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Active back-support exoskeleton has emerged as a potential solution for mitigating work-related musculoskeletal
disorders within the construction industry. Nevertheless, research has unveiled unintended consequences asso-
ciated with its usage, most notably increased cognitive load. Elevated cognitive load has been shown to deplete

Ef‘:,:]:nz:g;iogzgt working memory, potentially impeding task performance and situational awareness. Despite the susceptibility of
Constmfﬁon Y exoskeleton users to increased cognitive load, there has been limited empirical evaluation of this risk while

performing construction tasks. This study evaluates the cognitive load associated with using an active back-
support exoskeleton while performing construction tasks. An experiment was conducted to capture brain ac-
tivity using an Electroencephalogram, both with and without the use of an active back-support exoskeleton. A
construction framing task involving six subtasks was considered as a case study. The participants’ cognitive load
was assessed for the tested conditions and subtasks through the alpha band of the Electroencephalogram signals.
The study identified the most sensitive Electroencephalogram channels for evaluating cognitive load when using
exoskeletons. Statistical tests, including a one-way repeated measure ANOVA, paired t-test, and Spearman Rank
were conducted to make inferences about the collected data. The results revealed that using an active back-
support exoskeleton while performing the carpentry framing task increased the cognitive load of the partici-
pants, as indicated by four out of five significant Electroencephalogram channels. Selected channels in the frontal
and occipital lobes emerged as the most influential channels in assessing cognitive load. Additionally, the study
explores the relationships among Electroencephalogram channels, revealing strong correlations between selected
channels in the frontal lobe and between channels in the occipital and frontal lobes. These findings enhance
understanding of how specific brain regions respond to the use of active back support exoskeletons during
construction tasks. By identifying which brain regions are most affected, this study contributes to optimizing
exoskeleton designs to better manage cognitive load, potentially improving both the ergonomic effectiveness and
safety of these devices in construction environments.

Carpentry framing task

1. Introduction

The rising prevalence of work-related musculoskeletal disorders
(WMSDs) within the construction industry presents challenges to pro-
ductivity [1], as well as safety and health concerns [2,3]. The emergence
of active back-support exoskeletons (aBSE), also referred to as wearable
robots [4], has sparked considerable interest as a potential remedy for
WMSDs across various industrial sectors [5-7]. Prior research has
demonstrated the potential of aBSE to reduce muscle exertion and joint
hyperextension during manual handling tasks [8-10]. However, there
have been reports of unintended consequences associated with
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exoskeleton usage, and increased cognitive load [11,12]. Cognitive load
can be defined as the mental capacity and effort required to process
information or execute mental tasks [13]. Elevated cognitive load could
deplete working memory [14], potentially impeding task performance
and situational awareness [15,16]. Fox, Aranko [17] noted that
exoskeleton users may become preoccupied with the device, diverting
their attention from the primary work tasks. Other exoskeleton-related
factors that may shift users’ focus away from the tasks include phys-
ical discomfort [18,19], restrictions on mobility [20,21], an elevated
sense of fall risk because of the exoskeleton’s weight [22,23], potential
entanglement hazards [24], and issues related to anthropometric fit due
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to the diversity in human body sizes and proportions [25,26]. These
unintended consequences could significantly contribute to the increased
cognitive load of exoskeleton users, justifying the need to be
investigated.

Researchers have explored the use of wearable sensors such as
Electroencephalograms to measure cognitive load [27,28]. Electroen-
cephalogram (EEG) is a neuroimaging technique that records electrical
activity in the brain through electrodes placed on the scalp [29]. EEG
detects and measures brain waves, including alpha, theta, gamma, and
beta brain waves, which represent different frequency bands associated
with various cognitive states [30]. As such, changes in these brain waves
captured by EEG can provide insights into cognitive load [31]. Anto-
nenko, Paas [28] identified the alpha wave as the most dominant in a
normal human being. Positive correlations have been reported between
the alpha wave and cognitive load during everyday tasks (e.g., driving
[32] and visual mental work [33]) and construction-related tasks (e.g.,
general construction work [27] and human-robot interaction during
bricklaying [34]). For example, Huang, Jung [32] showed the efficacy of
the alpha band in assessing cognitive load during driving simulation
tasks, where the band power increased as the demand for attention
became more prominent. Additionally, Kumar and Kumar [33]
demonstrated the capability of alpha band power in evaluating cognitive
load during visual mental tasks, where complexity resulted in increased
values of the alpha band power. In the context of construction applica-
tions, Chen, Taylor [27] assessed the effect of cognitive load on task
allocation in the construction industry using the alpha band and
demonstrated an increase in cognitive load. Shayesteh and Jebelli [34]
also assessed the cognitive load associated with masonry work during
human-robot interaction. The results indicated increased cognitive load
while interacting with an autonomous robot compared to a semi-
autonomous one, as reflected in a higher alpha band. Despite the po-
tential consequences of cognitive load associated with exoskeleton use
and the opportunities offered by EEG to quantify cognitive load, there
remains limited research on the cognitive burden of using exoskeletons,
particularly in the context of construction tasks. Exploring cognitive
load in the context of construction is crucial due to the unique charac-
teristics of construction tasks, which often involve repetitive, awkward
postures and dynamic physical demands. These tasks require significant
mental effort to manage and adapt to varying physical conditions and
safety requirements. Understanding how these tasks influence cognitive
load could inform the design of exoskeletons that not only address
physical strain but also minimize cognitive burden. This knowledge gap
underscores the need for efforts to monitor cognitive load, potentially
through redesigning exoskeletons with integrated devices for measuring
users’ cognitive loads. Understanding the most sensitive brain regions
during the use of active back-support exoskeletons could be valuable in
this context.

This study aims to achieve two primary objectives: 1) assess the
cognitive load associated with the use of aBSE in construction work, and
2) identify the most sensitive brain regions, represented by brain
channels, essential for evaluating cognitive load and investigate the
interrelationships among these channels during exoskeleton use while
performing construction tasks. The objectives are achieved through a
focus on carpentry framing tasks, chosen due to the high incidence of
WMSDs among carpenters. According to the United States Bureau of
Labor and Statistics [35], carpenters are 1.08 times more likely to suffer
from back-related disorders compared to other construction trades,
indicating their potential suitability as beneficiaries of aBSEs. The paper
is structured to begin with an introduction, followed by a background
section discussing related studies. The subsequent section describes the
methods employed for assessing an aBSE, followed by the presentation
of the results. The discussion section interprets the findings, and finally,
the conclusion and suggestions for future studies are provided. This
study contributes empirical evidence on the cognitive load risks of using
exoskeletons for construction tasks, addressing the current knowledge
gap in the effects of aBSE usage. Also, it provides a quantitative measure
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of the cognitive load imposed by the exoskeleton which helps under-
stand the mental demand placed on exoskeleton users. The most sensi-
tive EEG channels for cognitive load assessment could facilitate the
development of adaptive exoskeletons capable of evaluating user’s
cognitive status and providing feedback such as increasing the level of
augmentation or adjusting task complexity to reduce cognitive strain.
This capability would also enable safety engineers to monitor and
mitigate cognitive load risks, thereby preventing accidents on con-
struction sites. The demonstrated correlations among the EEG channels
highlight the most strongly related channels, which should be examined
in conducting brain-exoskeleton interaction studies.

2. Background
2.1. Cognitive load associated with using exoskeletons

Researchers have explored the impacts of exoskeletons on users’
cognitive load across various activities that involved manual material
handling [11,36-38] and gait rehabilitation [39,40]. For manual ma-
terial handling tasks, Zhu, Weston [11] examined the cognitive load
associated with using a passive back-support exoskeleton (Laevo) for
lifting and lowering tasks under two conditions, with and without
mental arithmetic tasks. The study revealed that the biomechanical
advantages garnered without the mental task were substantially reduced
when the mental task was introduced. Schroeter, Kahler [36] evaluated
the cognitive load of using an active shoulder-support exoskeleton
(Lucy) for an overhead task that involved scaffolding installation. Using
the exoskeleton resulted in a higher cognitive load, leading to reduced
concentration, information processing, and an increase in errors. Simi-
larly, Tyagi, Mukherjee [37] assessed the neurophysiological effects of
an upper body passive exoskeleton (Eksovest) for overhead tasks
(reaching and pointing) with concurrent mental demand tasks. The
activation of the motor cortex was higher during the exoskeleton use,
signifying an increase in cognitive load. Also, Govaerts, De Bock [38]
examined the impact of mental fatigue on work productivity while using
a passive back-support exoskeleton (Laevo) for manual material
handling tasks, such as repetitive lifting and lowering subtasks. The
study demonstrated reduced performance when participants were
mentally fatigued during exoskeleton use. Conversely, for assessing
users’ cognitive load associated with using exoskeletons for gait reha-
bilitation, Gupta, McKindles [39] analyzed the relationship between
cognitive load and gait performance during exoskeleton-augmented
training. This was assessed by asking participants to walk on the
treadmill while using a powered ankle exoskeleton. The study revealed
that the exoskeleton competed with the available mental space,
decreasing the participants’ focus on the training. Additionally, Zhu,
Johnson [40] assessed neuroergonomics metrics to evaluate exoskeleton
use during gait rehabilitation. The study indicated that training with an
exoskeleton potentially increases the cognitive load negatively impact-
ing gait training performance. As such, it is not an underestimate that
using exoskeletons, especially for mentally demanding tasks, can impact
the user’s cognitive load. Therefore, it is critical to understand the extent
of this load and how it could inform investigations into suitable control
measures, given the consequences of variations in cognitive load on
work performance.

