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ABSTRACT

Context. Rotation is an important phenomenon influencing stellar structure and evolution, however, it has not been adequately mod-
elled thus far. Therefore, accurate estimates of internal rotation rates are valuable for constraining stellar evolution models.
Aims. We aim to assess the accuracy of asteroseismic estimates of internal rotation rates and how they depend on the fundamental
stellar parameters.
Methods. We applied the recently developed extended-multiplicative optimally localised averages (eMOLA) inversion method, to
infer localised estimates of internal rotation rates of synthetic observations of red giants. We searched for suitable reference stellar
models, following a grid-based approach, and we assessed the robustness of the resulting inferences with respect to the choice of
reference model.
Results. We find that matching the mixed-mode pattern between the observation and the reference model is an important criterion for
selecting suitable reference models. We propose (i) selecting a set of reference models based on the correlation between the observed
rotational splittings and the mode-trapping parameter; (ii) computing the rotation rates for all these models; and (iii) using the average
value obtained across the whole set as the estimate of the internal rotation rates. We find that the effect of a near surface perturbation
in the synthetic observations on the rotation rates estimated based on the correlation between the observed rotational splittings and
the mode-trapping parameter is negligible.
Conclusions. We conclude that when using an ensemble of reference models that are selected by matching the mixed-mode pattern,
the input rotation rates can be recovered across a range of fundamental stellar parameters such as mass, mixing-length parameter,
and composition. Further, red giant rotation rates determined in this way are also independent of any near-surface perturbation of the
stellar structure.
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1. Introduction

Stars form from gas clouds that already have angular momen-
tum. As a consequence, every star is expected to be rotating. In
turn, this gives rise to several physical processes, such as a rota-
tionally induced mixing of chemical elements, meridional cir-
culation, and various other instabilities (Maeder 2009). These
processes can significantly change the overall stellar structure
and, thus, the evolution of the stars (Eggenberger et al. 2010);
for example, by prolonging their lifetimes. However, includ-
ing the effects and the evolution of the stellar rotation in stel-
lar structure and evolution modelling presents both numerical
and theoretical challenges. In particular, in the subgiant and red-
giant evolutionary phases, current theoretical models of rota-
tion are not equipped to reproduce the observed stellar rotation
rates (Aerts et al. 2019). Due to a lack of efficient angular-
momentum transport mechanisms, theoretical stellar models
predict ratios for the core-to-surface rotation rates for subgiant
and red giant stars that are several orders of magnitude higher
than observed (Eggenberger et al. 2012; Marques et al. 2013;
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Ceillier et al. 2013; Cantiello et al. 2014). To resolve this dis-
crepancy, other means of angular momentum transport have been
considered, such as mixed modes (Belkacem et al. 2015a,b),
internal gravity waves (Alvan et al. 2013; Fuller et al. 2014;
Pinçon et al. 2017), and magnetism (Spruit 2002; Cantiello et al.
2014; Fuller et al. 2019; Eggenberger et al. 2019). As asteroseis-
mic measurements of envelope rotation rates have been made
only for a limited set of stars up to now, additional observations
are necessary to discriminate between the different scenarios.

In red giant stars, global oscillations are stochastically
excited by turbulent convection (Kjeldsen & Bedding 1995;
Bouchy & Carrier 2001). These oscillation modes typically
propagate in two cavities, which are the g-mode cavity in which
the restoring force is buoyancy and the p-mode cavity in which
the restoring force is the pressure gradient. Different oscilla-
tion modes probe different depths of the star and, thus, from
the observation of many modes, we can draw conclusions about
the internal stellar structure. In the case of red giants, how-
ever, all non-radial modes have a mixed nature; that is, they
behave as gravity modes in deep interiors and as acoustic modes
in the envelope. This coupling of the g- and p-modes allows
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us to probe the conditions in red giant cores (e.g. Dupret et al.
2009; Beck et al. 2011; Bedding et al. 2011). To measure the
internal rotation rates by means of asteroseismology, we made
use of the effect of rotation on the eigenmodes of the oscilla-
tions. In non-rotating stars, oscillation modes are degenerate in
their azimuthal order. Rotation lifts this degeneracy and splits
an oscillation mode into standing and travelling pro- and retro-
grade components. In the power spectrum, this is seen as the
so-called ‘rotational splitting’ of oscillation mode frequencies.
To exploit the full potential of the observed splittings and infer
the internal rotation rates of red giants, theoretical sensitivity
functions of the splittings need to be obtained from reference
stellar models. However, some limited amount of information
on the internal rotation can be deduced solely from observa-
tions without the need for a reference stellar model. The anal-
ysis of the g-dominated modes allows us to obtain a model-
independent estimate of the mean core rotation rates of red giants
(Beck et al. 2012; Mosser et al. 2012a, 2024; Gehan et al. 2018).
To take into account the varying ratio of core and envelope
sensitivity in mixed modes, Goupil et al. (2013) described the
rotational splittings as a linear function of the mode-trapping
parameter, ζ (i.e. the ratio of the core inertia to the total iner-
tia), enabling the determination of average core and envelope
rotation rates. This was further developed by Deheuvels et al.
(2015), who provided an estimate for the mode-trapping param-
eter that allows for a model-independent estimate of the internal
rotation rates.

As an alternative to using the linear relation between
the mode-trapping parameter and the rotational splittings, we
used so-called rotational inversions, relying on a linear per-
turbative expansion of the rotationally split mode frequen-
cies. To compute a rotational inversion, it is necessary to
construct a reference stellar model that reproduces the inter-
nal structure of the observed star as closely as possible,
including mode frequencies and non-seismic observables. Here,
special care has to be taken with the variation of the p-
and g-mode nature of the modes. Such an approach has
been adopted in studies of sub-giants (Deheuvels et al. 2012,
2014, 2020; Buldgen et al. 2024), red giant branch (RGB)
stars (Di Mauro et al. 2016, 2018; Triana et al. 2017; Beck et al.
2014, 2018; Fellay et al. 2021), and secondary red clump stars
(Deheuvels et al. 2015). Numerous studies have compared the
results of different methods for determining the internal rota-
tion rates and have shown that these methods are in agreement
with each other (Christensen-Dalsgaard et al. 1990; Schou et al.
1998; Deheuvels et al. 2012; Di Mauro et al. 2016).

Applying the original multiplicative optimally localised
averages (MOLA) inversion method (Backus & Gilbert 1968)
to determine the internal rotation rates, Ahlborn et al. (2020)
showed that estimated envelope rotation rates of red giant stars
suffer from substantial relative systematic errors that can be
up to about 200% for stars close to the luminosity bump on
the RGB. Recently, Ahlborn et al. (2022) proposed an exten-
sion to the original MOLA method, called extended MOLA
(eMOLA), which enables the construction of surface averaging
kernels with virtually no cumulative sensitivity to the rotation
rate of the core. Using eMOLA inversions, the relative system-
atic errors due to the inversion method can be essentially sup-
pressed. As described above, rotational inversions rely on the
theoretical sensitivity functions obtained from stellar reference
models. Therefore, discrepancies between the reference model
and the observed star constitute another source of uncertainty
for the estimated rotation rates. Previous studies have shown
that similar rotation rates were estimated with reference models

of different mass (Deheuvels et al. 2012; Di Mauro et al. 2016).
Di Mauro et al. (2016) performed an inversion for the same set
of observed rotational splittings with two reference models of
masses of M1 = 1.02 M� and M2 = 1.13 M�, and they find that
the estimated rotation rates agree within uncertainties despite the
difference in mass.

Finally, deviations in the mode frequencies due to inad-
equate modelling of the near surface layers in the reference
models, also known as the ‘surface effect’ (Brown 1984;
Christensen-Dalsgaard et al. 1988), may impact the determina-
tion of the internal rotation rates (Ong 2024). Different ways
have been proposed to mitigate this surface effect, consist-
ing of parametrisations of the observed frequency deviations
(Kjeldsen et al. 2008; Ball & Gizon 2014), improving the mod-
elling of the near surface structure of the models (Jørgensen et al.
2018, and references therein) or modifying the computation of
the oscillation mode frequencies (Houdek et al. 2017). Mitigat-
ing the surface effect becomes especially difficult for mixed
modes, as the difference in the near surface layers only acts
on the p-mode component of the mixed mode; whereas the g-
mode component remains unaffected (Ball et al. 2018; Ong et al.
2021). Due to the perturbation of the p-mode frequency caused
by the perturbation of the near surface layers, a different g-mode
couples with this p-mode as compared to the case without a near
surface perturbation. This leads to the formation of a different
mixed mode, with a different sensitivity to the internal rotation
(Ong 2024).

In this study, we investigate the sensitivity of inferred rota-
tion profiles to the choice of the reference model, with the goal
to understand how good a stellar reference model needs to be in
order to give reliable information on the internal rotation profile
in a red giant star and how these internal rotation rates depend on
the properties of the observed star. For comparison with previous
studies, we used an OLA method (eMOLA) to compute the rota-
tional inversions and largely assumed a two-zonal configuration
of the internal rotation profile. We visualise the main result of
this work in Fig. 1 where we show estimated envelope and core
rotation rates for different synthetic observations. The compari-
son with the input rotation rates shows that we are able to recover
the underlying rotation rates in all of the synthetic observations.
This shows that we are able to obtain an unbiased estimate of
the internal rotation rates largely independent of the fundamental
stellar parameters. We find that the uncertainties introduced due
to a discrepant structure between the observed star and the refer-
ence models are of a similar order as the uncertainties introduced
by measurement errors. This allows us to obtain well constrained
envelope rotation rates and will be an important probe for theo-
ries of angular momentum transport. The following sections are
dedicated to a discussion of how we arrived at the results dis-
played in Fig. 1.

2. Methods and synthetic data

To estimate the internal rotation rates of red giant stars we
used rotational inversions (described in Sect. 2.1). The refer-
ence models needed to compute these rotational inversions were
selected from the grids of stellar models described in Sect. 2.2.
We assessed the accuracy of the rotational inversion results by
constructing different sets of synthetic observations with known
input parameters, as described in Sect. 2.3. To test the impact of
the surface effect on the rotational inversions, we constructed a
set of synthetic observations from a stellar model that includes a
surface perturbation, as described in Sect. 2.4.
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Fig. 1. Envelope (left) and core (right) rotation rates
estimated using an ensemble of reference models for
different synthetic observations of red giant stars.
The comparison with the input rotation rates shows
that we are able to recover the underlying rotation
rates in all of the synthetic observations. As a fidu-
cial synthetic observation we used a 1 M� model with
solar metallicity, a mixing-length parameter of 1.8,
and a large frequency separation of ∆ν ∼ 15 µHz.
For the other synthetic observations, we varied the
parameters indicated by the label (see also Table 1).
The numerical values of rotation rates and uncertain-
ties are summarised in Table 2. The error given in
the dark colours in each panel is calculated from the
random and reference model uncertainties by error
propagation. The error bar in the light colours is rep-
resenting the contribution of the random error σrand
alone. The vertical grey lines indicate the input val-
ues.

