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A classic multi-period stochastic energy system expansion planning (ESEP) model aims to address demand
uncertainty by requiring immediate demand satisfaction for all scenarios. However, this approach may result in
an expensive system that deviates from the planner’s long-term goals, especially when facing unexpectedly high
demand scenarios. To address this issue, we propose a chance-constrained stochastic multi-stage ESEP model
that allows for a portion of demand to remain unmet in specific periods while still ensuring complete demand
satisfaction during most of the planning horizon, including the final period. This approach provides more time
flexibility to build infrastructure and assess needs, ultimately reducing costs and allowing for a broader view
of infrastructure planning options. To solve the chance-constrained stochastic model, we introduce a binary-
search-based progressive hedging algorithm heuristic, which is particularly useful for large-scale models. We
demonstrate the effectiveness and benefits of implementing the chance-constrained model through a case study

of Rwanda using real-world data.

1. Introduction

There are multiple social and economic benefits from expanding
energy systems and improving energy access [1]. Yet building new
energy systems is often constrained by physical resources, budgets, and
environmental concerns [2]. Overcoming these challenges in a timely
manner can be difficult for energy system planners, especially when
demand is uncertain.

While future electricity demand is often estimated by extrapolat-
ing from the past, there are many examples of unexpectedly high
demand [3]. In Kenya, low investment in electricity infrastructure has
led to ongoing rolling blackouts [4] even while consumer demand
was less than projected [5]. In the United States and Europe, heat
waves are driving power consumption to historic levels. The desire
to reach sustainable development goals brings forward the complex
relationship between economic development and energy demand [6].
An energy system expansion planning (ESEP) model that acknowledges
and explicitly incorporates future demand uncertainty [7] can provides
strategic planning perspective.

The ESEP problem under demand uncertainty is generally solved
within a stochastic optimization framework [8]. In two-stage stochastic
optimization, all investment decisions are made in the first stage and

operational decisions are made in the second stage to match condi-
tions at that time. In contrast, multi-stage stochastic optimization lets
both investment and operational decisions adapt to conditions at each
planning period [9]. This more flexible structure may result in a more
cost-effective solution, although requiring additional computation.

Demand satisfaction in the standard ESEP problem requires the
planner to satisfy all demands at each planning period [10]. Ensuring
the capability to satisfy all demands at each time, particularly those
that are least probable and large, has drawbacks. First, this requirement
may result in a more expensive power infrastructure network. This
infrastructure may not be as desirable as what could be developed with
a more patient approach. To satisfy an unexpectedly large demand,
the model may prioritize building localized power generators instead
of constructing sufficient transmission lines due to time constraints.
This short-term decision-making may result in a less desirable system
compared to those with a more extensive transmission network. One
possible solution is the implementation of demand response during
the ESEP process. However, traditional demand response mechanisms
originate from the end user’s side, and the demand curtailment is
typically implemented without considering the probability of future
demand being either high or low.
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Nomenclature

Sets and Related Indices

T Set of time periods (years), indexed by ¢

Q Set of scenarios, indexed by w

Q, Set of scenarios for indistinguishable state vari-
ables at year ¢, indexed by w

D Set of generation technology types, indexed by g

K Set of transmission line types, indexed by k

L*/LE/L Set of (potential/existing/all) transmission lines,

indexed by ij denoting transmission line from
region i to region j

N Set of geographical regions, indexed by i

o Set of representative daily sub-periods, indexed
by o

Parameters

a, Chance constraint risk parameter [%]

0 Maximum value of voltage angles [radians]

n'fiis‘ Distribution efficiency in region i [%]

v Discount rate [%]

ﬂfjr.ans Loss of transmission in electricity between re-
gions i and j [%]

7, Probability associated with scenario w

BUD, Investment budget at year ¢ [$]

Bk Susceptance of type k transmission line between
region i and j [simens]

cé‘ff"c Fuel cost of generation type g at time period ¢ per
unit generated [$/MWh]

c§°“"G Annual fixed O&M cost of generation type g per
unit installed [$/MW]

c;“V'G Investment cost of generation type g per unit
installed [$/MW]

c;"’m'G Variable O&M cost of generation type g per unit
generated [$/MWh]

c{Om‘L Annual fixed O&M cost of type k transmission line
per unit distance [$/km]

inv-L

Investment cost of potential type k transmission
line per unit distance [$/km]

CF, Capacity factor of generation type g on daily
sub-period o [%]

D0 Electricity demand in region i at year ¢ on daily
sub-period o under scenario @ [MWh]

d;; Distance between region i and region j [km]

Frex Max capacity of type k transmission line

GHG!'™ Maximum allowed GHG emission at year ¢ [tons]

GHG, GHG emission for generation type g per unit
generated [tons/MWh]

h, Total hours of daily sub-period o in a year [h]

ki Type of the existing transmission line i

Qg‘m/Q‘;‘aX Annual minimal/maximum investment capacity
limit for generation type g [MW]

Qﬁ’; Existing capacity of generation type g in region i
[MW]

R, Resource limit of generation type g in region i
[MW]

RR™ Required percentage of demand for electricity

reserve [%]

to Initial year
G L L .
Tg /T, Construction time for generation type g/type k
transmission line [years]

Decision Variables

010w Voltage angle in region i at year t on daily
sub-period o under scenario w [radians]
gen I . . .
E etow Electricity generation of generation type g in

region i at year ¢ on daily sub-period o under
scenario @ [MWh]

E,regsrw Electricity reserve from generation type g in
region i at year ¢ on daily sub-period o under
scenario o [MWh]

Ee o Electricity used in region i at year ¢ on daily
sub-period o under scenario @ [MWh]

E,tﬁr}ysm Electricity flow through transmission line ij at
year ¢ on daily sub-period o under scenario @
[MWh]

Lij kot Binary variable that decides the investment of

potential transmission line ij, which is equal
to 1 if a type k transmission line starts con-
struction on ij at year ¢ under scenario ® and
0 otherwise {0,1}

trans

P ketow Power flow on type k transmission line ij at
year ¢ on daily sub-period o under scenario @
[MW]

Q?Z‘?’w/QFOgtflw Newly invested/total capacity of generation
type g in region i at year ¢ under scenario
[MW]

Zij ko Binary variable that decides the condition of

transmission lines, which is equal to 1 if a type
k transmission line is built on line i; at year ¢
under scenario @ and 0 otherwise {0,1}

We propose chance constraints to allow time-flexible demand sat-
isfaction in the multi-stage stochastic ESEP problem. Our objective is
to allow the central planner to delay meeting demand in the event of
unexpectedly high demand scenarios, with the aim of achieving a more
cost-effective energy system. From a narrow modeling perspective, in
which the decision maker strictly implements the model decisions, the
inclusion of chance constraints offers the decision maker with cost
savings at times when the demand is unexpectedly high. However, it
is important to acknowledge that decision makers are not obligated to
follow the model decisions in a broader context. If an inflexible model
requires immediate demand satisfaction through fast construction of
new infrastructure, decision makers may abandon the model. From this
perspective, chance constraints offer the flexibility that real decision
makers may prefer, making the chance-constrained model a more
realistic forecast of the cost of energy system expansion. Stochastic
optimization plans in the face of uncertainty while chance constraints
reduce costs of responding to the unexpected.

