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Abstract

The phenotype of an organism is shaped by gene expression within developing tissues. This shaping relates the evolution of gene expression to
phenotypic evolution, through divergence in gene expression and consequent phenotype. Rates of phenotypic evolution receive extensive
attention. However, the degree to which divergence in the phenotype of gene expression is subject to heterogeneous rates of evolution
across developmental stages has not previously been assessed. Here, we analyzed the evolution of the expression of single-copy orthologs
within 9 species of Sordariomycetes Fungi, across 9 developmental stages within asexual spore germination and sexual reproduction. Rates
of gene expression evolution exhibited high variation both within and among developmental stages. Furthermore, rates of gene expression
evolution were correlated with nonsynonymous to synonymous substitution rates (dN/dS), suggesting that gene sequence evolution and
expression evolution are indirectly or directly driven by common evolutionary forces. Functional pathway analyses demonstrate that rates of
gene expression evolution are higher in labile pathways such as carbon metabolism, and lower in conserved pathways such as those involved
in cell cycle and molecular signaling. Lastly, the expression of genes in the meiosis pathway evolved at a slower rate only across the stages
where meiosis took place, suggesting that stage-specific low rates of expression evolution implicate high relevance of the genes to
developmental operations occurring between those stages.
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Introduction diverse biological and developmental functions (Mantri et al.
2021). However, genome-wide expression variation is present
not only within an organism, but also has been documented
among strains (Townsend et al. 2003; Glaser-Schmitt and
Parsch 2023), species (Brawand et al. 2011; Israel et al.
2016; Gildor et al. 2019; Wang et al. 2020a), and specifically
between paralogs (Gu et al. 2002). Patterns have emerged link-
ing the divergence in gene expression to other biological met-
rics. For instance, divergence in expression is higher in testis
(Brawand et al. 2011), higher in certain developmental stages
(Israel et al. 2016; Wang et al. 2020a), and positively corre-
lated with evolutionary distances (Jordan et al. 2005; Lemos
et al. 20035; Gildor et al. 2019). Fundamentally, this diversity
of gene expression level is driven by regulatory changes
(McManus et al. 2010) and evolutionary forces of selection
and drift (Lin et al. 2017), wherein selection on infrequent,

Gene expression is a fundamental process in all organisms,
bridging the gap between genetic material and functional biol-
ogy. Itis intricately regulated at multiple levels, including tran-
scriptionally, post-transcriptionally, and proteomically, to
promptly respond to biological, developmental, and environ-
mental signals. Messenger RNAs—regulated transcriptionally
and via RNA degradation—are the initial product of the hier-
archy of gene activity regulation. Accordingly, RNA levels
have been used as direct measures of gene activity in numerous
genome-wide studies (Schwanhausser et al. 2011; Liu et al.
2016; Buccitelli and Selbach 2020). RNA levels of genes can
also determine the magnitude of selection pressure on amino-
acid substitutions (Drummond and Wilke 2008; Park et al.
2013). Study of differentially expressed genes has enabled

the assessment of the functional roles of genes (Ferreira de
Carvalho et al. 2016; Gortikov et al. 2022), illuminated
gene regulatory networks (Wang et al. 2014), and guided tar-
geted experimental investigations (Kim et al. 2019).
Temporally and spatially explicit investigations of gene ex-
pression have enabled the identification of genes involved in

high-effect, highly deleterious mutations typically maintains
an average level of expression (Hodgins-Davis et al. 2015).
Accordingly, modeling of gene expression as a stochastic pro-
cess (Bedford and Hartl 2009; Rohlfs et al. 2014; Boucher and
Démery 2016) enables the identification of divergent expres-
sion associated with divergent phenotypes or ecologies
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(Munro et al. 2022; Liu et al. 2023) and the illumination of
other evolutionary questions such as testing the developmen-
tal hourglass model (Kalinka et al. 2010) and the relation be-
tween neofunctionalization and gene duplications (Fukushima
and Pollock 2020).

Just as discrete-state substitution rates are one of the most
important parameters to estimate to characterize the evolution
of divergent DNA and amino-acid sequences, continuous-
state rates of evolution are one of the most important
parameters to characterize the evolution of divergent gene ex-
pression. However, rates of evolutionary divergence in gene
expression are not commonly reported—perhaps because esti-
mating them meaningfully involves multiple challenges
(Hodgins-Davis and Townsend 2009). Different approaches
developed to address these challenges result in incommensur-
ate metrics that are not suited to comparison. A particular
challenge in multicellular organisms is the identification of
homologous tissues to sample. The function of gene regulation,
which is often to rapidly respond to the environment, gives
rise to an even greater challenge: adequately controlling for
environmental variables. Distinct environments—both earlier
than (Smith and Kruglyak 2008) and highly proximate to
(Sultan et al. 2014) the time of tissue sampling—substantially
affect gene expression, yet many studies collected samples
from diverse sources (Brawand et al. 2011; Munro et al.
2022; Liu et al. 2023). When possible, the cultivation of species
of interest in a single condition along with reproducible sam-
pling of specific developmental stages reduces these biases.

