

1 Table of Contents

3	1	Introduction	4
4	1.1	Nomenclature for tracers defining redox and O ₂ levels.....	5
5	1.2	Integrating mechanisms with a mass balance perspective of ocean O ₂	7
6	2	Modern: ocean redox on modern and anthropogenic timescales.....	9
7	2.1	Modern O ₂ inputs and outputs	9
8	2.1.1	Source: Air-sea equilibrium and marine photosynthesis at the sea surface	9
9	2.1.2	Source: Circulation transports O ₂ to the ocean interior	12
10	2.1.3	Sink: Respiration	13
11	2.1.4	What is the distribution of bottom water O ₂ ?	14
12	2.2	Origin, characteristics, and distribution of O ₂ deficient zones	15
13	2.2.1	The general origin and redox characteristics of O ₂ deficient zones.....	16
14	2.2.2	What are drivers of inter- and intra- O ₂ spatiotemporal variations?	21
15	2.2.3	Patterns of dissolved O ₂ , trace elements, and nutrients in modern water columns	
16	24		
17	2.2.4	Implications for fingerprinting ancient redox processes.....	27
18	2.3	Anthropogenic impacts on ocean redox	28
19	3	Recent: Evolution of ocean redox on glacial-interglacial timescales	30
20	3.1	Patterns of ocean O ₂ change since the Last Glacial Maximum	32
21	3.2	Mechanisms linking deglacial warming with ODZ change.....	34
22	3.3	Sea-level change: does oxygen rise or fall?	35
23	4	Ancient: Evolution of ocean redox on geologic timescales.....	37
24	4.1	Stage 1: Neoarchean Disequilibria and O ₂ oases.....	40
25	4.1.1	What is an O ₂ oasis?	40
26	4.1.2	What is the geochemical evidence for O ₂ oases?	41
27	4.1.3	‘Whiffs’ vs O ₂ oases.....	41
28	4.2	Stage 2: The Great Oxidation Event and mid-Proterozoic	44
29	4.2.1	What geochemical evidence is there for the GOE?	44
30	4.2.2	Great Oxidation Event or Great Oxidation Transition?.....	44
31	4.2.3	What caused the GOE?.....	45
32	4.2.4	Lomagundi-Jatuli O ₂ overshoot: Fact or fiction?	46
33	4.2.5	Mid-Proterozoic biogeochemical stasis?	48

34	4.2.6	Proterozoic O ₂ oases?.....	49
35	4.2.7	What was the redox state of the mid-Proterozoic Ocean?	50
36	4.3	Stage 3: Neoproterozoic through Paleozoic: a protracted transition?.....	51
37	4.3.1	Neoproterozoic redox landscape	51
38	4.3.2	Ocean redox conditions and evolution of complex life	54
39	<i>Box 1: Linking changes in redox conditions to the carbon isotope record</i>	57	
40	4.3.3	Carbon isotopes and Neoproterozoic OOE.....	59
41	4.4	Stage 4: OOE to OAE transition	60
42	4.4.1	When was the deep ocean oxygenated?	60
43	4.4.2	Carbon isotopes and Phanerozoic OAEs	62
44	5	Future Directions.....	63
45	6	References.....	66
46			
47			

48 Ocean Redox Evolution Past and Present

49
50 Dalton S. Hardisty^{a,1} and Kimberly V. Lau^{b,1}

51
52 ^aDepartment of Earth and Environmental Sciences, Michigan State University, East Lansing, MI,
53 United States

54 ^bDepartment of Geosciences and Earth and Environmental Systems Institute, The Pennsylvania
55 State University, University Park, PA, United States

58 59 **Abstract**

60
61 The availability and spatial landscape of marine oxygen and related redox-sensitive elemental
62 cycles has changed dramatically over the last 4 billion years. This chapter uses a database
63 framework to synthesize recent quantitative and conceptual advances in this story, emphasizing an
64 integrated view of modern and ancient processes. We highlight three main timescales of marine
65 redox evolution: modern and anthropogenic, glacial-interglacial, and geologic. On modern and
66 anthropogenic timescales, the discussion focuses on defining redox thresholds and physical and
67 biogeochemical mechanisms driving spatiotemporal variations. For ancient timescales, we
68 synthesize proxy constraints on coupled ocean-atmosphere redox dynamics and feedbacks with
69 biological and geologic evolution.

71 72 **Keywords:**

- 73 • Ancient seawater chemistry
- 74 • Biogeochemical cycles
- 75 • Carbon cycle
- 76 • GEOTRACES
- 77 • Oceanic Anoxic Events
- 78 • Ocean oxygenation
- 79 • Oxygen deficient zone
- 80 • Paleoredox proxies
- 81 • Redox-sensitive elements and their isotopes
- 82 • Sedimentary Geochemistry and Paleoenvironment Project
- 83 • Sediment diagenesis

85 86 **Key points/objectives:**

- 87 • Ocean redox on modern and anthropogenic timescales
- 88 • Origin, distribution, and characteristics of oxygen deficient zones
- 89 • Evolution of redox on glacial-interglacial timescales
- 90 • Evolution of ocean redox on geologic timescales
- 91 • Neoarchean disequilibria and oxygen oases

92 • The Great Oxidation Event and mid-Proterozoic redox
93 • Neoproterozoic through Paleozoic redox
94 • Deep ocean ventilation

95 **Acknowledgements**

96 This work is supported by grants from the Oceanographic and Earth Sciences Divisions of the
97 National Science Foundation to DH and KL (OCE-1829406, SGP-2124802, FRES-2021324), a
98 National Aeronautics and Space Administration Exobiology Grant to DH and KL
99 (80NSSC22K1560), and a Sloan Research Foundation Fellowship to DH. Data compilations
100 provided by Ben Gill (S isotopes), Ben Uveges (S-MIF), Devon Cole (Cr isotopes), and Josh
101 Krissansen-Totton and Matt Saltzman (C isotopes). KL thanks Tamara Pico and Jerry Mitrovica
102 for discussions about sea-level change and OMZs. This manuscript benefited from critical
103 feedback from Tristan Horner and one anonymous reviewer. We additionally acknowledge our
104 colleagues and collaborators at our current and past institutions—along with the oceanographic
105 community as a whole—whose inclusiveness, countless conversations, and contagious scientific
106 commitment and passion motivated this synthesis.

107 **1 Introduction**

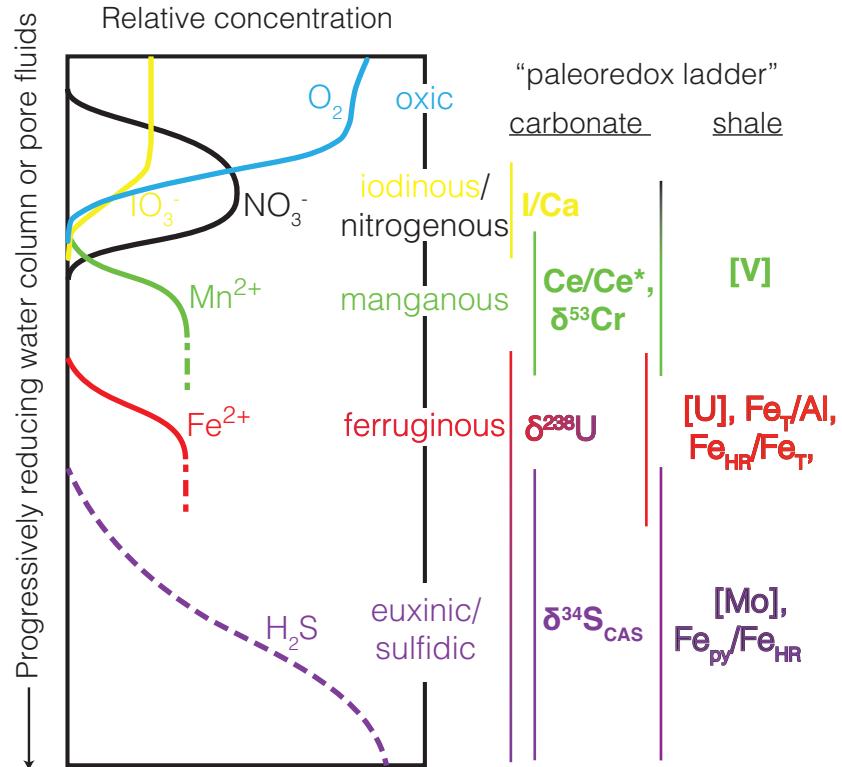
108 A major challenge over the 21st century is documenting and predicting the impacts of
109 ongoing climate change on Earth’s atmosphere and ocean and how these changes may impact life.
110 The ocean’s dissolved oxygen (O₂) availability and its related redox state is no exception. Multiple
111 studies since the beginning of the 21st century have documented declines in O₂ availability in the
112 global ocean, tentatively linked to climate change, including the expansion of naturally existing
113 O₂ deficient zones in the open ocean as well as the increased occurrence and frequency of low-O₂
114 waters along global coastlines. Urgent impetuses in light of these observations include: (1)
115 understanding the mechanisms and feedbacks driving ongoing observations of marine O₂ decline;
116 (2) incorporating these feedbacks into models intended to predict future marine O₂ decline, thus
117 aiding strategic policy but also predicting where to look to observe and understand changes going
118 forward; and (3) understanding the degree to which natural climate change in Earth’s ancient past
119 can provide quantitative insights into ongoing and future climate change.

120 Our ongoing anthropogenic experiment with climate change and the increased frequency
121 of available data presents multiple opportunities to understand the Earth system across the past,
122 present, and future. Indeed, we truly live in a golden age of observation, and once again, marine
123 redox geochemistry is no exception. Modern seawater observations in databases and data products
124 such as GEOTRACES, NOAA’s World Ocean Atlas (WOA), among others (e.g., Ocean
125 Observatories Initiative or OOI, World Ocean Climate Experiment or WOCE, Climate Variability
126 and Predictability or CLIVAR, biogeochemical Argo), are at the forefront of calibrating models
127 and understanding processes important for interpreting paleoredox conditions from sediment
128 geochemistry archives—for example, cores collected through the International Ocean Discovery
129 Program (IODP) and compilations available via the Sedimentary Geochemistry and
130 Paleoenvironments Project (SGP; Farrell et al. (2021)). In this way, the long-established principle
131 that the “present is the key to the past” should remain front and center; yet much of this potential
132 currently remains untapped due to combinations of lag times and disconnects between merging
133 insights and resources between modern and deep-time chemical oceanography research.

137 The goal of this synthesis is to pose and address major questions about Earth's present and
138 past ocean redox chemistry. Why do redox states differ between modern O₂ minimum zones? How
139 do modern O₂ spatial patterns inform the geochemical proxies that are used to interpret past ocean
140 conditions? What was the tempo of ancient ocean oxidation and how did it relate to major tectonic
141 and biotic changes? When did Earth's oceans transition from background reducing redox states to
142 the background oxic conditions observed today? These are all questions at the forefront of
143 connecting redox geochemistry across time and space. We aim to address each of them through
144 discussion of recent breakthroughs—highlighting next steps and community challenges going
145 forward—but also novel synthesis and discussion from integrating recent databases covering
146 modern and ancient marine redox geochemistry. The topic of this synthesis chapter—ocean redox,
147 past and present—is admittedly far-reaching, and hence we will not cover every aspect here. That
148 said, there have been a range of reviews and important syntheses in the decade since the publication
149 of the last Treatise chapter covering ancient redox (Lowenstein et al., 2013) and we will point the
150 reader to these existing resources.

151 In light of these goals, we ultimately organize this synthesis into three main sections based
152 on different time frames with distinct time-scale-dependent processes. **Modern:** An overview of
153 emerging insights into variations in and drivers of modern spatiotemporal redox variations across
154 the ocean's major O₂ deficient zones. This discussion is bolstered by multivariate constraints and
155 visualizations of redox-sensitive and related elemental cycles from NOAA's WOA and
156 GEOTRACES databases/products. **Recent:** An overview of recent findings and challenges
157 regarding marine redox cycling on glacial-interglacial timescales. **Ancient:** An overview of recent
158 findings and challenges regarding the oxygenation of Earth's oceans on geologic timescales,
159 supported by explorations of novel paleoredox proxy compilations from the SGP database and
160 other sources.

161

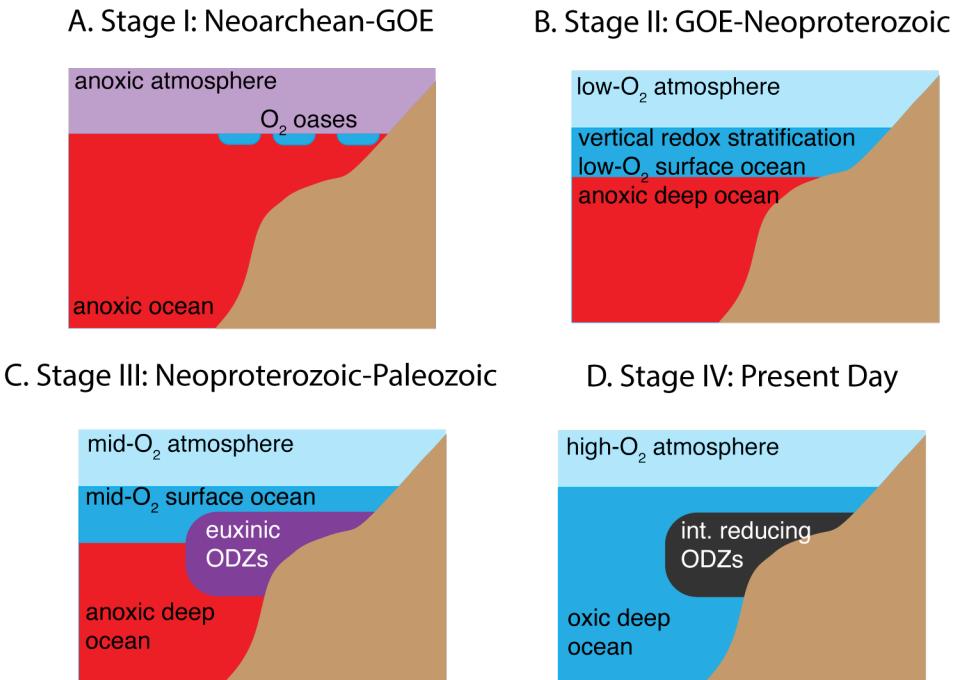

162 1.1 Nomenclature for tracers defining redox and O₂ levels

163

164 Modern chemical and paleo- oceanographers often use different as well as overlapping, but
165 variably defined, nomenclature to discuss marine redox (reduction-oxidation) and O₂ levels. To
166 circumvent this challenge, we broadly support the suggestion of Canfield and Thamdrup (2009)—
167 i.e., that terms such as 'suboxic' are confusing and are best replaced by more specific terms
168 defining the dominant electron acceptors in each zone. We support the continued expansion of this
169 approach to the ancient—i.e., what major zone of electron acceptors does a given redox tracer
170 define? We summarize these zones for common paleoredox proxies in **Figure 1**. The paleoredox
171 proxies, which are discussed in detail in Section 4, are commonly trace elements with limited
172 contribution to organic matter remineralization and can be directly related to the major electron
173 acceptors to which their reduction or proxy expression most clearly overlaps. This concept applies
174 to both water column and pore fluid redox conditions, which are distinct but represent a vertical
175 continuum of the 'redox ladder'. We recognize that there can be significant overlap in these so-
176 called 'zones' (for example nitrogenous and manganous), and when this is the case, this should be
177 communicated. In alignment with previous work (Moffitt et al., 2015), we will consider
178 "hypoxia"—a term that originated from physiological studies equivalent to 2 mg O₂ L⁻¹ or ~61
179 μmol O₂ kg⁻¹ (Hofmann et al., 2011)—as the O₂ threshold that characterizes oxygen deficient
180 zones.

181

182



183
184
185
186

Figure 1. Redox and paleoredox ladder. Includes redox-sensitive elements used to distinguish specific redox regimes and modern and paleoredox proxies from carbonates and shales that track those conditions. Note that the term euxinia is exclusive for water columns and 'sulfidic' is preferred for pore waters. Proxy details are discussed further in Section 4.

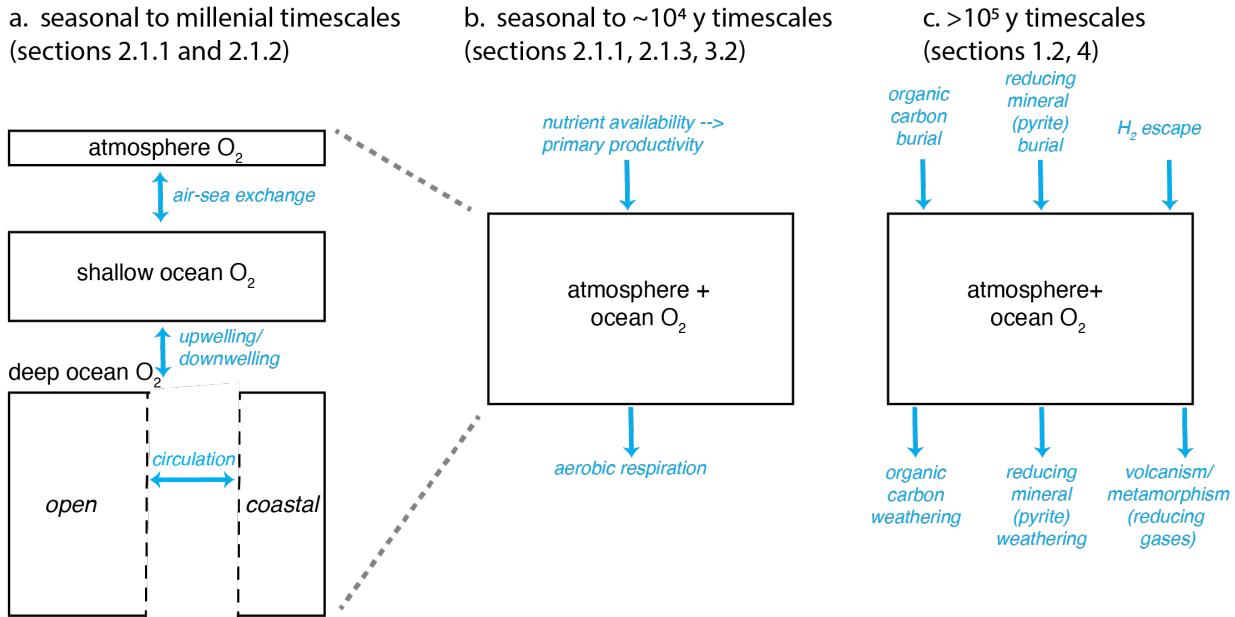
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

Throughout this chapter, we will discuss redox dynamics of the ocean-atmosphere system using the framing shown in **Figure 2**. When and how the redox evolution of the ocean-atmosphere system proceeds through Earth history is broadly defined by four major Stages (Figure 2A-D). The key features of the oceanic redox structure include oxygenation of the atmosphere, which is described relative to present atmospheric levels (PAL). The shallow ocean generally refers to the uppermost 100-200 m (typically the photic zone) that can be influenced by atmospheric O₂ through wind-driven mixing. Vertical O₂ stratification defines much of Earth's past until the Paleozoic (Figure 2 A-C) and continues to be a feature where O₂ deficient or minimum zones develop (Figure 2C-D). The degree of O₂ consumption within these zones varies in the modern and has varied through Earth history, reaching euxinia (extreme reducing conditions where sulfide is available in the water column) further in the past (e.g., Figure 2C). Oxygen minimum zones (OMZs) differ from oxygen deficient zones (ODZs) in that the latter specifically refer to regions where O₂ levels are low enough to limit aerobic respiration, i.e. 'functional anoxia' characterized by denitrification and the presence of nitrite (generally requires sub- μ M O₂; (Thamdrup et al., 2012)). In this Chapter, we generally refer to ODZs for consistency and because a key consideration for past and present marine redox conditions is the impact on marine animal habitability.

204
205 **Figure 2.** Stages in oceanic redox structure through Earth history. Int = intermediate redox conditions (e.g., nitrogenous).

206
207 **1.2 Integrating mechanisms with a mass balance perspective of ocean O₂**

209 The spatial distribution of O₂ and development of ODZs in the modern ocean highlights
210 the processes and reactions within and between the atmosphere, surface ocean, and deep ocean
211 reservoirs (**Figure 3A**). Today, nearly all the O₂ is present in the atmosphere (>99%) compared to
212 the oceans (Keeling et al., 1993). In this case, air-sea exchange, temperature, and ocean circulation
213 control the physical solubility of O₂, the physical transport of nutrients, and the biological
214 processes that consume and produce O₂. Together, these dictate the spatial gradients of O₂
215 discussed in Section 2 and the temporal changes from the transition from an icehouse in Section
216 3. This can be considered the perspective of the O₂ system furthest from steady state, given that
217 these processes vary on seasonal to decadal to millennial scales. Models that can simulate O₂
218 changes through these processes include some General Circulation Models (GCMs; e.g.,
219 Kwiatkowski et al. (2020)) and Regional Ocean Modeling System simulations (ROMS; e.g.,
220 Montes et al. (2014)).


221 Considerations of O₂ mass balance on longer time scales, beyond seasonal-millennial
222 scales, are the focus of Section 4 (the ancient). On geologic time scales—which extend beyond
223 those of the processes controlling the spatial gradients between the atmosphere, shallow ocean,
224 and deep ocean—we can simplify the view of O₂ mass balance by focusing on a single atmosphere-
225 ocean O₂ reservoir. Here, there are two additional time scales that are relevant to O₂ mass balance,
226 and therefore the relationship between biogeochemical and geologic processes. The first concerns
227 the inventory of the limiting nutrient, increases in primary productivity, and aerobic
228 respiration/remineralization that drives O₂ demand, and is most relevant on timescales of $\sim 10^4$
229 years (**Figure 3B**; (Lenton et al., 2018)) and is partially discussed in Section 3. With higher nutrient
230 delivery to the ocean-atmosphere system, primary productivity (**Equation 1**) increases, which

increases the flux of O₂ being added. This is generally balanced by an output flux where O₂ is consumed by aerobic respiration (e.g., **Equation 1**), which increases with higher primary productivity, akin to dead zones in the modern ocean that are dominated by continental runoff inputs. This simple mass balance can break down (i.e., the flux of O₂ produced from primary productivity does not equal the flux of O₂ consumed through aerobic respiration) in the case of transient increases or decreases to nutrients (primarily considered to be phosphate). Models that can simulate these processes include, but are not limited to, CANOPS (Ozaki et al., 2022), cGENIE (van de Velde et al., 2021), and LOSCAR (Zeebe, 2012); key to these are inclusion of nutrients and marine biogeochemical processes, ideally both in the water column and in the sediments.

However, it should be obvious that on long time scales and with the consideration of geologic processes, O₂ production and consumption through these two fluxes should balance (Lenton et al., 2018). When considering geologic processes, two key processes become critical (**Figure 3C**): (1) the geologic removal and exposure of organic carbon and other reductants and (2) the exogenic input of reductants. Here, the inventory of reductants encompasses organic carbon, mineral sources of electron donors (e.g., pyrite), and atmosphere- and mantle-derived reducing gases (e.g., H₂). To illustrate, the burial of organic carbon produced by photosynthesis, either on land or in the ocean, will remove a sink for O₂ consumption, resulting in a buildup of O₂ in the atmosphere-ocean reservoir (e.g., **Figure 3**). In parallel, the exposure of sedimentary organic carbon, such as through uplift and exposure of marine sedimentary rocks, would introduce an O₂ sink, resulting in lower O₂ in the atmosphere-ocean reservoir. In this view, the organic carbon cycle is considered to be the dominant control on the redox state of the ocean-atmosphere system (see *Box 1: Linking changes in redox conditions to the carbon isotope record* for discussion about C isotopes and O₂). Mass balance models that consider some of these factors include COPSE (Lenton et al., 2018) and GEOCARB (Berner, 2006b).

Other long-term processes related to changes in inputs and outputs of oxidants and reductants include fluctuations in (1) hydrothermal-derived reductants (such as Fe²⁺ or H₂S), with a key example being the Cretaceous Oceanic Anoxic Event 2 event (Jenkyns et al., 2017, Nana Yobo et al., 2022); (2) mantle-derived H₂ or CH₄ via volcanic degassing (Kasting et al., 1993, Kvenvolden and Rogers, 2005, Kadoya et al., 2020); (3) H₂ escape from the upper atmosphere (Catling et al., 2001); (4) or a change in the igneous lithology exposed through Earth's history as a result of planetary differentiation (Leong et al., 2021). On planetary timescales, a change in mantle redox chemistry and a secular decrease in atmospheric CO₂, required to balance the carbonate-silicate weathering cycle while accommodating increasing solar luminosity, would starve the biosphere, decreasing O₂ production and ultimately returning the Earth to a permanently deoxygenated state (Ozaki and Reinhard, 2021).

Ultimately, knowledge of both modern and ancient biogeochemistry play complimentary roles in the development of models used to understand mechanisms controlling ocean redox conditions on any timescale. The modern ocean-atmosphere and experimental work form the basis of models used to provide mechanisms for proxy observations across geologic time, while the geologic record provides a framework for understanding perturbations in the age of the Anthropocene.

