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A B S T R A C T

Active back-support exoskeleton has emerged as a potential solution for mitigating work-related musculoskeletal 
disorders within the construction industry. Nevertheless, research has unveiled unintended consequences asso
ciated with its usage, most notably increased cognitive load. Elevated cognitive load has been shown to deplete 
working memory, potentially impeding task performance and situational awareness. Despite the susceptibility of 
exoskeleton users to increased cognitive load, there has been limited empirical evaluation of this risk while 
performing construction tasks. This study evaluates the cognitive load associated with using an active back- 
support exoskeleton while performing construction tasks. An experiment was conducted to capture brain ac
tivity using an Electroencephalogram, both with and without the use of an active back-support exoskeleton. A 
construction framing task involving six subtasks was considered as a case study. The participants’ cognitive load 
was assessed for the tested conditions and subtasks through the alpha band of the Electroencephalogram signals. 
The study identified the most sensitive Electroencephalogram channels for evaluating cognitive load when using 
exoskeletons. Statistical tests, including a one-way repeated measure ANOVA, paired t-test, and Spearman Rank 
were conducted to make inferences about the collected data. The results revealed that using an active back- 
support exoskeleton while performing the carpentry framing task increased the cognitive load of the partici
pants, as indicated by four out of five significant Electroencephalogram channels. Selected channels in the frontal 
and occipital lobes emerged as the most influential channels in assessing cognitive load. Additionally, the study 
explores the relationships among Electroencephalogram channels, revealing strong correlations between selected 
channels in the frontal lobe and between channels in the occipital and frontal lobes. These findings enhance 
understanding of how specific brain regions respond to the use of active back support exoskeletons during 
construction tasks. By identifying which brain regions are most affected, this study contributes to optimizing 
exoskeleton designs to better manage cognitive load, potentially improving both the ergonomic effectiveness and 
safety of these devices in construction environments.

1. Introduction

The rising prevalence of work-related musculoskeletal disorders 
(WMSDs) within the construction industry presents challenges to pro
ductivity [1], as well as safety and health concerns [2,3]. The emergence 
of active back-support exoskeletons (aBSE), also referred to as wearable 
robots [4], has sparked considerable interest as a potential remedy for 
WMSDs across various industrial sectors [5–7]. Prior research has 
demonstrated the potential of aBSE to reduce muscle exertion and joint 
hyperextension during manual handling tasks [8–10]. However, there 
have been reports of unintended consequences associated with 

exoskeleton usage, and increased cognitive load [11,12]. Cognitive load 
can be defined as the mental capacity and effort required to process 
information or execute mental tasks [13]. Elevated cognitive load could 
deplete working memory [14], potentially impeding task performance 
and situational awareness [15,16]. Fox, Aranko [17] noted that 
exoskeleton users may become preoccupied with the device, diverting 
their attention from the primary work tasks. Other exoskeleton-related 
factors that may shift users’ focus away from the tasks include phys
ical discomfort [18,19], restrictions on mobility [20,21], an elevated 
sense of fall risk because of the exoskeleton’s weight [22,23], potential 
entanglement hazards [24], and issues related to anthropometric fit due 
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to the diversity in human body sizes and proportions [25,26]. These 
unintended consequences could significantly contribute to the increased 
cognitive load of exoskeleton users, justifying the need to be 
investigated.

Researchers have explored the use of wearable sensors such as 
Electroencephalograms to measure cognitive load [27,28]. Electroen
cephalogram (EEG) is a neuroimaging technique that records electrical 
activity in the brain through electrodes placed on the scalp [29]. EEG 
detects and measures brain waves, including alpha, theta, gamma, and 
beta brain waves, which represent different frequency bands associated 
with various cognitive states [30]. As such, changes in these brain waves 
captured by EEG can provide insights into cognitive load [31]. Anto
nenko, Paas [28] identified the alpha wave as the most dominant in a 
normal human being. Positive correlations have been reported between 
the alpha wave and cognitive load during everyday tasks (e.g., driving 
[32] and visual mental work [33]) and construction-related tasks (e.g., 
general construction work [27] and human-robot interaction during 
bricklaying [34]). For example, Huang, Jung [32] showed the efficacy of 
the alpha band in assessing cognitive load during driving simulation 
tasks, where the band power increased as the demand for attention 
became more prominent. Additionally, Kumar and Kumar [33]
demonstrated the capability of alpha band power in evaluating cognitive 
load during visual mental tasks, where complexity resulted in increased 
values of the alpha band power. In the context of construction applica
tions, Chen, Taylor [27] assessed the effect of cognitive load on task 
allocation in the construction industry using the alpha band and 
demonstrated an increase in cognitive load. Shayesteh and Jebelli [34]
also assessed the cognitive load associated with masonry work during 
human-robot interaction. The results indicated increased cognitive load 
while interacting with an autonomous robot compared to a semi- 
autonomous one, as reflected in a higher alpha band. Despite the po
tential consequences of cognitive load associated with exoskeleton use 
and the opportunities offered by EEG to quantify cognitive load, there 
remains limited research on the cognitive burden of using exoskeletons, 
particularly in the context of construction tasks. Exploring cognitive 
load in the context of construction is crucial due to the unique charac
teristics of construction tasks, which often involve repetitive, awkward 
postures and dynamic physical demands. These tasks require significant 
mental effort to manage and adapt to varying physical conditions and 
safety requirements. Understanding how these tasks influence cognitive 
load could inform the design of exoskeletons that not only address 
physical strain but also minimize cognitive burden. This knowledge gap 
underscores the need for efforts to monitor cognitive load, potentially 
through redesigning exoskeletons with integrated devices for measuring 
users’ cognitive loads. Understanding the most sensitive brain regions 
during the use of active back-support exoskeletons could be valuable in 
this context.