Cognitive Load Theory provides a framework for understanding the
cognitive implications of using aBSEs in construction tasks. Cognitive
Load Theory posits that the human brain has a limited capacity for
processing information [48], and cognitive load refers to the mental
effort required to perform a task [13]. Cognitive load is influenced by
the task’s complexity, the user’s experience, and the cognitive resources
needed to operate tools or machinery. Several factors contribute to
increased cognitive load when using exoskeletons. Firstly, there is an
initial learning curve and adaptation phase where users expend addi-
tional mental resources to understand exoskeleton’s functions and
controls [18,19]. Secondly, operating an exoskeleton demands increased
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attention and coordination, requiring users to adjust their movements
[24]. Thirdly, users must process and integrate feedback and other in-
puts from the exoskeleton, which adds to the cognitive burden. More-
over, the complexity of tasks performed while wearing an exoskeleton,
especially when multitasking, could influence cognitive load. Prolonged
use could also lead to mental fatigue, reducing cognitive capacity over
time [17]. Thus, by integrating Cognitive Load Theory principles, this
study aims to assess the cognitive load associated with using aBSE in
construction work. It will identify the most sensitive brain regions
essential for evaluating cognitive load and explore their interrelation-
ships during exoskeleton use.

2.2. Cognitive load evaluation techniques

Over the years, studies have proposed assessing cognitive load via
subjective and objective measures. Subjective measures have been
quantified using questionnaires such as the Rating Scale Mental Effort
(RMSE) [41], Subjective Workload Assessment Test (SWAT) [42], and
National Aeronautics and Space Administration Task Load Index (NASA
TLX) [43]. For instance, RMSE was implemented to assess the mental
workload of participants engaged in a driving task involving three
typical maneuvers (Lin and Cai [41]. Similarly, Jeong, Baek [42]
compared the mental workload of two driving methods, i.e., using a
joystick and a steering wheel, using SWAT as a subjective measure to
appraise participants’ cognitive status. More recently, and with the
emergence of visual technologies Atici-Ulusu, Ikiz [43] adopted the
NASA TLX to examine the cognitive load effects of using augmented
reality glasses during the operation of automobiles. However, such
techniques of cognitive load assessment have been criticized because of
their lack of continuous measurement [41], their inability to offer real-
time quantifications of cognitive workload [41], and their susceptibility
to bias inherent in self-evaluation [13].

The need for objective assessments encouraged researchers to
explore objective measures, such as using EEG to evaluate cognitive load
through brain activity [44]. EEG records electrical signals from the ce-
rebral cortex, providing insights into the cognitive status through Power
Spectral Density (PSD). Cognitive status has been examined over five
major brain waves with different frequency bands, including delta
(0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (13-30 Hz), and
gamma (> 30 Hz) [45]. Distinctly, the alpha brainwave band power has
been recognized as the most dominant in a normal human being [28].
Studies have demonstrated relationships between the PSD of the alpha
frequency band (8-12 Hz) and cognitive tasks, such as human-robot
interaction tasks [34], human-computer interaction [33,46], driving
[32], and general construction work [27]. For instance, Shayesteh and
Jebelli [34] investigated the cognitive loads of workers in a human-
robot interaction task involving bricklaying. The results indicated
increased alpha band PSD in specific channels (F3, F4, T7, and T8)
demonstrating higher cognitive load when working with an autonomous
robot compared to a semi-autonomous one. Kumar and Kumar [33]
assessed cognitive load during a human-computer interaction experi-
ment, finding an increase in alpha band PSD in channels (T7 and T8) as
the task difficulty increased. Janssen and Kirschner [47] evaluated
cognitive load during a human-computer interaction activity that
involved retention in short memory tasks. The study revealed an in-
crease in alpha band PSD in channels T7, T8, FC5, and FC6. Further-
more, Huang, Jung [32] observed changes in the PSD of five of the major
brainwaves during driving simulation tasks, with the alpha band
exhibiting the highest PSD for channels in the occipital (O1 and 02) and
temporal (T7 and T8) brain regions. Chen, Taylor [27] used EEG to
measure cognitive load in construction workers demonstrating the
feasibility of assessing mental workload via channels FP1, FP2, TP9, and
TP10 using four of the frequency bands including alpha to inform proper
task allocation. The results demonstrated the potential of all the exam-
ined channels, with FP1 showing a higher level of correlation with
mental workload.
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3. Research gap and significance

Despite the potential for increased cognitive load among aBSE users
in the construction industry due to unintended consequences, there is a
limited body of knowledge on this topic. Moreover, the existing evidence
highlighting to the significance of the alpha band in understanding
cognitive load status has not been adequately applied to the study of
exoskeletons. This lack of understanding hinders the development of
strategies to mitigate cognitive load, potentially impeding the wide-
spread adoption of aBSEs in the construction industry. Addressing this
gap could improve the occupational safety and health of construction
workers. Therefore, the objective of this study is two-fold: firstly, to
evaluate the cognitive load associated with using aBSE in construction
activities, and secondly, to identify the brain channels most responsive
to assessing cognitive load. Additionally, the study aims to explore the
interconnections among these channels while engaging in construction
tasks with exoskeletons.

4. Method

This section describes the approach adopted to achieve the objectives
of this study. This includes the participants, experimental design, in-
strument and data collection, data processing, and data analysis (Fig. 1).

4.1. Participants

Sixteen male graduate students of Virginia Tech were recruited to
participate in this study. The number of participants was selected based
on a priori sample size computation, which provides a minimum power
of 80 % with an effect size (f) and alpha () of 0.5 and 0.05, respectively
[49]. This yields a sample size of 12 participants, which is the minimum
required for this study. All computations were performed using G*Power
3.1.9.7. Similar sample sizes have been employed in related studies
[50-52]. Although some participants had previous exposure to exo-
skeletons, their encounters were limited to experimental settings, and
they did not have regular usage experience. The participants reported no
health issues about their mental state that could have hampered their
performance and the biomechanical benefits of the exoskeleton.
Following the approval of the Virginia Tech Institutional Regulation
Board (IRB: 19-796), the experiment details were provided to the par-
ticipants before they gave their consent. The demographic information
of the participants (age, weight, and height) was calculated and the
average age is 30 years with a standard deviation (SD) +4 years, the
average weight is 72 kg with an SD + 7.5 kg, and the average height is
173 c¢cm with an SD + 5.5 cm.

4.2. Experimental design and Procedure

The experiment requires that participants perform carpentry framing
tasks under two conditions: without aBSE (No Exo) and with aBSE
(Active Exo) (Fig. 2a and 2b, respectively). The order of these conditions
(i.e., No Exo and Active Exo) was randomized for different participants
to reduce bias of familiarity with the task. The framing task was divided
into six subtasks, which were performed sequentially: measuring, as-
sembly, nailing, lifting, moving, and installing (Fig. 2c). Although the
experiment was conducted in a laboratory setting, the sequence was
designed to represent realistic carpentry framing work by including the
key subtasks required to execute an actual framing task. The duration of
each experimental condition did not exceed five minutes to mitigate the
potential influence of fatigue [53]. Also, the participants were allowed
to rest for 30 min after completing the first experimental condition (No
Exo) before proceeding to the second condition (Active Exo) [53].

During the experiment, brain activity was captured using an EEG.
The participants were asked to construct a wooden frame that would
facilitate drywall installation using materials such as timber, nail gun,
and measuring tape. The timber consists of members of various lengths,
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Fig. 1. Overview of the methodology.

(a)

(b)

(©)

Fig. 2. Simulated framing task: (a) No Exo, (b) Active Exo, and (c) Subtasks.

such as 1.2 m, 1.8 m, 1 m, and 1.5 m, with equal cross-sectional area of
100 mm x 25 mm. Before commencing the experiment, the participants
were shown a model of the frame they were expected to build, which is a
1.2 m by 1.8 m frame, as shown in Fig. 2. Subsequently, the participants
were introduced to the aBSE used for the experiment and were trained
on how the device works. Also, the framing task was demonstrated to the
participants, and they were allowed to practice the task according to the
sequences until they were fully familiar with it. This helps to reduce the
effects of the task difficulty during the experiment.

