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Abstract

Current kinematic analysis for patients with upper or lower
extremity challenges is usually performed indoors at the clin-
ics, which may not always be accessible for all patients. On
the other hand, mobility scooter is a popular assistive tool
used by people with mobility disabilities. In this study, we
introduce a remote kinematic analysis system for mobility
scooter riders to use in their local communities. In order to
train the human pose estimation model for the kinematic anal-
ysis application, we have collected our own mobility scooter
riding video dataset which captures riders’ upper-body move-
ments. The ground truth data is labeled by the collaborating
clinicians. The evaluation results show high system accuracy
both in the keypoints prediction and in the downstream kine-
matic analysis, compared with the general-purpose pose mod-
els. Our efficiency test results on NVIDIA Jetson Orin Nano
also validate the feasibility of running the system in real-time
on edge devices.

Introduction

Kinematic Analysis is often used as an outcome measure to
evaluate the performance of patients with upper or lower ex-
tremity challenges after an injury or with certain diseases
such as Parkinson’s (An 1984). Current kinematic analy-
sis is usually performed indoors at the clinics based on
motions captured by optoelectronic camera systems (Pon-
siglione et al. 2022). However, such evaluation at the clinics
cannot always be accessible for patients because of various
reasons such as difficulty of transportation and the COVID-
19 pandemic.

In this study, we aim to explore the feasibility of per-
forming real-time kinematic analysis by leveraging the deep
learning models on devices attached to mobility scooters, a
popular assistive mobility tool, for patients to use at their
communities. When riding mobility scooters, patients con-
stantly have upper-body movements showing their muscle
and joint abilities, such as the voluntary posture sways on
an uneven surface and the arm extension movements when
reaching a door opener. We leverage these opportunities to
perform seamless kinematic analysis in a portable fashion.
This work is also meaningful in providing a system to help
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monitor mobility scooter riders’ safety when their upper ex-
tremity symptoms may possibly progress.

As used by most of the kinematic analysis carried out in
the clinics, we leverage cameras to capture patients’ mo-
tion patterns and design a system to perform remote analysis
based on the video frames. There are several challenges in
designing such a system: 1) As mobility scooters are often
used in the outdoor setting, there are various backgrounds
and environmental conditions that are new to traditional
kinematic analysis. It requires the use of cutting-edge deep
learning models such as those for human pose estimation
(Zheng et al. 2023) that have been trained and tested with
real-world scenarios. 2) Validating the effectiveness and ac-
curacy of kinematic analysis results poses another challenge
for this application. General-purpose deep learning models
may not serve the needs of clinicians in understanding the
motions of patients. Human experts with domain knowledge
should be included in the loop of system design and develop-
ment. 3) To enable remote kinematic analysis and protect the
patients’ privacy, the model inference should be deployed
on local devices installed on the mobility scooter. It requires
high efficiency of the system on resource constrained com-
puting platforms.

To address the aforementioned challenges, our remote
kinematic analysis system for mobility scooter riders has the
following features: a) We generate our own dataset by cap-
turing real-world mobility scooter riding videos from physi-
cal therapy patients. This tailored data is used to train human
pose estimation models, ensuring relevance and accuracy;
b) Clinicians are actively involved in both the data collec-
tion and annotation processes. Their expertise is leveraged
to create accurate upper-body keypoints ground truth, which
is essential for precise kinematic analysis; ¢) The system is
implemented and deployed on NVIDIA Jetson Orin Nano
using TensorRT. This ensures efficient processing on edge
devices, enabling real-time analysis without compromising
performance.

Our remote kinematic analysis system design focuses on
practicality, clinical relevance, and efficiency. This paper
covers some initial results to show the method’s feasibil-
ity and we plan to further validate various kinematic analy-
sis measurements generated from the system, by comparing
them with the traditional IMU-based solutions (Stanev et al.
2021).
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Figure 1: Pipeline of Remote Kinematic Analysis System based on Human Pose Estimation

System Overview and Methods
System Pipeline

To analyze the kinematic patterns of mobility scooter rid-
ers in a seamless fashion, our system relies on the patients’
movement data collected from cameras, consistent with such
systems in the clinical setting (Mikami, Shiraishi, and Kamo
2022). In the future, a full version of the system will perform
various kinematic analysis measurements. In this paper, we
demonstrate one function, i.e., trunk lateral flexion analysis,
to show the system workflow and the feasibility of methods.