2.1. Rotational inversions

Commonly used rotational inversion methods include the
methods of optimally localised averages (OLA) and reg-
ularised least squares (RLS). The class of OLA meth-
ods relies on the construction of localised functions, called
averaging kernels, which are used to compute an estimate
of the rotation rate at a so-called target radius. So far,
mainly the multiplicative (MOLA, Backus & Gilbert 1968)
and subtractive (SOLA, Pijpers & Thompson 1992, 1994)
OLA have been used to estimate internal rotation rates
of stars (Christensen-Dalsgaard et al. 1990; Schou et al. 1998;
Deheuvels et al. 2012, 2014; Di Mauro et al. 2016; Triana et al.
2017). Ahlborn et al. (2020) showed that envelope rotation rates
obtained from MOLA inversions suffer from substantial system-
atic errors, especially for more evolved red giants. Ahlborn et al.
(2022) therefore proposed a new rotational inversion method,
called extended MOLA (eMOLA), which eliminates these sys-
tematic errors.

To obtain the averaging kernels, the eMOLA inversion
method uses the following objective function:

ZeMOLA =

∫ R

0
K(r, r0)2J(r, r0) dr

+ θ

[∫ R

0
K(r, r0)J(r, r0) dr

]2

+
µ

µ0
σ2

Ω(r0), (1)

where K(r, r0) refers to the averaging kernel localised at the tar-
get radius, r0, while the function J(r, r0) weights the sensitivity
of the averaging kernel and θ is a parameter balancing the first
and the second term. The first term, which minimises the ampli-
tude of the averaging kernel away from the target radius, is also
part of the original MOLA objective function; the second term,
which minimises the cumulative sensitivity away from the target
radius, was introduced in the eMOLA inversion method. The last

term is an error suppression term. We denote the so-called trade-
off parameter with µ. This parameter balances the uncertainty
of the solution derived from propagated errors, σΩ(r0), with the
resolution of the inversions, as indicated by the width of the aver-
aging kernels. The symbol µ0 denotes a normalisation constant
for the propagated uncertainties. For the details of the rotational
inversion methods, we refer the reader to Appendix A.

2.2. Grids of stellar models

To search for reference models, we constructed two different
stellar model grids. We calculated stellar evolutionary mod-
els using Modules for Experiments in Stellar Astrophysics
(MESA, version 12778, Paxton et al. 2011, 2013, 2015, 2018,
2019; Jermyn et al. 2023). To select the range of stellar param-
eters to consider in our study, we used the parameters of stars
that have been analysed in terms of rotational inversions in
Deheuvels et al. (2012), Di Mauro et al. (2016) and Triana et al.
(2017). The analysis of 16 red giant stars presented in these stud-
ies suggests considering stellar masses of 0.8 up to 2 M�. In the
first grid, we vary the stellar mass in the aforementioned mass
range and keep the mixing-length parameter, αMLT, of convec-
tion fixed to a value of 1.8. We refer to this grid as the M-grid.
In the second grid we also vary the mixing-length parameter
between 1.5 and 2. We refer to this grid as the M, αMLT-grid. For
the details of the stellar model grids, we refer to Appendix B.

2.3. Synthetic data

To study the extent to which the internal rotation profile esti-
mated through rotational inversions depends on the choice of
a reference model we started by computing sets of synthetic
observations. In this case, we knew the underlying rotation pro-
file that we were aiming to reconstruct using different reference
models. To generate the synthetic data, we constructed stellar
evolutionary models using MESA. For a selected model, we
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Table 1. List of stellar models used to generate synthetic observations.

Name M/M� X Y Z αMLT ∆ν νmax Grid

Fiducial model 1 0.7155 0.2703 0.0142 1.8 15.23 197 M, (M, αMLT)[
Fe
H

]
= −0.1 dex model 1 0.7226 0.2660 0.0114 1.8 15.22 195 (M, αMLT)[

Fe
H

]
= 0.1 dex model 1 0.7070 0.2754 0.0176 1.8 15.25 198 (M, αMLT)

α = 1.65 model 1 0.7155 0.2703 0.0142 1.65 15.23 199 (M, αMLT)
α = 1.5 model 1 0.7155 0.2703 0.0142 1.5 15.23 201 (M, αMLT)
α = 1.7 model 1 0.7155 0.2703 0.0142 1.7 15.3 199 (M, αMLT)
∆ν = 9 µHz model 1 0.7155 0.2703 0.0142 1.8 9.09 100 M, (M, αMLT)
M = 1.3 M� model 1.3 0.7155 0.2703 0.0142 1.8 15.27 213 M, (M, αMLT)
M = 1.7 M� model 1.7 0.7155 0.2703 0.0142 1.8 15.27 231 M, (M, αMLT)

Notes. The [Fe/H] values are computed from the metallicities using the protosolar (Z/X)� = 0.0199 from Asplund et al. (2009).

created a set of synthetic observations. Each set consisted of
global stellar parameters (∆ν, νmax) as well as radial and dipole
mode frequencies and rotational kernels and splittings. The
global seismic variables were computed from scaling relations
(Kjeldsen & Bedding 1995) using the reference values from
Themeßl et al. (2018), while the frequencies and kernels were
computed using the GYRE oscillation code (Townsend & Teitler
2013; Townsend et al. 2018). The synthetic observations were
supplemented with realistic uncertainties. The details of the syn-
thetic data are described in Appendix C. As a synthetic rotation
profile, we used a step profile with a constant rotation above and
below the base of the convection zone (see Fig. 9). As the core
and envelope rotation rates, we used Ωcore/(2π) = 750 nHz and
Ωenv/(2π) = 100 nHz, respectively. We refer to this profile as the
‘envelope step’ profile.

We summarise the fundamental parameters of the stellar
models used to create the synthetic observations in Table 1. For
the sake of convenience, we used the same microphysics for
the stellar models used to create the synthetic data as for the
two grids described in Sect. 2.2. When constructing synthetic
observations with varying initial metallicity, Zi, the initial helium
abundance, Yi, can be determined according to the enrichment
law of

Yi = 0.249 + 1.5 · Zi, (2)

where we take Yprimordial = 0.249 from Planck Collaboration XIII
(2016) and the dY/dZ = 1.5 from Choi et al. (2016) computed
from the Asplund et al. (2009) protosolar Y and Z values.

2.4. Surface-perturbed models

To mimic a surface effect, we followed the procedure of
Ong et al. (2021). They introduced a perturbation, localised at
the surface of the model, to the pressure, p, and the first adi-
abatic exponent, Γ1. We used the original parameters as pro-
posed in Ong et al. (2021). We refer to the model including the
perturbation as the ‘surface-perturbed model’. The other funda-
mental parameters are the same as for the fiducial model (first
row of Table 1). The resulting frequency differences between
the surface-perturbed and the fiducial model for the radial and
dipole modes are shown in Fig. 2 as a function of the unper-
turbed frequencies. Modes that are more sensitive to the surface
layers (indicated by lower values of the mode inertia) have a
larger frequency difference compared to the unperturbed case.
Hence, the radial modes are most affected by the surface per-
turbation, followed by the p-dominated dipole modes. The more
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Fig. 2. Frequency differences between the surface-perturbed model and
the fiducial model (δν = νpert − νfid) as a function of the unperturbed
mode frequencies. The mode inertia are colour-coded on a logarithmic
scale.

g-dominated modes remain mostly unaffected by the surface per-
turbation. We computed synthetic observations for the surface-
perturbed model in the same way described in Sect. 2.3.

3. Selection of reference models

In this work, we followed a grid-based approach to find reference
models using the grids of stellar models described in Sect. 2.2.
So far, only rotationally split dipole modes have been used
for rotational inversions (Deheuvels et al. 2012, 2014, 2017;
Di Mauro et al. 2016; Triana et al. 2017, see also Appendix A).
Hence, reference models need to be selected based on the prop-
erties of their dipole mode frequencies. As a metric for simi-
lar dipole mode properties between the observation and the ref-
erence model, we computed the Pearson correlation coefficient
between the observed rotational splittings, δω, and the reference
model mode-trapping parameter, ζ:

ρ =
Cov(δω, ζ)
σδωσζ

(3)

where ζ is computed as the ratio of the core to the total mode
inertia Icore/Itotal. In the following, we refer to ρ as the splitting
correlation coefficient.
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We illustrate the relation between the rotational splittings
and the mode-trapping parameter in Fig. 3, where we show
the synthetic rotational splittings and the corresponding mode-
trapping parameter, ζobs, as a function of ζ of a reference model
with a high correlation coefficient, ρ. As shown by Goupil et al.
(2013), the rotational splittings depend linearly on the mode-
trapping parameter, ζ, which characterises the p/g-fraction of
a mode. Clearly, we find a similarly good correlation between
the observed ζobs values and the reference model ζ as between
the observed rotational splittings and the reference model ζ. A
high correlation coefficient, ρ, therefore ensures that the oscil-
lation modes of the observed star and the reference model have
almost the same p/g-fractions; this is a prerequisite for accurate
rotational inversion results. We therefore suggest using this rela-
tion between the observed (synthetic) rotational splittings and ζ
to find suitable reference models by only selecting models with
a high enough splitting correlation coefficient for the rotation
inversions.

The calculation of dipole mode frequencies is computation-
ally expensive and a grid-based model fitting approach becomes
impracticable very quickly. Hence, we applied two more steps
before selecting models based on ρ. We first selected models
based on global seismic properties (∆ν, νmax) by setting a thresh-
old for the maximum difference from the observed value (see
Appendix D.1). For consistency, the global seismic parameters
were again computed from the same scaling relations as for the
synthetic data. In the second step, we imposed a threshold on the
χ2 of the radial modes (χ2

rad) (see Appendix D.2) as follows:

χ2 =
1
N

∑
i

(
νi,obs − νi,mod

σi

)2

, (4)

where νi,obs denotes the observed frequencies (synthetic or actual
observation), νi,mod denotes the frequencies of the potential
reference stellar model, and σi denotes the uncertainties of the
observed frequencies.

For all stellar models that passed the first two steps, we com-
puted the dipole mode frequencies and rotational kernels, fol-
lowing the procedure described in Sect. 2.3. As for the radial
modes, we matched the dipole modes of the models with the
observed frequencies based on proximity in frequency domain.
In addition to ρ, we also constrained the set of reference mod-
els using χ2

dip computed as in Eq. (4). While using χ2
dip ensures

similar frequencies, using ρ ensures similar characters of the
modes in the reference model and the observation. We assess
the distribution of ρ and the dipole mode χ2

dip values for different
reference models and the relation between the inversion results
and the two metrics in the next section. The value of χ2 does of
course depend on the uncertainty values, but also on the absolute
values of the frequencies, which makes the χ2 dependent on the
evolutionary state of the star. This makes it very difficult to give
a universal threshold of χ2 that ensures a good fit to the obser-
vations. To take this into account, the threshold value must be
chosen empirically (see discussion in Appendix D.4).

4. Estimating internal rotation rates

We go on to describe how we used the reference models to com-
pute an estimate of the internal rotation rates. We also quantify
the uncertainty introduced due to structural differences between
the observed star and the reference models.

As a first test case, we selected reference models and com-
puted rotational inversions given the synthetic observables of our
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Fig. 3. Correlation of observed rotational splittings and mode-trapping
parameters with the reference model mode-trapping parameters. Upper
panel: Mode-trapping parameter, ζobs, of the synthetic star as a function
of the mode-trapping parameter, ζ, of the potential reference model.
The black, dashed line is a fit to the data to illustrate the linear rela-
tion. Lower panel: Rotational splittings, δωobs, of the synthetic star as
a function of the mode-trapping parameter, ζ, of the potential reference
model.

