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Log-linear exponential random graph models are a specific class of statistical network models that have
a log-linear representation. This class includes many stochastic blockmodel variants. We focus on
β-stochastic blockmodels, which combine the β-model with a stochastic blockmodel. Here, using recent
results by Almendra-Hernández, De Loera, and Petrović, which describe a Markov basis for β-stochastic
block model, we give a closed form formula for the maximum likelihood degree of a β-stochastic
blockmodel. The maximum likelihood degree is the number of complex solutions to the likelihood
equations. In the case of the β-stochastic blockmodel, the maximum likelihood degree factors into a
product of Eulerian numbers.

1. Introduction

Log-linear models form a popular class of statistical models used in categorical data analysis that have been
studied extensively in algebraic statistics (see for example [11, Chapter 1; 22, Chapter 9]). In part, what
makes log-linear models so amenable to algebraic techniques is that they have a monomial parametrization,
and thus correspond to toric varieties. Here, we focus on a particular class of log-linear models, namely
log-linear exponential random graph models (log-linear ERGMs) [15; 16; 22, Chapter 11]. Log-linear
ERGMs are statistical network models used to describe relational data (e.g., when data is in the form of a
graph or network). They are exponential families of probability distributions over the space of simple
graphs (directed or undirected, depending on model) with n vertices where, in the most common setting,
the sufficient statistic is a linear function of the adjacency matrix.

Log-linear ERGMs can be viewed as generative models where different effects govern edge formation.
For example, Erdős–Rényi random graphs are one of the simplest log-linear ERGMs where density is
the only governing effect modeled; in this setting, density is controlled with a single parameter, and the
corresponding sufficient statistic is the total number of edges. The next simplest log-linear ERGM, the β-
model, includes a parameter for each node that models the expansiveness for each edge, i.e., the propensity
to be connected to others. The sufficient statistic for the β-model is the degree sequence of the network.
Stochastic blockmodels, statistical network models where vertices are placed into groups, or blocks, and
the parameters of the model govern within-block and between-block density, also belong to the class of log-
linear ERGMs. These models are particularly relevant when modeling homophily, a tendency for vertices
with similar attributes to be connected. In this paper, we focus on the subclass of log-linear ERGMs called
β-stochastic blockmodels (β-SBM), which combine the β-model with a stochastic blockmodel [16; 19; 23].
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Log-linear ERGMs have been studied in algebraic statistics from multiple angles. The geometry of
maximum likelihood estimation for the β-model and variants are studied in [20; 21]. Combinatorial
and algebraic methods for goodness-of-fit testing for log-linear ERGMs are studied in [16; 19], while
their Markov bases have been studied in [1]. Indeed, the recent paper [1] shows that the β-SBM has a
quadratic Markov basis, which is a fundamental fact that we draw upon in this work. Here, we continue
the investigation of the β-SBM from an algebraic statistics framework by investigating its maximum
likelihood degree.

The maximum likelihood degree (ML degree) of a statistical model is the number of complex solutions
to the likelihood equations for a generic data point and is a measure of the algebraic complexity of
maximum likelihood estimation [8; 18]. While statistics is the main application of the ML degree, it is
defined with respect to a complex algebraic variety. Indeed, the ML degree considers the optimization
problem of likelihood estimation over the Zariski closure of the statistical model, thus it can be also
defined for an arbitrary algebraic variety. The Zariski closure of a log-linear model, such as the β-SBM, is
a toric variety. Recently, there has been a range of work focusing on the ML degrees of different families
of toric varieties. For example, the ML degrees for scaled toric varieties are studied in [2], where the
authors compute the ML degrees of rational normal scrolls and a large class of Veronese-type varieties.
The focus on the ML degrees of toric varieties continues in the literature with: [4], which studies the
ML degree when the design matrix corresponds to a reflexive polytope; with [3], which studies the
ML degree of two-dimensional Gorenstein toric Fano varieties; with [10], which classifies the two-way
quasi-independence models with ML degree equal to one; with [9], which explores how the ML degree
drops under different scalings of independence models and models defined by the second hypersimplex;
with [7], which studies the ML degrees of hierarchical models and three-dimensional quasi-independence
models; with [6], which studies the reciprocal ML degree of Brownian motion tree models by finding the
ML degree of related toric varieties; and with [12], which studies the ML degree for staged tree models.
This work fits within this body of literature by giving a closed form formula for the ML degree for another
family of toric varieties, one coming from statistical network analysis.

The main theorem (Theorem 3.1) of this paper gives a multiplicative formula for the ML degree for a
β-SBM with k blocks with n1, . . . , nk vertices in each block. In particular, if k >1 and N ⊆[k]={1, . . . , k}
is the set of indices for blocks containing more than two vertices, the ML degree for this β-SBM is

MLdeg(n1, . . . , nk) =
∏

i∈N
(2ni − ni − 1)

when N is nonempty, and MLdeg(n1, . . . , nk)= 1 otherwise, i.e., when all blocks have size 1 or 2. Notice
that each factor in the product is the Eulerian number A(ni , 1). When there is only a single block, the
β-SBM collapses to the log-linear model corresponding to the second hypersimplex 12,n1 . The ML
degree for this case is the Eulerian number A(n1 − 1, 1) (see Remark 23 in [2]).

The paper is structured as follows: In Section 2 we provide necessary background on the β-SBM, includ-
ing the design matrix, the corresponding toric ideal, and the likelihood equations. In Section 3, we state
the main result, followed by its proof in Section 4. The proof relies on the fact that the ML degree factors
into the product of the ML degrees of two submodels (Lemma 4.1); we prove this result in Section 5.2.
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2. Background

2.1. The log-linear ERGMS and the β-stochastic blockmodel. In general, an exponential random graph
model is a collection of probability distributions on the space of all graphs on n vertices Gn

1 with the form

Pθ (G) = Z(θ)eθ ·t (G), G ∈ Gn,

where G is represented as a vector in Rq (where q depends on the types of graphs considered), θ is a
row vector of parameters of length r , t is a map t : Rq

→ Rr called the sufficient statistic, and Z(θ) is a
normalizing constant. The image of the sufficient statistic t is a vector where each entry is a network
statistic, e.g., edge count, degree of a given vertex, number of edges in a given block of vertices, etc. When
the sufficient statistic is a linear function on the entries of a natural contingency table representation u
of the graph, as in degree-based models or stochastic blockmodels, the sufficient statistic map t can be
described with a design matrix A, and Au replaces t (G) in the expression above. In this case, we call
the model a log-linear ERGM. This connection between some statistical network models and log-linear
models was first established in [13; 14].

The β-stochastic blockmodel is a log-linear ERGM that combines the features of the beta model and
the stochastic blockmodel [16; 19; 23]; it is also known as the exponential family version of the degree
corrected stochastic block model. The description of the model begins with a set of vertices and a block
assignment of the vertices. In this exposition, we assume that the block assignment is known. This case
is useful when testing for effects of homophily in networks. In other applications, such as clustering, the
block assignment is treated as a latent variable.