273
274 **Figure 3.** Key fluxes relevant to O_2 mass balance in the ocean on different temporal and spatial scales. (A) Where spatial
275 relationships of O_2 are critical to deconvolve, key processes between atmosphere, shallow ocean, and deep ocean O_2 reservoirs
276 are driven by chemical properties (e.g., O_2 solubility), physical transport (upwelling, downwelling, horizontal circulation), and O_2
277 consumption and production within each reservoir (photosynthesis, biological and abiotic removal of O_2). (B) On longer
278 timescales, the “average” redox state of the atmosphere-ocean system can be represented as one box. Here, the availability of
279 nutrients drives primary productivity, the production of organic matter, and the subsequent consumption of O_2 via aerobic
280 respiration. This can lead to “supercharged” O_2 consumption and the transient increase of marine anoxia. (C) On longer
281 timescales, the organic carbon cycle is considered to be balanced (O_2 production via productivity and O_2 consumption via
282 remineralization of organic matter). In this scenario, geologic processes involving sedimentation and burial of reductants (organic
283 matter, minerals such as pyrite); tectonics, uplift, and oxidation of sedimentary reductants (organic matter, pyrite); and the balance
284 of reducing gases entering and escaping the atmosphere/ocean through volcanism and atmospheric photochemistry become the
285 critical sources and sinks.

286

287 2 Modern: ocean redox on modern and anthropogenic timescales

288

289 We first provide a detailed overview of the distribution and major factors modulating
290 marine O_2 availability in the modern ocean. We note that the O_2 cycle was reviewed in detail in
291 the previous Treatise Edition (Petsch, 2014). We build on this here by incorporating water-column
292 trace element data—in line with our broader theme of “redox”—but also by providing perspectives
293 on O_2 and redox-sensitive element distribution and drivers through the lens of the NOAA World
294 Ocean Atlas and GEOTRACES. **Figure 3** provides a synthesis of major processes impacting the
295 distribution of marine oxygen in the modern. Below we discuss these within this context, starting
296 with sources and sinks.

297

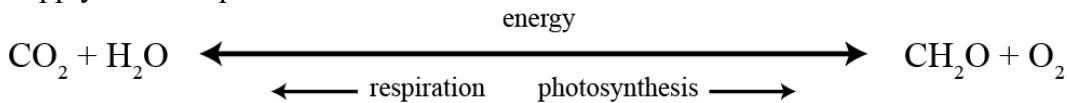
298 2.1 Modern O_2 inputs and outputs

299

300 2.1.1 Source: Air-sea equilibrium and marine photosynthesis at the sea surface

301

302 Air-sea gas exchange plays a fundamental role in modulating marine O_2 at both the ocean
303 surface and its deepest depths. The degree of air-sea exchange is defined by O_2 saturation—
calculated as a function of the O_2 content of the atmosphere and *in situ* water specific temperature,

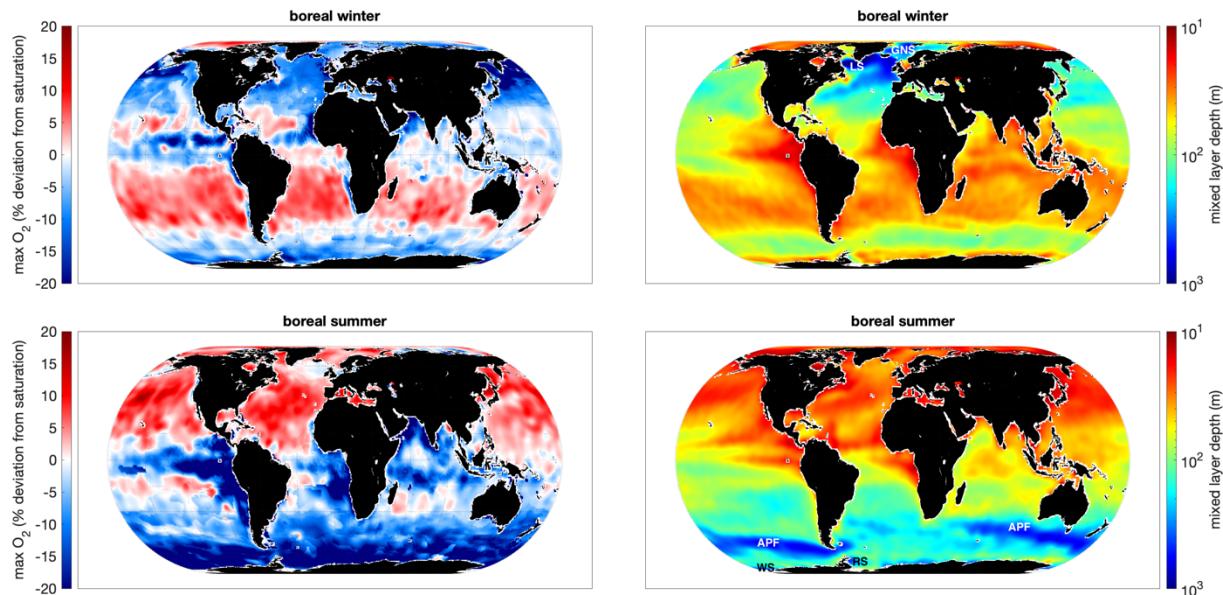

304 salinity, and pressure. Today's atmospheric pO_2 is $\sim 21\%$, but this value has varied widely in the
305 past, as is discussed in later sections. Given that atmospheric O_2 today is relatively homogenous,
306 the *in situ* marine conditions play the biggest role in modulating absolute O_2 contents via air-sea
307 exchange. While salinity can play an essential role in coastal, estuarine settings, there are no major
308 salinity impacts on O_2 in the open ocean (Colt, 1985). Temperature is more spatially variable—for
309 example across latitudinal gradients—and can vary widely temporally due to seasonal variations,
310 thus impacting O_2 solubility.

311 **Figure 4** shows the maximum seasonal seawater O_2 saturation within the mixed layer at a
312 given latitude and longitude. While most of the ocean is defined by air-sea saturation broadly—or
313 at least during some portion of the year—the most striking observation is the temporal variability
314 at many locations. This variability is mostly defined by the Northern and Southern Hemisphere
315 summer and winter, with oversaturation and O_2 outgassing in their respective summer and
316 undersaturation and ingassing in their respective winter (Najjar and Keeling, 2000). Both of these
317 endmember variations in O_2 saturation are functions of multiple processes occurring throughout
318 the year and can be broken into two broad categories: physical processes modulating the degree of
319 air-to-sea exchange and *in situ* marine O_2 sources via photosynthesis (reviewed in Palevsky and
320 Nicholson (2018)).

321 Regarding the degree of exchange with the atmosphere, at the most basic level, physical
322 processes—specifically sea ice—can act to block air-sea exchange. The buildup of winter sea ice
323 can explain limited O_2 saturation at extreme latitudes seen in the winter months in **Figure 4**. Wind
324 speed and temperature are additional examples of a physical processes that can also impact the
325 efficiency of air-sea exchange of gases, including O_2 . For example, the uptake of atmospheric O_2
326 to the surface ocean is modulated in part by the duration of exposure of water masses to the
327 atmosphere—thus increasing total O_2 uptake—and the duration of their convective mixing during
328 cold months, which leads to deeper convection (Sun et al., 2017). To a first order, lower
329 temperatures increase O_2 solubility; however, the combination of wind speed and temperature are
330 primary controls on mixing by impacting stratification and gas exchange velocity. Thus, increased
331 wind speeds and decreased temperatures can lead to O_2 declines at the sea surface due to mixing
332 with subsurface water lower in O_2 . As shown in **Figure 4**, this is particularly pronounced in the
333 winter months. Because air-sea exchange velocities are also a function of air-sea O_2 gradients, this
334 has the impact of increasing the rate of surface O_2 uptake and thus increasing the rate of the transfer
335 of O_2 to the subsurface. Conversely, summertime stratification directly decreases the entrainment
336 of lower O_2 waters from the subsurface to the sea surface, which can increase surface O_2 saturation
337 (Boyer et al., 1999). Vertical mixing is directly impacted by ocean warming by both increasing
338 temperature—thus decreasing O_2 solubility—and stratification, limiting air-sea exchange.
339 Together, these factors impact dissolved O_2 broadly by decreasing a primary source of O_2 to depths
340 below the winter mixed layer (Keeling et al., 2010).

341 Biological activity, specifically *in situ* photosynthesis, plays a fundamental role in
342 controlling seasonal variations in O_2 supersaturation at the sea surface (**Equation 1**). While
343 decreases in the availability of light associated with winter months plays a primary role in
344 modulating photosynthetic activity at high latitudes, we note that most of the variation in O_2
345 supersaturation occurs at mid-latitudes, with equatorial regions showing much more limited
346 variability. This contrast is ultimately due to the importance of nutrient availability in limiting
347 photosynthetic activity. Specifically, at mid-latitudes, ventilation during winter mixing plays a key
348 role in re-introducing subsurface nutrients to starved surface phytoplankton communities. This
349 ultimately leads to local photosynthetic activity increasing local O_2 and thus O_2 saturation. In

350 contrast, highly stratified equatorial waters have largely zonal flow and are nutrient-limited due to
 351 limited supply from deep subsurface waters.


352
 353 **Equation 1**

354 It is important to note that, in addition to a source of O_2 , primary production is an important
 355 catalysis for biogeochemical reactions and therefore a sink for a multitude of nutrients and related
 356 trace elements, including redox-sensitive elements. Horner et al. (2021) provide an extensive
 357 review of the impacts of productivity on trace element signatures, including their use as
 358 paleoproductivity proxies. Additionally, cycling of key trace elements (and their isotopes) is
 359 discussed in a complementary Chapter in this Treatise (Little et al., this issue; Farmer et al., this
 360 issue). A key take home point is that the canonical Redfield Ratio (C:N:P of 124:16:1) can be used
 361 to determine which nutrients are limiting (as well as the stoichiometry from the simplified
 362 expression for organic carbon shown in **Equation 1**). The Redfield ratio can also be extended to
 363 include many non-limiting trace elements still essential to primary production (adapted from (Ho
 364 et al., 2003, Martin and Knauer, 1973, Elderfield and Truesdale, 1980)). In **Equation 2**, note that
 365 we have bolded redox-sensitive elements also commonly used as redox tracers in modern and
 366 ancient marine systems, including throughout this Chapter. The implication is that a multitude of
 367 processes beyond redox, including productivity and related biogeochemical reactions, are
 368 important for the cycling of these trace elements and their isotopes in the ocean (Janssen et al.,
 369 2020).

371
 372
 373 **Equation 2**

374
 375

376
 377
 378 **Figure 4:** **Left:** Seasonal variations in maximum O_2 saturation within the mixed layer for boreal winter and summer. **Right:** Mixed layer depth for boreal winter and summer. Note that each panel shows maximum O_2 saturation for a given latitude and longitude

379 based on calculations of O_2 saturation from temperature, pressure, depth, and observed O_2 from the seasonal 1 deg gridded
380 WOA 2018 (Boyer et al., 2018). Labels on right hand panels mark important areas of bottom or intermediate water formation
381 (Weddell Sea (WS), Ross Sea (RS), Greenland-Norwegian Sea (GNS), Labrador Sea (LS)), Antarctic Polar Front (APF)).

382

383 2.1.2 *Source: Circulation transports O_2 to the ocean interior*

384 The sole source of O_2 to the ocean interior is vertical mixing and the formation and
385 subduction of sea-surface water masses. As discussed in the previous section, winter mixing plays
386 a key role in introducing O_2 to the subsurface, as deep as 1000 m or more in some localities (**Figure**
387 **4**). However, subducting water masses are critical for ventilation of O_2 to intermediate and deeper
388 depths. Specifically, water masses formed at the surface at high latitudes are subducted where
389 weather fronts and related sea ice formation combine to force subduction via density increases
390 and/or wind patterns. For example, the Sub-Antarctic Mode Water (SAMW) and Antarctic
391 Intermediate Waters (AAIW) form and subduct at the Antarctic Polar Front (APF) (labeled in
392 **Figure 4**). Because of local biogeochemical processes at the site of water mass formation, these
393 water masses can have distinct pre-formed O_2 , nutrient (commonly denoted as PO_4^* or NO), and
394 related trace element signatures that together can be used as tracers of individual water masses
395 throughout the subsurface oceans.

396 As discussed in later sections and recently reviewed (Reinhard and Planavsky, 2022),
397 ancient atmospheric O_2 was not always high enough to supply surface waters with O_2 levels
398 sustainable for preservation to the ocean interior during subduction. However, in today's well
399 oxygenated atmosphere, the O_2 levels, nutrients concentrations, and other geochemical signatures
400 are often considered semi-conservative, and thus largely unchanging from their pre-formed values
401 along and within the ocean's subsurface. For this reason, an increasingly used and powerful tool
402 in ocean transect studies is an Optimum Multi-Parameter Analysis (OMPA) to quantify the
403 contribution of individual water masses at a given location (Shrikumar et al., 2022, Peters et al.,
404 2018, Jenkins et al., 2015, Evans et al., 2020b). An OMPA uses pre-defined conservative physical
405 properties (e.g., potential temperature, salinity, potential density anomaly, silicate, PO_4^* or NO)
406 of individual water masses and then applies a least-squares solution to determine the contributions
407 of these water masses to a given sample. The combination of water mass analyses and applications
408 of atmosphere-sourced geochemical dating tools (e.g., CFCs, SF_6) can be used to determine the
409 age of a water mass in a given location—i.e., how long since water mass formation and subduction
410 occurred. Importantly, while OMPA parameters are chosen because of semi-conservative
411 behavior, these parameters themselves or additional geochemical signatures may evolve along
412 with circulation patterns of the water mass circulation due to biogeochemical impacts (e.g.,
413 respiration, discussed in detail in the next section) and/or benthic and hydrothermal fluxes (e.g.,
414 Fe, discussed in detail in Section 2.2.4). In these cases, an OMPA can be a powerful tool to
415 deconvolve and isolate the roles of conservative water-mass mixing and these non-conservative
416 processes (Fitzsimmons et al., 2016, Le Roy et al., 2018, Roshan and Wu, 2015a, Roshan and Wu,
417 2015b). One ultimate implication is that subsurface features in geochemical profiles may reflect
418 an integration of the pre-formed chemistry, post-subduction biogeochemical evolution, and then
419 the conservative mixing of variable water masses with likely differences in each of the former.

420 Other key advances on the frontier of understanding near-surface O_2 sources include the
421 incorporation of bubbles into models for air-sea exchange (Sun et al., 2017). Bubbles are created
422 during wind-driven convection at the surface and provide gases, including O_2 , independent of their
423 saturation in local waters. We note as well that, while recent studies have explored geochemical
424 applications of machine learning—for example, I, C, Ba, and N (Huang et al., 2021, Sherwen et

425 al., 2019, Tang et al., 2019, Mete et al., 2023)—there have been no studies to date exploring
426 machine learning as a tool to predict marine O₂ availability and co-varying parameters.
427

428 *2.1.3 Sink: Respiration*

429 Respiration during the remineralization of organic carbon is the primary consumption
430 process of O₂ in the modern ocean. Oxidants are sequentially reduced in the order of the highest
431 to lowest free energy change per mole of organic carbon oxidized (**Figure 3**) (Froelich et al., 1979).
432 This is referred to as the redox ladder and approximates redox states by describing the relative
433 abundance of oxidants with known energetic yields at a given time or location. When O₂ is widely
434 available, like in today's well-oxygenated ocean, aerobic respiration is the most favorable
435 metabolism—yielding nearly an order of magnitude more energy per mole of carbon than
436 anaerobic metabolisms—and O₂ abundance in the modern ocean is responsible for the
437 overwhelming majority of organic matter remineralized within the water column. Ultimately, <1%
438 of organic matter is exported to the deep sea and potentially preserved in the sediments (Hedges
439 and Keil, 1995).

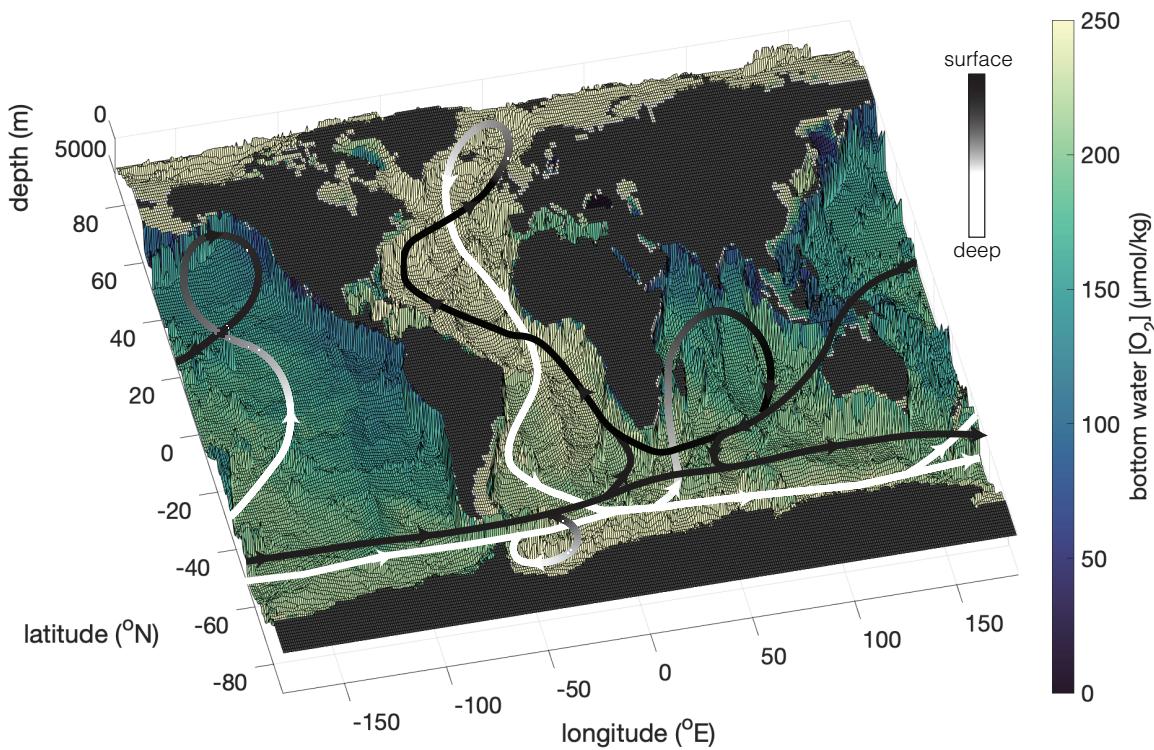
440 In addition to O₂ saturation, another important measure of O₂ cycling is apparent O₂
441 utilization (AOU), which describes O₂ loss via the difference of measured and predicted O₂ at
442 saturation. Respiration of organic carbon in well-oxygenated seawater is an essential component
443 of the biological pump cycling of C and nutrients from the surface to deeper waters and sediments.
444 Specifically, the remineralization of organic carbon consumes ambient O₂ but releases CO₂, N,
445 P—as well as the trace elements shown in **Equation 2**—to intermediate-depth waters (Shankle et
446 al., 2021). Respiration contributes to the non-conservative behavior of O₂, nutrients and trace
447 elements during water-mass evolution, which is essential to consider in addition to ocean
448 circulation when viewing and interpreting any vertical profiles. For example, changes in pH, CO₂,
449 and related parameters provide a metric for the age of deep waters in the global ocean. Interactions
450 with sediments in bottom waters hosting remineralization of organic carbon and diffusion across
451 the sediment water interface provides an additional opportunity for the evolution of water-mass
452 geochemistry.

453 Although only a fraction of organic carbon makes it to the seafloor and through burial (e.g.,
454 remineralization in the sediment column), it is important to remember that the long-term burial
455 and sequestration of organic carbon in sediments is among the key drivers of O₂ accumulation in
456 our atmosphere and oceans (**Figure 3c**). Specifically, as outlined in **Equation 1**, when organic
457 carbon is buried it is removed from potential respiration, and thus O₂ accumulates. Organic carbon
458 burial, along with pyrite formation, are key components of mass balance models considering O₂
459 accumulation on geologic timescales (Berner and Raiswell, 1983, Berner, 1982). An illustration
460 of this process comes from real-time observations of O₂ decline in the atmosphere associated with
461 the recent oxidation of fossil fuels (Battle et al., 1996, Bender et al., 1994b, Bender et al., 1994a).

462 An exciting frontier is determining the impact of reactive O₂ species (ROS)—e.g.,
463 hydrogen peroxide (H₂O₂) and superoxide (O₂[•])—on the marine O₂ cycle and in the cycling of
464 carbon and trace elements (Hansel and Diaz, 2021). For example, a recent study identified
465 extracellular superoxide production via the reduction of O₂ as a sink corresponding to as much as
466 5–19% of the global O₂ budget (Sutherland et al., 2020). Further, superoxide has been demonstrated
467 to play an essential role in Mn²⁺ (Learman et al., 2011) and perhaps I[–] (Li et al., 2014) oxidation,
468 acts as both an oxidant and reductant for Cu and Fe (Hansard et al., 2011, Rose, 2012, Voelker and
469 Sedlak, 1995, Voelker et al., 2000), and reacts with dissolved organic matter (Heller and Croot,
470 2010, Wuttig et al., 2013).

471

472 *2.1.4 What is the distribution of bottom water O₂?*


473 **Figure 5** shows a map of global bottom water O₂ concentrations and demonstrates clear
 474 variations within and between ocean basins. Like that of ODZs discussed in Section 2.2, bottom-
 475 water O₂ is largely a function of the length of time water masses have been isolated from O₂
 476 recharge from the atmosphere, or O₂ age. We note two prominent observations from **Figure 5**: low
 477 O₂ levels around the “rim” of ocean basins, particularly the Indian and Pacific Oceans, as well as
 478 lower overall bottom water O₂ in the Pacific and Indian relative to the Atlantic Ocean.

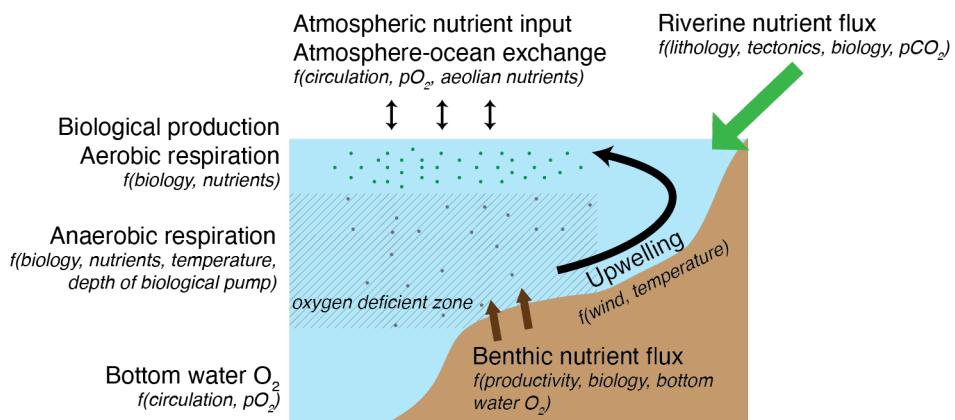
479 The O₂-depleted waters at intermediate depths within the rims of the Pacific and Indian
 480 Oceans and in the Eastern Atlantic can be explained by the presence of ODZs at intermediate
 481 depths within these basins (**Figure 6**). As shown in **Figure 7**, the ODZs are developed in regions
 482 dominated by upwelling along the eastern boundary currents, and O₂-depleted water then extends
 483 laterally at intermediate depths. For the Pacific and Indian Oceans, **Figure 7** and Error! Reference
 484 source not found. show that the ODZs can extend across the ocean basins, intersecting with the
 485 shelves along the opposite margins. As discussed in the Section 2.2, shorter thermocline ventilation
 486 timescales and thus O₂ ages in the Atlantic prevent the formation of expansive low O₂ bottom
 487 waters relative to the Pacific and Indian Oceans.

488 A similar explanation accounts for the higher overall bottom water O₂ observed in the
 489 Atlantic relative to the Pacific and Indian Oceans. Specifically, downwelling and bottom water
 490 formation at high latitudes of the Atlantic and Southern Ocean are the ultimate source of bottom
 491 waters to the Pacific and Indian Oceans (**Figure 5** and Error! Reference source not found.). The
 492 Atlantic is most proximal to these bottom water formation sites, with the flushing from the nutrient
 493 poor, but O₂ rich, North Atlantic Deep Water (NADW) resulting in relatively higher O₂. In
 494 contrast, similar sites of intermediate or deep water flushing are not present in the Pacific or Indian
 495 Oceans. Accordingly, longer O₂ age for ocean basins furthest along the flow path from these sites
 496 of ventilation—i.e., the Pacific and Indian Oceans—results in lower overall O₂ due to integrated
 497 consumption along the flow path.