We recognize and emphasize the importance of patients’
privacy, so most computing tasks are completed on edge de-
vices locally with the patients, except the final calculation
results. In this section, we present the system pipeline first
and then describe each component in greater details.

As shown in Figure 1, our system takes video frames of
the mobility scooter riders’ upper-body movements as in-
put. We collect our new dataset of mobility scooter driving
videos in which physical markers are placed on riders’ up-
per body. The new dataset is used to fine-tune a pre-trained
YOLOV8 human pose estimation model (Jocher, Chaurasia,
and Qiu 2023). The model training is carried out in the cloud
environment.

In the inference stage, the fine-tuned model is con-
verted with TensorRT (Corporation 2024) for better effi-
ciency and deployed on edge device NVIDIA Jetson Orin
Nano (NVIDIA 2024). The fine-tuned human pose estima-
tion model for mobility scooter riding outputs upper-body
keypoints in 2D coordinates. The extracted upper-body key-
points of riders are used to perform the downstream kine-
matic analysis. The kinematic analysis results from the edge
device can be sent to the clinicians via secure network com-
munications, to enable real-time remote monitoring.

Riders Upperbody Keypoints Extraction

In order to perform kinematic analysis of mobility scooter
riders remotely, we first extract their upper-body keypoints
from the video frames by leveraging the widely applied hu-
man pose estimation models. In particular, we apply two
specific models for accuracy and efficiency comparisons:
YOLOvS8x-pose-p6 and YOLOv8n-pose (Jocher, Chaurasia,
and Qiu 2023). The benchmark tests show higher accuracy
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for YOLOvS8x-pose-p6 and higher inference efficiency for
YOLOv8n-pose. Although YOLOv8 detects 17 keypoints
from the human body, our mobility scooter rider kinematic
analysis system only uses 9 of them located on the upper
body: neck, left shoulder, right shoulder, left elbow, right el-
bow, left wrist, right wrist, left hip, and right hip. YOLOvS8
pose models output 2D coordinates of the 9 keypoints for
each input video frame with 30 frames per second.

The general-purpose human pose estimation models serve
as a solid baseline for our remote kinematic analysis. How-
ever, for the mobility scooter riding postures, we need to
fine-tune the pose estimation models with the new domain-
specific keypoint ground truth data.

Keypoint Ground Truth

To establish a reliable ground truth for keypoints used for
kinematic analysis, we collaborate with clinicians in the Ki-
nesiology Department and leverage their domain expertise.
Before collecting the mobility scooter riding videos, clini-
cians place round stickers with a 2-inch diameter on the pa-
tient’s upper body, as illustrated in Figure 2a. These mark-
ers are strategically positioned on specific anatomical land-
marks such as joints and key body points. The placement of
these markers is meticulously carried out by trained profes-
sionals to ensure they correspond accurately to the anatom-
ical features of interest. Each marker’s position is extracted
using YOLOV8x object detection model to create a com-
prehensive set of labeled keypoints, which constitutes the
ground truth for our system.

This carefully curated ground truth data is used for fine-
tuning and testing the pose estimation models and our sub-
sequent kinematic analysis. Please note that the markers are
only placed on patients when collecting training data, but not
needed in the pose estimation model inference or kinematic
analysis.

Kinematic Analysis

From the keypoints predicted by the fine-tuned pose estima-
tion models, we perform kinematic analysis. The initial re-
sults are specifically focused on trunk lateral flexion to pro-
vide insights on the patient’s ability to perform upper-body
movement.
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Figure 2: Illustration of the process of placing markers on
patients’ upperbody keypoints and the trunk lateral flexion
angle calculation.

The trunk lateral flexion angle, or SPV angle, is defined
as the angle between the vertical axis and the axis of lateral
flexion, which is commonly used in physical therapy and
biomechanics to assess the range of motion (Mikami, Shi-
raishi, and Kamo 2022). As depicted in Figure 2b, the trunk
lateral flexion angle is measured using specific anatomical
landmarks: the belly button (the center of mass in a sitting
position) and the top of the sternum.