This study aims to achieve two primary objectives: 1) assess the 
cognitive load associated with the use of aBSE in construction work, and 
2) identify the most sensitive brain regions, represented by brain 
channels, essential for evaluating cognitive load and investigate the 
interrelationships among these channels during exoskeleton use while 
performing construction tasks. The objectives are achieved through a 
focus on carpentry framing tasks, chosen due to the high incidence of 
WMSDs among carpenters. According to the United States Bureau of 
Labor and Statistics [35], carpenters are 1.08 times more likely to suffer 
from back-related disorders compared to other construction trades, 
indicating their potential suitability as beneficiaries of aBSEs. The paper 
is structured to begin with an introduction, followed by a background 
section discussing related studies. The subsequent section describes the 
methods employed for assessing an aBSE, followed by the presentation 
of the results. The discussion section interprets the findings, and finally, 
the conclusion and suggestions for future studies are provided. This 
study contributes empirical evidence on the cognitive load risks of using 
exoskeletons for construction tasks, addressing the current knowledge 
gap in the effects of aBSE usage. Also, it provides a quantitative measure 

of the cognitive load imposed by the exoskeleton which helps under
stand the mental demand placed on exoskeleton users. The most sensi
tive EEG channels for cognitive load assessment could facilitate the 
development of adaptive exoskeletons capable of evaluating user’s 
cognitive status and providing feedback such as increasing the level of 
augmentation or adjusting task complexity to reduce cognitive strain. 
This capability would also enable safety engineers to monitor and 
mitigate cognitive load risks, thereby preventing accidents on con
struction sites. The demonstrated correlations among the EEG channels 
highlight the most strongly related channels, which should be examined 
in conducting brain-exoskeleton interaction studies.

2. Background

2.1. Cognitive load associated with using exoskeletons

Researchers have explored the impacts of exoskeletons on users’ 
cognitive load across various activities that involved manual material 
handling [11,36–38] and gait rehabilitation [39,40]. For manual ma
terial handling tasks, Zhu, Weston [11] examined the cognitive load 
associated with using a passive back-support exoskeleton (Laevo) for 
lifting and lowering tasks under two conditions, with and without 
mental arithmetic tasks. The study revealed that the biomechanical 
advantages garnered without the mental task were substantially reduced 
when the mental task was introduced. Schroeter, Kähler [36] evaluated 
the cognitive load of using an active shoulder-support exoskeleton 
(Lucy) for an overhead task that involved scaffolding installation. Using 
the exoskeleton resulted in a higher cognitive load, leading to reduced 
concentration, information processing, and an increase in errors. Simi
larly, Tyagi, Mukherjee [37] assessed the neurophysiological effects of 
an upper body passive exoskeleton (Eksovest) for overhead tasks 
(reaching and pointing) with concurrent mental demand tasks. The 
activation of the motor cortex was higher during the exoskeleton use, 
signifying an increase in cognitive load. Also, Govaerts, De Bock [38]
examined the impact of mental fatigue on work productivity while using 
a passive back-support exoskeleton (Laevo) for manual material 
handling tasks, such as repetitive lifting and lowering subtasks. The 
study demonstrated reduced performance when participants were 
mentally fatigued during exoskeleton use. Conversely, for assessing 
users’ cognitive load associated with using exoskeletons for gait reha
bilitation, Gupta, McKindles [39] analyzed the relationship between 
cognitive load and gait performance during exoskeleton-augmented 
training. This was assessed by asking participants to walk on the 
treadmill while using a powered ankle exoskeleton. The study revealed 
that the exoskeleton competed with the available mental space, 
decreasing the participants’ focus on the training. Additionally, Zhu, 
Johnson [40] assessed neuroergonomics metrics to evaluate exoskeleton 
use during gait rehabilitation. The study indicated that training with an 
exoskeleton potentially increases the cognitive load negatively impact
ing gait training performance. As such, it is not an underestimate that 
using exoskeletons, especially for mentally demanding tasks, can impact 
the user’s cognitive load. Therefore, it is critical to understand the extent 
of this load and how it could inform investigations into suitable control 
measures, given the consequences of variations in cognitive load on 
work performance.

Cognitive Load Theory provides a framework for understanding the 
cognitive implications of using aBSEs in construction tasks. Cognitive 
Load Theory posits that the human brain has a limited capacity for 
processing information [48], and cognitive load refers to the mental 
effort required to perform a task [13]. Cognitive load is influenced by 
the task’s complexity, the user’s experience, and the cognitive resources 
needed to operate tools or machinery. Several factors contribute to 
increased cognitive load when using exoskeletons. Firstly, there is an 
initial learning curve and adaptation phase where users expend addi
tional mental resources to understand exoskeleton’s functions and 
controls [18,19]. Secondly, operating an exoskeleton demands increased 
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attention and coordination, requiring users to adjust their movements 
[24]. Thirdly, users must process and integrate feedback and other in
puts from the exoskeleton, which adds to the cognitive burden. More
over, the complexity of tasks performed while wearing an exoskeleton, 
especially when multitasking, could influence cognitive load. Prolonged 
use could also lead to mental fatigue, reducing cognitive capacity over 
time [17]. Thus, by integrating Cognitive Load Theory principles, this 
study aims to assess the cognitive load associated with using aBSE in 
construction work. It will identify the most sensitive brain regions 
essential for evaluating cognitive load and explore their interrelation
ships during exoskeleton use.

