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Towards xAI: Configuring RNN Weights using
Domain Knowledge for MIMO Receive Processing
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Abstract—Deep learning is making a profound impact in the

physical layer of wireless communications. Despite exhibiting

outstanding empirical performance in tasks such as MIMO

receive processing, the reasons behind the demonstrated superior

performance improvement remain largely unclear. In this work,

we advance the field of Explainable AI (xAI) in the physical layer

of wireless communications utilizing signal processing principles.

Specifically, we focus on the task of MIMO-OFDM receive pro-

cessing (e.g., symbol detection) using reservoir computing (RC),

a framework within recurrent neural networks (RNNs), which

outperforms both conventional and other learning-based MIMO

detectors. Our analysis provides a signal processing-based, first-

principles understanding of the corresponding operation of the

RC. Building on this fundamental understanding, we are able

to systematically incorporate the domain knowledge of wireless

systems (e.g., channel statistics) into the design of the underlying

RNN by directly configuring the untrained RNN weights for

MIMO-OFDM symbol detection. The introduced RNN weight

configuration has been validated through extensive simulations

demonstrating significant performance improvements. This es-

tablishes a foundation for explainable RC-based architectures

in MIMO-OFDM receive processing and provides a roadmap

for incorporating domain knowledge into the design of neural

networks for NextG systems.

Index Terms—Deep learning, recurrent neural networks, ex-

plainable machine learning, model interpretability, reservoir

computing, echo state network, equalization, MIMO receive

processing.

I. INTRODUCTION

The recent surge in deep learning has been extraordinary,
largely due to its great empirical success across a broad range
of applications. Wireless communications have also embraced
machine learning (ML) and neural network (NN) techniques at
a rapid pace. Artificial intelligence (AI)-aided networks have
been foreseen to play a crucial role in addressing the stringent
requirements and challenges posed by next-generation wireless
networks (NextG) [2], [3]. Specifically, NextG brings forth
the challenges [2] of network complexity, model deficit and
algorithm deficit, thereby limiting the feasibility of traditional
model-based approaches for physical layer (PHY) processing,
including MIMO receive processing. Meanwhile, AI-enabled
methods for PHY processing can offer an attractive solution to
overcome these challenges [3]. Most prevailing deep learning
approaches entail training large NN models “offline” with
large datasets before deploying them for inference, which
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may not be practical for many wireless operations, partic-
ularly at the PHY where over-the-air (OTA) training data
is scarce. Another formidable challenge in the application
of learning-based methods at the PHY is the uncertainty
in generalization [2], caused primarily due to mismatch be-
tween offline training and online deployment environments
in terms of system configurations, channel environments, and
operational adaptations [3]. This makes the direct applica-
tion of purely offline learning methods infeasible for train-
ing data-starved low-latency PHY applications. Alternatively,
online learning and hybrid learning approaches have been
viewed as pathways towards addressing the above mentioned
challenges. Toward this end, the reservoir computing (RC)
paradigm [4] enables online real-time learning strategies owing
to its low-complexity training methodology, making it ideal
for complexity-constrained and latency-aware PHY operations
such as MIMO-OFDM receive processing [5]–[7] and dynamic
spectrum access [8], [9], demonstrating superior performance
compared to conventional model-based methods and other
offline learning approaches [10], [11].

Deep neural network (DNN)-based MIMO symbol detection
methods have gained large traction recently, leading to signif-
icant progress. Multi-layer perceptron (MLP)-based detection
techniques have been introduced in works such as DetNet [12],
MMNet [10], OAMPNet [13], and HyperMIMO [14], where
each approach integrates trainable parameters from traditional
iterative algorithms. While these methods show promising
performance, they often require large amounts of training
data, making them difficult to implement in modern cel-
lular networks such as 5G NR and 5G-Advanced, where
the available training data in the form of OTA reference
signals (RS) is extremely limited. Moreover, they typically
rely on perfect channel state information (CSI), which is
challenging, if not impossible, to obtain in practice. Given
the lightweight training requirements of reservoir computing
(RC)-based techniques, they offer a promising alternative.
Within the RC framework, echo state networks (ESNs) were
first applied for symbol detection in MIMO-OFDM systems
in [15]. Enhancements to the ESN architecture, such as the
ability to process ‘windowed’ inputs and additional output
skip and delay connections, were introduced in [5]. The new
architecture is called WESN, demonstrating significant perfor-
mance gains over vanilla ESN. Further advancements include
the introduction of the deep RC structure RCNet [6], and
RC-Struct [7], which leverages the time-frequency structure
of OFDM waveforms. Both approaches showed substantial
improvements over traditional signal processing methods and
other learning-based approaches. A key advantage of such
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RC-based methods over other established NN-based MIMO
detectors is that their training is fully online and can be
done in a slot-basis with significantly lower computational
complexity. This makes RC-based approaches more resilient to
slot-based dynamic transmission mode adaptation in modern
cellular networks since the detector is retrained in real-time
within each new slot using the limited OTA RSs. Despite
the empirical evidence, a systematic and theoretical analysis
of the general effectiveness of RC-based methods and the
explainability of their superior performance in PHY receive
processing have not been fully developed yet.

In parallel with the rise of deep learning methods, there
has been a steady growth in the need for explainability of
such methods, leading to the rise of the field of explainable
artificial intelligence (xAI) and explainable machine learning
(xML) [16]. One of the first works that explore the theoretical
underpinnings of the success of RC in time-series problems
is [17], which introduces a functional space approximation
framework. Another noteworthy recent work [18] shows that
an ESN with linear activation is equivalent to performing
vector autoregression (VAR). The ability of RC to predict
complex nonlinear dynamical systems, including the Lorenz
and Rössler systems, was examined in [19], whereas [20]
explored the tuning and optimization of the fading memory
length in RC systems. In our earlier work [21], we established
an upper bound on the Empirical Rademacher Complexity for
single-reservoir ESNs, demonstrating that ESNs offer tighter
generalization compared to traditional RNNs. Additionally,
we highlighted the practical value of the derived bound in
optimizing an ESN-based symbol detector for MIMO-OFDM
systems. Other works grounded in statistical learning theory,
such as [22], also derive bounds for the generalization error
of RC by utilizing modified versions of Rademacher-type
complexity measures. In our prior work [23], we provided
a signal processing analysis of the ESN and offered a com-
prehensive analytical characterization of the optimal untrained
recurrent weight for a single-neuron ESN under the task
of channel equalization. Although existing literature offers
some valuable insights, a clear signal processing perspective
combined with comprehensive analytical characterizations for
RC-based techniques has yet to be fully developed. Our current
work aims to bridge this gap in the context of RC-based
symbol detection for MIMO-OFDM systems, building on and
extending our previous works in this domain. The insights
gained from this work can be potentially utilized to enhance
the explainability of general NN-based approaches for vari-
ous engineering applications. Finally, we clearly distinguish
between the concept of “explainable AI” introduced in this
work and that of “model-based AI”. Specifically, “model-based
AI” typically entails modeling the environment with which
an AI/ML model or agent interacts. This can lead to superior
performance for the learning task being executed by the AI/ML
model or agent. Model-based reinforcement learning (RL) [24]
is an example in this field. On the other hand, “explainable AI
(xAI)” refers to the field of developing accurate models and
representations of the AI/ML model itself to enable enhanced
interpretability of the decision making process of the AI/ML
model. In this context, our work in this paper can be classified

as a contribution to the field of explainable AI.
Our contributions in this work are summarized below:
‚ Building on our previous work [1], we introduce a new

“time-domain” approach for configuring the untrained
weights of the ESN for strictly minimum-phase channels,
extending the frequency-domain approach of untrained
weight configuration introduced in [1].

‚ We provide a theoretical explanation of the linkage
between symbol detection over a non-minimum-phase
wireless channel and the WESN structure introduced
in our earlier work [5]. This theoretically justifies the
previously introduced WESN architecture and introduces
the explainability of the architecture which is at the heart
of RC-based detectors adopted in our subsequent works.

‚ We extend the frequency and time-domain approaches
for untrained weight configuration of the WESN for both
OFDM and MIMO-OFDM symbol detection utilizing the
parametric MIMO channel representation.

‚ We validate the OFDM and MIMO-OFDM WESN
weight configuration procedures through extensive sim-
ulations under 5G/5G-Advanced scenarios.

Notation: Zero-based indexing is used in this paper. p˚q
denotes the linear convolution operation. a denotes a column
vector. A and A denote matrices. rAs:,i:j denotes the sub-
matrix containing columns i through j of A. r¨, ¨s denotes
horizontal concatenation and r¨; ¨s denotes vertical concatena-
tion respectively of scalars, vectors or matrices. p¨q˚ denotes
the complex conjugate. 0MˆN denotes the M ˆ N all-zeros
matrix. IN denotes the NˆN identity matrix. p¨qH denotes the
matrix conjugate transpose. p¨q: denotes the Moore-Penrose
matrix pseudoinverse. Trp¨q denotes the matrix trace. T paq
produces a lower triangular Toeplitz matrix with a as its first
column. diagp¨q denotes a diagonal matrix formed by scalar
arguments; blkdiagp¨q denotes a block diagonal matrix formed
by matrix/vector arguments. We use the abbreviations ‘MP’ for
‘minimum-phase’ and ‘NMP’ for ‘non-minimum-phase’.

The rest of the paper is organized as follows. Sec. II
provides preliminaries on RC and introduces the time-domain
weight configuration formulation for OFDM symbol detection.
Sec. III provides a systematic way of configuring the RNN
weights of RC using the domain knowledge. Sec. IV sets up
the theoretical foundation to analyze NMP channels and its
connection to the WESN, providing a theoretical justification
for its architecture. Sec. V extends the analysis and approach
to MIMO-OFDM symbol detection utilizing the parametric
MIMO channel representation. Sec. VI validates the intro-
duced theoretical analysis and weight configuration strategies
via extensive simulations. Sec. VII concludes the paper.

II. RC-BASED OFDM SYMBOL DETECTION

A. The Vanilla Echo State Network (ESN)
ESN, a popular architecture within the RC paradigm,

comprises a “reservoir”/RNN containing Nn randomly inter-
connected neurons, along with an input weights layer and an
output (readout) weights layer with the following parameters:

‚ xinrns P Cdin : Input to ESN at time index n.
‚ xresrns P CNn : Reservoir state vector at time index n.
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‚ Win P CNnˆdin : Input weights matrix.
‚ Wres P CNnˆNn : Reservoir weights matrix.
‚ Wout P CdoutˆNn : Output weights matrix.
‚ xoutrns P Cdout : Output of ESN at time index n.