We first formulate a multi-stage stochastic optimization model un-
der operational constraints and policy limitations. Then we introduce
chance constraints to the demand satisfaction constraint, while still
ensuring that demand is satisfied for all scenarios at the end of the
planning horizon. We provide a scenario-based mixed integer linear
program reformulation of the chance constraints and develop a binary-
search-based progressive hedging algorithm (PHA) heuristic for solv-
ing the resulting stochastic program efficiently. Finally, we present a
case study for the country of Rwanda to highlight the effect of the
framework for generation and transmission investment.

There are many uncertainties during the ESEP process. To formulate
a general approach and illustrate its application, this paper develops
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a case study for a single source of uncertainty: future demand. The
chance-constrained model developed in this paper can be extended to
ensure or relax other specifications of the ESEP problem in the context
of multiple sources of uncertainty.

The remainder of the paper is organized as follows. Section 2
provides a literature review and identifies the contributions of our
paper. Section 3 presents the model description and the mathematical
formulation of the multi-stage stochastic ESEP model. Section 4 pro-
poses chance constraints that are applied to the demand satisfaction
constraints. Section 5 introduces a variant of the progressive hedging
algorithm and proposes a heuristic to solve the problem efficiently.
Section 6 presents the data and analyses for the Rwanda case study
and Section 7 discusses the results. Section 8 concludes the paper with
final remarks.

2. Literature review and our contributions

Optimization is widely used for the ESEP problem [8]. Go et al. [11]
used co-optimization for generation and transmission expansion plan-
ning (G&TEP) under high renewable standards. Bi-level optimization
approaches have also been proposed to coordinate the G&TEP problem
in a market environment [12]. To address future uncertainty in the
ESEP process, approaches including robust [13], two-stage stochas-
tic, and multi-stage stochastic optimization have been studied [14].
Robust optimization, meeting all future possibilities, may overbuild.
Two-stage models have fixed investment policies but lack flexibility
in infrastructure choices. Multi-stage stochastic optimization can adjust
investment decisions over time [15]. For instance, multi-stage stochas-
tic models have been designed to incorporate random power outages,
load forecasts, and wind power output fluctuations [16].

In addition to focusing on power system planners, researchers have
also investigated ESEP from a national decision maker’s aspect. Guerra
et al. [17] considered ESEP to find the most cost-effective plan with
GHG emission mitigation for Colombia. A similar ESEP model was
proposed by Georgiou [18] for the Greek power system. Guo et al. [19]
proposed an ESEP model with targeted GHG emission reductions for
China. Ionannou et al. [20] used a multi-stage stochastic optimization
model for the Indonesian power system considering three uncertainties:
demand, renewable technology cost, and traditional fuel price. Multi-
stage stochastic models have been utilized to optimize electrification
planning for African countries, demonstrating cost savings compared
to two-stage models [21]. All previous models required demand to be
met in each time period.

Chance constraint is a technique to reduce the risk from uncertainty
in stochastic optimization. Chance-constrained stochastic optimization
introduces probabilistic constraints, ensuring that the probability of
meeting certain requirements is above a threshold value [22]. Huang
et al. [23] developed a multi-period ESEP model and applied chance
constraints to electricity demand satisfaction constraints. The modeled
did not consider future demand realizations. Zhou et al. [24] proposed
a two-stage stochastic chance-constrained ESEP problem for British
Columbia, although also without adaptability to future demand realiza-
tions. Hence, a multi-stage stochastic model that employs the benefits
of chance constraints for step by step infrastructure planning has yet to
be developed.

Multi-stage stochastic optimization becomes challenging when it
involves integer variables and a large number of stages and scenar-
ios [25]. The Progressive Hedging Algorithm (PHA) is useful for such
problems, decomposing scenarios by incorporating non-anticipativity
constraints into a Lagrangian penalty function [26]. PHA has been suc-
cessfully applied in various applications such as hydrothermal system
expansion planning [27], healthcare operating room assignment [28],
and relief distribution with mixed-integer variables [29]. Our chance-
constrained multi-stage stochastic optimization problem cannot be
solved directly by PHA because the scenarios are linked through these
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probabilistic constraints. To overcome this challenge, we propose a
solution algorithm which integrates PHA with a binary search method.

Summarizing the literature, while stochastic optimization is com-
monly utilized in the ESEP problem, the requirement for immediate
demand satisfaction can be overly restrictive. There is a risk of con-
structing quick-to-build and higher-cost infrastructures to meet un-
expectedly high-demand. A chance-constrained multi-stage stochastic
model can reduce these types of risk. Algorithms such as PHA are not
suitable for solving large-scale chance-constrained models; an effective
heuristic approach is required.

Our work makes the following contributions to the country-level
ESEP problem:

» A chance-constrained multi-stage stochastic ESEP model is pro-
posed, which adapts to future demand uncertainty while ensuring
full demand satisfaction at the end of the planning horizon.

+ A binary-search-based progressive hedging algorithm is designed
as a heuristic to reduce the burden of solving the problem with
the chance constraints when the number of scenarios is large.

+ A case study of Rwanda shows the benefits of the proposed
model with cost reductions, potential transmission infrastructure
improvement, and lower-cost GHG emission reduction.

3. Multi-stage stochastic ESEP model

We introduce the multi-stage stochastic ESEP model for countries to
determine their investment plans under future electricity demand un-
certainty. The model guarantees the feasibility of the energy system by
considering certain operational constraints. The electricity demand is
represented in two time scales: multi-year and representative daily sub-
period. The daily sub-periods capture the variations of both electricity
demand and solar power availability.

3.1. Scenario tree structure

We use a scenario tree structure to represent the uncertainty of
future demand. A scenario tree represents uncertainty as pathways from
the initial time to the final time period. Fig. 1 summarizes the scenario
tree structure over an example setting; each node corresponds to a
realization of uncertainty. A stage denotes a time interval that consists
of multiple time periods (years). Several nodes are included in each
stage to represent these sets of realizations. In every stage, the plan-
ner is required to make two types of decisions: investment decisions
(diamonds in Fig. 1) and operations decisions (squares in Fig. 1).
Investment decisions are state variables which carry information to the
end of the planning horizon. Operations decisions are stage variables
which are locally decided to adapt to the current demand. Investment
decisions are made once at each year while operations decisions are
made according to the representative daily sub-periods in each year.
A probability is assigned for each branch in a scenario tree, such that
the sum of probabilities for all branches in every time interval is equal
to 1.

3.2. Multi-stage stochastic ESEP model

Mathematical formulation of the multi-stage stochastic ESEP model
is presented in this section. All decisions are year and scenario based,
with subscript ¢+ and w respectively. For simplicity, if not mentioned,
the range of indices on the right hand side of constraints are the total
sets described in Nomenclature (e.g., i € N, g € @, ij € L, k € K,
teT,o0€0, and w € Q).
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Stage 1 Stage 2

Year t + 1 Year t + 2

Fig. 1. Scenario tree structure.

3.2.1. Objective

The objective function (1) minimizes the total expected net present
cost for all scenarios over all planning periods. For each scenario w,
the net present cost for year ¢ is the total cost at year ¢ multiplied
by a discount factor, where y is an interest rate. The total cost for
each scenario at time 7 has four categories: (i) investment cost, (ii)
fixed operations and maintenance (O&M) cost, (iii) variable O&M cost,
and (iv) fuel cost. Investment and fixed O&M costs include both power
generation capacity and transmission line investments.