‘fiducial model’ (see first row of Table 1 and Sect. 2.3). In the left
panels of Fig. 4, we show the distribution of the splitting corre-
lation coefficient as a function of the estimated envelope rotation
rates, for all models with ρ ≥ 0.98, as well as the corresponding
histogram. The same is shown for the estimated core rotation
rates in the right panels. Using the median value of these distri-
butions, we estimated the core and envelope rotation rates:

Ωcore/(2π) = (749 ± 13rand ± 5ref) nHz,

Ωenv/(2π) = (98 ± 14rand ± 8ref) nHz,

where we used target radii of 0.003 R and 0.98 R for the core
and envelope rotation rate, respectively, and an error suppres-
sion parameter of µ = 0 (see also second row of Table 2).
The comparison to the input values of Ωcore/(2π) = 750 nHz
and Ωenv/(2π) = 100 nHz (see also first row of Table 2) shows
that the inputs are recovered within the uncertainties. In the fol-
lowing, we refer to this estimation as the ‘ensemble inversion
method’.

The deviations from the input rotation rate visible in Fig. 4
arise predominantly due to the mismatch between the chosen
reference models and the structure of the observed star, since
the uncertainties due to the inversion method have been shown
to be negligibly small (Ahlborn et al. 2022, their Fig. 6). We
refer to these deviations as ‘systematic errors’. We note that
other inversion methods (e.g. MOLA or SOLA) could be used
to invert for the internal rotation rates for each reference model.
In our work we have focussed on using eMOLA, as it has
been shown to work better for red giant envelope rotation rates
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tion rates for the ensemble of reference mod-
els together with the associated correlation coef-
ficients. Upper panels: Histogram of the esti-
mated envelope and core rotation rates in the left
and right panels, respectively. The grey line indi-
cates the input value used to compute the syn-
thetic rotational splittings, the black dashed line
indicates the median value, and the black dotted
line indicates ± one standard deviation from the
median. Lower panels: Splitting correlation, ρ,
as a function of the estimated envelope and core
rotation rate. A threshold of ρthresh = 0.98 was
used here. The vertical lines have the same mean-
ing as in the upper panel. The error bar indicates
the maximal random error across all rotational
inversion results selected.

(Ahlborn et al. 2022). For the core rotation rates, we find equiv-
alent estimates for all three methods. For each reference model,
the rotational inversion also provides a random error propagated
from the uncertainties of the rotational splittings (see Eq. (A.5)
and Appendix A). As a random error of the ensemble esti-
mate (indicated with ‘rand’) we give the maximum random error
found in the ensemble of inversions calculated with all models
that got selected based on the threshold in ρ. To compute the
overall uncertainty of the ensemble inversion result introduced
by discrepant structures of the reference models, we compute
the standard deviation of the distributions shown in Fig. 4. We
refer to this uncertainty as ‘reference model uncertainty’ (indi-
cated with ‘ref’). For the distributions shown in Fig. 4 this refer-
ence model uncertainty amounts to 5 and 8 nHz for the core and
envelope rotation rate, respectively, comparable to the random
errors. This shows that for the given threshold values of ρ and
χ2

dip the impact of the discrepant reference model structure is on
the same order of magnitude as the random errors. As the sys-
tematic errors of the envelope rotation rates increase relatively
quickly with decreasing ρ, we set a more conservative threshold
of ρthresh = 0.98 below which estimates are discarded. For the
dipole mode χ2

dip we chose again a rather large threshold value
of 500 for the fiducial model, above which reference models are
discarded. The selection of an appropriate threshold value is dis-
cussed in Appendix D.4. We note that in contrast to the χ2

dip the
splitting correlation coefficient always covers the same range of
values between zero and one, which allows keeping the same
threshold value for different synthetic observations.

The estimated envelope rotation rates, shown in the lower
left panel of Fig. 4, show a clear positive correlation with the ref-
erence model mass. This correlation can be explained by look-
ing at sensitivities of the individual modes. We find that for the

models more massive than the model of the synthetic observa-
tion, the p-dominated modes become more p-dominated while
the sensitivities of the g-dominated modes stay approximately
the same. The opposite applies for models with masses lower
than the model of the synthetic observation. This means that in
the inversion process, the kernels of the more massive models are
matched with rotational splittings that are too large as compared
to the sensitivity of the kernels. This leads to an overestimation
of the envelope rotation and likewise an underestimation of the
core rotation rate (see right panels of Fig. 4). Again, the oppo-
site argumentation applies to models with masses lower than the
mass of the synthetic observation.

In addition to selecting models from the M, αMLT-grid, we
repeated the procedure with reference models selected from the
smaller M-grid. The result is shown in the third row of Table 2.
Despite small variations in the final estimates, the core and enve-
lope rotation rates are recovered within the random errors. The
standard deviation of the distribution, given as the reference
model uncertainty, is likewise varying insignificantly compared
to the larger M, αMLT-grid. As long as the number of models
is large enough to obtain a well constrained median value and
no bias is introduced, the reference model uncertainty does not
seem to depend on the grid size (see discussion in Sect. 7.4 and
Appendix D.4). We therefore conclude that the standard devia-
tion of the distribution shown in Fig. 4 may be interpreted as the
uncertainty due to structural differences between the observed
star and the reference model. In conclusion, we find an unbiased
estimate of the core and envelope rotation rates, recovering the
input values within the uncertainties for the fiducial model.

In the following, we compare the splitting correlation coef-
ficient and χ2

dip as metrics. In the left panels of Fig. 5, we
show the resulting dipole mode χ2

dip and the splitting correlation
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Fig. 5. Correlation coefficient and dipole mode
χ2

dip as a function of the systematic errors of
the estimated core and envelope rotation rates.
Upper panels: Dipole mode χ2

dip as a function
of the systematic error of the envelope and core
rotation rate measured in units of the random
errors of the individual inversions in the left and
right panel, respectively. Lower panels: Same as
upper panels for the splitting correlation coeffi-
cient ρ. The initial mass of the reference model
is colour coded. Note that the y-axis increases
downwards.

coefficient as a function of the systematic error of the enve-
lope rotation rate in units of the random errors of the individ-
ual inversions, respectively. We find increasing systematic errors
for increasing values of χ2

dip and decreasing values of ρ, both
indicating a decreasing agreement between the synthetic obser-
vation and the reference model. While there are no large system-
atic errors for low χ2

dip values, we do find small systematic errors
for large values of χ2

dip. This indicates that the dipole mode χ2
dip

is not a unique measure for the suitability of the reference model
for the rotational inversions. Using ρ as a metric, we find fewer
models with a low correlation and a low systematic error. For
both metrics the inferred envelope rotation rates scatter around
the input value even for high values of ρ and low values of the
dipole mode χ2

dip. This implies that picking a single best fit refer-
ence model can lead to large deviations in the estimated rotation
rates. The discussion of the ensemble inversion method above
shows how an ensemble of reference models can mitigate this
scatter and lead to an unbiased estimate of the underlying rota-
tion rate.

In the right panels of Fig. 5, we show the dipole mode χ2
dip

and the splitting correlation coefficient ρ as a function of the
systematic error of the core rotation rate measured in units of
the random errors of the individual inversions. As for the enve-
lope rotation rate in the left panels of Fig. 5, we find increasing
systematic errors for increasing values of χ2

dip and decreasing
values of ρ. For the core rotation rate, the systematic errors do
not exceed 2σ for the majority of the reference models, which
makes it better constrained than the envelope rotation rate. This
is already expected from previous studies (e.g. Deheuvels et al.
2012; Di Mauro et al. 2016). We further note that at least for the
envelope rotation the correlation between the systematic errors
and the splitting correlation coefficient, ρ, is higher than for the

dipole mode χ2
dip. We therefore consider the splitting correla-

tion coefficient to be a better metric to identify suitable reference
models for rotational inversions.

5. Impact of a surface perturbation

In the previous section, we used reference models that have the
same surface layers as the models used to compute the synthetic
observations. It is, however, well known that most state of the art
stellar evolution codes do not model the surface layers of stars
accurately. This leads to the previously described surface effect.
This surface effect only acts on the pure p-mode component of
a mixed mode. Hence, a different near surface structure leads to
the coupling of a different pure p- and g-mode to form a differ-
ent mixed mode. This does also change the sensitivity kernels
of the rotational splittings, necessitating a proper discussion of
the surface effect in terms of rotational inversions (Ong 2024)
when using a single reference model for the inversion. Here,
we investigate the impact of a surface perturbation on rotational
inversion results when using an ensemble of reference models
selected based on matching the character of the observed modes
with the modes of the reference model.

To study the impact of a surface perturbation on the rota-
tional inversion results, we applied the ensemble inversion
method to the surface-perturbed model described in Sect. 2.4. In
a first step, we selected references models from the stellar model
grid without applying any surface correction to the oscillation
mode frequencies. We find the following core and envelope rota-
tion rates:

Ωcore/(2π) = (747 ± 14rand ± 8ref) nHz,

Ωenv/(2π) = (105 ± 17rand ± 11ref) nHz.
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This shows that despite the difference in the near surface
layers between the synthetic observation and the reference
models, the ensemble inversion is still able to recover the input
rotation rate within the uncertainties. At first glance, this might
be surprising. However, by construction, the ensemble inversion
method does only select reference models that have a high cor-
relation between the observed rotational splittings and the ref-
erence model mode-trapping parameter, ζ. This ensures that the
sensitivity to rotation in the modes of the reference models is
very close to the sensitivity of the modes in the observed star,
which is a necessity to recover accurate rotation results. This
highlights the importance of reproducing the mixed-mode char-
acter when selecting reference models for rotational inversions.

While correcting for the surface effect remains very difficult
for mixed modes, it is possible to obtain surface corrected p-
mode frequencies (e.g. Ball & Gizon 2014). As the radial modes
are pure p-modes, their frequencies can be corrected for the
surface effect. We applied the Ball & Gizon (2014) two term sur-
face correction to correct the radial mode frequencies of our ref-
erence models. The two parameters of the Ball & Gizon (2014)
correction were fit for each reference model individually. For the
selection of the reference models, we followed the same proce-
dure as described in Sect. 3. Here, we compared the ∆ν obtained
from a linear fit of the radial mode frequencies of the synthetic
observations to the scaling relation value of ∆ν of the reference
models. We applied a threshold of 10 for the radial mode χ2

rad.
We note that this is much lower than the threshold value applied
for frequencies without surface term correction. This occurs as
the model by model fit of the Ball & Gizon (2014) parameters
does also remove frequency differences that are not due to the
surface effect. For the reference models selected as described
above, we obtain the following ensemble inversion results:

Ωcore/(2π) = (748 ± 14rand ± 6ref) nHz,

Ωenv/(2π) = (103 ± 16rand ± 9ref) nHz.

As for the previous case, we are able to recover the input rotation
rates when correcting the radial mode frequencies for the surface
effect.

6. Dependence on stellar parameters

In this section, we explore how the rotation rates estimated with
the ensemble inversion method depend on different fundamen-
tal stellar parameters such as mass, initial composition, mixing-
length parameter, and different positions along the RGB. To this
end, we systematically varied each parameter separately, and
describe the results in the following subsections. The estimated
rotation rates for all synthetic observations and different grids are
summarised in Table 2 and visualised in Fig. 1. The comparison
with the input rotation rates shows that we are able to recover
the underlying rotation rates in all but one of the synthetic obser-
vations. The different synthetic observations used in this section
are summarised in Table 1. We compute the total error of our
estimate by means of error propagation as:

σtotal =

√
σ2

rand + σ2
ref ,

where σrand refers to the random uncertainty and σref to the ref-
erence model uncertainty of the final estimate. In the remainder
of this section, we selected the reference models using both the
splitting correlation coefficient and the dipole mode χ2

dip. A com-
parison of the results when using either of them alone is shown
in Appendix D.5. The threshold values for χ2

dip were determined
as described in Appendix D.4.