Here, din/dout is the input/output dimension of the ESN
representing the number of features in the input/output. With
a nonlinear activation function ωp¨q (e.g., ReLU, tanh, etc.),
the state update and the output equations can be expressed as:

xresrns “ ω
`
Wresxresrn ´ 1s ` Winxinrns

˘
, (1)

xoutrns “ Woutxresrns. (2)

A vanilla ESN with a single reservoir is shown in Fig. 1. For

Fig. 1. A single reservoir ‘vanilla’ ESN

analytical tractability, we consider the “linear” ESN with ωp¨q
being the identity function. This allows analyzing the effective-
ness of RC architectures in a tractable manner, similar to [18].
In the RC convention, only Wout is trained using a least-
square approach, whereas Win and Wres are randomly gen-
erated from a particular pre-determined distribution (e.g., uni-
form distribution) and then kept fixed throughout the training
and the test (inference) stages. Specifically for the vanilla ESN,
Wout is found as xWout “ argmin

Wout
}WoutS ´ O}2

F
“

OS
:, where srns ↭“ xresrns, S “ rsr0s, sr1s, . . . , srT ´ 1ss P

CNnˆT is the concatenated reservoir states matrix for input
and output sequences of length T and O P CdoutˆT is the
training label. Our hypothesis is that the impact of nonlinear
activation in the reservoir and the configuration of Win and
Wres are either orthogonal or at least separable, as evidenced
empirically in our recent works [1], [23].

B. Signal Processing Preliminaries for the Vanilla ESN
Based on our previous work [23], we know that the vanilla

ESN with a single recurrent neuron and linear activation is
modeled as a first-order (single-pole) infinite impulse response
(IIR) filter. The block diagram for this structure is shown
in Fig. 2. The system response (transfer functions) of this

Fig. 2. Modeling a neuron in the reservoir as a single-pole IIR filter.

filter is given by H0pzq “ Xoutpzq{Xinpzq “ 1

1´az´1 . In
general, the ESN reservoir with N recurrent neurons can be
modeled as an IIR filter whose transfer function is written
as Hrespzq “

!
M

k“0 bkz
´k

1`!
N

k“1 akz
´k

, where M ! N . Here, the

qualifier “recurrent” indicates that each neuron has a unit
delay self-loop and thus implements a first-order IIR filter. For
linear activation, this transfer function holds for both cases of
non-interconnected recurrent neurons as well as neurons with
interconnections between them. For a given realization of a
wireless channel with system response Hchpzq, the objective
of the ESN-based equalizer is to learn the inverse mapping
pHinvpzq from the available training data while minimizing
the residual error, so that pHinvpzqHchpzq « 1. In the OFDM
context, the ESN applied as a time-domain equalizer aims to
recover the transmitted time-domain OFDM symbol directly
using embedded training data (e.g., RS), thus completely
bypassing traditional channel estimation. For a strictly MP
channel, the direct inverse given by pHinvpzq “ 1{Hchpzq is
stable and the ESN-based equalizer can attempt to learn ei-
ther the corresponding frequency-domain inverse 1{Hchpejωq
or the time-domain equalizer impulse response g such that
g ˚ h “ εrns, where h P CL is the time-domain impulse
response of the channel with the system function Hchpzq. We
extend this analysis to NMP and mixed-phase channels in
Sec. IV, where the role of feedforward taps of a finite impulse
response (FIR) filter is highlighted.

C. Geometric Interpretation of the Vanilla ESN
Our previous works [1], [25] have introduced the “geometric

interpretation” of the vanilla ESN. In this framework, we
consider an ESN with a reservoir consisting of K parallel
recurrent neurons that are not connected to each other. Given
that the transfer function of the k

th neuron is Hkpzq, the
constituent neurons in the reservoir span a subspace ! such
that ! “ span tHkpzquK

k“1
. For a target function fp¨q, the

approximation of fp¨q generated by the ESN is a linear
combination of the basis functions tHkpzqu, in general with
an approximation error of ϑ. Considering ϖ2-norm as the loss
function used to train the combining weights represented by
the output weights matrix Wout, the ESN’s approximation to
fp¨q becomes an orthogonal projection of fp¨q onto !, which
can be denoted as fKp¨q “ proj! tfp¨qu. This orthogonal
projection achieves an approximation error of ϑ

˚, the mini-
mum possible ϖ2-loss. In addition, the choice of the ϖ2-norm
as the loss function transforms the training of Wout into a
simple least-square problem. Since this training methodology
does not require backpropagation-based training, it greatly
reduces the training computational complexity of the ESN,
thereby admitting real-time PHY operations such as symbol
detection. Here, the target function fp¨q can be completely
arbitrary and its knowledge is obtained only through the
training samples. Therefore, the geometric interpretation of
the ESN is applicable to a wide range of learning problems in
engineering applications. In the context of symbol detection,
fp¨q can be the frequency-domain response of the channel
inverse or the impulse response of the time-domain equalizer.
The geometric interpretation of the vanilla ESN described
above is visualized in Fig. 3.

D. Frequency-Domain View of RC-based Equalization
In our previous work [1], we considered the case of con-

figuring the untrained weights of the vanilla ESN for the
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Fig. 3. A geometric interpretation of training of output weights in a vanilla
ESN as an orthogonal projection.

symbol detection task, given the statistics of the underlying
wireless channel. To this end, a ‘frequency-domain’ approach
was introduced. The overall OFDM symbol detection task
was divided into ESN-based time-domain equalization of the
received signal, followed by classification in the frequency
domain. Furthermore, we had considered strictly MP channels,
i.e., if the channel impulse response in the transform domain
(z-domain) is denoted by Hchpzq, then the roots of Hchpzq
lie strictly inside the unit circle in the complex plane. To
summarize, a systematic procedure was introduced to obtain
the configured weights Win and Wres of the vanilla ESN.
Specifically, we described a method that uses the empirically
collected channel statistics in the frequency-domain followed
by principal component analysis (PCA), and a rational poly-
nomial (RP) approximation of the basis vectors to obtain the
configured weights. A complete description of this procedure
together with performance evaluation in strictly MP channels
was provided in [1]. A summary of the frequency-domain
configuration procedure is illustrated in Fig. 4. In this work,
we build on the frequency-domain approach and introduce a
time-domain perspective as well as a systematic procedure for
configuring the untrained weights of the vanilla ESN which
also extends to the WESN introduced in [5].

Fig. 4. Summary of the frequency-domain reservoir/RNN weight configura-
tion procedure of the vanilla ESN in [1].

E. Time-Domain View of RC-based Equalization
Consider a discrete-time representation of a wireless

channel with an impulse response given by h “
rh0, h1, . . . , hL´1sT P CL. The corresponding system re-
sponse is given by Hchpzq “ !

L´1

ε“0
hεz

´ε. Consider an input
sequence x P CN transmitted through the channel with the
above impulse response. The received sequence obtained via
linear convolution is given by y “ h ˚ x ` n, where n „
CN p0,ω2

IN q is the additive white Gaussian noise (AWGN)
with variance ω

2. This operation is equivalently represented as
y “ rHx`n, where rH P CNˆN is a lower triangular Toeplitz

convolution matrix given by rH “ T prhT
,0

T

pN´Lqˆ1
sT q. The

objective of a learning-based equalizer is to find an inverse
mapping rG P CNˆN such that Ehr}px ´ x}2

2
s is minimized,

where px “ rGy and rG “ rH´1 is also a lower triangular
Toeplitz matrix and can be written as rG “ T pgq, where
g

↭“ rg0, g1, . . . , gN´1sT “ r rGs:,0 P CN denotes the
impulse response of the ideal zero-forcing (ZF) equalizer for
the channel h. The above formulation serves as the foundation
for the time-domain weight configuration procedure described
next in Sec. II-F and Sec. II-G.

F. Optimum Orthogonal Basis Set in the Time-Domain

Given a time-domain impulse response h with the corre-
sponding convolution matrix rH for a particular channel real-
ization, the Toeplitz form of the corresponding ZF equalizer
is rG “ rH´1. Thus, for the i

th strictly MP channel realization
denoted as hpiq, the impulse response of its equalizer is gpiq,
where gpiq “ r rGpiqs:,0. In order to find the optimum basis
set for the subspace spanned by tgpiqu, we employ PCA,
similar to the approach adopted in [1]. For Nobs realizations
of such equalizer impulse responses, the empirical covariance
matrix can be computed as pKgg “ 1

Nobs

!
Nobs

i“1
gpiqgH

piq,
whose eigen-decomposition is obtained as pKgg “ V”V

H ,
where the columns of V P CNˆN contain the eigenvectors
and ” “ diagpϱ0, . . . ,ϱN´1q contains the corresponding
eigenvalues. Finally, the set of M optimum basis vectors for
the subspace spanned by tgpiqu can be collected in the columns
of F P CNˆM as simply the set of the first M columns of
V, i.e., F ↭“ rVs:,0:M´1. It can be seen that except the nature
of the inverse function (frequency response versus impulse
response), the procedure to find the optimum basis matrix
F is identical in the time-domain method compared to the
frequency-domain method introduced in [1].

Minimum-Phase Basis: Despite the similarity between
the frequency-domain and the time-domain procedures of
finding the optimum basis matrix F, there is an impor-
tant distinction: The basis functions in the time-domain
method represent impulse responses, as opposed to gen-
eral functions in the frequency-domain method in [1].
Thus, F computed via the time-domain method can be
written as F “ rf0, f1, . . . , fm, . . . , fM´1s, where fm

↭“
rf0,m f1,m . . . fN´1,msT P CN denotes the m

th column
of F and represents a time-domain impulse response. Since it
is not guaranteed that a specific fm represents a strictly MP
impulse response, we adopt a strategy to transform them into
strictly MP impulse responses by adjusting the first tap [26].
This is an important step towards constructing stable basis
vectors, which is a requirement in the construction of a
stable ESN reservoir representing the effective equalizer IIR
filter. Here, we define a ‘compensation matrix’ B P CNˆM

as B
↭“ rb0, b1, . . . , bM´1s, where bm

↭“ rf0,m ´
bm, 0, . . . , 0sT “ rBs:,m is the m-th column of B, such
that the fixed values tbmuM´1

m“0
are chosen to ensure [26], [27]

bm "
N´1ÿ

n“1

|fn,m|, m “ 0, 1, . . . ,M ´ 1. (3)
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The above choice for tbmuM´1

m“0
ensures that the original basis

matrix F can be decomposed as F “ P ` B, where P “
rp0, p1, . . . , pM´1s, with pm “ rbm, f1,m, . . . fN´1,msT .
This strategy decomposes potentially mixed-phase impulse
responses in F as a sum of strictly MP impulse responses
in P and a collection of 0-th order feedforward terms (i.e.,
‘skip’ connections corresponding to the z

0 term) in B.

G. From Optimum Basis Set to Configured RNN Weights
Having obtained the modified strictly MP basis set in P, the

next step is to obtain the corresponding weights Wres and Win
to configure the reservoir/RNN of the ESN. Denote pm P CN

as the m
th column of P and rPm P CNˆN “ T ppmq as its

Toeplitz form. Then, defining rQm

↭“ rP´1
m

, rQms:,0, i.e., the
first column of rQm contains the coefficients of the IIR filter
whose impulse response is pm. In a similar vein, we define
rBm P CNˆN ↭“ diag tf0,m ´ bmuM´1

m“0
.