498 Although there are large variations in bottom water O₂ globally, we note that <1% of
 499 seafloor area is estimated to be characterized by anoxia. As discussed in the Section 2.2, bottom-
 500 water O₂ levels or redox conditions play an important role regulating global trace element fluxes
 501 to and from the sediments. The resulting isotope composition or trace element concentrations of
 502 sediments are commonly used in models estimating the global seafloor area of various redox states
 503 in Earth’s past. For example, using Cr, Mo, and Re mass balance models, the modern redox
 504 distribution of the seafloor has been estimated as 0.11% by area anoxic and 1-5% reducing or
 505 suboxic (Reinhard et al., 2013c, Sheen et al., 2018). Anoxia in these studies is typically defined
 506 by the presence of sulfide in bottom waters or the benthic boundary layer and reducing/suboxia is
 507 defined by low O₂ levels preventing the burial of Mn and Fe oxides (typically 10-100 μ M), all of
 508 which can have major implications for isotope fractionations or authigenic burial rates for redox-
 509 sensitive trace elements.

510

511
 512 **Figure 5.** Concentrations of bottom water O_2 from WOA18 (Boyer et al., 1999). The Z-axis shows the depth at which the O_2
 513 concentrations are from, which represents the closest depth to the seafloor available from the WOA18. We note that the WOA18
 514 does not contain data below 5500 m, thus in deeper areas the plot misrepresents seafloor features. Note that the z-axis is not fully
 515 resolvable here and is simply intended to show the depth range and basic seafloor feature. The lines and arrows show
 516 generalized patterns of thermohaline circulation and areas of deep-water formation.


517

518

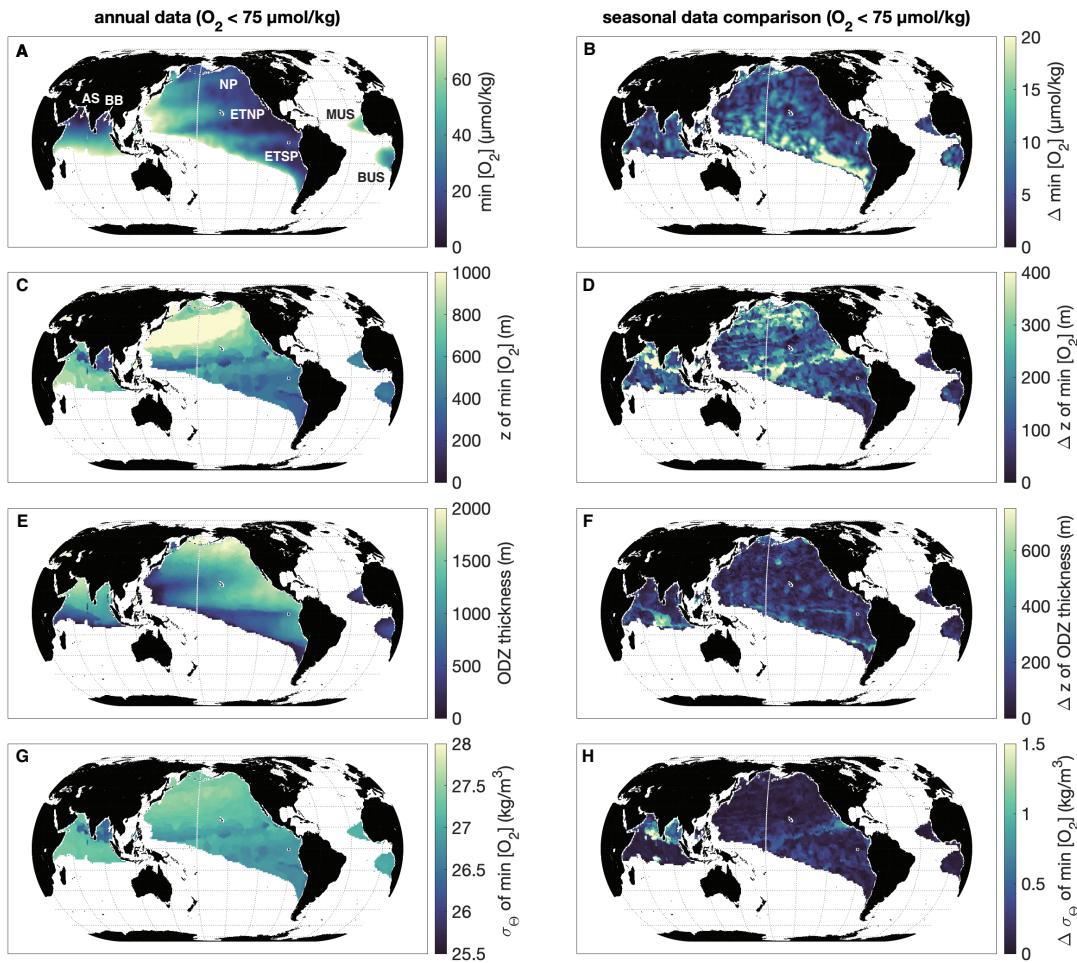
519 2.2 Origin, characteristics, and distribution of O_2 deficient zones

520 **Figure 6** summarizes the physical, chemical, and biological factors, discussed in detail in this
 521 subsection, that result in vertical redox gradients of present-day ODZs. Many of these factors are
 522 also important for ancient upwelling regions, but with a greater diversity of atmospheric, ODZ,
 523 and bottom-water redox states (e.g., oxic, ferruginous, euxinic, anoxic, etc).

524

Figure 6: Cartoon of modern O_2 deficient zone emphasizing the controls on redox conditions, including the major factors modulating each control. For example, the riverine nutrient flux is a function of the riverine bedrock lithology, uplift and other tectonic parameters, climate – pCO_2 —that drives local hydrology and biospheric weathering.

531 2.2.1 The general origin and redox characteristics of O_2 deficient zones


532 Whereas air-sea exchange buffers the impacts of respiration on O_2 accumulation through
 533 most of the ocean, ODZs represent expansive regions where O_2 concentrations are depleted, thus
 534 excluding macrofauna and supporting diverse microbial metabolisms. The most extreme ODZs
 535 are found in the Eastern Tropical North Pacific (ETNP), Eastern Tropical South Pacific (ETSP),
 536 Arabian Sea, Bay of Bengal, and the Benguela and Mauritania Upwelling zones (all labeled in
 537 **Figure 7a**). The total volume of ODZ cores (where $O_2 < 20 \mu\text{mol kg}^{-1}$) has been estimated as
 538 $102 \pm 15 \times 10^6 \text{ km}^3$, or ~7% of the total ocean volume (Paulmier and Ruiz-Pino, 2009).

539 Sources and sinks necessary for the formation and maintenance of ODZs are not different
 540 from the processes described above for the marine O_2 cycle broadly, but instead represent an
 541 extreme endmember where O_2 demand exceeds supply (as discussed above, ultimately from air-
 542 sea exchange and *in situ* production in surface waters). Specifically, ODZs are poorly ventilated
 543 water masses found in upwelling regions characterized by a combination of sustained O_2 depletion
 544 and increased nutrients and CO_2 . Both upwelling and air-sea exchange can be impacted by wind:
 545 higher winds would increase mixing in the upper ocean, and intensifying wind stress can
 546 strengthen upwelling (Bakun and Weeks, 2004, Deutsch et al., 2006, Deutsch et al., 2014,
 547 Friedrich et al., 2006, Lovenduski et al., 2008). As described above, the O_2 , nutrient levels, and
 548 CO_2 concentrations of water masses together represent the evolution of deep and intermediate
 549 waters removed from exchange with the atmosphere and are products of respiration of organic
 550 carbon over variable timescales. While the burial of organic carbon represents one endmember of
 551 the biogeochemical carbon pump, providing O_2 to the atmosphere, these ODZ regions also
 552 represent pathways of return and outgassing for older CO_2 (Siani et al., 2013, Anderson et al.,
 553 2009, Broullon et al., 2020) and nutrients (e.g., Si, N, P, Fe, others in **Equation 2** and **Figure 9**) back
 554 to surface waters via upwelling. Upwelling of these remineralized nutrients contributes to
 555 enhanced primary production, seen through global maps of chlorophyll in marine surface waters,
 556 which can contribute to O_2 supersaturation in local surface waters (**Figure 4**); however, the more
 557 pronounced impact is the contribution of carbon export to respiration in subsurface waters.
 558 Together, this local O_2 demand and the circulation of poorly ventilated subsurface waters are the
 559 drivers of ODZ development.

560 An important research direction going forward is increasing our understanding of O₂
561 variability at sub- $\mu\text{mol kg}^{-1}$ levels in and between ODZs. Water column O₂ concentrations are
562 most commonly characterized by *in situ* CTD measurements or Winkler titration, which both have
563 lower-end detection limits near 1 $\mu\text{mol kg}^{-1}$; however, multiple recent studies over the last decade
564 have utilized STOX sensors—with O₂ at detection limits closer to 10 nmol kg⁻¹—which have
565 revealed O₂ variations at sub- $\mu\text{mol kg}^{-1}$ levels that are important catalysts and limitations for
566 metabolisms (Revsbech et al., 2009, Ulloa et al., 2012). These studies also reveal important
567 differences between the ODZs in terms of background O₂ levels. Specifically, O₂ surveys in the
568 ETNP and ETSP found O₂ commonly below detection limits (as low as <10 nmol kg⁻¹) within the
569 ODZ core—termed functional anoxia—but in some localities up to 400 nmol kg⁻¹ (Canfield et al.,
570 2019, Larsen et al., 2016, Tiano et al., 2014, De Brabandere et al., 2014, Padilla et al., 2016,
571 Thamdrup et al., 2012, Thamdrup et al., 2019, Tsementzi et al., 2016, Kalvelage et al., 2015, Penn
572 et al., 2016, Sun et al., 2021, Gazitua et al., 2021). In contrast to the widespread functional anoxia
573 of the ETSP and ETNP, a study from the Benguela Upwelling zone found below detection O₂
574 (<100 nmol kg⁻¹) along the shelf but also elevated O₂ near 2-6 $\mu\text{mol kg}^{-1}$ in nearby stations
575 (Kalvelage et al., 2015). In a further contrast, a Bay of Bengal study found persistent detectable
576 O₂ in the 10-200 nmol kg⁻¹ range (Bristow et al., 2017, Larsen et al., 2016).

577 Understanding the distribution of O₂ at sub- $\mu\text{mol kg}^{-1}$ levels is important for interpreting
578 variations in microbial metabolisms, discussed in detail below. O₂ levels commonly reported at <1
579 $\mu\text{mol kg}^{-1}$ are in fact overlooking O₂ variations important for understanding biogeochemical and
580 related mixing dynamics within the ODZ. For example, N and Mn redox cycling has been
581 demonstrated to be sensitive to O₂ at levels of 5-30 and 100 nmol kg⁻¹, respectively (Thamdrup et
582 al., 2012, Bristow et al., 2016, Clement et al., 2009). Other N redox cycling pathways—e.g.,
583 annamox and N₂ and N₂O production—as well as CH₄ cycling, are also sensitive to sub- $\mu\text{mol kg}^{-1}$
584 O₂ variations (Dalsgaard et al., 2014, Thamdrup et al., 2019). While some quantifiable sub- $\mu\text{mol kg}^{-1}$
585 O₂ concentrations within ODZs are interpreted as reflecting the transient intrusion of external
586 water masses (Thamdrup et al., 2012), other studies have also demonstrated evidence for the *in*
587 *situ* creation of “aerobic” zones within functionally anoxic areas via diurnal photosynthetic O₂
588 production or nitrous oxide disproportionation (Canfield et al., 2019, Kraft et al., 2022, Garcia-
589 Robledo et al., 2017). We also note, as discussed in detail in later sections, that these sub- $\mu\text{mol kg}^{-1}$
590 O₂ levels are relevant to what has been constrained or predicted for much of Earth’s oceans in
591 the geologic past. This implies that relating geochemical proxy variations to specific sub- $\mu\text{mol kg}^{-1}$
592 O₂ levels requires modern field or experimental studies characterizing the thresholds relevant for
593 redox-active geochemical cycling.

594

595
 596 **Figure 7:** Characterization of minimum O_2 from the 2018 WOA (Boyer et al., 2018). **A.)** Minimum O_2 concentrations across the
 597 global ocean for the annually averaged WOA data. **B.)** The difference between the highest and lowest minimum O_2 concentration
 598 between the winter, spring, summer, and autumn WOA datasets. **C.)** Depth of minimum O_2 concentrations for the annually
 599 averaged WOA18. **D.)** The difference between the highest and lowest depth of minimum O_2 concentration between the boreal
 600 winter, spring, summer, and autumn WOA18. **E.)** Thickness of ODZ with $O_2 < 75 \mu\text{mol kg}^{-1}$ based on annual WOA18 for the
 601 annually averaged WOA18. **F.)** The difference in ODZ thickness with $O_2 < 75 \mu\text{mol kg}^{-1}$ between the boreal winter, spring, summer,
 602 and autumn WOA18. **G.)** The potential density anomaly at the depth of minimum O_2 concentration for annually averaged WOA18.
 603 **H.)** The difference between the highest and lowest potential density anomalies from the depths of minimum O_2 concentration
 604 between the boreal winter, spring, summer, and autumn WOA18.

605 Modern O_2 deficient waters support diverse metabolisms and redox reactions and can be
 606 characterized by combinations of nitrogenous, iodinous, manganous, and to a lesser extent
 607 ferruginous conditions (Figure 1). An example is shown in Figure 8 for the ETSP. Most
 608 prominently, anaerobic N cycling dominates in ODZs and is an important contributor to global N
 609 cycling, accounting for at least 33% of the loss of fixed nitrogen from the global oceans (Codispoti
 610 et al., 2001, Galloway et al., 2004). Specifically, secondary NO_2^- maxima—that below the primary
 611 maxima from nitrification observed in surface waters—formed from the reduction of NO_3^- are a
 612 global feature of ODZs. Nitrite is further reduced to N_2 through heterotrophic denitrification and/or
 613 annamox or to NH_4^+ through dissimilative reduction. In addition, intermediate reduction can form

N₂O gas, a greenhouse gas contributing to global warming (Babbin et al., 2015). Iodine cycling in ODZs has received increased recent attention, including detailed transect studies (Moriyasu et al., 2020, Rapp et al., 2019, Rapp et al., 2020, Cutter et al., 2018) and identification of genes specific to dissimilatory IO₃⁻ reduction (Reyes-Umana et al., 2022, Saunders et al., 2022). Because I is a trace element in seawater—with a mean concentration of ~0.45 μM (Chance et al., 2014)—the reduction of IO₃⁻ to I⁻ is not a major contributor to organic matter remineralization. Nonetheless, the pronounced I⁻ maxima occurs at depths in the water column that typically overlap with that of NO₂⁻ in ODZs and therefore can be applied as a redox tracer.

Ferruginous and manganous conditions—or elevated water-column dissolved Fe²⁺ and Mn²⁺—may best track benthic reductive fluxes maintained within ODZ water columns. Dissolved Fe and Mn concentrations have been studied extensively in several ODZs, including the ETNP (Hopkinson and Barbeau, 2007, Bian et al., 2023, Rue et al., 1997), ETSP (Noffke et al., 2012, Vedamati et al., 2014, Cutter et al., 2018), the Benguela Upwelling Current (Noble et al., 2012, Liu et al., 2022), and the Arabian Sea in the Indian Ocean (Moffett et al., 2007, Moffett and German, 2020, Singh et al., 2023). In shelf sediments located within the upper part of ODZs, the reduction of Fe and Mn oxides, delivered via Fe and Mn “particulate shuttles”—the transport of oxidized Fe- and Mn-bearing particles from the more oxygenated upper water column (Scholz et al., 2014a)—results in a benthic flux of reduced Fe and Mn from sedimentary pore fluids into the water column. This effect, which is identified by peaks in Fe²⁺ at water depths where NO₂⁻ concentrations are high (Heller et al., 2017, Cutter et al., 2018, Bolster et al., 2022) results in the covariation between Fe and Mn in the water columns of the ETNP, Benguela, and the Arabian Sea (discussed further in Section 2.2.3; (Resing et al., 2015, Noble et al., 2012, Bolster et al., 2022, Liu et al., 2022, Moffett and German, 2020)). Lower Fe concentrations at greater depths has been interpreted to reflect NO₂⁻ or NO₃⁻ scavenging and export of Fe (Lam et al., 2020). Though this redox-sensitive cycling can maintain Fe and Mn levels necessary for biological processes, it does not reflect productivity nor respiration. We note that additional sources of Fe and Mn include hydrothermal inputs, which can even be an important source to mid-ocean oligotrophic surface waters (**Figure 8**) (Fitzsimmons et al., 2014).

Although euxinia is not a prominent feature of modern ODZs, multiple recent works have provided evidence of active S cycling. This includes likely SO₄²⁻ reduction within anaerobic microniches but also sulfidic plumes sourced from local benthic fluxes. For example, plumes of hydrogen sulfide within the ETSP (Schlosser et al., 2018) and Benguela Upwelling Zone (Lavik et al., 2009, Bruchert et al., 2003, Ohde and Dadou, 2018) have been documented to have concentrations as high as 6 and 40 μM, respectively. We note that the highest water column sulfide concentrations are typically associated with bottom waters and—similar to dissolved Fe and Mn—elevated hydrogen sulfide is likely sustained via benthic fluxes. Indeed, these sulfidic plumes can also contain elevated dissolved Fe and may themselves be important for benthic Fe mobilization (Schlosser et al., 2018). While likely not the primary source of dissolved water column sulfide (Lavik et al., 2009), we also note that S cycling within anaerobic microniches of sinking organic particles has recently been documented to play an important role in the global C and N cycles (Raven et al., 2021, Bianchi et al., 2018, Carolan et al., 2015, Canfield et al., 2010), and hence likely others. Specifically, sulfurization of organic particles may enhance organic carbon burial fluxes and consideration of anaerobic microniches nearly doubles global estimates of denitrification rates. Anaerobic microniches have also been observed even within oxic water columns and sediments (Shanks and Reeder, 1993, Jorgensen, 1977, Cutter and Krahforst, 1988), thus further expanding their potential global importance to the cycling of organic carbon and of

660 redox-sensitive elements. However, research to date is lagging in demonstrating the potential
 661 diversity of other particle-hosted metabolisms and their significance to broader ocean chemistry.
 662 For example, given the fast reaction between IO_3^- and sulfide (faster than that of O_2 and sulfide; e.g., Jia-Zhong and Whitfield (1986)), sulfide production may contribute to the IO_3^- minima
 663 observed in global ODZs, but this has yet to be investigated.

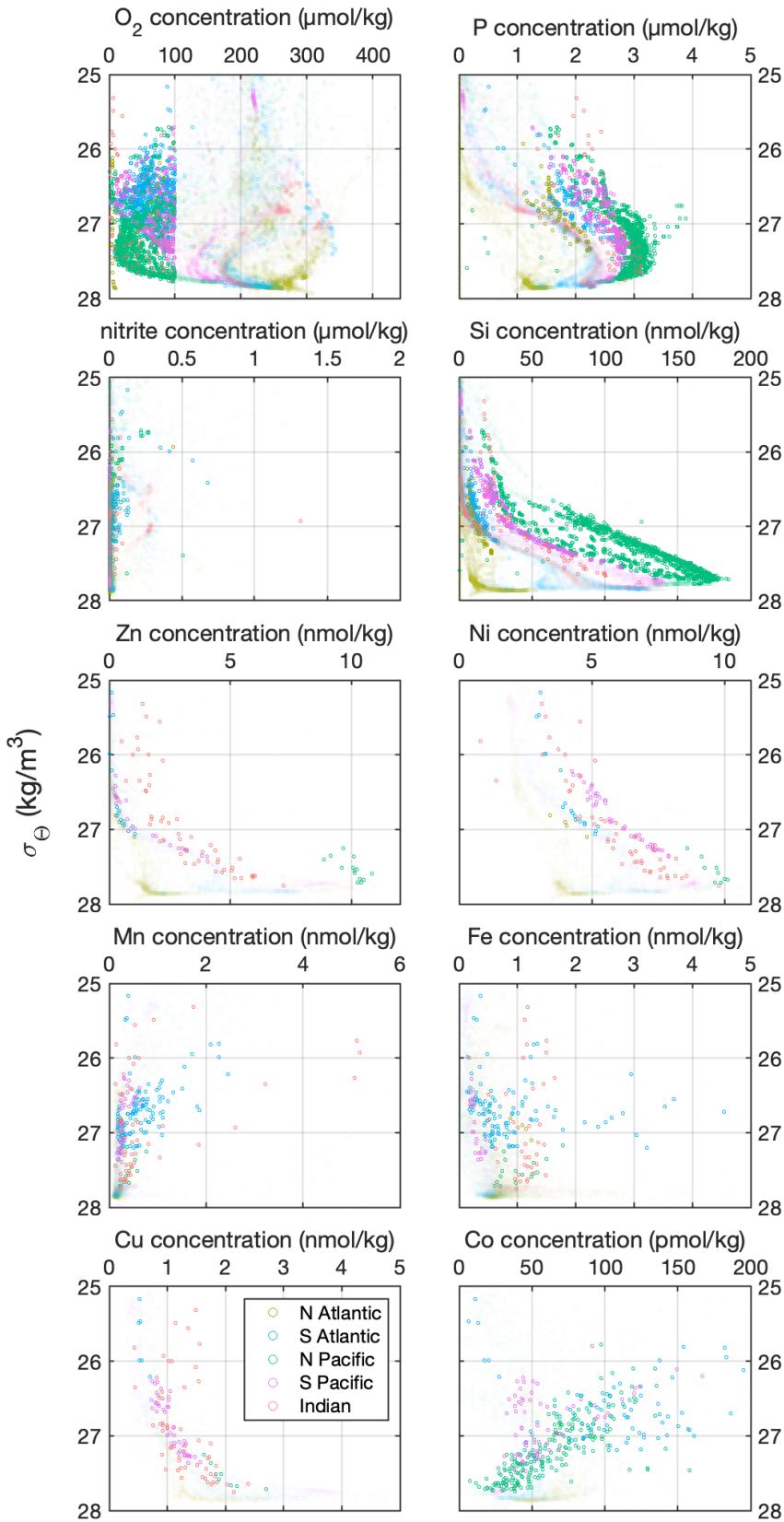
664
 665 ODZ formation is initiated along productive coastlines, but their extensive lateral open
 666 ocean area is the result of continued, offshore subsurface circulation of these semi-conservative
 667 O_2 deficient water masses. As discussed above, productive continental margin sediments are the
 668 primary source of Fe and Mn within ODZ water columns. Similarly, I and N redox chemistry
 669 initiated in the water columns and sediments of these upwelling zones may be the primary sources
 670 of I^- and NO_2^- that are retained in offshore reducing waters. One of the most prominent examples
 671 is the 13CW water mass, which is linked to the formation and circulation of ODZ waters from
 672 both the ETNP and ETSP within the $\sim 26.25 \text{ kg m}^{-3}$ potential density anomaly (Peters et al., 2018,
 673 Evans et al., 2020b). In offshore transects, semi-conservative mixing between the 13CW and
 674 adjacent water masses has been demonstrated to play an essential role in I distribution (Evans et
 675 al., 2020b, Hardisty et al., 2021). An important area of study going forward is the quantification
 676 of water mass contributions to global ODZ transects along with redox-sensitive elements, thus
 677 allowing for better quantification of the role of *in situ* vs. *ex situ* geochemistry in relation to ODZ
 678 chemistry.
 679

680
 681 *Figure 8.* Select geochemical data from GEOTRACES GP16 cruise transecting the Eastern Tropical South Pacific ODZ from Peru
 682 to Tahiti (Cutter et al., 2018, Schlitzer et al., 2018, GEOTRACES Intermediate Data Product Group, 2021). Figure made in Ocean
 683 Data View.

684

685 2.2.2 *What are drivers of inter- and intra- O₂ spatiotemporal variations?*

686 Not all ODZs are created equally. Notable differences include the spatial variability in sub-
687 $\mu\text{mol kg}^{-1}$ O₂ concentrations that were already discussed in Section 2.2.1. Ultimately, several
688 factors can influence O₂ availability in ODZs. As reviewed in Oschlies et al. (2018), O₂ sources
689 can be impacted by temperature effects on O₂ solubility, increased stratification limiting the
690 exchange of O₂-rich surface waters and O₂-poor subsurface waters, wind-driven changes in
691 overturning circulation, and freshwater inputs decreasing deep meridional overturning at high
692 latitudes. O₂ consumption can be impacted by temperature effects on metabolic rates, the quality
693 and/or quantity of sinking particles, and nutrient supply from the ocean interior, land, or the
694 atmosphere.


695 **Figure 7** demonstrates spatial and temporal variations in the minimum O₂, depth, thickness,
696 and potential density anomaly (sigma-theta) of modern ODZs. As reviewed extensively in previous
697 works (Paulmier and Ruiz-Pino, 2009, Karstensen et al., 2008), these characteristics provide basic
698 constraints on the source of water masses hosting ODZs. The most prominent observation is that
699 the most extensive and intense ODZs are observed in the Pacific and Indian Oceans. In contrast,
700 the Benguela and Mauritanian ODZs of the South and North Atlantic, respectively, occupy limited
701 water column areas and have less reducing cores, with higher O₂ concentrations compared to their
702 Pacific and Indian counterparts. Another prominent observation is that ODZ thickness and depth
703 is greatest in the North Pacific relative to other ODZs. The drivers of these observations are
704 discussed in more detail below.