. 1
min z EWEWA

wER teT

inv-G Hnew inv-L
[z 2 g Qi,g,r,w+ Z ch dijl"lﬁk’f,w

iEN gedg ijeL* kek

+ Z Z cgom-GQtFZt,?}w"' Z Z cliom-Ldijzij,k,t,m

iEN gedg ijeL keK

VOM-G , p8en res
+ Z 2 Z Cg (Ei,g,tﬂo,m +Ei,g,t.a,w)

iEN gedg 0o€O

+ 2 2 X Eiont Bl M
iEN gedg 0€O

The investment cost includes power and transmission line expansion
for all regions. The annual fixed O&M cost depends on the total capacity
of the generation and transmission infrastructure. The annual variable
O&M cost is the expense for operating and managing power generation
plus reserves, excluding fuel costs. The fuel cost for generation and
reserves incorporates different fuel costs cg‘}e] for each year 1.

3.2.2. Generation investment and resource limits

Constraint (2) sets annual lower and upper limits for newly invested
capacity of each generation type. Constraint (3) defines the total ca-
pacity availability for each generation type at each year by considering
construction time. Constraint (4) is the resource limitation constraint
on the total capacity for each generation technology in each region,
bounded by the resource upper limit.

omin < QP < Q™. Vgl w @
total _ new ex :
orEl = Y oM +0T, Vigto 3
rSmax(to,r—Tgc}
O < R, Vigtw )

3.2.3. Transmission line investment constraints

Constraint (5) defines the transmission line investment binary vari-
able /;; ., ,, which is 1 when a type k line is built on potential line
ij at year ¢ in scenario w and O otherwise. Constraint (6) guarantees
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that at most one transmission line can be built between regions through
all years. Constraint (7) defines a new binary variable z;; , , to repre-
sent the availability of transmission lines including the potential and
existing ones. Constraint (8) checks the availability of the potential
transmission line by considering the construction time. The availability
of existing transmission lines is set to 1 in constraint (9).

Likew € (0.1}, Vij€L* kit ®)

2 Z ljkiw <1 VijEL 0 ©)

keK teT

Zykiw €10,1), Vij € LY k10 )

Zkiw = Z Likew Vij€LY kto (8)
r<max{1o,1-T¢}

Zijhpw =1 Vij € Lf k= kij. 1.0 ©)

3.2.4. Electricity balance and generation limit constraints

The electricity balance constraint (10) imposes the balance in each
region at all representative daily sub-periods. In particular, the elec-
tricity generated within the region plus the electricity delivered into
the region should be greater than or equal to the electricity transferred
out of the region and the electricity consumed. Rather than adding a
constraint that would curtail demand in cases of insufficient supply, the
chance constraint proposed in Section 4 addresses unmet demand with
greater flexibility and insight. Constraint (11) imposes an upper limit
on electricity generation plus reserves.

gen trans trans use
2 Ei,g.t.a,w + Z Ejivafhw 2 Z Eij,fwo,m + Ei,t,o,w’
gEDG Ji€EL ijeL

Vi, t,0,0 (10)

gen total
E +E’ < h,CF,,0°%

i,g,1,0,0 ig,tow — i.g.t.w’ Vi’ g 100 (11)
3.2.5. Reserve constraints

The electricity reserve ensures that the energy system is stable
under certain emergency situations. Constraint (12) guarantees that
the total electricity reserve meets the reserve requirement, represented
by a percentage of the total demand for each year r and daily sub-
period o. We use a scalar RR™ to denote this required percentage.
The flexibility in fulfillment of demand addressed in this paper is a
strategic decision, providing longer term flexibility, and not involving
reliability-decreasing operational tactics.

Z 2 Ef, > RR™ z Dirpws V10,0 12)
iEN gedg i

3.2.6. Demand satisfaction constraints

The multi-stage stochastic ESEP model considers the electricity
demand is immediately satisfied for each year. Constraint (13) is the
demand satisfaction constraint which guarantees the electricity used
is greater than the required electricity demand for each region i at
year ¢ on daily sub-period o. Section 4 discusses how flexibility can be
incorporated with probabilistic constraints.

nSESS 2Dy Visho,o 13
3.2.7. Power flow constraints

DC approximation power flow constraints are used to ensure physi-
cal feasibility, based on the differences of voltage angles in connecting
regions. Constraints (14) and (15) are for existing lines and constraints
(16)-(18) are for potential lines that can be built. The power flow
on a transmission line is limited by the capacity of the type of the
transmission line built, which is imposed by (14) and (16). The DC
power flow constraints are imposed in (15), (17), and (18). The voltage
angles are bounded in constraint (19). One voltage angle is fixed to zero
as a reference in constraint (20). Constraint (21) imposes the electricity
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transmission restriction while considering the loss during electricity
transmission.

trans i
—F <l S FMY Vije Lk =k to0,0 a4
pg‘a}:iow = Bij,k(ei,t,o,w - J» tom) V’J € L k klj’ 0, (15)
2kt ™ S P 0w < ZykaoFi Vi) € LY kot 0,0 (16)
Ptow = Bik@iiow = 0100 2 —(1= 2 k1000,
Vij € LY, k,t,0,w 17)
Piierow ~ BiikOisoo = 0jp00) < (1= Zijks)ds
Vij € LT, k,t,0,0 (18)
=000 <m Vil (19)
0,100 =0, n=refnode,Vt, 0,0 (20)
B < 3 hp (1= W), i€ Lito.o 1)
keK

3.2.8. Policy constraints

Two policies are considered. Constraint (22) imposes an annual
investment budget. Constraint (23) imposes an upper bound on annual
GHG emissions. Additional policy constraints can be added.

DY, cnvGonew b NN ™l 0y, <BUD, Vi (22)

iEN gedg ijeLt kEK

> Y Y GHGEE,  <GHG™, Vio 23
,8.1,0,0

iEN gedg o€LO

3.2.9. Non-anticipativity constraints

Non-anticipativity ensures that investment decisions (state vari-
ables) are made only on information revealed up to current stage, and
that scenarios with same history are indistinguishable at each stage. For
example, in Fig. 2, when the planner realizes she is in node 2 at the
second stage, she shall not know which node is coming for the third
stage, only that it is either 4 or 5. Constraints (24) and (25) are non-
anticipativity constraints for the investment decisions on generation
capacity and transmission lines, respectively.

Lijkiw =lijkra YV@.0)€Q,ije L kit 24)
Opewe = Q"W V(w,0)) € Q.ig.1 (25)

4. Chance constraints on demand satisfaction

Here we implement chance constraints to ensure the demand satis-
faction within a certain reliability level.

4.1. Chance constraint formulation

The chance constraint allows the desired demand to be met from the
generation capacities with a probability of at least 1 —«, for a subset of
time periods T, referred as chance-constrained years, where ¢, is the
chance constraint risk parameter associated with year ¢. The proposed
chance constraint for demand provides flexibility in fulfilling demand
in specified years, managing risks from unexpectedly high demand.
This chance constraint can be extended to control supply risks such as
those related to imported fuels or local energy resources.

