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Abstract. Field and remote sensing studies suggest that
ice mélange influences glacier–fjord systems by exerting
stresses on glacier termini and releasing large amounts of
freshwater into fjords. The broader impacts of ice mélange
over long timescales are unknown, in part due to a lack of
suitable ice mélange flow models. Previous efforts have in-
cluded modifying existing viscous ice shelf models, despite
the fact that ice mélange is fundamentally a granular mate-
rial, and running computationally expensive discrete element
simulations. Here, we draw on laboratory studies of granular
materials, which exhibit viscous flow when stresses greatly
exceed the yield point, plug flow when the stresses approach
the yield point, and exhibit stress transfer via force chains. By
implementing the nonlocal granular fluidity rheology into a
depth- and width-integrated stress balance equation, we pro-
duce a numerical model of ice mélange flow that is consis-
tent with our understanding of well-packed granular mate-
rials and that is suitable for long-timescale simulations. For
parallel-sided fjords, the model exhibits two possible steady-
state solutions. When there is no calving of icebergs or melt-
ing of previously calved icebergs, the ice mélange is pushed
down-fjord by the advancing glacier terminus, the velocity is
constant along the length of the fjord, and the thickness pro-
file is exponential. When calving and melting are included
and treated as constants, the ice mélange evolves into an-
other steady state in which its location is fixed relative to
the fjord walls, the thickness profile is relatively steep, and
the flow is extensional. For the latter case, the model pre-
dicts that the steady-state ice mélange buttressing force de-
pends on the surface and basal melt rates through an inverse
power-law relationship, decays roughly exponentially with

both fjord width and gradient in fjord width, and increases
with the iceberg calving flux. The buttressing force appears
to increase with calving flux (i.e., glacier thickness) more
rapidly than the force required to prevent the capsizing of
full-glacier-thickness icebergs, suggesting that glaciers with
high calving fluxes may be more strongly influenced by ice
mélange than those with small fluxes.

1 Introduction

Ice mélange is an intrinsically granular material that is com-
prised of icebergs, brash ice, and sea ice packed together at
the ocean surface. In some fjords, where iceberg productiv-
ity is high, ice mélange can persist year-round. In others, it
forms for a few months in winter, when sea ice binds the ice-
berg clasts together, and then breaks apart each spring. Ice
mélange is a highly heterogeneous material, with clast di-
mensions varying from meters to hundred of meters in both
horizontal and vertical dimensions. The large vertical dimen-
sion of ice mélange suggests that some processes that are im-
portant for sea ice and river ice, such as ridging and rafting,
are likely unimportant for the flow of ice mélange.

Previous work has established that glacier advance be-
tween major calving events can result in the formation of an
ice mélange wedge that flows quasi-statically and that exerts
a force per unit width on the glacier terminus on the order of
107 N m�1 (Robel, 2017; Burton et al., 2018; Amundson and
Burton, 2018). This load may be sufficient to inhibit calving
and capsizing of new icebergs (e.g., Amundson et al., 2010;
Krug et al., 2015; Bassis et al., 2021; Crawford et al., 2021;
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Schlemm et al., 2022), which is supported by studies that
have linked breakup of a seasonal ice mélange wedge to the
onset of calving in early summer (Cassotto et al., 2015; Be-
van et al., 2019; Xie et al., 2019; Joughin et al., 2020). In
locations where ice mélange persists year-round, it appears
to remain sufficiently strong to influence the timing and sea-
sonality of calving events (Wehrlé et al., 2023). Terrestrial
radar data indicate that ice mélange flow becomes incoher-
ent at the grain scale in the hours preceding major calving
events (Cassotto et al., 2021), suggesting a weakening of the
ice mélange, and that dynamic jamming occurs once an ice-
berg calves into the fjord (Peters et al., 2015).

Recent work has demonstrated that icebergs are also im-
portant sources of freshwater in fjords (Enderlin et al.,
2016, 2018; Moon et al., 2017; Mortensen et al., 2020), espe-
cially during winter, and that this distributed release of fresh-
water has implications for fjord circulation and submarine
melting of glacier termini. The presence of icebergs not only
tends to freshen and cool fjords, but also helps to enhance
estuarine circulation and drive warm water into fjords, where
it comes into contact with and melts glacier termini (Davison
et al., 2020). Icebergs additionally create complex flow path-
ways and tend to decrease the velocity of subsurface waters
(Hughes, 2022).

The conclusion of many studies is that there is a strong
need for an ice mélange model that is consistent with its
granular nature and that can be mechanically and thermo-
dynamically coupled to the glacier–ocean system. Previ-
ous modeling attempts have used discrete element models
(Robel, 2017; Burton et al., 2018), modified existing ice
shelf models (Pollard et al., 2018), incorporated sparse ice-
bergs into sea ice models (Vaňková and Holland, 2017; Kahl
et al., 2023), or used simple parameterizations (Schlemm and
Levermann, 2021). Here we develop a depth-integrated ice
mélange flow model that uses the nonlocal granular fluidity
rheology (Henann and Kamrin, 2013), which has been de-
veloped from experiments of granular materials and that has
successfully described a variety of granular flows. In order
to investigate the basic behavior of the model and to expe-
dite development of coupled glacier–ocean–mélange models,
we convert the model into a quasi-one-dimensional model by
separately parameterizing the longitudinal and shear stresses
and then integrating across the fjord. This approach closely
mimics one that is commonly used for developing flow line
models for ice shelves, as does the numerical implementa-
tion of the model. Thus, this study provides a framework by
which realistic models of ice mélange can be incorporated
into coupled glacier–ocean models.

2 Model description

Following recent advances in granular mechanics, we treat
ice mélange as a continuum whose behavior is described by
a viscoplastic rheology. Although the rheology is more com-

plicated than the power-law rheology typically used for mod-
eling glacier flow (Cuffey and Paterson, 2010), our model
setup is similar to that of the shallow shelf approximation
(SSA). After subtracting the static pressure (modified to in-
clude the presence of water in between icebergs) from the
stress tensor, we vertically integrate the stress balance equa-
tions and incorporate a depth-averaged form of the nonlocal
granular fluidity rheology (Henann and Kamrin, 2013). The
result is two horizontal stress balance equations, which we
refer to as the nonlocal shallow mélange approximation. Fu-
ture work will implement these two-dimensional equations
in the finite-element method in order to model flow through
complex geometries.

Here, to expedite implementation into coupled glacier–
ocean–mélange models and to explore the basic model cou-
plings, we width-integrate the model to produce a quasi-one-
dimensional model (Fig. 1). A fundamental difference from
analogous ice shelf models is that the description of the non-
local granular fluidity rheology contains a second-order par-
tial differential equation, which means that the rheology can-
not be directly substituted into the stress balance equation(s)
or be used to produce a simple parameterization of the lateral
shear stress. As a result, the model contains five highly cou-
pled equations that describe the ice mélange velocity, thick-
ness, fluidity, length, and lateral shear stress. For comparison,
the ice sheet–ice shelf model of Schoof (2007) only contains
equations for the velocity, thickness, and length. Similarly to
Schoof (2007), the equations are discretized using finite dif-
ferences with a fully implicit time step and a moving grid
that stretches from the glacier terminus to the end of the ice
mélange. Material enters the domain through calving of ice-
bergs, and icebergs smaller than the characteristic iceberg
size are removed from the end of the domain. The velocity at
the upstream boundary depends on the glacier terminus ve-
locity and iceberg calving rate, while the velocity gradient at
the downstream boundary is set to 0 to prevent deformation
below the grain scale. The model equations are then solved
simultaneously through a minimization procedure. A list of
model variables is included in Appendix D.