The experiment commenced after the participants understood the
workings of the aBSE and how the task should be performed. The par-
ticipants commenced the first subtask by measuring the timber members
required to construct the frame. This subtask is expected to place a
mental demand on the participants, as they are expected to select the
right plank out of a pile of planks for the subtask. The next subtask in-
cludes assembling and arranging the timber planks according to the
model in Fig. 2. Subsequently, the participants were expected to nail the

assembled frame at each joint using the nail gun. The nail gun was not
activated to ensure the safety of the participants. Before commencing
the lifting subtask, the prepared model was placed on the assembled
frame, which was lifted by the participants and manually moved to the
upper floor for installation. The weight of the frame is approximately 20
kg, which is within the range of the permitted manual lifting regulation
as provided by the National Institute for Occupational Safety and Health
lifting equation [54].

4.3. Instruments and data collection

4.3.1. Active Back-Support exoskeleton

CrayX, an active back-support exoskeleton manufactured by German
Bionic, was used for this study. The device weighs 7.5 kg and has a lifting
support of 33 kg. The aBSE has three working modes: lifting, walking,
and bending. Support provided during each mode can be adjusted from
0 to 100 %. The device is powered by a rechargeable 40-volt battery,
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which, can last about 6 to 8 h. The aBSE consists of a backpack housing
an electrical panel, motors, and strap pads (Fig. 3). The motors are
located on both sides of the pelvis. The strap pads help attach the device
to the body’s thigh, chest, shoulder, and waist regions.

4.3.2. Electroencephalography

An EEG sensor was adopted in this study to capture the electrical
activity in the brain. The brain’s electrical activity was used to analyze
the cognitive load of the users of the aBSE. The EEG device used in the
study is a 32-channel Epoc Flex manufactured by Emotiv (Fig. 4a). The
EEG device was placed on the surface of the scalp to target the cerebral
cortex of the brain, which has the greatest EEG electrical conductivity
[31]. The cerebral cortex can be divided into four major parts (Fig. 4b),
namely, the frontal lobe, temporal lobe, parietal lobe, and occipital lobe,
which are represented by different EEG channels based on international
10-20 systems, as shown in Fig. 4c [56]. EEG signals are usually
described according to the different rhythmic activities of the brain over
which data are recorded. They are grouped into five waves according to
the frequency bands they occur: delta (0.5-4 Hz), theta (4-8 Hz), alpha
(8-12 Hz), beta (13-30 Hz), and gamma (> 30 Hz) [57]. The delta
frequency band is related to deep sleep and unconsciousness, and theta
frequencies describe drowsiness and early stages of sleep [33,45].
However, the alpha frequency band denotes the relaxed state and
conscious thinking; the beta frequency range aligns with active cogni-
tive processing and attentive operations; and the gamma frequency band
encompasses intense mental engagement and the processing of infor-
mation [33]. Since EEG infers cognitive load directly from the central
nervous system via the brain, studies identified a significant correlation
between the alpha band and cognitive load [58,59]. Specifically, alpha
band frequency around the frontal lobe, temporary lobe, and occipital
lobe has been adopted to measure cognitive load because of its high
conductivity [32-34,60]. The frontal lobe aids in decision-making on
how to construct the frame and controls the movements of the body to
execute the task. The temporal lobe enables understanding and memo-
rization of the verbal instructions on how to construct the frame, and
visual recognition of the frame, while the occipital lobe supports the
processing of the visual information [61]. The relationship between the
alpha band and cognitive load is directly proportional, i.e., the higher
the mean PSD of the alpha band, the higher the cognitive load [33].
Drawing from past studies as explained in the background
[27,32-34,62], this study focused on the alpha band of the frontal lobe
channels (F3, F4, F8, FP2, FP1, and FC6), the temporal lobe (T7 and T8),
and the occipital lobe of the brain (O1 and 02) to assess the cognitive
status of aBSE users while working on construction framing task. The
brain regions and channels are shown in Fig. 4b and 4c, respectively.

4.3.3. Data preprocessing

EEG data is prone to artifacts, especially when the task involves a lot
of body movement, which could affect the data quality [65]. Since

Chest strap

Leg support

Fig. 3. Active back-support exoskeleton (Cray X) ().
Source: [55]
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carpentry framing is a physically demanding task involving repetitive
body movements, artifacts could compromise the EEG data. Artifacts
generated while capturing EEG data can be categorized into intrinsic
and extrinsic artifacts [66]. The body generates intrinsic artifacts during
data collection, and these include eye blinking, facial muscle move-
ments, and cardiac pulse [66]. The extrinsic artifacts are generated from
external sources such as electromagnetic interference, electrode
popping, environmental noise, and wiring noise [66]. To eliminate the
extrinsic artifacts, the raw EEG data was fed into the EEGLAB tool [65],
and a bandpass filter with a frequency range of 0.5 Hz to 60 Hz was
adopted to cut off unwanted frequencies that could affect the outcome of
the study [67]. This was followed by applying a notch filter at a narrow
frequency of 60 Hz to remove the noise from the electrode wires.

Independent component analysis was adopted within the EEGLAB
toolbox to eradicate the intrinsic artifacts. This was conducted by
passing the data through independent component analysis (ICA), which
decomposed the data into 32 components. Moreover, intrinsic artifacts
such as eye blinking and muscle movement were manually removed and
pruned using the ICA label features After preprocessing the data, the
mean PSD of the alpha frequency range for each subtask was computed
using Welch’s algorithm as illustrated by Egs. (1) and (2) [27,68,69].
Adopted from Chiu, Lu [69], Welch’s method of evaluating PSD for each
N-point time series in the mh segment can be expressed as:

2
_j2mnk

1
Poulf) =5 > xm(me " )

The PSD for the entire series can be expressed as:
1 —M-1
Pulf) =212 oPrnmt(f) 2

Where, Py = Power spectral density; M = Number of segments; m =
Segment index; N = Length of each segment; n = Sample index; k =
Normalizing constant; and f = Frequency variable.

4.4. Data analysis

After EEG data preprocessing and ensuring the collected data was of
high quality, the data was analyzed to assess the cognitive load associ-
ated with using aBSE for the carpentry framing task. The PSD values
from the alpha frequency band, computed from Egs. (1) and (2), were
examined for possible outliers within the data distribution. Tukey’s
range test was used to identify the outliers, which were computed using
the interquartile range (IQR) to define the lower limit (Q1 — 1.5 * IQR)
and upper limit (Q3 + 1.5 * IQR) to remove any possible outliers [70,71]
- Q1 and Q3 are the first and third quartiles of the data. The normality
and sphericity of the PSD data were tested using the d’ Agostino-Pearson
test and the Mauchly test, respectively, to determine which statistical
analysis tools to consider. The PSD data met the normality and sphe-
ricity assumptions. Thus, a paired t-test was conducted to examine the
experimental condition within each subtask. Furthermore, one-way
repeated measure ANOVA was conducted to determine the most sensi-
tive channels for cognitive load assessment using an aBSE. This was
further corroborated by exploring the relationship among the EEG
channels using Spearman correlation after the dataset showed no line-
arity. Bar graphs and tables were used to illustrate the analysis con-
ducted. All statistical analysis was computed using Microsoft Excel and
JMP Pro 17.0.0.

5. Results
In this section, the impact of the two experimental conditions on

cognitive load is reported using the alpha band PSD across carpentry
framing subtasks: measuring, assembling, nailing, lifting, moving, and
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Fig. 4. (a) 32-channel EEG, ; (b) Cerebral cortex of the brain, Source: and (c) EEG channel location. Source: .

Source: [63][64][63]

installing. Also, the results of comparing the EEG channels and the
relationship between the channels in the exoskeleton condition are re-
ported. Bar graphs and tables are used to illustrate the results, including
the statistical significance (p-value < 0.05).

5.1. Comparison of No-Exoskeleton and exoskeleton conditions

Results of the paired t-test revealed the differences between the
cognitive load of the two experimental conditions within each subtask
and across the carpentry task. Fig. 5 presents the results of the com-
parison of the cognitive load of the two experimental conditions for the
measuring subtask. The results indicated statistically significant (p <
0.05) higher PSD in the Active Exo condition across frontal lobe chan-
nels F3, F8, and FC6 with percentage increments of 166 %, 127 %, and
57 %, respectively, and a temporal lobe channel T7 with percentage
increment of 137 %. However, for comparing the cognitive load of the
two experimental conditions for the assembly subtask shown in Fig. 6,
only the Active Exo condition in frontal lobe channel F3 has a signifi-
cantly high PSD with a percentage increment of 103 %. Conversely, a
temporal lobe channel T8 shows a significant (p < 0.05) increase in PSD,
with a percentage increase of 62 % in the No Exo condition (Fig. 6). For
the nailing subtask, the results presented in Fig. 7 indicate that frontal
lobe channel F3 shows a significant (p < 0.05) increment of 153 % in the
Active Exo condition. Conversely, another frontal lobe channel FP2
shows an increment of 61 % in the No Exo condition compared to the
Active Exo condition. The lifting subtask shows no statistical signifi-
cance across all the channels (Fig. 8). Additionally, for the moving
subtask, Fig. 9 shows statistical significance across frontal lobe channels
FP1, F3, and F8, which indicates an increment of 175 %, 150 %, and 79
%, respectively, in the PSD of the Active Exo condition. In the No Exo
condition, the reverse is the case for frontal lobe channel FC6, where
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sembly subtask.(“*” = significant at p-value < 0.05).