The chance constraint is applied to the demand satisfaction con-
straint. For non-chance-constrained years we keep the same demand
satisfaction requirement in constraint (26). For chance-constrained
years we require a minimal fraction of the desired demand to be
met in constraint (27), where req™® denotes the minimal percentage
requirement. This constraint guarantees satisfying a certain percentage
of demand. Constraint (28) states that the probability of the total
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(a) Standard form

(b) Disaggregated form

Fig. 2. Scenario tree structure explanation for non-anticipativity constraints.

electricity consumption satisfying the demand is at least 1 — a, for the
chance-constrained years.

nSESe > D0 Vit € T\Tee 0,0 (26)
d‘”E,“f‘fw > reqm‘“Dl 0w Vit €Tcc,0,0 27)
Prff' B > Dy, .. Vi.0.0) 21—, VtETee (28)

Chance constraints introduce a probability that planned electrifi-
cation will be temporarily delayed. This does introduce a social and
economic cost; some will end up waiting longer to receive their desired
amount of electricity, even though full electrification will be achieved
by the planning period end date. Given that this model is developed
in the context of a country that does not yet have a full electricity
infrastructure, we do not introduce a new penalty for utilizing the
chance constraint. The magnitude of the risk parameter «, represents
the decision-maker’s tolerance for slower electrification in the inter-
mediate years. This issue is further discussed with the case study
results.

4.2. Linearization of chance constraints

Chance constraint (28) is a probabilistic constraint which is com-
putationally intractable. By taking into account the probabilities of the
scenarios and the structure of the scenario tree, the chance constraint
(28) can be formulated as a set of mixed-integer linear constraints
(29)-(31). We define a binary variable 4,, which takes value 1 if the
demand satisfaction constraint is violated for scenario w at year ¢, and
0 otherwise. The reformulation is represented as follows.

mt {0 1} Vw,t € TCC (29)
d'“E,“ffmc) > Diyooll = Aop), Vit €Tec,0,0 (30)
Z T mt = at’ vVt € TCC (31)
weR

Constraint (30) checks whether the demand is satisfied for all scenarios
at those chance-constrained years. The probability of total violations in
each year is limited by «, in constraint (31).

Combining the constraints above, the chance-constrained multi-
stage stochastic ESEP model can be formulated into a mixed-integer
linear program (MILP) as follows.

min (1)
s.t.  (2)-(12),(14)-(25), (26) — (27), (29)-(31)
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4.3. Value of chance constraints

It is important to identify the value of the chance-constrained
stochastic model as opposed to the non-chance-constrained counter-
part. To this end, we define the value of chance constraints in terms
of cost and percentage gain in (32) and (33).

vee$) = yNee _yce (32)
VNCC _ VCC
VCC(%) = W x 100 (33)

Here, VNC¢C and V€ are the optimal objective function values ob-
tained from the non-chance-constrained and chance-constrained mod-
els. Since the non-chance-constrained model requires immediate de-
mand satisfaction, it guarantees that VN¢C > VCC, Therefore, the
value of chance-constrained model V' CC is always non-negative with
a trade-off for the possibility of not satisfying demand immediately for
some periods in certain scenarios. Additionally, the value of chance
constraints can be separately computed for different scenarios, which is
expected to be higher in large demand scenarios compared to the low
demand scenarios and the aggregate model. Note that the impact of
the chance-constrained model is beyond the direct costs and benefits,
as the model brings a more moderate investment plan over the planning
horizon, as analyzed in the case study.

5. Solution heuristic

When the number of scenarios increases in this stochastic problem,
the number of variables increases dramatically and the resulting large-
scale problem can be computationally intractable. To overcome this
difficulty, the problem can be decomposed with respect to scenarios
and solved by a Progressive Hedging Algorithm (PHA) [26], as forum-
lated in Section 5.1. The MILP formulation of the chance-constrained
model in Section 4.2 links different scenarios as it has an overall risk pa-
rameter for the chance-constrained time periods. To address this issue,
we consider a Lagrangian relaxation of the chance-constrained problem
and develop a binary-search-based PHA heuristic for its solution in
Section 5.2.

5.1. Progressive hedging algorithm

A PHA iteratively solves the individual scenario sub-problem in
parallel by relaxing non-anticipativity constraints within a penalty
function to force the solution to gradually converge to the overall
optimal solution. The algorithm converges when all solutions of the
subproblems satisfy the non-anticipativity constraints. In this section,
we outline PHA for multi-stage stochastic electrification planning.

We describe the PHA implementation in a compact formulation. Ad-
ditional notation for the compact formulation are described as follows:

Soy: costs associated with state variables at year ¢ under scenario w.

¢, costs associated with stage variables at year ¢ under scenario

4,,: set of constraints in (2)-(23) at year ¢ under scenario .

X, vector of state variables at year ¢ under scenario «.

Yo, Vector of stage variables at year ¢ under scenario .

The MILP model defined in (1)-(25) can be rewritten in a compact
formulation as:

min Y 7, (Y (] Koy + bl Vo)) (34
Rr=ry) teT
St (Xgi—1>Xo Yor) € Aoy Voot (35)
Xpt =X V(o,0) € Q1 (36)
Objective (34) represents the expected total cost for all scenarios and
time periods. Constraint (35) includes the constraints for the multi-

stage stochastic ESEP process. Non-anticipativity for state variables are
constrained in (36), which means all investment decisions shall be the
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same for all scenarios that are indistinguishable up to that year. The
non-anticipativity constraint (36) is the key point for the PHA since
it links the scenarios in the optimization problem. By relaxing this
constraint, we can decompose the problem with respect to scenarios.
Constraint (36) can be reformulated as:

Xpy =%X,, Vn€ X, (o1 €Tl(n),te T, 37)

where n denotes a node on the scenario tree, %, is the set of nodes on
the scenario tree at year ¢, and I'(n) denotes the pairs of scenarios and
time periods that are considered in node n. When the scenario and year
are known, one specific node on the scenario tree shall be identified. To
ensure the non-anticipativity constraint, we define x,, as the consensus
variable for node n of the scenario tree. This value can be updated as

Zwnerm ToXo,
XT,,= (w,H)el'(n) "o o, i Vi (38)

Z(a),t)ef(n) Zw
which calculates the average value of the current state variables at year
t under scenario . At the optimal solution, all the state variables x,,,
corresponding to node n should be the same as this consensus value X,
as in (38).
The augmented Lagrangian problem is based on the relaxation of
non-anticipativity constraint (36) and defined as:

min w;q T Loy Xorgs Yorss X) (39
s.t.  (35) (40)
where
Lo Vous Xn) = E;(ff,,,xm,, +BL Vou +

S

2

) (41)

2

T - P _
50),t(xﬂ),f - x") + 5 ”xa),l — X,

L,(Xp 4> Y- %,) is the augmented Lagrangian penalty function for
each scenario w. §,, is the common Lagrange multiplier and p > 0
is the penalty parameter. It is easy to observe that the augmented
Lagrangian problem defined in (39)-(40) can be solved separately in
different scenarios if §,,, and x,, are known in advance. PHA iteratively
solves the augmented Lagrangian problem by scenario sub-problems
and updates the Lagrange multiplier and the consensus value.