Note that while rQms:,0 P CN returns the filter coefficients
for an N -tap IIR filter, we would ideally like to restrict the
order of this IIR filter to only Lf coefficients such that Lf ! N .
This is to ensure that the number of configured weights of the
ESN do not scale prohibitively with M . Thus, Lf represents
the cut-off point such that the effective ‘reduced-order’ IIR
filter is now represented by the truncated filter coefficients
tqn,muLf´1

n“0
. The impulse response of the reduced-order filter

denoted by ppm approximates the impulse response pm of the
original N -tap filter, where a reasonable choice of Lf ensures
that the approximation error }pm´ppm}2

2
is small. The transfer

function of this reduced order IIR filter corresponding to the
m

th eigenvector is given by

Qmpzq ↭“ 1
!

Lf´1

n“0
qn,mz´j

. (4)

Similarly, the transfer function of the skip connection corre-
sponding to the m

th eigenvector can be denoted as Rmpzq ↭“
1

f0,m´bm
, where these skip connection weights can be col-

lapsed into a single skip connection in the final ESN im-
plementation. This results in wout P CNn`1 instead of
wout P CNn with Eq. (2) modified accordingly.

Since the configured reservoir weights of the ESN corre-
spond to parallel non-interconnected neurons, Eq. (4) can be
decomposed into a sum of first-order IIR transfer functions as
Qmpzq « !

Lf´1

n“0

cn,m

1´pn,mz´1 . Thus, the m-th eigenvector is de-
composed into Lf first-order poles tpn,mu with corresponding
weights tcn,mu. For M eigenvectors, we get a total of MLf

neurons in the reservoir with Wres “ diag tpn,mu and win “
vec tcn,mu for m “ 0, 1, . . . ,M ´1 and n “ 0, 1, . . . , Lf ´1.
Thus, the above development completely describes the time-
domain approach to obtain the configured weights of the ESN
starting with knowledge of the channel statistics. The time-
domain configuration procedure is summarized in Fig. 5.

Block Form of the ESN: The configured reservoir/RNN
weights of the ESN either via the time-domain method or the
frequency-domain now admits a clean “block form” interpre-
tation of the ESN with a reservoir consisting of Nn “ K

parallel recurrent neurons, where K “ MLf . Let tpkuK´1

k“0

denote the set of configured RNN weights found via either

method, then a Vandermonde matrix # P CNˆK can be
defined as #

↭“ rω0 ,ω1 , . . . , ω
K´1s where ω

k

↭“
r1, pk, . . . , p

N´1

k
sT “ r#s:,k. The k-th column of #

represents the time-domain impulse response of the k-th first-
order IIR filter with pole pk. Thus, # denotes the time-domain
dynamics of the constructed reservoir in its atomic form and
allows for easier subsequent development. As an example,
assuming linear activation and win “ 1, if y P CN denotes the
received time-domain sequence with corresponding Toeplitz
form rY P CNˆN then the reservoir states matrix S P CKˆN

can be compactly written in a single step as S “ p rY#qT .
Compared to the iterative construction of S shown in Eq. (1),
the single-step construction makes the analysis more tractable.
This atomic form of the ESN and its associated notation will
be adopted in Sec. III.

III. CONFIGURING RESERVOIR/RNN WEIGHTS FOR
RC-BASED OFDM DETECTOR

A. RC Configuration Problem Formulation - Atomic Form
In this section, we focus on the reservoir/RNN weight

configuration problem for RC-based OFDM symbol detector.
Under the symbol detection task, we distinguish between
the ‘configuring’ stage and the ‘training’ stage of the ESN.
Specifically, the configuration stage involves computing the
untrained input and reservoir/RNN weights of the ESN based
on domain knowledge. Thus, the configuration stage only uses
domain knowledge (channel statistics in our case) to directly
set Wres and Win, while the training stage involves learning
Wout using only the OTA RSs. In the following analysis, we
assume the ESN to have unit input weights. In Sec. VI, we will
show empirically that the insight gained through this analysis
still holds even when the ESN employs nonlinear activation.

We proceed to formulate the reservoir/RNN configuration
problem as follows. Denote the transmitted time-domain se-
quence as x P CN with its corresponding Toeplitz form
denoted by rX “ T pxq P CNˆN . Let yo P CN denote
the received time-domain sequence over the channel with
impulse response ho P CL, so that yo “ rHox, where
rHo “ T prhT

o
,0

T

pN´Lqˆ1
sT q and rYo “ T pyoq “ rX rHo. Here,

rHo also contains the effect of path loss and large-scale shad-
owing. In practical receivers, automatic gain control (AGC)
is employed to ensure that the average received signal power
is maintained at a constant level at the input of the analog-
to-digital converter (ADC), thereby effectively compensating
for large-scale fading effects such as path loss and shadowing.
This is equivalent to performing the operation y “ yo

}yo}2 “
yo

}"Hox}2
« yo

}ho}2}x}2 , where the approximation is valid for
large N and for L ! N [28]. Thus, the effective input-output
relationship is y “ rHx, where rH “ "Ho

}"Ho}F
is the ‘normalized’

Toeplitz channel matrix, resulting in } rH}F «
?
N}h}2 “

?
N

when a per-realization normalization }h}2 “ 1 is enforced via
the AGC. Therefore, in the following development, we assume
that the channel has been normalized as per above and that the
weight configuration procedure utilizes the small-scale fading
statistics obtained from such normalized channel realizations.

Ignoring additive noise for the subsequent analysis and de-
noting the time-domain impulse response of the equalizer as g,
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Fig. 5. Summary of the time-domain procedure of configuring the untrained RNN weights of the vanilla ESN (“RP” is shorthand for ‘Rational Polynomial’).

the objective is to find the ‘configured’ poles or reservoir/RNN
weights tpkuK´1

k“0
with the corresponding impulse response

matrix # such that the objective function Ehr}px ´ x}2
2
s is

minimized, where px is the equalized time-domain sequence.
Without additive noise, the equalized sequence is given by
px “ rYg. The corresponding optimization problem becomes

gopt “ argmin
g

} rYg ´ x}2
2
. (5)

Using the impulse response representation admitted by #, we
have g “ #wout. Substituting this in Eq. (5) and solving
for wout gives the least-square solution as pwout “ p rY#q:

x.
Thus, the impulse response g of the equalizer is given by

g “ #p rY#q:
x. (6)

Substituting Eq. (6) in Eq. (5) and using rY “ rX rH, we reach
the problem formulation, defined as P, of the reservoir/RNN
weight configuration. It can be expressed as

P : min
!

E"Hr} rX rH#p rX rH#q:
x ´ x}2

2
s. (7)

Problem P in Eq. (7) targets to characterize the reservoir/RNN
weights for the set of parallel (non-interconnected) recurrent
neurons, #opt, of the ESN.

B. PCA-based Weight Configuration:

While Problem P attempts to directly identify the parallel
recurrent neuron weights #opt, it is generally more tractable
to solve for a basis matrix Fopt given the domain knowledge
(e.g., the statistics) of the target function, which can be
decomposed into parallel recurrent neuron weights. Recall that
Fopt represents the optimum basis matrix for the subspace
spanned by the target function under consideration, e.g., the
impulse response g of the time-domain equalizer, as discussed
in Sec. II-F. Furthermore, depending on the nature of the target
function and the exact problem formulation, Fopt can admit
multiple solutions. Therefore, instead of solving Problem P

directly, we adopt the strategy of solving the optimization
problem in terms of F and decomposing its solution Fopt,
following the procedures outlined in Sec. II-F and Sec. II-G
to obtain #opt.

To establish the linkage between Problem P and the op-
timization problem in terms of F, consider the transmitted
vector x P CN to be the unit sample function, i.e., x “

r1, 0T

pN´1qˆ1
sT , leading to rX “ T pxq “ IN . Substituting

it in the argument of the expectation in Problem P, we have

›››
´

rH#p rH#q: ´ I

¯
x

›››
2

2

paq
!

›››
´

rH#p rH#q: ´ I

¯›››
2

F

, (8)

“
››› rH

´
#p rH#q: ´ H

´1

¯›››
2

F

, (9)

where paq follows from the Cauchy-Schwarz inequality and
the fact that }x}2 “ 1 for this analysis. Recall from Sec. II-F
and Sec. II-G that the basis matrix F can be decomposed into
first-order IIR filter poles, whose impulse responses form the
Vandermonde matrix #. Thus, any orthogonal basis matrix
F can be expressed as F “ #A, where A represents a
mixing matrix that constructs every column of F as a linear
combination of the impulse responses of the decomposed poles
in #. Then, it follows that FF # F!, where FF denotes the
linear subspace spanned by the columns of F and F! denotes
the linear subspace spanned by the columns of #. Therefore,
the original Problem P given by Eq. (7) in terms of # is
first transformed into Eq. (9), and can be further related to a
problem formulation in terms of F as follows:

››› rH
´
#p rH#q: ´ rH´1

¯›››
2

F

paq
!

››› rH
´
Fp rHFq: ´ rH´1

¯›››
2

F

,

“
››› rH

´
FF

: rH´1 ´ rH´1

¯›››
2

F

,

pbq
! } rH}2

F
}FFH rH´1 ´ rH´1}2

F
,

where paq follows from FF # F! and pbq follows from the
Cauchy-Schwarz inequality and the fact that F: “ F

H for any
orthogonal basis matrix F. The transformed problem in terms
of F, defined as Problem P1, can be expressed as

P1 : min
F

E"H

”
} rH}2

F
}FFH rH´1 ´ rH´1}2

F

ı
, (10)

with its corresponding solution denoted as F
pP1q
opt

. Further-
more, it follows that for “normalized” channel realiza-
tions adhering to } rH}F «

?
N as argued in Sec. III-A,

minimizing over E"H

”
} rH}2

F
}FFH rH´1 ´ rH´1}2

F

ı
in Prob-

lem P1 is approximately equivalent to minimizing over
E"H

”
}FFH rH´1 ´ rH´1}2

F

ı
. Therefore, Problem P1 can be

transformed to the equivalent Problem P2 defined as

P2 : min
F

E"H

”
}FFH rH´1 ´ rH´1}2

F

ı
, (11)
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with its corresponding solution denoted as FpP2q
opt

. Recognizing
that rH´1 “ T pgq, Problem P2 can be equivalently written as

P2 : min
F

Eg

“
}FFH

T pgq ´ T pgq}2
F

‰
. (12)

Accordingly, the original Problem P in terms of # has been
transformed to the formulation of Problem P2 in terms of F.
We can further link Problem P2 to the standard dimensionality
reduction formulation by setting the target function as g. In
this way, the problem of finding the optimum basis matrix for
the linear subspace spanned by g, defined as Problem P*, can
be expressed as

P* : min
F

Egr}FFH
g ´ g}2

2
s. (13)

Note that the solution of Problem P* can be obtained
through PCA denoted as F

pP˚q
opt

. It is orthogonal satisfying´
F

pP˚q
opt

¯H

F
pP˚q
opt

“ IM . Through this process we have
achieved the objective of linking Problem P in terms of # to
Problem P* in terms of F via the chain P Ñ P1 Ñ P2 Ñ P*.
In this way, we will be able to solve Problem P* which has a
well-established solution F

pP˚q
opt

given by PCA, and utilize the
solution to configure the reservoir/RNN weights of the ESN
following the procedure outlined in Sec. II-F and Sec. II-G.