6.1. The effect of the initial mass

For most problems in stellar physics, stellar mass is the most
important parameter. To study the dependence on the initial stel-
lar mass, we estimated the rotation rates of the fiducial model,
the M = 1.3 M� model and the M = 1.7 M� model (see Table 1
for the stellar parameters) by selecting reference models from
the M, αMLT-grid. The computations with different stellar masses
show that the results of the ensemble inversions do not depend
strongly on the mass of the observed star. In conclusion, an accu-
rate mass estimate is not necessary to accurately recover the rota-
tion rates, and conversely, an accurate mass does not necessarily
recover the rotation rates accurately.

We show in Fig. 4 for the fiducial model that models with
a larger range of masses are able to recover the input rotation
rates. The corresponding histogram of the stellar masses in the
set of reference models is shown in Fig. 6. Reference stellar
models for the ensemble inversion were selected in a range of
0.8 to 1.4 M� with a mean value M ≈ 1.02 M� close to the input
value. The scatter plot in the lower left panel shows the mixing-
length parameter as a function of the stellar mass. Clearly, this
parameter space is not populated uniformly, instead a pattern of
gaps shows up. This pattern arises due to the selection of mod-
els based on the splitting correlation coefficient, ρ, and χ2

dip. The
emergence of the pattern shows that only certain combinations of
M and αMLT result in a reference model suitable for the rotational
inversion. The spread in values of the mass and the mixing-
length parameter indicates that a deviation in one parameter may
be compensated by a deviation in the other one. Before applying
the cut in ρ and χ2

dip the M, αMLT parameter space is more uni-
formly populated and the mass of the input model is reproduced
by the mean value of the mass distribution (see blue results in
Fig. D.1, upper left panel). The selection of suitable reference
models based on the splitting correlation coefficient shows that
reproducing the global seismic properties and the radial modes
of the observed stars is not sufficient to reproduce the rotation
rates. We find similar results when using the M-grid, where we
keep a fixed value of αMLT = 1.8. Due to the smaller number of
models in the M-grid less suitable models can be found for the
ensemble inversion method. To increase the number of selected
models, we lowered the threshold value to ρthresh = 0.95 at the
price of a slightly reduced accuracy.

For the M = 1.3 M� model, we can confirm the result found
for the fiducial model and recover the input rotation rates within
the random uncertainties while using a range of masses in the set
of reference models independent of the grid where the reference
models were chosen from.

For the M = 1.7 M� model, the results need to be inter-
preted with more care. While we are able to recover the core
rotation rate within the random uncertainties, this is not possi-
ble for the envelope rotation rate. A closer investigation shows,
however, that it is not possible to recover the envelope rotation
even when using the stellar model that was used to create the
synthetic data as a reference model. In the stellar model used to
create the synthetic observations, the boundary of the fast rotat-
ing core reaches into the p-mode cavity. However, eMOLA sup-
presses the sensitivity of the surface averaging kernel only below
the p-mode cavity. Hence, there is residual sensitivity to the fast
core rotation, increasing the estimate of the envelope rotation.
When assuming that the step is located deeper inside the star, for
example at 1.5 times the radius of the hydrogen burning shell, the
sensitivity of the surface averaging kernel does no longer reach
into the fast rotating core. In such a case, we are again able to
recover the input rotation. It is of course unknown a priori which
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Table 2. Rotational inversion results for different synthetic observations using ρ and χ2
dip as metrics simultaneously.

Name Ωcore/(2π) σrand σref Ωenv/(2π) σrand σref ρthresh χ2
dip,thresh Grid

Input 750 – – 100 – – – – –
M = 1 M� 749 13 5 98 14 8 0.98 500 M, αMLT
M = 1 M� 752 14 4 91 15 8 0.95 500 M
[Fe/H] = −0.1 dex 744 14 7 105 16 11 0.98 500 M, αMLT
[Fe/H] = +0.1 dex 748 14 6 103 14 13 0.98 500 M, αMLT
∆ν = 9 µHz 746 17 4 107 22 7 0.98 100 M, αMLT
∆ν = 9 µHz 745 17 4 112 22 11 0.95 100 M
αMLT = 1.5 751 14 3 93 22 7 0.98 500 M, αMLT
αMLT = 1.65 746 15 8 107 18 12 0.98 500 M, αMLT
αMLT = 1.7 746 15 7 101 16 11 0.98 500 M, αMLT
M = 1.3 M� 751 13 4 94 15 12 0.95 500 M
M = 1.3 M� 750 13 4 95 14 10 0.98 500 M, αMLT
M = 1.7 M� 751 13 7 129 13 8 0.95 1000 M
M = 1.7 M� 751 12 5 127 12 7 0.98 1000 M, αMLT
Surf. pert. 747 14 8 105 17 11 0.98 500 M, αMLT
Surf. pert., surf. corr. 748 14 6 103 16 9 0.98 500 M, αMLT

Notes. The rotational inversion results are computed with the ensemble rotational inversion described in Sect. 4. All rotation rates and uncertainties
given in units of nHz.

situation prevails in a star. We note that the original MOLA
inversions are subject to the same behaviour. We conclude that
the mismatch of the envelope rotation for the M = 1.7 M� model
with the input values is not due to the ensemble inversion, but
rather due to the inversion method itself in combination with the
envelope step rotation profile (see discussion in Ahlborn et al.
2022, Sect. 3.3). These results are again independent of the stel-
lar model grid used.

6.2. The effect of initial composition

Another parameter influencing the structure and evolu-
tion of stars is the initial chemical composition. We con-
structed two synthetic observations with metallicity values of
[Fe/H] =±0.1 dex (rows two and three in Table 1), what is on
the same order as typical uncertainties on observed metallicities.
We selected reference models from the M, αMLT-grid. We find
that both the core and the envelope rotation rate can be recov-
ered within the derived uncertainties (see Table 2, rows four and
five). This is possible despite the fact that the grid used has only a
single chemical composition, that is, the solar composition. We
note that the discrepancy between the estimated and the input
rotation rates increases for an increased mismatch in the chem-
ical composition. Therefore, we conclude that the metallicity of
the reference model needs to be constrained to within ±0.1 dex
to obtain reliable inversion results.

For our stellar model grids and the synthetic observations,
we used the Asplund et al. (2009) solar mixture of heavy ele-
ments (see Appendices B and C). The composition of the Sun
is a long-standing problem, however, and other compositions
have been proposed in the literature. To test the impact of the
solar composition on our results, we created a synthetic obser-
vation very similar to the fiducial model, however, with the
standard solar composition of Grevesse & Sauval (1998) (GS98,
X = 0.7062,Y = 0.275,Z = 0.0188). We find the following
rotation rates:

Ωcore/(2π) = (748 ± 16rand ± 7ref) nHz,

Ωenv/(2π) = (104 ± 20rand ± 14ref) nHz,
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Fig. 6. Mass and mixing-length parameter of selected reference mod-
els. Upper left: Distribution of initial stellar masses for selected ref-
erence models. Lower right: Distribution of mixing-length parameters
for selected models. Lower left: Scatter plot showing the mixing-length
parameters versus the initial stellar mass for selected stellar models. The
stellar models were selected following the selection process described
in Sects. 3 and 4 using the fiducial model. The models were selected
from the M, αMLT-grid. The black dashed lines and the grey lines refer
to the actual mean and the input value, respectively.

when applying the ensemble inversion method. Core and enve-
lope rotation rates are recovered within the random uncer-
tainties. This result is very comparable to the result for the
[Fe/H] = +0.1 dex model (see Table 2). Given the composition
of the [Fe/H] = +0.1 dex model (see third row of Table 1), one
would have expected a similar impact of the Grevesse & Sauval
(1998) composition on the result. Using the Asplund et al.
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(2009) Z/X = 0.0199 the GS98 model has a [Fe/H]≈ 0.13 dex,
slightly larger than the value we tested previously. Based on
experience from modelling the Sun, we expect the effect to be
smaller when only changing the relative distribution of heavy
elements instead of changing the overall composition. We hence
conclude that the choice of the solar composition does not have
a strong impact on the final inversion result.

6.3. The effect of the mixing-length parameter

The mixing-length parameter of the selected models, shown in
Fig. 6, spans a range from 1.5 to 2, that is, the whole range of
possible values on the grid. The gaps in the distribution of the
mixing-length parameters are discussed already in Sect. 6.1. We
find that we are able to recover the input rotation rates for all
synthetic observations constructed with different input values of
the mixing-length parameter. This is in agreement with our con-
clusion on the stellar mass that a range of values is suitable to
recover the input rotation rate. We note that for the model with
αMLT = 1.5 less models were available for the ensemble inver-
sion as the M, αMLT-grid does not extend below this value. This
makes the estimated rotation rates for this synthetic observation
statistically less robust.

The mixing-length parameter is best constrained by the
observed effective temperature. Changing the mixing-length
parameter has a strong impact on the radius of stellar models
of red giants, which in turn causes the effective temperature of
the model to diverge from the observed value. We find however
that constraining the effective temperature and as a consequence
the mixing-length parameter does not strongly impact the final
rotational inversion result. Therefore, we did not include Teff as
a constraint in the search for the reference models. For more
details, we refer to Appendix D.3.

6.4. Evolution along the RGB

In addition to the initial stellar parameters, the position of the
stars on the RGB is also expected to play a role in determining
the internal rotation rates. To test this dependency, we evolved
the fiducial model, discussed in Sect. 4, further up the RGB to a
large frequency separation of ∆ν = 9.1 µHz. The eMOLA inver-
sion method used here was formulated to estimate envelope rota-
tion rates that do not show systematic errors for more evolved
stars, assuming a known reference model (see Ahlborn et al.
2022). In Table 2 and Fig. 1, we show that the ensemble inversion
method does recover the input rotation rates within the random
uncertainty also for more evolved models. The reference model
uncertainties, σref , determined from the standard deviation in the
distribution of the estimated rotation rates are very comparable
to the fiducial model. We note however that the envelope rota-
tion rates become biased to higher rotation values, while the
core rotation rates becomes biased to lower rotation rates. Fur-
thermore, the range of masses in the set of reference models is
smaller, which indicates that a better constraint on the mass is
needed for the more evolved models. These results change only
marginally when selecting reference models from the M-grid,
and the above conclusions remain unaffected.

7. Discussion

7.1. Impact of the uncertainty model

In contrast to the synthetic observables, the rotational splittings
and frequencies observed in actual stars are subject to observa-

tional uncertainties. As described in Sect. 2.3, we describe the
measurement uncertainties for the synthetic observables with an
uncertainty model. Given the uncertainty model, we can deter-
mine the impact of these measurement uncertainties on the rota-
tional inversion results. To test the impact of the frequency
uncertainties, we perturbed the radial and dipole mode frequen-
cies of our synthetic mode set with normally distributed ran-
dom numbers with a standard deviation given by the uncertainty
model. The rotational splittings remained unperturbed as before.
We find that always a very similar set of reference models gets
selected for a given synthetic observation. Therefore, the ensem-
ble inversion results do only vary marginally. We can hence con-
clude that the results of our method are not strongly influenced
by the measurement uncertainties of the oscillation frequencies,
given our uncertainty model.