2.1 Depth-integrated flow equations

We start by defining the strain rate and effective strain rate as
"̇ij = 1/2(@ui/@xj +@uj/@xi) and "̇e = ("̇ij "̇ij /2)

1/2, where
u = hu,v,wi and x = hx,y,zi are the velocity and position
vectors. We use the Cauchy stress tensor, �ij = �ji , with the
convention that positive stresses are extensional. In order to
simplify depth integration of the equations of motion (see
van der Veen and Whillans, 1989), we partition the stress
tensor into tectonic stresses Rij and the granular static pres-
sure p̃ by setting �ij = Rij �p̃�ij , where �ij is the Kronecker
delta. We assume that the ice mélange is tightly packed
and incompressible ("̇kk = 0), is at flotation, and is evolv-
ing slowly enough for acceleration to be neglected. Conse-
quently, the model is best suited for simulating ice mélange
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Figure 1. Schematic of the quasi-one-dimensional flow model indicating some of the key variables and boundary conditions.

behavior in fjords where it persists year-round or for winter
conditions in fjords where it forms seasonally. Further mod-
ifications would be required to model rapid flow associated
with calving events or complete dispersal of ice mélange in
summer. For well-packed ice mélange, the inertial number
(the ratio of inertial forces to confining forces; GDR MiDi,
2004) is typically very small (< 10�5; see Amundson and
Burton, 2018), which places it well within the quasi-static
regime. Under steady flow conditions, the equations of mo-
tion are then

@�ij

@xj

= ⇢geff�iz, (1)

where ⇢ is the material density and geff is the effective gravity
that is given by

geff =
(

g z � 0⇣
1 � ⇢w

⇢

⌘
g z < 0,

(2)

with ⇢w being the density of water, g being the gravitational
acceleration, and z = 0 corresponding to sea level. This for-
mulation differs from that used to derive the shallow shelf
approximation because seawater fills void spaces within ice
mélange, and thus the static pressure does not depend solely
on the weight of the overlying ice. The static pressure is
found by noting that dp̃/dz = �⇢geff and p̃ = 0 at the top
and bottom of the ice mélange. Integrating from z to the sur-
face (i.e., z = (1 � ⇢/⇢w)H ) results in

p̃(z) =

8
<

:
⇢g

h⇣
1 � ⇢

⇢w

⌘
H � z

i
z � 0

⇢g

⇣
1 � ⇢

⇢w

⌘⇣
H + ⇢w

⇢
z

⌘
z < 0,

(3)

where H is the ice mélange thickness.
Hughes (2022) modeled the flow of water through and

beneath ice mélange and found that the drag force per unit
width is 1–10 kN m�1, which is 1 to 2 orders of magnitude
smaller than the drag forces due to lateral shear that we cal-
culate in our model. We therefore neglect basal shear stresses

but note that future efforts may need to include them in order
to model fjords in which ice mélange does not remain well
packed or persist year-round. A consequence of neglecting
basal shear stresses is that vertical shear is negligible, and
therefore velocities, strain rates, and tectonic stresses do not
vary with depth. Thus, after partitioning the stress tensor, ver-
tical integration of the momentum equations leads to

@

@x
(HRxx) + @

@y
(HRxy) = 2H

@P̃

@x

@

@y
(HRyy) + @

@x
(HRxy) = 2H

@P̃

@y
, (4)

where

P̃ = 1
2
⇢g

✓
1 � ⇢

⇢w

◆
H (5)

is the depth-averaged granular static pressure.
The depth-averaged deviatoric stress is defined as �

0
ij

=
� ij +P �ij , where the bar refers to depth-averaged values and
P = �(� xx + � yy + � zz)/3 is the depth-averaged isometric
pressure. As with the tectonic stresses, the deviatoric stresses
do not vary with depth in our model, and therefore �

0
ij

= �
0
ij

.
By vertically integrating the tectonic stress and comparing
the result to the deviatoric stress (following van der Veen,
2013), we find that

Rij = �
0
ij

�
⇣
P � P̃

⌘
�ij . (6)

When i = j = z, Eq. (6) can be rewritten to show that
⇣
P � P̃

⌘
= �

0
zz

� Rzz = ��
0
xx

� �
0
yy

� Rzz. (7)

Due to its granular nature, ice mélange will not flex like ice
shelves, which are often close to being in hydrostatic equilib-
rium except near their grounding lines. We therefore assume
that bridging effects are negligible (i.e., that the weight of the
ice mélange is locally supported by seawater) and therefore
Rzz = 0. Thus Eq. (6) becomes

Rij = �
0
ij

+ (�
0
xx

+ �
0
yy

)�ij . (8)
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Following Amundson and Burton (2018), we assume a
depth-integrated viscoplastic rheology for granular materi-
als:

�
0
ij

= µP

✏̇e

✏̇ij , (9)

where µ is an effective coefficient of friction within the ice
mélange that depends nonlinearly on the strain rate (see be-
low). From Eq. (7) we see that P = P̃ +�

0
zz

(since Rzz = 0),
and therefore

�
0
ij

= µ(P̃ + �
0
zz

)

✏̇e

✏̇ij . (10)

Setting i = j = z and rearranging yields

�
0
zz

= µP̃ ✏̇zz

✏̇e � µ✏̇zz

. (11)

Inserting Eq. (11) into Eq. (10) and simplifying results in

�
0
ij

= µP̃

✏̇e � µ✏̇zz

✏̇ij = µP̃

✏̇e + µ
�
✏̇xx + ✏̇yy

� ✏̇ij . (12)

The tectonic stress is then found by inserting Eq. (12) into
Eq. (8):

Rij = µP̃

✏̇e + µ(✏̇xx + ✏̇yy)

⇥
✏̇ij +

�
✏̇xx + ✏̇yy

�
�ij

⇤
. (13)

Substituting Eq. (5) into Eq. (13) and the result into Eq. (4),
dividing by ⇢g(1 � ⇢/⇢w)/2, and rearranging gives

@

@x


µH

2

✏̇e + µ(✏̇xx + ✏̇yy)
(2✏̇xx + ✏̇yy)

�

+ @

@y


µH

2

✏̇e + µ(✏̇xx + ✏̇yy)
✏̇xy

�
= 2H

@H

@x

@

@y


µH

2

✏̇e + µ(✏̇xx + ✏̇yy)
(2✏̇yy + ✏̇xx)

�

+ @

@x


µH

2

✏̇e + µ(✏̇xx + ✏̇yy)
✏̇xy

�
= 2H

@H

@y
. (14)

In viscoplastic granular rheologies, µ is a complex func-
tion of ✏̇e. We adopt the nonlocal granular fluidity rheology
of Henann and Kamrin (2013), which is derived from labora-
tory experiments that demonstrate viscous flow at high stress
and plug flow at low stress. The rheology is nonlocal because
it enables mesoscopic regions of yielding to cause elastic
deformation in adjacent jammed regions, and it is particu-
larly well suited for ice mélange because it has been devel-
oped from experiments of flows associated with low inertial
numbers. The nonlocal granular fluidity rheology has suc-
cessfully modeled a variety of granular flows, including flow
down a rough plane (Kamrin and Henann, 2015), creep of
intruders in low-stress regions (Henann and Kamrin, 2014),

annular shear with various grain geometries and materials
(Fazelpour et al., 2022), and silo clogging (Dunatunga and
Kamrin, 2022), and it has also recently been applied to other
geophysical systems (e.g., Damsgaard et al., 2020; Zhang
et al., 2022).

