
ordinates are extracted from the video frames by applying
the human pose estimation model Yolov7-pose.

o We design a transformer-based cross-modal encoder that
captures the correlation between the data in two modali-
ties and discriminates the stable and unstable riding in the
latent space, by using a custom loss function to enable
contrastive learning.

o Our extensive experiments based on real-world mobility
scooter riding data collected from 8 patients have veri-
fied that our multimodal contrastive learning model has
achieved a higher level of classification accuracy than
the transformer-based single modality models and other
models with alternative architectures.

The remaining of this paper is organized as follows. After
we describe in Section II the related works in multimodal
contrastive learning approaches and multimodal learning used
in healthcare, we present the details of our multimodal method
to perform stability analysis for mobility scooter users’ riding
behaviors in Section III. Section IV covers the extensive
experiments on our multimodal system to evaluate its accuracy
in stability behavior classification using real-world data, com-
paring our model with single-modality models and state-of-
the-art alternatives. We finally conclude this paper in Section
V.

II. RELATED WORK
A. Multimodal Contrastive Learning

Multimodal contrastive learning is an advanced machine
learning approach that understands the associations among
multimodality data and builds representations by maximizing
the agreement among positive pairs and pushing negative
samples apart in the latent space [15], [28]. The positive pairs
consists of data from different modalities but satisfy certain
common criteria (such as an image and its corresponding text
caption). Negative pairs represent different concepts or are
randomly generated. Usually the multimodal contrastive learn-
ing is applied on video, audio, and text data for applications
such as multimodal generation and multimodal retrieval. Our
multimodal contrastive learning model is applied to motion
sensor and video data in order to build a more accurate
mobility scooter riding behavior classifier by leveraging more
representative embeddings based on multimodal data.

Popular loss functions used in contrastive learning include
Noise Contrastive Estimation (NCE) [10] and its variants like
InfoNCE [26], which aim to maximize the similarity within the
positive pair, and minimize it for negative pairs. Triplet loss
function is also widely applied in contrastive learning [25],
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where samples are groups into triplets with one anchor sample,
one positive sample (in the same category as the anchor) and
one negative sample (in different category than the anchor).
Triplet loss encourages that dissimilar pairs be distant from
any similar pairs by at least a certain margin value. In this
paper, we define positive pairs across modalities that appear
in the same time window, and negative pairs as those with
opposite labels. Our loss function is hence defined based on
both the cross-modality correlation and the class discriminator.

B. Multimodal Learning for Healthcare Data

Multimodal learning in healthcare is an emerging field that
leverages data of various modalities, such as images, clinical
notes, Electronic Health Records (EHR) and genomic data, in
the process of diagnosis, treatment, and medical research [3],
[12], [22]. For example, in [16], a multimodal transformer to
fuse clinical notes and structured EHR data is proposed for
better prediction of in-hospital mortality. Another multimodal
large language model for radiograph representation learning
is proposed in [14], to learn broad medical knowledge (e.g.,
image understanding, text semantics, and clinical phenotypes)
from unlabelled data. These works frequently use convolu-
tional neural networks (CNNs) [13], recurrent neural networks
(RNNs) [21], and transformers [27] to process data from
different modalities, which have been shown to be effective.
The existing works of multimodal learning in healthcare are
mostly language models especially large language models. Our
work does not involve language models, but instead takes
video and motion sensor data as input to improve the decision-
making in kinematic analysis.

III. RIDING BEHAVIOR STABILITY ANALYSIS BASED ON
MULTIMODAL DATA

In this section, we first introduce the overall pipeline of the
mobility scooter stability analysis system. Then we describe
the data preprocesssing and alignment process. After the de-
tailed presentation of our multimodal encoder training and its
loss function in Section III-C, we list the complete information
of model configuration.

A. System Framework

The system is designed to make binary classification deci-
sions about mobility scooter riding stability, which classifies
scooter riding behavior as being stable or unstable from two
measures: rider state captured in videos and scooter state re-
flected by motion sensor data. Within our model, we represent
rider state as 18 pose features derived using YOLOV7 [24]
with the front-camera view of the rider, and scooter state
from 6 accelerometer and gyroscope values. The proposed
model combines these modalities to effectively measure riding
stability. The overview of the system components is shown in
Figure 1.