Because we indirectly selected the reference models based
on the observed rotational splittings through the splitting cor-
relation coefficient, the set of selected reference models could
be potentially impacted by perturbations of the rotational split-
tings. To understand the behaviour of the ensemble inversions
for perturbed rotational splittings, we first assessed the behaviour
of the individual rotational inversion results under perturbations
of the rotational splittings. Following a Monte Carlo approach,
we computed rotational inversions for multiple sets of perturbed
rotational splittings. In each set, the rotational splittings were
perturbed, with a normally distributed perturbation with zero
mean and using the individual measurement uncertainties as the
standard deviation. We verified that the random uncertainties of
the individual inversion results, derived from error propagation,
reflect the standard deviation of rotational inversion results com-
puted for many realisations of perturbed rotational splittings.

Likewise, we tested the dependence of the ensemble inver-
sion results on the uncertainties of the rotational splittings. Here,
we left the oscillation frequencies unperturbed. We repeated the
Monte Carlo approach for the ensemble inversions, generating
50 sets of rotational splittings. We again perturbed the rotational
splittings with normally distributed perturbations. However, in
this case we used a standard deviation of 2σ to test the robust-
ness of the ensemble inversion against larger perturbations of
the rotational splittings. As a direct consequence of the larger
perturbations, we needed to use a lower threshold in the splitting
correlation coefficient for the ensemble inversions as compared
to the unperturbed case. However, the rotation rates estimated
from individual reference models of the ensemble do not depend
on the uncertainties as we set µ = 0. The histograms of the
core and envelope rotation rates for 50 perturbations of the rota-
tional splittings are shown in Fig. 7. We find that in both cases
the mean value of the distribution recovers the input rotation
rate within the uncertainties. Likewise, the standard deviation
of the distribution reflects the random uncertainty of the individ-
ual rotational inversions. This shows that we can use the random
uncertainties from the individual rotational inversions as an esti-
mate for the random uncertainty of the ensemble inversion result.
We conclude that the selection of reference models based on the
splitting correlation coefficient and the final ensemble inversion
estimate are robust against perturbations of the splittings.

The uncertainty model discussed in Appendix C.3 does not
differentiate between p-dominated or g-dominated dipole modes.
However, the uncertainties are expected to depend on the mode
character. As the g-dominated modes have a higher mode inertia,
they appear with smaller width in the power spectra, leading to
smaller uncertainties on the measured frequency values. To test
the impact of this variation on our ensemble inversion results,
we recomputed our uncertainties by scaling them inversely with
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Fig. 7. Ensemble inversion results for 50 perturbations of the rotational
splittings within 2σ. Left panel: Histogram of the envelope rotation rates
estimated from ensemble inversions for different realisations of per-
turbed rotational splittings. The vertical dashed and dotted lines indicate
the mean and the standard deviation, respectively. The vertical grey line
indicates the input value. Right panel: Same as the left panel, but for the
core rotation rate.

the mode inertia, such that g-dominated modes have smaller
uncertainties than the p-dominated modes. We find that this does
impact the results only marginally. Due to the smaller uncertain-
ties, it is necessary to choose a larger threshold value in χ2

dip to
be consistent with the results from the previous section. Addi-
tionally, the random uncertainties on the estimated core rotation
rates decrease due to the smaller uncertainties in the g-dominated
modes. Our conclusions remain otherwise unchanged.

7.2. Impact of the mixed-mode pattern

The ensemble inversion method is based on correlating the (syn-
thetic) observed rotational splittings with the reference model
mode-trapping parameter, ζ. Hence, the observed mixed-mode
pattern has a direct impact on the selection of the reference mod-
els. In this section, we discuss the impact of this mixed-mode
pattern on the final results. To illustrate the impact, we used the
model with α = 1.7 described in Sect. 6.3. For the results pre-
sented in Table 2, we used synthetic observations which show
one clearly p-dominated mode per acoustic radial order and oth-
erwise g-dominated modes. For the α = 1.7 model, we do also
find a pattern in which some acoustic radial orders have no clear
p-dominated mode; however, two somewhat p-dominated modes
are present instead. We discuss this below. The rotational split-
tings as a function of frequency, illustrating the mixed-mode pat-
tern, are shown in Fig. 8.

When applying the ensemble inversion method with the
threshold values ρ = 0.98 and χ2

dip = 500 as in Sect. 6 we obtain:

Ωcore/(2π) = (747 ± 16rand ± 5ref) nHz,

Ωenv/(2π) = (107 ± 21rand ± 7ref) nHz,
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Fig. 8. Rotational splittings as a function of frequency for a synthetic
observation with α = 1.7, very similar to the model discussed in
Sect. 6.3. In some acoustic radial orders no clear p-dominated mode
is visible in this pattern, however, instead two somewhat p-dominated
modes are present.

which is again reproducing the input rotation rate within the
uncertainties. For a pattern with clear p-dominated modes and
otherwise similar parameters (Table 2, α = 1.7), we were able to
recover the input rotation rates with a smaller difference. This
occurs primarily due to the mixed-mode pattern in this syn-
thetic observation shown in Fig. 8. The lack of a single, clearly
p-dominated mode makes this pattern much more prone to erro-
neously matching p-dominated splittings with g-dominated ker-
nels and vice versa. To improve the results of the ensemble
inversion method for the pattern shown in Fig. 8 further one
could consider varying the threshold values for ρ and χ2

dip. As we
already recovered the input rotation rate for the default parame-
ters, we do not consider this exercise necessary here.

7.3. Impact of the rotation profile

In Sect. 4, we used only one synthetic rotation profile for our
calculations, that is the envelope step profile, featuring a step
at the base of the convective envelope and otherwise constant
rotation rates. However, in an observed star the internal rotation
profile is a priori unknown. In this section, we therefore test how
our ensemble inversion results depend on the underlying rotation
profile, as the selection of reference models indirectly depends
on the rotational splittings through the computation of the cor-
relation coefficient. We generated the synthetic observables nec-
essary for this test using the fiducial model and the synthetic
rotation profiles, described in Appendix C.2. We summarise the
results for the different synthetic rotation profiles in Table 3.
The core step and convective power law profile were already
used in Ahlborn et al. (2022) for a single known reference model
and eMOLA inversions. We show their results for comparison
in Table 3 when applicable and demonstrate that the ensemble
inversion results are in very good agreement with the results for
a known reference model. This shows that the ensemble method
is robust against variations of the shape of the rotation profile
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Fig. 9. Rotation profiles as a function of fractional radius. Note that the
radius is shown on a logarithmic scale. We show the three synthetic pro-
files used in this work in red, blue and black. The profile of the rotat-
ing MESA model is shown in yellow. We use Ωcore/(2π) = 750 nHz
and Ωenv/(2π) = 100 nHz as default values for the synthetic rotation
profiles. The vertical dotted line indicates the location of the hydro-
gen burning shell. The cumulative core averaging kernel of the fiducial
model is shown with the grey shaded area.

and recovers the best possible inversion result (obtained when
the reference model is known).

Depending on the underlying rotation profile a mismatch of
the estimated core rotation rate beyond the uncertainties may be
present. The mismatch in case of the core step profile can be
explained by the sensitivity of the individual rotational splittings.
By inspecting the rotational kernels it is easy to see that about
10% of the sensitivity of the g-component extends into the slow
rotating region beyond 1.5 rH. The resulting core averaging ker-
nel is illustrated in Fig. 9. At the location of the step in the core
step profile, the core averaging kernel has gained approximately
90% of its total sensitivity very similar to the g-component of the
individual kernels. Hence, the estimated core rotation rate which
is an average value using the averaging kernel as the weighting
function is sensitive to the slow rotating region and therefore has
to be lower than the nominal core rotation rate. Given that the
g-components of the different rotational kernels probe basically
the same region (Ahlborn et al. 2022, their Sect. 6.2), it is not
possible to construct a core averaging kernel that is only sensi-
tive to the region below 1.5 rH. We note that we obtained nearly
identical results for the core rotation rate when using MOLA or
SOLA inversions instead of eMOLA. Finally, an MCMC could
be used to determine the rotation rates and the location of the
step simultaneously (Fellay et al. 2021). Similarly, the surface
averaging kernel is not exclusively sensitive to the surface layer
of the star, but rather probes an average envelope rotation rate.
In case of the convective power law profile, the rotation rate
decreases throughout the envelope until it reaches its minimum
at the surface. The estimate of the envelope rotation therefore
has to be higher than the actual surface rotation rate as can be
seen for the results shown in Table 3.

We further computed ensemble inversions for the envelope
step and core step profile with a varying contrast between the
core and the envelope rotation. We varied the ratio from a value
of one (i.e. solid body rotation) up to 20 (the fiducial case has
a ratio of 7.5). We kept the envelope rotation rate at the value
of 50 or 100 nHz. We summarise the results in the lower part of
Table 3. For a ratio of unity, the splittings of the p-dominated
modes are larger than the splittings of the g-dominated modes
due to the larger total integral of the rotational kernels. In this
way, the splittings remain correlated with the mode trapping,
even though with a negative correlation coefficient. We note that
for a ratio of two the synthetic rotational splittings are the same
for all modes within uncertainties. In this case, there is no cor-
relation between the splittings and the mode trapping. Neverthe-
less, the inversions are able to recover the input value correctly
as the matching of observed splittings to modes from the refer-
ence model does not matter in the case of constant splittings. In
the cases with a higher core-to-envelope ratio the method does
work in the same way and with the same level of accuracy as
for the fiducial case. We find, however, that the reference model
uncertainty depends on the core-to-envelope ratio. It is lowest
for a ratio of two (essentially constant rotational splittings). With
increasing difference between the p- and g-dominated splittings
the reference model uncertainty increases. In case of matching
a mode with the wrong character of an observed splitting the
error in the estimated rotation rate increases with the difference
between the p- and g-dominated splittings. We conclude that the
ensemble inversion method is robust against variations of the
core to envelope ratio.

7.4. Impact of the grid properties

The results of the ensemble inversion depend on the proper-
ties of the grid from which the reference models get selected.
In this subsection, we test how our results depend on the grid
density and the physics included in the grid. To test the depen-
dence on the grid density we reduced the number of tracks from
the M, αMLT-grid by only keeping every n-th mass value for
n = 2, 4, 8. In this way, the originally uniform distribution of
M and αMLT values is approximately retained. We summarise
the ensemble inversion results for the uniform reduction of the
grid in the left column of Fig. 10 as a function of the effective
mass resolution, which we compute as the mass range divided
by the square-root of the number of models on the grid. We
find that in all cases the input values are recovered within ran-
dom errors. The random and reference model uncertainties stay
approximately the same regardless of the grid density. The num-
ber of models selected for the ensemble inversion scales approx-
imately with the number of models on the grid (see lower panel
of Fig. 10). This conclusion is supported by the random and ref-
erence model uncertainties obtained from the much smaller M-
grid. Hence, the ensemble estimate is not strongly affected by
the effective mass resolution in the case of uniform parameter
distributions.

We repeated the reduction of the number of reference models
by selecting randomly one n-th of the models from the M, αMLT-
grid. The M and αMLT distributions of the latter grids may devi-
ate more strongly from the originally uniform distributions. The
results for the random reduction of the grid are shown in the
right column of Fig. 10. We again recover the input rotation
rates in all cases. However, when selecting models from the grids
with randomly selected M and αMLT values we find larger devi-
ations from the estimated value for the full grid with decreasing
grid resolution. We generated ten random reduced grids for each
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Table 3. Comparison of core and envelope rotation rates obtained with the ensemble inversions and different synthetic rotation profiles.