In the nonlocal granular fluidity rheology, the effective co-
efficient of friction depends on the granular fluidity, g0, which
is a measure of how easily the material can flow for a given
stress:

µ ⌘ ✏̇e

g0 . (15)

The granular fluidity depends on local and distant stresses
through the differential relation

r2
g

0 = 1
⇠2

�
g

0 � g
0
loc
�
, (16)

where ⇠ is the cooperativity length and g
0
loc is the local gran-

ular fluidity (i.e., the fluidity in the absence of flow or stress
gradients). The local granular fluidity is based on experi-
ments that suggest that granular materials behave like Bing-
ham fluids (solid at low stresses and viscous at high stresses):

g
0
loc =

(q
P

⇢d2
(µ�µs)

µb
if µ > µs

0 if µ  µs,
(17)

where b is a dimensionless constant, µs is the static yield
coefficient, and the isometric pressure is related to the granu-
lar static pressure by P = P̃ ✏̇e/(✏̇e +µ(✏̇xx + ✏̇yy)) (compare
Eqs. 10 and 12). The Laplacian term in Eq. (16) spreads out
the fluidity into regions where µ < µs (Kamrin and Koval,
2012) and allows for deformation in regions of low stress.
The distance over which the fluidity spreads out is deter-
mined by the cooperativity length, which scales with grain
size and diverges at the yield point (Bocquet et al., 2009;
Kamrin and Henann, 2015):

⇠ = Adp|µ � µs|
, (18)

where A is a dimensionless constant.
Substituting Eq. (15) into Eq. (14) yields

@

@x


H

2

g0 + ✏̇xx + ✏̇yy

(2✏̇xx + ✏̇yy)

�

+ @

@y


H

2

g0 + ✏̇xx + ✏̇yy

✏̇xy

�
= 2H

@H

@x

@

@y


H

2

g0 + ✏̇xx + ✏̇yy

(2✏̇yy + ✏̇xx)

�

+ @

@x


H

2

g0 + ✏̇xx + ✏̇yy

✏̇xy

�
= 2H

@H

@y
. (19)

Equation (19), along with the equations for g
0 (Eqs. 15–18),

is analogous to the shallow shelf approximation. We there-
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fore refer to Eq. (19) as the nonlocal shallow mélange ap-
proximation (NSMA). As with the shallow shelf approxima-
tion, the NSMA requires some regularization to prevent infi-
nite viscosity.

2.2 Width-integrated flow equations and boundary
conditions

To reduce Eq. (19) to a quasi-one-dimensional flow model,
we adopt an approach from glacier flow modeling in which
extension-dominated dynamics are used to characterize the
longitudinal stresses and shear-dominated dynamics are used
to characterize the shear stresses (Pegler, 2016). This ap-
proach allows for width integration of the flow equations
and, importantly, asymptotes to the correct dynamics in
extension- and shear-dominated regimes. Essentially, we as-
sume that (i) flow is in the x direction and variations in width
are small (i.e., |dW/dx| ⌧ 1; Pegler, 2016) so that v ⇡ 0 and
✏̇yy ⇡ 0; (ii) the ice mélange thickness and longitudinal strain
rates are uniform across the width of the fjord; and (iii) the
granular fluidity in the longitudinal stress term (Rxx) is only a
function of ✏̇xx , while the granular fluidity in the shear stress
term (Rxy) is only a function of ✏̇xy .

Under these assumptions, integrating the x component of
Eq. (19) across the fjord and dividing by the width W yields

@

@x


H

2

gx + ✏̇xx

✏̇xx

�
� H

2

W
µw

✓
✏̇xy

✏̇e

◆

y=0
= H

@H

@x
, (20)

where g
x is used to indicate that the granular fluidity in the

longitudinal stress term depends solely on ✏̇xx , µw is the
value of µ along the fjord walls, y is taken to be the distance
from the near wall of the fjord, and due to symmetry the shear
strain rates at y = 0 and y = W have the same magnitude but
opposite sign. Due to our assumptions, the y component of
Eq. (19) does not affect flow in the x direction and can be
ignored. The first and second terms in Eq. (20) characterize
extension- and shear-dominated dynamics, respectively.

For shear-dominated flow, (✏̇xy/✏̇e)|y=0 = sgn(✏̇xy)|y=0 =
sgn(U), where U is the depth- and width-averaged velocity.
Thus, combining and rearranging Eq. (20) gives the follow-
ing one-dimensional stress balance equation:

@

@x


H

2

gx + (@U/@x)

@U

@x

�
= H

@H

@x
+ H

2

W
µwsgn(U). (21)

Equation (21) is the key dynamical equation that is used to
determine the ice mélange velocity along the length of the
fjord. We use a reference frame that moves with the glacier
terminus and define x = 0 as being the glacier–ice mélange
boundary. At this boundary, material flows into the domain at
a rate determined by the iceberg calving flux. Conservation
of mass dictates that the velocity there is given by

U0 = Uc
Ht

H0
, (22)

where subscript 0 refers to values at x = 0, Uc is the calving
rate, and Ht is the terminus thickness. We define the down-
stream end of the ice mélange (x = L) as being the point
where the ice thins to the grain scale, d. At thicknesses less
than the grain scale, the nonlocal granular fluidity rheology
no longer applies. In order to prevent divergence for thick-
nesses less than the grain scale, we therefore require that the
velocity gradient there is

@U

@x

����
x=L

= 0. (23)

This downstream boundary condition is similar to regular-
izations used in sea ice models to prevent ice floes with free
boundaries from spreading under their own weight (Hibler,
2001; Leppäranta, 2012).