2.2. Cognitive load evaluation techniques

Over the years, studies have proposed assessing cognitive load via 
subjective and objective measures. Subjective measures have been 
quantified using questionnaires such as the Rating Scale Mental Effort 
(RMSE) [41], Subjective Workload Assessment Test (SWAT) [42], and 
National Aeronautics and Space Administration Task Load Index (NASA 
TLX) [43]. For instance, RMSE was implemented to assess the mental 
workload of participants engaged in a driving task involving three 
typical maneuvers (Lin and Cai [41]. Similarly, Jeong, Baek [42]
compared the mental workload of two driving methods, i.e., using a 
joystick and a steering wheel, using SWAT as a subjective measure to 
appraise participants’ cognitive status. More recently, and with the 
emergence of visual technologies Atici-Ulusu, Ikiz [43] adopted the 
NASA TLX to examine the cognitive load effects of using augmented 
reality glasses during the operation of automobiles. However, such 
techniques of cognitive load assessment have been criticized because of 
their lack of continuous measurement [41], their inability to offer real- 
time quantifications of cognitive workload [41], and their susceptibility 
to bias inherent in self-evaluation [13].

The need for objective assessments encouraged researchers to 
explore objective measures, such as using EEG to evaluate cognitive load 
through brain activity [44]. EEG records electrical signals from the ce
rebral cortex, providing insights into the cognitive status through Power 
Spectral Density (PSD). Cognitive status has been examined over five 
major brain waves with different frequency bands, including delta 
(0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (13–30 Hz), and 
gamma (> 30 Hz) [45]. Distinctly, the alpha brainwave band power has 
been recognized as the most dominant in a normal human being [28]. 
Studies have demonstrated relationships between the PSD of the alpha 
frequency band (8–12 Hz) and cognitive tasks, such as human-robot 
interaction tasks [34], human–computer interaction [33,46], driving 
[32], and general construction work [27]. For instance, Shayesteh and 
Jebelli [34] investigated the cognitive loads of workers in a human- 
robot interaction task involving bricklaying. The results indicated 
increased alpha band PSD in specific channels (F3, F4, T7, and T8) 
demonstrating higher cognitive load when working with an autonomous 
robot compared to a semi-autonomous one. Kumar and Kumar [33]
assessed cognitive load during a human–computer interaction experi
ment, finding an increase in alpha band PSD in channels (T7 and T8) as 
the task difficulty increased. Janssen and Kirschner [47] evaluated 
cognitive load during a human–computer interaction activity that 
involved retention in short memory tasks. The study revealed an in
crease in alpha band PSD in channels T7, T8, FC5, and FC6. Further
more, Huang, Jung [32] observed changes in the PSD of five of the major 
brainwaves during driving simulation tasks, with the alpha band 
exhibiting the highest PSD for channels in the occipital (O1 and O2) and 
temporal (T7 and T8) brain regions. Chen, Taylor [27] used EEG to 
measure cognitive load in construction workers demonstrating the 
feasibility of assessing mental workload via channels FP1, FP2, TP9, and 
TP10 using four of the frequency bands including alpha to inform proper 
task allocation. The results demonstrated the potential of all the exam
ined channels, with FP1 showing a higher level of correlation with 
mental workload.

3. Research gap and significance

Despite the potential for increased cognitive load among aBSE users 
in the construction industry due to unintended consequences, there is a 
limited body of knowledge on this topic. Moreover, the existing evidence 
highlighting to the significance of the alpha band in understanding 
cognitive load status has not been adequately applied to the study of 
exoskeletons. This lack of understanding hinders the development of 
strategies to mitigate cognitive load, potentially impeding the wide
spread adoption of aBSEs in the construction industry. Addressing this 
gap could improve the occupational safety and health of construction 
workers. Therefore, the objective of this study is two-fold: firstly, to 
evaluate the cognitive load associated with using aBSE in construction 
activities, and secondly, to identify the brain channels most responsive 
to assessing cognitive load. Additionally, the study aims to explore the 
interconnections among these channels while engaging in construction 
tasks with exoskeletons.

4. Method

This section describes the approach adopted to achieve the objectives 
of this study. This includes the participants, experimental design, in
strument and data collection, data processing, and data analysis (Fig. 1).

4.1. Participants

Sixteen male graduate students of Virginia Tech were recruited to 
participate in this study. The number of participants was selected based 
on a priori sample size computation, which provides a minimum power 
of 80 % with an effect size (f) and alpha (α) of 0.5 and 0.05, respectively 
[49]. This yields a sample size of 12 participants, which is the minimum 
required for this study. All computations were performed using G*Power 
3.1.9.7. Similar sample sizes have been employed in related studies 
[50–52]. Although some participants had previous exposure to exo
skeletons, their encounters were limited to experimental settings, and 
they did not have regular usage experience. The participants reported no 
health issues about their mental state that could have hampered their 
performance and the biomechanical benefits of the exoskeleton. 
Following the approval of the Virginia Tech Institutional Regulation 
Board (IRB: 19-796), the experiment details were provided to the par
ticipants before they gave their consent. The demographic information 
of the participants (age, weight, and height) was calculated and the 
average age is 30 years with a standard deviation (SD) ±4 years, the 
average weight is 72 kg with an SD ± 7.5 kg, and the average height is 
173 cm with an SD ± 5.5 cm.

4.2. Experimental design and Procedure

The experiment requires that participants perform carpentry framing 
tasks under two conditions: without aBSE (No Exo) and with aBSE 
(Active Exo) (Fig. 2a and 2b, respectively). The order of these conditions 
(i.e., No Exo and Active Exo) was randomized for different participants 
to reduce bias of familiarity with the task. The framing task was divided 
into six subtasks, which were performed sequentially: measuring, as
sembly, nailing, lifting, moving, and installing (Fig. 2c). Although the 
experiment was conducted in a laboratory setting, the sequence was 
designed to represent realistic carpentry framing work by including the 
key subtasks required to execute an actual framing task. The duration of 
each experimental condition did not exceed five minutes to mitigate the 
potential influence of fatigue [53]. Also, the participants were allowed 
to rest for 30 min after completing the first experimental condition (No 
Exo) before proceeding to the second condition (Active Exo) [53].