Furthermore, we are interested in analytically characterizing
the approximation error of the ESN achieved by utilizing
F

pP˚q
opt

in the objective function of Problem P2. To this end,
we first introduce the following lemma.

Lemma 1. The minimum approximation error achieved by
F

pP˚q
opt

in the objective of Problem P* (13) is

Eg

«››››F
pP˚q
opt

´
F

pP˚q
opt

¯H

g ´ g

››››
2

2

#
“

N´1ÿ

j“M

ϱj , (14)

where ϱj is the j-th eigenvalue of K “ ErggH s.
Proof. See Appendix A.
Accordingly, the approximation error achieved by utilizing

F
pP˚q
opt

to solve Problem P2 can be characterized in Theorem 1.

Theorem 1. The approximation error ϑpP2q
app achieved by F

pP˚q
opt

in the objective of Problem P2 in Eq. (12) is

ϑ
pP2q
app

“
N´1ÿ

i“0

”
TrpKLH

i
Liq ´ Tr

´
KLH

i
F

pP˚q
opt

pFpP˚q
opt

qHLi

¯ı
,

where K “ ErggH s and Li

↭“ r0,0; IN´i,0s P RNˆN

denotes the shift matrix.

Proof. See Appendix B.
From the problem chain P Ñ P1 Ñ P2 Ñ P* we know

that the approximation error characterized in Theorem 1 is
an upper-bound of the minimum achievable approximation
error of Problem P. Therefore, Theorem 1 provides theoretical
performance guarantees on the approximation error of utilizing
the introduced reservoir/RNN weight configuration procedure
for the ESN. Meanwhile, Fig. 6 validates Theorem 1 through
numerical evaluation for sequence length N “ 1000 with
Nobs “ 1000 strictly MP realizations of the 3GPP clustered

delay line-D (CDL-D) channel. Denoting rGprq “ p rH´1qprq as
the Toeplitz form of the equalizer impulse response for the r-th

channel realization, we plot
1

Nobs

!Nobs
r“1 }FF

H"Gprq´"Gprq}2
F

1
Nobs

!Nobs
r“1 }"Gprq}2

F

and

compare it against
!

N´1
i“0 rTrpxKLH

i
Liq´TrpxKLH

i
FF

HLiqs
1

Nobs

!Nobs
r“1 }"Gprq}2

F

, where

pK “ 1

Nobs

!
Nobs

r“1
gprqgH

prq is the empirical covariance matrix.
We can observe from Fig. 6 that the normalized numerically
evaluated value based on Eq. (11) matches well with the
normalized theoretical expression characterized in Theorem 1
across M , the number of most significant eigenvectors used
in PCA. Furthermore, both normalized values monotonically
decrease with M while satisfying ϑ

pP2q
app “ 0 for M “ N , as

expected. Since M and the reduced filter order Lf determine
the number of reservoir/RNN neurons in both frequency/time-
domain weight configuration methods, Theorem 1 shows a
clear trade-off between the achieved approximation error and
the number of neurons in the reservoir/RNN, thus providing
operational guidance on setting the size of reservoir/RNN for
RC-based approaches. Note that Theorem 1 assumes perfect
knowledge of the target g. In this setting, Theorem 1 provides
an exact expression for the approximation error incurred by
using the solution of P* from PCA in the original problem P2.
However, in real systems, the OTA RS are extremely limited
and therefore, perfect knowledge of g is not available. Thus,
under training with limited OTA RS, the projection operation
uses the estimated pg instead of the perfect g, so that the
projection term becomes FpP˚q

opt
F

pP˚qH
opt

pg. Under this condition,
the approximation error characterized in Fig. 6 has a non-
monotonic behavior. While the corresponding detailed analysis
is beyond the scope of our current work, Theorem 1 builds
a rigorous theoretical foundation and is a critical first step
required to conduct the approximation error analysis under
limited training, which will be considered in our future work.

Fig. 6. Validation of Theorem 1 via numerical evaluation.

IV. MODEL EXPLAINABILITY FOR WESN
A. Approximate Stable Inverse for Mixed-phase Systems

A general L-tap mixed-phase channel with transfer function
Hpzq comprises both strictly MP and strictly NMP factors,
i.e., it can be factorized as Hpzq “ HMPpzqHNMPpzq,
where HMPpzq denotes the strictly MP factor of Hpzq and
HNMPpzq denotes its strictly NMP factor, implying that the
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roots of HMPpzq lie strictly inside the unit circle and those
of HNMPpzq lie strictly outside the unit circle. Then, a
stable inverse for this mixed-phase channel is approximated
in the transform domain as [29]: H´1pzq « !

L´1

ε“0

cω

1´pωz
´1 `

!Lff ´1

i“0
kiz

´i, where the feedforward terms tkiuLff ´1

i“0
repre-

sent an FIR filter component of order Lff . This results in
H

´1pzqHpzq « z
´pL`Lff ´1q, implying that the equalized

output incurs a delay of pL`Lff ´1q samples. To summarize,
a strictly MP channel (FIR filter) can be perfectly equalized by
an all-pole IIR filter if the channel is perfectly known. Such an
all-pole IIR filter can be decomposed as a sum of first-order
IIR filters. Therefore, perfect knowledge of the channel FIR
filter results in a perfect equalizer that suffices to only use the
IIR filter forms. However, the channel impulse response (CIR)
cannot be perfectly known in practice. In such a scenario, the
equalizer performance can be greatly improved by including
feedforward taps whose weights are trained using the available
training data [29]. This is also confirmed from the fact that the
transfer function of an all-pole IIR filter can be approximated
as an expansion of feedforward terms of the form z

´i via long
division [27], [29]. Furthermore, for strictly NMP or mixed-
phase channels, a stable equalizer must include both an IIR
filter component as well as an FIR filter component for good
equalization performance with modest filter orders [29], even
with perfect channel knowledge.

B. Explainability and Weight Configuration for WESN

As noted earlier, the stable inverse filter that equalizes
a mixed-phase channel generally consists of both an IIR
filter component (all-pole form) as well as an FIR filter
component (all-zero form) [29]. This foundational fact can
be immediately tied to the introduced WESN architecture [5],
where it was observed that the WESN significantly outper-
forms the vanilla ESN in symbol detection performance using
randomly generated weights Win and Wres. For explainabil-
ity, the WESN architecture can be divided into two major
components: i) Input windowing, and ii) Output skip and
delayed connections. Input windowing, which was shown to
improve the short-term memory of the WESN [5], also has
an implicit FIR filtering effect via the moving input window.
On the other hand, the output skip and delayed connections
have an explicit FIR filtering effect, and thus have greater
impacts in improving equalization performance and subse-
quent symbol detection metrics such as bit error rate (BER).
Therefore, the symbol detection performance improvement of
the WESN over the vanilla ESN is primarily due to output
skip and delayed connections. For the WESN architecture
with the output skip and delayed connections, the output
weights matrix changes as Wout P CdoutˆpNn`dinNwq, where
Nw denotes the ‘window’ length. Consequently, the output
equation for the WESN changes according to xoutrns “
WoutrxresrnsT ,xinrnsT ,xinrn´1sT , . . . ,xinrn´Nw`1sT sT .
Note that the elements in Wout corresponding to the Nn

reservoir/RNN neurons linearly combine the reservoir’s IIR
filter output, while the elements in Wout corresponding to
Nw linearly combine the current and delayed versions of the
input directly, thereby applying a weighted tap delay line given

by tz0, z´1
, . . . , z

´pNw´1qu to the input and performing an
explicit FIR filtering operation. Finally, the WESN architecture
of [5] also implements ‘delay learning’ using the training
data to iteratively find the optimum delay D that minimizes$

|z|“1
|H´1pzqHpzq ´ z

´D|2dz, thus aligning well with the
delay incurred in the stable inverse of a mixed-phase wireless
channel [29], for which din “ dout “ 1. Thus, both attributes
of the WESN [5] architecture namely, output skip and delayed
connections and delay learning, closely match signal process-
ing fundamentals. In Sec. VI, we will consider the WESN
architecture with the output skip and delay connections instead
of the vanilla ESN discussed in Sec. II-A.

The reservoir/RNN weight configuration procedure of
WESN for a general mixed-phase channel can be described as
the following. Recall that a general mixed-phase channel can
be factorized as Hpzq “ HMPpzqHNMPpzq. Since the strictly
MP factor HMPpzq can be equalized by an all-pole IIR filter

1

HMPpzq and due to this direct inverse equalizer being stable,
the untrained weights Win and Wres can be configured using
the statistics of HMPpzq alone, using either the frequency-
domain method of [1] or the time-domain method introduced
in Sec. II-F and Sec. II-G. The output weights corresponding
to the additional skip and delayed feedforward taps in the
WESN can be trained using the training data (e.g., OTA RSs)
in each slot to equalize the strictly NMP factor HNMPpzq.
In this manner, the equalization capability of the WESN
architecture can be attributed to each of its constituent com-
ponents. This clearly explains why, for a general mixed-phase
wireless channels (e.g., non-line-of-sight channels), WESN-
based approaches significantly outperforms vanilla ESN-based
approaches. This clearly attributable explainability as well as
the ability to configure (rather than train) certain components
of an NN-based architecture using domain knowledge is
especially important for NextG PHY receive processing.

V. CONFIGURING WEIGHTS FOR RC-BASED
MIMO-OFDM SYMBOL DETECTORS

In this section, we extend the reservoir/RNN weight config-
uration analysis to MIMO-OFDM systems. Consider a MIMO
system with Nt transmit antennas and Nr receive antennas.
For a frequency-selective MIMO channel with L delay taps,
the MIMO coefficient matrix for the ϖ-th delay tap is denoted
as Hε P CNrˆNt . The corresponding transfer function for
the MIMO channel is given by Hpzq “ !