Let n and k be integers such that n ≥ 2 and k ≥ 1. Here, n will be the total number of vertices and k
the number of blocks. Given positive integers n1, n2, . . . , nk whose sum is n, let Vi = {(i, v) : 1 ≤ v ≤ ni }

for 1 ≤ i ≤ k. The set V =
⋃k

i=1 Vi is the set of vertices, partitioned by the blocks Vi of sizes ni ,
respectively. Notice that we are defining the vertex set so that each vertex is an ordered pair where
the first entry indicates the block membership of the vertex. While initially cumbersome, this notation
will have advantages later on. We denote by E the set of dyads, i.e., potential (undirected) edges
{(i, v), ( j, w)}. Formally,

E =

k⋃
i=1

k⋃
j=i

Ei, j , where Ei, j = E j,i =

{
{{(i, v), (i, w)} : 1 ≤ v < w ≤ ni } if i = j,

{{(i, v)( j, w)} : 1 ≤ v ≤ ni , 1 ≤ w ≤ n j } if i ̸= j,

where Ei,i contains potential edges within block i and those between distinct blocks i and j are in Ei, j .
Following [16; 19], the β-SBM is parametrized by node-specific parameters β(i,v) for 1 ≤ i ≤ k and

1 ≤ v ≤ ni , as in the beta model, and block-specific parameters αi, j for 1 ≤ i ≤ j ≤ k, as in the stochastic
blockmodel. The β-SBM is a dyad-independent model, meaning that the presence or absence of each
edge is independent of the presence or absence of any other edge. Thus, we can specify the probability of

1Depending on context, sometimes Gn represents the space of all directed graphs on n vertices and sometimes it represents
the space of all undirected graphs on n vertices, with possibly other constraints, such as simple, also specified. For us, in the
remainder of the manuscript, Gn will be the space of all simple, undirected graphs on n vertices.
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observing a specific graph by specifying the probabilities of each edge. To this end, we give the log-odds
for the probability p(i,v)( j,w) of each dyad (i, v)( j, w) being connected by an edge:

log
(

p(i,v)( j,w)

1− p(i,v)( j,w)

)
= β(i,v) +β( j,w) +αi, j .

Alternatively, with an appropriate transformation of parameters, we can specify a monomial parametriza-
tion for the probabilities:

p(i,v)( j,w) = β ′

(i,v)β
′

( j,w)α
′

i, j .

We use M(n1, n2, . . . , nk) to denote the set of all probability distributions on Gn that arise from the
β-SBM parametrization where k is the number of vertex blocks and ni is the size of the i-th block.

Log-linear ERGMs are defined in terms of their sufficient statistic, which is related to the design
matrix A. In particular, if we determine the probability of observing a given graph G ∈ Gn by multiplying
the probabilities of observing each dyad in the graph, then the exponents on the β ′ and α′ will correspond
to the entries of the sufficient statistic of G for the model. In this case, the entries of the sufficient
statistic will be elements of the degree sequence (e.g., the exponent on β ′

(1,1) is the degree of vertex (1, 1)

in G) and the numbers of edges within blocks and between block pairs. For a graph G on vertex set V,
let d(i,v) be the degree of the vertex (i, v) in G, i.e., the number of edges in G which are incident with the
vertex (i, v). More formally, the vector of sufficient statistics for G is

t (G) =
(
d(1,1), d(1,2) . . . , d(k,nk), |E1,1|, |E1,2|, . . . , |E1,k |, |E2,2|, |E2,3|, . . . , |Ek,k |

)
(1)

in which the vertices are ordered lexicographically and the block pairs are also ordered lexicographically.

Example 2.1. Figure 1 shows a graph G containing 3 blocks of sizes 3, 4, and 3 with some edges between
the blocks. The sufficient statistic t (G) for the graph is (2, 4, 3, 4, 4, 3, 2, 3, 3, 2, 2, 3, 2, 3, 4, 1).

block 1

(1, 1) (1, 2) (1, 3)

block 2

(2, 1)

(2, 2)

(2, 3)

(2, 4)

block 3

(3, 1)

(3, 2)

(3, 3)

Figure 1. A graph with three blocks of sizes 3, 4, and 3.
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2.2. The design matrix and likelihood equations. As described in [16; 19], the β-SBM can be specified
as a log-linear model. The contingency table representation of the model including table dimensions
and marginals is given in [16]. For a log-linear model, the defining marginals, which correspond to the
sufficient statistic, are described by a design matrix A. We begin with describing the design matrix for
the β-SBM.

The design matrix A associated with the β-stochastic blockmodel M(n1,n2,...,nk) is a
(
n+k+

(k
2

))
×|E|

zero-one matrix with entries as follows. We index the columns by the variables p(i,v)( j,w) with (i, v)( j, w)∈

E , and we index the rows by the parameters β(ℓ,x) for each (ℓ, x) ∈ V and αℓ1,ℓ2 for each combination
of blocks {ℓ1, ℓ2} ⊆ [k] where it may be the case ℓ1 = ℓ2. The entry in row β(ℓ,x) and column p(i,v)( j,w)

equals 1 if either (ℓ, x) = (i, v) or (ℓ, x) = ( j, w), and equals 0 otherwise, and the entry in row αℓ1,ℓ2

and column p(i,v)( j,w) equals 1 if {ℓ1, ℓ2} = {i, j} and equals 0 otherwise. The β rows are ordered
lexicographically, followed by the α rows, also ordered lexicographically.

Example 2.2. Consider the model M(3, 2), i.e., the model containing blocks V1 = {(1, 1), (1, 2), (1, 3)}

and V2 = {(2, 1), (2, 2)}. This model is specified by
(3+2

2

)
= 10 edge probabilities. The design matrix

corresponding to this model is provided here:



p(1,1)(1,2) p(1,1)(1,3) p(1,1)(2,1) p(1,1)(2,2) p(1,2)(1,3) p(1,2)(2,1) p(1,2)(2,2) p(1,3)(2,1) p(1,3)(2,2) p(2,1)(2,2)

β(1,1) 1 1 1 1 0 0 0 0 0 0
β(1,2) 1 0 0 0 1 1 1 0 0 0
β(1,3) 0 1 0 0 1 0 0 1 1 0
β(2,1) 0 0 1 0 0 1 0 1 0 1
β(2,2) 0 0 0 1 0 0 1 0 1 1
α1,1 1 1 0 0 1 0 0 0 0 0
α1,2 0 0 1 1 0 1 1 1 1 0
α2,2 0 0 0 0 0 0 0 0 0 1


Note that the upper 5 × 10 submatrix is the vertex-edge incidence matrix of the complete graph on 5
vertices. This submatrix is the design matrix for the second hypersimplex 12,5.

For a log-linear model given by a design matrix A, we denote by V (A) the Zariski closure of the
model MA, and we denote by IA := I (V (A)) the defining ideal of V (A). For log-linear models, the
ideal IA is a toric ideal generated by binomials (see [5; 11; 22]). Furthermore, for log-linear models,
given an observation u, the maximum likelihood estimate p̂ is the unique nonnegative solution of the
system of polynomial equations given by

A p = Au and p ∈ V (A).