30
25

[
=3

vy b a0

Frontal lobe

)

PSD (WV~2)/Hz
>

Temporal

lobe
Brain regions and EEG channels
®No Exo W Active Exo

Occipital lobe

Fig. 7. Power spectrum comparison for alpha frequency band in nailing sub-
task (“*” = significant at p-value < 0.05).

there is an increase of 51 % compared to the Active Exo condition.
Lastly, in the installation subtask, there is no statistical significance
across the channels (Fig. 10). A summary of the PSDs of exoskeleton
conditions across the EEG channels for the entire carpentry subtask is
presented in Fig. 11. The paired t-test shows that five channels are sta-
tistically significant (p < 0.05). The results indicate higher PSD values in
the Active Exo condition of frontal lobe channels FP1, F3, and F8 with
percentage increases of 57.3 %, 23.3 %, and 129.5 %, respectively. A
similar increase was observed in occipital lobe channel 02 with a per-
centage increase of 55 %.

5.2. Comparison of EEG channels in the exoskeleton condition

Figs. 12-17 show the results of the comparisons of the EEG channels,
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Fig. 10. Power spectrum comparison for alpha frequency band in frame
installation subtask.

using one-way repeated measure ANOVA, to identify the most sensitive
channels in the Active Exo condition. Fig. 12 illustrates the results of the
frame measuring subtask and reveals a statistically significant difference
(p < 0.05) among the EEG channels, with channel F8 showing the
highest sensitivity to cognitive load as indicated by the post-hoc test.
Fig. 13 shows the results of the frame assembly subtask depicting a
significant difference (p < 0.05) between the channels, with the post hoc
analysis revealing frontal lobe channels FP1 and F8 as the most sensitive
channels. Fig. 14 gives the detailed results of the nailing subtask and
indicates statistical significance (p < 0.05), with the post-hoc test
revealing frontal lobe channel F8 as the most sensitive channel to
cognitive load evaluation. Figs. 15 and 16 illustrate the results of the
frame lifting and moving subtasks, respectively, with frontal lobe
channel FP1 showing the highest sensitivity in both subtasks. Fig. 17
shows the results of the frame installation subtask indicating statistical
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differences (p < 0.05), with the post-hoc test revealing occipital lobe
channel O2 as the most sensitive channel.

5.3. Relationship between the EEG channels

Table 1 illustrates the interrelationships among the EEG channels
considered in evaluating cognitive load during the carpentry framing
task. Following the classification by Schober, Boer [72], a correlation
coefficient of 0.00 to 0.1 represents a negligible relationship, 0.10 to
0.39 represents a weak relationship 0.40 to 0.69 represents a moderate
relationship, 0.7 to 0.89 represents a strong relationship, and 0.9 to 1
indicates a very strong correlation.

The results in Table 1 reveal strong relationships between pairs of
frontal lobe channels (F4 and FC6; FP2 and FC6), and pairs of occipital
and frontal lobe channels (O1 and FC6; O2 and FP1), which are statis-
tically significant (p < 0.05) as indicated by bold coefficients. Moderate
relationships are observed between pairs of frontal lobe channels (F4
and FC6; F3 and FP1; F8 and FC6; F8 and F4; FP2 and F4; FP2 and F8),
pairs of temporal lobe channels (T8 and T7), and pairs of occipital lobe
channels (O1 and 02). Similar relationships also exist between pairs of
frontal and temporal lobe channels (F4 and T7; F4 and T8; F3 and T7;
FC6 and T7; FC6 and T8; FP2 and T7; FP2 and T8; FP1 and T7; F3 and
T8), pairs of temporal and occipital lobe channels (O1 and T7), and pairs
of occipital and frontal lobe channels (O1 and FP1; O1 and F4; O1 and
F8; O1 and FP2). These moderate relationships are statistically signifi-
cant (p < 0.05) as indicated by the bold coefficients in Table 1. The
remaining relationships are either weak or negligible, though some
show statistical significance.

6. Discussion

This study evaluated the cognitive load imposed by aBSE used during
a construction framing task via the alpha band. Additionally, this study
examined the most sensitive EEG channels for evaluating cognitive load
and the interrelationships among these channels during exoskeleton use.
This section provides detailed interpretations of the results.

6.1. Comparison of No-Exoskeleton and exoskeleton conditions

In the analysis of the construction framing task across the six sub-
tasks, notable findings reveal significantly higher PSD values for the
Active Exo condition for frame measuring, assembling, nailing, and
moving subtasks. However, for the case of frame lifting and installing
subtasks, no significance was observed between the No Exo and Active
Exo conditions. This indicates that using an aBSE substantially increases
the cognitive burden on users within the examined task. This result is
anticipated, given that using an aBSE introduces an additional element
that the brain must conscientiously manage and preprocess, especially in
an uncontrolled setting like a construction site. The elevated risk of
catch and snag incidents, associated with the structure and weight of the

Relationship between EEG channels in Active Exo condition (bold numbers are significant at p-value < 0.05) (Green: Strong correlation, p = 0.7 to 0.89; Yellow:
Moderate correlation, p = 0.4 to 0.69; and Orange: Weak correlation, p = 0.1 to 0.39).

Brain Regions and EEG Channels Frontal lobe

Temporal lobe Occipital lobe

FP1 FP2 F3 F8 FCé6 T7 T8 o1 02

Frontal lobe FP1

FP2 0.1667

F3 0.401 0.3562

F4 —0.1179 0.6475 0.3775

F8 0.2513 0.5984 0.3452 0.5841

FC6 0.0601 0.7137 0.3451 0.8694 0.5005
Temporal lobe T7 0.4529 0.6535 0.5536 0.4077 0.2334 0.4389

T8 —0.1063 0.4558 0.4576 0.6458 0.278 0.5172 0.419
Occipital lobe o1 0.4832 0.5493 0.2214 0.5176 0.4095 0.7115 0.4289 0.1697

02 0.8264 0.3889 0.3698 0.1519 0.2495 0.3041 0.6494 0.1372 0.6495
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aBSE, tends to increase the mental workload of aBSE users [24,73].

Notably, the moving and assembly subtasks exhibit the highest PSD
values, indicating that participants experience heightened cognitive
load during these activities. This aligns with expectations as both sub-
tasks involve significant mental and physical demands and extensive
body movements [74]. Participants are likely to exercise caution while
navigating the task area, carrying the frame, and negotiating uneven
surfaces, such as staircases, contributing to the augmented cognitive
demand. Surprisingly, lifting and installing subtasks show no statisti-
cally significant differences in PSD values. This finding is noteworthy,
considering these subtasks involve less movement than the other sub-
tasks. This further suggests that using an exoskeleton during subtasks
with limited movements may have a comparatively lower impact on
cognitive load. A similar finding was reported by Wachtler, Kessler [14],
who found that dynamic tasks impose a higher cognitive load compared
to static tasks. Furthermore, Shayesteh and Jebelli [34] found that the
cognitive load of humans collaborating with autonomous robots in-
crease compared to those interacting with semi-autonomous robots
during brick laying. As such, in the context of the carpentry framing
task, which involves varying levels of kinetic movement contributing to
the increased cognitive load for exoskeleton users, it is crucial to
recognize that numerous construction tasks exhibit similar or higher
levels of dynamism. Consequently, there is a need for exoskeleton de-
signs to adapt effectively to these diverse and dynamic construction
scenarios.

The result of the overall carpentry task shown in Fig. 11 reveals an
increase in cognitive load in frontal lobe channels FP1, F3, and F8, and
occipital lobe channel O2 among participants using the exoskeleton.
This could be due to the task requirement to sustain working memory
and process visual information, respectively. It can also be observed
from Fig. 11 that the temporal lobe channel T8 exhibited a contrary
trend. This could be due to the absence of time constraints in completing
the carpentry task. Since participants were not under pressure to com-
plete the task while utilizing the exoskeleton, the temporal lobe might
not have been engaged. Conversely, increased activation of the temporal
lobe during the carpentry task without the exoskeleton could be
attributed to participants’ familiarity with performing the task without
an exoskeleton, motivating them to complete the task quickly. The
findings regarding temporal lobe channel T8 in this study contradict
those of Jensen, Gelfand [46], which focused on a short-term memory
task. This discrepancy could arise from participants’ efforts to actively
maintain their short-term memory during task execution, a circum-
stance not replicated in this study.