705 The Atlantic and Pacific ODZs are located in regions not reached by the equatorward flow
706 of oxygenated waters from the subtropics—or shadow zones (Luyten et al., 1983). These sluggish
707 flow regimes result in a similar pattern of Eastern Boundary Current distribution in the North and
708 South Pacific and Atlantic Oceans. However, the lesser extent of ODZs and higher maximum O₂
709 values in the Atlantic relative to the Pacific distinguishes the two basins. On a first order, these
710 differences are related to the relative size of the ocean basins themselves compared to their
711 thermocline ventilation rates (Karstensen et al., 2008). Specifically, the thermocline volume in the
712 Pacific is three times larger than that of the Atlantic and is renewed at a substantially slower rate,
713 thus impacting the rate of O₂ replenishment vs loss and acting as a primary control on ODZ extent.
714 The limited ventilation in the Pacific vs the Atlantic can be quantified via their O₂ ages, which also
715 differ between the North and South for the two basins (Karstensen et al., 2008). The Atlantic is
716 overall best ventilated. In the Pacific, more limited ventilation, and a larger water volume result in
717 much older O₂ ages and thus more extensive volume of and lower O₂ within ODZs. This situation
718 is particularly exacerbated in the North Pacific, which occupies approximately 1/4th of the
719 thermocline volume of the Atlantic and Pacific but is characterized by 1/8th of the renewal rate
720 (Karstensen et al., 2008).

721 The ODZs in the Indian Ocean are most similar to the Pacific, with extensive volumes of
722 water with O₂ < 20 $\mu\text{mol kg}^{-1}$. While the O₂ ages and renewal rates for the Indian Ocean have not
723 been estimated to our knowledge, the ODZs are similarly regulated by sluggish ventilation of the
724 thermocline (Tomczak and Godfrey, 2003). A front at 15 °S is created by the inflow of the
725 Australasian Mediterranean Water (AAMW) mass from the Pacific to the Indian Ocean (Quadfasel
726 and Schott, 1982). At the front, an intense O₂ gradient is formed, creating the ODZ in the Arabian
727 Sea. Active deoxygenation does not extend into the Bay of Bengal (Howell et al., 1997), likely
728 contributing to the higher minimum, yet still sub- $\mu\text{mol kg}^{-1}$, O₂ values and more limited active N
729 cycle in this region.

730 A seasonal comparison of ODZ properties demonstrated that permanent ODZs may
731 contract/expand by as much as 10-15% annually (Paulmier and Ruiz-Pino, 2009). We also present
732 visualizations of seasonality in Error! Reference source not found. by comparing the minimum
733 and maximum properties of ODZs at the depth of minimum O₂ across the four seasons. Winter
734 mixing in the Gulf of Alaska and West Bering Sea contributes to a strong seasonal dynamic of the
735 ODZ (Paulmier and Ruiz-Pino, 2009). The West Bering Sea and Gulf of Alaska ODZs develop
736 mostly in the boreal winter and in the fall-to-spring, respectively, with O₂ fluctuations in the ODZ
737 core above and below 20 $\mu\text{mol/kg}$ in many locations (Paulmier and Ruiz-Pino, 2009). For other
738 ODZs, the cores are relatively stable while the fringes, particularly in the South Pacific, have the
739 potential to be seasonally dynamic and show the largest seasonal variations (**Figure 7**).
740

741 In the Arabian Sea, the seasonal Asian monsoon has a strong impact on the ODZ, which is
742 reflected in part in Error! Reference source not found. by the large seasonal swing in the depth and
743 sigma-theta of minimum O₂ (Schmidt et al., 2020). The ODZ vertical expansion is highest during
744 the boreal winter monsoon, with the most seasonal O₂ concentration along the 27 kg m⁻³ isopycnal
745 due to ventilation from the Persian Gulf and Red Sea water masses (Schmidt et al., 2020, Banse et
746 al., 2014). Other factors contributing to seasonal variations in ODZs generally include seasonal
747 wind patterns impacting upwelling rates, eddy fluxes on the ODZ fringes introducing O₂ and often
748 hosting denitrification, and associated nutrient feedbacks impacting primary production and
749 zooplankton biomass (Bhaskar et al., 2021, Wishner et al., 2013, Vergara et al., 2016, Margolskee
750 et al., 2019, Evans et al., 2020b). Beyond seasonal timescales, the ETSP ODZ has also been
751 reported to show as much as a 60% reduction in the sea floor *area* characterized by O₂ levels
752 <20 $\mu\text{mol kg}^{-1}$ during El Niño years (Helly and Levin, 2004).

Figure 9. A.) Plot of potential density anomaly (sigma-theta) vs. O_2 , nutrient, and trace element concentrations for different ocean basins for the entire GEOTRACES database (Schlitzer et al., 2018, GEOTRACES Intermediate Data Product Group, 2021). These are the same data evaluated using the PCA in **Figure 10**. The transparent data points represent data at depths with O_2 concentration $>100 \mu\text{mol kg}^{-1}$ while the opaque data points are from depths with O_2 concentrations $<100 \mu\text{mol kg}^{-1}$. The elements are shown in order of descending maximum concentration.

801 **2.2.3 Patterns of dissolved O₂, trace elements, and nutrients in modern water columns**

802 A current frontier is fingerprinting variable ODZ controls via their trace element
803 compositions. The GEOTRACES data provide the opportunity to explore the relationship between
804 the processes impacting O₂-deficient waters and biogeochemically relevant elemental
805 concentrations and by extension, their geochemical cycles. Trace element and isotope data from
806 GEOTRACES were introduced in the last Treatise Edition (Bruland et al., 2014) and cycling of
807 many key elements are discussed in this Treatise Edition (Little et al., this issue; Farmer et al., this
808 issue).

809 Here we focus on ocean redox controls on trace element distributions. To investigate the
810 controls on the variability of the data shown in **Figure 9**, we conducted Principal Component
811 Analysis (PCA), a statistical tool that allows us to evaluate differences in key data from the
812 GEOTRACES 2021 database (GEOTRACES Intermediate Data Product Group, 2021) between
813 different ODZs as well as between O₂-deplete and O₂-replete water masses (**Figure 10**; e.g., Bolster
814 et al., 2022). We limited our analysis to samples that contained all of the parameters shown in
815 **Figure 10**. Due to this limitation and the limited data availability for low O₂ waters, we use a higher
816 cutoff of [O₂] < 100 μM for identifying ODZ water masses and refer to samples where [O₂] > 100
817 μM as well-oxygenated waters. Therefore, some of these waters have O₂ levels above the hypoxia
818 threshold and expand into regions that technically are not considered ODZs.

819 Water mass characteristics (depth, sigma-theta, and dissolved O₂ recorded as “O₂”),
820 dissolved macronutrient concentrations (P), dissolved micronutrient concentrations (Fe, Mn, Zn,
821 Ni), and dissolved concentrations of other essential nutrients (Si, Cd, Co) can be compared across
822 ocean basins where ODZs can be observed. Fe-limitation is a well-recognized phenomenon in
823 oligotrophic settings (Martin et al., 1994, Fitzsimmons and Conway, 2023); Si and Cd are critical
824 elements for diatoms and Co and Mn can limit primary productivity. Bioessential elements such
825 as Fe, Mn, Co and Zn are also redox sensitive and therefore trace metal patterns in ODZs can
826 reflect not just biogeochemical cycling (e.g., productivity and remineralization) but also abiotic
827 redox and non-redox processes (reviewed in Horner et al. (2021)).

828 Though these variables are all treated as independent, there are likely co-dependencies that
829 can be observed in the relationships in **Figure 9** and **Figure 10**. For example, in all analyses, depth
830 and sigma-theta are closely aligned, which is logical given that density is a function of temperature
831 and pressure, which changes with water depth. In sum, the PC1 and PC2 for these data describe
832 most of the variance observed in the global datasets (~60% and 15-22%, respectively). The main
833 observations from the PCA are:

- 834 1. The PCA for the global dataset (**Figure 10A**) strongly reflects the differences between
835 ocean basins (**Figure 10B** vs. **Figure 10C**). Within the global dataset and for well-
836 oxygenated regions, the largest sources of variance between ocean basins are the
837 distribution of nutrients and O₂ concentrations, which are inversely related. The North
838 Atlantic is generally best oxygenated, followed by the South Atlantic, South Pacific,
839 Indian, and North Pacific regions. As discussed previously, this reflects the development
840 of young, well-oxygenated sub-surface waters in the Atlantic. Similarly, the concentrations
841 of nutrients, as well as average water depth/sigma-theta, increase in the order listed above.
- 842 2. For the PCAs of the global dataset and well-oxygenated water masses (**Figure 10A,B**), the
843 distribution of Mn is inverse to Fe and the other micronutrients discussed above,
844 highlighting Mn cycling in well-oxygenated waters that broadly reflects well known, non-
845 redox-based processes such as photoreduction and/or external fluxes.

846 3. The PCA for O₂-depleted waters (**Figure 10C**) also shows a strong correlation with
847 depth/sigma-theta and nutrients (Cd, P, Zn, Si), which are the variables most closely
848 aligned with PC1 (59.1%). The different ocean basins are arrayed along PC1, and primarily
849 reflect differences in nutrient availability. The relative abundance of nutrients in the O₂-
850 depleted waters of these ocean basins is also similar to the order observed in the global
851 dataset, with higher concentrations in the North Pacific and decreasing in the Indian, South
852 Pacific, North Atlantic, and South Atlantic basins. Note that we did not perform an
853 ANOVA or other test of the significance of these difference in concentrations. Compared
854 to the global PCA, however (**Figure 10A and B**), the relationship between O₂ and nutrients
855 is weak in O₂-depleted waters (O₂ is more closely aligned with PC2 instead of PC1).
856 4. Although most of the variance between O₂-depleted waters of different basins is attributed
857 to nutrients, PC2 (22.3%) reflects different controls on redox-sensitive elements and O₂
858 compared to the global dataset. Specifically, PC2 identifies Mn and Fe as behaving roughly
859 similar and inversely with O₂ concentrations. In other words, higher Mn and Fe are found
860 to correspond to lower O₂ concentrations, and this appears to be most important for the
861 North Pacific and Indian Ocean basin data. This relationship is reasonable because the
862 dissolved forms of Mn and Fe are expected in low-O₂ water masses due to their redox-
863 dependent solubility. This is supported by a PCA of GEOTRACES data from the ETNP
864 that shows a strong correspondence of Mn and Fe with nitrite (Bolster et al., 2022).
865

866 This analysis identifies a few key features that define the major redox controls in the
867 modern ocean and potential geochemical signals that record this behavior. First, there is a clear
868 grouping of nutrients and bioessential elements (Cd, Ni, P, Si, Zn) whose cycling is similar and
869 whose concentrations can pinpoint well-oxygenated, high-density waters. We suggest that these
870 are linked via water mass age. As discussed above in Section 2.2.1, variation in O₂ ages is an
871 important control on bottom water O₂ as well as O₂ within ODZs, ultimately resulting in the
872 differences in O₂ seen between ocean basins and across N-S transects (**Figure 8**). Elevated
873 nutrients are also closely tied to O₂ ages because they reflect similar inputs from remineralization
874 (**Equation 1** and **Equation 2**) as well as limited ventilation or re-supply from nutrient-starved
875 surface waters.

876 In O₂-depleted waters, however, the relationship between nutrients and O₂ is weaker. The
877 correlation between the bioessential elements and depth/sigma-theta in **Figure 10** reflects the
878 increase of dissolved concentrations from remineralization via the biological pump (Liu et al.,
879 2022). Importantly, the concentrations of these nutrient-type trace elements are typically much
880 more elevated in ODZ regions relative to oxygenated regions (**Figure 9**). Differences in
881 concentrations of bioessential elements and/or the depth of the O₂ minima drive the differences
882 between O₂-depleted waters of different ocean basins, which are arrayed along the PC1 axis: water
883 depths and nutrients are both highest in the North Pacific (also seen in **Figure 9**), followed by the
884 Indian, South Pacific, North Atlantic, and South Atlantic basins. This generally corresponds to the
885 age of upwelling water-masses, with the oldest, most nutrient-replete waters found in the Pacific
886 and relatively younger, more nutrient-deplete waters in the Atlantic (Karstensen et al., 2008). As
887 discussed previously, the PCA therefore provides further evidence that the geochemical
888 composition of trace elements—in addition to O₂ levels, CO₂, pH—are related to water-mass age
889 (Section 2.1.3).


890 For water masses with O₂ concentrations >100 μM, Fe and Mn diverge (**Figure 10B**). In
891 the global dataset, Mn is positively correlated with O₂ whereas it is negatively correlated with O₂

892 in O₂-depleted waters. Dissolved Fe is generally inversely correlated with oxygen, regardless of
893 whether O₂ is high or low. We hypothesize that the Fe-O₂ inverse relationship reflects that Fe is a
894 limiting nutrient for primary productivity in many modern ocean basins (Martin et al., 1994).
895 Additionally, inputs of total dissolved Fe (dominantly Fe²⁺) in well-oxygenated waters below
896 ODZs in the Arabian Sea and Peru Margins are sourced by hydrothermal plumes as well as
897 dissolution and desorption from slope sediments (Moffett and German, 2020, Resing et al., 2015,
898 Horner et al., 2015) (**Figure 8**). In the South Atlantic, dissolved Fe and Co are both elevated, even
899 under oxic conditions below the ODZ core, because they can be stabilized in the upwelling zone
900 by abundant organic ligands and subsequently transported laterally into oxygenated waters (Liu et
901 al., 2022).

902 The inverse correlation between Mn and O₂ is important because Mn is not a limiting
903 nutrient and its cycling reflects more than redox processes. For example, nutrient profiles are
904 characterized by very low concentrations in the eutrophic zone from uptake during primary
905 productivity, but elevated dissolved Mn concentrations at the same depths can result from supply
906 from continental runoff near the mouths of rivers and dust inputs near continental margins. This is
907 observed off the coast of the ETNP, such as near the mouth of the Río Balsas, Mexico (Bolster et
908 al., 2022, Landing and Bruland, 1987). Additionally, photoreduction of Mn oxides can result in
909 higher Mn in surface waters than expected (Sunda et al., 1983). Below ODZs, where dissolved O₂
910 concentrations are elevated from old intermediate and bottom waters, elevated Mn is observed
911 from hydrothermal seafloor activity that result in high fluxes of Mn but low dissolved Fe, which
912 in contrast is quickly oxidized and titrated out of solution. Compared to Fe, oxidation of Mn is
913 kinetically slower (Moffett and German, 2020) and hydrothermal Mn plumes can persist (e.g., the
914 East Pacific Rise in **Figure 8**). High Mn concentrations in deep, well-oxygenated waters have also
915 been observed in the Arabian Sea (Moffett and German, 2020) and in the ETNP (Bolster et al.,
916 2022).

917 Therefore, the combination of bioessential elements, Fe, and Mn in a given water mass can
918 be useful for characterizing the productivity and redox dynamics of a given region. First, a
919 correlation between Fe and Mn is a good indicator of O₂-deficient conditions, whereas the lack of
920 a correlation may indicate other non-redox processes and therefore are more likely to represent
921 waters with more O₂. Higher concentrations of bioessential elements (P, micronutrients) primarily
922 reflect water mass age and ocean-scale circulation patterns. These patterns have potential promise
923 for more nuanced understanding of redox in ancient oceans, if some assumptions are made about
924 how these signals are transferred to marine sedimentary records.

925

926
927
928
929
930
931

Figure 10: Principal component analysis of GEOTRACES data (GEOTRACES Intermediate Data Product Group, 2021), including depth, sigma-theta, CTD-collected O_2 concentrations, and Cd, Mn, Fe, Ni, Zn, Si, and P concentrations. (A) PC1 and PC2 of all data for the Indian (Ind), North Atlantic (NAtl), North Pacific (NPac), South Atlantic (SAtl), and South Pacific (SPac). (B) PC1 and PC2 for samples where O_2 concentrations are $> 100 \mu\text{M}$. (C) PC1 and PC2 for samples where O_2 concentrations are $< 100 \mu\text{M}$ as a rough filter for ODZs. Note that the axes scales differ for each plot.

932

933 2.2.4 Implications for fingerprinting ancient redox processes

934 In the last decade, there has been a broad push to advance paleoredox proxy calibrations
 935 beyond the Black Sea and other modern euxinic basins, and to better understand our ability to
 936 recognize ODZ-like settings in the ancient past. Targeted sediment and water column studies from
 937 individual ODZs, as well as data collection programs like GEOTRACES have played a major role
 938 in this important frontier. To be clear, the translation between water column geochemistry and
 939 sedimentary geochemistry is not straightforward. Nonetheless, the use of proxies necessitates
 940 understanding the links and limitation for the application of redox-sensitive and/or bioessential
 941 elements from sediments as a reflection of water column concentrations and/or processes.

942 An important finding from the PCA results and recent studies is a reminder of the strong
 943 link that benthic and diagenetic processes also have on water column geochemistry, which must
 944 be integrated into paleoredox interpretation. The geochemical cycles of Fe and Mn are often
 945 interpreted as paleoredox proxies, as the burial of Fe-Mn oxides—linked to the areal extent of
 946 oxygenated bottom waters—is an important sink for many redox-sensitive trace elements,
 947 impacting their availability and isotopic compositions in seawater. Iron cycling is more directly
 948 traced via Fe isotopes and the abundance of Fe within specific mineral fractions, i.e. Fe speciation
 949 used to distinguish between euxinic from ferruginous conditions (Raiswell et al., 2018). The PCA
 950 in **Figure 10** indicates a strong link between O_2 and Mn and Fe cycling within ODZs. As reviewed
 951 in Section 2.2.1, the concentrations of Fe and Mn are primarily sourced from benthic fluxes, and
 952 thus reflect diagenetic processes, but their accumulation and transport within the water column are
 953 related to water column redox conditions allowing for their persistence.

954 We suggest that there is an important need to more specifically calibrate the integrated
 955 impact of benthic processes on Fe and Mn-based paleoredox proxies. The GEOTRACES analyses
 956 builds on recent studies suggesting that Fe speciation ratios, and particularly those intended to
 957 characterize ferruginous conditions—can be complicated by sedimentary transformation of Fe-
 958 bearing mineral phases. Indeed, ODZs offer the only modern marine analogue of so called
 959 ‘ferruginous’ conditions, but multiple lines of evidence suggest that ferruginous conditions may

960 have been widespread in the past and likely characteristically different than today. Modern
961 ferruginous lakes may actually represent the best analogues for ancient ferruginous marine settings
962 because modern high marine SO_4^{2-} limits Fe mobilization due to pyrite formation (Swanner et al.,
963 2020). That said, modern studies can provide a framework for interpreting ancient Fe/Mn cycling
964 while simultaneously constraining the limitations of these proxies for understanding ancient
965 paleoredox environments lacking true modern analogues (Pasquier et al., 2022, Hepburn et al.,
966 2020, Slotznick et al., 2020, Slotznick et al., 2022).

967 Specifically, early diagenetic processes readily impact the distribution of Fe-bearing
968 phases, including redox reactions involving Fe(III)-(oxyhydr)oxide under oxic or anoxic water
969 columns. As discussed in Section 2.2.3, the impact of this can be observed in elevated Mn and Fe
970 concentrations in low- O_2 waters (**Figure 10**). As a result, Fe speciation may be most strongly linked
971 to benthic Fe fluxes which remobilize Fe across redox gradients (Scholz et al., 2011, Moffett and
972 German, 2020, Bolster et al., 2022). For example, **Figure 8** shows elevated bottom water Fe along
973 the Peru margin slope both within and outside the ODZ, which is supported by Fe speciation data
974 indicating sedimentary remobilization within the ODZ and deposition along the ODZ fringes
975 (Scholz et al., 2014a, Scholz et al., 2014b, Lam et al., 2020). The sediment-water interface is also
976 itself a redox gradient, with Fe (and Mn) mobilization from anoxic pore fluids to the water column
977 and deposition downslope (Severmann et al., 2006). Ultimately the extent of the effect of the
978 benthic Fe flux on Fe speciation ratios is determined by the abundance of sulfide, which in turn is
979 related to the degree of organic carbon loading. Because ODZs are commonly loci of high organic
980 carbon burial, where some Fe(II) diffuses from the pore fluids to the water column, a significant
981 portion of Fe(II) must also be stabilized by sulfide during early diagenesis. Regardless, the net
982 effect of reduction of Fe(III)-minerals in reducing sediments is to decrease highly reactive pools
983 of Fe (e.g., FeHR/Fet) (Pasquier et al., 2022).

984 Similar benthic fluxes for Mn (Scholz et al., 2014a), Co (Liu et al., 2022), I (see excess I^-
985 > 500 nM in **Figure 8**) and likely other trace metals also indicate that analogous combinations of
986 diagenetic fluxes and low water-column O_2 are expected to also impact concentrations, enrichment
987 factors, and normalized ratios (e.g., [metal]/[Al]) of redox-sensitive elements in the sedimentary
988 record more broadly. Diffusive benthic fluxes of other elements such as sulfide and U are also
989 expected in ODZs due to the concentration gradients that form during early diagenesis (Lau et al.,
990 2020). Notably, the GEOTRACES data suggest that high productivity regions where oxidized
991 solid phases can be transported downslope may result in lower-than-expected proxy ratios for a
992 low- O_2 setting.

993 This discussion is an important reminder that early and late diagenetic processes can
994 strongly impact the sedimentary geochemical record post-depositionally but also more directly
995 impact water column conditions that are critical for linking environmental and biotic change
996 through time. Therefore, mechanistic studies that probe the relative roles of water-column and
997 sedimentary geochemical processes on proxy records continue to be a major area of research in
998 understanding past ocean redox.

999

1000 2.3 Anthropogenic impacts on ocean redox

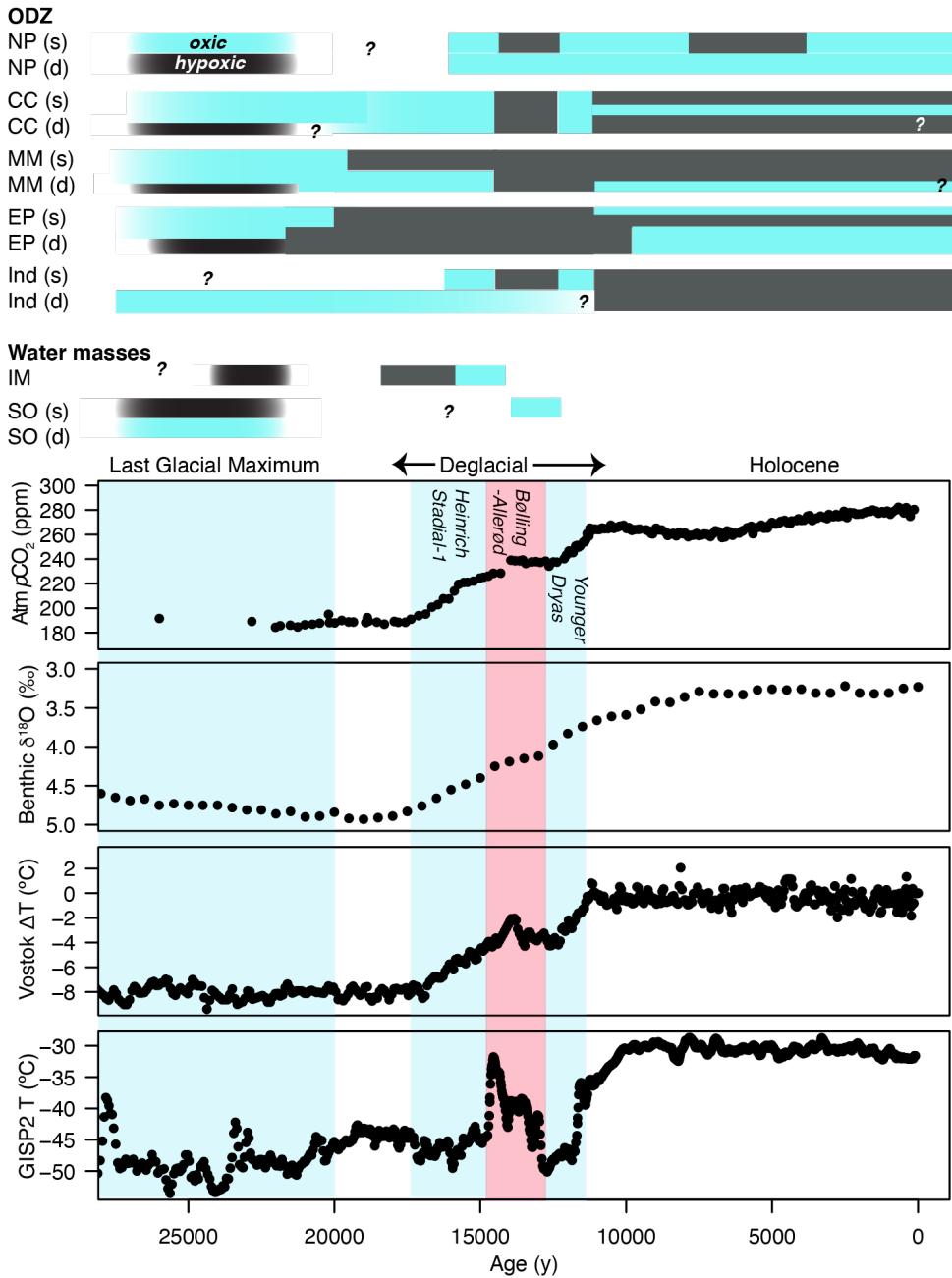
1001 The evidence for anthropogenic impacts on ocean redox conditions indicates significant
1002 declines in dissolved O_2 concentrations for much of the ocean (Keeling et al., 2010, Breitburg et
1003 al., 2018, Oschlies et al., 2018). Since 1950, a 2% decline in marine O_2 has been observed
1004 (Schmidtko et al., 2017, Stramma et al., 2008). Supporting this, a decrease in atmospheric potential
1005 O_2 (APO), which reflects exchange of O_2 with the oceans, was observed from 1990 to 2010 in the

1006 northern and southern hemisphere (Keeling et al., 2010). Based on this measure, the oceans are
1007 estimated to be losing \sim 40 Tmol O₂ yr⁻¹. In the 2014 Intergovernmental Panel on Climate Change
1008 (IPCC) report (Hoegh-Guldberg et al., 2014), decreases in dissolved O₂ were recognized that are
1009 consistent with warming temperatures, increased stratification and microbial respiration, coastal
1010 eutrophication, and drawdown of O₂ in semi-enclosed seas, coastal boundary systems, some
1011 eastern boundary upwelling ecosystems, subtropical gyres, and the deep sea. From 1970 to 2010,
1012 the upper 1000 m of the ocean lost 0.5 to 3.3% of its dissolved O₂ content (Bindoff et al., 2019),
1013 with the magnitude of decrease modulated by interannual and inter-decadal climate variability
1014 (Cooley et al., 2022). The area of expanded OMZs since the 1950s is approximately equivalent to
1015 the area of the European Union, with the volume of completely anoxic waters quadrupling over
1016 that time span (Breitburg et al., 2018). The expansion of coastal waters that are now hypoxic
1017 includes a compilation of 500 sites, more than 90% of which were previously not known to be
1018 hypoxic (Breitburg et al., 2018).