For β-stochastic block models, a generating set for the ideal IA is given in [1]. In particular, the authors
of [1] show that IA is generated by quadratics. Each quadratic binomial in IA for a β-SBM corresponds to
a Markov move, i.e., a move between two graphs with the same sufficient statistic. These moves exchange
one nonadjacent pair of edges for another pair of edges on the same four distinct vertices. The quadratic
equations obtained by setting each element of the generating set equal to zero, together with the linear
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equations A p = Au, constitute the likelihood equations, (see [11; 17; 22]). These quadratic equations are
categorized in Table 1 with names that we will use to refer to both the equations and their corresponding
binomials, as needed. Table 1 also shows the graph moves for these equations, using colors to emphasize
the distinction between different blocks.

Example 2.3. Consider the model M(4, 2, 1). The design matrix has 7 β-rows and 6 α-rows, resulting
in 13 linear equations. There are 3 within block quadratic equations, all within block 1, including, e.g.,
p(1,1)(1,2) p(1,3)(1,4) − p(1,1)(1,3) p(1,2)(1,4) = 0. There are 36 equations of the form 3-1, including, e.g., the
equation p(1,1)(1,2) p(1,3)(2,1) − p(1,1)(1,3) p(1,2)(2,1) = 0. There are 6 equations of the form 2-2, including,
e.g., the equation p(1,1)(2,1) p(1,2)(2,2)− p(1,1)(2,2) p(1,2)(2,1) = 0. Finally, there are 16 equations of the form
2-1-1, including, e.g., p(1,1)(2,1) p(2,2)(3,1) − p(1,1)(2,2) p(2,1)(3,1) = 0. In total, there are 13 linear and 61
quadratic likelihood equations for this model.

name equation structure graph structure

within
block

p(i,t)(i,u) p(i,v)(i,w)

−p(i,t)(i,v) p(i,u)(i,w) = 0

(i, t)

(i, u)

(i, v)

(i, w)

⇐⇒

(i, t)

(i, u)

(i, v)

(i, w)

3-1
p(i,t)( j,w) p(i,u)(i,v)

−p(i,t)(i,u) p(i,v)( j,w) = 0

(i, t)

(i, u)

(i, v)

( j, w) ⇐⇒

(i, t)

(i, u)

(i, v)

( j, w)

2-2
p(i,t)( j,v) p(i,u)( j,w)

−p(i,t)( j,w) p(i,u)( j,v) = 0

(i, t)

(i, u)

( j, v)

( j, w)

⇐⇒
(i, t)

(i, u)

( j, v)

( j, w)

2-1-1
p(i,t)( j,v) p(i,u)(k,w)

−p(i,t)(k,w) p(i,u)( j,v) = 0

(i, t)

(i, u)

( j, v)

(k, w)

⇐⇒
(i, t)

(i, u)

( j, v)

(k, w)

Table 1. Quadratic likelihood equations and their corresponding graph moves.
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Let M be a β-SBM M(n1, n2, . . . , nk) and let u = (u(i,v)( j,w)) ∈ C|E | be a generic point. Then we
will denote by L(M) the system of likelihood equations consisting of the linear equations A( p− u) = 0
and the quadratic equations described in Table 1. The number of solutions p = (p(i,v)( j,w)) ∈ C|E | to the
system L(M) is known as the maximum likelihood degree of the model [11; 17; 22] which we denote by
MLdeg(M).

Lemma 2.4. Let k be a positive integer and τ : [k]→[k] be a permutation of [k]. If M1=M(n1,n2, . . . ,nk)

and M2 =M(nτ(1),nτ(2), . . . ,nτ(k)) are β-SBMs then MLdeg(M1) = MLdeg(M2).

Proof. The solutions of L(M1) and L(M2) differ only by a permutation of coordinates and so the two
sets of solutions are equicardinal. □

Throughout the remainder of this manuscript, we will use the notation MLdeg(n1, n2, . . . , nk) to
mean MLdeg(M), where M is a β-SBM M(n1, n2, . . . , nk). By Lemma 2.4, MLdeg(n1, n2, . . . , nk) is
well-defined.

3. The main theorem

In this section, we state the main theorem, give an example of its application, and state three immediate
corollaries. We will prove the main theorem in Section 4.

Theorem 3.1 (the maximum likelihood degree of β-SBMs). Given positive integers n, k, n1, n2, . . . , nk

such that n, k > 1,

(1) MLdeg(n) =

{
1 if n = 2,

2n−1
− n if n > 2,

(2) MLdeg(n1, 1) = MLdeg(n1 + 1), and

(3) MLdeg(n1, n2, . . . , nk) =
∏

i∈[k]
MLdeg(ni , 1).

Example 3.2. Consider the model M(5, 3, 1, 6, 1, 2) consisting of six blocks with 5, 3, 1, 6, 1, and 2
vertices respectively. Using Theorem 3.1, we can calculate the ML degree of M(5, 3, 1, 6, 1, 2) as

MLdeg(5,3,1,6,1,2) = MLdeg(5,1)MLdeg(3,1)MLdeg(1,1)MLdeg(6,1)MLdeg(1,1)MLdeg(2,1)

= MLdeg(6)MLdeg(4)MLdeg(2)MLdeg(7)MLdeg(2)MLdeg(3)

= (25
− 6)(23

− 4)(1)(26
− 7)(1)(22

− 3) = 5928.

Remark 3.3. Note that MLdeg(n) = A(n − 1, 1) and MLdeg(n, 1) = A(n, 1), where A(n − 1, 1)

and A(n, 1) are Eulerian numbers. The Eulerian number A(n, k) is the number of permutations of
the numbers 1 to n with k ascents. As discussed in [2, Remark 23], the ML degree of the second
hypersimplex 12,n , which corresponds to the β-SBM model M(n) is exactly A(n − 1, 1).

By combining the three parts of Theorem 3.1, we obtain a formula involving a product of Eulerian
numbers for the ML degree of a β-SBM of arbitrary size.
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Corollary 3.4. Let k, n1, n2, . . . , nk be positive integers such that k > 1. If N ⊆ [k] is the set of indices
for blocks containing more than two vertices,

MLdeg(n1, n2, . . . , nk) =
∏

i∈N
MLdeg(ni , 1) =

∏
i∈N

(2ni − (ni + 1)),

when N is nonempty, and MLdeg(n1, . . . , nk) = 1 otherwise (when all blocks have size 1 or 2).

Theorem 3.1 shows that the ML degree of a β-SBM is a product of ML degrees of models involving the
blocks, thus, an immediate corollary is that augmenting a model with either new blocks or new vertices
in existing blocks does not decrease its maximum likelihood degree. In other words, the maximum
likelihood degree of β-stochastic blockmodels exhibits a type of monotonicity.