Once expression data is collected, another challenge regards
the means for “normalization” of the expression data so that it
has a common meaning for comparison across different spe-
cies. A set of orthologs can have different gene lengths in
each species. Consequently, well-understood sequence-read
normalizations, reads per kilobase per million mapped reads
(RPKM), transcripts per million or trimmed mean of
M-values (TMM), account for expected numbers of se-
quenced fragments of a gene (Brawand et al. 2011; Cataldn
et al. 2019; Munro et al. 2022; Liu et al. 2023). However,
even these normalized counts are often not directly compar-
able due to various factors (SEQC Consortium 2014). Using
expression fold changes between different stages helps to
abate these issues (Rifkin et al. 2003; Dunn et al. 2013;
Trail et al. 2017), enabling meaningful measurements of the
rates of evolution of the fundamental, evolvable trait of gene
expression, and directing our attention toward genes whose
expression evolves at corresponding paces with relevant bio-
logical traits.

Here, we aim to determine the spectrum of rates at which
gene expression evolves and ascertain how those rates relate
to protein sequence evolution and encoded functions in fungi.
We hypothesize that (i) rates of expression evolution vary
widely across the genome, (ii) gene expression evolves faster
in sexual reproduction developmental stages, (iii) expression
evolution is highly correlated with sequence evolution, and
(iv) rates of expression evolution are divergent among genes
with different functions and associated with developmental
processes. Originating in the late Mesozoic era, ~230 million
years ago, the class Sordariomycetes is a system that is
well-suited for testing our hypotheses because of its phenotyp-
ic and morphological conservation in various developmental
processes and the expansion into remarkable ecological diver-
sity (Wang et al. 2023). These fungi produce small, flask-
shaped, hazard-resistant perithecia, which bear meiotic spores
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(ascospores) during sexual reproduction, with well-defined
developmental stages across species. Yet, perithecia result
from different reproduction systems, such as heterothallism,
homothallism, and pseudo-homothallism, while some members
of Sordariomycetes do not have a known sexual component in
their life history or are intensively involved in parasexual repro-
duction. Sordariomycetes also generate minute, single-celled
mitotic spores (conidia) that rapidly germinate into hyphae
and mycelia, facilitating swift propagation and colonization.
Unlike the largely conserved perithecia, the diversity of conidia
and their germination strategies contribute to the broad eco-
logical range of the class. Members include saprotrophic species
inhabiting soil and water, as well as parasitic species that infect
a wide array of hosts, including plants, insects, mammals, and
even other fungi.

We estimate the rates of gene expression evolution by
quantifying the diffusion of gene expression changes between
serial morphostages across the evolution of model species in
the fungal class Sordariomycetes (Trail et al. 2017; Wang
et al. 2023). In particular, we analyze sexual development
across five model species, and asexual spore germination
across six model species, computing the frequencies and times
of halving or doubling of gene expression. We quantify these
frequencies and times of halving or doubling of gene expres-
sion in alignment with the morphologies of sexual develop-
ment and spore germination, which follow distinct yet
homologous developmental progressions. Sexual develop-
ment starts with the formation of hyphal nodes, progresses
to their manifestation as protoperithecia, and continues with
their intercrossing and growth of perithecia bearing asci that
release sexual spores (ascospores). Similar phenotypically con-
served morphologies of spore germination extend from iso-
tropic expansion to polarized growth to elongation and
hyphal branching. The conserved traits associated with the
phenotypes of asexual spore germination and sexual develop-
ment enable quantification of rates of change of gene expres-
sion linked to key morphological developmental transitions,
and facilitate comparison of the molecular evolution of gene
expression to molecular evolutionary sequence divergence in
individual genes as well as pathways associated with the devel-
opment of serial morphological phenotypes.