The granular fluidity g
x is described by a simplified ver-

sion of Eq. (16) in which g
0 and g

0
loc are replaced with g

x and
g

x

loc, r2
g

x = @
2
g

x
/@x

2, and ✏̇e = |✏̇xx |+�✏̇ . �✏̇ is a strain rate
parameter that is used to regularize the granular fluidity equa-
tions in order to improve stability and efficiency. The regular-
ization is applied when substituting µ (Eq. 24) into Eqs. (17)
and (18) to ensure that the granular fluidity is always greater
than 0. Other regularization schemes are possible (Chauchat
and Médale, 2014); however, we have had success with this
simple regularization scheme and therefore leave investiga-
tion of other schemes for future work. For boundary condi-
tions we set @g

x
/@x = 0 at x = 0,L following the recom-

mendation of Henann and Kamrin (2013).
The value of µw in Eq. (21) is related to the width-

averaged velocity relative to the fjord walls, which is given
by U + (Ut � Uc), where Ut is the glacier terminus velocity
and Ut �Uc is the rate of glacier terminus migration. In other
words, the fjord walls move backward in our coordinate sys-
tem, which is defined relative to the glacier terminus, at a
rate given by Ut � Uc. For shear-dominated flow, integration
of the x component of Eq. (19) from y = 0 to y reveals that
µw varies linearly across the fjord. By comparing the result
to Eq. (20), we find that

µ = µw

✓
1 � 2y

W

◆
(24)

for 0  y  W/2 (see also Amundson and Burton, 2018).
Using Eq. (24), the local granular fluidity and cooperativ-
ity length can be readily calculated as functions of position
for a given value of µw. The results are then inserted into the
granular fluidity differential equation (Eq. 16), except that g

0

and g
0
loc are replaced with g

y and g
y

loc (to emphasize that the
granular fluidity for shear-dominated flow depends only on
✏̇xy) and r2

g
y = @

2
g

y
/@y

2. As before, we set @g
y
/@y = 0 at

both boundaries. The granular fluidity equation is then solved
to determine g

y
(y,µw). If the flow is in the positive x direc-

tion, then ✏̇e = (@U/@y)/2 and Eq. (15) can be rewritten as

@u

@y
= 2µg

y = 2µw

✓
1 � 2y

W

◆
g

y
(y,µw). (25)
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The average velocity in the transect is found by integrating
Eq. (25), which must equal the velocity in the bedrock refer-
ence frame:

U + Ut � Uc = 2
W

W/2Z

0

yZ

0

2µw

✓
1 � 2y

0

W

◆
g

y
(y

0
,µw)dy

0 dy. (26)

Finally, the ice mélange geometry changes in response to
melting, flow divergence, and dispersal of icebergs at x =
L. The surface evolves according to the depth- and width-
integrated mass continuity equation (van der Veen, 2013), in
which

@H

@t
= Ḃ � 1

W

@

@x
(UHW), (27)

where Ḃ is the surface plus basal mass balance rate, and the
length evolves so as to ensure that the thickness at the end of
the ice mélange is always equal to the characteristic iceberg
size.

2.3 Numerical implementation and stability
considerations

The quasi-one-dimensional ice mélange flow model that we
have developed depends on five variables: U , gx , µw, H , and
L. We determine these variables by simultaneously solving
the width-integrated NSMA, granular fluidity, transverse ve-
locity, and mass continuity equations (Eqs. 21, 16, 26, and
27) while also requiring that HL = d . We use finite differ-
ences with a stretched coordinate system and a staggered grid
for velocity and thickness. The mass continuity equation uses
an implicit time-stepping scheme and an upwind scheme for
discretization. Our numerical scheme, which closely mimics
that of Schoof (2007), is described in detail in the Appendix.

The width-integrated NSMA is more computationally ex-
pensive than the analogous width-integrated SSA approxi-
mation for two reasons. First, the nonlocal granular fluidity
rheology introduces additional nonlinear differential equa-
tions that must be solved as part of the iteration procedure,
essentially doubling the number of unknowns. Second, be-
cause ice mélange tends to be considerably thinner than its
parent glacier, ice mélange velocities must be several times
higher than glacier terminus velocities in order to balance the
ice flux into the fjord. This latter effect becomes particularly
critical if ice mélange thins to close to its characteristic ice-
berg size.

For example, although we are using an implicit scheme,
we find that the CFL (Courant–Friedrichs–Lewy) condition
(1t  Cmax1x/U ) is a useful metric for determining ap-
propriate time steps that maintain numerical stability. From
our experience, Cmax = 1 provides good stability across a
range of parameter choices and model states, although this
is not a strict requirement. At x0, the ice mélange velocity is
U0 = UcHt/H0 (Eq. 22). Thus the CFL condition at x0 can

be expressed as

1t  1xH0

UcHt
. (28)

For thick ice mélange (H0 ⇡ Ht), with a calving rate of
6000 m a�1, a terminus thickness of Ht = 600 m, and a grid
spacing of 500 m, 1t < 0.09 a. However if the ice mélange
approaches the characteristic iceberg size, for example H0 ⇡
d = 25 m, then 1t < 4⇥10�3 a (assuming similar grid spac-
ing). In reality, higher velocities may occur farther down-
fjord, necessitating shorter time steps. Since our model uses
a moving grid and the ice mélange thickness and length may
vary significantly over seasonal timescales, we recommend
using short time steps or an adaptive time step in prognostic
simulations.

2.4 Ice mélange buttressing force

Although we do not model glacier flow in this paper, we
do assess the impact of model parameters, glacier fluxes,
melt rates, and fjord geometry on the buttressing force that
ice mélange exerts on glacier termini, which is given by
(�HW�xx)|x0 . The force imposed on a glacier terminus (per
unit width) due to the presence of ice mélange is therefore

F/W =
⇣
�HRxx + HP̃

⌘

x0
. (29)

Substituting in the nonlocal granular fluidity rheology yields

F/W =
 

�2HP̃ ✏̇xx

gx + ✏̇xx

+ HP̃

!

x0

. (30)

In the limit that @U/@x ! 0, F/W scales with the thickness
squared, H

2
0 .

3 Model results

3.1 Steady-state and quasi-static profiles

We begin exploring the model behavior by investigating the
impact of model parameters and forcings on steady-state pro-
files. The model is capable of producing two types of steady-
state solutions: there is one in which material is continu-
ously flowing through the ice mélange domain and the ge-
ometry is steady in the bedrock reference frame, and there
is one in which no material enters or leaves the ice mélange
and the geometry is steady in a reference frame that moves
down-fjord with the glacier terminus and the velocity is
constant (@U/@x = 0). We refer to these two states as the
“steady-state” and “quasi-static” regimes. We focus primar-
ily on the steady-state regime as the quasi-static regime has
already been analyzed in some detail in Amundson and Bur-
ton (2018).

To produce steady-state profiles, we set the terminus ve-
locity and calving rate to be constant and equal to each
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Figure 2. Steady-state (solid curves) and quasi-static (dashed curves) profiles. (a–d) Longitudinal profiles of velocity, thickness, granular
fluidity, and limit of internal friction along the fjord walls. (e) Transverse velocity profiles at various fractions � of the distance along the ice
mélange. For the steady-state simulation, Ut = Uc = 6000 m a�1, Ht = 600 m, W = 4000 m, Ḃ = �0.6 m d�1, d = 25 m, µs = 0.3, A = 0.5,
and b = 1 ⇥ 104. Longitudinal coordinates are relative to the glacier terminus.

other and we set the surface mass balance rate equal to a
constant. We then run prognostic simulations until the ice
mélange length and thickness are no longer changing with
time (dL/dt = 0 and @H/@t = 0). The approach that we
adopt differs from that of Amundson and Burton (2018), in
which we derived an expression for steady-state profiles in
the quasi-static limit, in several important ways. Here (i) we
do not set the calving and melt rates equal to 0, (ii) we do
not require µw to be constant but instead solve for it, (iii) we
allow for variable width, and (iv) the ice mélange length is
not specified a priori but rather is determined by the bal-
ance of the inflow and melt rates. We then turn off calving
and melting and allow the ice mélange to evolve into a new
steady-state in order to demonstrate the changes in flow and
geometry that occur during the transition from the steady-
state regime to the quasi-static regime.