1019 This trend toward more extensive and more severe hypoxia is expected to continue over the
1020 next century. Community Earth System Models suggest that O₂ may decrease in the subsurface by
1021 approximately 0.05 to 0.15 mmol m⁻³ (equivalent to a 4 to 11% decrease compared to 1995-2014
1022 levels) by 2100 depending on the model boundary conditions and the assumed emission scenario
1023 (Kwiatkowski et al., 2020). Spatially dissolved O₂ was modeled to decrease most significantly in
1024 the North Pacific and in parts of the Southern Ocean (Kwiatkowski et al., 2020). Model predictions
1025 for globally decreasing O₂ are in strong agreement with each other, but vary regionally depending
1026 on changes in wind stress, coastal processes, and organic matter supply. Confidence that ODZs
1027 and seasonally hypoxic waters will expand is high but changes in productivity from climate- and
1028 wind-driven upwelling is less clear. There is high confidence that future predicted hypoxia will
1029 impact commercial fisheries and habitat loss. Additive effects on ecosystems between ocean
1030 acidification, warming, and hypoxia, especially in productive upwelling regions, have been
1031 recognized to be a growing concern for marine environments and impacts on humans (Bindoff et
1032 al., 2019, Cooley et al., 2022).

1033 The direct anthropogenic effects on ocean redox conditions are myriad (Breitburg et al.,
1034 2018, Cooley et al., 2022). Direct effects on solubility (i.e., higher temperatures decreasing O₂
1035 saturation) account for \sim 15% of total global oxygen loss, with a significant impact (\sim 50%) in the
1036 upper 1000 m (Helm et al., 2011, Schmidtko et al., 2017). The burning of fossil fuels has decreased
1037 atmospheric O₂ (Keeling and Manning, 2014), leading to lower O₂ dissolved in seawater. In shelf
1038 seas, seasonal bottom-water hypoxia occurs due to warming thanks to riverine nutrient loading
1039 and freshwater input, leading to stratification, which reduces O₂ penetration into deep waters, and
1040 productive conditions, which increases O₂ demand. In eastern boundary upwelling systems,
1041 intensification of ocean upwelling leads to enhanced anoxia and acidification, but uncertainty
1042 remains for specific regions due to contradictory observations. Anthropogenic eutrophication,
1043 including organic matter addition and pollution-induced atmospheric inputs of iron, have enhanced
1044 deoxygenation (Breitburg et al., 2018, Cooley et al., 2022). By 2100, dissolved O₂ is expected to
1045 decrease in critical marine biomes, including coastal seas, coral reefs, kelp systems, upwelling
1046 zones, and polar regions, with varying severity (Kwiatkowski et al., 2020).

1047 Indirect mechanisms of warming temperatures, including greater stratification and changes
1048 to circulation patterns, are more difficult to accurately represent and predict (Oschlies et al., 2018)
1049 but are significant (Breitburg et al., 2018). Understanding the mechanisms linking surface winds
1050 to upwelling in key productive regions of the ocean, mainly in coastal regions, is a critical need
1051 for predicting the extent and severity of future hypoxia (Hoegh-Guldberg et al., 2014). Model


1052 improvements that are needed include better representation of transport processes, higher spatial
1053 resolution, and a focus on wind forcings and overturning of the deep ocean (Oschlies et al., 2018).
1054 Another key need is to better understand how microbial metabolic feedbacks will respond to
1055 changing temperature, which will ultimately drive O₂ concentrations in the deep ocean. Where
1056 nutrient trends (e.g., nitrate) regionally lead to redox stratification is another area of needed future
1057 study, with significant uncertainty in how warming will result in ocean deoxygenation in
1058 subtropical oceans, especially for major ODZs (Cooley et al., 2022). Additionally, incorporation
1059 of improved biogeochemical schemes, including redox-dependent nutrient stoichiometries, would
1060 improve GCM predictions of anthropogenic effects on ocean O₂ distributions (Oschlies et al.,
1061 2018).
1062

1063 3 Recent: Evolution of ocean redox on glacial-interglacial timescales

1064

1065 Quaternary climate changes, marked by glacial-interglacial cycles driven by shifts in
1066 Earth's orbital parameters, extend the timescale of processes impacting ocean redox described
1067 above in Section 2. These processes can include broader changes in climate that drive fluctuations
1068 in the O₂ sources and sinks (**Figure 3**). Previous research on ocean O₂ change on glacial-interglacial
1069 timescales has focused predominantly on the deglaciation since the Last Glacial Maximum (LGM;
1070 ~27 to 20 ka). Reconstructions of changes in the ocean redox state, including changes in ODZs,
1071 over this interval are instructive because the deglacial period (18 to 11 ka) represents a relatively
1072 rapid and major global climate warming event, punctuated by shorter-lived cooling and warming
1073 periods (**Figure 11**). Over this time, sea surface temperatures are estimated to have increased by ~
1074 4 to 8 °C (Osman et al., 2021) and atmospheric pCO₂ by ~80 ppm (Petit et al., 1999, Monnin et
1075 al., 2001, Lüthi et al., 2008).

1076 In this section, we summarize changes in ocean O₂ and ODZs that reflect aggregated
1077 climatic signals from major changes in orbital parameters and specifically the warming from a
1078 world with extensive continental ice sheets through the Holocene (last 10 ka) to a period of relative
1079 climate stability. The examples in this section can provide useful insight into the future of ocean
1080 oxygenation from anthropogenic warming and climate change. Therefore, research in developing
1081 qualitative and quantitative O₂ proxies, reconstructing O₂ depth gradients, and increasing spatial
1082 sampling of sites important for ODZ and water-mass redox reconstructions are all critical needs
1083 (Section 3.1). Further, integrating oceanographic, climatic, and modeling constraints are necessary
1084 to understand how regional and global climate factors compete or balance to impact the overall
1085 redox landscape, including ODZ development (Section 3.2). Last, we discuss the role of sea-level
1086 change on redox conditions—a factor that can be overlooked for this time period (Section 3.3).
1087

1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

Figure 11. Overview of redox and climate reconstructions from the Last Glacial Maximum (LGM), through the Deglacial, and into the Holocene. The Deglacial was punctuated by the Bølling-Allerød warming event and the Younger Dryas cooling event. Relative changes in oxic (blue) and intermediately/severely hypoxic (gray) conditions are shown for ODZs and key water masses (summarized from Moffitt et al., 2015 and other sources in text). (s) indicates shallow and (d) indicates deep. NP = North Pacific/Subarctic Pacific, CC = California Current, MM = Mexico Margin, EP = Equatorial Eastern Pacific, Ind = Indian Ocean, IM = Iberian Margin, SO = Southern Ocean. Benguela Current not shown due to lack of glacial-interglacial variability. Climate proxy records, top to bottom: atmospheric pCO_2 (Lüthi et al., 2008), global benthic $\delta^{18}\text{O}$ stack (Lisiecki and Stern, 2016), Vostok surface temperature changes calculated from snow δD (Petit et al., 1999), and Greenland Ice Sheet Project 2 (GISP2) temperature reconstructed from snow $^{18}\text{O}/^{16}\text{O}$ (Grootes and Stuiver, 1997).

1098

1099 **3.1 Patterns of ocean O₂ change since the Last Glacial Maximum**

1100 Globally, shallow-marine O₂ is higher during the LGM compared to the deglaciation,
1101 whereas the deep ocean was less well oxygenated (**Figure 11**) (Lu et al., 2020a, Jaccard and
1102 Galbraith, 2011). Similarly, reconstructions of O₂ during older Pleistocene periods suggest cooling
1103 is broadly associated with low O₂ in intermediate and deep waters—e.g., the Amundson Sea of the
1104 Southern Ocean (Lu et al., 2016), the Iberian Margin (Hoogakker et al., 2015), and North Atlantic
1105 (Hoogakker et al., 2016). These broad redox shifts are also observed in ODZs during the LGM,
1106 but regional variability exists that reflects both differences between northern and southern
1107 hemisphere warming and cooling over the deglaciation as well as regional climate (**Figure 11**; e.g.,
1108 upwelling strength). The extent of ODZs since the LGM has been reconstructed for the Subarctic
1109 Pacific, California Current, Baja and Mexico Margins, the Equatorial Pacific and Humboldt
1110 Current, the Benguela Current, and the Oman/Pakistan Margin (Moffitt et al., 2015). Using
1111 sediment core logs from continental margins (within 400 nautical miles of the continental
1112 coastline, plus the Galapagos Islands), evidence for various degrees of hypoxia, relative to the
1113 impact on bilaterian behavior and habitability, were compiled from: (1) sedimentary data, and
1114 specifically the presence of laminations that form from the absence of bioturbation; (2) benthic
1115 foraminiferal diversity, density, and abundance, based on thresholds defined by specific taxa; and
1116 (3) geochemical proxies, including N isotopes that trace water masses and nutrients, redox-
1117 sensitive trace elements that record redox and/or productivity (Re, Cr, U, Mo, Cd), and C isotopes
1118 of planktonic forams that track productivity and carbon export. Evaluating the compilation as a
1119 whole, and accounting for the incomplete temporal and spatial coverage of the sediment core
1120 records, ODZs exhibited a trend toward more anoxic conditions during the deglaciation and toward
1121 the present (Moffitt et al., 2015). Actual trends in redox conditions vary between ODZs, with some
1122 reflecting larger scale climatic changes and others modulated by regional processes. Below, we
1123 briefly summarize the synthesis from Moffitt et al. (2015). We refer the reader there for additional
1124 details and references therein and include more recent studies where applicable (**Figure 11**).

1125 **Subarctic (North) Pacific:** the extensive, intermediate water ODZ here is controlled by
1126 poorly ventilated, nutrient-rich and O₂-depleted North Pacific Deep Water. Today, there is a
1127 seasonal ODZ in the Gulf of Alaska, with expansion of hypoxic waters toward Russia in the winter
1128 ((Paulmier and Ruiz-Pino, 2009); **Figure 7**). During the LGM, the deep North Pacific was
1129 ferruginous and became more oxic during the deglaciation (Jaccard et al., 2009), with greatest O₂
1130 depletion during peak Bølling-Allerød warming (~14 ka). The region overall experienced more
1131 extensive and severe hypoxia during warming periods (intensified at 14 ka), with relatively
1132 shallow hypoxia (~600 mbsl), attributed to lower O₂ solubility and higher respiration rates
1133 (Praetorius et al., 2015). The absence of hypoxia during Younger Dryas cooling (~12.9 to 11.7 ka)
1134 suggests a high sensitivity to global climate trends. This ODZ became relatively well oxygenated
1135 at 10 ka, but the return of hypoxia at 4 ka throughout the region also supports a global climate
1136 control. Recent investigations of the stratigraphic relationships between ash, volcanic fractions
1137 (ϵ Nd), redox-sensitive trace metals, and benthic foraminifera in the Gulf of Alaska suggest that
1138 regional volcanism, stimulated by ice unloading of the Cordilleran ice sheet, resulted in iron
1139 fertilization that led to deoxygenation (Du et al., 2022). This mechanism is proposed to have acted
1140 to further enhance and sustain deoxygenation resulting from broader deglacial warming trends.

1141 **California Current region:** the ODZ here reflects seasonal upwelling that intensifies in
1142 the boreal spring, with accompanying high productivity. Today the loci of O₂ depletion occurs
1143 within 200 km of the coastline and within relatively deep waters (~600 mbsl) extending almost 1.5
1144 km deep (**Figure 7**). O₂ is replenished by North Pacific Intermediate Water which is mixed with

1145 poorly oxygenated southern-sourced intermediate waters. During the LGM, intermediate waters
1146 (~1000 mbsl) were oxygenated whereas deep waters were hypoxic. During the Bølling-Allerød,
1147 intermediate to severe hypoxia occurred at all depths, with a respite to oxic conditions at 12 ka,
1148 midway through the deglaciation and synchronous with Younger Dryas cooling observed
1149 throughout the Northern Hemisphere. During Termination 1B (11.7 ky), regional hypoxia
1150 returned, especially at shallower depths (400-600 mbsl), that continued through the deglaciation.

1151 **Mexico Margin:** the ODZ in this region is modulated by high productivity, a sharp
1152 pycnocline, and slow circulation. The upper boundary of the ODZ is shallow (up to 100 mbsl in
1153 the south; **Figure 7**) due to the intrusion of intermediate waters with low O₂. During the LGM, only
1154 the deepest waters were depleted in O₂. Bottom-water oxygenation increased through the
1155 deglaciation to the present day, though the timing is spatially variable. Changes in redox are
1156 potentially linked to the depth of the thermocline and nutricline, as well as relatively low
1157 productivity during the LGM because of reduced upwelling. In sum, regional controls appear to
1158 modulate ODZ variability in the Mexico Margin, compared to the other sites that more strongly
1159 reflect northern hemispheric climatic changes.

1160 **Humboldt Current and Eastern Equatorial Pacific:** the ODZ in this region (roughly
1161 equivalent to the ETSP) is driven by upwelling of nutrient-rich southern hemispheric intermediate
1162 waters and extreme productivity, resulting in a thick, intense, and shallow ODZ (up to 50 mbsl and
1163 ~500 m thick zone of extremely O₂-depleted waters; **Figure 7**). During the LGM, only deep waters
1164 were characterized by mild hypoxia with surface and intermediate waters well-oxygenated. Deep
1165 waters became oxygenated from 10 to 5 ka, depending on the depth and spatial location. Shoaling
1166 of the ODZ began ~17 ka with severe hypoxia present at the upper boundary of the ODZ. Hypoxia
1167 at intermediate depths persisted throughout the deglaciation but attenuated at shallow depths by
1168 10 ka, returning to oxic conditions. Changes in redox through the deglaciation follow Southern
1169 Hemisphere patterns instead of Northern Hemisphere patterns. More recently, qualitative and
1170 quantitative constraints from planktonic foraminiferal I/(Ca+Mg) (to constrain the upper water
1171 column) and a benthic foraminiferal $\delta^{13}\text{C}_{\text{carb}}$ isotope gradient (to constrain bottom water O₂) from
1172 cores off the coast of Costa Rica and offshore in the eastern equatorial cold tongue of the eastern
1173 tropical Pacific indicate relatively low O₂ (40-60 $\mu\text{mol kg}^{-1}$) in intermediate and deep waters during
1174 the LGM and during the early deglaciation (Hoogakker et al., 2018). In contrast to previous studies,
1175 surface O₂ at these sites is reconstructed to be relatively low during the LGM.

1176 **Indian Ocean:** this vertically extensive ODZ (>1000 m; **Figure 7**) is controlled by nutrient
1177 delivery, ventilation by intermediate and deep waters, and mixing of deep waters. The ODZ is
1178 seasonally dynamic due to monsoonal patterns that control upwelling of nutrient-rich waters.
1179 Changes in the ODZ reflect changes in productivity, potentially due to climate-driven monsoons.
1180 Therefore, ODZ weakening is observed during cooling events (Heinrich 1 and the YD); changes
1181 here are rapid. More recent constraints on the Arabian Sea ODZ from benthic forams, I/(Ca+Mg),
1182 and authigenic U records indicate that bottom-water oxygenation was higher during the glaciation
1183 and then steadily decreased during deglaciation into the Holocene (Lu et al., 2020a). Estimates of
1184 bottom water O₂ concentration indicate that it has remained below 30 $\mu\text{mol kg}^{-1}$ over the last 30
1185 ka, reaching modern levels of ~5 $\mu\text{mol kg}^{-1}$ around 11 ka (Lu et al., 2020a, Lu et al., 2022).

1186 **Benguela Current:** Compared to the above examples that track major hemispheric climate
1187 trends, the Benguela Current ODZ is interpreted to reflect regional climatic controls. This ODZ is
1188 associated with high productivity and seasonal upwelling. It is shallower and more spatially limited
1189 compared to other ODZs (**Figure 7**). Hypoxic waters are relatively shallow, reaching depths up to
1190 50 m. During the LGM, bottom-waters were continuously anoxic (Riedinger et al., 2021). The

proxy records here do not suggest a change in oxygenation driven by deglaciation but instead regional changes in productivity and upwelling (Mollenhauer et al., 2002, Moffitt et al., 2015). However, the role of deep-water circulation patterns has recently been argued to impact productivity and thus ODZ severity during the deglaciation (Riedinger et al., 2021).

Southern Ocean: The Southern Ocean plays an important role in controlling O₂ concentrations in deep waters that subsequently ventilate the ocean elsewhere. Records of redox-sensitive trace metals (Mn/Al, authigenic U) and reconstructions of opal burial fluxes, collected from two sediment cores near the Weddell Sea where the Antarctic Bottom Water forms **Figure 4**, suggest that during the LGM, low organic carbon supply to the seafloor corresponded to poorly oxygenated deep waters (Jaccard et al., 2016). Semi-quantitative constraints on surface-water O₂ from I/(Ca+Mg) planktonic foram records collected from a sediment core in the Amundson Sea suggest upper ocean O₂ was below 70 $\mu\text{mol kg}^{-1}$ during the LGM (Lu et al., 2016). During cold phases of the deglaciation (identified in the Northern Hemisphere, e.g., Younger Dryas), Weddell Sea records indicate higher bottom-water O₂ concentrations (Jaccard et al., 2016). This is attributed to a decrease in iron fertilization by dust and enhanced ventilation of the deep ocean. Differences in O₂ concentrations in the Southern Ocean compared to the deep North Atlantic during Heinrich Stadial 1 (17.5-14.7 kyr) suggest hemispheric differences in ventilation and a larger influence of Fe supply in this site. However, during Younger Dryas cooling the Southern Ocean experienced a transient increase in ventilation also observed in records globally. This example reflects the potential for individual water masses to reflect both global and regional processes controlling redox conditions—and that they can sometimes conflict.

In addition to reconstructions of major ODZs, proxy records have also been implemented to track O₂ content variability for other key water masses. For example, O₂ of bottom waters along the Iberian Margin track northward recirculating North Atlantic Deep Water. Reconstructions of bottom-water O₂ using a calibrated carbon isotope gradient reconstructed with infaunal and epifaunal benthic forams suggest levels were below 200 $\mu\text{mol kg}^{-1}$ during the LGM and as low as 160 $\mu\text{mol kg}^{-1}$ during Heinrich-1 (~15 ka), after which O₂ increased rapidly to levels well above 230 $\mu\text{mol kg}^{-1}$ (Hoogakker et al., 2015). Reconstructions of bottom-water O₂ from the deep northeast Atlantic obtained using the same method also indicate that O₂ was lower during the LGM (Hoogakker et al., 2015).

3.2 Mechanisms linking deglacial warming with ODZ change

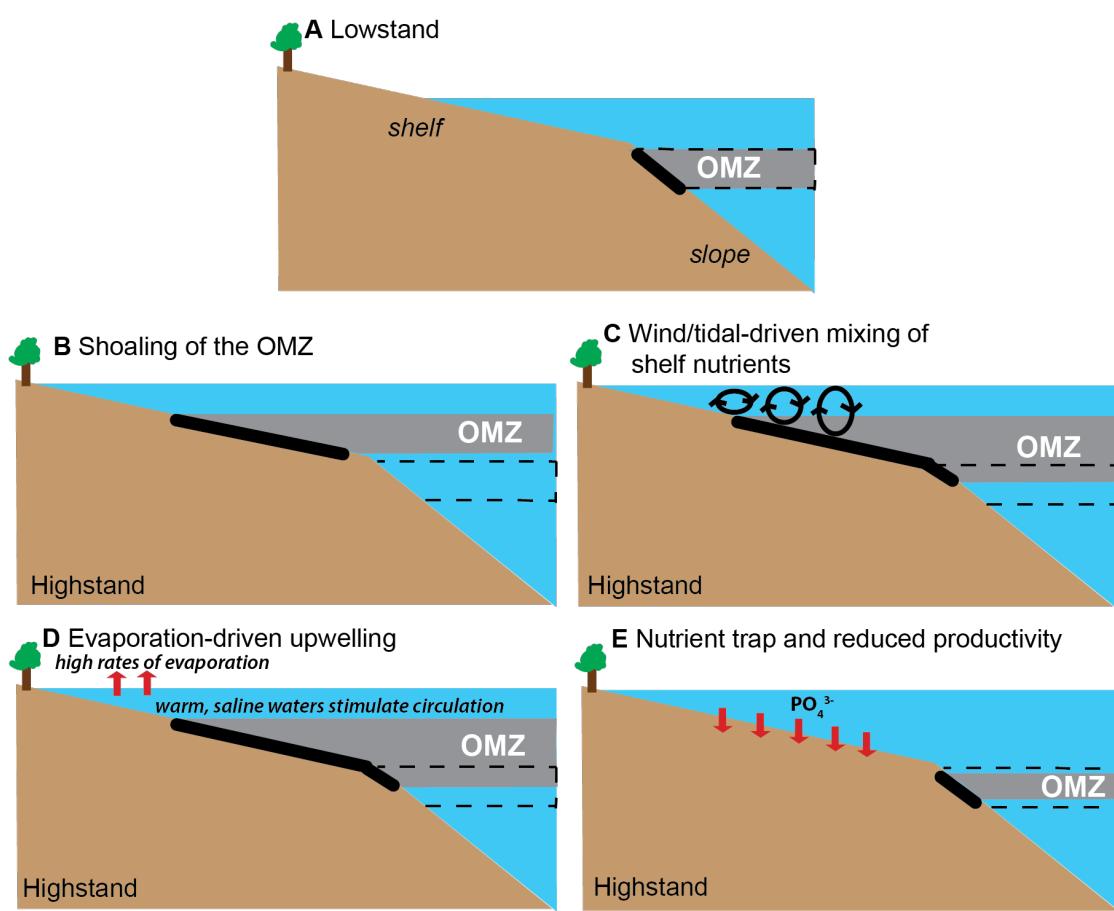
Deoxygenation of deep waters during glacial intervals may be linked to a combination of reduced ventilation and slower circulation that impact O₂ resupply as well as higher productivity rates (Lu et al., 2020). Warming during interglacial intervals can impact ocean oxygenation through: (1) direct solubility effects of higher ocean temperatures; (2) changes in O₂ demand, and (3) changes in ocean circulation patterns (Jaccard et al., 2014). Lower solubility of O₂ from warming results in expansion of ODZs (Jaccard et al., 2014, Keeling et al., 2010, Praetorius et al., 2015). Further, photosynthetic and microbial respiration rates are argued to be temperature dependent (Eppley, 1972, Matsumoto, 2007, Boscolo-Galazzo et al., 2021), and so warming also increases O₂ demand in ODZs (Matear and Hirst, 2003, Bograd et al., 2008). The processes described here illustrate how global climate changes can be connected to parallel patterns in oxygenation or deoxygenation in ODZs, which are also subject to regional controls and variability.