During the experiment, brain activity was captured using an EEG. 
The participants were asked to construct a wooden frame that would 
facilitate drywall installation using materials such as timber, nail gun, 
and measuring tape. The timber consists of members of various lengths, 
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such as 1.2 m, 1.8 m, 1 m, and 1.5 m, with equal cross-sectional area of 
100 mm × 25 mm. Before commencing the experiment, the participants 
were shown a model of the frame they were expected to build, which is a 
1.2 m by 1.8 m frame, as shown in Fig. 2. Subsequently, the participants 
were introduced to the aBSE used for the experiment and were trained 
on how the device works. Also, the framing task was demonstrated to the 
participants, and they were allowed to practice the task according to the 
sequences until they were fully familiar with it. This helps to reduce the 
effects of the task difficulty during the experiment.

The experiment commenced after the participants understood the 
workings of the aBSE and how the task should be performed. The par
ticipants commenced the first subtask by measuring the timber members 
required to construct the frame. This subtask is expected to place a 
mental demand on the participants, as they are expected to select the 
right plank out of a pile of planks for the subtask. The next subtask in
cludes assembling and arranging the timber planks according to the 
model in Fig. 2. Subsequently, the participants were expected to nail the 

assembled frame at each joint using the nail gun. The nail gun was not 
activated to ensure the safety of the participants. Before commencing 
the lifting subtask, the prepared model was placed on the assembled 
frame, which was lifted by the participants and manually moved to the 
upper floor for installation. The weight of the frame is approximately 20 
kg, which is within the range of the permitted manual lifting regulation 
as provided by the National Institute for Occupational Safety and Health 
lifting equation [54].

4.3. Instruments and data collection

4.3.1. Active Back-Support exoskeleton
CrayX, an active back-support exoskeleton manufactured by German 

Bionic, was used for this study. The device weighs 7.5 kg and has a lifting 
support of 33 kg. The aBSE has three working modes: lifting, walking, 
and bending. Support provided during each mode can be adjusted from 
0 to 100 %. The device is powered by a rechargeable 40-volt battery, 

Fig. 1. Overview of the methodology.

Fig. 2. Simulated framing task: (a) No Exo, (b) Active Exo, and (c) Subtasks.
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which, can last about 6 to 8 h. The aBSE consists of a backpack housing 
an electrical panel, motors, and strap pads (Fig. 3). The motors are 
located on both sides of the pelvis. The strap pads help attach the device 
to the body’s thigh, chest, shoulder, and waist regions.

4.3.2. Electroencephalography
An EEG sensor was adopted in this study to capture the electrical 

activity in the brain. The brain’s electrical activity was used to analyze 
the cognitive load of the users of the aBSE. The EEG device used in the 
study is a 32-channel Epoc Flex manufactured by Emotiv (Fig. 4a). The 
EEG device was placed on the surface of the scalp to target the cerebral 
cortex of the brain, which has the greatest EEG electrical conductivity 
[31]. The cerebral cortex can be divided into four major parts (Fig. 4b), 
namely, the frontal lobe, temporal lobe, parietal lobe, and occipital lobe, 
which are represented by different EEG channels based on international 
10–20 systems, as shown in Fig. 4c [56]. EEG signals are usually 
described according to the different rhythmic activities of the brain over 
which data are recorded. They are grouped into five waves according to 
the frequency bands they occur: delta (0.5–4 Hz), theta (4–8 Hz), alpha 
(8–12 Hz), beta (13–30 Hz), and gamma (> 30 Hz) [57]. The delta 
frequency band is related to deep sleep and unconsciousness, and theta 
frequencies describe drowsiness and early stages of sleep [33,45]. 
However, the alpha frequency band denotes the relaxed state and 
conscious thinking; the beta frequency range aligns with active cogni
tive processing and attentive operations; and the gamma frequency band 
encompasses intense mental engagement and the processing of infor
mation [33]. Since EEG infers cognitive load directly from the central 
nervous system via the brain, studies identified a significant correlation 
between the alpha band and cognitive load [58,59]. Specifically, alpha 
band frequency around the frontal lobe, temporary lobe, and occipital 
lobe has been adopted to measure cognitive load because of its high 
conductivity [32–34,60]. The frontal lobe aids in decision-making on 
how to construct the frame and controls the movements of the body to 
execute the task. The temporal lobe enables understanding and memo
rization of the verbal instructions on how to construct the frame, and 
visual recognition of the frame, while the occipital lobe supports the 
processing of the visual information [61]. The relationship between the 
alpha band and cognitive load is directly proportional, i.e., the higher 
the mean PSD of the alpha band, the higher the cognitive load [33]. 
Drawing from past studies as explained in the background 
[27,32–34,62], this study focused on the alpha band of the frontal lobe 
channels (F3, F4, F8, FP2, FP1, and FC6), the temporal lobe (T7 and T8), 
and the occipital lobe of the brain (O1 and O2) to assess the cognitive 
status of aBSE users while working on construction framing task. The 
brain regions and channels are shown in Fig. 4b and 4c, respectively.

4.3.3. Data preprocessing
EEG data is prone to artifacts, especially when the task involves a lot 

of body movement, which could affect the data quality [65]. Since 

carpentry framing is a physically demanding task involving repetitive 
body movements, artifacts could compromise the EEG data. Artifacts 
generated while capturing EEG data can be categorized into intrinsic 
and extrinsic artifacts [66]. The body generates intrinsic artifacts during 
data collection, and these include eye blinking, facial muscle move
ments, and cardiac pulse [66]. The extrinsic artifacts are generated from 
external sources such as electromagnetic interference, electrode 
popping, environmental noise, and wiring noise [66]. To eliminate the 
extrinsic artifacts, the raw EEG data was fed into the EEGLAB tool [65], 
and a bandpass filter with a frequency range of 0.5 Hz to 60 Hz was 
adopted to cut off unwanted frequencies that could affect the outcome of 
the study [67]. This was followed by applying a notch filter at a narrow 
frequency of 60 Hz to remove the noise from the electrode wires.