Example steady-state and quasi-static profiles are shown
in Fig. 2. Velocities increase in the down-fjord direction in
the steady-state scenario (solid lines in Fig. 2), which, when
combined with surface and basal melting, leads to a relatively
large thickness gradient. The extensional flow is also associ-
ated with an increase in µw in the down-fjord direction. Once
calving and melting are turned off, the ice mélange evolves
toward the quasi-static limit (dashed lines in Fig. 2). The ve-
locities drop because there is no longer a flux of new material

into the ice mélange and the icebergs are simply pushed at
the rate of glacier terminus advance. Consequently the shear
stresses decrease, which is reflected in a decrease in µw. The
reduction in shear stresses and lack of surface or basal melt-
ing allow the ice mélange to thin and spread outward. At the
quasi-static limit, the ice mélange has a roughly exponen-
tial thickness profile and µw is spatially constant. In Amund-
son and Burton (2018), we assumed that µw is a constant in
the quasi-static limit and showed that this leads to a roughly
exponential thickness profile; here we see it arise naturally
through the momentum and mass continuity equations in a
manner that is consistent with our prior assumptions.

3.1.1 Sensitivity to model parameters

The nonlocal granular fluidity rheology depends on several
parameters that must be specified: the characteristic ice-
berg size d, dimensionless constants b and A (described
below), and the static yield coefficient µs. For default val-
ues we have selected d = 25 m, b = 1 ⇥ 104, A = 0.5, and
µs = 0.3, which produces thickness and velocity profiles that
are roughly consistent with observations from Sermeq Ku-
jalleq (Jakobshavn Isbræ), Helheim Glacier, and Kangerlus-
suaq Glacier (e.g., Foga et al., 2014; Amundson and Burton,
2018; Bevan et al., 2019; Xie et al., 2019). Here, we pro-
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vide some context for our selection of default values and ex-
plore how adjusting these parameters affects the steady-state
model behavior (refer to Fig. 3 throughout this section).

– The characteristic iceberg size influences the local gran-
ular fluidity (Eq. 17), the cooperativity length (Eq. 18),
and the ice mélange extent (since the end of the do-
main is defined as being where H = d). Ice mélange
is a highly heterogeneous material, with iceberg dimen-
sions ranging from meters to hundreds of meters. Sev-
eral studies indicate that the iceberg area (in map view)
follows power-law size distributions, p(a) / a

�↵ , with
↵ ranging from 2.1–3.4 (e.g., Enderlin et al., 2016; Su-
lak et al., 2017; Kirkham et al., 2017; Kaluzienski et al.,
2023). Power-law distributions require a minimum size
threshold. Using a minimum area of 10 m2 gives me-
dian and mean iceberg areas of about 13–18 m2 and 17–
110 m2 (see Eqs. 6 and 8 in Kaluzienski et al., 2023),
resulting in a characteristic diameter on the order of 4–
10 m. It is unclear, however, how iceberg heterogene-
ity affects ice mélange flow or if there is a controlling
iceberg size. Nonetheless, we find that decreasing the
iceberg size causes the ice mélange to become weaker
(more fluid; Fig. 3c) by both increasing the local gran-
ular fluidity and decreasing the cooperativity length;
consequently, a smaller characteristic iceberg size leads
to faster (Fig. 3a, e), thinner, and longer ice mélange
(Fig. 3b).

– The dimensionless constant b is given by the ratio of
the range of effective friction coefficients to the iner-
tial number (see Kamrin and Henann, 2015), which is
itself a function of grain size, characteristic strain rate,
and pressure. These values are poorly constrained for
ice mélange at present. Using typical values, we find
that b is likely in the range of 104–106. b only affects
the local granular fluidity (Eq. 17), and as such its im-
pact on model behavior is more transparent than that of
iceberg size. Increasing b reduces the local granular flu-
idity, making the ice mélange stiffer (less fluid; Fig. 3c)
and leading to thicker and longer ice mélange (Fig. 3b)
and lower velocities (Fig. 3a, e).

– The dimensionless constant A affects the cooperativity
length (Eq. 18) and is thought to be of order 1; fitting
to laboratory experiments and discrete element simu-
lations suggests that A equals 0.5 for glass beads and
0.9 for stiff disks (Henann and Kamrin, 2013; Kamrin
and Koval, 2014). For our simulations, using values of
A = 0.5 gives cooperativity lengths of a few kilometers
in the longitudinal direction. Changing A does not have
much impact on our results other than changing the cur-
vature of the transverse velocity profiles (Fig. 3e).

– Lastly, the static yield coefficient determines the stress
at which the ice mélange will begin to flow (Eqs. 17).

Reducing the yield coefficient causes the ice mélange to
deform more easily (Fig. 3c) and become thinner and
shorter (Fig. 3b).

Determining appropriate model parameters that are able
to describe ice mélange flow across a range of forcings and
fjord geometries remains a major task. The default param-
eters that we have selected produce ice mélange geometries
and velocity profiles that appear to be roughly consistent with
field observations (e.g., see figures in Amundson and Burton,
2018; Bevan et al., 2019; and Xie et al., 2019). Adjusting any
of the parameters appreciably from our default parameters
will likely require modifying one or more additional param-
eters in order to produce profiles that are not too thin or too
thick. For example, we can also produce similar profiles if
we reduce the static yield coefficient but only if we increase
b appropriately.

3.1.2 Sensitivity of ice mélange flow, geometry, and
buttressing force to external forcings and fjord
geometry

The modeled ice mélange flow, geometry, and buttress-
ing force depend on glacier fluxes, surface and basal melt
rates, and fjord geometry. These parameters enter the model
through the upstream boundary condition (Eq. 22), the lateral
shear stress (Eqs. 21 and 26), and the mass continuity equa-
tion (Eq. 27). We address each of these in turn by considering
their impact on steady-state solutions.