Algorithm 1 describes an overview of PHA for the compact for-
mulation in (34)-(36). The penalty parameter p and the convergence
tolerance e are the inputs for the algorithm. The iteration counter is
v and starts with 0. Line 2 initializes the counter, gap, and Lagrange
multiplier. Lines 3-5 find the initial state variables by solving the
problem without Lagrangian penalty terms. The main idea of PHA is
inside the while loop from line 7 to 13. In each iteration, the algorithm
updates the consensus value X, in line 7 and the Lagrange multiplier
84, in line 9 by the current state variables. Lines 10-12 solve the
augmented Lagrangian problem for each scenario and update the most
recent state variables x,,. The algorithm terminates when all non-
anticipativity constraints are satisfied within the convergence tolerance
€.

5.2. Binary-search-based PHA heuristic for chance-constrained problem

Expressing the chance-constrained ESEP problem more compactly,
we define ¥,,, as the set of constraints (2)-(11), (14)-(23), (26)-(27),
and (29)—(30), so that the model can be written as follows:

min D AL YL X + Bl Vo] (42)

wER teT

s.t. (xm,t—l’ xw,t’ ya),t’ Am,t) € le,r’ Vw’ t (43)
Xpt = Xgp V(0,0') € Q1 (49
Z ”wj'w,r < (U Vi e TCC (45)

wEN
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Algorithm 1 Progressive Hedging Algorithm (PHA)

1: input: p, €
2: initialization: v < 0, gap < o0, §°, « 0 Vo,
3: for w € 2 do
4: x:”t « argmin Z,er(fitxw,, + ¢£Jym,t) s.t. (35)
5. end for
6: while gap > ¢ do
_ Y(wnerm) Tox,,
7. =2 vp
n Z(onerm o
8 v<uv+l
R I S Cr D B X
10: for w € 2 do
11: th « argmin (41) s.t. (35)
12: end for

. —v—1
13:  gap « \/Zweg Sier ”w”xZ;,t - Xy |I§
14: end while

All constraints in ¥, , are separable with respect to scenarios. Constraint
(45) is the limitation on total violations for chance constraints at each
corresponding year by considering all scenarios. It is easy to observe
that the problem with objective function (42) and constraints (43)-
(44) is in the same form as in the previous setting without chance
constraints, which can be solved by PHA. We express the Lagrangian
relaxation of the chance-constrained problem (42)-(45) as follows:

: T T
I?’l;l 2 ”wlz( m,tx(l),t + ¢m,tyﬂ7,f)]

wEN teT
= Y w0, Y Ty — @) (46)
teTcc weR
St (Xpi—1s X Your Aor) € Pop Voot 47)

V(w,0') € Q,,t (48)

Xojt = Xo! t>

where w, > 0,Vt € T is the Lagrangian multiplier for constraint (45).
If the Lagrangian multiplier w, is known in advance, the Lagrangian
relaxation problem (46)-(48) can be reformulated as for the problem
(34)—(36), that can be solved by PHA. To determine the value of
the Lagrangian multiplier w,, we develop a binary-search-based PHA
heuristic for solving the chance-constrained problem. The proposed
procedure is presented in Algorithm 2.

Algorithm 2: Binary-search-based PHA heuristic.

1: input: €
2: initialization: s < 0, w,”, w,” Vt € T¢
' w o

N
3: while —= > ¢ do
wy

s

4:  Solve ﬁoblem (46)-(48) with w,* by PHA and record optimal
objective value as v. -

5.  Solve problem (46)-(48) with W,S by PHA and record optimal
objective value as v.

6: if v > then

w,S+w;’
1, Lt

7: ﬂ“’ - = Vit e Tee
8: else .
s+l ﬁu—w,’

9: Wy e = Vit e Tee

10: end if

11: s« s+1
12: end while

The heuristic initializes a lower and an upper bound for the La-
grangian multiplier w,. Lines 4-5 solve the Lagrangian relaxation prob-
lem by PHA with the given w,. Lines 6-10 update the Lagrange mul-
tiplier w, based on comparison between the optimal objective values.
This loop repeats until the difference between the upper and lower La-
grange multipliers is within a specific tolerance. The proposed heuristic
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combines both PHA and binary search algorithms. As both algorithms
have been proven to converge, the heuristic is expected to converge as
well. However, due to the presence of integer decision variables, the
solution obtained from the heuristic may not be the optimal one. To
compare the solution from the proposed heuristic against the optimal
one, we conduct several numerical experiments, which are presented
in Section 7.3.

6. Case study: Data preparation

To demonstrate the proposed framework, we construct a case study
of Rwanda.

As of June 2020, Rwanda has a residential electrification rate of
55% and the government targets reaching 100% electrification by
2030 [30]. The country is divided into 30 administrative districts [31].
We consider a 15-year time horizon from 2021 to 2035. 24 representa-
tive daily sub-periods are used for representing the daily hours for each
year. We use a discount factor of 10% and all costs are in 2020 USD.
Two scenario trees, baseline and extreme, are set up for comparison.
Each scenario tree considers 9 scenarios with 3 stages over demand
possibilities: low, normal, and high annual increase rate at each stage.

From the average Rwandan electricity infrastructure budget [32],
we assume a budget limitation of 80 million dollars for new power
infrastructure each year. The GHG emissions from the energy sector is
about 1.1 million tons of CO2 as of 2018 [33]. We set a GHG emission
limitation at 2 million tons from 2021 to 2025 and set 2.1 to 3 million
tons GHG emission limitation for the next 10 years with 0.1 million ton
increment each year.

6.1. Generation and transmission infrastructure

The current grid-connected generation sources in Rwanda include
diesel, hydroelectric (hydro), natural gas, peat, and solar [30]. The case
study considers six generation types: diesel, geothermal, hydro, natural
gas combined cycle (NGCC), peat, and utility-scale solar. We choose
this simplified list of generation options, and model only grid-connected
electricity options, in order to illustrate the benefits of our model.
The cost data are summarized in Table 1. Fuel costs are projected to
increase over the planning horizon and the other costs are modeled as
constant. General and location-specific generation costs and parameters
are acquired from [20,34], respectively.

Other parameters associated with generation are given in Table 2.
All parameters are independent of time and we assume they are the
same for all daily sub-periods during the planning horizon. Capacity
factors vary by daily sub-period and are adapted from [34]. Construc-
tion time is the years needed to build the capacity in the assigned
district after the decision of investment. Construction time data are
summarized from [20]. The annual minimal and maximal capacity
limits are our reasonable estimates. We omit the minimum reserve
requirements for simplicity.

For the existing capacity, we use the 25 licensed power plants from
the Electricity Report of the Rwanda Utilities Regulatory Authority
(RURA) [35]. Due to resource limitations, some generation types are
only available in certain regions and some regions can only build power
plants up to a certain number of megawatts. We adopt these resource
limitations from [34]. We assume diesel and utility-scale solar are
widely available in all districts in Rwanda and can be built at any time.