Corollary 3.5. Let M1 = M(m1, m2, . . . , m j ) and M2 = M(n1, n2, . . . , nk) be β-SBMs. If j ≤ k and
mi ≤ ni for all 1 ≤ i ≤ j then MLdeg(M1) ≤ MLdeg(M2).

4. Proof of the main theorem

In this section we provide the proof of the main theorem, Theorem 3.1, beginning with the first part.

Proof of Theorem 3.1(1). Let n be a positive integer such that n ≥ 2, and let M be the single block β-SBM
on n vertices with design matrix A. If n = 2, the system of equations L(M) consists only of the linear
system A( p− u) = 0, and since any G ∈ G2 has at most one edge, the matrix A has only a single column.
Thus, ker(A) = 0 and L(M) has a unique solution p = u, so MLdeg(M) = 1.

Now suppose n > 2. The single α row α1,1, which consists of all 1s, in the design matrix of A is a
linear combination of the β rows. Thus, A and the matrix formed by removing row α1,1 are row equivalent
and this new matrix is the incidence matrix of the complete graph on n vertices. By [2, Remark 23], the
maximum likelihood degree is 2n−1

− n. See also Remark 3.3. □

Now we consider β-SBMs with more than one block. In the case where we have two blocks, one with
a single vertex, the ML degree is the same as the ML degree for the single block model with the same
number of vertices.

Proof of Theorem 3.1(2). Let n1 be a positive integer. Let M and M ′, be β-SBM’s, with n1 + 1 vertices.
Let M have a single block with vertex set V1 = {(1, v) : 1 ≤ v ≤ n1 + 1} and let M ′ have two blocks with
vertex sets V ′

1 = {(1, v) : 1 ≤ v ≤ n1} and V ′

2 = {(2, 1)}. The quadratic likelihood equations for M that do
not use vertex (1, n1 + 1) are identical to those for M ′ that do not use vertex (2, 1). Moreover, there is
a one-to-one correspondence between the within block quadratics of M that use vertex (1, n1 + 1) and
the 3-1 quadratics of M ′ that use vertex (2, 1). These are the only quadratic likelihood equations for these
models, and their solution sets are the same after relabeling the singleton vertex.

Now consider the linear equations. Let A and A′ be the design matrices for M and M ′ respectively.
First, notice that the β rows of A and A′ are the same if we identify the (1, n1 + 1) vertex of M with
the (2, 1) vertex of M ′. Since M has only one block, A has only one α row, α1,1, consisting of all 1s.
The A′ design matrix has three α rows, and we can go from A to A′ using row operations as follows.
The α1,1 row of A′ is obtained by subtracting the β(1,n1+1) row of A (which is the same as the β(2,1) row
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of A′) from the α1,1 row of A. The α1,2 row of A′ is the same as the β(1,n1+1) row of A, and the α2,2 row
of A′ consists of all 0s. Thus, A( p− u) = 0 and A′( p− u) = 0 have the same solution set if we relabel
the (2, 1) vertex of M ′, and therefore MLdeg(n1 + 1) = MLdeg(n1, 1). □

We will need the following lemma to prove Theorem 3.1(3); the proof of the lemma is in Section 5.2.

Lemma 4.1 (factoring lemma). Let M be a β-SBM M(n1, n2, . . . , nk) with k > 1. Then

MLdeg(n1, n2, . . . , nk) = MLdeg(n1, n2, . . . , nk−1, 1) MLdeg(nk, 1).

Proof of Theorem 3.1(3). Let k, n1, n2, . . . , nk be positive integers such that k > 1. Given a β-SBM
M(n1, n2, . . . , nk) with design matrix A, define m = |{i ∈ [k] : ni > 1}|, i.e., the number of blocks
having more than one vertex, and proceed by induction on m. For the base case, assume m = 0, that is,
n1 = n2 = · · · = nk = 1. Then there are no quadratic equations in L(M), only linear equations given
by A p = Au. Let e ∈ E be a potential edge for M. Then e = (i, 1)( j, 1) for i, j ∈ [k] such that i ̸= j.
Notice that the αi, j row of A consists of a single 1 in the p(i,1)( j,1) column, so pe = ue. Thus, A p = Au
has only the solution p = u and since MLdeg(1, 1) = 1 by Theorem 3.1(1), (2),

MLdeg(n1, n2, . . . , nk) = 1 =
∏

i∈[k]
1 =

∏
i∈[k]

MLdeg(1, 1) =
∏

i∈[k]
MLdeg(ni , 1),

proving the base case.
Now suppose that the claim is true for some fixed but arbitrary m = m0 ≥ 0 and consider a model

M =M(n1, n2, . . . , nk) with m = m0 +1 ≥ 1 blocks having more than one vertex. Lemma 2.4 allows us
to assume that nk > 1. Then by Lemma 4.1,

MLdeg(n1, n2, . . . , nk) = MLdeg(n1, n2, . . . , nk−1, 1) MLdeg(nk, 1).

The model in the first factor now has m0 blocks with more than one vertex, so we can apply the inductive
hypothesis and the fact that MLdeg(1, 1) = 1 to get

MLdeg(n1, n2, . . . , nk−1, 1) =
( k−1∏

i=1
MLdeg(ni , 1)

)
MLdeg(1, 1) =

k−1∏
i=1

MLdeg(ni , 1),

and therefore MLdeg(n1, n2, . . . , nk) =
∏k

i=1 MLdeg(ni , 1), as desired. □

5. Proof of the factoring lemma

The proof of the main theorem relies heavily on the Lemma 4.1, the factoring lemma, and the proof of
Lemma 4.1 is where the main work of this paper lies. The proof hinges on the fact that there is a complete
description of the generating set of the ideal IA.

Throughout this section, we will use the following notation. Let k, n1, n2, . . . , nk be positive in-
tegers with k > 1, and let M = M(n1, n2, . . . , nk) be a β-SBM where block i has vertex set Vi =

{(i, v) : 1 ≤ v ≤ ni } for each i ∈ [k], and potential edge set E =
⋃k

i=1
⋃k

j=1 Ei, j as previously defined.
Let A be the design matrix for M. Given a generic point u ∈ C|E |, we denote the system of likelihood
equations for M by L(M), with S ⊆ C|E | being the corresponding solution set.
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5.1. Constructing new models by contracting blocks. To prove Lemma 4.1, we introduce new models,
M1, M2, illustrated in Figure 2, each arising from the model M by collapsing a particular portion of M to
a single vertex block. Call the vertex set of this block V∗ = {(∗, 1)}.

Definition 5.1. Let M =M(n1, . . . , nk) be a β-SBM. Let M1 be a modification of the model M obtained
by the contraction of block Vk to a single vertex (∗, 1). The set of potential edges for M1 is

E1 =

( k−1⋃
i=1

k−1⋃
j=i

Ei, j

)
∪

( k−1⋃
i=1

Ei,∗

)
, where Ei,∗ = {(i, v)(∗, 1) : 1 ≤ v ≤ ni }.