From the human body keypoints defined in the COCO-
Pose Dataset (Lin et al. 2015), we use the coordinates of the
left and right shoulders and left and right hips (the green dots
in Figure 2b) to calculate the trunk lateral flexion angle. In
particular, the midpoint (averaging the x and y coordinates
respectively) of two shoulder points is mapped to the top
of the sternum, and the midpoint of two hip points is esti-
mated as the center of mass, as the belly button landmarks
are not directly available in COCO-Pose. The SPV angle

(in degrees) is calculated simply as § = % arctan £=%

where (¢, y:), (s, yp) are the calculated x,y coordinatets fobr
the top of sternum and the belly button respectively. We can
also see from Figure 2b that the keypoints coordinates as the
results of pose estimation may be different than the ground
truth (red dots) annotated by the physical markers. Conse-
quently, the calculated SPV angle value may deviate with
some errors as well.

Preliminary Evaluation and Results

Our human pose-based remote kinematic analysis proto-
type system is developed in Python with libraries PyTorch
with torchvision (Ansel et al. 2024), and OpenCV (Bradski
2000) among others, and deployed on the NVIDIA Jetson
Orin Nano Developer Kit 8GB module, providing 1024-core
GPU and 32 Tensor Cores, which can be placed in the bas-
ket of the mobility scooter. Using the real-world mobility
scooter riding data, we carry out both accuracy and effi-
ciency tests. The models are re-trained on Delta system with
NVIDIA A100 GPUs with 40GB HBM2 RAM at National
Center for Supercomputing Applications (Gateway 2024).

Data Collection

We collect mobility scooter riding data from 11 patients
with different medical conditions including stroke, neuropa-
thy, brain injury, and Arthritis. Participants are instructed to
complete various driving tasks on a Drive Medical Phoenix
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Model OKS
YOLOv8x-pose-pb 0.941
YOLOv8n-pose 0.639

Our fine-tuned YOLOv8x-pose-p6 | 0.994
Our fine-tuned YOLOv8n-pose 0.985

Table 1: Average OKS for different models with o = 0.05

LT 4 Wheel Mobility Scooter. We mount an IMX219 120°
HD camera on the mobility scooter handle, facing the rider
to capture the video frames of their upper extremity mo-
tions. In total, from 15 video clips, we collected 388,435
video frames, all of which contain physical markers on pa-
tients” upper-bodies to generate the ground truth. Image pre-
processing steps include background removal (Kim et al.
2022), noise reduction, and normalization to ensure the im-
ages were optimally suited for training the pose estimation
models. In the dataset, 85% of the frames are used for train-
ing, and 15% are used for testing. Our data collection and
experiments have been approved by the university’s Institu-
tional Review Board (CPP-IRB 22-88).

Performance Evaluation

To evaluate our fine-tuned pose estimation models and the
kinematic analysis performance, we perform two sets of ex-
periments, one focusing on testing the keypoints prediction
accuracy in the mobility scooter driving scenarios and the
other on the trunk lateral flexion angle accuracy.

Human Pose Keypoints Prediction Accuracy The metrics
we use to evaluate the human pose keypoints prediction ac-
curacy include Object Keypoint Similarity (OKS) (Lin et al.
2015), Percentage of Correct Keypoints (PCK) (Andriluka
et al. 2014) (predicted keypoints are under a distance thresh-
old with the ground truth), and Area Under the Curve (AUC)
(Fawcett 2006) for PCK when varying the threshold.

Table 1 shows the average OKS values of the two shoul-
der points across all tested video frames on different pose
estimation models. The keypoint standard deviation o is set
to 0.05 in the test. Higher OKS indicates that the predicted
keypoints are closer to the ground truth keypoints, consid-
ering the object’s scale and keypoint visibility. We observe
that our fine-tuned pose estimation models have higher OKS
compared to the pre-trained YOLOvVS models.