L´1

ε“0
Hεz

´ε. Thus,
for the MIMO channel which is represented as a MIMO FIR
filter, the WESN architecture provides a systematic way of
incorporating both a MIMO IIR component as well as a MIMO
FIR component, which are both instrumental in its equalization
process of the MIMO channel [27] to achieve good MIMO-
OFDM symbol detection performance. To develop a weight
configuration procedure for the WESN in the MIMO setting,
we start with the case study of a simplistic MIMO channel in
Sec. V-A to lay the foundation of the overall configuration pro-
cedure. General MIMO channels are considered in Sec. V-B
using the parametric channel representation.
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A. Factorizable MIMO Channel: A Simple Case Study

The simplistic MIMO channel considered in this case study
can be written as Hpzq “ H0hpzq, where hpzq “ h0 `
h1z

´1 ` . . . ` hL´1z
´pL´1q is a single input single output

(SISO) channel impulse response and hence its description as
being ‘factorizable’. We assume that hpzq is strictly MP in
the following development. The same analysis also holds by
replacing hpzq with its strictly MP factor hMPpzq if hpzq is
mixed-phase. Continuing with the strictly MP assumption, the
transfer function of the ideal inverse of the channel is given
by Gpzq “ H´1

0

1

hpzq . To better elucidate the details of the
weight configuration procedure, we consider the example of
a 2 ˆ 2 MIMO channel, i.e., Nt “ Nr “ 2. Let H0 be
defined as H0

↭“ rh11, h12;h21, h22s. Assuming that H0 is
invertible, define its inverse as H´1

0

↭“ rg11, g12; g21, g22s.
Then, for the transmitted symbol vector xrns P CNt , the
received symbol vector yrns P CNr , ignoring AWGN, is given
by yrns ↭“ ry1rns; y2rnss “ !

L´1

ε“0
Hεxrn ´ ϖs.

The equalizer architecture that perfectly equalizes yrns is
depicted in Fig. 7a. Here, we make the following important
observations. First, the weights in H´1

0
to invert the effect

of H0 are in the front of the processing chain. Second, the
two streams are completely decoupled after acted upon by
H´1

0
. Finally, due to the factorizable nature of the MIMO

channel considered, the SISO equalizers for each stream are
the same, i.e., 1

hpzq . Next, due to linearity of the operations
involved and since the equalizer in each path is the same,
the equalizer structure can be modified as shown in Fig. 7b.
The main motivation to perform this transformation is to move
the channel-specific equalizer weights in H´1

0
closest to the

output, thereby aligning with the architecture of the vanilla
ESN and the WESN where the output weights are trained
with online training data (e.g., OTA RSs).

With this transformed architecture of the 2 ˆ 2 MIMO
equalizer, each SISO equalizer 1

hpzq can be implemented
as a ‘SISO ESN’. The untrained weights Wres and win

of each SISO ESN can be configured using the empir-
ical statistics of hpzq via the frequency-domain or time-
domain methods. Denoting the respective weights for the i

th

SISO WESN with Nn reservoir/RNN neurons as Wres,i P
CNnˆNn , win,i P CNnˆ1, wout,i P C1ˆNn and the state
vector as sirns P CNn , the combined state update equa-
tion for the two SISO ESNs in parallel can be written as
rs1rns; s2rnss “ blkdiagpWres,1,Wres,2qrrs1rn ´ 1s; s2rn ´
1sss`blkdiagpwin,1,win,2qry1rns; y2rnss. The associated out-
put equation can then be written as rpx1rns; px2rnss “
H´1

0
blkdiagpwout,1,wout,2qrs1rns; s2rnss. Thus, the ‘effec-

tive’ output matrix Wout,e” P C2ˆ2Nn becomes Wout,e” “
rg11wout,1, g12wout,2; g21wout,1, g22wout,2s. Since the two
SISO ESNs equalize the same channel hpzq with a sin-
gle unique PDP and thereby single unique channel statis-
tics, the configured weights obey Wres,1 “ Wres,2 and
win,1 “ win,2. The two SISO ESNs with Nn reservoir/RNN
neurons each can be collapsed into a single MIMO ESN
with 2Nn reservoir/RNN neurons with its configured weights
given by Wres,e” “ blkdiagpWres,1,Wres,1q and Win,e” “
blkdiagpwin,1,win,1q. These steps are illustrated in Fig. 8a

and Fig. 8b. Finally, input windowing and output skip and
delayed connections with window length Nw are added to
obtain the configured WESN for the MIMO system.

(a) Step 1

(b) Step 2

Fig. 7. ESN configuration for “factorizable” MIMO channel: Steps 1 and 2.

B. Symbol Detection for General MIMO-OFDM
In this section, we consider general MIMO systems based

on the parametric channel representation. Specifically, we
consider the point-to-point MIMO communication scenario
with uniform linear arrays (ULAs) deployed at both the
transmitter and the receiver. For a ULA with Nt antenna
elements, its array steering vector is given by apςq ↭“”
1, ej2ϑ

d cospεq
ϑc , . . . , e

j2ϑpNt´1q d cospεq
ϑc

ıT
, where d is the spac-

ing between antenna elements, ϱc is the carrier wavelength
and ς denotes the azimuth angle of arrival (AoA) or an-
gle of departure (AoD), measured relative to the axis of
the ULA. For a frequency-selective channel with L delay
taps, the MIMO coefficient matrix for the ϖ

th tap under the
parametric MIMO channel representation can be written as

Hε “ 1b
N

pωq
path

!N
pωq
path´1

q“0
c

pεq
q arpςr,qqaT

t
pςt,qq, where arp¨q and

atp¨q are the array steering vectors for the receive and transmit
ULAs. Here, N pεq

path
denotes the number of propagation paths

through which signals corresponding to the ϖ
th delay tap travel

from the transmitter antenna array to the receiver antenna
array. ςr,q and ςt,q denote the AoA and AoD respectively for
the q

th path. c
pεq
q denotes the complex channel gain for the

q
th path that falls onto the ϖ

th delay tap. The MIMO channel
transfer function can be written as Hpzq “ !

L´1

ε“0
Hεz

´ε,
where rankpHεq ! minpNt, Nr, N

pεq
path

q. In this work, we
assume N

pεq
path

$ minpNt, Nrq, so that Hε is full-rank with
probability 1. This condition is generally satisfied in the FR1
band (sub-6 GHz), whereas in the FR2 (mmWave) and FR3
bands, we may have N

pεq
path

% minpNt, Nrq, especially with
massive MIMO systems.

For subsequent analysis, we consider the simplification that
N

pεq
path

“ Npath for ϖ “ 0, 1, . . . , L ´ 1. This adheres to the
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(a) Parallel processing using two separate SISO ESNs (b) A single composite MIMO ESN

Fig. 8. ESN configuration for a “factorizable” MIMO channel: Steps 3 and 4.

modeling of MIMO channels in 3GPP standards, e.g., Spatial
Channel Model (SCM) [30], for which Npath “ 20 and L “ 6.
Using the shorthand notation Np

↭“ Npath, arpςr,qq ↭“ ar,q and
atpςt,qq ↭“ at,q , Hpzq can be expanded as [31]

Hpzq “
c

p0q
0

ar,0a
T

t,0
`

´
c

p1q
0

ar,0a
T

t,0

¯
z

´1 ` . . . `
´
c

pLq
0

ar,0a
T

t,0

¯
z

´L

` c
p0q
1

ar,1a
T

t,1
`

´
c

p1q
1

ar,1a
T

t,1

¯
z

´1 ` . . . `
´
c

pLq
1

ar,1a
T

t,1

¯
z

´L

` . . .`
c

p0q
Np´1

ar,Np´1a
T

t,Np´1
` . . . `

´
c

pLq
Np´1

ar,Np´1a
T

t,Np´1

¯
z

´L
.

Defining Ar

↭“ rar,0, ar,1, . . . ,ar,Np´1s P CNrˆNp ,
At

↭“ rat,0, at,1, . . . , at,Np´1s P CNtˆNp and Dpzq “
diag

´!
L

ε“0
c

pεq
0

z
´ε
,

!
L

ε“0
c

pεq
1

z
´ε
, . . . ,

!
L

ε“0
c

pεq
Np´1

z
´ε

¯
to

be an Np ˆ Np transfer function matrix, Hpzq can be com-
pactly written as Hpzq “ ArDpzqAT

t
[31]. This compact

representation is useful to develop the weight configuration
strategy for the WESN.

Consider the scenario Nt “ Nr. The transfer function
of the equalizer of the MIMO channel can be expressed as
Heqpzq “ pAT

t
q: pDpzqq´1 A:

r
. Similar to the analysis of

Sec. V-A, let Nt “ 2 and also let Np “ 2. First, we consider
the most general case where the Np “ 2 paths represent two
distinct power delay profiles (PDPs) and thus, two distinct
SISO channel statistics induced by h1pzq ↭“ !

L´1

ε“0
c

pεq
0

z
´ε and

h2pzq ↭“ !
L´1

ε“0
c

pεq
1

z
´ε. The equalizer structure represented by

Heqpzq for Nt “ Np “ 2 is depicted in Fig. 9. Since the
motivation is to move all the trainable weights to the output,
the weights matrix corresponding to A´1

r
can be moved to

the right of the parallel branches represented by the SISO
ESN equalizers 1{h1pzq and 1{h2pzq. However, unlike the case in
Sec. V-A, there is a repetition due to the movement of A´1

r
to

the right, when h1pzq and h2pzq have distinct PDPs with
distinct channel statistics. This results in the transfer functions
of each of the Np distinct SISO ESN equalizers being repeated
Nt times, while A´1

r
, is absorbed into the effective output

weights along with A´1

t
. This sequence of steps is depicted vi-

sually in Fig. 10a and Fig. 10b. Similar to Sec. V-A, the MIMO
ESN equalizer can be decomposed as two separate SISO
ESNs. The configured weights Wres and Win can be writ-
ten as Wres,e” “ blkdiag

`
Wres,1,Wres,2,Wres,1,Wres,2

˘

and Win,e” “ blkdiag
`
win,1,win,2,win,1,win,2

˘
, where

tWres,i,win,iu for the i
th SISO ESN are configured using

the statistics of hipzq for i “ 1, 2. The addition of input
windowing as well as output skip and delayed connections

with window length Nw will result in the WESN weight
configuration architecture for MIMO systems. If the number
of reservoir/RNN neurons in each SISO ESN is Nn and
each of the Np paths obey distinct statistics, the number of
reservoir/RNN neurons in the configured WESN scales as
Nn,MIMO “ NtNpNn for MIMO systems. This architecture
and scaling are primarily due to the statistically distinct PDPs.

In 3GPP/ITU MIMO channels such as the SCM [30], the
combination of the Np paths results in an average PDP that is
tailored to a specific environment, e.g., suburban macro, urban
micro, etc. For example, Section 5.4 in [30] specifies MIMO
channels through the PDP and the AoA/AoD-related infor-
mation for various environments. The environment-specific
average PDP together with the AoAs/AoD-related informa-
tion can be estimated [31] allowing us to empirically obtain
the statistics for the underlying SISO channel to conduct
reservoir/RNN weight configuration following the procedure
outlined in Sec. V-A. Accordingly, the architecture of the con-
figured WESN for general MIMO systems can be simplified,
resulting in Nn,MIMO “ NtNn.

Fig. 9. ESN configuration for parametric 2 ˆ 2 MIMO channel: Step 1.