Independent component analysis was adopted within the EEGLAB 
toolbox to eradicate the intrinsic artifacts. This was conducted by 
passing the data through independent component analysis (ICA), which 
decomposed the data into 32 components. Moreover, intrinsic artifacts 
such as eye blinking and muscle movement were manually removed and 
pruned using the ICA label features After preprocessing the data, the 
mean PSD of the alpha frequency range for each subtask was computed 
using Welch’s algorithm as illustrated by Eqs. (1) and (2) [27,68,69]. 
Adopted from Chiu, Lu [69], Welch’s method of evaluating PSD for each 
N-point time series in the mth segment can be expressed as: 

Pxm ,M(f) =
1
N

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

∑N−1

n=0
xm(n)e

−
j2πnk

N

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

2

(1) 

The PSD for the entire series can be expressed as: 

Pw(f) =
1
M

∑M−1

m=0
Pxm ,M(f) (2) 

Where, Px = Power spectral density; M = Number of segments; m =

Segment index; N = Length of each segment; n = Sample index; k =
Normalizing constant; and f = Frequency variable.

4.4. Data analysis

After EEG data preprocessing and ensuring the collected data was of 
high quality, the data was analyzed to assess the cognitive load associ
ated with using aBSE for the carpentry framing task. The PSD values 
from the alpha frequency band, computed from Eqs. (1) and (2), were 
examined for possible outliers within the data distribution. Tukey’s 
range test was used to identify the outliers, which were computed using 
the interquartile range (IQR) to define the lower limit (Q1 − 1.5 * IQR) 
and upper limit (Q3 + 1.5 * IQR) to remove any possible outliers [70,71]
– Q1 and Q3 are the first and third quartiles of the data. The normality 
and sphericity of the PSD data were tested using the d’Agostino-Pearson 
test and the Mauchly test, respectively, to determine which statistical 
analysis tools to consider. The PSD data met the normality and sphe
ricity assumptions. Thus, a paired t-test was conducted to examine the 
experimental condition within each subtask. Furthermore, one-way 
repeated measure ANOVA was conducted to determine the most sensi
tive channels for cognitive load assessment using an aBSE. This was 
further corroborated by exploring the relationship among the EEG 
channels using Spearman correlation after the dataset showed no line
arity. Bar graphs and tables were used to illustrate the analysis con
ducted. All statistical analysis was computed using Microsoft Excel and 
JMP Pro 17.0.0.

5. Results

In this section, the impact of the two experimental conditions on 
cognitive load is reported using the alpha band PSD across carpentry 
framing subtasks: measuring, assembling, nailing, lifting, moving, and 

Fig. 3. Active back-support exoskeleton (Cray X) ().
Source: [55]
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installing. Also, the results of comparing the EEG channels and the 
relationship between the channels in the exoskeleton condition are re
ported. Bar graphs and tables are used to illustrate the results, including 
the statistical significance (p-value < 0.05).

5.1. Comparison of No-Exoskeleton and exoskeleton conditions

Results of the paired t-test revealed the differences between the 
cognitive load of the two experimental conditions within each subtask 
and across the carpentry task. Fig. 5 presents the results of the com
parison of the cognitive load of the two experimental conditions for the 
measuring subtask. The results indicated statistically significant (p <

0.05) higher PSD in the Active Exo condition across frontal lobe chan
nels F3, F8, and FC6 with percentage increments of 166 %, 127 %, and 
57 %, respectively, and a temporal lobe channel T7 with percentage 
increment of 137 %. However, for comparing the cognitive load of the 
two experimental conditions for the assembly subtask shown in Fig. 6, 
only the Active Exo condition in frontal lobe channel F3 has a signifi
cantly high PSD with a percentage increment of 103 %. Conversely, a 
temporal lobe channel T8 shows a significant (p < 0.05) increase in PSD, 
with a percentage increase of 62 % in the No Exo condition (Fig. 6). For 
the nailing subtask, the results presented in Fig. 7 indicate that frontal 
lobe channel F3 shows a significant (p < 0.05) increment of 153 % in the 
Active Exo condition. Conversely, another frontal lobe channel FP2 
shows an increment of 61 % in the No Exo condition compared to the 
Active Exo condition. The lifting subtask shows no statistical signifi
cance across all the channels (Fig. 8). Additionally, for the moving 
subtask, Fig. 9 shows statistical significance across frontal lobe channels 
FP1, F3, and F8, which indicates an increment of 175 %, 150 %, and 79 
%, respectively, in the PSD of the Active Exo condition. In the No Exo 
condition, the reverse is the case for frontal lobe channel FC6, where 

there is an increase of 51 % compared to the Active Exo condition. 
Lastly, in the installation subtask, there is no statistical significance 
across the channels (Fig. 10). A summary of the PSDs of exoskeleton 
conditions across the EEG channels for the entire carpentry subtask is 
presented in Fig. 11. The paired t-test shows that five channels are sta
tistically significant (p < 0.05). The results indicate higher PSD values in 
the Active Exo condition of frontal lobe channels FP1, F3, and F8 with 
percentage increases of 57.3 %, 23.3 %, and 129.5 %, respectively. A 
similar increase was observed in occipital lobe channel O2 with a per
centage increase of 55 %.