The system consists of three parts: preprocessing and
alignment, the cross-modal encoder and the classifier. The
preprocessing and alignment module extracts 9 keypoints’ 2D
coordinates of riders’ upperbody in the video frames, and
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Fig. 1.

align them with the motion sensor readings by down-sampling
the video data to match the sampling rate of motion sensor
readings. The pose and motion data matched in sequence
length and aligned in time is pushed to the model which is
comprised of two central parts: an encoder and classifier.

The encoder serves to represent each modality in the same
dimension with an embedding. Our hypothesis is differing
modalities of the same label have similar representations, so
by representing the modalities in the same space it can form
a correlation. We promote this behavior within our encoder
training detailed in Section III-C. The classifier then coalesces
modality embeddings to output a binary classification of stable
or unstable.

B. Data Preprocessing and Alignment

Data pre-processing and alignment are important before the
multimodal data can be fed to the neural network architecture.
As a first step, the video frames are passed to YOLOv7 for
human pose estimation. The pose estimations are 9 keypoints’
2-d coordinates on the rider’s upperbody, i.e., neck, left/right
shoulders, left/right elbows, left/right wrists and left/right hips
within each video frame. This leads to pose features to total
in 18 values with a sampling rate of 30 frames per second.
Conversely, accelerometer and gyroscope data total in 6 values
but sampled at about 1.66 readings per second. In order to
align modalities, we first align their initial values to the same
time stamp and down-sample pose features by only taking
every 18th value. Note that 18 is the rounded ratio of pose to
motion sampling rate. This effectively deflates pose samples
by a factor of 18 to have modalities be represented by two
2d arrays of matching lengths and index. These 2d arrays are
then sequenced to be fed into the model.

C. Multimodal Encoder Training

We utilize two separate training steps for the classifier and
encoder. Before the classifier training, the encoder is first
trained with its own specialized loss function heavily inspired
by the loss implementation in [8]; the intuition is that the
loaded encoder will better represent input data by maximizing

6441

@)

Overview of Multimodal Mobility Scooter Riding Stability Analysis System

the correlation of cross-modality embeddings of the same time
step and minimizing inter-modality embeddings correlation of
differing labels.

The encoder is trained in batches with data being balanced
by having an equal number of stable and unstable sequences.
Within each batch, samples are passed through the model and
outputs are separated into positive and negative pairs for loss
calculation. Positive pairs are the combination of every sample
who differ in modalities and match in time step. Negative pairs
are the combination of every unstable-labeled sample with a
stable-labeled sample who match in modality.

The loss function utilizes these positive and negative pairs
correspondingly in the calculation of a correlation and dis-
criminator factor.

The correlation factor (E ) maximizes the similarity of
different modal embeddmgs of the same time step. For a
singular value ', it is defined as:
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where 7 is an adjustable hyper-parameter (also known as
temperature parameter [8]) and S}i”fﬂ is the normalized dot-
product of embedding representations for modality v (pose)
and w (movement/motion).

The discriminator factor (L£},) maximizes the difference of
opposite labeled embeddings of the same modality. With stable
sample ! and unstable sample z!', the discriminator is defined
as:
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where 7' is the batch size and S,ﬁf;/ is the normalized dot-
product of embedding representations for samples of the same
modality but differing labels.

The loss functions is the sum of the cross-modality corre-
lation (positive pairs) and discriminator (negative pairs) with
an added hyper-parameter scalar A to adjust the weight of the

discriminator term:
L= "Lo+X) L}
t veV

D. Model Configuration

The cross-modal encoder consists of two consecutive trans-
former layers for each modality. After preprocessing and
alignment, inputs are first re-arranged and squeezed to one-
dimension then passed to their own corresponding encoder
layers; these transformer layers implemented with PyTorch’s
nn.TransformerEncoder followed by a linear layer map input
features to a specified embedding dimension. The number of
heads for each encoder is 8. The two modalities’ embeddings
are coalesced in a final linear layer returning an concatenation
of both modalities. The encoder is trained with the method as
detailed in Section III-C.

Then the generated embedding is passed to the classifier
layers which comprise of two linear layers with the final
layer mapping to a singular value. A sigmoid is used as
the activation function to create a binary classification with
unstable being in the range of [0, 0.5) and stable being between
[0.5, 1]. For classifier training, the loss function is binary-cross
entropy loss (BCE) on the sigmoid output, with stochastic
gradient descent (SGD) as the optimizer.

IV. EVALUATION

Our multimodal riding behavior stability analysis system
is developed in Python, with PyTorch and torchvision [1] as
the core machine learning framework. Pandas, Numpy and
OpenCV [18] libraries are used for data preprocessing and
analysis. We perform experiments using real-world mobility
scooter data to evaluate both the accuracy and computational
efficiency of the models. The training and testing of the models
are carried out on the Delta system [9], which is equipped with
NVIDIA A100 GPUs, each having 40 GB of HBM2 memory.