We will denote the design matrix for M1 as A1. Suppose p ∈ S, and let u ∈ C|E | be a generic point.
For each i ∈ [k − 1] and v ∈ [ni ], define p(i,v)(∗,1) :=

∑nk
w=1 p(i,v)(k,w) and u(i,v)(∗,1) :=

∑nk
w=1 u(i,v)(k,w).

Define u1 ∈ C|E1| so that the coordinate indexed by e ∈ E1 is ue. In particular, the coordinates of u
and u1 agree on all potential edges that appear in both M and M1, while the remaining coordinates,
corresponding to the edges in Ei,∗ are defined above. Finally, we will refer to the set of complex solutions
to the system L(M1) as S1. Note that |S1| = MLdeg(M1) = MLdeg(n1, n2, . . . , nk−1, 1).

Definition 5.2. Let M =M(n1, . . . , nk) be a β-SBM. Let M2 be a modification of the model M obtained
by the contraction of blocks V1, V2, . . . , Vk−1 to a single vertex (∗, 1). The set of potential edges for M2 is

E2 = E∗,k ∪ Ek,k, where E∗,k = {(∗, 1)(k, w) : 1 ≤ w ≤ nk}.

We will denote the design matrix for M2 as A2. Suppose p ∈ S, and let u ∈ C|E | be a generic point.
For each w ∈ [nk], define p(∗,1)(k,w) :=

∑k−1
i=1

(∑ni
v=1 p(i,v)(k,w)

)
and u(∗,1)(k,w) :=

∑k−1
i=1

(∑ni
v=1 u(i,v)(k,w)

)
.

Define u2 ∈ C|E2| so that the coordinate indexed by e ∈ E2 is ue. In particular, the coordinates of u
and u2 agree on all potential edges that appear in both M and M2, while the remaining coordinates,
corresponding to the edges in E∗,k are defined above. Finally, we will refer to the set of complex solutions
to the system L(M2) as S2. Note that |S2| = MLdeg(M2) = MLdeg(nk, 1).

M1

(1, 1)

(1, 2)

(1, n1)

...

(2, 1)

(2, 2)

(2, n2)

...

(k − 1, 1)

(k − 1, 2)

(k − 1, nk−1)

...

(k, 1)

(k, 2)

(k, nk)

...
· · ·

(∗, 1)

M2

Figure 2. The blocks of M1 and M2. This figure exhibits the blocks of M together with the
newly defined block V∗ while also indicating which blocks are members of M1 and which
blocks are members of M2.
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Because our graphs contain no self-adjacent vertices, we introduce the following convention to simplify
the index notation for sums. For all i ∈ [k] ∪ {∗} and for all (i, v) ∈ Vi , define p(i,v)(i,v) = u(i,v)(i,v) = 0.

5.2. Proof of factoring lemma. Lemma 4.1 allows us to write the ML degree of model M as the
product of the ML degrees of models M1 and M2. To prove this lemma, we will construct a bijective
map φ : S → S1 × S2. To begin, we show that given a solution p ∈ S of L(M), we can obtain
solutions ( p1, p2) ∈ S1 ×S2.

Lemma 5.3. Let u ∈ C|E | be generic, and let p ∈ S be a particular solution of the system L(M), both
indexed by E with coordinates u(i,v)( j,w) and p(i,v)( j,w) for (i, v)( j, w) ∈ E , respectively. Let u1, S1, u2,
and S2 be as defined in Definitions 5.1 and 5.2. If p1 ∈ C|E1| is defined so that the coordinate indexed by
e∈ E1 is pe and p2 ∈C|E2| is defined so that the coordinate indexed by e∈ E2 is pe, then ( p1, p2)∈S1×S2.

Proof. Let u∈C|E | and define u1 and u2 as above. Assume p∈S and define p1 and p2 as in the statement
of the lemma. Since p ∈ S, A p = Au, and p satisfies the quadratic equations in L(M). First we show
that A1 p1 = A1u1. Let i ∈ [k − 1] and v ∈ [ni ], and consider the β(i,v) row of A. Then since A p = Au,( k−1∑

j=1

( n j∑
w=1

p(i,v)( j,w)

))
+

nk∑
w=1

p(i,v)(k,w) =

( k−1∑
j=1

( n j∑
w=1

u(i,v)( j,w)

))
+

nk∑
w=1

u(i,v)(k,w)

and by definition of p(i,v)(∗,1) and u(i,v)(∗,1) (Definition 5.1),( k−1∑
j=1

( n j∑
w=1

p(i,v)( j,w)

))
+ p(i,v)(∗,1) =

( k−1∑
j=1

( n j∑
w=1

u(i,v)( j,w)

))
+ u(i,v)(∗,1)

which is the β(i,v) row of A1 p1 = A1u1. Now let i ∈ [k − 1] and consider the αi,k row of A p = Au:
ni∑

v=1

( nk∑
w=1

p(i,v)(k,w)

)
=

ni∑
v=1

( nk∑
w=1

u(i,v)(k,w)

)
. (2)

By definition of p(i,v)(∗,1) and u(i,v)(∗,1), we get
ni∑

v=1
p(i,v)(∗,1) =

ni∑
v=1

u(i,v)(∗,1). (3)

Since this equality holds for each i ∈ [k − 1], we can sum over i , which gives

k−1∑
i=1

( ni∑
v=1

p(i,v)(∗,1)

)
=

k−1∑
i=1

( ni∑
v=1

u(i,v)(∗,1)

)
,

the β(∗,1) row of A1 p1 = A1u1. Notice that the αi,k row above in (3) is also the αi,∗ row of A1 p1 = A1u1.
For i, j ∈ [k −1], the αi, j row in A1 p1 = A1u1 provides the same equation as the corresponding αi, j row
in A p = Au. Thus, we have checked all rows and A1 p1 = A1u1.

Now we show that p1 satisfies the quadratic equations in L(M1). First note that all quadratic equations
in L(M1) that are within and between the first k−1 blocks, V1, V2, . . . , Vk−1, are the same as the quadratic
equations within and between blocks V1, V2, . . . , Vk−1 in L(M). Thus p1 satisfies all quadratic equations
in L(M1) that are between and within the first k − 1 blocks of L(M1). This leaves us only with the 3-1
and 2-1-1 quadratic equations involving block V∗.
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Let i, j ∈ [k − 1], a, b ∈ [ni ], and c ∈ [n j ]. Using Definition 5.1, we obtain

p(i,a)( j,c) p(i,b)(∗,1) − p(i,a)(∗,1) p(i,b)( j,c) = p(i,a)( j,c)

( nk∑
w=1

p(i,b)(k,w)

)
−

( nk∑
w=1

p(i,a)(k,w)

)
p(i,b)( j,c)

=

nk∑
w=1

(
p(i,a)( j,c) p(i,b)(k,w) − p(i,a)(k,w) p(i,b)( j,c)

)
. (4)

When i = j and a, b, and c are distinct, the left-hand side of (4) is a 3-1 binomial involving block V∗

in L(M1), and it is equal to 0 since the right-hand side is a sum of 3-1 binomials in L(M). Similarly,
when i ̸= j and a ̸= b, the left-hand side of (4) is a 2-1-1 binomial involving V∗ in L(M1), and it is equal
to 0 since the right-hand side is a sum of 2-1-1 binomials in L(M). Thus, we have shown that p1 satisfies
all of the quadratic equations in L(M1), and therefore, p1 ∈ S1.