There are three types of transmission lines in Rwanda: 70, 110
and 220 kV lines [30]. To reduce the complexity of the case study,
we consider two types of transmission lines: high-voltage (HV) and
low-voltage (LV). The costs and other data for transmission lines are
provided in Table 3. All the costs are per unit distance and are adapted
from [36]. We assume it takes one year to build both high-voltage
and low-voltage transmission lines. The model decides whether to
build a high-voltage or low-voltage transmission line between adjacent
districts. We assume the transmission loss for each line is 10% of the
capacity and the distribution efficiency is 90% throughout the country.
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Table 1
Case study generation costs.
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Generation type Investment Fixed O&M Variable O&M Fuel cost ($/MWh)

cost (8/kW) cost (8/kW) cost (8/MWh) 2021-2025 2025-2030 2030-2035
Diesel 1160 22.50 1.88 275 288 300
Geothermal 4090 44.65 3.19 - - -
Hydro 2170 47.00 3.36 - - -
NGCC 1160 26.32 2.20 71 76 84
Peat 2610 46.33 3.86 29 34 39
Utility-scale solar 1950 30.33 0.25 - - -

Table 2

Case study generation parameters.

Generation type

Construction time

(years)

GHG emission
(ton/MWh)

Annual Construction Limit (MW)

Maximal Minimal
Diesel 0 0.812 20 5
Geothermal 4 - - 20
Hydro 4 - - -
NGCC 3 0.448 - -
Peat 4 0.996 - 10
Utility-scale solar 1 - 20 5

Table 3
Transmission line data.

High voltage Low voltage

Capacity (MW) 100 25
Investment cost ($/km) 150000 15000
O&M cost ($/(MW*km)) 15.48 20.65
Construction time (years) 1 1

6.2. Demand forecast

We consider 24 daily sub-periods for each year, corresponding
to daily hours. For simplicity, we ignore the seasonal variability of
electricity demand. We forecast the demand via per capita power use
similar to [36]. We use the population in the region multiplied by
the per-capita power demand to calculate the total power demand in
a region. The daily demand profile is adopted from [34]. Electricity
demand is the product of the power demand and the total hours in the
corresponding daily sub-period.

We model the annual electricity demand increases as tracking the
country’s GDP increase. Rwanda has averaged a 7% annual GDP in-
crease over the past decade [37]. Therefore, we project 7% annual
electricity demand increase for the normal setting.

6.3. Baseline and extreme scenario trees

We consider two scenario trees for comparison: baseline and ex-
treme. Both share the same tree structure but have different demand
increase rates. We use the scenario tree structure shown in Fig. 3.
The tree has a 15-year planning horizon (2021 to 2035) with 3 time
stages and 5 years in each stage. We assume the demand increase rate
to remain constant in each time stage for each scenario. There are
nine scenarios in total and the middle scenario (w5) has a constant
7% annual increase rate in both baseline and extreme scenario trees.
The branches represent three demand increase rates: high increase for
the upper branch (H), normal increase for the center branch (N), and
low increase for the low branch (L). Normal increase rate is 7% for
both scenario trees. We assume the probability of having a high or low
demand increase rate in each time stage is 10% and having a normal
demand increase rate is 80%.

The baseline scenario tree represents the typical expected future sce-
narios. We use 10% as a high annual demand increase rate (H) and 4%
as a low annual demand increase rate (L). Unexpected events such as
COVID-19 and local resource development may change the electricity
demand dramatically. In order to compare the energy infrastructure

Fig. 3. Scenario tree structure for case study.

development between common scenarios and those unexpected scenar-
ios, we design an extreme scenario tree to represent unforeseen events
that strangely influence the demand. The high demand increase rate for
the extreme scenario tree is 20% annually and the low increase rate is
reduced to 1%. Our goal is to examine the resulting differences between
baseline and extreme scenario trees and support countries that use our
model in adjusting plans in light of different future scenarios.

6.4. Chance constraints setup

As time progresses over the planning horizon and the scenario tree
is further realized, chance constraints provide cost savings by giving
the country the opportunity to not fully satisfy the demand in some
intermediate years for certain scenarios. In this case study chance
constraints are used for the initial two years of each stage of the
scenario tree (2026, 2027, 2031, 2032), and to view the impact of these
constraints, we assume the risk parameter, «;, to take the same values
for the years in the same stage: ayys = @r0p7 = @) and ayp3; = a3 = a5.
For 2026 and 2027, since the scenarios in wl —w3 or w4 —wb or w7 —w9
keep the same investment decisions, we set the risk tolerance a; = 0.2.
For 2031 and 2032, we allow only one scenario to be violated by setting
risk tolerance a, = 0.04. In the chance-constrained years, we use a
minimum demand satisfaction requirement of 70%. We note that the
chance constraints are for those four years only, and the model still
keeps fully satisfying demand in other years for every scenario. For
example, even with the chance constraints, all demands will be satisfied
at the last year of the planning horizon (2035).
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Table 4
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Costs and VCC for baseline and extreme scenario trees. NCC: non-chance-constrained model. CC: chance-constrained model. VCC: value of

chance constraints.

Baseline Extreme

wl w2 3 Total wl w2 @3 Total
NCC (B$) 4.01 3.74 3.49 3.42 8.06 4.97 4.53 3.82
CC (BS) 3.82 3.61 3.41 3.37 7.66 4.79 4.41 3.75
VCC (B$) 0.19 0.13 0.08 0.05 0.4 0.18 0.12 0.07
VCC (%) 4.74 3.48 2.29 1.46 4.96 3.62 2.65 1.83

7. Case study: Results

The results of our case study in Rwanda are shown and analyzed in
this section. We present the benefits of the chance-constrained multi-
stage ESEP model in Section 7.1 by demonstrating the cost reduction,
cost and capacity mixes, transmission investment, and GHG emissions.
We evaluate the impacts of the chance constraint risk parameters and
the number of chance-constrained years in Section 7.2. Finally, we
analyze the computation times of solving the full model and the model
decomposed by the proposed heuristic in Section 7.3. In our case study,
the optimization problem consists of 2, 103, 435 variables and 3, 647,010
constraints. All studies are implemented in Python and all optimization
problems are solved by Gurobi version 9.1.0 on a 2.3 GHz Intel Core
i7 processor with 16 GB of memory.

7.1. Chance-constrained model results

By the selection of chance constraint risk parameters, the demand
can only be unmet in the largest three demand scenarios (vl — @3)
at chance-constrained years for both baseline and extreme scenario
trees. As the differences between the optimal solutions of the other six
scenarios are relatively smaller, we omit their discussion and focus on
analyzing these three scenarios along with the overall model results.

7.1.1. Optimal costs and VCC

Table 4 shows the optimal expected objective costs over all scenar-
ios and the costs of the largest three demand scenarios (wl — w3) for
both scenario trees. The optimal total expected cost from the chance-
constrained model is 3.37 billion dollars for the baseline scenario tree
and 3.75 billion dollars for the extreme scenario tree, with a 1.46%
and 1.83% overall reduction compared to the corresponding models
without chance constraints, respectively. Furthermore, the values of
chance constraints for the first three scenarios are higher than for the
models as a whole. The total cost savings in the baseline scenario tree
are 4.74%, 3.48%, and 2.29% for scenarios wl — w3 and these numbers
become 4.96%, 3.62%, and 2.65% for the extreme scenario tree. This
shows up to 4.96% lower cost in building the power infrastructures
and providing electricity, when a high demand scenario occurs, since
chance constraints provide flexibility in investment plans, supporting
countries in managing tight budgets in the ESEP process.

The chance-constrained model provides cost savings by relaxing
the pace of electrification in chance-constrained years. That is, for
programs with a goal of full electrification by the end year, in a
chance constrained year the pace of electrification can be slower; the
end requirement for full electrification remains. Table 5 summarizes
the unsatisfied scenarios for chance-constrained years and the aver-
age percentage of unmet demand over unsatisfied scenarios and all
scenarios.