Profile Method Ωcore/(2π) σrand σref Ωenv/(2π) σrand σref

Core step Ensemble 690 13 5 100 14 7
eMOLA 690 6 – 102 6 –

Envelope step Ensemble 749 13 5 98 14 8
eMOLA 749 6 – 100 6 –

Convective power law Ensemble 750 13 4 153 14 6
eMOLA 750 6 – 152 6 –

Envelope step, Ωenv/(2π) = 100 nHz
Ωcore/Ωenv = 1 Ensemble 100 14 1 100 14 2
Ωcore/Ωenv = 2 Ensemble 200 14 1 100 18 1
Ωcore/Ωenv = 3 Ensemble 300 13 1 100 14 2
Ωcore/Ωenv = 5 Ensemble 500 13 3 99 14 5
Ωcore/Ωenv = 10 Ensemble 998 13 8 97 14 11
Core step, Ωcore/Ωenv = 20
Ωenv/(2π) = 100 nHz Ensemble 1826 13 15 99 14 23
Ωenv/(2π) = 50 nHz Ensemble 913 13 8 50 14 12

Notes. The profile type used to compute the synthetic rotational splittings is given in the first column. Core and envelope rotation rates were
calculated with target radii of r0/R = 0.003 and r0/R = 0.98, respectively. When varying the core-to-envelope ratio the envelope rotation rate was
set to 50 or a 100 nHz. The eMOLA results are taken from Ahlborn et al. (2022) (their Table 1).

reduction factor to illustrate the spread introduced by the non-
uniform sampling of the parameter space. Initially, the uniform
distribution is achieved by the Sobol sequences and maintained
when keeping every n-th track. This is not the case when select-
ing random models from the grid. We conclude that the uniform
distribution of M and αMLT values is important to obtain an unbi-
ased estimate of the rotation rates.

The results of stellar evolution calculations are always sub-
ject to the assumptions on the physics that were made. On both
of our grids we computed the models excluding the effects of
rotation. However, the stars under consideration are rotating
which may impact the ensemble inversion results. Here, we used
MESA to compute a synthetic observation including the effects
of rotation. To incorporate the effects of rotation we included
the angular momentum transport by viscosity (including con-
tributions from shear, electrons and radiation by default) and
increased its efficiency by a factor to obtain rotation rates com-
parable to observed red giant stars. For the other parameters, we
used the same values as for the fiducial model. We selected a
stellar model from this track with a large frequency separation of
∆ν ≈ 15 µHz similar to our fiducial model. We show the internal
rotation profile of this model in Fig. 9. The synthetic data were
computed as described in Sect. 2.3. In order to roughly repro-
duce the default core and envelope rotation rates of the enve-
lope step synthetic rotation profile, we increased the efficiency
of the angular momentum transport by a factor of 2.16 · 103

and set the initial rotation rate on the pre main-sequence to
Ωini/(2π) = 11 nHz. In Fig. 9 we show that the rotation pro-
file from the MESA model has a fast rotating region that is yet
smaller than in the core step profile. Hence, we would expect an
estimate of the core rotation rate from the ensemble inversion
that is even more biased to lower rotation rates than for the core
step profile.

We applied the ensemble inversion method to the rotating
model in the same way as for all other synthetic observations.
Here, we find the following values for the core and envelope
rotation rates:
Ωcore/(2π) = (449 ± 14rand ± 3ref) nHz,
Ωenv/(2π) = (102 ± 15rand ± 4ref) nHz.

While the envelope rotation rate is recovered within the uncer-
tainties, we find a significant deviation for the core rotation rate
that is larger than for the core step profile. As we demonstrated
for the core step profile, this bias towards lower rotation rates
is not a consequence of the ensemble inversion, but rather of
the shape of the g-component of the individual rotational kernels
that shows substantial sensitivity in the slowly rotating region.
As the MESA rotation profile is even more centrally concen-
trated than the core step profile, a larger fraction of the sensitivity
of the core averaging kernel is sensitive to the slow rotating
region, which further decreases the estimate of the core rota-
tion rate. This can be again seen by comparing the transition in
the rotation profile and the increase of the core averaging kernel
in Fig. 9. The rotation profile decreases already well before the
core averaging kernel has gained its total sensitivity. To confirm
the result of the ensemble inversion we carried out an inversion
using the stellar model used to generate the synthetic observation
as a reference model and obtain a nearly identical core rotation
rate. We also find a nearly identical result when using MOLA or
SOLA inversions instead of eMOLA. Finally, when varying the
core-to-envelope contrast of the MESA rotation profile the inver-
sion results behave analogous to the results for the envelope or
core step profiles (see Table 3). This shows that the selection
of reference models does also work robustly on a rotation pro-
file that is physically more realistic, even though the inversion
results of the individual reference models in the ensemble suffer
from larger errors. We can hence conclude that the inclusion (or
the neglect) of rotation in the reference stellar models does not
have a significant impact on the ensemble inversion results.

8. Conclusions

The accurate measurement of internal rotation rates of evolved
stars is important in order to test and improve theoretical mod-
els of rotation. Internal rotation rate measurements by means of
rotational inversions rely on a stellar reference model that needs
to reproduce the structure of the observed star well enough. In
this work, we investigate the uncertainties in estimated inter-
nal rotation rates of red giant stars occurring due to structural
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Fig. 10. Estimated core and envelope rotation rates,
as well as the number of selected reference models,
for different grid configurations. Upper panels: Esti-
mated envelope rotation as a function of the effec-
tive mass resolution. The solid grey line indicates the
input value. The vertical black dashed line indicates
the mass resolution of the full grid used in the rest of
the paper. The left and right column show the results
for the uniform and random grid reduction. Middle
panels: Same as the upper panel for the estimated
core rotation rates. Lower panel: Number of models
selected for the ensemble inversion as a function of
the effective mass resolution.

differences between the observed star and the stellar reference
models. We tested the dependence of the rotational inversion
results on the different stellar parameters by inverting for dif-
ferent sets of synthetic observations.

Instead of relying on a single reference model that needs to
reproduce the rotational kernels of the observations perfectly, we
propose the use of a set of reference models that is selected based
on global stellar properties (∆ν and νmax), radial mode proper-
ties (χ2

rad), and dipole mode properties (χ2
dip and ρ). As described

above, it is crucial to match the sensitivity of the observed modes
and the modes in the reference model to obtain accurate rota-
tional inversion results. Here, it is especially important that the
reference model reproduces the mixed-mode character of the
observed star. We therefore propose selecting reference models
for the rotational inversions based on the matching of the mixed-
mode pattern between the reference model and the observed star.
We quantified this match by computing the correlation coeffi-
cient, ρ, between the mode-trapping parameter, ζ, in the refer-
ence model and the observed rotational splittings (Fig. 3).

We find that for a splitting correlation coefficient larger than
0.98, the core and envelope rotation rates can be estimated within
a narrow region around the input value. We then go on to esti-
mate the internal rotation rates by taking the average of all
estimated rotation rates obtained from reference models with
ρ > 0.98 (Fig. 4). The standard deviation of the distribution of
rotation rates is used as the uncertainty introduced by a discrep-
ancy in structure between the reference models and the observed
star. We show that this procedure recovers the input rotation
rates within the random uncertainties of the inversion method.
We find that the reference models selected span a larger range
in masses. This confirms the results of Di Mauro et al. (2016) in
recovering rotation rates across a broader mass range. It shows
further that it is not necessary to reproduce all properties of the
observed star with a single reference model. Instead, we can
rely on a set of reference models that reproduce, on average, the
properties of the observed star needed to determine the internal
rotation rates.

By using a synthetic observation based on a stellar model
with a surface perturbation, we demonstrate that the ensemble
inversion result is not strongly affected by this surface perturba-
tion. This can be explained by the fact that the selected refer-
ence models implicitly reproduce the sensitivities to the internal
rotation of the observed star, which is a prerequisite for com-
puting accurate rotational inversion results. This property of the
ensemble inversion method bears the potential to estimate inter-
nal rotation rates of red giant stars without the need to correct
for the surface effect on a star by star basis.

To test the dependence on different stellar parameters, we
constructed different sets of synthetic observations, by varying
stellar mass, mixing-length parameter, chemical composition,
and age of the star. The results are summarised in Fig. 1. We
note that across all synthetic observations, the envelope rota-
tion rate tends to be overestimated while the core rotation rate
tends to be underestimated. This occurs because a mismatch of
the sensitivity between observed star and reference models are
more likely to match a mode with greater core sensitivity to a
mode with lower core sensitivity and vice versa. In the inversion
process, a p-dominated splitting might therefore be interpreted
as a g-dominated one, therefore decreasing the estimate of the
core rotation rate; alternatively, a g-dominated mode might be
interpreted as a p-dominated mode and therefore increase the
estimate of the envelope rotation rate. We find that the chemi-
cal composition needs to be constrained to within ±0.1 dex to
recover accurate core and envelope rotation rates.

Figure 6 shows that most of the models in the selected set
of reference models do not reproduce the observed star. Never-
theless, they are able to reproduce the input rotation rates. This
can be explained by the fact that the sensitivity of the dipole
mode rotational kernels is largely dominated by two components
(Ahlborn et al. 2022, Sect. 6.2), namely, a core and an envelope
component. Among the individual rotational kernels of a stellar
model, it is only the weight of the core to the envelope part that is
varying. As long as a model can effectively reproduce the core-
to-envelope weights of the rotational kernels of the observed star,
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the rotation rates can be recovered accurately, despite the differ-
ences with respect to other fundamental stellar parameters.
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Appendix A: Rotational inversions

The angular dependence of each oscillation mode of a star can be
expressed as a spherical harmonic, assuming spherical symme-
try. Hence, modes are characterised by three numbers: (n, `,m),
which are the radial order, angular degree, and azimuthal order,
respectively. Rotation leads to the breaking of degeneracy with
respect to the azimuthal order, and as a consequence, instead
of a single mode we can observe up to 2` + 1 modes with the
same value n and ` but different values of m. Only non-radial
modes are subject to rotational splitting. The visibility of the
different peaks due to the rotational splitting depends on the
inclination of the rotation axis (Gizon & Solanki 2003). To date,
only dipole (` = 1) modes have been used for rotational inver-
sions for red giants. The challenges of using rotationally split
` = 2 modes were discussed by Deheuvels et al. (2017). So far,
Deheuvels et al. (2014) use ` = 2 modes only in the linear split-
ting approximation of Goupil et al. (2013). However, the infor-
mation from dipole modes alone only allows the rotation rate of
the core and the mean rotation rate of the convective envelope to
be determined (Ahlborn et al. 2020). Therefore, the focus of the
present work is to study the determination of core and envelope
rotation rates using dipole modes.

To first order, the impact of rotation on the mode frequency
ωnl can be described as a linear perturbation to the mode fre-
quency:

ωnlm = ωnl + m δωnl, (A.1)

with δωnl the rotational splitting (e.g. Aerts et al. 2010). For slow
(when centrifugal forces can be ignored) shellular rotation, the
splitting of a mode (n, `) is given by:

δωnl =

∫ R

0
Knl(r)Ω(r)dr, (A.2)

where r denotes the radial coordinate, Ω(r) is the radial rotation
profile, and Knl is an individual rotational kernel that is com-
puted for each oscillation mode (n, l) from the reference stellar
model.

Solving for Ω(r) in Eq. (A.2) is known as a rotational inver-
sion. Different methods that are used to solve for Ω(r) include
RLS methods (e.g., Gough 1985; Christensen-Dalsgaard et al.
1990), MOLA inversions (Backus & Gilbert 1968), SOLA
inversions (SOLA Pijpers & Thompson 1992, 1994) and most
recently eMOLA inversions (Ahlborn et al. 2022).