Now we show that A2 p2 = A2u2. Let w ∈ [nk] and consider the β(k,w) row of A. Since A p = Au,( k−1∑
i=1

( ni∑
v=1

p(i,v)(k,w)

))
+

nk∑
c=1

p(k,c)(k,w) =

( k−1∑
i=1

( ni∑
v=1

u(i,v)(k,w)

))
+

nk∑
c=1

u(k,c)(k,w),

and by definition of p(∗,1)(k,w) and u(∗,1)(k,w),

p(∗,1)(k,w) +

nk∑
c=1

p(k,c)(k,w) = u(∗,1)(k,w) +

nk∑
c=1

u(k,c)(k,w),

which is the β(k,w) row of A2 p2 = A2u2. Let i ∈ [k − 1] and consider the αi,k row of A p = Au, which
is (2) above. Since we have one of these equations for each i ∈ [k − 1], we can sum over i to obtain

k−1∑
i=1

( ni∑
v=1

( nk∑
w=1

p(i,v)(k,w)

))
=

k−1∑
i=1

( ni∑
v=1

( nk∑
w=1

u(i,v)(k,w)

))
,

and by Definition 5.2, we have
∑nk

w=1 p(∗,1)(k,w)=
∑nk

w=1 u(∗,1)(k,w), which is the β(∗,1) row of A2 p2= A2u2.
The αk,k row of A2 p2 = A2u2 is the same as the αk,k row of A p = Au, so we just need the α∗,k row of
A2 p2 = A2u2, which is the same as the β(∗,1) row, obtained above. Thus, A2 p2 = A2u2.

Now we show that p2 satisfies the quadratic equations in L(M2). All quadratic equations within
block Vk in L(M2) are the same as the within block Vk quadratic equations from L(M). All we need to
check are the 3-1 quadratic equations between block V∗ and block Vk . Let a, b, c ∈ [nk] be distinct. Note
that if distinct a, b and c do not exist, then L(M2) has no 3-1 quadratic equations involving block V∗.
Using Definition 5.2, the 3-1 quadratic binomials in L(M2) involving V∗ satisfy

p(k,a)(k,b) p(∗,1)(k,c) − p(k,b)(k,c) p(∗,1)(k,a)

= p(k,a)(k,b)

( k−1∑
i=1

( ni∑
v=1

p(i,v)(k,c)

))
− p(k,b)(k,c)

( k−1∑
i=1

( ni∑
v=1

p(i,v)(k,a)

))
=

k−1∑
i=1

( ni∑
v=1

(
p(k,a)(k,b) p(i,v)(k,c) − p(k,b)(k,c) p(i,v)(k,a)

))
= 0,

where the last equality arises because we have a sum of 3-1 binomials from L(M). Thus, we’ve shown that
p2 satisfies all of the quadratic equations in L(M2), and therefore, p2 ∈ S. Hence, ( p1, p2) ∈ S1 ×S2. □
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Definition 5.4. Let u ∈ C|E | be generic, and define S, S1, S2, u1, and u2 as in Definitions 5.1 and 5.2.
Define the function φ : S → (S1 ×S2) by φ( p) = ( p1, p2) for p ∈ S ⊆ C|E | where for p1 ∈ S1 ⊆ C|E1|,
the coordinate indexed by e ∈ E1 is pe, and for p2 ∈ S2 ⊆ C|E2|, the coordinate indexed by e ∈ E2 is pe,
as in Lemma 5.3.

Our goal now is to show φ is a bijection. First, we show that given solutions to L(M1) and L(M2),
one can construct a solution to L(M). In particular, we can construct an element of S from an element
of S1 and an element of S2. To do this, we will need the following lemma, which relates coordinates of
an element of S1 to those of an element of S2.

Lemma 5.5. Let u ∈ C|E | and define u1 ∈ C|E1| and u2 ∈ C|E2| as in Definitions 5.1 and 5.2. Let
( p̂1, p̂2) ∈ S1 ×S2 with coordinates, p̂e, of p̂1 indexed by e ∈ E1 and coordinates, p̂e, of p̂2 indexed by
e ∈ E2. Then

nk∑
a=1

p̂(∗,1)(k,a) =

k−1∑
j=1

n j∑
b=1

p̂( j,b)(∗,1).

Proof. Let ( p̂1, p̂2) ∈ S1 × S2 as in the statement of the lemma. Then p̂1 must satisfy all equations
in L(M1), and must in particular satisfy the linear equations A1 p̂1 = A1u1 and p̂2 must satisfy all
equations in L(M2), and must in particular satisfy the linear equations A2 p̂2 = A2u2. By using this along
with the definitions of u(∗,1)(k,a) and u( j,b)(∗,1), we have that

nk∑
a=1

p̂(∗,1)(k,a) =

nk∑
a=1

u(∗,1)(k,a) =

nk∑
a=1

( k−1∑
j=1

n j∑
b=1

u( j,b)(k,a)

)
=

k−1∑
j=1

n j∑
b=1

( nk∑
a=1

u( j,b)(k,a)

)
=

k−1∑
j=1

n j∑
b=1

u( j,b)(∗,1) =

k−1∑
j=1

n j∑
b=1

p̂( j,b)(∗,1),

where the first equality is true by the β(∗,1) row of A2 p̂2 = A2u2 and the last equality is true by the β(∗,1)

row of A1 p̂1 = A1u1. □

Remark 5.6. Notice that in Lemma 5.5 we are interested in an arbitrary element of S1 ×S2 rather than
one obtained from an element of S through summation. To help avoid confusion, in Lemma 5.5 and in
what follows, we use ( p̂1, p̂2) with coordinates p̂e to denote an arbitrary element of S1 ×S2 and ( p1, p2)

with coordinates pe to denote an element of S1 ×S2 obtained via the map φ defined above.

We are now ready to construct an element of S from an element of S1 and an element of S2.

Lemma 5.7. Let u ∈ C|E | be generic and define u1 ∈ C|E1| and u2 ∈ C|E2| as in Definitions 5.1 and 5.2.
Let ( p̂1, p̂2) ∈ S1 ×S2 with coordinates, p̂e, of p̂1 indexed by e ∈ E1 and coordinates, p̂e, of p̂2 indexed
by e ∈ E2. Let p ∈ C|E | with coordinates pe indexed in E such that

(a) pe = p̂e if e ∈
(
E1 \

(⋃k−1
i=1 Ei∗

))
∪ (E2 \ E∗k) (these coordinates correspond to edges in M within

and between blocks V1, V2, . . . , Vk−1 or edges within block Vk),
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(b) and for i ∈ [k − 1], v ∈ [ni ], and w ∈ [nk],

p(i,v)(k,w) :=
p̂(i,v)(∗,1) p̂(∗,1)(k,w)

nk∑
x=1

p̂(∗,1)(k,x)

(these coordinates correspond to edges in M between block Vk and another block).