Following ODZ expansion, the release of iron from hypoxic sediments has been proposed to act as a positive feedback to sustain hypoxic conditions (Davies et al., 2011, Praetorius et al.,

2015, Du et al., 2022). Similarly, enhanced nutrient delivery from eutrophication due to a more vigorous terrestrial hydrologic cycle can intensify O₂ demand during warming intervals (Keeling et al., 2010). Conversely, a database of sediment nitrogen isotopes indicate a substantial increase in the rates of denitrification through the deglaciation (Galbraith and Kienast, 2013). Coupled with lower dust fluxes during interglacial periods (Winckler et al., 2008), nutrient limitation may have dominated most areas of the ocean (i.e., outside of ODZs and river mouths).

Global changes in ocean circulation during deglaciation are hypothesized to have resulted in ventilation of the deep sea that would have increased O₂ concentrations in intermediate and deep waters. A key example is the strengthening of the Atlantic Meridional Ocean Circulation (AMOC) during the Bølling-Allerød Antarctic Cold Reversal (14.5 to 12.5 ka), associated with warming in the Northern Hemisphere. This is associated with a major expansion of oxygen-deficient waters in the Northern Hemisphere and in the Indian Ocean (Jaccard and Galbraith, 2011, Jaccard et al., 2014). This can reflect the rapid delivery of freshwater to the surface ocean during warming that decreased O₂ supply to the thermocline and resulted in greater stratification, especially at locations key to subsurface water formation (Jaccard and Galbraith, 2011). Conversely, in the ETNP, a weakening of the AMOC during early deglaciation (~16 to 18 ka) intensified upper water column O₂ depletion, perhaps with greater productivity from higher nutrient delivery from southern deep waters and higher upwelling rates (Hoogakker et al., 2018).

Additionally, the O₂ content in upwelling eastern boundary currents varied during deglaciation, also due to warming and cooling on large spatial scales. Changes in upwelling strength of these boundary currents, which control O₂ resupply, predominantly reflects land-ocean temperature differentials and associated wind regimes (Deutsch et al., 2014, Wang et al., 2015). For example, a decrease of wind-driven upwelling since the late Holocene has been reconstructed in the eastern equatorial Atlantic (Kohfeld et al., 2005).


As discussed in Section 2.3, areas of future work include further characterizing the mechanistic relationships between temperature, microbial rates and O₂ demand, and circulation patterns and O₂ resupply. Such relationships are critical for model predictions of future and past ocean redox changes.

3.3 Sea-level change: does oxygen rise or fall?

Many studies of modern and recent anoxia do not consider sea level as a major control on the ODZ and instead favor explanations involving processes on shorter timescales. However, there remain many unanswered questions regarding the importance of sea level in controlling ODZs that are relevant on glacial-interglacial as well as geologic timescales, a pressing gap in the context of future global warming and sea-level rise. Specifically, sea-level rise (i.e., marine transgression) is speculated to have increased anoxic conditions via expansion of ODZs during many of the mass extinctions in the Paleozoic and Mesozoic (Hallam, 1989, Hallam and Wignall, 1999). For example, sea-level rise has been associated with the organic-rich black shales of the Cretaceous Oceanic Anoxic Events (OAEs) (Jenkyns, 1980, Leckie et al., 2002, Voigt et al., 2006). Indeed, sea level has varied dramatically over the Phanerozoic, as reflected in sequence stratigraphic patterns (Hallam, 1989, Haq et al., 1987, Vail et al., 1984). Ice volume fluctuations and mantle processes drive this variability—the latter including changes in plate spreading and subduction rates, as well as more general dynamic topography linked to mantle flow—and it is characterized by regional and global scale geometries.

Multiple mechanisms linking sea-level rise to fluctuations of the ODZ have been suggested that rely on changes in the demand of O₂ in the ocean via variations in nutrient cycling (Figure

1283 **12**); yet, these proposed conceptual models do not make consistent predictions for changes in
 1284 oxygenation. Several models suggest that a sea-level rise would lead to shoaling of anoxic waters
 1285 (**Figure 12B**), resulting in inhospitable continental shelves (Hallam, 1989, Saltzman et al., 2015,
 1286 Lau et al., 2016). Moreover, marine transgression would result in a larger continental shelf area
 1287 influenced by wind- or tidal-mixing (**Figure 12C**), leading to greater recycling of sediment-sourced
 1288 nutrients that increase productivity and O_2 utilization (Jenkyns, 1980). Finally, enhanced
 1289 evaporation during transgressions has been proposed to generate oxygen-poor warm and salty
 1290 waters (**Figure 12D**) that stimulate circulation and upwelling (Arthur et al., 1987). In contrast, other
 1291 models link higher sea levels with a diminished ODZ and a more ventilated ocean: greater shelf
 1292 area has been proposed to act as a nutrient buffer (**Figure 12E**), sequestering phosphate and
 1293 reducing productivity and thus O_2 utilization (Bjerrum et al., 2006, Ozaki and Tajika, 2013). In
 1294 addition to nutrient cycling, changes in the continental shelf area from glacial regression and
 1295 interglacial transgression are expected to also impact the export of organic carbon to the deep
 1296 ocean, resulting in lower and higher oxygenation of deep water, respectively (Wallmann, 2003).
 1297 Incorporating these nutrient effects, modeling results suggest sea-level change is a primary factor
 1298 on primary production, and therefore deep ocean O_2 , during deglaciation but is also modulated by
 1299 changes in circulation and weathering of nutrients (Tsandev et al., 2008).
 1300

1301 **Figure 12.** Potential effects proposed on a generic O_2 minimum zone due to a transition from a (A) lowstand to (B-E) highstand.
 1302 See text for further details for each scenario. These changes could occur concurrently with changes in temperature-driven O_2
 1303 solubility, increased stratification or changes in circulation due to global climate, or temperature-dependent changes to the
 1304 biological pump.
 1305

1306 Many of the mechanisms that have been proposed to link sea-level rise with expanded
 1307 ODZs (**Figure 12**) are challenging to support directly by observations. Biogeochemical models that
 1308 suggest that the size of the phosphate nutrient reservoir may reduce drastically with sea-level rise,
 1309 limiting deoxygenation (Bjerrum et al., 2006, Ozaki and Tajika, 2013), also lack geological
 1310 evidence from redox proxies. Because sea-level change occurs alongside major climate change, it
 1311 is not straightforward to directly link sea level with ocean redox changes (e.g., Tsandev et al.,
 1312 2008). In comparison, studies of recent changes to ODZs do not consider local sea level. Studies
 1313 that compile sediment data to reconstruct changes in the depth and intensity of OMZs (such as
 1314 those discussed above) either use a simple or no eustatic adjustment to correct for changes in depth
 1315 and shoreline location (Reichart et al., 1998, Cannariato and Kennett, 1999, Jaccard and Galbraith,
 1316 2011, Moffitt et al., 2015). However, regional sea level change can vary dramatically (by 30 to 50
 1317 m), and sediment-water column feedbacks, including redox-dependent burial and benthic diffusive
 1318 fluxes, may play an unrecognized role in modulating ODZs. Therefore, this represents an
 1319 important frontier in future research of past and future redox change.
 1320

1321 4 Ancient: Evolution of ocean redox on geologic timescales

1322 The history of oxygenation of the atmosphere is intrinsically linked to the oxidation of the
 1323 ocean, and vice versa. For ancient studies, atmospheric O₂ thresholds are commonly referenced as
 1324 percent of atmospheric levels (PAL), which relates *p*O₂ levels back to that relative to the modern
 1325 atmosphere, or 21%. For marine oxygen, the PAL definition requires determining the atmospheric
 1326 O₂ level required to sustain a specific distribution of marine O₂.

1327 When possible, it is important to link a given proxy or zone to specific O₂ levels, allowing
 1328 diverse element cycles to act as O₂ tracers in modern and ancient systems. These thresholds can
 1329 be difficult or not realistic to define for major redox zones or specific proxies. Therefore, often
 1330 proxies and tracers are referenced back to the “paleoredox ladder” shown in **Figure 1**. Further, the
 1331 O₂ thresholds may vary depending on multiple factors (e.g., pH, competing oxidants/reductants,
 1332 biotic vs abiotic reactions). In **Table 1** we summarize O₂ and/or redox thresholds for a suite of
 1333 commonly applied paleoredox proxies. These constraints are based on combinations of modeling
 1334 studies, modern field observations, and experiments. For redox-sensitive elements, these
 1335 thresholds can be defined for both oxidation—for example, at what O₂ levels does IO₃⁻ form—or,
 1336 conversely, reduction—for example, at what O₂ levels does IO₃⁻ reduction occur?

1337 Importantly, as many thorough and recent reviews for modern and ancient tracers already
 1338 exist, it is not our aim to replicate those here. Citations are given to these reviews and syntheses
 1339 and appropriate details are given to provide context for discussion and interpretations.
 1340

1341 **Table 1.** Summary of proxies with binary shifts related to O₂ evolution. For proxies relevant for
 1342 the GOE (S-MIF, red beds, redox-sensitive detrital minerals, and I/(Ca+Mg)), the timing of
 1343 change is based on detailed analysis of median last/first occurrence from Hodgkiss and Sperling
 1344 et al. (2022), while other proxies are derived from the discussion of change point analysis results
 1345 in Section 4.
 1346

1347 Interval of change	1348 Proxy	1349 O₂ implications	1350 Timing of change (Ga)	1351 Proxy review citation
1352 Stage 1: Neoarchean oxygen oases	1353 Geochemical proxies for	1354 Local marine O ₂ <10 μmol kg ⁻¹	1355 Oldest at 2.9 Ga	1356 (Olson et al., 2013)

	aerobic Fe/Mn cycling			
Stage 2: Great Oxidation Event and mid-Proterozoic	S-MIF	Disappearance associated with $>10^{-3}$ % PAL	2.19 (CPA = 2.51)	(Poulton et al., 2021, Uveges et al., 2023)
	Red beds	Deposition associated with 3×10^{-2} % PAL	2.48	(Farquhar et al., 2011)
	Redox sensitive detrital minerals	Disappearance from sedimentary record suggestive of 5 % to 5×10^{-4} % PAL	2.22	(Johnson et al., 2014)
	I/(Ca+Mg)	Increase suggestive of $>1 \mu\text{mol kg}^{-1}$ local marine O_2	2.45	(Lu et al., 2020b, Hardisty et al., 2014)
	$\delta^{34}\text{S}_{\text{CAS}}$	Increase suggestive of presence of SO_4^{2-} reservoir and $>10^{-3}$ % PAL	2.38	(Johnson et al., 2021, Johnson et al., 2019)
Stage 3: Neoproterozoic Oxidation Event and a persistently stratified ocean	$\delta^{53}\text{Cr}_{\text{shale}}$	Variability from crustal values suggestive of >1 % PAL	0.83	(Planavsky et al., 2014b)
	$[\text{Re}]_{\text{shale}}$	Higher values \rightarrow Decrease in euxinic/ferruginous seafloor area	0.59	(Sheen et al., 2018)
	$[\text{V}]_{\text{shale}}$	Higher values \rightarrow Decrease in euxinic/ferruginous/manganous seafloor area	0.54	(Nielsen, 2020)
	$[\text{Mo}]_{\text{shale}}$	Higher values \rightarrow Decrease in euxinic seafloor area	0.54	(Algeo and Lyons, 2006, Hlohowskyj et al., 2021)
Stage 4: OOE-to-OAE transition and ventilation of the deep ocean	Ce/Ce*	Lower values \rightarrow Decreased redox stratification	0.43	(Wallace et al., 2017)
	$\delta^{34}\text{S}_{\text{py}}$	Higher values \rightarrow Decrease in euxinic seafloor area	0.38	(Canfield, 2001)
	$[\text{U}]_{\text{shale}}$	Higher values \rightarrow Decrease in euxinic/ferruginous seafloor area	0.37	(Partin et al., 2013)
	$\delta^{238}\text{U}_{\text{CAS}}$	Higher values \rightarrow Decrease in euxinic/ferruginous seafloor area	0.39	(Zhang et al., 2020, Lau et al., 2019)
	I/(Ca+Mg)	Decreased redox stratification	0.21	(Lu et al., 2020b, Lu et al., 2018)

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

In **Figure 13** we provide a synthesis of the relationship between atmospheric, surface ocean, and deep ocean redox through geologic time, which considers both PAL and the dominant marine redox zones based on the available electron acceptors (e.g., **Figure 1**). This synthesis is in part bolstered by an evaluation of data from the Sedimentary Geochemistry and Paleoenvironments (SGP) database (Farrell et al., 2021) and determining changes through time via a change point analysis (CPA) (Cole et al., 2020). We use this analysis to support the reconstruction of timing of ocean redox changes over Earth history and implications of these changes on geobiological events in **Figure 13** and **Figure 14**. Specifically, we separate atmosphere-ocean oxidation into four distinct

1357 eras distinguished by a combination of steady states and transitions in atmospheric oxygenation
1358 (**Figure 2**).

1359

1360 Stage I: An anoxic atmosphere-ocean system, with isolated O₂ oases present in the
1361 Neoarchean.

1362 Stage II: Initial atmosphere and near-surface oxidation at the Great Oxidation Event. Stage
1363 II includes the middle Proterozoic. Oxidative weathering on land increased the
1364 sources of redox-sensitive elements to the ocean, thus increasing their reservoir
1365 sizes. Atmospheric O₂ may still be at levels allowing for marine O₂ oases.

1366 Stage III: Increase in atmospheric oxygenation in the Neoproterozoic and into the early
1367 Paleozoic transitioning to an air-sea equilibrium regime. While widespread deep
1368 ocean anoxia and vertical/lateral redox stratification was maintained, a shift toward
1369 less reducing seafloors decreased the sinks of many redox-sensitive elements, thus
1370 increasing their reservoir sizes.

1371 Stage IV: Increase in atmospheric oxygenation in the late Paleozoic leading to deep ocean
1372 ventilation. A shift toward more oxidizing seafloors decreased the sinks of many
1373 redox-sensitive elements, further increasing their reservoir sizes.

1374

1375

1376 We note that the transition into Stage IV ushers the marine redox state from the era of so-
1377 called ‘Oceanic Oxic Events’ (OOE), where broad marine anoxic conditions are episodically
1378 punctuated by oxygenation events, to the ‘Oceanic Anoxic Event’ (OAE) era, where broadly oxic
1379 marine conditions are episodically punctuated by anoxic events.

1380 Importantly, the CPA used to define these stages broadly shows consistent patterns of
1381 redox evolution. As shown in Table 1, the change points occur for groups of proxies that require
1382 analogous redox thresholds. That said, we note that the timing of transitions between the stages
1383 remain poorly defined and that the CPA results for a given element are partially dependent on the
1384 availability of data. In many cases, data availability is biased toward oxygenation or anoxic events
1385 and thus there are limited constraints on baseline redox conditions, which is an important frontier
1386 for improving confidence in defining the timing and nature of redox transitions. Future studies
1387 might use mass balance models of Re, Cr, Mo, and U to link the timing of their relative change
1388 points to reservoir size increases driven by dynamic ferruginous and euxinic conditions; however,
1389 here, due to data limitations for some elements, we more conservatively interpret their changes
1390 across the Neoproterozoic and Paleozoic to reflect shrinking seafloor area characterized by both
1391 ferruginous and euxinic conditions due to progressive oxygenation of the deep ocean during the
1392 transition between Stages III and IV.

1393

1394

1395

1396

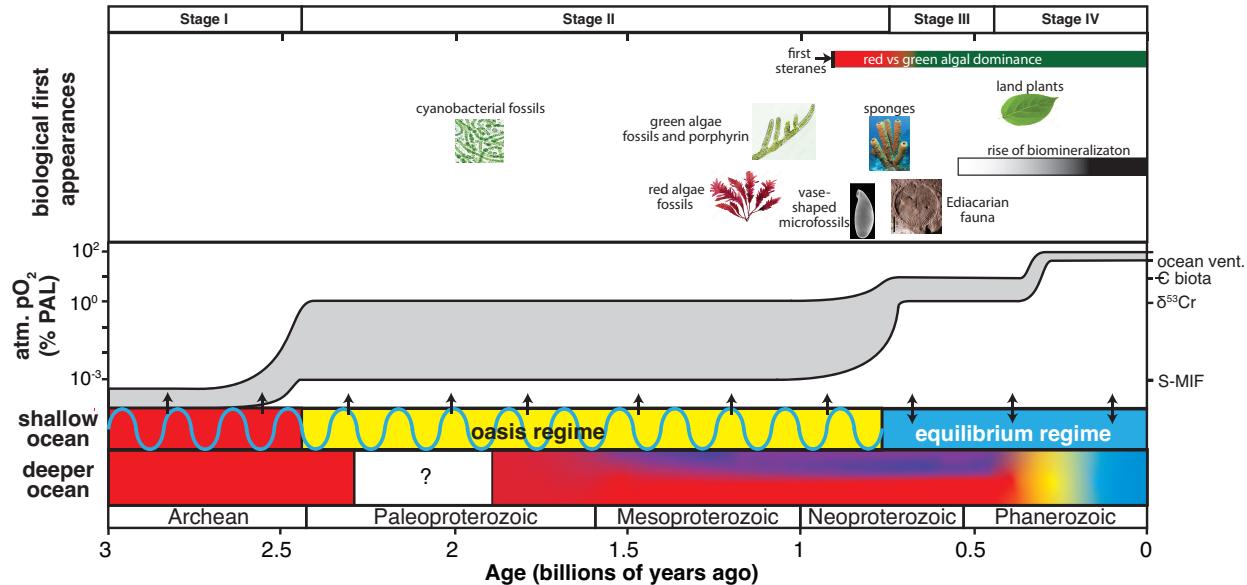


Figure 13. Top Panel: Important evolutionary first appearances from the geologic record. Further descriptions and citations are described in the text (specifically Section 4.3.2). Middle Panel: Reconstruction of atmospheric O_2 concentrations through time in percent present atmospheric levels (PAL). Axes on right shows the proposed O_2 levels for proxies used to reconstruct the O_2 curve. \mathbb{C} refers to Cambrian biota (Sperling et al., 2015a). Bottom Panel: Representation of shallow and deep ocean redox regimes. Colors correspond to Figure 1. Red is indicative of ferruginous conditions, purple indicative of euxinic conditions, yellow indicative of iodinous conditions, and blue indicative of oxic conditions. Oscillating blue line indicates shallow variability linked to oxygen oases.

1397
1398
1399
1400
1401
1402
1403
1404

1405
1406

4.1 Stage I: Neoarchean Disequilibria and O_2 oases

1407

1408

4.1.1 What is an O_2 oasis?

1409
1410
1411
1412
1413
1414
1415

Most models for the oxygenation of Earth's atmosphere include marine O_2 oases—isolated hot spots of local O_2 production at levels above that expected from equilibrium with the atmosphere—as a precursor or contemporary phenomenon (Fischer, 1965, Kasting, 1992, Olson et al., 2013). Specifically, the main source for O_2 in the atmosphere both today and in the ancient past is via oxygenic photosynthesis. Models of ancient oceans predict similar regions of marine O_2 sources and sinks to and from the atmosphere as that observed today (Olson et al., 2013), but these trends are exacerbated by several important factors.

1416
1417
1418
1419
1420
1421
1422

First, a key characteristic of ancient O_2 oasis is O_2 concentrations in excess of that sustainable through sea-air equilibrium. O_2 oasis models suggest the potential for O_2 concentrations from *in situ* production alone as high as $10 \mu\text{mol kg}^{-1}$ even if the atmosphere is completely anoxic. These maximum values can vary according to a number of factors, discussed below, but are also important in setting the threshold at which the atmospheric O_2 concentrations transition from an O_2 oasis to an equilibrium ocean where air-sea exchange of O_2 determines stable shallow marine O_2 levels (Reinhard and Planavsky, 2022).

1423
1424
1425
1426
1427
1428

Second, anoxic oceans allowed for the accumulation of relatively high concentrations of dissolved Fe, Mn, and sometimes sulfide, sourced from combinations of continental, sediment, and hydrothermal fluxes and local biogeochemistry (e.g., sulfate reduction). These reductants would act as O_2 titrants that limited the spatial extent of marine O_2 accumulation both laterally and vertically. O_2 oasis models (Reinhard et al., 2016b) explicitly consider Fe as the primary marine O_2 titrant. In oligotrophic areas beyond these O_2 oases, local O_2 sources are mostly limited to air-

1429 sea exchange, meaning the maximum O₂ concentrations are set by equilibrium with the
1430 atmosphere. Importantly, the flux of reduced titrants can result in estimated minimum O₂
1431 concentrations well below the value set by air-sea exchange.

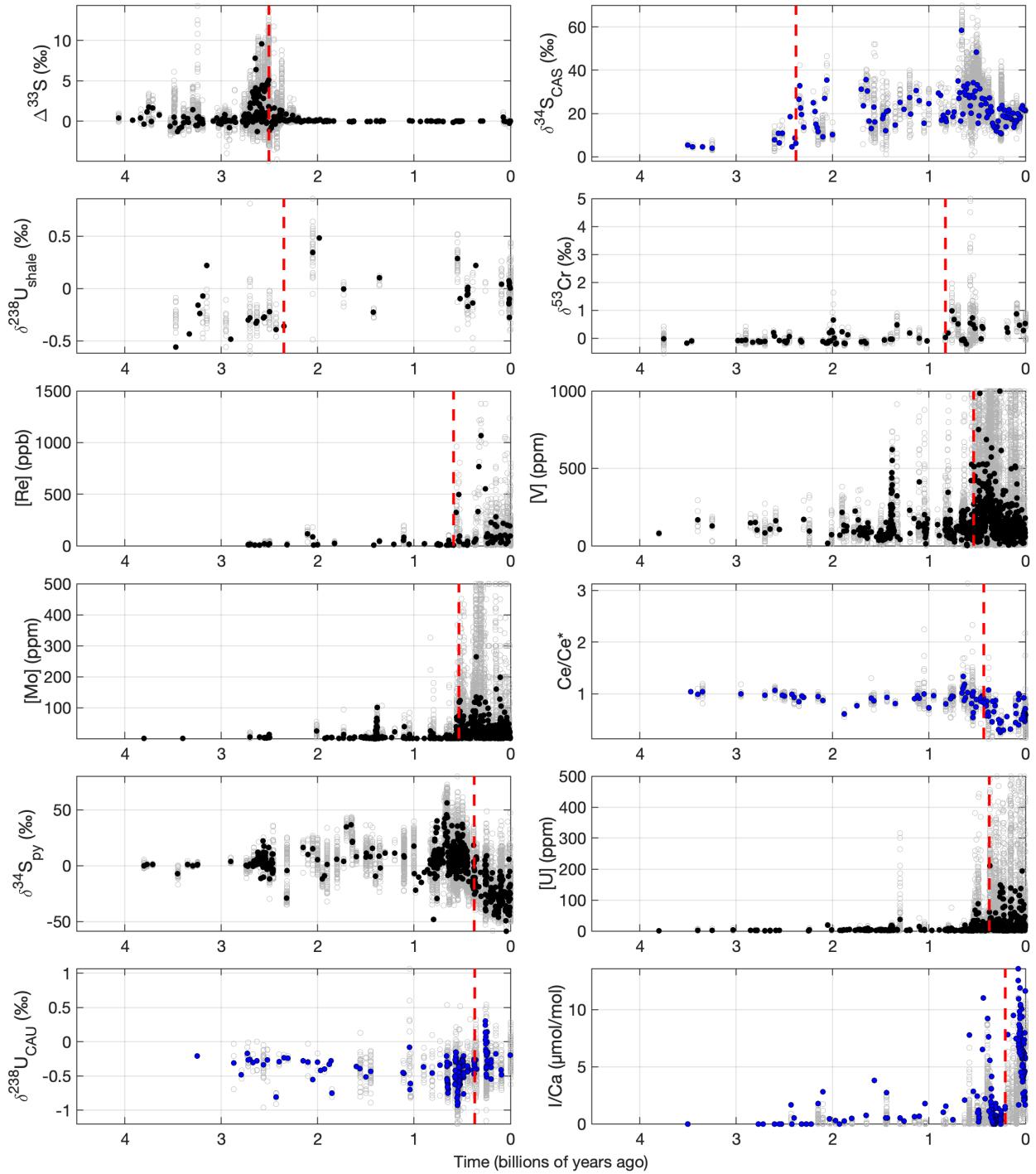
1432 The third key feature of O₂ oases is their spatiotemporal instability driven by daily and/or
1433 seasonal availability of nutrients and sunlight. Specifically, O₂ concentrations would have varied
1434 along with seasonal changes in light and upwelling intensity—a key driver of nutrient sources to
1435 shallow waters—that impact primary production and thus local O₂ concentrations even today
1436 (**Figure 4**). During periods of minimum biological O₂ production, local O₂ concentrations would
1437 have trended toward air-sea equilibrium.