To investigate the impact of glacier fluxes, we considered
three glacier scenarios (small, medium, and large) in which
the glacier velocity and calving rate scale with the fjord width
and terminus thickness. We varied the terminus thickness
from 600–800 m while simultaneously varying the glacier
velocity from 6000–8000 m a�1 and the fjord width from
4000–6000 m. We find that the ice mélange becomes longer
and thicker as the fluxes increase (Fig. 4). An important con-
sequence of this is that ice mélange produced by large, highly
active glaciers is more likely to exert high stresses against
glacier termini and to persist year-round than ice mélange
produced by small glaciers. For example, the ice mélange
was over 40 % thicker in the large-glacier scenario than in
the small-glacier scenario (Fig. 4b), resulting in a buttress-
ing force that was 100 % larger (see Eq. 30). The buttress-
ing force required to prevent the capsizing of full-glacier-
thickness icebergs, which can be used to estimate the force
required to inhibit large-scale calving events, scales with H

2
t

(see Eq. 1 in Amundson et al., 2010, and Eq. 18 in Burton
et al., 2012). Thus, a full-glacier-thickness iceberg that is
initially 800 m tall requires a buttressing force that is 77 %
larger to prevent it from capsizing compared to a 600 m tall
iceberg, which is less than the difference in the ice mélange
buttressing force predicted by our model for the large- and
small-glacier scenarios. Although our imposed calving rates
are ad hoc, these results suggest that large, highly productive
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Figure 3. Steady-state profiles for various model parameter choices. For all simulations, Ut = Uc = 6000 m a�1, Ḃ = �0.6 m d�1, Ht =
600 m, and W = 4000 m. (a–d) Longitudinal profiles of velocity, thickness, granular fluidity, and limit of internal friction along the fjord
walls. (e) Transverse velocity profiles at the ice mélange midpoint. The solid curves represent the results produced using the default values
(A = 0.5, b = 1 ⇥ 104, d = 25 m, and µs = 0.3). For the other curves, we adjusted one model parameter, as indicated in the legend, but kept
all other parameters set to their default values. Longitudinal coordinates are relative to the glacier terminus.

glaciers are more likely to be affected by ice mélange but-
tressing because as Ht increases, the buttressing force from
the ice mélange increases more rapidly than the force re-
quired to prevent icebergs from capsizing.

We next considered the impact of surface and basal melt-
ing on ice mélange characteristics. Iceberg melt rates in
fjords can range from 0.1–0.8 m d�1 (Enderlin et al., 2016),
and icebergs are particularly important sources of freshwa-
ter in winter (Moon et al., 2017). We find that ice mélange
thickness and length are sensitive to melt (Fig. 5a) due to the
effect of melt on lateral shear stresses and that the buttressing
force depends on the melt rate through an inverse power-law
relationship with an exponent of about �3 (Fig. 5b).

Finally, fjord width also has important impacts on the
ice mélange extent and buttressing force. Increasing the
fjord width reduces the ability of shear stresses to build
an ice mélange wedge, and thus the ice mélange is thin-
ner and sheds icebergs more readily. Consequently the but-
tressing force decays roughly exponentially with fjord width
(Fig. 6a–b), as also observed in the analysis of quasi-static
flow (Amundson and Burton, 2018; Burton et al., 2018). The
width gradient has similar effects on the buttressing force.
Converging walls (dW/dx < 0) create extra flow resistance
that allows for the development of a thicker ice mélange
wedge. The buttressing force also decays roughly exponen-
tially with the width gradient (Fig. 6c–d).

3.2 Transient simulations

The ice mélange buttressing force is clearly sensitive to
changes in ice mélange thickness. From field and remote
sensing observations, we expect ice mélange to be weakest
in summer, when melt rates and calving activity are high-
est (e.g., Joughin et al., 2020). To investigate the implica-
tions of these fluctuations, we impose seasonal variations in
melting and calving rates with amplitudes of 0.2 m d�1 and
600 m a�1, respectively.

We find that the buttressing force decreases as the melt rate
increases (Fig. 7a–b), as might be expected during the sum-
mer months. However, there is a lag of 2 months between the
highest melt rates and the weakest ice mélange. The lag is
smallest for ice mélange experiencing higher melt rates be-
cause smaller ice mélange will respond more rapidly to ex-
ternal forcings. There is also less variability in the buttressing
force for smaller ice mélange.

Iceberg calving also varies seasonally and tends to be
highest in the summer. The model, which assumes the ice
mélange remains well packed year-round, predicts that it will
thicken and grow in response to the addition of new material.
As with melting, there is a lag of 2 months between vari-
ations in calving rates and the force exerted on the glacier
termini, and the amplitude of the variations in force also de-
crease with ice mélange extent (Fig. 7c–d). Thus, melt and
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Figure 4. Steady-state profiles for variously sized glaciers as follows: (small glacier: solid lines) Ut = Uc = 6000 m a�1, Ht = 600 m, and
W = 4000 m; (medium glacier: dashed lines) Ut = Uc = 7000 m a�1, Ht = 700 m, and W = 5000 m; (large glacier: dotted lines) Ut = Uc =
8000 m a�1, Ht = 800 m, and W = 6000 m. (a–d) Longitudinal profiles of velocity, thickness, granular fluidity, and limit of internal friction
along the fjord walls. (e) Transverse velocity profiles at the ice mélange midpoint. For all simulations, Ḃ = �0.8 m d�1, d = 25 m, µs = 0.3,
A = 0.5, and b = 1 ⇥ 104. Longitudinal coordinates are relative to the glacier terminus.

Figure 5. Effect of melt rates on (a) steady-state thickness profiles and (b) the ice mélange buttressing force per unit width. The dotted curve
represents force estimates computed by neglecting longitudinal strain rates, whereas the dashed curve includes the effect of longitudinal
strain rates. For all simulations, Ut = Uc = 6000 m a�1, Ht = 600 m, W = 4000 m, d = 25 m, µs = 0.3, A = 0.5, and b = 1 ⇥ 104.
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Figure 6. Effect of fjord geometry on steady-state thickness profiles and the buttressing force per unit width. In (a) and (b) the width was
varied while the gradient in width was held constant. In (c) and (d) the width at the glacier terminus was fixed at 4000 m and the gradient in
width was varied. Positive (negative) values of dW/dx correspond to fjord walls that are diverging (converging). The dotted curves represent
force estimates computed by neglecting longitudinal strain rates, whereas the dashed curves includes the effect of longitudinal strain rates.
For all simulations, Ut = Uc = 6000 m a�1, Ht = 600 m, d = 25 m, µs = 0.3, A = 0.5, and b = 1 ⇥ 104.

calving, which both vary seasonally, have opposite effects on
the model behavior.

Following observations that suggest that iceberg calving
is affected by the ice mélange buttressing force, we use an
ad hoc linear relationship between calving and the buttress-
ing force to begin investigating their coupled impacts on ice
mélange. We suppose that

Uc = 2Uc,ss � Uc,ss

Fss
F, (31)

where Uc,ss and Fss are the steady-state calving rate and but-
tressing force for a given set of model parameters. An im-
posed variation in melt rates causes F to vary, which is cou-
pled to the calving rate via a negative feedback loop. This
coupling reduces the lag time between the melt rate and the
buttressing force to about 0.1 a, and, as a result, the calving
rate is high when melt rates are also high (Fig. 7).