A. Dataset

We collect mobility scooter riding behavior data from 8
patients at Casa Colina Hospital and Centers for Healthcare
[5] and Center of Achievement at California State University
Northridge [7]. The patients have upper extremity challenges
caused by different medical conditions, e.g., stroke, neuropa-
thy, brain injury, and arthritis. These patients are instructed to
complete a set of riding tasks on a Drive Medical Phoenix
LT 4 Wheel Mobility Scooter. As illustrated in Figure 2, there
is a IMX219 120° HD camera mounted on the riding handle
facing the rider’s upperbody. A raspberry Pi 4B connected with
a sense HAT (including Gyroscope and Accelerometer) [23] is
placed on the foot-mat of the mobility scooter. The experiment
dataset consists of 7891.7 seconds of video, with 236,751
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frames of patients’ upper body movements. Video frames are
labeled into two classes (i.e., stable and unstable) by kinesiol-
ogists using our web-based labeling tool [20]. In addition to
the video data, the dataset includes motion data captured. The
motion data consists of 24,677 readings from accelerometers
and gyroscopes, capturing three-axis acceleration and angular
velocity over time. It is important to note, the distribution of
the labels, including the pre-process deflation step, is a 85%
to 15% split of stable and unstable labels respectively; there
is a total of 2308 unstable and 13631 stables samples which
means with balancing there is a total of 4616 samples. Our
data collection and experiment procedures have been approved
by Cal Poly Pomona’s Institutional Review Board (CPP-IRB
22-88).

B. Experiment Setup

Using this dataset, we conduct a set of experiments to
evaluate the system’s performance in behavior classification
accuracy, including overall performance evaluation varying
different parameters, ablation study to investigate the benefit
of the first training step for the encoder, and a comparative
experiment with the models using an alternative backbone and
with single modality inputs only. We use an 85/15 train-test
split for all experiments. Each model is trained with 10 epochs,
0.0001 learning rate and 50 batch size. In the loss function,
7 =5, and A = 2. The reported results are averaged over 50
independent runs.

To measure performance, we use the metrics of average
classification accuracy (the proportion of correctly classified
instances in the test dataset) when threshold is set to 0.5. We
also calculate the true positive rate (TPR) and false positive
rate (FPR) for each threshold and plot ROC curves varying
the thresholds. To quantify the model’s overall classification
ability for each run, we compute the area under the curve
(AUC), which condenses the information from the ROC curve
into a single number, with 0.5 indicating random guessing and
1.0 meaning perfect classification. To reflect the model’s dis-
criminative ability over multiple experiments we also calculate
the mean AUC value over 50 runs.
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C. Overall Performance

We evaluate the overall accuracy performance of our multi-
modal stability analysis model by investigating the impact of
two parameters in the system, i.e., the embedding dimension
and the sequence length. The embedding dimension is the
length of embedding vector for each modality as the output of
the encoder. The sequence length is the number of consecutive
readings defined as one sample to feed to the transformer
layer, as the unit size to explore the temporal representation
of the upperbody movements. With a sampling rate of 2/sec,
a sequence length of 4 means the data collected from about 2
seconds will form a segment as one sample.

TABLE I
AVERAGE CLASSIFICATION ACCURACY AND ROCAUC VALUES WHEN
VARYING PARAMETERS

Metrics Accuracy (thresh=0.5) ROCAUC
Embed. Dim. Embed. Dim.
Seq. Len. 8 16 32 8 16 32
4 0.928 0931 0934 | 0965 0968 0.971
6 0916 0917 0915 | 0951 0954 0.950
8 0.904 0904 0909 | 0942 0945 0.955
10 0.890 0.895 0901 | 0.932 0942 0.947

We present the result of average accuracy and ROCAUC
of our multimodal system in Table I, varying the sequence
length from 4 to 10, and the embedding dimensions from 8
to 32. The sequence length was chosen based on the length
of a single frame being about 0.5 seconds, we believed an
unstable sequence length would at maximum be limited to
a 5 second window: 10 frame long. Table I indicates our
multimodal system achieved a high accuracy level overall. The
classification accuracy and ROCAUC values are consistently
higher for shorter sequence lengths, with the best performance
observed when the sequence length is set to 4. This trend
is thought to be attributed to the higher concentration of
unstable samples in shorter sequences. As the sequence length
increases, the proportion of unstable part decreases. We believe
the dilution leads to reduced performance in accuracy. In
terms of embedding dimensions, the results show a slight but
consistent improvement as the embedding dimension increases
from 8 to 32. It suggests that higher-dimensional embeddings
provide a more detailed representation of the input features,
yielding enhanced model performance. However, the improve-
ments from increasing the embedding dimensions appear to be
incremental, with diminishing returns beyond a certain point,
as seen in the marginal differences between dimensions 16 and
32.