The main idea of OLA methods is to linearly combine the
individual rotational kernels Ki(r) using a set of inversion coef-
ficients ci(r0):

K(r, r0) =
∑
i∈M

ci(r0)Ki(r), (A.3)

to construct averaging kernels, K(r, r0), localised at the target
radii r0 using the mode set M. The inversion coefficients are
chosen such that the averaging kernel is as localised as possi-
ble at the target radius. Given a localised averaging kernel the
rotation at the target radius can be estimated by:

Ω(r0) =

∫ R

0
K(r, r0) Ω(r) dr =

∑
i∈M

ci(r0) δωi. (A.4)

The different OLA inversion methods (MOLA, SOLA, eMOLA)
only differ in the way the inversion coefficients are determined.
For all three methods, an objective function is minimised. In
SOLA inversions, the coefficients are determined in order to

Table B.1. Fundamental parameters of the two stellar model grids used.

Grid Masses/M� Yi Zi αMLT

M [0.8, 2.0] 0.2703 0.0142 1.8
M, αMLT [0.8, 2.0] 0.2703 0.0142 [1.5, 2.0]

Notes. Grid name, initial mass, initial helium mass fraction, initial metal
mass fraction, and mixing-length parameter for the models considered
in this work. Square brackets indicate the range over which values are
varied (see text for details).

minimise the squared difference between the averaging ker-
nel and a target averaging kernel. For this work, we focus on
eMOLA inversions only. For eMOLA (Ahlborn et al. 2022) the
objective function reads:

ZeMOLA =

∫ R

0
K(r, r0)2J(r, r0) dr

+ θ

[∫ R

0
K(r, r0)J(r, r0) dr

]2

+
µ

µ0

∑
i, j∈M

ci(r0)c j(r0)Ei j︸                  ︷︷                  ︸
σ2

Ω(r0)

. (A.5)

Here, J(r, r0) denotes a function that weights the amplitude of the
averaging kernel depending on the distance to the target radius.
A common choice is (Backus & Gilbert 1968; Gough 1985)

J(r, r0) = 12(r − r0)2/R,

where R denotes the stellar radius. We denote the so-called trade-
off parameter with µ. This parameter balances the uncertainty of
the solution from propagated errors, σΩ(r0), with the resolution
of the inversions, as indicated by the width of the averaging ker-
nels. By scaling the trade-off parameter with µ0 the third term
in Eq. (A.5) becomes independent of the absolute value of the
uncertainties, where µ0 given as,

µ0 =
1
M

∑
i∈M

Eii, (A.6)

with E denoting the variance-covariance matrix of the observed
rotational splittings.

The first term in Eq. (A.5) is also part of the original MOLA
objective function. The second term, introduced in Ahlborn et al.
(2022), penalises the accumulation of sensitivity in regions away
from the target radius. To balance the original MOLA terms and
the extension term, they introduced the second trade-off param-
eter θ. For the calibration of the trade-off parameters µ and θ we
refer to Sect. 3.3 and Appendix B of Ahlborn et al. (2022).

Appendix B: Grids of stellar models

To search for reference models, we constructed two different
stellar model grids. We calculated stellar evolutionary mod-
els using Modules for Experiments in Stellar Astrophysics
(MESA, version 12778, Paxton et al. 2011, 2013, 2015, 2018,
2019; Jermyn et al. 2023). To select the range of stellar param-
eters to consider in our study, we used the parameters of stars
that have been analysed in terms of rotational inversions in
Deheuvels et al. (2012), Di Mauro et al. (2016) and Triana et al.

A274, page 16 of 21



Ahlborn, F., et al.: A&A, 693, A274 (2025)

1.0 1.5 2.0

5

10

co
un

t

1.0 1.5 2.0
M/M¯

1.5

1.6

1.7

1.8

1.9

2.0

α
M

L
T

5 10
count

Fig. B.1. Parameter sampling of the mixing-length parameter αMLT and
the stellar mass M for the M, αMLT-grid. In total, 1024 combinations
of M, αMLT were computed using a Sobol sequence. Upper left: His-
togram of initial stellar masses. Lower right: Histogram of mixing-
length parameters. Lower left: Scatter plot of mixing-length parameter
against mass.

(2017). The analysis of 16 red giant stars presented in these
studies suggests considering stellar masses of 0.8 up to 2 M�.
In our grids, we evolved the models up to a large frequency
separations of 7 µHz. We used the solar mixture of heavy
elements by Asplund et al. (2009), the OPAL opacities from
Iglesias & Rogers (1996) extended by low temperature opaci-
ties from Ferguson et al. (2005) and an Eddington-grey atmo-
sphere (Eddington 1926). We used the mesa equation of state.
Convection was treated according to the mixing-length theory
(Böhm-Vitense 1958) with a free parameter αMLT. We only var-
ied mass (M) and the mixing-length parameter (αMLT) to con-
struct the different grids. We denote the grids as M-grid, where
we only vary mass; and the M, αMLT-grid, where we vary mass
and the mixing-length parameter. The details of the grids are
summarised in Table B.1.

To construct the M-grid, we chose the protosolar composi-
tion Y = 0.2704 and Z = 0.0142 of Asplund et al. (2009) and
a mixing-length parameter of αMLT = 1.8. The mass was var-
ied between 0.8 and 2.0 M� with a step of 0.01 M�. For the
M, αMLT-grid, two parameters need to be varied simultaneously.
To ensure a dense enough sampling of this two-dimensional
parameter space, we used a two-dimensional Sobol sequence
with a length of 1024 elements (Sobol’ 1967) to draw parameter
pairs M, αMLT. This was for example applied in Bellinger et al.
(2016) to sample the stellar model parameter space for their
machine learning approach. The mixing-length parameter αMLT
was varied in a range between 1.5 and 2. An illustration of
this process for the M, αMLT-grid is shown in Fig. B.1. The
histograms show the near uniform sampling of both parameter
axes. The scatter plot shows the quasi random distribution of the
parameter pairs (M, αMLT) avoiding holes or accumulations in
certain regions of the parameter space. The composition is fixed
to the solar values as for the M-grid.
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Fig. C.1. Values obtained for the parameters a and σmin as a function of
νmax shown with blue points in the upper and lower panel, respectively.
The error bars are obtained from the least squares fit to the uncertainties
in the individual νmax bins. A linear fit to the data is shown with a black
dashed line.

Appendix C: Synthetic data

C.1. Construction of synthetic mode sets

We computed the oscillation frequencies and rotational ker-
nels for given stellar models using the oscillation code GYRE
(Townsend & Teitler 2013; Townsend et al. 2018). To mimic the
set of observed frequencies of red giant stars in the literature,
we reduced the number of modes obtained from GYRE. For
our synthetic mode sets, we only considered radial and dipole
modes. Our synthetic mode sets consist of seven consecutive
radial modes (` = 0) centred around νmax, the frequency of max-
imum oscillation power, and four consecutive radial orders of
dipole modes (` = 1) centred around νmax (e.g. Ahlborn et al.
2020, App. A.3). We selected the three dipole modes with the
lowest mode inertia for each acoustic radial order. These mode
sets were used in addition to the global observables as synthetic
observables to search for the reference model for the rotational
inversions. The construction of a realistic uncertainty model is
discussed in Appendix C.3.

C.2. Synthetic rotational splittings

To compute the rotational inversions, we also need a set of syn-
thetic rotational splittings. We computed these rotational split-
tings for the dipole modes in our synthetic mode sets from
Eq. (A.2) given the rotational kernels from the selected stel-
lar model as well as an imposed synthetic rotation profile. In
this work, we used three different synthetic rotation profiles.
We used two step-like profiles, featuring a step at the base of
the convective envelope rrcb and at 1.5 times the radius of the
hydrogen burning shell rH. We refer to these models as the
‘envelope step’ and ‘core step’ rotation profile. In addition, we
used a synthetic rotation profile with a constant rotation below
the base of the convective envelope and a power law decrease in
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the convective envelope. We refer to this profile as the ‘convec-
tive power law’ profile (see Klion & Quataert 2017, for details
of the synthetic rotation profiles). The different synthetic rota-
tion profiles are shown in Fig. 9. We used Ωcore/(2π) = 750 nHz
and Ωenv/(2π) = 100 nHz as default values. The impact of differ-
ent synthetic rotation profiles on the rotational inversion result is
demonstrated in 7.3.

C.3. Uncertainty model

To mimic observed mode frequencies and rotational splittings,
we need a realistic uncertainty model. These uncertainties are
crucial for the best-fit model selection when computing real-
istic χ2 values as well as uncertainties on estimated rotation
rates. Following Schunker et al. (2016) we describe the fre-
quency uncertainties of an individual star as a function of mode
frequency with a quadratic function with a minimum at νmax:

σ`=0(ν) = σmin(νmax) + a(νmax) ·
(
ν − νmax

∆ν

)2
, (C.1)

where σmin(νmax) and a(νmax) are parameters of the uncertainty
model depending on the frequency of maximum oscillation
power of the individual star. By dividing the frequency difference
ν − νmax by ∆ν, we introduce a typical scale for this difference.
This removes the dependence of the parameters a and σmin on
this typical frequency scale. We obtained the parameters a and
σmin using 2237 red giant stars analysed with the peak-bagging
code TACO (Hekker et al. in prep., N. Themessl private commu-
nication). To determine the dependence of the uncertainty model
parameters on the estimated νmax, we grouped the stars in bins
of νmax and fit our uncertainty model Eq. (C.1) to all radial mode
frequency uncertainties in the νmax bin under consideration. The
resulting parameter values of a and σmin as a function of νmax
are shown in the upper and lower panel of Fig. C.1, respectively.
We modelled the parameter values as a linear function of νmax,
indicated by the black dashed lines in Fig. C.1. We observe a
slight increase of the parameter a as νmax increases, while the
minimum uncertainty stays approximately constant.

For the sake of simplicity, we assume that the uncertain-
ties on dipole mode frequencies are comparable to those of the
radial modes. Therefore, we used the same model to compute the
uncertainties on the dipole mode frequencies. Due to the smaller
width of the dipole modes in the power spectrum as compared
to radial modes, this assumption most likely overestimates the
uncertainties on their frequencies, leading to an underestimation
of the χ2 values. Further, the varying mixed-mode nature has an
impact on the uncertainties of the dipole mode frequencies. We
discuss in Sect. 7.1 why the variation of the uncertainties with
the mixed-mode nature does not influence our results. Finally,
from the assumption that uncertainties of modes with the same
(n, `) but different m are equal, we derive the uncertainties of the
rotational splittings from straight forward error propagation:

σδω(ν)/(2π) =

√
2

2
· σ`=0(ν) (C.2)

This completes the construction of our synthetic data sets.