6.2. Spectral Power comparison for exoskeleton condition

In the Active Exo condition, frontal lobe channels F8 and FP1, and
occipital lobe channel O2 exhibit the highest PSD, signifying their sub-
stantial contributions to the evaluation of cognitive load. The promi-
nence of occipital lobe channel O2 is unexpected, however, the
involvement of the frontal brain region channels—specifically frontal
lobe channels F8 and FP1—is not surprising, given their roles in atten-
tion and working memory [75]. So, Wong [76] assert that frontal region
channels activate during tasks requiring sustained attention and work-
ing memory, such as finger tapping, lexical decision-making, arithmetic,
and mental rotation, which involve discriminating between closely
related figures. Several subtasks in this study demanded sustained
attention and memory, resembling the tasks mentioned. For instance,
the measuring subtask required participants to select the correct timber
log, measure it, and simultaneously keep track of the entire sequence of
subtasks. The heightened sensitivity observed in the frontal lobe region
can be attributed to the requisite sustained attention, a predominant
aspect across the examined subtasks. Given the preeminence of the
frontal lobe in the cerebral cortex, as indicated by the results, integrating
frontal channels into EEG and exoskeletons may be considered for the
development of an adaptive exoskeleton, providing real-time feedback
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and adjustments based on the cognitive status of exoskeleton users.

Activation of occipital channels results from triggers in the occipital
lobe, known for processing visual information [28]. The sensitivity of
the occipital lobe channel O2 suggests that carpentry framing activities
are visually demanding and cognitively stimulating. While attention has
been focused on the frontal lobe, the significant sensitivity of occipital
channels indicates that participants maintained visual memory during
framing tasks, particularly evident in the installation subtask, as
depicted in Fig. 17. Although not the highest, substantial sensitivity in
the occipital lobe is also observed in other subtasks, contributing valu-
able insights for brain-exoskeleton interaction studies aiming to develop
adaptive exoskeletons capable of regulating users’ cognitive load.

The predominance of frontal channels in indicating cognitive load
has been established by Chen, Taylor [27] and Ismail and Karwowski
[77] in their examinations of EEG’s application for quantifying human
cognitive load. These studies underscore the frontal lobe as a primary
indicator. Additionally, Mapelli and Ozkurt [78] emphasize the PSD of
the occipital lobe, highlighting its heightened sensitivity in evaluating
cognitive load during mental memory tasks.

6.3. Relationship between EEG channels

Considering the findings from previous studies outlined in the
background, the selected channels were expected to exhibit close re-
lationships, as detailed in Table 1. However, the surprising aspect was
the order of strength in these relationships, revealing that occipital lobe
channels had stronger connections with other brain regions compared to
many frontal lobe channels. Notably, the dominance of the frontal and
occipital lobes as the most sensitive channels in evaluating cognitive
load is consistent with the results demonstrating the strongest re-
lationships among the channels. This implies that participants not only
engaged their frontal lobe for critical thinking, attention, and body
movements but also activated their visual sensory functions during the
carpentry task [79].

The direct assessment of human cognitions from the cerebral cortex
involves the frontal lobe, temporal lobe, occipital lobe, and parietal lobe
[56]. While each of these brain regions responds differently to the nature
of mental workload tasks, this study indicates that performing the
framing task with an aBSE predominantly activates the frontal and oc-
cipital regions, as depicted in Table 1 and Figs. 13 to 18. This alignment
is justified by the substantial involvement of critical thinking, attention,
and body movement in the framing task, sparking the frontal region.
This insight is valuable for determining the group of EEG channels to be
considered alongside the frontal region when investigating the cognitive
load of exoskeleton users, potentially contributing to the development of
enhanced exoskeletons through real-time cognitive load monitoring.
The activation in the occipital region suggests that participants were
visually engaged with the task, supported by the identification of oc-
cipital channels (02) as among the most sensitive channels for cognitive
load evaluation. Recognizing the importance of visual attention during
the framing task, the strong correlations with other brain regions reveal
that visual attention plays a crucial role in sustaining other aspects, such
as critical thinking and body movement in various directions.

The observed strong relationships of frontal lobe channels with other
channels in assessing cognitive load align with the findings of Shayesteh
and Jebelli [34], where frontal lobe channels significantly contributed
to evaluating cognitive workload in human-robot relationship tasks,
akin to the human-exoskeleton relationship in this study. The relevance
of occipital channels is also demonstrated in Cabanero, Hervas [80],
where human-computer interaction tasks involving mobile phones and
computers highlighted the significance of the occipital lobe among other
regions in assessing cognitive load.

7. Conclusion, limitation, and future work

Active back-support exoskeletons have demonstrated their potential
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in reducing WMSDs in various industries. However, there are concerns
about potential unintended consequences, particularly the prospect of
increased cognitive load for users. This study investigates the impact of
an active back-support exoskeleton on cognitive load within the context
of a carpentry framing task. Brain activity in this study explains the
cognitive load experienced by aBSE users. Notably, four out of five
significant EEG channels suggest that aBSE elevates users’ cognitive
load, while one channel indicates otherwise. Among the various chan-
nels examined in the Active Exo condition, frontal lobe channels F8 and
FP1 and occipital lobe channel O2 stand out for their high sensitivity in
assessing cognitive load risk. Additionally, in exploring the relationships
among the channels, pairs of frontal lobe channels, F4 and FC6, and FP2
and FC6, and pairs of occipital and frontal lobe channels, O1 and FC6,
and O2 and FP1, demonstrate the strongest connections.

It is crucial to note that this study was conducted in a controlled
laboratory environment with participants with limited experience in
construction tasks, potentially influencing the results. Furthermore, all
participants were male, which could limit the generalizability of the
findings. Future research should involve diverse, experienced con-
struction workers engaged in real-world tasks for a more accurate
assessment. Assessing task difficulty could further elucidate how it in-
fluences cognitive load in exoskeleton users. Integrating aBSE and EEG
technology for real-time cognitive load monitoring and adjustment
could optimize user-exoskeleton coordination.

This study contributes empirical evidence regarding assessing
cognitive load risks in construction tasks, filling a gap in knowledge
regarding the effects of cognitive load on aBSE usage. The identified
increase in cognitive load for exoskeleton users highlights the need for
tailored designs capable of effectively managing cognitive load while
reducing WMSDs. Refining ergonomic designs to align with user
movement and preferences may alleviate cognitive load. The most
sensitive EEG channels identified for cognitive load assessment could
facilitate the development of adaptive exoskeletons capable of evalu-
ating the user’s cognitive status and providing real-time feedback.
Furthermore, the demonstrated correlations among the EEG channels
highlight those most strongly related, serving as valuable insights for
brain-exoskeleton interaction studies.

CRediT authorship contribution statement

Abiola Akanmu: Writing — review & editing, Supervision, Re-
sources, Project administration, Funding acquisition. Akinwale Oku-
nola: Writing - original draft, Visualization, Methodology,
Investigation, Formal analysis, Data curation. Houtan Jebelli: Super-
vision, Project administration, Methodology, Investigation, Funding
acquisition. Ashtarout Ammar: Writing — review & editing, Visualiza-
tion, Supervision. Adedeji Afolabi: Writing — review & editing, Visu-
alization, Supervision, Investigation, Data curation.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests:
[Abiola Akanmu reports financial support was provided by National
Science Foundation. If there are other authors, they declare that they
have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper].

Acknowledgment

This material is based upon work supported by the National Science
Foundation under Grant Nos. 2221166 and 2221167. Any opinions,
findings, conclusions, or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

10

Advanced Engineering Informatics 62 (2024) 102905
Data availability
Data will be made available on request.

References

[1] S. Anwer, et al., Associations between physical or psychosocial risk factors and
work-related musculoskeletal disorders in construction workers based on literature
in the last 20 years: A systematic review, Int. J. Ind. Ergon. 83 (2021) 103113,
https://doi.org/10.1016/j.ergon.2021.103113.

M.F. Antwi-Afari, et al., A science mapping-based review of work-related
musculoskeletal disorders among construction workers, J. Saf. Res. 85 (2023)
114-128.

A. Afsharian, et al., Work-related psychosocial and physical paths to future
musculoskeletal disorders (MSDs), Saf. Sci. 164 (2023) 106177, https://doi.org/
10.1016/j.jsr.2023.01.011.

W. Huo, et al., Lower limb wearable robots for assistance and rehabilitation: A state
of the art, IEEE Syst. J. 10 (3) (2014) 1068-1081.

H.K. Kim, et al., Analysis of active back-support exoskeleton during manual load-
lifting tasks, J. Med. Biolog. Eng. 41 (5) (2021) 704-714, https://doi.org/10.1109/
JSYST.2014.2351491.

T. Poliero, et al., Applicability of an active back-support exoskeleton to carrying
activities, Front. Robot. Al 7 (2020) 579963, https://doi.org/10.3389/
frobt.2020.579963.

A. Ali, et al., Systematic review of back-support exoskeletons and soft robotic suits,
Front. Bioeng. Biotechnol. 9 (2021) 765257, https://doi.org/10.3389/
fbioe.2021.765257.

B. Reimeir, et al., Effects of back-support exoskeletons with different functional
mechanisms on trunk muscle activity and kinematics, Wear. Technol. 4 (2023) e12.
K. Huysamen, et al., Assessment of an active industrial exoskeleton to aid dynamic
lifting and lowering manual handling tasks, Appl. Ergon. 68 (2018) 125-131,
https://doi.org/10.1016/j.apergo.2017.11.004.