The case study sets the risk parameters «; and a, to ensure that
at most three scenarios may be unsatisfied in 2026 and 2027 and one
scenario may be unsatisfied in 2031 and 2032, which are the ones
with highest demand. In 2026 and 2027, since the first three scenarios
share the same electrification increase rate, the unsatisfied scenarios
are wl — w3. As wl is the largest demand scenario for 2031 and 2032,
it becomes the unsatisfied scenario in those years. Since the case study
requires a minimal of 70% satisfaction of the demand in all chance-
constrained years, the average unmet electrification percentages in the
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Fig. 4. Total cost mix for the baseline scenario tree. The left-hand bar is the chance-
constrained model result; the right-hand bar is the non-chance-constrained model
result.

unmet scenarios are below 30%. Results in Table 5 show the average
unmet electrification percentages in unmet scenarios are lower for
2026 and 2027 compared to the years of 2031 and 2032. However,
2026 and 2027 have higher average unmet electrification percentage
in all scenarios because there are three failing scenarios compared
to one scenario in 2031 and 2032. The extreme scenario tree has a
slightly larger average unmet electrification percentage, due to its high
demand.

In this model, the societal and economic costs of unmet demand
are external, as are opportunities to increase the budget or to exercise
demand management on the customer base [38]. The information in
Table 4 and Table 5, quantifying the savings and the unmet demand,
provides decision-makers with information that could be used to eval-
uate not only the savings, but also to develop demand management
options.

7.1.2. Total cost and capacity mix

Cost mixes for the first three scenarios are shown in Fig. 4 and Fig. 5
for the baseline and extreme scenario trees. Total cost decreases from
scenario wl to w3 as the demand decreases. The largest components
of the cost are investment and fuel costs. The chance-constrained
model has smaller investment and fuel costs in all three scenarios for
both scenario trees. The difference in total cost between the chance-
constrained and non-chance-constrained models becomes smaller from
scenario wl to w3. The total cost differs more between scenarios for the
extreme scenario tree.

Fig. 6 and Fig. 7 show the total capacity levels in the first three
scenarios for different power technologies at the end of the plan-
ning horizon. The most invested power sources are peat and natural
gas (NGCC). Corresponding to the lower cost, the chance-constrained
model has smaller total capacity built at the end, although all demands
are satisfied. We observe that utility-scale solar capacity is higher in
chance-constrained model while peat and diesel capacities are higher
in the non-chance-constrained model.
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Table 5
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Unmet scenarios and demand from chance-constrained model in baseline and extreme scenario trees.

Average unmet demand

Average unmet demand

Chance-constrained Unsan.sfled in unsatisfied scenarios in all scenarios
years scenarios (%) (%)
Baseline Extreme Baseline Extreme
2026 wl — w3 24.7 27.8 4.94 5.56
2027 wl — w3 26.2 29.2 5.24 5.84
2031 wl 29.5 29.4 1.18 1.18
2032 wl 29.5 29.8 1.18 1.19
B .
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Fig. 5. Total cost mix for the extreme scenario tree. The left-hand bar is the chance-
constrained model result; the right-hand bar is the non-chance-constrained model
result.
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Fig. 6. Capacity mix for the baseline scenario tree. The left-hand bar is the chance-
constrained model result, the right-hand bar is the non-chance-constrained model
result.

7.1.3. Transmission lines

Table 6 shows that more transmission lines are built in the chance-
constrained model than in the non-chance-constrained model, in the
first three scenarios. In the baseline scenarios, the chance-constrained
result has two more HV transmission lines compared to the non-chance-
constrained result. For the extreme scenarios, the chance-constrained
result has more HV and LV transmission lines for all three scenarios.
As building more transmission lines enables the whole energy system
network to be more connected, the chance-constrained model may
help countries like Rwanda in balancing the benefits of somewhat
slower energy system development, generating a richer transmission

10

Fig. 7. Capacity mix for the extreme scenario tree. The left-hand bar is the chance-
constrained model result; the right-hand bar is the non-chance-constrained model
result.

network with lower total cost. Without the chance constraints, the
model would select generation options that can be built fast; such as
diesel generators. With the chance constraints, the model allows the
choice of a slower-to-build options, which might include larger natural
gas combined cycle generators, or utility scale solar. By loosening the
time constraints, planners and the model have more options.

7.1.4. GHG emissions

Yearly GHG emissions from the two models in the first scenario
(wl) are presented in Fig. 8 (baseline) and Fig. 9 (extreme). GHG
emissions are similar for both models in the first 5 years from 2021
to 2026 as the demand levels are the same. In chance-constrained
years (2026, 2027, 2031, 2032), the chance-constrained result has a
significantly lower GHG emission since it does not require satisfying
the demand immediately. After the chance-constrained years, the GHG
emission from the chance-constrained result starts to increase but the
emission is still slightly lower than the non-chance-constrained models.
The lower GHG emissions at chance-constrained years from the chance-
constrained model is due to the more solar power capacity as shown in
Section 7.1.2. In the end, however, the systems are approximately equal
in terms of the yearly GHG emission.

7.2. Impact of the chance constraint parameters

In this section, we first analyze the sensitivity of the optimal total
expected cost to different values of chance constraint risk parameters
a; and a,. We set a; = 0%, 20% and 32% for the years 2026 and
2027, and set a, values to 0%, 4%, 20% and 32% for 2031 and 2032.
Fig. 10 and Fig. 11 illustrate the optimal total expected cost decrease
percentage compared with the non-chance-constrained model. As «;
increases, the total expected cost decreases. The difference between
a; = 0 and a; = 20% is larger than the difference between «; = 20%
and a; = 32%. With fixed «;, the optimal total expected cost has a
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Table 6
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Number of new high (HV) and low (LV) voltage transmission lines constructed in baseline and extreme

scenarios.

Scenario Baseline Extreme
HV Lv HV LV
wl 34 23 41 22
f:j;::me q w2 34 23 40 20
w3 34 23 39 19
Non- wl 32 23 37 19
chance- 2 32 23 37 19
constrained 3 32 23 37 19
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Fig. 8. Yearly GHG emissions in scenario wl for the baseline scenario tree. Fig. 10. Optimal total expected cost decrease by different risk parameters for the
baseline scenario tree.
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Fig. 9. Yearly GHG emissions in scenario w1 for the extreme scenario tree.
Fig. 11. Optimal total expected cost decrease by different risk parameters for the

larger decrease when «, increases for both scenario trees. For a; = 0
case, the decreases are similar in both scenario trees. For the a; = 20%
and a; = 32% cases, the extreme scenario tree decreases a little more.
The result shows that the larger «; and a, values are, the lower the
optimal cost is, and more scenarios have unsatisfied demand in the
chance-constrained years.