Appendix D: Reference model selection

D.1. Step 1: Selection based on global seismic properties

Due to the larger uncertainties of observed luminosities, surface
gravities and effective temperatures, a pre-selection of the mod-
els based on these variables results in a too large number of stel-
lar models to consider for the further computations. In contrast,

the large frequency separation ∆ν is known with high precision
from the asteroseismic observations. As a second global aster-
oseismic quantity to put constraints on the reference model we
used the frequency of maximum oscillation power νmax. For both
the synthetic and reference stellar model, we used the large fre-
quency separation and frequency of maximum oscillation power
computed from scaling relations (Kjeldsen & Bedding 1995)
with reference values from Themeßl et al. (2018). This can be
done in the same way for an observed star. The reference val-
ues in Themeßl et al. (2018) are calibrated to match the observed
values of ∆ν and νmax on the RGB. Therefore, as the first step of
our selection procedure, we imposed a maximum fractional error
fx on the model value of the observable x where x = ∆ν, νmax:

|xobs − xmod|

xobs
< fx (D.1)

where we choose a value of f∆ν = 0.01. For typical red giant stars
with asteroseismic observations, this results in a range of approx-
imately ±0.1 µHz. For νmax, we chose a threshold of fνmax = 0.1,
resulting in a range of approximately ±20 µHz. This is a rather
generous limit to ensure that we do not exclude models a priori
from the selection.

D.2. Step 2: Selection based on radial modes

For the second step of the selection process, we used the radial
mode χ2

rad. For every model from the grid that passed the pre-
vious step, we computed radial modes with the oscillation code
GYRE in the range 2.5 · σenv, where σenv = 0.28 · ν0.88

max (see
Mosser et al. 2012b). Then we assigned the radial mode fre-
quencies of our synthetic observable set to frequencies of the
potential reference model using the Hungarian algorithm (Kuhn
1955). The Hungarian algorithm solves the assignment problem
between two sets, given a metric. In our case, we used the abso-
lute frequency difference between observed and model frequen-
cies as a metric. We note that the model frequencies need to be
corrected for the surface effect when using observations of actual
stars instead of synthetic observations. We used the radial mode
χ2

rad as a measure of goodness of fit (see Eq. 4). Stellar models
were then selected for the next step if the χ2

rad does not exceed a
threshold, which is empirically selected. We set this to a value of
500. Again, this is a conservative limit, and we do not consider
a model with such a high value of χ2

rad to be a good fit to the
observations. As the dipole mode properties are more important
than radial modes for the rotational inversions, we do not want
to exclude models based only on their radial mode properties.

D.3. The effect of the effective temperature

For the results in Sect. 4, 5 and 6 we did not use the effective tem-
perature of the synthetic observations as a constraint on the set
of reference models. For the results in this subsection, we also
used Teff as a constraint on the reference models and explored
the impact on the rotation inversion results. In addition to ∆ν
and νmax, we selected models in a range of ±100 K around the
observed value in the first step of the selection procedure (see
Appendix D.1). The resulting distributions of the initial stellar
mass and the mixing-length parameter αMLT are shown in the
upper left and lower right panel of Fig. D.1 in orange. The results
without constraints on the effective temperature as discussed in
the main text are shown in blue. The mean value of the mass dis-
tribution when using the effective temperature as a constraint is
M = 1.08 and the mean value of the mixing-length distribution
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Fig. D.1. Mass and mixing-length parameter of selected reference mod-
els for different observational constraints. Upper left: Distribution of
initial stellar masses for reference models selected based on global stel-
lar properties and radial mode frequencies. The result for the fiducial
model is shown in blue while the result including a constraint on the
effective temperature is shown in orange. Lower right: Distribution of
mixing-length parameters for selected models. Lower left: Scatter plot
showing the mixing-length parameters versus the initial stellar mass
for selected stellar models. The stellar models were selected following
the selection process described in Appendix D.1 and D.2 (blue points).
Results including a limit on Teff of ±100 K around the observed value
using the fiducial model are shown in orange. The models were selected
from the M, αMLT-grid. The grey lines and the black dashed lines refer to
the input and the actual mean value of the blue distribution, respectively.

is αMLT = 1.77, not very different from the values obtained with-
out adding the constraint. This shows that the two fundamental
parameters that are varied on the grid are reproduced. The mean
value of the mass is most likely biased towards higher values, as
the grid is truncated at a mass of 0.8 M�, which skews the distri-
bution. The precision of the estimate could be further improved
by choosing lower values of the threshold in χ2

rad. We note how-
ever that it is not necessary to better constrain these fundamen-
tal parameters to obtain accurate rotation rates, as we discuss in
Sect. 6. The comparison of the orange and blue histograms of
the mixing-length parameter show that this parameter is mostly
constrained by the effective temperature. The restriction of the
parameter space due to the different constraints also becomes
apparent in the scatter plot shown in the lower left panel.

D.4. Threshold values of ρ and χ2
dip

For the ensemble inversion discussed in Sect. 4 suitable thresh-
old values for ρ and χ2

dip need to be determined. These threshold
values need to ensure that a large enough number of models is
selected, and the rotation rate is estimated with small bias and
reasonable uncertainties. This is shown in Fig. D.2. In the upper
panel, we show the estimated envelope rotation rate as a func-
tion of the threshold value in χ2

dip for two values of the threshold
in ρ. The input value is indicated with the grey line. The fidu-
cial model was used as the synthetic observation, and reference
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Fig. D.2. Estimated envelope rotation rate and number of selected refer-
ence models as a function of the threshold in χ2

dip. Upper panel: Enve-
lope rotation rate as a function of the threshold value in χ2

dip using
the fiducial model as the synthetic observation. The reference models
are selected from the M, αMLT-grid. The input value is shown with the
grey line. Threshold values of ρ = 0 and ρ = 0.98 are shown in blue
and orange, respectively. Lower panel: Number of models selected as a
function of the threshold value in χ2

dip. Synthetic observation and stel-
lar model grid are the same as in the upper panel. The colours have the
same meaning as in the upper panel.

models were selected from the M, αMLT-grid. The error bars indi-
cate the reference model uncertainties as defined in Sect. 4. To
exploit the ensemble inversion method, we aim at selecting a
large enough number of reference models. This leads to larger
values of the threshold in χ2

dip than one would use to optimise
for a single reference model. In Fig. D.2, the limiting cases for
ρ = 0 or large χ2

dip show that also using ρ or χ2
dip alone would be

sufficient to obtain an accurate estimate of the envelope rotation
rate. The limiting cases are discussed in Appendix D.5 below.

In the lower panel of Fig. D.2 we show the number of mod-
els that got selected as a function of the threshold in χ2

dip, for two
values of the threshold in ρ. The number of models increases
with increasing the threshold value of χ2

dip or decreasing values
of ρ. For high values of χ2

dip the number of models saturates as all
available models got selected. To obtain well constrained aver-
age values, we argue that the standard error of the mean estima-
tor goes as σ/

√
N, assuming normally distributed data with uni-

form standard deviations. So a number of selected models larger
than about 50 leads to a robust estimator of the mean.

D.5. Comparison of metrics

In this section we compare results computed with different met-
rics, that is, with ρ only (Table D.1 and Fig. D.3) and with χ2

dip
only (Table D.2 and Fig. D.4). These should be compared to the
results shown in Table 2 and Fig. 1. When using ρ only as a met-
ric the rotation rates are estimated with a similar accuracy as in
Fig. 1. However, the uncertainties increase slightly. The situation
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Fig. D.3. Ensemble inversion results for enve-
lope (left) and core (right) rotation rates for dif-
ferent synthetic observations and using ρ only as
a metric. The numerical values are summarised in
Table D.1. The error given in the dark colours in
each panel is calculated from the random and sys-
tematic errors in Table D.1 by error propagation:

σtotal =

√
σ2

random + σ2
ref . The error bar in the light

colours is representing the contribution of the ran-
dom error σrand alone. The synthetic observation
according to Table 1 is given as the x-axis label. The
vertical grey lines indicate the input values.
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Fig. D.4. Ensemble inversion results for enve-
lope (left) and core (right) rotation rates for differ-
ent synthetic observations and using χ2

dip only as
a metric. The numerical values are summarised in
Table D.2. The error given in the dark colours in
each panel is calculated from the random and sys-
tematic errors in Table D.2 by error propagation:

σtotal =

√
σ2

random + σ2
ref . The error bar in the light

colours is representing the contribution of the ran-
dom error σrand alone. The synthetic observation
according to Table 1 is given as the x-axis label. The
vertical grey lines indicate the input values.

becomes worse when using the χ2
dip as the only metric. Here,

the estimated rotation rates of the evolved model show larger
deviations from the input values. In addition, the uncertainties
increase considerably. This makes it more difficult to differen-
tiate different theories on the angular momentum transport. We
hence conclude that both metrics should be applied simultane-
ously as described in the main text to obtain the most accurate
and precise estimates of the internal rotation rates.
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Table D.1. Rotational inversion results for different synthetic observations using ρ only.

name Ωcore/(2π) σrand σref Ωenv/(2π) σrand σref ρthresh χ2
dip,thresh grid

input 750 – – 100 – – – – –
M = 1 M� 748 13 5 98 14 8 0.98 – M, αMLT
M = 1 M� 751 14 6 94 15 8 0.95 – M

[Fe/H] = −0.1 dex 744 14 8 106 16 11 0.98 – M, αMLT
[Fe/H] = +0.1 dex 748 14 6 103 14 13 0.98 – M, αMLT

∆ν = 9 µHz 746 17 4 107 22 7 0.98 – M, αMLT
∆ν = 9 µHz 751 14 6 94 15 8 0.95 – M
αMLT = 1.5 751 14 3 93 22 7 0.98 – M, αMLT
αMLT = 1.65 746 15 8 107 18 13 0.98 – M, αMLT
αMLT = 1.7 745 15 8 102 16 12 0.98 – M, αMLT
M = 1.3 M� 752 13 8 90 15 14 0.95 – M
M = 1.3 M� 750 13 6 94 14 10 0.98 – M, αMLT
M = 1.7 M� 747 13 9 131 14 11 0.95 – M
M = 1.7 M� 750 13 6 128 13 9 0.98 – M, αMLT
surf. pert. 744 14 8 108 17 11 0.98 – M, αMLT

surf. pert., surf. corr. 747 14 6 105 16 10 0.98 – M, αMLT

Notes. The rotational inversion results are computed with the ensemble rotational inversion described in Sect. 4. All rotation rates and uncertainties
given in units of nHz.

Table D.2. Rotational inversion results for different synthetic observations using χ2
dip only.

name Ωcore/(2π) σrand σref Ωenv/(2π) σrand σref ρthresh χ2
dip,thresh grid

input 750 – – 100 – – – – –
M = 1 M� 750 14 6 95 18 10 – 500 M, αMLT
M = 1 M� 752 14 4 90 17 11 – 500 M

[Fe/H] = −0.1 dex 745 15 12 104 20 15 – 500 M, αMLT
[Fe/H] = +0.1 dex 746 15 11 108 18 18 – 500 M, αMLT

∆ν = 9 µHz 728 18 23 181 24 70 – 100 M, αMLT
∆ν = 9 µHz 731 18 21 177 22 67 – 100 M
αMLT = 1.5 753 15 6 112 23 31 – 500 M, αMLT
αMLT = 1.65 751 17 14 104 21 22 – 500 M, αMLT
αMLT = 1.7 747 16 9 98 21 15 – 500 M, αMLT
M = 1.3 M� 751 14 10 95 16 16 – 500 M
M = 1.3 M� 750 13 6 94 14 10 – 500 M, αMLT
M = 1.7 M� 764 15 12 133 15 19 – 1000 M
M = 1.7 M� 760 15 13 132 16 17 – 1000 M, αMLT
surf. pert. 754 17 11 103 20 28 – 500 M, αMLT

surf. pert., surf. corr. 759 17 12 100 20 46 – 500 M, αMLT

Notes. The rotational inversion results are computed with the ensemble rotational inversion described in Sect. 4. All rotation rates and uncertainties
given in units of nHz.
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