Materials and Methods

Gene Expression Dataset

Two datasets composed of genome-wide gene expression were
used to analyze the rate of gene expression evolution
(supplementary table S1, Supplementary Material online).
The dataset on sexual development was collected from §
model fungi in the Sordariomycetes: Neurospora crassa,
Fusarium  graminearum, Fusarium neocosmosporiellum,
Magnaporthe oryzae, and Chaetomium globosum at 5 distinct
morphological stages that are conserved within the species,
mature protoperthecia, fertilized perithecia, development of
an ascogenous center, the appearance of asci and ascospores,
and the release of mature ascospores, during their sexual re-
production (Fig. 1; Trail et al. 2017). The individual fungi
studied here exhibit fairly synchronous morphological devel-
opment when cultured on carrot media (Wang et al. 2012;
Lehr et al. 2014; Trail et al. 2017), but they take different
times to reach these distinctive morphological transitions
(supplementary table S2, Supplementary Material online).
The second dataset on asexual spore germination was
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Fig. 1. lllustrations of morphologically defined developmental stages of asexual spore germination, hyphal mat formation, protoperithecia formation, and

sexual development across the fungal life cycle of Sordariomycetes.

collected from 6 model fungi in the Sordariomycetes,
N. crassa, F. graminearum, Trichoderma asperelloides,
Tolypocladium ophioglossoides, Cordyceps militaris, and
Metarbizium anisopliae, representing saprotrophs, phyto-
pathogens, entomopathogens, or mycoparasites, which were
sampled at 4 morphological stages, isotropic growth, polar-
ized growth, double-length elongation, and hyphal branching,
during asexual spore germination on a common potato dex-
trose agar (PDA) medium (Fig. 1). As with sexual reproduc-
tion, expression dynamics across these 4 stages of spore
germination are comparable among divergent ascomycetes
species (supplementary table S2, Supplementary Material on-
line; Wang et al. 2019; Miguel-Rojas et al. 2023; Kim et al.
2025). RNA sequencing data for N. crassa, F. graminearum,
and Tr. asperelloides were collected as part of previous ana-
lyses of genome-wide gene expression regulation during co-
nidia germination in response to different environmental
settings (Gortikov et al. 2022; Wang et al. 2022; Moonjely
and Trail 2024). RNA sequencing data for the other
3 species (NCBI GEO: Co. militaris and M. anisopliae:
PRJNA1171587; To. ophioglossoides: PRJNA1177519)
were collected for this study following meticulously identical
methodology as in Wang et al. (2022) and in Trail et al.
(2017), described in the following sections. Relative expres-
sion values were estimated stage by stage with LOX (Zhang
et al. 2010) and expression changes between adjacent stages
were calculated as m, where x is the relative expression
level and s indicates the stage. LOX is especially well-suited to
inference of the levels of expression of each gene across sam-
ples on a scale normed to the gene’s expression in the
lowest-expressed sample. Having results in this form keeps
data close to its natural distribution, minimizing the number
of statistical transformations from the raw data to conduct
the difference-of-differences analysis. To enable gene-specific
estimation of gene expression among different species, single-
copy orthologs were identified with ReMark and BranchClust
(Trail et al. 2017; Kim et al. 2022). To estimate the absolute
expression level of each gene as indicated by sequence-read
counts, TMM-RPKM values for N. crassa genes without alter-
native transcripts were calculated with R package edgeR.

Culture Conditions

Cordyceps  militaris  strain  CGMCC 3.16322 and
Metarhizium anisopliae strain ARSEF 23 were used in the
conidia germination studies. The conidia were harvested
with deionized distilled water containing Tween 20 (0.1%)
from 20-day cultures for C. militaris and 15-day cultures for
M. anisopliae on PDA medium. They were washed twice
with autoclaved distilled water and filtered through a 3-layer
Mira cloth to gather spores without hyphae. The 10° conidia

in solution were placed on top of cellophane-covered PDA me-
dium to investigate the program of germination. Co. militaris
conidia were incubated under constant dark at 20 °C, while
Me. anisopliae conidia were at 25 °C. Germination was moni-
tored at 0, 5,10, 15, 18.5, 20, 23, 25, 30, 35, 40, 43, and 45 h.
The tissues of C. militaris with cellophane membranes were
collected at 0, 15, 18.5, and 43 h, when the majority of active
spores on PDA were at one of the following stages and beyond:
fresh spores, spores showing evidence of polar growth, spores
having doubled their long axis, and spores having first hyphal
branching. The tissues of Me. anisopliae were collected at 0, 5,
10, and 23 h for 4 distinctive morphological stages of germin-
ation. Tissue samples were flash-frozen in liquid nitrogen and
stored at —80 °C. All tissues that were collected from multiple
plates in 1 collection process were counted as 1 biological rep-
licate. Three temporally segregated biological replicates were
prepared for each stage sample.

RNA Isolation and Preparation

Total RNA was extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA). RNA quality and concentration were
monitored on agarose gels and a Nanophotometer (Thermo
Scientific, Thermo Fisher Scientific Inc., Asheville, USA).
RNA integrity was assessed using the Agilent Bioanalyzer
2100 (Agilent Technologies, CA, USA). Twenty-four libraries
(2 strains x 4 stages X 3 biological replications) were generated
using VAHTS mRNA-seq v2 Library Prep Kit for Illumina
(Vazyme Biotech Co., Ltd, Beijing, China) following the man-
ufacturer’s instructions.