1438

1439 *4.1.2 What is the geochemical evidence for O₂ oases?*

1440 While O₂ oases are a predicted feature for the transition period between the emergence of
1441 oxygenic photosynthesis and the oxygenation of Earth's atmosphere, direct geochemical evidence
1442 for their existence is limited and often controversial (reviewed in Reinhard and Planavsky, 2022).
1443 Frankly, this is not surprising—even if they were common—given the challenges toward
1444 recognizing O₂ oases with proxy records. These include but are not limited to: their spatially
1445 isolated nature, limited geologic preservation of shallow open ocean environments, contamination
1446 of oxidant signals given the long period of atmospheric oxygenation since the Great Oxidation
1447 Event (GOE, section 4.2), and the limited availability of sedimentary archives without significant
1448 high-temperature alterations that complicate clear interpretations of proxy evidence.

1449 While O₂ oases may have persisted well into the Proterozoic (see Section 4.2.6), the
1450 clearest evidence for their existence comes from the Archean, with the oldest dating back to nearly
1451 3.0 Ga. Two key basic observations are necessary to demonstrate an O₂ oasis: contemporary
1452 evidence for low atmospheric O₂—most prominently the presence of sulfur mass-independent
1453 fractionation (S-MIF; (Uveges et al., 2023))—and evidence for redox-active marine geochemical
1454 cycles requiring dissolved O₂ availability. The majority of this evidence is linked to oxidative
1455 cycling of Fe and Mn. Active Fe cycling is consistent with evidence for background ferruginous
1456 oceans during this time, and consequently, Fe fluxes from surrounding ferruginous waters are
1457 incorporated into O₂ oases models as the primary marine O₂ sink. Relevant proxies include $\delta^{98}\text{Mo}$,
1458 rare earth element (REE) pattern changes and the cerium anomaly (Ce/Ce*), and $\delta^{56}\text{Fe}$ anomalies
1459 that are all linked to oxidative cycling of Fe and/or Mn in the ~2.9 Ga Sinqeni formation
1460 (Planavsky et al., 2014a, Ossa et al., 2018, Riding et al., 2022), ~2.8 Ga Steep Rock Formation
1461 (Riding et al., 2014) and 2.5-2.68 Ga Campbellrand-Malmani platform (Czaja et al., 2012),
1462 respectively. While Fe isotope fractionations can be specifically linked to oxidation-reduction
1463 reactions, $\delta^{98}\text{Mo}$ and REE shifts are linked to Fe and Mn cycling through isotope fractionations
1464 and uptake specific to sorption on Fe/Mn oxides. Other interpretations of O₂ oases comes from
1465 putative evidence for methane oxidation—also in the ~2.8 Ga Steep Rock (Hayes, 1994)—and for
1466 local N oxidation in the ~2.7 Ga Jeerinah formation and Campbellrand-Malmani platform
1467 (Godfrey and Falkowski, 2009, Koehler et al., 2018).


1468

1469 *4.1.3 'Whiffs' vs O₂ oases*

1470 So-called “whiffs” of O₂ are distinct from marine O₂ oases in that they specifically imply
1471 accumulation of O₂ in the *atmosphere* at some combination of levels, time, or spatial scales below
1472 that required for the effective elimination of the S-MIF. Indeed, transient or low, but non-zero,
1473 levels of atmospheric O₂ are predicted to result from sea-to-air fluxes in association with O₂ oases.
1474 Thus, like O₂ oases, ‘whiffs’ are a pre-GOE phenomenon expected perhaps as early as the advent

1475 of oxygenic photosynthesis. Again similar to O₂ oases, direct evidence for ‘whiffs’ are
1476 controversial (Slotnick et al., 2022, Ostrander et al., 2019) and require the presence of S-MIF
1477 alongside evidence for weathering of redox-sensitive minerals and elemental cycles, but in this
1478 case linked to *terrestrial* environments.

1479 The earliest claims of ‘whiffs’ of atmospheric O₂ date back to 3 Ga and are evidenced from
1480 $\delta^{53}\text{Cr}$ fractionations requiring Mn and hence O₂ cycling on land (Crowe et al., 2013). These isotope
1481 fractionations may require as much as 1% PAL, or three orders of magnitude more than the pre-
1482 GOE O₂ concentration constrained by the S-MIF record (Cole et al., 2016). Given the presence of
1483 the S-MIF and lack of $\delta^{53}\text{Cr}$ fractionations beyond the rocks examined, this evidence requires
1484 temporally limited or strictly local atmospheric O₂ fluxes. Beyond $\delta^{53}\text{Cr}$ isotopes, most evidence
1485 for pre-GOE atmospheric O₂ fluxes comes indirectly from increases in the marine reservoir sizes
1486 of redox-sensitive metals—chiefly, S, Mo, and Re, but also N, Tl, Se, and U—sourced from
1487 oxidative weathering of terrestrial sulfides in the ~2.7 Ga Jeerinah formation and ~2.5 Ga Mt.
1488 McRae shale (Scott et al., 2011, Duan et al., 2010, Reinhard et al., 2009, Kaufman et al., 2007,
1489 Anbar et al., 2007, Ostrander et al., 2019, Stueeken et al., 2015, Kendall et al., 2013, Garvin et al.,
1490 2009). Indeed, modeling and experimental studies predict oxidative sulfide dissolution at $p\text{O}_2 <$
1491 10^{-3} % PAL—the threshold required for termination of the S-MIF (Johnson et al., 2021, Johnson
1492 et al., 2019, Reinhard et al., 2013a). An alternative hypothesis to transient and/or limited O₂
1493 increases is that O₂ oases may have existed in association with microbial mats in freshwater benthic
1494 and soil environments (Planavsky et al., 2021, Wilmeth et al., 2022, Lalonde and Konhauser,
1495 2015).

1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506

Figure 14. Proxy compilations averaged at 1 million year-bin intervals and listed in the order of their corresponding change point (vertical red lines). Carbonate records are shown in blue and shale records in black. The shale $[Mo]$, $[V]$, and $[U]$ records are derived from the SGP database (Farrell et al., 2021), filtered to only include samples where $Fe_{HR}/Fe_T < 1$, $[Mo] < 500$ ppm, $[U] < 500$ ppm, and $[V] < 1000$ ppm. Other records come from independent sources, including $[Re]$ (Sheen et al., 2018), Ce/Ce^* (Wallace et al., 2017), $I/(Ca+Mg)$ (Lu et al., 2018), $\delta^{238}U$ (Chen et al., 2021), and Cr isotopes (Cole et al., 2020, Mänd et al., 2022). S isotope compilation courtesy of B.C. Gill and additional sources (Present et al., 2020). S-MIF record from Uveges et al. (2023). Note that the binned data for $I/(Ca+Mg)$ show the maximum values of each 1 million year-bin interval and the corresponding change point. A paired t-test of the pre- and post- change point data populations revealed p -values are $< 10^{-5}$ for all proxies except for $\delta^{238}U_{sh}$ and $[Re]$ (p values equal 3.3×10^{-5} and 1.1×10^{-3} , respectively). A note about compilations that are not depicted: a compilation of Fe speciation was recently published and is not included here (Pasquier et al., 2022). As of this review,

1507 the $\delta^{98}\text{Mo}$ and ^{205}Tl compilations exhibit significant temporal gaps and therefore are not suitable for similar statistical treatment
1508 as the records shown above.

1509 1510 4.2 Stage II: The Great Oxidation Event and mid-Proterozoic 1511

1512 4.2.1 *What geochemical evidence is there for the GOE?*

1513 The Great Oxidation Event (GOE) was originally recognized from broad shifts in redox-
1514 sensitive minerals in sedimentary rocks. Specifically, the loss of detrital pyrite and other reduced
1515 minerals (e.g., uraninite, siderite; Johnson et al., 2014) and the appearance of red beds, gypsum
1516 deposits, and Superior-type iron formations, all mark the broad oxidation of S and Fe exposed to
1517 the atmosphere (reviewed in Farquhar et al. (2011)). Since then, multiple lines of geochemical
1518 evidence have been generated that support the GOE. Most prominently, the disappearance of S-
1519 MIF is well accepted as a marker for a transition to an atmosphere with $p\text{O}_2 > 10^{-3}$ % PAL (**Table**
1520 **1**). Other proxy records specific to the GOE include the transition from the absence to the presence
1521 of IO_3^- (Hardisty et al., 2014), increases in marine SO_4^{2-} (Blättler et al., 2018), transitions to
1522 aerobic N cycling (Zerkle et al., 2017), and increases in marine U concentrations (Partin et al.,
1523 2013).

1524 The combination of the disappearance of S-MIF and the sustained lack of Cr isotope
1525 fractionations constrain atmospheric O_2 to have increased from $<10^{-3}$ % PAL to a range of $\sim 10^{-3}$
1526 to 1 % PAL at the GOE. Unlike “whiffs” or O_2 oases, these geochemical transitions are broad and
1527 perhaps unidirectional and are thus less disputed as representing atmospheric O_2 . Part of the
1528 challenge for future work is providing quantitative constraints on the other oxidative cycles
1529 initiated at the GOE. For example, the O_2 concentrations necessary to support oxidative cycles for
1530 I and N are not well quantified and may help refine constraints on GOE atmospheric O_2
1531 concentrations.

1532 1533 4.2.2 *Great Oxidation Event or Great Oxidation Transition?*

1534 The GOE is debated to be a sharp binary switch in atmospheric O_2 at 2.33 Ga (Luo et al.,
1535 2016) versus a broad transition spanning >300 My (Gumsley et al., 2017, Poulton et al., 2021,
1536 Hodgskiss and Sperling, 2022). There are three primary issues that complicate our understanding
1537 of the length and timing of the GOE: (1) Poor age constraints, sampling biases, and differential
1538 timing among variable proxies (Hodgskiss and Sperling, 2022); (2) Recent evidence suggesting
1539 that the S-MIF transition was not binary and included multiple reversals over a prolonged period
1540 (Poulton et al., 2021); and (3) Sedimentary recycling of S-MIF that implies the potential for a lag
1541 time, by as much as 10-100 My, between the loss of S-MIF in the atmosphere and the preservation
1542 of the full transition in the geologic record (Reinhard et al., 2013b).

1543 In essence, the GOE is bookmarked by the initial and final loss of the S-MIF, occurring
1544 from 2.5-2.43 Ga initially and permanent loss near 2.22 Ga (Poulton et al., 2021). Importantly,
1545 given the potential for sedimentary recycling of pyrite retaining the presence of S-MIF even after
1546 its loss in the atmosphere, this could put the initial loss of the S-MIF closer to 2.6 Ga—hence
1547 overlapping with some so-called “whiffs” of O_2 . These interpretations of an earlier initiation of the
1548 GOE are also supported by both the initial transition in the $\text{I}/(\text{Ca}+\text{Mg})$ record (**Table 1**) and the
1549 appearance of red beds. The late complete disappearance of S-MIF puts the end of the GOE as late
1550 as 2.19 Ga, which implies potential overlap with the Lomagundi-Jatuli carbon isotope excursion,
1551 which has itself has been linked to oxygenation (Section 4.2.4).

1552 We note that the I/(Ca+Mg) record presents a significant opportunity to expand our
1553 understanding of the GOE (Hodgskiss and Sperling, 2022, Hardisty et al., 2014). Specifically, the
1554 current record across the GOE is from a coarse survey of Archean to Paleoproterozoic carbonate
1555 successions and analysis of more sections or stratigraphic analyses of individual sections spanning
1556 proposed GOE initiations could likely provide more insight into the timing of the first carbonate-
1557 bound I—i.e., dissolved marine IO_3^- —appearance in the rock record.

1558

1559 *4.2.3 What caused the GOE?*

1560 Given uncertainty of the timing and duration of the GOE, it is not surprising that a clear
1561 driving mechanism of the GOE has not been resolved. That said, multiple plausible candidates
1562 have been suggested, all linked in part to the inputs of O_2 to the atmosphere necessary to overcome
1563 the addition and large reservoir of reductants that titrate O_2 (reviewed in Lyons et al. (2014))—
1564 sources vs sinks. The proposed mechanisms for the GOE are outlined in **Figure 16**, with an
1565 emphasis on indirect geologic and biological mechanisms acting as initial drivers of geochemical
1566 evolution. On the source side, these drivers include, but are not limited to the biological advent of
1567 oxygenic photosynthesis, large igneous provinces, widespread glaciation, the initiation of plate
1568 tectonics, hydrogen escape, and a decrease in reductant fluxes related to impactors from space and
1569 abiotic and biotic methane formation.

1570 The simplest explanation for the GOE is that it marks the advent and/or proliferation of
1571 oxygenic photosynthesis (Fischer et al., 2016). Indeed, a fundamental question at the heart of the
1572 investigation of early O_2 is understanding when oxygenic photosynthesis itself evolved. If the GOE
1573 is the advent of oxygenic photosynthesis, this requires that pre-GOE evidence of aerobic processes
1574 record late-stage alteration or are non-specific to O_2 (Slotznick et al., 2022). Though molecular
1575 clocks support a pre-GOE origin for cyanobacteria and diversification at the GOE (Schirrmeyer
1576 et al., 2013, Fournier et al., 2021), we also note that the earliest fossil evidence for cyanobacteria
1577 comes from 1.9 Ga (Hofmann, 1976). Sterane biomarkers previously interpreted to indicate pre-
1578 GOE oxygenic photosynthesis (2-methyl-hopanes; (Brocks et al., 1999)) are non-diagnostic
1579 (Rashby et al., 2007) and records of these steranes in pre-GOE rocks have been re-interpreted to
1580 reflect younger contaminants (French et al., 2015). In this view, the rise of O_2 at the GOE itself is
1581 the clearest proxy for the emergence of cyanobacteria.

1582 Other models also link the GOE to enhanced O_2 production at this time—regardless of
1583 whether oxygenic photosynthesis may have existed prior to the GOE—with limited marine
1584 productivity maintaining low O_2 relative to reductant fluxes in the atmosphere/ocean. Specifically,
1585 a proliferation of oxygenic photosynthesis is tied to enhanced nutrient delivery to the oceans at the
1586 GOE (Gumsley et al., 2017). Importantly, this hypothesis builds on the likely temporal overlap
1587 between the GOE and Paleoproterozoic glaciation and low-latitude large igneous provinces (LIPs).
1588 Specifically, low latitude LIPs documented from this period are hypothesized to have triggered
1589 enhanced chemical weathering of continental flood basalts. Chemical weathering resulted in CO_2
1590 drawdown, ushering in the documented low-latitude glaciation but also supplying extensive
1591 nutrients. A nutrient-based origin to the GOE and other oxidation events is supported by increases
1592 in P contents of igneous rocks and sedimentary rocks at the GOE and later oxidation events (Cox
1593 et al., 2018, Alcott et al., 2022, Bayon et al., 2022). The increase in nutrients fueled photosynthetic
1594 activity which in turn increased O_2 fluxes to the atmosphere, initiating the GOE. Further, tectonic
1595 forcing—the initiation of plate tectonics in the Paleoproterozoic—may have resulted in greater
1596 subduction of carbon into the mantle as graphite or increased burial in association with Fe-oxides,

1597 which both could have led to an increase in atmospheric O₂ accumulation (Duncan and Dasgupta,
1598 2017, Zhao et al., 2023).

1599 The coincidence of the GOE with low latitude glaciation during the first great ‘Snowball
1600 Earth’ in the Paleoproterozoic also provides evidence for a potential tipping point with O₂
1601 overcoming reductive fluxes of methane (CH₄) at this time (Goldblatt et al., 2006, Pavlov et al.,
1602 2000). Similar to P, a change in marine Ni fluxes—a key micronutrient for methanogens—may
1603 have also played a role in limiting CH₄ fluxes (Wang et al., 2019). Other positive feedbacks leading
1604 to higher net O₂ export include the titration of reductants resulting from increasing the competitive
1605 niches of oxygenic over anoxygenic photosynthesizers (Ozaki et al., 2019) and increases in SO₄²⁻
1606 fluxes that supplied O₂ via pyrite formation and limited atmospheric CH₄ fluxes (Heard et al.,
1607 2020).

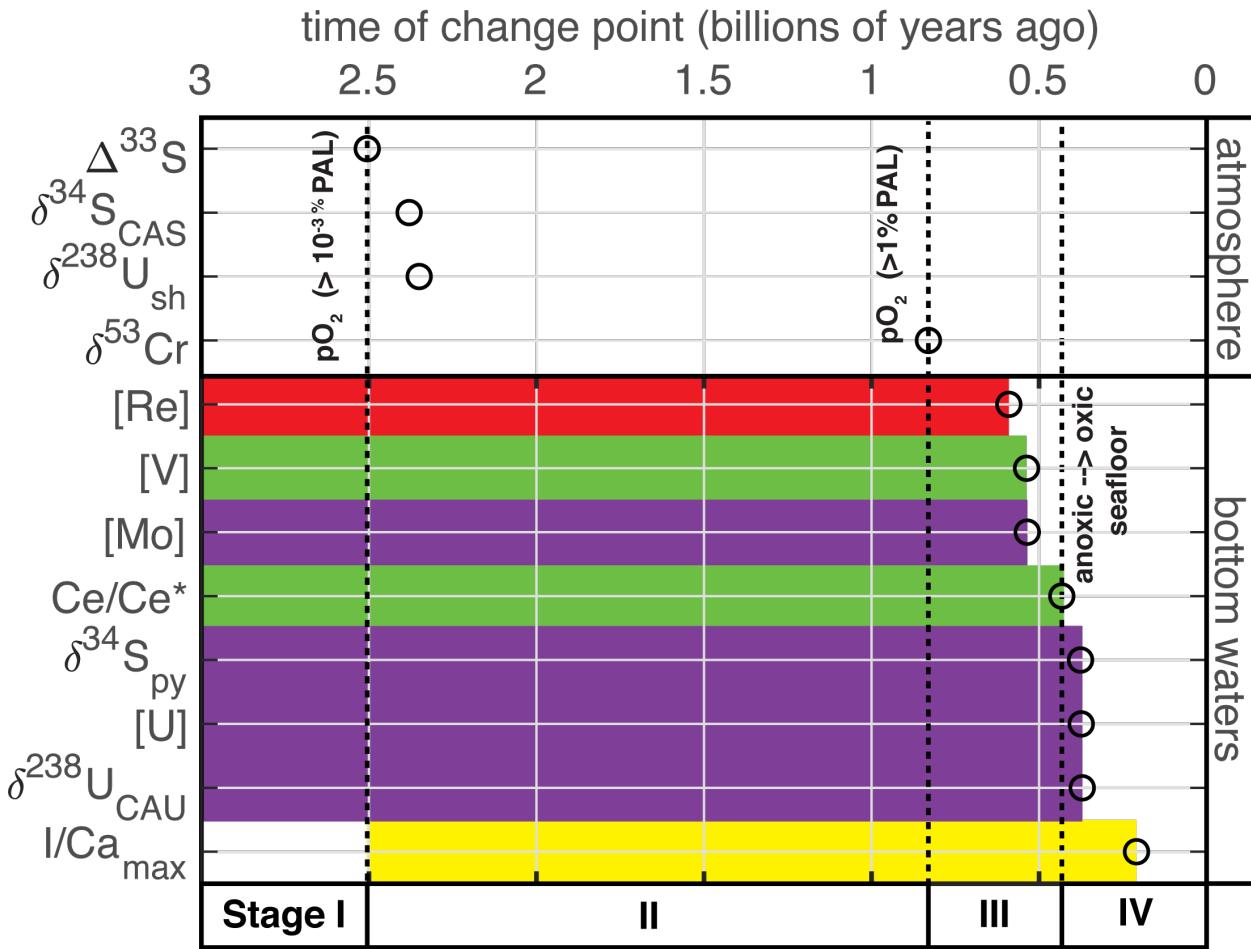
1608 On the flip side, a second model more explicitly ties the GOE to a decrease in reductants
1609 relative to O₂ sources. Such a process could have been protracted, with O₂ production via oxygenic
1610 photosynthesis predating the GOE but limiting atmospheric *p*O₂ to trace levels. For example, rapid
1611 crustal growth at 2.7 Ga may have resulted in an increase in subaerial relative to submarine
1612 volcanism leading to higher CO₂/H₂O and SO₂/H₂O ratios of volcanic gases compared to reduced
1613 C and S equivalents (Gaillard et al., 2011, Kump and Barley, 2007, Meng et al., 2022, Kadoya et
1614 al., 2020, Holland, 2009). Related mechanisms tie the development of an O₃ layer at the GOE as
1615 a new irreversible state (Goldblatt et al., 2006). More recently, models and spherule-bed records
1616 suggest oxygenation at the GOE was linked to lower reductant fluxes from impactors particularly
1617 prevalent during the late Archean (Marchi et al., 2021).

1620 4.2.4 *Lomagundi-Jatuli O₂ overshoot: Fact or fiction?*

1621 The Lomagundi-Jatuli event, or LJE, is the most positive and longest-lived carbon isotope
1622 excursion in Earth history. It lasted from 2.3-2.1 Ga and $\delta^{13}\text{C}_{\text{carb}}$ values often reach +10‰, with
1623 extreme values above +20‰ (Karhu and Holland, 1996, Prave et al., 2022). In the context of
1624 traditional carbon isotope interpretations (see *Box 1: Linking changes in redox conditions to the*
1625 *carbon isotope record*)—where positive $\delta^{13}\text{C}_{\text{carb}}$ excursions reflect increased organic carbon burial
1626 and thus an increase in marine and atmospheric O₂ budgets—the LJE has traditionally been
1627 interpreted to reflect a major increase in atmospheric O₂ (Karhu and Holland, 1996). As mentioned
1628 above, it remains unclear whether such an oxygenation event is coupled to the GOE or stands as a
1629 separate event. Follow up work in the last decade testing hypotheses of atmospheric/marine O₂
1630 increases has yielded mixed results, thus forcing reconsideration of the origins and interpretations
1631 of the carbon isotope excursion (Fakhraee et al., 2023).

1632 Beyond the carbon isotopes themselves, the strongest supporting evidence for oxygenation
1633 comes from the S and Cr isotope records. This includes both the S concentration and isotope
1634 composition of carbonate-associated sulfate (CAS) as well as records of S minerals, specifically
1635 gypsum and anhydrite, over this interval. Collectively, these widespread observations point to a
1636 large increase in the concentrations of dissolved SO₄²⁻ in the ocean over this interval (Blättler et
1637 al., 2018, Planavsky et al., 2012), which is consistent with atmospheric oxidation and increased
1638 weathering of terrestrial pyrite yielding higher SO₄²⁻ fluxes to and preservation within the ocean.
1639 Specifically, higher [CAS] point to increased dissolved ambient SO₄²⁻ abundance. Importantly,
1640 [CAS] is often overprinted to lower values during diagenesis (Gill et al., 2008, Lau and Hardisty,
1641 2022), so there is not currently a well-accepted explanation for how these increases might have
1642 resulted from any post-depositional alterations. Further, observed positive excursions in $\delta^{34}\text{S}_{\text{CAS}}$

1643 are linked to increases in pyrite formation and burial sourced from a relatively large marine SO_4^{2-}
1644 pool (Planavsky et al., 2012). Sulfate reduction to sulfide within larger SO_4^{2-} pools sustain larger
1645 Raleigh fractionations than smaller SO_4^{2-} pools, thus increasing $\delta^{34}\text{S}_{\text{sulfate}}$ as reduction continues.
1646 Notably, these $\delta^{34}\text{S}_{\text{CAS}}$ values track that of coeval $\delta^{34}\text{S}$ in evaporites, again making diagenetic
1647 interpretations difficult. The increase in the evaporite minerals gypsum and anhydrite during the
1648 LJE also independently point to an increase in marine SO_4^{2-} availability, and thus oxygenation to
1649 some degree, at least in shallow water settings (Blättler et al., 2018).


1650 More recently, positive Cr isotope values from 2.1–2.0 Ga mudstones of the Onega Basin
1651 provide strong evidence for atmospheric oxygenation exceeding 1.0% PAL (Mänd et al., 2022).
1652 We note that there is limited evidence for positive Cr isotope fractionations prior to 0.8 Ga,
1653 suggesting a baseline of atmospheric O_2 levels below this low O_2 threshold. Because mudstones
1654 and black shales—often necessary for the application of trace metals and their isotopes as
1655 paleoredox proxies—are relatively limited during the LJE excursion, the temporal extent of Cr
1656 isotope records—especially to older intervals—is currently limited. Future studies should focus on
1657 expanding the Cr isotope and related records to better understand oxygenation across the duration
1658 of the LJE.