3.3 Buttressing forces in the steady-state and
quasi-static regimes

The ice mélange buttressing force depends on the thickness,
tectonic stress Rxx , and granular static pressure P̃ at the
glacier–ice mélange boundary (Eq. 30). In the quasi-static
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Figure 7. Ice mélange response to temporally varying melt rates and calving rates. (a) Sinusoidal variations in the melt rate (dashed curve)
and buttressing force (solid curves). (b) Hysteresis curves between the buttressing force and melt rate for different baseline melt rates (and
therefore ice mélange sizes). (c) Sinusoidal variations in the calving rates (dashed lines) and buttressing force (solid lines). (d) Hysteresis
curves between the buttressing force and calving rate for different baseline melt rates (same as in panel b). The starting points of the hysteresis
curves in (b) and (d) are indicated by dots. The black curves in (a) and (b) correspond to a simulation in which the calving rate depends
linearly on the buttressing force. For all simulations, d = 25 m, µs = 0.3, A = 0.5, and b = 1 ⇥ 104.

limit, the velocity gradient is zero and therefore the buttress-
ing force scales with H

2
0 . However, we find that when calv-

ing and melting are nonzero, the flow is extensional, which
causes the buttressing force to be less than would be expected
if buttressing force estimates were based solely on ice thick-
ness (Figs. 5 and 6).

We find that, for parallel-sided fjords, the buttressing force
in the steady-state regime also scales with H

2
0 despite the

complexity introduced by nonzero strain rates (Fig. 8). Dur-
ing our transient simulations, the buttressing force circles
around the initial steady-state solutions as the flow becomes
more/less extensional. We never observe compressional flow
in our simulations, and field and remote sensing observa-
tions indicate that compressional flow only occurs during
and in the immediate aftermath of iceberg calving events
(Peters et al., 2015; Amundson and Burton, 2018; Cassotto
et al., 2021). Thus, observations of ice mélange thickness
from satellite data, along with the quasi-static approximation

of Eq. (30), can be used to provide an upper bound on the ice
mélange buttressing force.

4 Conclusions

We have developed a depth-averaged continuum model of
ice mélange flow, which we refer to as the nonlocal shallow
mélange approximation, that is based on recent advances in
our understanding of granular materials and that is suitable
for long-timescale glacier simulations. Consistent with other
granular flows, the model exhibits viscous flow where the
stresses are far from the yield point and plug flow where the
stresses approach the yield point.

The model contains four parameters (the iceberg size, two
dimensionless constants, and the static yield coefficient) that
must be tuned. We have selected a set of parameters that pro-
duce velocity and thickness profiles that are roughly consis-
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Figure 8. Relationship between the ice mélange buttressing force
and thickness at x0. The solid black line represents the quasi-static
regime, the dashed black line represents the results from steady-
state solutions shown in Fig. 5, and the colored dots represent the
solutions for all of the transient simulations shown in Fig. 7.

tent with remote sensing observations from Greenland (Foga
et al., 2014; Amundson and Burton, 2018; Bevan et al., 2019;
Xie et al., 2019). Ultimately, the profiles depend on the ice
mélange stiffness; stiff ice mélange does not spread very eas-
ily and tends to result in thick, extensive ice coverage. Each
of the four model parameters can affect the overall fluidity;
thus, other parameter combinations may also produce suit-
able model results. Determining the best parameter values
that work across a range of forcing and fjord geometries re-
mains a major task for laboratory experiments and field ob-
servations.

We assume that the ice mélange is well packed and homo-
geneous, and we do not account for cohesion. The model is
likely to perform best for winter ice mélange and for systems
where ice mélange persists year-round since the flow approx-
imation is not applicable for granular materials far from the
well-packed limit. The impacts of iceberg heterogeneity and
cohesion on ice mélange flow require further investigation.
We suggest that both could potentially be incorporated into
our modeling framework through modification of the model
parameters, which are currently treated as constants, and/or
by tuning the model parameters with field observations, labo-
ratory experiments, and discrete element simulations. Future
work should also attempt to quantify the degree to which the
quasi-one-dimensional model can replicate the behavior of
ice mélange in fjords with complex geometry.

Ultimately, we find that the nonlocal shallow mélange ap-
proximation produces thickness and velocity profiles that are
roughly consistent with previously published field observa-
tions (Amundson and Burton, 2018; Bevan et al., 2019; Xie
et al., 2019) and evolves in response to glaciological, atmo-
spheric, and oceanographic forcing. Ice fluxes, melt rates,
and fjord geometry strongly affect the model geometry and
ice mélange buttressing forces. Addition of new material into
the ice mélange via iceberg calving makes it longer, thicker,
and more resistive, whereas removal of material through sur-
face and basal melting does the opposite. Thus the model
may be capable of explaining temporal variations in buttress-

ing forces and why ice mélange appears to have larger im-
pacts in some glacier–fjord systems than it does in others.

Appendix A: Coordinate stretching

We use a coordinate system that moves with the glacier ter-
minus, and, following Schoof (2007), we introduce coordi-
nate stretching to deal with the moving boundary at the end
of the ice mélange (x = L),

� = x

L
, (A1)

which maps 0  x  L to 0  �  1. According to the chain
rule,

@

@x
= @�

@x

@

@�
= 1

L

@

@�
. (A2)

The coordinate stretching also necessitates a transformation
of time derivatives. The material derivative is
D
Dt

= dx

dt

@

@x
+ @

@t
. (A3)

The grid points move with velocity:

dx

dt
= �

dL

dt
. (A4)

The material derivative of a quantity that is moving with the
grid is the same as the partial derivative of that same quantity
in the grid’s reference frame. As in Schoof (2007), we there-
fore let t = ⌧ to distinguish between partial derivatives when
x and � are held constant, respectively, which allows us to
replace D/Dt with @/@⌧ . Thus, after rearranging Eq. (A3)
and inserting Eqs. (A2) and (A4), we arrive at

@

@t
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The coordinate transformations are then applied to the
stress balance, granular fluidity, and mass continuity equa-
tions (Eqs. 21, 16, and 27), yielding
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The granular fluidity depends on ✏̇e, which is transformed as

✏̇e = ✏̇�

L
, (A7)

where ✏̇� is the second invariant of the strain rate in the
stretched coordinate system. The transverse velocity equa-
tion is unaffected by the coordinate transformation.
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Appendix B: Nondimensionalization

We nondimensionalize the model equations to improve
model convergence. We start by assuming that we know char-
acteristic scales for the length [L], velocity [U ], and mass
balance rate [Ḃ]. We then set scales for the thickness and
time:

[L] = [U ][H ]
[Ḃ]

[⌧ ] = [L]
[U ] . (B1)

The model is scaled by defining

L = [L]L⇤

H = [H ]H ⇤

U = [U ]U⇤

Ḃ = [Ḃ]Ḃ⇤

W = [L]W ⇤

d = [H ]d⇤
, (B2)

where ⇤ is used to indicate dimensionless variables. We also
note that g

0 = g
0⇤[U ]/[L] since g

0 = ✏̇e/µ. Dropping the
asterisks and defining � = [H ]2

/[L]2, the nondimensional
stress balance, granular fluidity, transverse velocity, and mass
continuity equations become
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@�
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loc
�

U + (Ut � Uc) = 2
W

W/2Z

0

yZ

0

2µw

✓
1 � 2y
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◆
g

y dy
0 dy

@H

@⌧
� �

L

dL

d⌧

@H

@�
+ 1

WL

@

@�
(UHW) = Ḃ. (B3)

Using dimensionless variables, the cooperativity length and
local granular fluidity are calculated as

⇠ = Adp|µ � µs|
(B4)

and

g
x

loc = g
y

loc =
( [L]

[U ]
q

P

⇢d2[H ]
(µ�µs)

µb
if µ > µs

0 if µ  µs.
(B5)

When calculating g
x , the effective coefficient of friction is

given by µ = (✏̇�/L+ �✏̇)/g
x , and when calculating g

y , it is
given by µ = µw(1 � 2y/W) and @u/@y = 2µg

y .