C. Complexity Analysis of WESN-based Detection Methods
The detailed complexity analysis for WESN with randomly

generated weights for MIMO-OFDM symbol detection has
been provided in [5]. Denoting the ratio of the OFDM symbols
containing RS to the total number of OFDM symbols in a
single 5G NR slot as ε and the ratio of RS subcarriers to
the total number of subcarriers in a single OFDM symbol
as φ, the total number of FLOPS (floating-point operations)
including training and testing for the WESN-based receive pro-
cessing approach is proportional to εp2N2

a
φNscpNn ` Nwq `

3φNscNapNn`Nwq2`2pNn`Nwq3q`NscNapNn`Nwq [5].
Similarly, both weight configuration procedures introduced
feature eigenvalue decomposition of the empirical covariance
matrix of size NscˆNsc, which entails a complexity of OpN3

sc
q

assuming direct computation without any optimization. How-
ever, several low-complexity algorithms exist in the context
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(a) Parallel processing using two separate SISO ESNs (b) Replication of SISO ESNs due to distinct SISO channel
transfer functions in the parametric MIMO channel model.

Fig. 10. ESN configuration for a parametric 2 ˆ 2 MIMO channel with Npath “ 2 paths with distinct PDP per delay tap: Steps 2 and 3.

of streaming data samples as in wireless receive processing,
e.g., Oja’s algorithm [32] which has a lower complexity of
OpMNscNsamplesq, where Nsamples (! Nsc) is the number of
channel realizations used to compute the empirical covariance
matrix. Next, the complexity of approximating each Nsc-th
order basis function (eigenvector) as a rational polynomial of
order Lrp is given by OpNscL

2
rp

q for Lrp ! Nsc, which is
ensured as a heuristic design choice. For M (! Nsc) signif-
icant eigenvectors, this becomes OpMNscL

2
rp

q. Finally, the
step of decomposing each rational polynomial into first-order
polynomials (and hence neurons) has a complexity given by
OpL3

rp
q, becoming OpML

3
rp

q in total. Therefore, considering
the dominant term, for both SISO and MIMO settings, the
worst-case (unoptimized) complexity of computing configured
weights is OpN3

sc
q. The time-domain weight configuration

procedure involves an additional step of transforming the
M significant eigenvectors, each representing a time-domain
impulse response into strictly MP impulse responses, entailing
a complexity OpMNscq. Therefore, the time-domain configu-
ration has a slightly higher complexity than the frequency-
domain configuration procedure, which is reflected in the
higher execution time as measured in the run time evaluation
of Table I in Sec. VI-F.

D. Impact of Nonlinear Activation

While the fundamental signal processing-based inter-
pretability introduced for the vanilla ESN in [1], [23] and
then extended to the WESN in this work is based on the
assumption of linear activation, we empirically demonstrate
via simulations in Sec. VI that the weight configuration pro-
cedures based on this fundamental understanding still hold and
provide the expected performance gain even under nonlinear
activation such as hyperbolic tangent (tanh). Furthermore,
since the feedforward FIR weights which are part of the
output weights in the WESN architecture are external to the
reservoir itself, the nonlinear activation does not apply to them.
Our choice of tanh as the nonlinear activation is guided by
the large body of literature studying RC [17], [18] from a
theoretical standpoint and many other applied works of RC in
various domains. Finally, optimizing which function to use
as the nonlinear activation is under active investigation in
general, with different possibilities being explored such as
piecewise linear functions, polynomial functions as well as
more sophisticated functions, e.g., Hermite polynomials [33].
Studying their properties in the context of RC/WESN for

MIMO receive processing is beyond the scope of this work
and is part of our future work.

VI. PERFORMANCE EVALUATION

A. Experimental Settings

The effectiveness of reservoir/RNN weight configuration
procedures for WESN are verified through extensive simu-
lations for both OFDM and 4 ˆ 4 MIMO-OFDM systems.
The number of subcarriers of the underlying OFDM system
is chosen to be Nsc “ 1024 and the cyclic prefix (CP)
length to be Ncp “ 160. We consider the clustered delay
line (CDL) channel model [34], specifically CDL-D and CDL-
E, as well as the SCM [30] in our evaluations. The user
speed is set to 5 km/hr with carrier frequency fc “ 3.5
GHz, corresponding to band n78 in 5G NR. In addition, the
scattered (comb) RS pattern is adopted, as specified in 3GPP
5G New Radio (NR) standards [35], [36]. The comb RS
pattern adopted for the 4ˆ 4 MIMO-OFDM system is shown
in Fig. 11, where the RS resource elements (REs) are indicated
in yellow and the data REs are indicated in blue. The white
REs with cross markers indicate empty RS REs. Furthermore,
we consider line-of-sight (LOS) channels in the evaluations,
encompassing individual realizations that may be strictly MP
or mixed-phase. Consideration of non-line-of-sight (NLOS)
channels, including those with a dominant strictly NMP factor,
potentially requires configuring or fine-tuning the feedforward
output weights of the WESN in addition to online OTA RS-
based training, which will be considered in future work. The
WESN implementations employ the hyperbolic tangent (tanh)
activation. For the randomly generated WESN, the spectral
radius is set to 0.4 and the reservoir sparsity to 0.6. Delay
learning [5], which is theoretically justified in Sec. IV-B, is
also implemented. In order to clearly distinguish between the
different receive processing algorithms evaluated in this work,
we have added a visual summary in Fig. 12. The algorithms
can be broadly divided into two main categories: Signal
Processing Approaches and Learning-based Approaches. Un-
der signal processing approaches, we evaluate the baseline
method described previously in Sec. VI-B. Under learning-
based approaches, we evaluate WESN-based methods, which
can be further divided into WESN with randomly generated
weights, and WESN with configured weights. Finally, the two
variants of weight configuration, namely frequency-domain
configuration and time-domain configuration form the final
level of categorization.
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(a) Conventional approaches

(b) Learning-based (RC-based) approaches

Fig. 11. MIMO scattered (comb) RS pattern (Nt “ Nr “ 4) in one resource block (RB) for conventional and RC-based symbol detection approaches.

Receive Processing 
Algorithms

Signal Processing 
Approaches

Learning-based 
Approaches

LMMSE+LMMSE -
Interpolated-CSI

(Baseline)

WESN
(Randomly Generated 

Weights)

WESN
(Configured Weights)

WESN
(Frequency-domain 

Configuration)

WESN
(Time-domain 
Configuration)

Fig. 12. Summary of Receive Processing algorithms. The evaluated methods
in Sec. VI are highlighted in green.

B. Baseline Receive Processing Approach

The baseline receive processing method considered for com-
parison with the introduced WESN-based methods is briefly
explained below. This method entails method entails first
employing the empirical Linear Minimum Mean Square Error
(em-LMMSE) technique to estimate the channel correspond-
ing to an entire slot (group of 14 OFDM symbols) in the two-
dimensional time-frequency OFDM resource grid. Under this
channel estimation technique, the channel estimates are first
found at the RS RE locations using least squares (LS). Then,
the channel estimates at the remaining data RE locations in the
resource grid are computed by performing a two-dimensional
Wiener filtering operation [37], which interpolates the channel
estimates to the data RE locations. Note that this interpolation
step requires knowledge of the second-order channel statistics
as well as the noise variance. These statistics can be computed
empirically using the transmitted RS. Defining Np,l as the
number of OFDM symbols containing RS in one 5G NR
slot, and Np,c as the number of subcarriers containing RS
in one OFDM symbol, the aforementioned approach can be

mathematically expressed as

phr,t

c,l,em´LMMSE
“ prr,t

hc,lhp

´
pR

r,t

hphp
` ω

2INp,lNp,c

¯´1 ph
r,t

LS,p
,

(15)

where phr,t

c,l,em´LMMSE
P C is the empirical LMMSE estimate

of the wireless channel coefficient between the r-th receive
antenna and the t-th transmit antenna at the c-th subcarrier
of the l-th OFDM symbol. ph

r,t

LS,p
P CNp,lNp,cˆ1 is the LS

channel estimate at the RS locations, prr,t
hc,lhp

P C1ˆNp,lNp,c is
the empirical cross-correlation vector of the channel at the RS
locations and the channel at the c-th subcarrier and the l-th
OFDM symbol. pR

r,t

hphp
P CNp,lNp,cˆNp,lNp,c is the empirical

auto-correlation matrix of the channel at the RS locations. ω2

denotes the noise variance.
Subsequently, denoting the frequency-domain MIMO chan-

nel estimate at the c-th subcarrier of the l-th OFDM symbol
as xHc,l P CNrˆNt , LMMSE-based equalization is conducted
to recover the transmitted signal pxc,l P CNt according to

pxc,l “
´

xH
˚
c,l

xHc,l ` ω
2INt

¯´1 xH
˚
c,l
y
c,l
, (16)

where y
c,l

P CNr is the received signal. Finally, hard
demapping is conducted on pxc,l to recover the transmit-
ted QAM symbols. Since the overall approach entails: i)
2D interpolation-based LMMSE channel estimation, and ii)
LMMSE-based equalization, we label this baseline approach
as ‘LMMSE+LMMSE-Interpolated-CSI’. The detailed com-
plexity analysis provided in [5] is omitted here for brevity.

C. OFDM Symbol Detection: Strictly MP Channel
In this section, we validate the effectiveness of the

frequency/time-domain reservoir/RNN weight configuration
procedures for WESN under strictly MP channels, where the
CDL-D channel [34] is used for this evaluation. The WESN
configured using the frequency-domain method uses a total of
MLrp reservoir neurons with M “ 5 significant eigenvectors
and denominator order Lrp “ 7 in the rational polynomial
approximation, resulting in a total of 35 reservoir/RNN neu-
rons. Similarly, for the WESN configured using the time-
domain method, we use M “ 5 significant eigenvectors and
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cut-off point Lf “ 7 for the reduced-order IIR filter, also
resulting in MLf “ 35 reservoir/RNN recurrent neurons. For
the WESN with randomly generated weights as well as the
configured WESNs, a window length of Nw “ 5 is used,
resulting in Lff “ 5 feedforward taps in the WESN, following
the description in Sec. IV-B. From Fig. 13, we can see that
for the strictly MP CDL-D channel, both the frequency/time-
domain configuration methods provide near identical level
of BER performance improvement compared to randomly
generated input and reservoir/RNN weights, thus validating the
time-domain configuration procedure. Also, the WESN with
randomly generated weights exhibits an error floor behavior
in the high signal-to-noise ratio (SNR) regime, while weight
configuration can effectively mitigate this issue.

Fig. 13. BER performance with 16-QAM for WESN in the strictly MP CDL-
D channel. ‘FD’: ‘frequency-domain’, ‘TD’: ‘time-domain’.