A. Okunola, et al., Pilot study of powered wearable robot use for simulated flooring
work, Comput. Civil Eng. 2023 (2023) 813-820, https://doi.org/10.1061/
9780784485224.098.

Y. Zhu, et al., Neural and biomechanical tradeoffs associated with human-
exoskeleton interactions, Appl. Ergon. 96 (2021) 103494, https://doi.org/
10.1016/j.apergo.2021.103494.

A. Okunola P.D. Abiola Akanmu H. Jebelli Experimental Analysis of Cognitive Load
Risks in Employing Active Back-Support Exoskeleton in Construction. Proceedings of
60th Annual Associated Schools, 2024. 5: p. 894-902. DOI: 10.29007 /zcsx.

C. Marchand, J.B. De Graaf, N. Jarrassé, Measuring mental workload in assistive
wearable devices: a review, J. Neuroeng. Rehabil. 18 (1) (2021) 1-15, https://doi.
org/10.1186/512984-021-00953-w.

M. Wachtler, et al., Revealing perceptional and cognitive mechanisms in static and
dynamic cocktail party listening by means of error analyses, 23312165221111676,
Trends in Hearing 26 (2022), https://doi.org/10.1177/23312165221111676.

S. Kalyuga, Cognitive load theory: how many types of load does it really need?
Educ. Psychol. Rev. 23 (2011) 1-19, https://doi.org/10.1007/s10648-010-9150-7.
E. Galy, C. Mélan, Effects of cognitive appraisal and mental workload factors on
performance in an arithmetic task, Appl. Psychophysiol. Biofeedback 40 (2015)
313-325, https://doi.org/10.1007/510484-015-9302-0.

S. Fox, et al., Exoskeletons: Comprehensive, comparative and critical analyses of
their potential to improve manufacturing performance, J. Manuf. Technol.
Manage. 31 (6) (2019) 1261-1280, https://doi.org/10.1108/JMTM-01-2019-
0023.

N.J. Gonsalves, et al., Assessment of a passive wearable robot for reducing low
back disorders during rebar work, J. Inf. Technol. Constr. 2021 (26) (2021)
936-952, https://doi.org/10.36680/j.itcon.2021.050.

A. Okunola, A.A. Akanmu, A.O. Yusuf, Comparison of active and passive back-
support exoskeletons for construction work: range of motion, discomfort, usability,
exertion and cognitive load assessments, Smart Sustain. Built Environ. (2023),
https://doi.org/10.1108/SASBE-06-2023-0147.

0. Ogunseiju, et al., Subjective evaluation of passive back-support exoskeleton for
flooring work, EPiC Series in Built Environ. 2 (2021) 10-17. https://easychair.
org/publications/download/P3d5.

A. Okunola, et al., Facilitators and barriers to the adoption of active back-support
exoskeletons in the construction industry, Constr. Res. Congress 2024 (2024),
https://doi.org/10.1061/9780784485293.089.

F. Nazari, et al., Applied exoskeleton technology: a comprehensive review of
physical and cognitive human-robot interaction, IEEE Trans. Cognitive Develop.
Syst. (2023), https://doi.org/10.1109/TCDS.2023.3241632.

Okunola, A., P.D. Abiola Akanmu, and H. Jebelli, Influence of Active Back-Support
Exoskeleton on Fall Hazard in Construction. Proceedings of 60th Annual Associated
Schools, 2024. 5: p. 903-911. DOI: 10.29007/xrjm.

S. Kim, et al., Potential of exoskeleton technologies to enhance safety, health, and
performance in construction: Industry perspectives and future research directions,
IISE Trans. Occup. Ergonomics and Human Factors 7 (3-4) (2019) 185-191,
https://doi.org/10.1080/24725838.2018.1561557.

J.S. Cha, et al., Supporting surgical teams: Identifying needs and barriers for
exoskeleton implementation in the operating room, Hum. Factors 62 (3) (2020)
377-390, https://doi.org/10.1177/0018720819879271.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]


https://doi.org/10.1016/j.ergon.2021.103113
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0010
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0010
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0010
https://doi.org/10.1016/j.jsr.2023.01.011
https://doi.org/10.1016/j.jsr.2023.01.011
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0020
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0020
https://doi.org/10.1109/JSYST.2014.2351491
https://doi.org/10.1109/JSYST.2014.2351491
https://doi.org/10.3389/frobt.2020.579963
https://doi.org/10.3389/frobt.2020.579963
https://doi.org/10.3389/fbioe.2021.765257
https://doi.org/10.3389/fbioe.2021.765257
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0040
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0040
https://doi.org/10.1016/j.apergo.2017.11.004
https://doi.org/10.1061/9780784485224.098
https://doi.org/10.1061/9780784485224.098
https://doi.org/10.1016/j.apergo.2021.103494
https://doi.org/10.1016/j.apergo.2021.103494
https://doi.org/10.1186/s12984-021-00953-w
https://doi.org/10.1186/s12984-021-00953-w
https://doi.org/10.1177/23312165221111676
https://doi.org/10.1007/s10648-010-9150-7
https://doi.org/10.1007/s10484-015-9302-0
https://doi.org/10.1108/JMTM-01-2019-0023
https://doi.org/10.1108/JMTM-01-2019-0023
https://doi.org/10.36680/j.itcon.2021.050
https://doi.org/10.1108/SASBE-06-2023-0147
https://easychair.org/publications/download/P3d5
https://easychair.org/publications/download/P3d5
https://doi.org/10.1061/9780784485293.089
https://doi.org/10.1109/TCDS.2023.3241632
https://doi.org/10.1080/24725838.2018.1561557
https://doi.org/10.1177/0018720819879271

A. Akanmu et al.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

A. Okunola, et al., Facilitators and barriers to the adoption of active back-support
exoskeletons in the construction industry, J. Saf. Res. (2024), https://doi.org/
10.1016/j.jsr.2024.05.010.

J. Chen, J.E. Taylor, S. Comu, Assessing task mental workload in construction
projects: A novel electroencephalography approach, J. Constr. Eng. Manag. 143 (8)
(2017) 04017053, https://doi.org/10.1061/(ASCE)CO.1943-7862.0001345.

P. Antonenko, et al., Using electroencephalography to measure cognitive load,
Educ. Psychol. Rev. 22 (2010) 425-438, https://doi.org/10.1007/s10648-010-
9130-y.

1. Kesedzi¢, et al., Classification of cognitive load based on neurophysiological
features from functional near-infrared spectroscopy and electrocardiography
signals on n-back task, IEEE Sens. J. 21 (13) (2020) 14131-14140, https://doi.org/
10.1109/JSEN.2020.3038032.

H. Wang, et al., EEG biofeedback decreases theta and beta power while increasing
alpha power in insomniacs: an open-label study, Brain Sci. 13 (11) (2023) 1542,
https://doi.org/10.3390/brainscil3111542.

M. Teplan, Fundamentals of EEG measurement, Measur. Sci. Rev. 2 (2) (2002)
1-11. http://www.edumed.org.br/cursos/neurociencia/MethodsEEGMeasuremen
t.pdf.

R.-S. Huang T.-P. Jung S. Makeig Tonic changes in EEG power spectra during
simulated driving. in Foundations of Augmented Cognition. Neuroergonomics and
Operational Neuroscience: 5th International Conference, FAC 2009 Held as Part of
HCI International 2009 San Diego, CA, USA, July 19-24, 2009 Proceedings 5. 2009.
Springer. DOI: 10.1007/978-3-642-02812-0_47.

N. Kumar, J. Kumar, Measurement of cognitive load in HCI systems using EEG
power spectrum: an experimental study, Procedia Comput. Sci. 84 (2016) 70-78,
https://doi.org/10.1016/j.procs.2016.04.068.

Shayesteh, S. and H. Jebelli. Investigating the impact of construction robots
autonomy level on workers’ cognitive load. in Canadian Society of Civil
Engineering Annual Conference. 2021. Springer. DOI: 10.1007/978-981-19-0503-
2.21.

BLS. Injury and illness rate per 10,000 full-time workers. 2020 [cited 2023 August
28]; Available from: https://data.bls.gov/pdq/SurveyOutputServlet.

F. Schroeter, et al., Cognitive effects of physical support systems: A study of resulting
effects for tasks at and above head level using exoskeletons. Annals of scientific society
for assembly, handling and industrial robotics, Springer, Berlin Heidelberg, 2020.
O. Tyagi, T.R. Mukherjee, R.K. Mehta, Neurophysiological, muscular, and
perceptual adaptations of exoskeleton use over days during overhead work with
competing cognitive demands, Appl. Ergon. 113 (2023) 104097, https://doi.org/
10.1016/j.apergo.2023.104097.

R. Govaerts, et al., The impact of an active and passive industrial back exoskeleton
on functional performance, Ergonomics (2023) 1-22, https://doi.org/10.1016/j.
apergo.2023.104026.