Then p ∈ S.

Proof. Let u ∈ C|E | be generic, define u1 and u2 as in Definitions 5.1 and 5.2, let ( p̂1, p̂2) ∈ S1 × S2,
and define p as in the statement of the lemma. For ease of notation, we let P :=

(∑nk
a=1 p̂(∗,1)(k,a)

)−1,
allowing us to rewrite the definition in part (b) of the lemma as p(i,v)(k,w) := p̂(i,v)(∗,1) p̂(∗,1)(k,w) P for
i ∈ [k − 1], v ∈ [ni ], w ∈ [nk]. Note that since u is generic, we can assume

∑nk
a=1 p̂(∗,1)(k,a) ̸= 0. We first

show that p satisfies all quadratic equations in L(M).
The quadratic equations in L(M) within and between blocks V1, . . . , Vk−1 are the same as the quadratic

equations in L(M1) within and between blocks V1, . . . , Vk−1, since p(i,v)( j,u) = p̂(i,v)( j,u) whenever
i, j ∈ [k −1] as defined in part (a) of the lemma. Similarly, the quadratic equations in L(M) within block
Vk are the same as the quadratic equations in L(M2) within block Vk , since p(k,u)(k,w) = p̂(k,u)(k,w) as
defined in part (a) of the lemma.

This leaves us to consider the quadratic equations in L(M) that are between blocks V1, . . . , Vk−1 and
block Vk . We show that the coordinates of p satisfy all of these quadratic equations using the definition
of p along with the fact that p̂1 satisfies all quadratic equations in L(M1) and p̂2 satisfies all quadratic
equations in L(M2).

We first consider the 3-1 quadratic equations in L(M) with 3 vertices in Vk . Note that if nk < 3, there’s
nothing to prove. Let i ∈ [k − 1], v ∈ [ni ], and a, b, c ∈ [nk] distinct. Then

p(i,v)(k,a) p(k,b)(k,c) − p(i,v)(k,b) p(k,a)(k,c)

=
(

p̂(i,v)(∗,1) p̂(∗,1)(k,a) P
)

p̂(k,b)(k,c) −
(

p̂(i,v)(∗,1) p̂(∗,1)(k,b) P
)

p̂(k,a)(k,c)

= p̂(i,v)(∗,1) P
(

p̂(∗,1)(k,a) p̂(k,b)(k,c) − p̂(∗,1)(k,b) p̂(k,a)(k,c)
)
,

where the first equality is a substitution using the definition of pe in the statement of the lemma, while
the second comes from factoring to find a 3-1 binomial from L(M2), which is necessarily zero.

Now we consider the 3-1 and 2-1-1 quadratic equations in L(M) with a single vertex in block Vk . Let
i, j ∈ [k − 1], a, b ∈ [ni ], and c ∈ [n j ], and notice that by definition of pe from the lemma statement,

p(i,a)(k,d) p(i,b)( j,c) − p(i,a)( j,c) p(i,b)(k,d)

=
(

p̂(i,a)(∗,1) p̂(∗,1)(k,d) P
)

p̂(i,b)( j,c) − p̂(i,a)( j,c)
(

p̂(i,b)(∗,1) p̂(∗,1)(k,d) P
)

= p̂(∗,1)(k,d) P
(

p̂(i,a)(∗,1) p̂(i,b)( j,c) − p̂(i,a)( j,c) p̂(i,b)(∗,1)

)
. (5)

When i = j and a, b, and c are distinct, the left-hand side of (5) is a 3-1 binomial with a single vertex in
block Vk from L(M), and it must be 0 since the right-hand side involves multiplication by a 3-1 binomial
from L(M1). When i ̸= j and a ̸= b, the left-hand side of (5) is a 2-1-1 binomial with a single vertex
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in block Vk from L(M), and it must be 0 since the right-hand side involves multiplication by a 2-1-1
binomial from L(M1).

Finally, consider the 2-1-1 and 2-2 quadratic equations from L(M) with two vertices in block Vk .
Let i, j ∈ [k − 1], v ∈ [ni ], u ∈ [n j ], and a, b ∈ [nk] with a ̸= b (if distinct a and b do not exist,
there are no quadratic equations of these two types, and, thus, there is nothing to prove), and consider
p(i,v)(k,a) p( j,u)(k,b) − p(i,v)(k,b) p( j,u)(k,a). When i = j and v ̸= u, this is a 2-2 binomial with two vertices
in block Vk from L(M) and when i ̸= j, it is a 2-1-1 binomial with two vertices in block Vk . In both
cases, one can see that it is zero by applying the definition of pe from the statement of the lemma and
rearranging the first term to yield two identical terms. We have now shown that p satisfies all quadratic
equations in L(M).

Now we will show that A p = Au. We will need the following: First, let i ∈ [k − 1] and v ∈ [ni ]. Then
by definition of p, we have

nk∑
w=1

p(i,v)(k,w) =

nk∑
w=1

(
p̂(i,v)(∗,1) p̂(∗,1)(k,w) P

)
= p̂(i,v)(∗,1)

( nk∑
w=1

p̂(∗,1)(k,w)

)
P = p̂(i,v)(∗,1) P−1 P = p̂(i,v)(∗,1). (6)

Similarly, for w ∈ [nk], the definition of p and Lemma 5.5 yield

k−1∑
i=1

ni∑
v=1

p(i,v)(k,w) =

k−1∑
i=1

ni∑
v=1

(
p̂(i,v)(∗,1) p̂(∗,1)(k,w) P

)
=

( k−1∑
i=1

ni∑
v=1

p̂(i,v)(∗,1)

)
p̂(∗,1)(k,w) P = p̂(∗,1)(k,w), (7)

where the last equality holds because the expression in parentheses is P−1 by Lemma 5.5. Now we will
show that A p = Au. First let i ∈ [k − 1] and v ∈ [ni ]. Since p̂1 ∈ S1, we must have A1 p̂1 = A1u1. In
particular, we must have the β(i,v) row of this equation (from L(M1)),

k−1∑
j=1

n j∑
u=1

p̂(i,v)( j,u) + p̂(i,v)(∗,1) =

k−1∑
j=1

n j∑
u=1

u(i,v)( j,u) + u(i,v)(∗,1).

Applying (6) along with the definitions of u(i,v)(∗,1) and p yields

k−1∑
j=1

n j∑
u=1

p(i,v)( j,u) +

nk∑
w=1

p(i,v)(k,w) =

k−1∑
j=1

n j∑
u=1

u(i,v)( j,u) +

nk∑
w=1

u(i,v)(k,w),

which is the β(i,v) row of A p = Au. Now let w ∈ [nk]. Then since p̂2 ∈ S2, we must have A2 p̂2 = A2u2,
so we must have the β(k,w) row of this equation (from L(M2)),

p̂(∗,1)(k,w) +

nk∑
a=1

p̂(k,a)(k,w) = u(∗,1)(k,w) +

nk∑
a=1

u(k,a)(k,w).