D. OFDM Symbol Detection: Mixed-Phase Channel
This section validates the effectiveness of reservoir/RNN

weight configuration procedures for WESN under mixed-phase
channels. Specifically, we utilize the CDL-D PDP in the 3GPP
SCM [30], resulting in individual channel realizations that
are mixed-phase. A total of 35 reservoir/RNN neurons are
employed corresponding to M “ 5 and Lf “ 7 (time-
domain method) and Lrp “ 7 (frequency-domain method)
and a window length of Nw “ 5. The BER performance
with configured weights using both procedures is shown in
Fig. 14. We can see that for mixed-phase channels both
frequency/time-domain configuration methods utilizing the
strictly MP factor lead to similar performance improvement
compared to randomly generated weights. Furthermore, the
performance improvement with configured weights is smaller
compared to that for strictly MP channels shown in Sec. VI-C.
This points towards a potential requirement of configuration or
fine-tuning of the feedforward weights in the WESN to further
assist equalization of the underlying strictly NMP component
of the mixed-phase channel.

E. MIMO-OFDM Symbol Detection
We consider a 4 ˆ 4 MIMO system with ULA antenna

geometry at both the transmitter and the receiver under the
3GPP SCM [30]. We use the suburban macro scenario within
the SCM channel model, where the distribution parameters

Fig. 14. BER performance with 16-QAM for WESN for a mixed-phase SCM
channel with a CDL-D LOS power delay profile (PDP). ‘FD’: ‘frequency-
domain’, ‘TD’: ‘time-domain’.

for the AoAs and AoDs of the individual paths at each delay
tap are set following Tables 5.1, 5.2 and 5.3 in [30]. In
order to emphasize LOS scenarios, we consider the CDL-
D and CDL-E LOS PDPs in this evaluation. The symbol
detection performance for 4ˆ4 MIMO under the CDL-D and
CDL-E PDPs are shown in Fig. 15 and Fig. 16 respectively,
where the frequency-domain method is used to configure Wres

and win of each SISO ESN. For each SISO ESN, we use
M “ 3 eigenvectors and Lrp “ 3-rd order rational polynomial
resulting in MLrp “ 9 neurons. The SISO ESN is replicated
Nt “ 4 times, resulting in a total of 36 reservoir/RNN
recurrent neurons in the MIMO ESN. A window length of
Nw “ 5 is used to reach the final WESN architecture.
Fig. 15 and Fig. 16 demonstrate that configured weights
greatly aid in mitigating the error floor issue at high SNR that
is characteristic of the WESN with randomly generated input
and reservoir/RNN weights, especially in the MIMO setting.

Fig. 15. BER performance with 16-QAM for WESN for the 4 ˆ 4 MIMO
SCM channel model with a CDL-D LOS power delay profile (PDP).

Next, we conduct a similar evaluation for 4 ˆ 4 MIMO
detection with 16-QAM and the CDL-D LOS PDP in the SCM
for a higher user mobility of 20 km/hr. The corresponding
performance evaluation is shown in Fig. 17. We can see
that even with this higher mobility, weight configuration still
provides significant gain compared to random generation. For
higher mobility scenarios, especially those considered in the
V2X and high-speed train scenarios which as part of the
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Fig. 16. BER performance with 16-QAM for WESN for the 4 ˆ 4 MIMO
SCM channel model with a CDL-E LOS power delay profile (PDP).

Fig. 17. BER performance with 16-QAM for WESN for the 4 ˆ 4 MIMO
SCM channel model with a CDL-D LOS PDP at 20 km/hr.

5G NR standard, adaptive training of output weights using
the OTA RS using alternating recursive least squares (ARLS)
combined with the decision feedback (DF) mechanism has
been shown to give considerable performance gain in our
previous work [38]. More importantly, high mobility scenarios
can not only entail rapid temporal variation in the channel
realizations from one OFDM symbol to the next but also
feature rapidly changing channel statistics within a slot, e.g.,
one LOS PDP to a different LOS PDP, or a LOS PDP to
a NLOS PDP or vice-versa, etc. This necessitates the use
of subspace tracking algorithms to continuously track the
changing principal components of the underlying subspace,
e.g., Oja’s algorithm [32] whose complexity is linear in Nsc

and is well-suited to real-time applications such as receive
symbol detection. However, this is beyond the scope of this
work and will be investigated in our future work.

F. Run Time Evaluation
The average execution times1 for each evaluated symbol

detection algorithm are provided in Table I. This includes
the average training time for both WESN methods as well as
the corresponding average testing or inference times. For the
configured weights method, the average weights computation
time for both frequency-domain (FD) and time-domain (TD)

1The hardware used for run time evaluation was an Intel i7-1280P processor
clocked at 1.8 GHz with 32 GB RAM.

approaches is also provided. The higher execution time for
the TD weight configuration procedure is attributed to the
additional step of computing the strictly MP basis set from
the raw basis set provided by PCA. Similarly, the total execu-
tion time for the baseline LMMSE+LMMSE-Interpolated-CSI
method is also provided. From Table I, we can see that both
WESN-based approaches have a significantly lower execution
time than the baseline non-learning approach, which is seen
especially in the 4 ˆ 4 MIMO setting. This demonstrates the
significant performance-complexity tradeoff that RC/WESN-
based approaches provide, enhanced by weight configuration.

G. Intuitive Explanation of Error Floor Behavior

In this section, we provide an intuitive explanation of the
error floor behavior seen in symbol detection using WESN
with randomly generated weights. Consider a strictly MP
channel profile, e.g., the LOS CDL-D profile considered in
Sec. VI-C. This implies that for a given channel realization,
the zeros of its system function Hpzq lie strictly inside the unit
circle on the complex plane. Furthermore, the system function
of the channel inverse, H´1pzq exists and is stable. Note that
the poles of H

´1pzq are simply the zeros of Hpzq, i.e., the
roots of the polynomial equation Hpzq “ 0. A plot of the
channel zeros for 25 realizations of the strictly MP CDL-
D channel profile is shown in Fig. 18a. Next, based on the
statistics induced by this empirical H

´1pzq, the “optimum”
or configured poles can be computed following the frequency-
domain procedure introduced in [1]. These configured poles
are plotted in Fig. 18b. Visually, we can see that the “ideal”
poles of H´1pzq and the “configured” poles are well aligned.
Finally, we randomly generate poles according to the complex
uniform distribution such that they lie strictly inside the unit
circle. These are plotted in Fig. 18c. Clearly, we can see
a visual difference in their locations as compared to the
plots of Fig. 18a and Fig. 18b. This mismatch between the
distribution induced by the randomly generated poles versus
the distribution induced by the ideal channel inverse poles
is the root cause of the error floor behavior in the high
SNR regime. At high SNR values, this mismatch is the only
residual source of error, thereby introducing a flooring effect
in the equalization operation, manifesting as a BER floor after
symbol demapping. While the above discussion is based on a
SISO scenario under a strictly MP channel profile, it provides
an intuitive and visual understanding of the root cause of the
error floor effect in WESN with randomly generated weights.

VII. CONCLUSION

In this work, we present a principled understanding of the
ESN, a popular architecture in the RC paradigm. Building on
prior work, a fundamental theoretical analysis of the vanilla
ESN as well as the WESN architecture is developed grounded
in signal processing ideas. It provides valuable insights into the
reasons behind their effectiveness in the symbol detection task
for both OFDM and MIMO-OFDM systems. Furthermore,
systematic approaches are developed to establish a founda-
tional linkage between available domain knowledge in the
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TABLE I
AVERAGED RUN TIME EVALUATION FOR RECEIVE PROCESSING APPROACHES (SECONDS)

Detection Approach OFDM Symbol Detection 4x4 MIMO-OFDM Symbol Detection

Training Test
Configured Weights

Computation
Training Test

Configured Weights

Computation

WESN
(Randomly Generated weights) 0.089 0.263 - 0.124 0.281 -

WESN
(Configured weights) 0.089 0.263

Frequency-domain: 0.540
Time-domain: 0.764 0.124 0.281

Frequency-domain: 0.540
Time-domain: 0.764

LMMSE+LMMSE-Interpolated-CSI 3.798 51.846

(a) Ideal pole distribution of H´1pzq.

-1 -0.5 0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b) Empirical pole distribution found
using PCA [1].
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(c) Pole distribution drawn from a uni-
form distribution.

Fig. 18. Visual description of the induced distributions of poles.

form of channel statistics and direct configuration of the un-
trained reservoir/RNN weights of the WESN. The introduced
weight configuration procedures are validated under both
OFDM and MIMO-OFDM symbol detection tasks through
extensive simulations, demonstrating significant performance
improvement. This paves the path for explainable AI/xAI in
wireless applications, especially in real-time PHY processing.
We believe this is an important step towards systematically
incorporating domain knowledge into the design of neural
networks for engineering applications.
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APPENDIX A
PROOF OF LEMMA 1

Let g P CN denote the impulse response of the time-domain
equalizer for the channel impulse response represented by
rhT

, 0
T

pN´Lqˆ1
sT P CN . Analyzing the objective of Eq. (13):

Eg

“
}FFH

g ´ g}2
2

‰
, “ Eg

“
Tr

`
pFFH

g ´ gqpFFH
g ´ gqH

˘‰
,

“ Eg

“
Tr

`
pFFH ´ IqggHpFFH ´ Iq

˘‰

“ Tr
`
pFFH ´ IqEgrggH spFFH ´ Iq

˘
.

(17)

Denote by K P CNˆN the covariance matrix of g, i.e.,
K

↭“ EgrggH s. Its eigen-decomposition is obtained as K “
V”V

H , where the eigenvectors are contained in the columns
of V P CNˆN and ” “ diag

`
tϱiuN´1

i“0

˘
P RNˆN contains

the corresponding eigenvalues. Substituting for K in Eq. (17),

Eg

“
}FFH

g ´ g}2
2

‰

“ TrpFFH
KFF

H ´ FF
H
K ´ KFF

H ` Kq. (18)

Next, the first three terms inside the trace in Eq. (18) can
be simplified as V”MV

H , where ”M “ diag
`
tϱiuM´1

i“0

˘
P

RMˆM is the truncated matrix containing only the first
M most significant eigenvalues. Combining the simpli-
fied terms, we get Eg

“
}FFH

g ´ g}2
2

‰
“ TrpV”V

Hq ´
Tr

`
V blkdiagp”M ,0pN´MqˆpN´MqqVH

˘
“ !

N´1

j“M
ϱj , thus

concluding the proof of Lemma 1.

APPENDIX B
PROOF OF THEOREM 1

Define the lower shift matrix Li P RNˆN as Li

↭“
r0,0; IN´i,0s, resulting in LH

i
Li “ rIN´i,0;0,0s. We use

the notation F
↭“ F

pP˚q
opt

“ rVs:,0:M´1. Defining rG ↭“ rH´1,
the objective of P2 (10) evaluated at FpP˚q

opt
is

ϑ
pP2q
app

“ E
”
}FFH rG ´ rG}2

F

ı
“

N´1ÿ

i“0

Eg

“
}FFHLig ´ Lig}2

2

‰
.