5.2. Comparison of EEG channels in the exoskeleton condition

Figs. 12-17 show the results of the comparisons of the EEG channels, 

Fig. 4. (a) 32-channel EEG, ; (b) Cerebral cortex of the brain, Source: and (c) EEG channel location. Source: .
Source: [63][64][63]

Fig. 5. Power spectrum comparison for an alpha frequency band in frame 
measuring subtask. (“*” = significant at p-value < 0.05).

Fig. 6. Power spectrum comparison for alpha frequency band in frame as
sembly subtask.(“*” = significant at p-value < 0.05).

**

Fig. 7. Power spectrum comparison for alpha frequency band in nailing sub
task (“*” = significant at p-value < 0.05).
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using one-way repeated measure ANOVA, to identify the most sensitive 
channels in the Active Exo condition. Fig. 12 illustrates the results of the 
frame measuring subtask and reveals a statistically significant difference 
(p < 0.05) among the EEG channels, with channel F8 showing the 
highest sensitivity to cognitive load as indicated by the post-hoc test. 
Fig. 13 shows the results of the frame assembly subtask depicting a 
significant difference (p < 0.05) between the channels, with the post hoc 
analysis revealing frontal lobe channels FP1 and F8 as the most sensitive 
channels. Fig. 14 gives the detailed results of the nailing subtask and 
indicates statistical significance (p < 0.05), with the post-hoc test 
revealing frontal lobe channel F8 as the most sensitive channel to 
cognitive load evaluation. Figs. 15 and 16 illustrate the results of the 
frame lifting and moving subtasks, respectively, with frontal lobe 
channel FP1 showing the highest sensitivity in both subtasks. Fig. 17
shows the results of the frame installation subtask indicating statistical 

Fig. 8. Power spectrum comparison for alpha frequency band in frame lift
ing subtask.

Fig. 9. Power spectrum comparison for alpha frequency band in moving sub
task. (“*” = significant at p-value < 0.05).

Fig. 10. Power spectrum comparison for alpha frequency band in frame 
installation subtask.

Fig. 11. Overall power spectrum comparison for alpha frequency band for 
carpentry framing task. (“*” = significant at p-value < 0.05).

Fig. 12. Power spectrum comparison for alpha frequency band for frame 
measuring subtask in Active Exo condition. (“*” = significant at p-value 
< 0.05).

Fig. 13. Power spectrum comparison for alpha frequency band for frame as
sembly subtask in Active Exo condition. (“*” = significant at p-value < 0.05).

Fig. 14. Power spectrum comparison for alpha frequency band for frame 
nailing subtask in Active Exo condition. (“*” = significant at p-value < 0.05).
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differences (p < 0.05), with the post-hoc test revealing occipital lobe 
channel O2 as the most sensitive channel.

5.3. Relationship between the EEG channels

Table 1 illustrates the interrelationships among the EEG channels 
considered in evaluating cognitive load during the carpentry framing 
task. Following the classification by Schober, Boer [72], a correlation 
coefficient of 0.00 to 0.1 represents a negligible relationship, 0.10 to 
0.39 represents a weak relationship 0.40 to 0.69 represents a moderate 
relationship, 0.7 to 0.89 represents a strong relationship, and 0.9 to 1 
indicates a very strong correlation.

The results in Table 1 reveal strong relationships between pairs of 
frontal lobe channels (F4 and FC6; FP2 and FC6), and pairs of occipital 
and frontal lobe channels (O1 and FC6; O2 and FP1), which are statis
tically significant (p < 0.05) as indicated by bold coefficients. Moderate 
relationships are observed between pairs of frontal lobe channels (F4 
and FC6; F3 and FP1; F8 and FC6; F8 and F4; FP2 and F4; FP2 and F8), 
pairs of temporal lobe channels (T8 and T7), and pairs of occipital lobe 
channels (O1 and O2). Similar relationships also exist between pairs of 
frontal and temporal lobe channels (F4 and T7; F4 and T8; F3 and T7; 
FC6 and T7; FC6 and T8; FP2 and T7; FP2 and T8; FP1 and T7; F3 and 
T8), pairs of temporal and occipital lobe channels (O1 and T7), and pairs 
of occipital and frontal lobe channels (O1 and FP1; O1 and F4; O1 and 
F8; O1 and FP2). These moderate relationships are statistically signifi
cant (p < 0.05) as indicated by the bold coefficients in Table 1. The 
remaining relationships are either weak or negligible, though some 
show statistical significance.

6. Discussion

This study evaluated the cognitive load imposed by aBSE used during 
a construction framing task via the alpha band. Additionally, this study 
examined the most sensitive EEG channels for evaluating cognitive load 
and the interrelationships among these channels during exoskeleton use. 
This section provides detailed interpretations of the results.

6.1. Comparison of No-Exoskeleton and exoskeleton conditions

In the analysis of the construction framing task across the six sub
tasks, notable findings reveal significantly higher PSD values for the 
Active Exo condition for frame measuring, assembling, nailing, and 
moving subtasks. However, for the case of frame lifting and installing 
subtasks, no significance was observed between the No Exo and Active 
Exo conditions. This indicates that using an aBSE substantially increases 
the cognitive burden on users within the examined task. This result is 
anticipated, given that using an aBSE introduces an additional element 
that the brain must conscientiously manage and preprocess, especially in 
an uncontrolled setting like a construction site. The elevated risk of 
catch and snag incidents, associated with the structure and weight of the 

Fig. 15. Power spectrum comparison for alpha frequency band for frame lifting 
subtask in Active Exo condition. (“*” = significant at p-value < 0.05).

Fig. 16. Power spectrum comparison for alpha frequency band for frame 
moving subtask in Active Exo condition. (“*” = significant at p-value < 0.05).

Fig. 17. Power spectrum comparison for alpha frequency band for frame 
installation subtask in Active Exo condition. (“*” = significant at p-value 
< 0.05).