The rest of the test results reported in this paper are collected
with embedding dimension 32 and sequence length 4.

D. Ablation Study

To further study the alternative model structure and the
benefits of the encoder going through the first training step
for both video and motion modalities, we conduct the ablation
experiments with different ways to integrate the encoder in
classifier training. The option without loading the encoder
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means the trained encoder is not used in building the classifier.
Instead, random weights and biases are initialized at the
beginning of the classier training process. Another alternative
option is to freeze the trained encoder when training the
classifier. Table II shows the accuracy results for these options
together with those for our original system (loading the trained
encoder and not freezing it while training the classifier).

TABLE II
ACCURACY AND ROCAUC WITH DIFFERENT ENCODER INTEGRATION
OPTIONS IN CLASSIFIER TRAINING

Metrics Accuracy (thresh=0.5) ROCAUC
Trained Encoder Option Encoder Option
Encoder freezing unfreezing | freezing unfreezing
loading 0.893 0.934 0.946 0.971
unloading 0.884 0.932 0.909 0.968

The results in Table II highlight the observed benefit in
loading a pretrained encoder while still updating encoder
weights during classifier training on classification accuracy
and ROCAUC performance. In general, the loaded pretrained
encoder outperforms an encoder with random weights. When
the pretrained encoder is loaded and the layers are frozen,
both accuracy rate and ROCAUC are worse (0.893 accuracy
and 0.946 ROCAUC), compared to the scenario where the
encoder is loaded but not frozen (0.934 accuracy and 0.971
ROCAUQC). This result suggests that our custom multimodal
loss function is critical in improving the model’s performance,
and continued updates to encoder weights during classifier
training allows for further refinement.

E. Comparative Study

To show the strength of our multimodal framework, we
conduct two comparative experiments: 1) comparison with
single modality models; 2) comparison with multimodal struc-
ture using an alternative backbone, i.e., LSTM. We implement
two models based on single modality input, i.e., a pose-only
model and a motion-only model, both of which share the same
structure. Each model consists of a multi-layer transformer-
based encoder with the MSE loss function followed by a linear
layer with a sigmoid activation to produce the classification
output. The main difference between the single modality
model and the multimodal counterpart is that it does not have
the embedding concatenation and the cross-modal contrastive
loss function when training the encoder.

As shown in Figure 3, the multimodal model ROC curve
(AUC = 0.954) outperforms both the motion-only (AUC =
0.903) and pose-only ROC curves (AUC = 0.913). These
results demonstrate that using both motion and pose data
to represent the stability of riders’ upperbody movements
improves classification performance, as the multimodal model
is able to capture more information than using each modality
alone.
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Fig. 3. Comparison with Single Modality Models

We also test the alternative backbone for our multimodal
system, by replacing the transformer layers with two consec-
utive LSTM layers in the encoder and other parts remaining
the same.
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Fig. 4. Comparison with LSTM-based Models

Figure 4 compares the performance of the transformer-based
multimodal model with a similar model using an LSTM-based
encoder. Despite that both models handle sequential data, the
transformer achieves a higher AUC score (0.954) compared
to the LSTM-based model (AUC = 0.943). The transformer-
based encoder is better at modeling long-range dependencies
and interactions between multimodal inputs. While LSTMs
are effective at processing sequences, they are less effective
in capturing the full complexity of data.
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V. CONCLUSION

This paper presents a multimodal system to perform mobil-
ity scooter riding behavior stability analysis based on riders’
upperbody video and the accelerometer and gyroscope read-
ings from the motion sensors mounted on the bottom of the
mobility scooter. The system leverages contrastive learning in
training the cross-modal encoder to generate the embedding
representing in-context riding stability. A binary classifier is
built using the embeddings to produce classification results of
being stable or unstable. Experiments on real-world mobility
scooter riding data have been conducted to show that our sys-
tem achieves a high level of classification accuracy, compared
with single modality models and LSTM based alternatives.
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