Transcriptome Sequencing and Quality Control

The cDNA libraries were sequenced on an Illumina NovaSeq
platform (Illumina Inc., USA) by Berry Genomics Co.
(Beijing, China) to generate 150-bp paired-end reads accord-
ing to the manufacturer’s instructions. Clean data were ob-
tained by removing sequences containing adapters, poly-Ns,
and low-quality reads from the raw data. Trimmed reads
were aligned to the genomes from the Broad Institute using
HISAT?2 v2.1, indicating that reads correspond to the reverse
complement of the transcripts and reporting alignments tail-
ored for transcript assemblers. Alignments with a quality score
below 20 were excluded from further analysis. Reads were
counted for each gene with StringTie v1.3.3 and the Python
script prepDE.py provided in the package. StringTie was lim-
ited to report reads that matched the reference annotation.

Evolutionary Modeling of Gene Expression

A timed phylogeny inferred from genomes of 1644 fungal spe-
cies (Li et al. 2021) was calibrated to a 230 MYA age for the
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most recent common ancestor of the 9 studied species (Berbee
and Taylor 2010). Using the R package geiger and specifying
Brownian motion and Ornstein—Uhlenbeck models along this
timed phylogeny, we fit the expression changes between the
serial stage pairs. For each gene, we extracted their diffusion
parameter and calculated the rate of gene expression evolution
as the frequencies of halving or doubling of the change in gene
expression in a million years.

Substitution Rate and dN/dS

To measure the substitution rate for each gene, the protein se-
quences of each orthologous group were aligned with MAFFT
ver. 7.505. The protein alignments were trimmed with TrimAl
ver. 1.2rev59, and phylogenies were reconstructed using
IQ-TREE2 ver. 2.1.2 specifying the MFP model and the
species phylogeny as a constraint (Minh et al. 2020). To
estimate amino-acid substitution rates, the sums of branch
lengths of the gene trees were divided by the sum of the branch
lengths of the species tree. To infer dN and dS, annotated
coding sequences were aligned to the protein alignments.
Maximum-likelihood ancestral sequences were reconstructed
via the approach implemented with Single-Likelihood
Ancestor Counting in HyPhy ver. 2.5.48, which also quanti-
fied nonsynonymous and synonymous changes using a modi-
fied version of the Suzuki-Gojobori method (Kosakovsky
Pond and Frost 2005).

Functional Analyses

Gene-set enrichment analyses were performed to identify the
Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways that were associated with faster or slower rates of gene
expression evolution. Specifically, we used the gseKEGG func-
tion from the R package clusterProfiler to estimate parametric
enrichment scores of evolutionary rates (Wu et al. 2021).

Statistical Analyses

To identify the best-fit distributions of the evolutionary rates
of gene expression without being affected by outliers, we dis-
regarded the first and last 10 percentiles of data (van der Loo
2010). To characterize the best analytical form to describe this
rate distribution, we fit the remainder to normal, log-normal,
exponential, Pareto, and Weibull distributions, using the R
package extremevalues. All correlation tests were conducted
using Spearman’s correlation. Partial correlations were per-
formed with the R package ppcor. Kruskal-Wallis tests were
used to compare among multiple groups and were followed
by Dunn’s test.

Results

A Wide Spectrum of the Evolutionary Rate of Gene
Expression

Among the 3,941 single-copied orthologs, the lower quartiles
of the rates of gene expression evolution (the frequencies of
halving or doubling of change in gene expression in million
years) between serial stages of sexual reproduction ranged
from 4.0x107* to 9.2x10™* million year™', and the upper
quartiles of the rates of gene expression evolution between
serial stages of sexual reproduction ranged from 2.8 x 1073
to 8.4 x 102 million year™". The distribution of these evolu-
tionary rates was roughly log-normal (#*=0.93 to 0.99),
with a positive skew (35 to 66 outliers; Fig. 2a, b, d, and e;
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supplementary tables S3 and S4, Supplementary Material on-
line). By taking half of the inversion of the rate, the time re-
quired could be estimated for a gene to reach a variance in
expression change of 1 between stages (equivalent to doubling
or halving expression change on average; Fig. 2a, b, d, and e;
supplementary table S3, Supplementary Material online). The
median times required for genes to reach a variance in expres-
sion change of one ranged from 405 to 966 million years
across the 4 serial stage pairs. The rates of gene expression
evolution were positively correlated between serial stage pairs
(P<0.001). However, the correlation coefficients of rates of
evolution between serial stage pairs were moderate, ranging be-
tween 0.34 and 0.50 (supplementary fig. S1, Supplementary
Material online).