Gupta, A., R. McKindles, and L. Stirling. Relationships between cognitive factors
and gait strategy during exoskeleton-augmented walking. in Proceedings of the
Human Factors and Ergonomics Society Annual Meeting. 2021. SAGE Publications
Sage CA: Los Angeles, CA. DOI: 10.1177/1071181321651138.

Zhu, Y., et al. Neuroergonomics metrics to evaluate Exoskeleton based Gait
Rehabilitation. in 2020 IEEE International Conference on Systems, Man, and
Cybernetics (SMC). 2020. IEEE. DOI: 10.1109/SMC42975.2020.9283238.

Y. Lin, H. Cai, A method for building a real-time cluster-based continuous mental
workload scale, Theor. Issues Ergon. Sci. 10 (6) (2009) 531-543, https://doi.org/
10.1080/14639220902836547.

N.-T. Jeong, et al., A study on the HMI assessment of a joy stick driving system
using driver workload measurements, J. Mech. Sci. Technol. 32 (2018) 2781-2788,
https://doi.org/10.1007/512206-018-0535-8.

H. Atici-Ulusu, et al., Effects of augmented reality glasses on the cognitive load of
assembly operators in the automotive industry, Int. J. Comput. Integr. Manuf. 34
(5) (2021) 487-499, https://doi.org/10.1080/0951192X.2021.1901314.

A. Farkish, et al., Evaluating the effects of educational multimedia design
principles on cognitive load using EEG signal analysis, Edu. Inform. Technol. 28 (3)
(2023) 2827-2843, https://doi.org/10.1007/s10639-022-11283-2.

P.L. Nunez, R. Srinivasan, A theoretical basis for standing and traveling brain
waves measured with human EEG with implications for an integrated
consciousness, Clin. Neurophysiol. 117 (11) (2006) 2424-2435, https://doi.org/
10.1016/j.clinph.2006.06.754.

O. Jensen, et al., Oscillations in the alpha band (9-12 Hz) increase with memory
load during retention in a short-term memory task, Cereb. Cortex 12 (8) (2002)
877-882, https://doi.org/10.1093/cercor/12.8.877.

J. Janssen, P.A. Kirschner, Applying collaborative cognitive load theory to
computer-supported collaborative learning: towards a research agenda, Educ.
Technol. Res. Dev. 68 (2) (2020) 783-805, https://doi.org/10.1007/s11423-019-
09729-5.

N. Cowan, The magical mystery four: How is working memory capacity limited,
and why? Curr. Dir. Psychol. Sci. 19 (1) (2010) 51-57, https://doi.org/10.1177/
0963721409359277.

D. Lakens, Calculating and reporting effect sizes to facilitate cumulative science: a
practical primer for t-tests and ANOVAs, Front. Psychol. 4 (2013), https://doi.org/
10.3389/fpsyg.2013.00863.

S. Tortora, et al., Effect of lower limb exoskeleton on the modulation of neural
activity and gait classification, IEEE Trans. Neural Syst. Rehabil. Eng. (2023),
https://doi.org/10.1109/TNSRE.2023.3294435.

R. Govaerts, et al., Evaluating cognitive and physical work performance: A
comparative study of an active and passive industrial back-support exoskeleton,
Wear. Technol. 4 (2023) e27.

11

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]
[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

Advanced Engineering Informatics 62 (2024) 102905

A. QOjha, et al., Assessing the impact of active back support exoskeletons on
muscular activity during construction tasks: insights from physiological sensing,
Comput. Civ. Eng. (2023) 340-347, https://doi.org/10.1061/
9780784485248.041.

M.F. Antwi-Afari, et al., Assessment of a passive exoskeleton system on spinal
biomechanics and subjective responses during manual repetitive handling tasks
among construction workers, Saf. Sci. 142 (2021) 105382, https://doi.org/
10.1016/j.55¢i.2021.105382.

Waters, T.R., V. Putz-Anderson, and A. Garg, Applications manual for the revised
NIOSH lifting equation. 1994. https://stacks.cdc.gov/view/cdc/5434/cdc 5434
_DS1.pdf.

German-Bionic. CrayX. 2023 [cited 2023 September, 8]; Available from: https://
germanbionic.com/en/solutions/exoskeletons/crayx/.

C.K. Tamnes, et al., Development of the cerebral cortex across adolescence: a
multisample study of inter-related longitudinal changes in cortical volume, surface
area, and thickness, J. Neurosci. 37 (12) (2017) 3402-3412, https://doi.org/
10.1523/JNEUROSCI.3302-16.2017.

Y. Wang, et al., Identifying mental fatigue of construction workers using EEG and
deep learning, Autom. Constr. 151 (2023) 104887, https://doi.org/10.1016/j.
autcon.2023.104887.

Y. Liu, M. Habibnezhad, H. Jebelli, Brainwave-driven human-robot collaboration
in construction, Autom. Constr. 124 (2021) 103556, https://doi.org/10.1016/j.
autcon.2021.103556.

S. Chikhi, N. Matton, S. Blanchet, EEG power spectral measures of cognitive
workload: A meta-analysis, Psychophysiology 59 (6) (2022) e14009.

P.H. Khader, et al., Theta and alpha oscillations during working-memory
maintenance predict successful long-term memory encoding, Neurosci. Lett. 468
(3) (2010) 339-343, https://doi.org/10.1016/j.neulet.2009.11.028.

C.Y. Yiu, et al., Towards safe and collaborative aerodrome operations: Assessing
shared situational awareness for adverse weather detection with EEG-enabled
Bayesian neural networks, Adv. Eng. Inf. 53 (2022) 101698, https://doi.org/
10.1016/j.a€i.2022.101698.

S. Schapkin, et al., EEG correlates of cognitive load in a multiple choice reaction
task, Acta Neurobiol. Exp. 80 (1) (2020) 76-89. https://ane.pl/index.php/ane/arti
cle/download/2232/2226.

Emotiv. High-Density Saline EEG, Unlimited Research Flexibility. 2023 [cited 2023
September 25]; Available from: https://www.emotiv.com/flex-saline/.

Grohs, J.R., et al. Evaluating the potential of fNIRS neuroimaging to study
engineering problem solving and design. in 2017 ASEE Annual Conference &
Exposition. 2017. https://www.researchgate.net/profile/Tripp-Shealy/publicati
on/318724482 Evaluating the Potential of fNIRS Neuroimaging to_Study_Enginee
ring_Problem _Solving and_Design/links/5979edecaca272e8cc0b67f9/Evaluatin
g-the-Potential-of-fNIRS-Neuroimaging-to-Study-Engineering-Problem-Solving-an
d-Design.pdf.

A. Delorme, S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial
EEG dynamics including independent component analysis, J. Neurosci. Methods
134 (1) (2004) 9-21, https://doi.org/10.1016/]j.jneumeth.2003.10.009.

A. Tandle, et al., Classification of artefacts in EEG signal recordings and overview
of removing techniques, Int. J. Comput. Appl. 975 (2015) 8887.

L.J. Christiano, T.J. Fitzgerald, The band pass filter, Int. Econom. Rev. 44 (2)
(2003) 435-465, https://doi.org/10.1111/1468-2354.t01-1-00076.

R. Cox, J. Fell, Analyzing human sleep EEG: A methodological primer with code
implementation, Sleep Med. Rev. 54 (2020) 101353, https://doi.org/10.1016/j.
smrv.2020.10135.

C.-A. Chiu, et al., Quantifying and Analyzing Brainwave Electroencephalography
with Welch’s Method, Sens. Mater. 35 (5) (2023) 1579-1586. https://sensors.myu-
group.co.jp/sm_pdf/SM3271.pdf.

Katsumata, S., D. Kanemoto, and O. Makoto. Applying outlier detection and
independent component analysis for compressed sensing EEG measurement
framework. in 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS).
2019. IEEE. DOI: 10.1109/BIOCAS.2019.8919117.

S. Raghu, et al., Adaptive median feature baseline correction for improving
recognition of epileptic seizures in ICU EEG, Neurocomputing 407 (2020)
385-398, https://doi.org/10.1016/j.neucom.2020.04.144.

P. Schober, C. Boer, L.A. Schwarte, Correlation coefficients: appropriate use and
interpretation, Anesth. Analg. 126 (5) (2018) 1763-1768, https://doi.org/
10.1213/ANE.0000000000002864.

S. Upasani, et al., The potential for exoskeletons to improve health and safety in
agriculture—Perspectives from service providers, IISE Trans. Occup. Ergonomics
Human Factors 7 (3—-4) (2019) 222-229, https://doi.org/10.1080/
24725838.2019.1575930.

Z. Zhang, et al., Impact of physical and mental fatigue on construction workers’
unsafe behavior based on physiological measurement, J. Saf. Res. (2023), https://
doi.org/10.1016/j.jsr.2023.04.014.

Guan, K., et al. Evaluation of mental workload in working memory tasks with
different information types based on EEG. in 2021 43rd Annual International
Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). 2021.
IEEE. DOI: 10.1109/EMBC46164.2021.9630575.