The boundary conditions are unchanged in dimensionless
variables.

Appendix C: Finite-difference discretization

We use finite differences with a staggered grid and implicit
time step to simultaneously calculate U , g

x , µw, H , and L

at each time step. Indices j and n refer to grid points and
time steps. We define j = 0 : N so that there are N + 1 grid
points each for U and µw and N points each for H and g

x .
Altogether the model solves for 4N+3 unknowns in the x di-
rection. The discretized stress balance, granular fluidity, µw,
and mass continuity equations provide 4N+2 equations. One
additional equation comes from defining the end of the ice
mélange as being where the thickness equals the grain size:

3HN�1/2 � HN�3/2 = d. (C1)

C1 Stress balance equation

The discretized stress balance equation is

1
(L1�)2

⇥
⌫j�1/2Uj�1 �

�
⌫j+1/2 + ⌫j�1/2

�
Uj + ⌫j+1/2Uj+1

⇤

= 1
L1�

Hj+1/2 + Hj�1/2

2
�
Hj+1/2 � Hj�1/2

�

+ 1
2

�
Hj+1/2 + Hj�1/2

�2

Wj+1/2 + Wj�1/2
µw,j sgn

�
Uj

�
, (C2)

which is used for j = 1 : N � 1 and where we have defined

⌫j�1/2 =
H

2
j�1/2

g
x

j�1/2 + (Uj � Uj�1)/(L1�)
. (C3)

The upstream boundary condition is U0 = UcHt/H0
(Eq. 22), while the downstream boundary condition is
UN � UN�1 = 0 (Eq. 23).

C2 Nonlocal granular fluidity equation

The equation for the granular fluidity is discretized using a
standard difference formula such that

�

g
x

j�3/2 � 2g
x

j�1/2 + g
x

j+1/2

(L1�)2

= 1
⇠

2
j�1/2

⇣
g

x

j�1/2 � g
x

loc,j�1/2

⌘
, (C4)

with boundary conditions g
x

3/2 � g
x

1/2 = 0 and g
x

N�1/2 �
g

x

N�3/2 = 0 (@g
x
/@x = 0 at x = 0,L). The granular fluidity

is only calculated on N grid points because it depends on
the velocity gradient, which we calculate using a one-sided
difference. As result, g

x

j�1/2 depends on Uj and Uj�1. Simi-
larly, g

x

loc,j�1/2 (Eq. 17) depends on Uj and Uj�1 as well as
Hj�1/2.
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C3 Transverse velocity equation

We calculate transverse velocity profiles at each � grid point.
We use M + 1 grid points in the y direction. The discretized
granular fluidity equation in the y direction is then

�
g

y

m�1 � 2g
y

m + g
y

m+1
1y2 = 1

⇠2
m

⇣
g

y

m � g
y

loc,m

⌘
. (C5)

At the boundaries we set dg
y
/dy = 0, and therefore g

y

1 �
g

y

0 = 0 and g
y

M
�g

y

M�1 = 0. g
y

loc,m and ⇠m both depend on µ

(see Eqs. 17 and 18). For shear-dominated flow, µ varies lin-
early across the fjord (Eq. 24). Therefore, for a given value of
µw, g

y

loc,m and ⇠m can be directly calculated. Equation (C5)
is then solved to determine g

y
(y).

Finally, we integrate Eq. (25) twice to find the average ve-
locity in the transect, which is required to equal the velocity
U in the ice mélange’s reference frame plus the glacier ter-
minus velocity:

Uj +Ut �Uc = 2
Wj

Wj /2Z

0

yZ

0

µw,j

✓
1 � 2y

0

Wj

◆
g

y dy
0 dy. (C6)

C4 Mass continuity equation

For the mass continuity equation, we use an upwind scheme
with a backward Euler step; the advective term is discretized
with centered differences:

Hj+1/2 � H
?

j+1/2

1⌧
�
✓

�j+1/2
dL

d⌧

◆
Hj+3/2 � Hj�1/2

2L1�

+
�
Uj+1 + Uj

�
Hj+1/2Wj+1/2 �

�
Uj + Uj�1

�
Hj�1/2Wj�1/2

2Wj+1/2L1�

= Ḃj+1/2, (C7)

where superscript ? is now used to refer to values from the
previous time step. At both boundaries (j = 0 and j = N�1)
we use one-sided differences for the advective term, and at
the upstream boundary (j = 0) we use a forward difference
for the diffusive term. Consequently, the discretized mass
continuity equations at the upstream and downstream bound-
aries are

H1/2 � H
?

1/2

1⌧
�
✓

�1/2
dL

d⌧

◆
H3/2 � H1/2

L1�
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2W1/2L1�

= Ḃ1/2 (C8)

and

HN�1/2 � H
?

N�1/2

1⌧
�
✓

�N�1/2
dL

d⌧

◆
HN�1/2 � HN�3/2

L1�

+ (UN + UN�1)HN�1/2WN�1/2 � (UN�1 + UN�2)HN�3/2WN�3/2

2WN�1/2L1�

= ḂN�1/2. (C9)

Appendix D: Description of model variables

Variable Description
⇢, ⇢w densities of ice and water
x = hx,y,zi position vector
g, geff, t gravitational acceleration, effective

gravity, and time
u = hu,v,wi velocity vector
✏̇ij , ✏̇e strain rate tensor and effective strain

rate
�ij , �

0
ij

, Rij stress, deviatoric stress, and tec-
tonic stress tensors

�ij Kronecker delta
p̃ granular static pressure
P , P̃ depth-averaged pressure and granu-

lar static pressure
W , L, U , H width, length, and depth- and

width-averaged velocity and thick-
ness

Ht, Ut, Uc depth- and width-averaged (glacier)
terminus thickness, terminus veloc-
ity, and calving rate

H0, U0 thickness and depth- and width-
averaged velocity at x = 0

F buttressing force
Ḃ surface plus basal mass balance rate
µ, µw effective coefficient of friction

within the ice mélange and along
the fjord walls

µs static yield coefficient
g

0, g
0
loc granular fluidity and local granular

fluidity
g

x , g
y granular fluidity for extension-

dominated and shear-dominated
flow

⇠ cooperativity length
d characteristic iceberg diameter
b, A dimensionless parameters
�✏̇ finite strain rate parameter
� , ⌧ , ✏̇� longitudinal position, time, and ef-

fective strain rate in the stretched
coordinate system
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