Table 1 
Relationship between EEG channels in Active Exo condition (bold numbers are significant at p-value < 0.05) (Green: Strong correlation, ρ = 0.7 to 0.89; Yellow: 
Moderate correlation, ρ = 0.4 to 0.69; and Orange: Weak correlation, ρ = 0.1 to 0.39).

Brain Regions and EEG Channels Frontal lobe Temporal lobe Occipital lobe

FP1 FP2 F3 F4 F8 FC6 T7 T8 O1 O2

Frontal lobe FP1 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
FP2 0.1667 ​ ​ ​ ​ ​ ​ ​ ​ ​
F3 0.401 0.3562 ​ ​ ​ ​ ​ ​ ​ ​
F4 −0.1179 0.6475 0.3775 ​ ​ ​ ​ ​ ​ ​
F8 0.2513 0.5984 0.3452 0.5841 ​ ​ ​ ​ ​ ​
FC6 0.0601 0.7137 0.3451 0.8694 0.5005 ​ ​ ​ ​ ​

Temporal lobe T7 0.4529 0.6535 0.5536 0.4077 0.2334 0.4389 ​ ​ ​ ​
T8 −0.1063 0.4558 0.4576 0.6458 0.278 0.5172 0.419 ​ ​ ​

Occipital lobe O1 0.4832 0.5493 0.2214 0.5176 0.4095 0.7115 0.4289 0.1697 ​ ​
O2 0.8264 0.3889 0.3698 0.1519 0.2495 0.3041 0.6494 0.1372 0.6495 ​
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aBSE, tends to increase the mental workload of aBSE users [24,73].
Notably, the moving and assembly subtasks exhibit the highest PSD 

values, indicating that participants experience heightened cognitive 
load during these activities. This aligns with expectations as both sub
tasks involve significant mental and physical demands and extensive 
body movements [74]. Participants are likely to exercise caution while 
navigating the task area, carrying the frame, and negotiating uneven 
surfaces, such as staircases, contributing to the augmented cognitive 
demand. Surprisingly, lifting and installing subtasks show no statisti
cally significant differences in PSD values. This finding is noteworthy, 
considering these subtasks involve less movement than the other sub
tasks. This further suggests that using an exoskeleton during subtasks 
with limited movements may have a comparatively lower impact on 
cognitive load. A similar finding was reported by Wächtler, Kessler [14], 
who found that dynamic tasks impose a higher cognitive load compared 
to static tasks. Furthermore, Shayesteh and Jebelli [34] found that the 
cognitive load of humans collaborating with autonomous robots in
crease compared to those interacting with semi-autonomous robots 
during brick laying. As such, in the context of the carpentry framing 
task, which involves varying levels of kinetic movement contributing to 
the increased cognitive load for exoskeleton users, it is crucial to 
recognize that numerous construction tasks exhibit similar or higher 
levels of dynamism. Consequently, there is a need for exoskeleton de
signs to adapt effectively to these diverse and dynamic construction 
scenarios.

The result of the overall carpentry task shown in Fig. 11 reveals an 
increase in cognitive load in frontal lobe channels FP1, F3, and F8, and 
occipital lobe channel O2 among participants using the exoskeleton. 
This could be due to the task requirement to sustain working memory 
and process visual information, respectively. It can also be observed 
from Fig. 11 that the temporal lobe channel T8 exhibited a contrary 
trend. This could be due to the absence of time constraints in completing 
the carpentry task. Since participants were not under pressure to com
plete the task while utilizing the exoskeleton, the temporal lobe might 
not have been engaged. Conversely, increased activation of the temporal 
lobe during the carpentry task without the exoskeleton could be 
attributed to participants’ familiarity with performing the task without 
an exoskeleton, motivating them to complete the task quickly. The 
findings regarding temporal lobe channel T8 in this study contradict 
those of Jensen, Gelfand [46], which focused on a short-term memory 
task. This discrepancy could arise from participants’ efforts to actively 
maintain their short-term memory during task execution, a circum
stance not replicated in this study.

6.2. Spectral Power comparison for exoskeleton condition

In the Active Exo condition, frontal lobe channels F8 and FP1, and 
occipital lobe channel O2 exhibit the highest PSD, signifying their sub
stantial contributions to the evaluation of cognitive load. The promi
nence of occipital lobe channel O2 is unexpected, however, the 
involvement of the frontal brain region channels—specifically frontal 
lobe channels F8 and FP1—is not surprising, given their roles in atten
tion and working memory [75]. So, Wong [76] assert that frontal region 
channels activate during tasks requiring sustained attention and work
ing memory, such as finger tapping, lexical decision-making, arithmetic, 
and mental rotation, which involve discriminating between closely 
related figures. Several subtasks in this study demanded sustained 
attention and memory, resembling the tasks mentioned. For instance, 
the measuring subtask required participants to select the correct timber 
log, measure it, and simultaneously keep track of the entire sequence of 
subtasks. The heightened sensitivity observed in the frontal lobe region 
can be attributed to the requisite sustained attention, a predominant 
aspect across the examined subtasks. Given the preeminence of the 
frontal lobe in the cerebral cortex, as indicated by the results, integrating 
frontal channels into EEG and exoskeletons may be considered for the 
development of an adaptive exoskeleton, providing real-time feedback 

and adjustments based on the cognitive status of exoskeleton users.
Activation of occipital channels results from triggers in the occipital 

lobe, known for processing visual information [28]. The sensitivity of 
the occipital lobe channel O2 suggests that carpentry framing activities 
are visually demanding and cognitively stimulating. While attention has 
been focused on the frontal lobe, the significant sensitivity of occipital 
channels indicates that participants maintained visual memory during 
framing tasks, particularly evident in the installation subtask, as 
depicted in Fig. 17. Although not the highest, substantial sensitivity in 
the occipital lobe is also observed in other subtasks, contributing valu
able insights for brain-exoskeleton interaction studies aiming to develop 
adaptive exoskeletons capable of regulating users’ cognitive load.