The rates of evolution of the change in gene expression oc-
curring from polarized growth to double-length elongation
and from double-length elongation to the first hyphal branch
were similar to the rates of evolution from morphostage to
morphostage during sexual reproduction. Among the expres-
sion rates of 4,017 genes, the lower quartiles were 7.5x107*
and 6.3 x10™* million year™, and the upper quartiles were
5.3x107° and 5.6 x 10> million year™" (Fig. 2a, c, d, and f;
supplementary tables S3 and S5, Supplementary Material on-
line). Accordingly, the median times required for genes to
reach a variance in expression change of one between stages
were 539 million years and 597 million years, respectively
(Fig. 2a, ¢, d, and f; supplementary table S3, Supplementary
Material online). However, gene expression during the transi-
tion between isotropic growth (stage 1) and polarized growth
(stage 2) of asexual spore germination evolved at a much high-
er rate. The span of the lower and higher quartiles was 4.3 x
1072 to 6.1x 1072 million year™', and the median time re-
quired for genes to reach a variance in expression change of
one was 6.9 million years. The Spearman’s p correlation coef-
ficients of rates of evolution between serial stage pairs during
asexual spore germination ranged from 0.22 to 0.30: lower
than those observed across stages of sexual development
(supplementary fig. S2, Supplementary Material online).

The Rates of Gene Expression Evolution Correlate
Positively With Substitution Rates and dN/dS

Because gene expression is related to gene function, some cor-
relation between the evolutionary rate of the continuous trait
of gene expression and the evolutionary rate of the discrete
trait of gene sequence could be expected. Indeed, amino-acid
substitution rates in a gene were positively correlated with
the rates of gene expression evolution between every serial
pair of stages of sexual reproduction (P<107% p=0.064
to 0.205; Fig. 3a—-d) and of asexual spore germination
(P < 107* p=0.068 to 0.074; Fig. 3e and f). To understand
if this positive correlation resulted from elevated mutation
rates or from selection pressure, we tested the correlation of
nonsynonymous divergence (dN), synonymous divergence
(dS), and their ratio (dN/dS) with the rates of gene expression
evolution. The dS—generally associated with underlying mu-
tation rates and divergence times rather than the action of nat-
ural selection—was weakly negatively to weakly positively
correlated with the rates of gene expression evolution between
every serial pair of stages of sexual reproduction (P <0.05 for
all comparisons; p=—0.086 to +0.059) and insignificantly to
weakly positively correlated with those of asexual spore ger-
mination (P> 0.05 for first and second stage pair and third
and fourth stage pair; P=0.0008 for second and third stage
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Fig. 2. Rate of gene expression evolution: (a) untransformed time tree depicting the phylogenetic relationships among the species; untransformed time
required to evolve to achieve a variance of one in expression (top axis) and its frequency (bottom axis) between serial stages of (b) sexual development (c)
asexual spore germination; (d) logqo-transformed time tree depicting the phylogenetic relationships among the species; logig-transformed time required
to evolve to achieve a variance of one in expression (top axis) and its frequency (bottom axis) between serial stages of (e) sexual development and (f)

asexual spore germination.

pair; p=0.001 to 0.054). The absolute correlation of dS with
rates of gene expression evolution between most serial pairs of
stages was substantially weaker than the positive correlation
with the amino-acid substitution rate. Indeed, the correlation
of dN with the rates of gene expression evolution between
every serial pair of stages was comparable to the correlation
of amino-acid substitution rates with the rates of gene expres-
sion evolution between every serial pair of stages (P <107°;

» =0.075 to 0.200), as was dN/dS (P<1073; p=0.058 to
0.201; Fig. 3). Because previous studies have demonstrated a
correlation between gene expression level and the rates of
amino-acid substitution (Pal et al. 2001; Larracuente et al.
2008), we performed a partial correlation analysis between
the rates of gene expression evolution and dN, controlling
for the effects of dS and average gene expression level.
Consistent with the results above, the rates of gene expression
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Fig. 3. Correlations between rates of gene expression evolution and total amino-acid divergence (substitutions), synonymous-site divergence (dS), and
nonsynonymous-site divergence (dN), and their ratio dN/dS across 7 transitions between stages of (a) sexual development from mature protoperithecia
(S1) to fertilized perithecia (S2), (b) to development of an ascogenous center (S3), (c) to the appearance of asci and ascospores (S4), (d) to the release of
mature ascospores (S5); and (e) asexual spore germination from isotropic growth (S1) to polarized growth (S2), (f) to double-length elongation (S3), and (g)
to the first hyphal branch (S4).
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Fig. 4. Evolution of expression in genes within selected KEGG pathways at the early sexual reproduction stage: (a) phylogenetic relationship among the
species; (b) density plot across genes for the time that would be required to evolve a variance of one (top axis) and its frequency (bottom axis) in the
probability distribution of expression. Faster evolutionary rates (shorter times to evolve) were enriched within carbon-metabolism genes. Slower
evolutionary rates (longer times to evolve) were enriched within genes of the spliceosome. Neither faster nor slower rates of evolution were enriched
within genes whose function has been associated with endocytosis (for example). The x axis is log-transformed: within and among gene sets, there was a

high variance in the rates of gene expression evolution.

evolution exhibit a strong correlation with dN of genes
between every serial pair of stages in sexual reproduction
(P <107"%; p =0.150 to 0.201) and in asexual spore germin-
ation (P <107%; 0.058 to 0.138).