(19)

Next, we closely examine the term }FFHLig ´ Lig}2
2
:

}FFHLig ´ Lig}2
2

“ pFFHLig ´ LigqHpFFHLig ´ Ligq,
“ g

HLH

i
Lig ´ g

HLH

i
FF

HLig,

paq“ TrpggHLH

i
Liq ´ TrpggHLH

i
FF

HLiq. (20)
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where paq holds due to the application of the trace and its
cyclic shift property. It follows that

Eg

“
}FFHLig ´ Lig}2

2

‰

“ Tr
´
EgrggH sLH

i
Li

¯
´ Tr

´
EgrggH sLH

i
FF

HLi

¯
,

“ TrpKLH

i
Liq ´ TrpKLH

i
FF

HLiq. (21)

Therefore, the final approximation error is given by

ϑ
pP2q
app

“
N´1ÿ

i“0

rTrpKLH

i
Liq ´ TrpKLH

i
FF

HLiqs. (22)

Note that KLH

i
Li and KLH

i
FF

HLi are not strict principal
submatrices of K. Therefore, exact expressions or upper
bounds on their traces in terms of the eigenvalues of K are
difficult to derive using the eigenvalue interlacing theorem.
This concludes the proof of Theorem 1.
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[4] M. Lukoševičius, A Practical Guide to Applying Echo State Networks.
Springer Berlin Heidelberg, 2012, pp. 659–686.

[5] Z. Zhou, L. Liu, and H.-H. Chang, “Learning for Detection: MIMO-
OFDM Symbol Detection Through Downlink Pilots,” IEEE Trans.
Wireless Commun., vol. 19, no. 6, pp. 3712–3726, 2020.

[6] Z. Zhou, L. Liu, S. Jere, J. Zhang, and Y. Yi, “RCNet: Incorporating
Structural Information Into Deep RNN for Online MIMO-OFDM Sym-
bol Detection With Limited Training,” IEEE Trans. Wireless Commun.,
vol. 20, no. 6, pp. 3524–3537, 2021.

[7] J. Xu, Z. Zhou, L. Li, L. Zheng, and L. Liu, “RC-Struct: A Structure-
Based Neural Network Approach for MIMO-OFDM Detection,” IEEE
Trans. Wireless Commun., vol. 21, no. 9, pp. 7181–7193, 2022.

[8] H.-H. Chang, H. Song, Y. Yi, J. Zhang, H. He, and L. Liu, “Distributive
Dynamic Spectrum Access Through Deep Reinforcement Learning: A
Reservoir Computing-Based Approach,” IEEE Internet Things J., vol. 6,
no. 2, pp. 1938–1948, 2019.

[9] H.-H. Chang, L. Liu, and Y. Yi, “Deep Echo State Q-network (DEQN)
and Its Application in Dynamic Spectrum Sharing for 5G and Beyond,”
IEEE Trans. Neur. Netw. Learn. Syst., vol. 33, no. 3, pp. 929–939, 2022.

[10] M. Khani, M. Alizadeh, J. Hoydis, and P. Fleming, “Adaptive Neural
Signal Detection for Massive MIMO,” IEEE Trans. Wireless Commun.,
vol. 19, no. 8, pp. 5635–5648, 2020.

[11] H. Mosavat-Jahromi, Y. Li, L. Cai, and J. Pan, “Prediction and Modeling
of Spectrum Occupancy for Dynamic Spectrum Access Systems,” IEEE
Trans. Cogn. Commun. Netw., vol. 7, no. 3, pp. 715–728, 2021.

[12] N. Samuel, T. Diskin, and A. Wiesel, “Learning to Detect,” IEEE Trans.
Signal Process., vol. 67, no. 10, pp. 2554–2564, 2019.

[13] H. He, C.-K. Wen, S. Jin, and G. Y. Li, “A Model-Driven Deep Learning
Network for MIMO Detection,” in 2018 IEEE Global Conf. on Sig. and
Inf. Proc. (GlobalSIP), 2018, pp. 584–588.

[14] M. Goutay, F. Ait Aoudia, and J. Hoydis, “Deep HyperNetwork-Based
MIMO Detection,” in 2020 IEEE 21st Intl. Workshop on Sig. Proc. Adv.
in Wireless Commun. (SPAWC), 2020, pp. 1–5.

[15] S. S. Mosleh, L. Liu, C. Sahin, Y. R. Zheng, and Y. Yi, “Brain-Inspired
Wireless Communications: Where Reservoir Computing Meets MIMO-
OFDM,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 10, pp.
4694–4708, 2018.

[16] G. Montavon, A. Binder, S. Lapuschkin, W. Samek, and K.-R. Müller,
Layer-Wise Relevance Propagation: An Overview. Cham: Springer
International Publishing, 2019, pp. 193–209.

[17] M. C. Ozturk, D. Xu, and J. C. Prı́ncipe, “Analysis and Design of Echo
State Networks,” Neural Comput., vol. 19, no. 1, p. 111–138, 2007.

[18] E. Bollt, “On explaining the surprising success of reservoir computing
forecaster of chaos? The universal machine learning dynamical system
with contrast to VAR and DMD,” Chaos, vol. 31, p. 013108, 2021.

[19] A. Haluszczynski and C. Räth, “Good and bad predictions: Assessing
and improving the replication of chaotic attractors by means of reservoir
computing,” Chaos, vol. 29, no. 10, p. 103143, 2019.

[20] T. L. Carroll, “Optimizing memory in reservoir computers,” Chaos,
vol. 32, no. 2, p. 023123, 2022.

[21] S. Jere, R. Safavinejad, and L. Liu, “Theoretical Foundation and De-
sign Guideline for Reservoir Computing-based MIMO-OFDM Symbol
Detection,” IEEE Trans. Commun., vol. 71, no. 9, pp. 5169–5181, 2023.

[22] L. Gonon, L. Grigoryeva, and J.-P. Ortega, “Risk Bounds for Reservoir
Computing,” Jour. Mach. Learn. Res., vol. 21, no. 240, pp. 1–61, 2020.

[23] S. Jere, R. Safavinejad, L. Zheng, and L. Liu, “Channel Equalization
Through Reservoir Computing: A Theoretical Perspective,” IEEE Wire-
less Communications Letters, vol. 12, no. 5, pp. 774–778, 2023.

[24] T. M. Moerland, J. Broekens, and C. M. Jonker, “Model-Based
Reinforcement Learning: A Survey,” Foundations and Trends in
Machine Learning, vol. 16, no. 1, pp. 1–118, 2023. [Online]. Available:
https://doi.org/10.1561/2200000232

[25] S. Jere, L. Zheng, K. Said, and L. Liu, “Universal Approximation of
Linear Time-Invariant (LTI) Systems Through RNNs: Power of Ran-
domness in Reservoir Computing,” IEEE J. Sel. Topics Signal Process.,
vol. 18, no. 2, pp. 184–198, 2024.

[26] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal
Processing, 3rd ed. Upper Saddle River, NJ: Prentice Hall, 2009.

[27] P. P. Vaidyanathan, Multirate Systems and Filter Banks. USA: Prentice-
Hall, Inc., 1993.

[28] Z. Zhu and M. B. Wakin, “On the Asymptotic Equivalence of Circulant
and Toeplitz Matrices,” IEEE Trans. Inf. Theory, vol. 63, no. 5, pp.
2975–2992, 2017.

[29] T. J. Moir, Toeplitz Convolution Matrix Method. Cham: Springer
International Publishing, 2022, pp. 279–295. [Online]. Available:
https://doi.org/10.1007/978-3-030-76947-5 10

[30] Universal Mobile Telecommunications System (UMTS); Spatial channel
model for Multiple Input Multiple Output (MIMO) simulations, 3GPP
Std. TR 25.996, Rev. 16.0.0, 2020.

[31] R. Shafin, L. Liu, Y. Li, A. Wang, and J. Zhang, “Angle and Delay
Estimation for 3-D Massive MIMO/FD-MIMO Systems Based on Para-
metric Channel Modeling,” IEEE Trans. Wireless Commun., vol. 16,
no. 8, pp. 5370–5383, 2017.

[32] X. Liang, “On the optimality of the Oja’s algorithm for online PCA,”
Statistics and Computing, vol. 33, no. 3, p. 62, Mar 2023. [Online].
Available: https://doi.org/10.1007/s11222-023-10229-z

[33] T. H. Koornwinder, R. S. C. Wong, R. Koekoek, and R. F. Swarttouw,
“Orthogonal polynomials,” in NIST Handbook of Mathematical Func-
tions. Cambridge University Press, 2010, pp. 435–484.

[34] 5G; Study on channel model for frequencies from 0.5 to 100 GHz, 3GPP
Std. TR 38.901, Rev. 16.1.0, 2020.

[35] 5G; NR; Physical channels and modulation, 3GPP Std. TS 38.211, Rev.
16.2.0, 2020.

[36] 5G; NR; Multiplexing and channel coding, 3GPP Std. TS 38.212, Rev.
16.2.0, 2020.

[37] X. Dong, W.-S. Lu, and A. C. Soong, “Linear Interpolation in Pilot
Symbol Assisted Channel Estimation for OFDM,” IEEE Trans. Wireless
Commun., vol. 6, no. 5, pp. 1910–1920, 2007.

[38] L. Li, J. Xu, L. Zheng, and L. Liu, “Real-Time Machine Learning
for Multi-User Massive MIMO: Symbol Detection Using Multi-Mode
StructNet,” IEEE Trans. Wireless Commun., vol. 22, no. 12, pp. 9172–
9186, 2023.

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TWC.2025.3561242

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,
but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 04,2025 at 15:48:54 UTC from IEEE Xplore.  Restrictions apply. 

https://doi.org/10.1561/2200000232
https://doi.org/10.1007/978-3-030-76947-5_10
https://doi.org/10.1007/s11222-023-10229-z

	Introduction
	RC-based OFDM Symbol Detection
	The Vanilla Echo State Network (ESN)
	Signal Processing Preliminaries for the Vanilla ESN
	Geometric Interpretation of the Vanilla ESN
	Frequency-Domain View of RC-based Equalization
	Time-Domain View of RC-based Equalization
	Optimum Orthogonal Basis Set in the Time-Domain
	From Optimum Basis Set to Configured RNN Weights

	Configuring Reservoir/RNN Weights for RC-based OFDM Detector
	RC Configuration Problem Formulation - Atomic Form
	PCA-based Weight Configuration:

	Model Explainability for WESN
	Approximate Stable Inverse for Mixed-phase Systems
	Explainability and Weight Configuration for WESN

	Configuring Weights for RC-based MIMO-OFDM Symbol Detectors
	Factorizable MIMO Channel: A Simple Case Study
	Symbol Detection for General MIMO-OFDM
	Complexity Analysis of WESN-based Detection Methods
	Impact of Nonlinear Activation

	Performance Evaluation
	Experimental Settings
	Baseline Receive Processing Approach
	OFDM Symbol Detection: Strictly MP Channel
	OFDM Symbol Detection: Mixed-Phase Channel
	MIMO-OFDM Symbol Detection
	Run Time Evaluation
	Intuitive Explanation of Error Floor Behavior

	Conclusion
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Theorem 1
	References