W.K. So, et al., An evaluation of mental workload with frontal EEG, PLoS One 12
(4) (2017) e0174949.

L.E. Ismail, W. Karwowski, Applications of EEG indices for the quantification of
human cognitive performance: A systematic review and bibliometric analysis, PLoS
One 15 (12) (2020) e0242857.


https://doi.org/10.1016/j.jsr.2024.05.010
https://doi.org/10.1016/j.jsr.2024.05.010
https://doi.org/10.1061/(ASCE)CO.1943-7862.0001345
https://doi.org/10.1007/s10648-010-9130-y
https://doi.org/10.1007/s10648-010-9130-y
https://doi.org/10.1109/JSEN.2020.3038032
https://doi.org/10.1109/JSEN.2020.3038032
https://doi.org/10.3390/brainsci13111542
http://www.edumed.org.br/cursos/neurociencia/MethodsEEGMeasurement.pdf
http://www.edumed.org.br/cursos/neurociencia/MethodsEEGMeasurement.pdf
http://DOI%3a+10.1007/978-3-642-02812-0_47
https://doi.org/10.1016/j.procs.2016.04.068
http://DOI%3a+10.1007/978-981-19-0503-2_21
http://DOI%3a+10.1007/978-981-19-0503-2_21
https://data.bls.gov/pdq/SurveyOutputServlet
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0180
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0180
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0180
https://doi.org/10.1016/j.apergo.2023.104097
https://doi.org/10.1016/j.apergo.2023.104097
https://doi.org/10.1016/j.apergo.2023.104026
https://doi.org/10.1016/j.apergo.2023.104026
http://DOI%3a+10.1177/1071181321651138
http://DOI%3a+10.1109/SMC42975.2020.9283238
https://doi.org/10.1080/14639220902836547
https://doi.org/10.1080/14639220902836547
https://doi.org/10.1007/s12206-018-0535-8
https://doi.org/10.1080/0951192X.2021.1901314
https://doi.org/10.1007/s10639-022-11283-2
https://doi.org/10.1016/j.clinph.2006.06.754
https://doi.org/10.1016/j.clinph.2006.06.754
https://doi.org/10.1093/cercor/12.8.877
https://doi.org/10.1007/s11423-019-09729-5
https://doi.org/10.1007/s11423-019-09729-5
https://doi.org/10.1177/0963721409359277
https://doi.org/10.1177/0963721409359277
https://doi.org/10.3389/fpsyg.2013.00863
https://doi.org/10.3389/fpsyg.2013.00863
https://doi.org/10.1109/TNSRE.2023.3294435
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0280
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0280
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0280
https://doi.org/10.1061/9780784485248.041
https://doi.org/10.1061/9780784485248.041
https://doi.org/10.1016/j.ssci.2021.105382
https://doi.org/10.1016/j.ssci.2021.105382
https://stacks.cdc.gov/view/cdc/5434/cdc_5434_DS1.pdf
https://stacks.cdc.gov/view/cdc/5434/cdc_5434_DS1.pdf
https://germanbionic.com/en/solutions/exoskeletons/crayx/
https://germanbionic.com/en/solutions/exoskeletons/crayx/
https://doi.org/10.1523/JNEUROSCI.3302-16.2017
https://doi.org/10.1523/JNEUROSCI.3302-16.2017
https://doi.org/10.1016/j.autcon.2023.104887
https://doi.org/10.1016/j.autcon.2023.104887
https://doi.org/10.1016/j.autcon.2021.103556
https://doi.org/10.1016/j.autcon.2021.103556
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0320
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0320
https://doi.org/10.1016/j.neulet.2009.11.028
https://doi.org/10.1016/j.aei.2022.101698
https://doi.org/10.1016/j.aei.2022.101698
https://ane.pl/index.php/ane/article/download/2232/2226
https://ane.pl/index.php/ane/article/download/2232/2226
https://www.emotiv.com/flex-saline/
https://www.researchgate.net/profile/Tripp-Shealy/publication/318724482_Evaluating_the_Potential_of_fNIRS_Neuroimaging_to_Study_Engineering_Problem_Solving_and_Design/links/5979edecaca272e8cc0b67f9/Evaluating-the-Potential-of-fNIRS-Neuroimaging-to-Study-Engineering-Problem-Solving-and-Design.pdf
https://www.researchgate.net/profile/Tripp-Shealy/publication/318724482_Evaluating_the_Potential_of_fNIRS_Neuroimaging_to_Study_Engineering_Problem_Solving_and_Design/links/5979edecaca272e8cc0b67f9/Evaluating-the-Potential-of-fNIRS-Neuroimaging-to-Study-Engineering-Problem-Solving-and-Design.pdf
https://www.researchgate.net/profile/Tripp-Shealy/publication/318724482_Evaluating_the_Potential_of_fNIRS_Neuroimaging_to_Study_Engineering_Problem_Solving_and_Design/links/5979edecaca272e8cc0b67f9/Evaluating-the-Potential-of-fNIRS-Neuroimaging-to-Study-Engineering-Problem-Solving-and-Design.pdf
https://www.researchgate.net/profile/Tripp-Shealy/publication/318724482_Evaluating_the_Potential_of_fNIRS_Neuroimaging_to_Study_Engineering_Problem_Solving_and_Design/links/5979edecaca272e8cc0b67f9/Evaluating-the-Potential-of-fNIRS-Neuroimaging-to-Study-Engineering-Problem-Solving-and-Design.pdf
https://www.researchgate.net/profile/Tripp-Shealy/publication/318724482_Evaluating_the_Potential_of_fNIRS_Neuroimaging_to_Study_Engineering_Problem_Solving_and_Design/links/5979edecaca272e8cc0b67f9/Evaluating-the-Potential-of-fNIRS-Neuroimaging-to-Study-Engineering-Problem-Solving-and-Design.pdf
https://doi.org/10.1016/j.jneumeth.2003.10.009
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0355
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0355
https://doi.org/10.1111/1468-2354.t01-1-00076
https://doi.org/10.1016/j.smrv.2020.10135
https://doi.org/10.1016/j.smrv.2020.10135
https://sensors.myu-group.co.jp/sm_pdf/SM3271.pdf
https://sensors.myu-group.co.jp/sm_pdf/SM3271.pdf
http://DOI%3a+10.1109/BIOCAS.2019.8919117
https://doi.org/10.1016/j.neucom.2020.04.144
https://doi.org/10.1213/ANE.0000000000002864
https://doi.org/10.1213/ANE.0000000000002864
https://doi.org/10.1080/24725838.2019.1575930
https://doi.org/10.1080/24725838.2019.1575930
https://doi.org/10.1016/j.jsr.2023.04.014
https://doi.org/10.1016/j.jsr.2023.04.014
http://DOI%3a+10.1109/EMBC46164.2021.9630575
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0405
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0405
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0410
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0410
http://refhub.elsevier.com/S1474-0346(24)00556-1/h0410

A. Akanmu et al. Advanced Engineering Informatics 62 (2024) 102905

[78] 1. Mapelli, T.E. Ozkurt, Brain oscillatory correlates of visual short-term memory [80] L. Cabanero, et al., Analysis of cognitive load using EEG when interacting with
errors, Front. Hum. Neurosci. 13 (2019) 33, https://doi.org/10.3389/ mobile devices, Ucaml 2019 (2019) 70, https://doi.org/10.3390/
fnhum.2019.00033. proceedings2019031070.

[79]1 E.B. Johnson, et al., The impact of occipital lobe cortical thickness on cognitive
task performance: An investigation in Huntington’s Disease, Neuropsychologia 79
(2015) 138-146, https://doi.org/10.1016/j.neuropsychologia.2015.10.0.

12


https://doi.org/10.3389/fnhum.2019.00033
https://doi.org/10.3389/fnhum.2019.00033
https://doi.org/10.1016/j.neuropsychologia.2015.10.0
https://doi.org/10.3390/proceedings2019031070
https://doi.org/10.3390/proceedings2019031070

	Cognitive load assessment of active back-support exoskeletons in construction: A case study on construction framing
	1 Introduction
	2 Background
	2.1 Cognitive load associated with using exoskeletons
	2.2 Cognitive load evaluation techniques

	3 Research gap and significance
	4 Method
	4.1 Participants
	4.2 Experimental design and Procedure
	4.3 Instruments and data collection
	4.3.1 Active Back-Support exoskeleton
	4.3.2 Electroencephalography
	4.3.3 Data preprocessing

	4.4 Data analysis

	5 Results
	5.1 Comparison of No-Exoskeleton and exoskeleton conditions
	5.2 Comparison of EEG channels in the exoskeleton condition
	5.3 Relationship between the EEG channels

	6 Discussion
	6.1 Comparison of No-Exoskeleton and exoskeleton conditions
	6.2 Spectral Power comparison for exoskeleton condition
	6.3 Relationship between EEG channels

	7 Conclusion, limitation, and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	datalink4
	References