Expression of Metabolic Pathways Evolves Faster

Gene-sets associated with phenotypes that are highly con-
served were expected to exhibit low levels of functional change
in phenotype and genotype, and accordingly less evolution of
gene expression during the life cycle. Gene sets associated with
phenotypes that were evolutionarily labile were expected to
exhibit greater functional change in phenotype and genotype,
and accordingly greater evolution of gene expression during
the life cycle. To test if any gene sets evolve faster or slower
than most genes, we employed enrichment analysis for the
KEGG terms of orthologous gene sets. At the earliest 2 stages
of sexual development when the perithecial wall differenti-
ated, genes within a number of metabolic pathways exhibited
enrichment for higher rates of gene expression evolution, such
as genes in pathways associated with carbon, sulfur, methane,
phenylalanine, tyrosine, and tryptophan metabolism. In con-
trast, gene sets associated with genetic information processing
and cellular processes were enriched for slower rates of evolu-
tion, including gene sets composing the spliceosome and
proteasome, as well as gene sets functioning in nucleocytoplas-
mic transport, chromatin remodeling, mitophagy, and au-
tophagy (Fig. 4; supplementary fig. S3a, Supplementary
Material online).

Similar associations manifested between the second and
third stages of sexual development (spanning the development
of paraphyses) and between the third and fourth stages
(encompassing the development of asci from the ascogonia,
but not ascospore differentiation (supplementary fig. S3b
and c, Supplementary Material online). In the last 2 stages
profiled (during which meiotic products, ascospores, become
delimited, developing thick cell walls and readying for re-
lease), no gene sets exhibited statistically significantly higher

rates of evolution. However, similar gene sets continued to
be enriched for significantly slowly evolving gene expression
(supplementary fig. S3d, Supplementary Material online).
Notably, genes associated with meiosis exhibited a marked
enrichment for slow evolutionary rates of gene expression ex-
clusively between the third and fourth stages, during which
meiosis occurs.

During spore germination, as in sexual reproduction, the
genes within certain metabolic pathways were enriched for
faster evolution of gene expression in each stage pair
(supplementary fig. S4, Supplementary Material online).
These pathways included starch and sucrose degradation,
fructose and mannose degradation, and pentose and glucuron-
ate interconversions, as well as valine, leucine and isoleucine
degradation and glycerolipid metabolism. In contrast, limited
pathways were enriched with genes whose expression evolved
at slower evolutionary rates, such as with mRNA surveillance
pathway and nucleocytoplasmic transport. Interestingly, gene
sets associated with the proteasome were enriched for higher
evolutionary rates extending from isotropic expansion of the
spores to polarized growth. In contrast, the same gene sets
were enriched for lower rates extending from hyphal elong-
ation to hyphal branching. These differential evolutionary
rates are consistent with functional divergence in the initial
stages as well as involvement in critical conserved functions
in later stages of spore germination.

We further investigated whether the rates of gene expression
evolution correlate with the rates of sequence evolution within
specific KEGG pathways. We studied 3 pathways that were
not enriched for faster or slower rates, were enriched for faster
rates, and were enriched for slower rates of gene expression
evolution at the earliest 2 stages of sexual development, name-
ly endocytosis, carbon metabolism, and spliceosome. The
carbon-metabolism gene set has significantly higher dN/dS
(P=6.1x107>, post-hoc adjusted P <0.05; supplementary
fig. S5, Supplementary Material online), supporting the hy-
pothesis of an association between gene expression evolution
and sequence evolution.
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Rate Estimates From Brownian Motion and
Ornstein—Uhlenbeck Process Models are Similar

To examine the robustness of our findings to the model of con-
tinuous trait evolution, we explored how diffusion parameters
differed under Brownian motion and Ornstein—Uhlenbeck
models. Like Brownian motion, the Ornstein—Uhlenbeck pro-
cess is stochastic and often used for modeling continuous
traits. However, the Ornstein—Uhlenbeck process includes an
additional stabilizing selection parameter o that applies across
all species during the time spanned by the phylogeny. In all 7
serial stage pairs, Brownian motion was always deemed more
suitable than the Ornstein—Uhlenbeck process, based on an
analysis of the corrected Akaike information criterion
(AICc). Additionally, under both sexual development and
spore germination, diffusion parameters under Brownian
motion and Ornstein-Uhlenbeck process were significantly
positively correlated (P <2.2x107'%; Spearman’s p=0.560
to 0.737; supplementary fig. S6, Supplementary Material
online). The selection parameter a was positively correlated
with the diffusion parameter (P<2.2x107'%; Spearman’s
p =0.550 to 0.874; supplementary fig. S7, Supplementary
Material online).