By applying (7) and the definitions of u(∗,1)(k,w) and p, we obtain the β(k,w) row of A p = Au,

k−1∑
i=1

ni∑
v=1

p(i,v)(k,w) +

nk∑
a=1

p(k,a)(k,w) =

k−1∑
i=1

ni∑
v=1

u(i,v)(k,w) +

nk∑
a=1

u(k,a)(k,w).
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We now have all of the β rows of A p = Au and just need to address the α rows. First, let i, j ∈ [k − 1]
and notice that p must satisfy the αi, j row of A p = Au since this equation is the same as the equation
arising from the αi, j row of A1 p̂1 = A1u1 once we use that p(i,v)( j,w) = p̂(i,v)( j,w) for all v ∈ ni , w ∈ n j .
Similarly, the p must satisfy the αk,k row of A p = Au since this equation is the same as the αk,k row of
A2 p̂2 = A2u2 since p(k,a)(k,b) = p̂(k,a)(k,b) for all a, b ∈ [nk].

Let i ∈ [k − 1]. We must show p satisfies the αi,k row of A p = Au. The αi,∗ row of A1 p̂1 = A1u1 is∑ni
v=1 p̂(i,v)(∗,1) =

∑ni
v=1 u(i,v)(∗,1). Equation (6) and the definition of u(i,v)(∗,1) yields

ni∑
v=1

nk∑
w=1

p(i,v)(k,w) =

ni∑
v=1

nk∑
w=1

u(i,v)(k,w),

which is the αi,k row of A p = Au. Thus, we’ve shown that p ∈ S. □

Lemma 5.8. The map φ : S → S1 ×S2 defined in Definition 5.4 is a bijection.

Proof. Let u ∈ C|E | and define u1 ∈ C|E1| and u2 ∈ C|E2| as in Definitions 5.1 and 5.2. Define φ as in
Definition 5.4. Let p, q ∈ S, and assume ( p1, p2)= φ( p)= φ(q)= (q1, q2). Since p1 = q1 and p2 = q2,
pe = qe for all e ∈ E1 ∪ E2. Thus, it remains to show that pe = qe for e ∈ E \ (E1 ∪ E2). Let i ∈ [k − 1],
v ∈ [ni ], w ∈ [nk], and let e = (i, v)(k, w)∈ Ei,k . Since p, q ∈ S, both must satisfy all quadratic equations
of L(M), and we will argue that this implies that they must satisfy

p(i,v)(k,w) p(b,c)(k,a) − p(i,v)(k,a) p(b,c)(k,w) = 0, (8)

q(i,v)(k,w)q(b,c)(k,a) − q(i,v)(k,a)q(b,c)(k,w) = 0 (9)

for all b ∈ [k − 1], c ∈ [nb], and a ∈ [nk].
Let k = 2. Then i =b= 1, so when a ̸=w and c ̸= v, equations (8) and (9) are 2-2 quadratic equations of

L(M) and must hold. If a=w or c=v then each binomial is identically 0, and so the k =2 case is complete.
Let k > 2. If a ̸= w and b ̸= i , equations (8) and (9) are 2-1-1 quadratic equations of L(M) and must

hold. When a ̸= w, b = i , and c ̸= v, these equations become 2-2 quadratic equations of L(M) and must
hold. When a = w, or both b = i and c = v, then each binomial is identically 0, and (8) and (9) hold
when k > 2 for all b ∈ [k − 1], c ∈ [nb], and a ∈ [nk]. Therefore, we can sum over a, b, and c to obtain

nk∑
a=1

( k−1∑
b=1

( nb∑
c=1

(
p(i,v)(k,w) p(b,c)(k,a) − p(i,v)(k,a) p(b,c)(k,w)

)))
= 0

=⇒ p(i,v)(k,w)

( nk∑
a=1

( k−1∑
b=1

( nb∑
c=1

p(b,c)(k,a)

)))
−

( nk∑
a=1

p(i,v)(k,a)

)( k−1∑
b=1

( nb∑
c=1

p(b,c)(k,w)

))
= 0

=⇒ p(i,v)(k,w)

( nk∑
a=1

p(∗,1)(k,a)

)
− p(i,v)(∗,1) p(∗,1)(k,w) = 0 =⇒ p(i,v)(k,w) =

p(i,v)(∗,1) p(∗,1)(k,w)

nk∑
a=1

p(∗,1)(k,a)

,

where the denominator is nonzero for generic u. The same computation with (9) yields

p(i,v)(k,w) =
p(i,v)(∗,1) p(∗,1)(k,w)

nk∑
a=1

p(∗,1)(k,a)

=
q(i,v)(∗,1)q(∗,1)(k,w)

nk∑
a=1

q(∗,1)(k,a)

= q(i,v)(k,w),
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where the center equality holds because all indices involved in the two expressions are in

E∗,k ∪
(k−1⋃

i=1
Ei,∗

)
⊆ E1 ∪ E2

and we know pe =qe for e∈ E1∪E2. Thus, pe =qe for all e∈
⋃k−1

i=1 Ei,k . Since E ⊆ E1∪E2∪
(⋃k−1

i=1 Ei,k
)
,

pe = qe for all e ∈ E . Thus, p = q, and φ is injective.
Now we show φ is surjective. Let ( p̂1, p̂2)∈S1×S2. Consider the vector p∈S as defined in Lemma 5.7.

By definition of p, pe = p̂e for e ∈
(
E1 \

(⋃k−1
i=1 Ei,∗

))
∪ (E2 \ E∗,k). Therefore, for coordinates pe such

that e ∈ (E1 \
(⋃k−1

i=1 Ei,∗
)
), p1 = p̂1 and for coordinates pe such that e ∈ (E2 \ E∗,k), p2 = p̂2.

Now suppose e ∈
(⋃k−1

i=1 Ei,∗
)
, that is, e = (i, v)(∗, 1) for some i ∈ [k −1], v ∈ [ni ]. Then by using (6)

and the definition of φ, we see that the coordinate of p1 indexed by e is pe = p(i,v)(∗,1) =
∑nk

a=1 p(i,v)(k,a) =

p̂(i,v)(∗,1) = p̂e, so p1 = p̂1. Now let e ∈ E∗k , that is, e = (∗, 1)(k, w) for some w ∈ [nk]. A similar
argument as above, using (7), shows pe = p̂e, so p2 = p̂2. Thus, φ( p) = ( p1, p2) = ( p̂1, p̂2), so φ is
a surjection and hence a bijection. □

Now we are ready to prove the factoring lemma.

Proof of Lemma 4.1 (factoring lemma). Consider the β-SBM M(n1, n2, . . . , nk) such that k > 1. By
Lemma 5.8 the map φ : S → S1 ×S2 defined in Definition 5.4 is a bijection. Thus, |S| = |S1||S2|, so

MLdeg(n1, n2, . . . , nk) = MLdeg(n1, n2, . . . , nk−1, 1) MLdeg(nk, 1). □
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