The predominance of frontal channels in indicating cognitive load 
has been established by Chen, Taylor [27] and Ismail and Karwowski 
[77] in their examinations of EEG’s application for quantifying human 
cognitive load. These studies underscore the frontal lobe as a primary 
indicator. Additionally, Mapelli and Özkurt [78] emphasize the PSD of 
the occipital lobe, highlighting its heightened sensitivity in evaluating 
cognitive load during mental memory tasks.

6.3. Relationship between EEG channels

Considering the findings from previous studies outlined in the 
background, the selected channels were expected to exhibit close re
lationships, as detailed in Table 1. However, the surprising aspect was 
the order of strength in these relationships, revealing that occipital lobe 
channels had stronger connections with other brain regions compared to 
many frontal lobe channels. Notably, the dominance of the frontal and 
occipital lobes as the most sensitive channels in evaluating cognitive 
load is consistent with the results demonstrating the strongest re
lationships among the channels. This implies that participants not only 
engaged their frontal lobe for critical thinking, attention, and body 
movements but also activated their visual sensory functions during the 
carpentry task [79].

The direct assessment of human cognitions from the cerebral cortex 
involves the frontal lobe, temporal lobe, occipital lobe, and parietal lobe 
[56]. While each of these brain regions responds differently to the nature 
of mental workload tasks, this study indicates that performing the 
framing task with an aBSE predominantly activates the frontal and oc
cipital regions, as depicted in Table 1 and Figs. 13 to 18. This alignment 
is justified by the substantial involvement of critical thinking, attention, 
and body movement in the framing task, sparking the frontal region. 
This insight is valuable for determining the group of EEG channels to be 
considered alongside the frontal region when investigating the cognitive 
load of exoskeleton users, potentially contributing to the development of 
enhanced exoskeletons through real-time cognitive load monitoring. 
The activation in the occipital region suggests that participants were 
visually engaged with the task, supported by the identification of oc
cipital channels (O2) as among the most sensitive channels for cognitive 
load evaluation. Recognizing the importance of visual attention during 
the framing task, the strong correlations with other brain regions reveal 
that visual attention plays a crucial role in sustaining other aspects, such 
as critical thinking and body movement in various directions.

The observed strong relationships of frontal lobe channels with other 
channels in assessing cognitive load align with the findings of Shayesteh 
and Jebelli [34], where frontal lobe channels significantly contributed 
to evaluating cognitive workload in human-robot relationship tasks, 
akin to the human-exoskeleton relationship in this study. The relevance 
of occipital channels is also demonstrated in Cabañero, Hervás [80], 
where human–computer interaction tasks involving mobile phones and 
computers highlighted the significance of the occipital lobe among other 
regions in assessing cognitive load.

7. Conclusion, limitation, and future work

Active back-support exoskeletons have demonstrated their potential 
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in reducing WMSDs in various industries. However, there are concerns 
about potential unintended consequences, particularly the prospect of 
increased cognitive load for users. This study investigates the impact of 
an active back-support exoskeleton on cognitive load within the context 
of a carpentry framing task. Brain activity in this study explains the 
cognitive load experienced by aBSE users. Notably, four out of five 
significant EEG channels suggest that aBSE elevates users’ cognitive 
load, while one channel indicates otherwise. Among the various chan
nels examined in the Active Exo condition, frontal lobe channels F8 and 
FP1 and occipital lobe channel O2 stand out for their high sensitivity in 
assessing cognitive load risk. Additionally, in exploring the relationships 
among the channels, pairs of frontal lobe channels, F4 and FC6, and FP2 
and FC6, and pairs of occipital and frontal lobe channels, O1 and FC6, 
and O2 and FP1, demonstrate the strongest connections.

It is crucial to note that this study was conducted in a controlled 
laboratory environment with participants with limited experience in 
construction tasks, potentially influencing the results. Furthermore, all 
participants were male, which could limit the generalizability of the 
findings. Future research should involve diverse, experienced con
struction workers engaged in real-world tasks for a more accurate 
assessment. Assessing task difficulty could further elucidate how it in
fluences cognitive load in exoskeleton users. Integrating aBSE and EEG 
technology for real-time cognitive load monitoring and adjustment 
could optimize user-exoskeleton coordination.

This study contributes empirical evidence regarding assessing 
cognitive load risks in construction tasks, filling a gap in knowledge 
regarding the effects of cognitive load on aBSE usage. The identified 
increase in cognitive load for exoskeleton users highlights the need for 
tailored designs capable of effectively managing cognitive load while 
reducing WMSDs. Refining ergonomic designs to align with user 
movement and preferences may alleviate cognitive load. The most 
sensitive EEG channels identified for cognitive load assessment could 
facilitate the development of adaptive exoskeletons capable of evalu
ating the user’s cognitive status and providing real-time feedback. 
Furthermore, the demonstrated correlations among the EEG channels 
highlight those most strongly related, serving as valuable insights for 
brain-exoskeleton interaction studies.
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[78] I. Mapelli, T.E. Özkurt, Brain oscillatory correlates of visual short-term memory 
errors, Front. Hum. Neurosci. 13 (2019) 33, https://doi.org/10.3389/ 
fnhum.2019.00033.

[79] E.B. Johnson, et al., The impact of occipital lobe cortical thickness on cognitive 
task performance: An investigation in Huntington’s Disease, Neuropsychologia 79 
(2015) 138–146, https://doi.org/10.1016/j.neuropsychologia.2015.10.0.
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