Discussion

Our analysis of gene expression evolution revealed a wide spec-
trum of rates of gene expression evolution across developmental
morphostages of asexual spore germination and sexual develop-
ment. Among 9 Sordariomycetes with a common ancestor some
230 million years ago, the estimated average time needed for de-
velopmental stage-to-stage changes in gene expression to double
or halve from their current levels varied both among genes within
developmental stage transitions and among developmental stage
transitions. In most of the developmental transitions of morpho-
logical state, the lower quartiles of these times-of-evolution are
~200 million years, the median times-of-evolution are ~600 mil-
lion years, and the upper quartiles are ~2 billion years. This de-
gree of variation from gene to gene is indicative of both extremely
strong purifying selection on gene expression (in the case of genes
that remain unchanging from stage to stage over extremely long
time spans), and extreme lability of gene expression (in the case of
genes whose expression evolves from ancestor to descendent on
much shorter time scales). Intriguingly, these times-of-evolution
were significantly lower for gene expression changes occurring
between isometric to polarized growth in asexual spore germin-
ation, where the median time of evolution was only 6.9 million
years. These faster rates suggest greater expression divergence
at early developmental stages that may link to the labile hetero-
trophic ecology of fungal species.

Furthermore, the rates of gene expression evolution were
uniformly positively correlated with amino-acid and nonsy-
nonymous substitution rates, as well as dN/dS, consistent
with reports based on divergence between 2 species (Jordan
etal. 2005; Lemos et al. 2005). Among KEGG pathways asso-
ciated with faster and slower rates of evolution, we found an
association between meiosis and slower expression evolution-
ary rates between the stages bookending meiosis. This associ-
ation suggests that low rates of gene expression evolution are
associated with the highly conserved functions involved in the
intricate and precision timing of activity of meiotic genes that
were active between these 2 developmental stages. Conversely,
during spore germination, the expression of many metabolic
pathways was found to vary significantly across the sampled
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species, potentially reflecting the key role of spore germination
in their specific lifestyles. For example, germinating spores of
the post-forest fire fungal model N. crassa can rapidly metab-
olize diverse carbohydrates such as cellulose and starch, which
are abundantly supplied by moribund vegetation at burn sites;
spores of the entomopathogenic fungus Co. mulitaris and
Me. anisopliae require successful targeting to invade and de-
grade insects equipped with chitinous exoskeletons and fat-rich
integuments; and spores of plant pathogens like F. graminearum
must rapidly overcome the specific and effective defenses of
plant epiphytic structures.

Lineage-specific expression patterns have likely driven such
traits. An examination of knockout of genes with strong diver-
gence in expression in N. crassa and F. graminearum during
sexual reproduction has identified more mutants than system-
atic, whole-genome knockout approaches (Trail et al. 2017).
Further studies on expression patterns associated with certain
traits can help unveil their underlying molecular mechanisms.

Faster Gene Expression Evolution During Early
Spore Germination May be a Consequence of
Developmental Dynamics in Accordance With
Ecological Roles

Genes exhibited a diversity of rates of expression evolution
across the 7 pairs of morphologically defined developmental
stages, with a moderate correlation in the rates of evolution
between serial pairs of stages. Most intriguing was the mark-
edly higher rates of gene expression evolution during the
span from isotropic growth of asexual spores to their polar-
ized growth. One explanation is that the nutrition-seeking
modes of early stages of spore germination are crucial, and
often in a species- or genus-specific way, to the lifestyle of
each fungus, so that gene expression in stages of early spore
germination may change rapidly when compared across the
fungal kingdom. For example, within a single genus, the size
of a spore can shape the dispersal in the atmosphere and there-
fore the survival of the fungus associated with its ecology and
pathobiology (Golan et al. 2023). These rapid divergences in
ecology may have resulted in the rapid evolution of gene ex-
pression in these stages, analogous to higher gene expression
divergence that has been observed within a single species in
the early stages of the development of annelids (Harry and
Zakas 2024). Alternatively, the discrepancy can be attributed
to the decisions to sample developmental stages for this re-
search so as to provide visual clarity of definition and hom-
ology across divergent species. During early cellular growth
in Saccharomyces cerevisiae, gene expression has been demon-
strated to change very rapidly and highly dynamically (Geijer
et al. 2012). Rapid, dynamic changes across morphostage
transitions within species would lead to larger changes be-
tween species. In other words, the high rates of gene expres-
sion evolution observed in these stages in our study may
correspond to our visual morphological staging, inadvertently
leading to the capture of multiple early developmental stages.
We addressed this challenge by aligning comparable develop-
mental stages based on key morphological features that have
distinct times of appearance, rather than relying on rigidly de-
termined chronological time points that may have little con-
nection to developmental biology (supplementary table S2,
Supplementary Material online). A more fine-scaled sampling
across these early stages of asexual spore germination could
enable the identification of morphologically similar but
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molecularly distinct stages and slower rates of gene expression
evolution.