We also measure the PCK values of our fine-tuned pose
estimation models when varying the thresholds from 0.1 to
0.3, as shown in Figure 6. The thresholds represent the frac-
tion of the distance to the length of the object (human body)
being analyzed. Compared with the original YOLOv8 mod-
els, our fine-tuned models exhibit notably higher PCK val-
ues across all thresholds, indicating improved keypoint pre-
diction accuracy. Figure 6 also includes the overall AUC val-
ues of PCK. The AUC for our models is calculated over the
range of thresholds from 0.1 to 0.3 and then normalized to a
scale from O to 1 as standard. As shown, our fine-tuned mod-
els outperform the original YOLOVS8 models, demonstrating
superior performance in keypoint detection accuracy.

Trunk Lateral Flexion Angles Evaluation To evaluate the
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Figure 4: Absolute Error in Trunk Lateral Flexion Angle

trunk lateral flexion angle calculation accuracy, we use the
angle calculated using the physical markers on the drivers’
upper body as the ground truth.

The evaluation of the angle results is based on 13,433
frames. Figure 3, 4 and 5 respectively depict the calculated
angles in degrees by the models and the ground truth for
all frames, absolute deviation from the ground truth, and the
percentage error of different models. They consistently show
that for the downstream kinematic analysis, our fine-tuned
models have superior accuracy performance compared to the
pre-trained YOLOVS8 models. It indicates the importance of
including domain-specific ground truth data with the human
experts’ intervention.

Efficiency Test

We apply human pose estimation models pre-trained
YOLOv8n-pose and our fine-tuned based on YOLOvS8n-
pose to generate keypoints coordinates for different effi-

Model fps | time (ms)
YOLOv8n-pose w/ TensorRT 20 30.4
YOLOv8n-pose w/o TensorRT 16 78.5
Our fine-tuned model w/ TensorRT 31 15.1
Our fine-tuned model w/o TensorRT | 21 50.2

Table 2: Prototype System Efficiency Test Results on
NVIDIA Jetson Orin Nano.

317

Percentage Error Comparison of Trunk Lateral Flexion Angles

)

. 4 (]

| o o o0 .
5000 ."

I 17 Wy AT RS TR Y

8000

0

X30000 . e Percentage Error yolov8n_pose_angles

o e Percentage Error yolov8n_pose_fine_tuned_angles
g e Percentage Error yolov8x_pose_p6_angles
< 25000 Percentage Error yolov8x_pose_p6_fine_tuned_angles
s o o

1) o ' °

[ L]

20000 ® e . D
g

]

3

15000

<

E

=

c

= 100001 .

<

i

o

=)

8

c

@

5

@

&

0 2000 4000 6000

Frame ID

10000 12000

Figure 5: Percentage Error Comparison of Trunk Lateral
Flexion Angles

Mean PCK Value vs. Threshold for Different Models
101 =80 090900 000000 00000000

0.8 q

0.6 1

Mean PCK Value

0.4 1

—&— YOLOv8n Pose (AUC: 0.5215)

YOLOV8n Pose Fine-Tuned (AUC: 0.9992)
0.2 1 —8— YOLOVSBx Pose PG (AUC: 0.9112)
—8— YOLOV8X Pose P6 Fine-Tuned (AUC: 1.0000)

0.100 0.125 0.150 0.175 0.200 0.225 0250 0.275 0.300
Threshold

Figure 6: PCK Curve of keypoints predicted on different
pose models with thresholds ranging from 0.1 to 0.3

ciency needs. We converted and imported the aforemen-
tioned models to TensorRT (Corporation 2024) for better in-
ference efficiency performance.

In Table 2, the time column refers to the inference time for
processing a single frame using the YOLOv8n-pose mod-
els with and without TensorRT on Jetson platforms. The
results show that TensorRT significantly enhances perfor-
mance, with the YOLOv8n-pose model processing frames at
20 fps and 30.4 ms per frame, compared to 16 fps and 78.5
ms without TensorRT. By fine-tuning the pre-trained model
with high precision and focusing on fewer important key-
points, the fine-tuned model benefits even more from Ten-
sorRT, achieving 31 fps and 15.1 ms per frame, while the
same model without TensorRT processes frames at 21 fps
and 50.2 ms. These results illustrate that TensorRT optimiza-
tion greatly reduces inference time and improves frame rate,
making it a crucial tool for the efficient deployment of pose
estimation models on edge devices.
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