Next, we examine the impact of the number of chance-constrained
years. In the case study, we consider four chance-constrained years
(two on the second and two on the third time stages). We test the
model with four different ranges of chance-constrained years from two
to eight years (one to four years on both the second and third time
stages). For example, if the total number of chance-constrained years
is 6, it means the chance-constrained years are 3 years from 2026 and
3 years from 2031. We still guarantee all demands are met at the end
of the planning horizon. Fig. 12 shows the values of chance constraints

11

extreme scenario tree.

with different chance-constrained years. As the number of chance-
constrained years increases, the chance-constrained model saves more
money. The increases of the value of chance constraints (decreases
of the total expected cost) in Fig. 12 are supra-linear. The extreme
scenario tree has slightly higher value of chance constraint compared
to the baseline scenario tree.

7.3. Performance of proposed heuristic

We use PHA as a scenario decomposition tool to achieve better
computational performance. In this section, we test the computational
performance of the binary-search-based PHA heuristic and the quality
of the solutions obtained. We set the Lagrangian penalty parameter p
as 0.8 and the convergence tolerance ¢ as 0.001. The lower and upper
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Table 7
Performance of the proposed heuristic.
Baseline Extreme
Directly CPU time (s) 832 1295
solve Solution (B$) 3.42 3.82
CPU time (s) 408 778
Heuristicimplementation Solution (B$) 3.44 3.85
Gap (%) 0.58 0.78
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Fig. 12. Optimal total expected cost decrease by different numbers of chance-
constrained years.

bounds of the Lagrangian multipliers w, and w, in the binary search
heuristic are initialized as the optimal cost for the lowest demand
scenario and the cost obtained by implementing the largest possible
infrastructures, respectively. The termination condition for the binary
search heuristic is set to be satisfied when the percentage difference
between w, and w is less than or equal to 0.1%.

Table 7 compares the performance of the direct and heuristic solu-
tion approaches for our case study. As expected, for both baseline and
extreme scenario trees, the heuristic is faster than solving directly. The
heuristic has a gap within 1% of the optimal solution for both scenario
trees. The computation times are shorter for the baseline compared
with the extreme. The optimality gap is larger for the extreme scenario
tree.

Since PHA is a scenario decomposition method, we examine the
effects of the proposed heuristic over different numbers of scenarios.
We construct six scenario trees with different number of branches (2,
3 or 4) in each stage and different number of time stages (3, 4, or 5).
In the 2-branch setting, we consider a 4% and 10% annual demand
increase rate. In the 3-branch setting, we keep annual increase the
same as our baseline scenario tree (4%, 7%, and 10%). In the 4-branch
setting, the annual demand increase rates are set as 4%, 6%, 8%, and
10%. For the 3-stage case, we have 5 years in each stage. For the 4-
stage case, we have 3, 4, 4, and 4 years in each time stage, and we
split to 3 years in each stage for the 5-stage case. We stop running the
algorithm if the run time exceeds 3600s.

The performance results, summarized in Table 8, show the heuristic
is faster for most scenario trees except when there are only 4 scenarios
(2 branches and 3 stages). Results have fairly small optimally gap (less
than 1.33%) in all scenario trees. The optimality gap increases as the
number of scenarios increases. The results demonstrate that the binary-
search-based PHA heuristic has computational advantage in cases with
a large number of scenarios. The heuristic may not be necessary if the
number of scenarios is small, particularly as multi-year ESEP modeling
may not have highly constrained computational time requirements.
The heuristic approach can be beneficial for large-scale applications
in which the direct approach does not find the optimal solution in a
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reasonable amount of time. As we have shown, both the direct solution
approach and the heuristic provide viable solutions.

Different choice of penalty parameter, and application to different
problems, will affect convergence and computation time. Comparing
the baseline and extreme cases in Table 7, we see that the PHA perfor-
mance is somewhat better in the baseline than in the extreme scenario.
To expedite the computation time of PHA, various enhancements can be
implemented, including adjusting penalty parameters [39], linearizing
quadratic penalty terms [40], improving termination criteria, and other
related approaches [41]. These works provide methods for choosing the
penalty parameter and reducing computation time.

8. Conclusion

The chance-constrained multi-stage stochastic ESEP model estab-
lished in this paper addresses the challenge of high future electricity
demand uncertainty in the energy system planning process. By con-
sidering both investment and operational constraints for power infras-
tructures, the model provides decision makers with a valuable tool to
revise investment decisions annually, adapting to the actual demand
realization. One of the key advantages of the proposed model is its
incorporation of chance constraints, which allow for the possibility of
lower supply than demand in chance-constrained years. This flexibility
helps reduce the overall expected cost and also mitigates the costs
associated with unexpectedly high demand scenarios.

The numerical test for the country of Rwanda involves two sce-
nario trees: baseline and extreme. From an expected annual demand
increase of 7%, the baseline scenario tree considers annual demand
increases ranging from a low of 4% to a high of 10%. The extreme
scenario tree considers annual demand increases ranging from 1% to
20%. The values of chance constraints are 1.46% and 1.83% for the
baseline and extreme scenario trees respectively, compared to a non-
chance-constrained model. The values of chance constraints increase
to 4.74% and 4.96% when considering the largest demand scenario.
Other benefits of implementing chance constraints include potential
improvements in transmission infrastructure through the construction
of more transmission lines, and the ability to achieve a lower-cost
system with policy constraints such as greenhouse gas (GHG) emission
reduction.

The implementation of chance constraints presents a trade-off be-
tween cost reductions and the extent and duration of unmet demand. By
adjusting the risk parameter and the length of the chance-constrained
period, the overall cost can be lowered, but this comes at the expense
of delaying the fulfillment of demand. The larger the risk parameter,
the lower the overall cost, although with the consequent delay in
meeting the demand. As the risk parameter values («;, a,) approach
to (32%,32%), the model for the extreme scenario tree has an almost
5% optimal total expected cost reduction. Similarly, the longer the
chance-constrained length, the more the model saves. When the num-
ber of chance-constrained years is eight years, the model has a value
of chance constraints of more than 6%. These findings highlight the
importance of carefully selecting risk parameters and determining the
duration of chance constraints. By appropriately adjusting these param-
eters, decision-makers can strike a balance between cost reduction and
meeting demand requirements within specified timeframes.

The results of the numerical tests indicate that the proposed PHA
heuristic requires less computational time compared to direct solution,
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Table 8

Performance of the proposed heuristic with different number of scenarios.
(# branches, # time . Directly solve PHA

# scenarios

stages) Cost (B$) CPU Time (s) PH Cost (B$) CPU Time (s) Gap (%)
(2, 3) 4 3.195 166 3.196 183 0.03
2,49 8 3.236 357 3.243 292 0.22
(2, 5) 16 3.293 539 3.304 322 0.33
3, 3) 9 3.423 832 3.443 408 0.58
3,4 27 3.512 1255 3.540 781 0.79
3,5 81 3.748 2834 3.793 1977 1.20
(4, 3) 16 3.915 966 3.944 525 0.74
4, 4 64 4.133 2520 4.177 1734 1.06
4, 5) 256 4.216 3600 4.272 3291 1.33

with relatively small gap between the heuristic and optimal solution.
This computational advantage is particularly significant in cases with
a large number of scenarios.

Our work suggests several future research directions. The multi-
stage stochastic model requires the decision-maker to adapt to the
uncertainty in each time stage by adjusting the investment plan. This
may not be operationally feasible. A partially flexible stochastic model
that combines the best features of two-stage and multi-stage stochastic
optimization is appealing and could be developed. Additionally, other
risk reduction methods such as risk-averse objectives can be evaluated
and compared.
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