Brownian Motion Sufficiently Models Gene
Expression Evolution, but does not Necessarily
Describe How it Evolves Over All Time Scales

Several stochastic processes have been proposed to describe
the evolution of continuous traits. In our project, we used
Brownian motion processes, in which a trait undergoes ran-
dom fluctuations throughout evolutionary history. Under an
Ornstein—Uhlenbeck process, these fluctuations are modified
to include a tendency for traits to fluctuate to an optimal value,
matching the expectation for long-term stabilizing selection
operating consistently across all modeled species (Hansen
1997; Bedford and Hartl 2009). Our comparison of the fit
of the data to Brownian motion and Ornstein—-Uhlenbeck
processes identified moderately positive correlations between
the diffusion parameters between the 2 models. Brownian mo-
tion models exhibited a better fit as quantified by corrected
AICc. The better fit to Brownian models, however, does not in-
dicate that gene expression is under neutral evolution, for sev-
eral reasons. First, the experimental design, featuring the high
complexity of culturing multiple species and sampling at spe-
cific developmental time points for global gene expression
analysis, leads to a high sample size in terms of genes assayed,
but a relatively small number of species in our phylogeny,
which decreases statistical power to discern better fits for
higher-parameter models. Moreover, the conception that
any single evolutionary regime has been maintained across a
time tree spanning hundreds of millions of years is fairly naive:
Brownian motion is one model that could be expected to fit the
data if many different species-specific regimes of selection
were in serial operation over the elapsed period. No simple
model likely would fit well with the actual evolutionary his-
tory if genome-wide gene expression levels under these condi-
tions could be measured continuously over an era. Despite this
model complexity mismatch, the diffusion parameter of a
Brownian motion process manifestly captures the overall
rate of gene expression evolution on this timescale as driven
by multiple constraints, including mutation rate, regulatory
architecture, selection pressure, and other factors (Moses
and Landry 2010; Gildor and Smadar 2018; Fuqua et al.
2020).

Multigene Families May Require More Complex
Models of Evolution

Our analysis only quantified the rates of evolution of single-
copy genes rather than genes belonging to gene families.
Genes whose families expand within a species phylogeny re-
present an example where the mismatch with a continuous
model is well-known: new paralogs can be subject to relaxed
selection pressure and neofunctionalization (Assis and
Bachtrog 2013; Escorcia-Rodriguez et al. 2022), each of
which would presumably affect the rates of gene expression
evolution. The evolution of expression of such gene families
might be consistent with complex models such as Ornstein—
Uhlenbeck processes with multiple selective regimes—a hy-
pothesis that has been explored in some animal systems
(Fukushima and Pollock 2020; Munro et al. 2022). Indeed, es-
timation of the rates in complex gene families could enable a
more holistic view of gene expression evolution. However,
we did not attempt to estimate the evolutionary rates of these

families: such an analysis would require well-resolved and
dated gene trees made difficult by incomplete lineage sorting,
duplications and losses, heterotachy, and numerous horizon-
tal gene transfers in fungi (Fitzpatrick 2012; Wang et al.
2020b; Steenwyk et al. 2023).

Conclusion

By assessing highly conserved and critical developmental proc-
esses associated with simple hyphal morphology and the com-
plex production of meiotic spores via carefully controlled
experimental designs, we have determined that individual
gene expression evolves at a phenomenally wide span of rates.
These rates are correlated with gene function, and conserved
expression patterns of genes are typically associated with the
conservation of amino-acid sequence in proteins and perhaps
with their functional relevance to the developmental stages.
Consistent with a fundamental role in the evolutionary pro-
cess, the rates of gene expression evolution have important re-
lationships with organismal phenotypes. Quantification of the
rates at which gene expression evolves is a crucial step toward
understanding how gene expression change underlies organis-
mal evolution. This step anticipates a generalization to both
complex gene networks and complex gene families that would
in turn deepen understanding of organismal evolution.

Supplementary Material

Supplementary material is available at Molecular Biology and
Evolution online.
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