1659 Other geochemical records fall short of identifying unambiguous oxidation during the LJE
1660 compared to preceding and subsequent time intervals. For example, there are $\text{I}/(\text{Ca}+\text{Mg})$ values
1661 higher than the Proterozoic baseline across the LJE (Hardisty et al., 2017), but relatively higher
1662 values are not uncommon in later Proterozoic intervals where widespread oxygenation is not
1663 invoked (Figure 14). Importantly, even the highest $\text{I}/(\text{Ca}+\text{Mg})$ values are still within a range
1664 observed within or adjacent to modern low O_2 zones. It might be easy to dismiss these
1665 observations—given that, like [CAS], $\text{I}/(\text{Ca}+\text{Mg})$ is easily diagenetically overprinted to lower
1666 values (Lau and Hardisty, 2022)—but they are consistent with other proxies as well. For example,
1667 the [U] record from black shales provides evidence for a larger U reservoir from greater surface
1668 oxidation of uraninite (Partin et al., 2013); however, this increase is small relative to later intervals
1669 and is also not resolvable with binned averages (Figure 14). Other trace element records in shales
1670 that similarly reflect reservoir sizes linked to broader oxidizing conditions (e.g., Mo, Cr) do not
1671 show clear increases across the LJE.

1672 Together, these records suggest oxidation concurrent with the LJE—which may or may not
1673 be linked with the GOE itself—but not to the degree implied by traditional interpretations of the
1674 carbon isotope record. This obviously points to a need to resolve the degree in which feedbacks
1675 linked to oxidation may have propagated and exacerbated such a long-lived and positive carbon
1676 isotope excursion in a Proterozoic world very different than today. A recent study provides
1677 intriguing evidence that the $\delta^{13}\text{C}_{\text{carb}}$ excursion may be facies dependent and found nearly
1678 exclusively in shallow marine deposits (Prave et al., 2022). This finding indicates the possibility
1679 that local processes, akin to that already observed in modern shallow marine environments, could
1680 be responsible for the LJE (Swart and Eberli, 2005, Geyman and Maloof, 2019). Still, these models
1681 require an answer to why such large positive $\delta^{13}\text{C}_{\text{carb}}$ values are not found during surrounding time
1682 intervals. An additional hypothesis for the LJE is local methane oxidation tied to an increase in
1683 marine SO_4^{2-} , which would cause higher $\delta^{13}\text{C}_{\text{DIC}}$ values in pore waters hosting carbonate
1684 precipitation (Hayes and Waldbauer, 2006). Alternatively, local SO_4^{2-} reduction tied to methane
1685 oxidation may play a role, but on a global instead of local scale, thus altering the DIC composition
1686 of seawater (Schrag et al., 2013). To be clear, however, for both methane-related models, the
1687 negative $\delta^{13}\text{C}$ sink is still physically missing from the observed sedimentary record and

1688 presumably would be hosted in organic-rich deposits that are either not preserved or not yet
 1689 identified.

1690
 1691

1692
 1693 **Figure 15.** Change point analyses of redox proxy records. The analysis is based on data averaged for 1 million year-binned
 1694 intervals. For $I/(Ca+Mg)$, the analysis also considered the maximum values at 1 million year-bin intervals ($I/(Ca+Mg)_{max}$). A
 1695 paired t-test of the pre- and post- change point data populations revealed p -values $< 10^{-5}$ for all proxies except for $\delta^{238}U_{sh}$ and
 1696 $[Re]$ ($p = 3.3 \times 10^{-5}$ and 1.1×10^{-3} , respectively). Colors correspond to that in Figures 1 and 13 (red = ferruginous; green =
 1697 manganous; purple = euxinic; yellow = iodinous) and indicate least reducing water column redox conditions leading to proxy
 1698 change.

1699 1700 4.2.5 Mid-Proterozoic biogeochemical stasis?

1701 Following the LJE, multiple lines of evidence point to a long-term decline in atmospheric
 1702 O_2 and biogeochemical stasis (1.8–0.8 Ga; e.g., Hodgskiss et al. (2019)). The middle Proterozoic
 1703 is so famous for stasis—both in redox conditions and for eukaryotic life and biological evolution—
 1704 that the term “boring billion” has become a cliché for describing this interval. The most prominent
 1705 evidence for biogeochemical stasis through the middle Proterozoic is the relatively invariant
 1706 records of carbon isotopes (which rarely deviate from 0‰) and concentrations and isotopes of
 1707 redox-sensitive trace elements (Figure 14 and Figure 17). However, several recent studies have
 1708 challenged this premise, including that of stasis and that of low O_2 .

Importantly, the Cr isotope record provides a key set of evidence for a long-term baseline of O_2 as low as <1% PAL, but there is some evidence for punctuated oxygenation. For example, positive Cr isotope anomalies from shales of the ~1.4 Ga Shennongjia Group in South China provide some evidence for an oxygenation event during this time (Canfield et al., 2018). We note that increases in $I/(Ca+Mg)$, some trace metals, and Ce/Ce^* anomalies from nearby intervals collectively point to oxygenation against a backdrop of low O_2 conditions—i.e., an OOE. Less convincing, in our view, is Cr isotope evidence from carbonates for oxygenation during this interval and other portions of the mid-Proterozoic. The Cr isotope record in carbonates suggests $O_2 > 1\%$ PAL in every section analyzed to date (Gilleaudeau et al., 2016). This may represent a more detailed view of redox with ocean depth—with carbonates and shales archiving shallow and deeper waters, respectively—but other evidence suggests the potential for diagenetic alterations to have a potentially major effect on interpretations of these data (Wang et al., 2021). Regardless, going forward it will be important to demonstrate the reliability of the carbonate Cr record, such as via a lack of fractionations in Archean carbonates where the S-MIF is consistent with atmospheric $O_2 < 0.001\%$ PAL.

A recent review paper highlights the potential for multiple mid-Proterozoic OOE's, including at 1.4 Ga (as highlighted above) but also at 1.1 Ga (Diamond and Lyons, 2018). This in part relies on the $\delta^{53}\text{Cr}$ record of carbonates discussed above, but also on evidence for increased Mn deposition (Spinks et al., 2023) as well as higher Re concentrations (Figure 14). Some tentative evidence for a broader shift in redox conditions starting at 1.1 Ga—as opposed to a discrete event—is a shift toward a more positive baseline in $\delta^{13}\text{C}_{\text{carb}}$ (Kah et al., 2004). This transition can be generally observed in Figure 17.

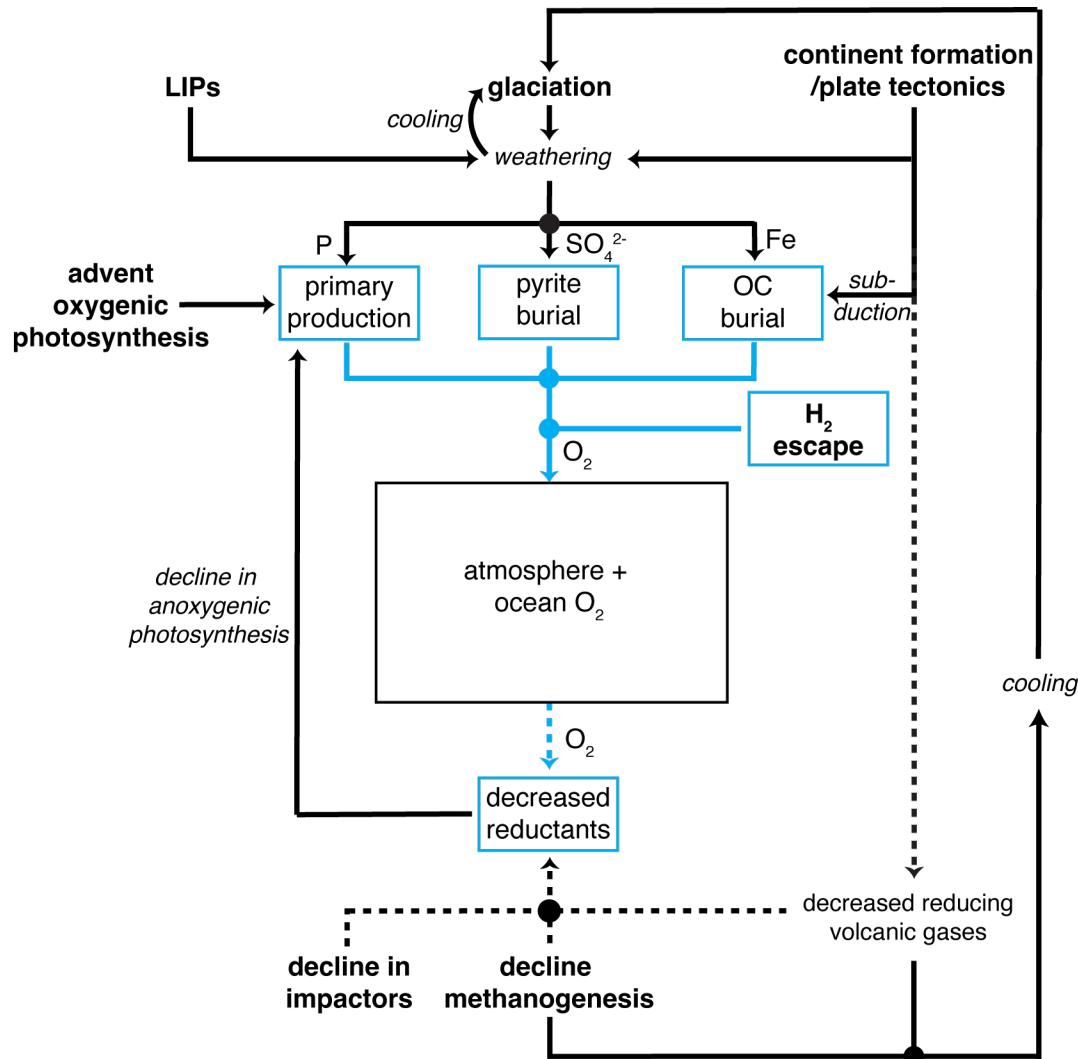
4.2.6 Proterozoic O_2 oases?

Model reconstructions of marine O_2 constrained by atmospheric redox proxies predict the persistence of O_2 oases well into the Proterozoic, but clear marine geochemical evidence for oases is still lacking. Specifically, Cr isotope predictions for a mid-Proterozoic atmosphere with O_2 concentrations <1% PAL imply marine O_2 concentrations sustained via air-sea exchange to be <2.5 $\mu\text{mol kg}^{-1}$ (Planavsky et al., 2014b). This value is below the maximum of 10 $\mu\text{mol kg}^{-1}$ possible in local areas of high photosynthesis predicted in models considering mid-Proterozoic and Archean constraints (Reinhard et al., 2016a).

One of the major challenges in recognizing mid-Proterozoic O_2 oases is that, unlike the Archean, evidence of oxidative geochemical cycles is widespread, but the dissolved O_2 thresholds for these proxies are not well defined. For this reason, distinguishing between background O_2 of <2.5 $\mu\text{mol kg}^{-1}$ —that possible from air-sea exchange—vs values up to 10 $\mu\text{mol kg}^{-1}$ —that possible from localized photosynthesis—is challenging with current paleoproxy constraints. For example, the $I/(Ca+Mg)$ record suggests a distinct redox landscape pre vs post GOE (absence vs presence of IO_3^- , respectively), indicating a clear increase in oxidizing capacity (Hardisty et al., 2014, Hardisty et al., 2017). However, estimates of the O_2 thresholds for IO_3^- formation or persistence range from <1 $\mu\text{mol kg}^{-1}$ to 30 $\mu\text{mol kg}^{-1}$ (Hardisty et al., 2014, Lu et al., 2016). Importantly, the shift in $I/(Ca+Mg)$ at the GOE cannot currently be used to determine if O_2 oases were present pre- or post-GOE. In this conceptual model, IO_3^- may have formed at local O_2 oases pre-GOE, but Archean air-sea O_2 exchange and extremely low O_2 values at oases led to rapid IO_3^- reduction, thus limiting its spatiotemporal accumulation and retention in the carbonate record. Alternatively, the elevated post-GOE marine O_2 concentrations sustained via air-sea exchange may have risen above values important for IO_3^- accumulation, thus minimizing the role of O_2 oases in IO_3^-

1755 formation. Further, O_2 oases after the GOE could have acted as geochemical hotspots for the
1756 formation of low levels of IO_3^- while the increase in minimum O_2 values from air-sea exchange
1757 could have sustained the circulation of IO_3^- in oligotrophic regions beyond the oases (Hardisty et
1758 al., 2021). Regardless, we note that there are limited $I/(Ca+Mg)$ records prior to the GOE and thus
1759 it remains tentative to rule out pre-GOE marine IO_3^- accumulation.

1760


1761 *4.2.7 What was the redox state of the mid-Proterozoic Ocean?*

1762 Against the backdrop of low O_2 —potentially punctuated by infrequent OOE, if any—
1763 there has been much focus on understanding the background redox states of the Proterozoic ocean.
1764 Efforts to quantify the amounts and stability of near-surface O_2 are important given their
1765 implications for early animals (Section 4.3.2). Beyond this, however, what were the redox states
1766 with respect to the paleoredox ladder shown in **Figure 1**? Did the redox states vary over time? Are
1767 there clear spatial differences between near-surface and deep ocean redox conditions? These
1768 outstanding questions remain unaddressed.

1769 Starting with near-surface conditions, some of the clearest constraints come from carbonate
1770 $I/(Ca+Mg)$ ratios, which provide abundant evidence for iodinous conditions—or those supporting
1771 partial IO_3^- reduction (**Figure 14**). Specifically, $I/(Ca+Mg)$ ratios point to low IO_3^- abundances
1772 throughout the mid-Proterozoic that are similar to that observed in modern low O_2 zones. We note
1773 that diagenesis can decrease primary $I/(Ca+Mg)$ ratios (Hardisty et al., 2017, Lau and Hardisty,
1774 2022)—which amplifies the significance of non-zero iodine values in carbonate—but this is
1775 unlikely to explain the lack of any known elevated modern-like values until the Neoproterozoic.
1776 In addition to preservation, more constraints are needed to connect the presence of low but non-
1777 zero IO_3^- to specific O_2 levels or timescales of accumulation. Beyond $I/(Ca+Mg)$, REE anomalies
1778 (i.e., Ce/Ce^*) provide additional evidence for redox stratification and prevalent manganous
1779 conditions in the Proterozoic (Wallace et al., 2017).

1780 Further, combinations of $[Cr]$, $[U]$, $[Mo]$, and Fe speciation in shales are consistent with
1781 widespread low O_2 conditions maintaining small marine reservoir sizes and short residence times.
1782 The combined redox sensitivities of Cr to anoxic (ferruginous + euxinic) and Mo to euxinic
1783 conditions have been used to constrain 30-40% of the seafloor as anoxic and 1-10% as euxinic
1784 (Reinhard et al., 2013c). Importantly, Fe speciation data indicate that conditions were more broadly
1785 ferruginous. A statistical assessment of Fe speciation data through the Proterozoic provides
1786 evidence that ferruginous conditions dominated the deep ocean until well into the Paleozoic
1787 (Sperling et al., 2015b). Together these trace element and Fe speciation observations support
1788 widespread ferruginous relative to euxinic conditions (Planavsky et al., 2011) in contrast to
1789 previous models that predicted widespread euxinia during this interval (i.e., the ‘Canfield Ocean’;
1790 (Canfield, 1998)).

1791

Figure 16. Synthesis of proposed mechanisms driving the Great Oxidation Event as summarized in Section 4.2.3. Direct O₂ sources and sinks are highlighted in blue. Sources are filled lines and sinks are dashed lines. Geological and biological drivers are bolded. Indirect feedbacks are shown as black arrows.

1792
1793
1794
1795

1796
1797

4.3 Stage III: Neoproterozoic through Paleozoic: a protracted transition?

1799

4.3.1 Neoproterozoic redox landscape

1801 The Neoproterozoic is considered a major transition in the evolution of life and
1802 environment. Chief amongst geobiological changes is a multitude increase in the evidence for
1803 eukaryotic life, biomarker sterane-based evidence for early sponges, increases in fossil abundance,
1804 as well as the first ichnofabrics indicative of complex organisms, including their movement
1805 (discussed in detail in Section 4.3.2). Further, like many of the redox transitions before it, the
1806 environmental perturbations of the Neoproterozoic are characterized by large carbon isotope
1807 excursions. Indeed, a new backdrop of positive $\delta^{13}\text{C}_{\text{carb}}$ starts as early as 1.1 Ga and persists into
1808 the Paleozoic (Kah et al., 2004). However, the Neoproterozoic is unique in that the baseline $\delta^{13}\text{C}_{\text{carb}}$
1809 is punctuated by multiple extreme negative $\delta^{13}\text{C}_{\text{carb}}$ events, including the largest and longest in

1810 Earth history (the Shuram-Wonoka excursion). Hypothesis specific to the origins of these carbon
1811 isotope excursions are discussed in detail in Section **Error! Reference source not found.**, but we
1812 highlight below their association with variations in redox-sensitive trace elements indicative of a
1813 baseline shift in oxygenation.

1814 The change point analysis in **Figure 15** provides evidence from multiple proxies for a
1815 change in baseline redox conditions spanning the Neoproterozoic and into the Paleozoic. Most
1816 prominently, the Cr isotope record shows a shift to positive values as the new baseline, providing
1817 quantitative evidence for an increase in atmospheric O₂ levels near 0.8 Ga. Coinciding with this
1818 shift and subsequently in the Neoproterozoic, multiple other trace element proxies have change
1819 points indicative of higher marine and atmospheric O₂ levels—specifically Re, Mo, and V. While
1820 this implies a baseline shift in atmospheric O₂ levels, it is important to emphasize that the
1821 Neoproterozoic oceans were broadly low in O₂ (Sperling et al., 2015b). Against this backdrop,
1822 there is evidence for more frequent OOEes relative to the preceding mid-Proterozoic.

1823 Importantly, the Fe speciation record offers little evidence for global redox changes
1824 through the Neoproterozoic and even the Paleozoic (Sperling et al., 2015b, Pasquier et al., 2022).
1825 Indeed, the protracted timing of change points from the Neoproterozoic through the middle to late
1826 Paleozoic (**Figure 15**) lends support to the emerging hypothesis that this was truly a transition to a
1827 fully oxygenated deep ocean, and not a geological rapid event isolated to the Neoproterozoic
1828 (Sperling et al., 2015b, Wallace et al., 2017, Lu et al., 2018, Cole et al., 2020). The fact that the
1829 change points are spread over a temporal range—and do not coincide relatively neatly as for the
1830 GOE—and that the order of changes for the redox-sensitive trace elements in our compilation (Re,
1831 Mo, V) broadly align with expected redox sensitivities based on **Figure 1**, support a gradual
1832 increase in marine oxidation.

1833 In the Phanerozoic—following the OOE-to-OAE transition—increases in trace metal
1834 contents are most simply interpreted as changes in basinal restriction that impact the seawater
1835 supply of trace elements to marginal anoxic basins (e.g., Hancock et al., 2019). This can also be
1836 true in the Neoproterozoic; however, the most parsimonious explanation for higher trace element
1837 concentration in **Figure 15** is a secular change in redox-sensitive trace element seawater
1838 concentrations. Thus, higher [Re], [Mo], and [V] of black shales is consistent with increases in
1839 their marine reservoir size (Tribouillard et al., 2006). These increases in reservoir size are
1840 interpreted to be redox-dependent increases in sources and decreases in sinks of these elements to
1841 and from the ocean. For example, the main supply of Re and Mo to the ocean are riverine inputs
1842 fueled by oxidative weathering of sulfides on land (Miller et al., 2011). Similar to the increases in
1843 marine SO₄²⁻ recorded over time, these higher supplies are fundamentally linked to O₂ availability
1844 in the atmosphere. However, results from pyrite oxidation experiments at low O₂ indicate that the
1845 most prominent increases in supply of trace elements associated with sulfide oxidation likely
1846 occurred during the GOE (Johnson et al., 2019), as this process is most sensitive to low levels of
1847 O₂ (**Table 1**). This suggests that increases in reservoir size during the Neoproterozoic may be most
1848 closely tied to reduced anoxic (ferruginous and/or euxinic) bottom waters which act as a primary
1849 sink for these and many other trace elements (**Figure 15**).

1850 The decline of anoxic bottom waters is consistent with the expansion of the eukaryotic
1851 fossil record through this interval, which implies O₂ above thresholds necessary for aerobic
1852 metabolisms. These thresholds themselves are debated, ranging from <1% PAL to 1-3% PAL, and
1853 thus place these redox changes right at the cusp of the threshold for positive Cr isotope
1854 fractionations at 1% PAL (Planavsky et al., 2014b). In addition to absolute O₂ thresholds, the
1855 timescales of O₂ availability are also expected to increase once the ocean transitions from an oasis

1856 to equilibrium regime. Notably, the 1% PAL threshold for O₂ at 0.8 Ga from Cr isotopes still does
1857 not rule out the potential for dynamic O₂ oases, however, considering that as much as 10 $\mu\text{mol kg}^{-1}$
1858 O₂ (or 2.1% PAL) is necessary for this oasis-to-equilibrium regime transition (Reinhard et al.,
1859 2016a, Reinhard and Planavsky, 2022). We note, as discussed in more detail in **Table 1**, that
1860 records for other proxies with specific O₂ thresholds are limited after the Cr isotope change point.
1861 Biological constraints on O₂ (i.e., body size and motility) indicate levels closer to 10% PAL were
1862 not reached until the Cambrian (Sperling et al., 2015a). Unlike geochemical proxies, evidence
1863 from the fossil record does not rule out higher O₂ prior to these evolutionary events, as the timing
1864 of biological innovations can lag behind environmental transitions.

1865 Given that widespread deep-ocean anoxia persisted in the Neoproterozoic and early
1866 Paleozoic, the driver of the change point in the shale trace element record in **Figure 15** is an
1867 increased frequency of OOE_s relative to the mid-Proterozoic. Limited age constraints often make
1868 it difficult to correlate geographically disconnected shale stratigraphic sections and can be further
1869 complicated by the potential for local basin hydrography as a key player in trace element
1870 chemostratigraphy. These OOE_s are commonly linked to negative carbon isotope excursions
1871 through the Neoproterozoic (Section 4.3.3). Although this can support a link to redox changes,
1872 because so many of these carbon isotope records come from carbonate archives, there is also
1873 vigorous debate regarding diagenetic vs local vs global carbon cycle origins of geochemical signals
1874 (see *Box 1: Linking changes in redox conditions to the carbon isotope record*).

1875 Unique to this stage and controls on redox are ‘Snowball Earths.’ The Neoproterozoic is
1876 notable for two major glaciation episodes—the Sturtian and Marinoan (Kirschvink, 1992,
1877 Hoffman, 1998)—that mark the beginning and end of the Cryogenian Period. Sedimentary
1878 evidence suggests the presence of glaciers even at equatorial latitudes (Hoffman and Schrag,
1879 2002), although the exact extent of ice is a topic of debate (Runnegar, 2000, Allen and Etienne,
1880 2008). Nonetheless, widespread sea ice and associated climate change likely had an impact on the
1881 redox conditions of the ocean. For example, banded iron formations disappear for much of the
1882 Proterozoic but make a re-appearance during the Cryogenian glaciations—especially the
1883 Sturtian—which suggest anoxic and ferruginous conditions (Tahata et al., 2015), especially in
1884 marginal basins that could have maintained high Fe from hydrothermal and detrital sources (Cox
1885 et al., 2013). If these glaciations were not truly widespread, then areas of open ocean could have
1886 maintained air-sea gas exchange that resulted in O₂-replete surface waters, sustaining life
1887 (Pierrehumbert et al., 2011). Evidence for open-ocean conditions during the Marinoan come from
1888 N isotope data that indicate an active N cycle and biological production in the surface waters,
1889 despite deep waters being ferruginous (Johnson et al., 2017, Sahoo et al., 2012). However, waters
1890 with sufficient O₂ are still possible in a regime where the oceans are completely frozen. One
1891 possibility is the supply of O₂ from subglacial meltwater, which is inferred from redox proxy
1892 gradients from ice-proximal to ice-distal strata in the Sturtian (Lechte et al., 2019). Alternatively,
1893 cryoconite holes in ice shelves, resulting from dust-induced melting, could have supported O₂
1894 supply to the surface ocean and small-scale refugia for life, particularly microbial ecosystems
1895 (Hoffman, 2016).

1896 The terminations of both Cryogenian glaciations may also have implications for marine
1897 redox evolution. Massive weathering that brought the Earth out of a glaciated state (Le Hir et al.,
1898 2009, Rooney et al., 2013, Kasemann et al., 2014, Huang et al., 2016) is hypothesized to result in
1899 the widespread cap carbonates characteristic of Snowball glaciations (Fabre and Berger, 2012,
1900 Hoffman et al., 2017, Higgins and Schrag, 2003). The Cryogenian is also notable for containing
1901 several large igneous provinces and associated volcanism (Cox et al., 2016, Macdonald and

1902 Wordsworth, 2017). The combination of high weathering rates and widespread fresh basalts may
1903 have resulted in large fluxes of P to the oceans (Horton, 2015), which has been suggested as at
1904 least one trigger of oxidation of the oceans (Dodd et al., 2023). Support for this hypothesis comes
1905 from U isotopes in Mongolian carbonates following the Sturtian (Lau et al., 2017a) and trace
1906 element concentrations that imply an OOE directly following deposition of the Marinoan cap
1907 carbonate in the lower Doushantuo Formation (Sahoo et al., 2016).

1908

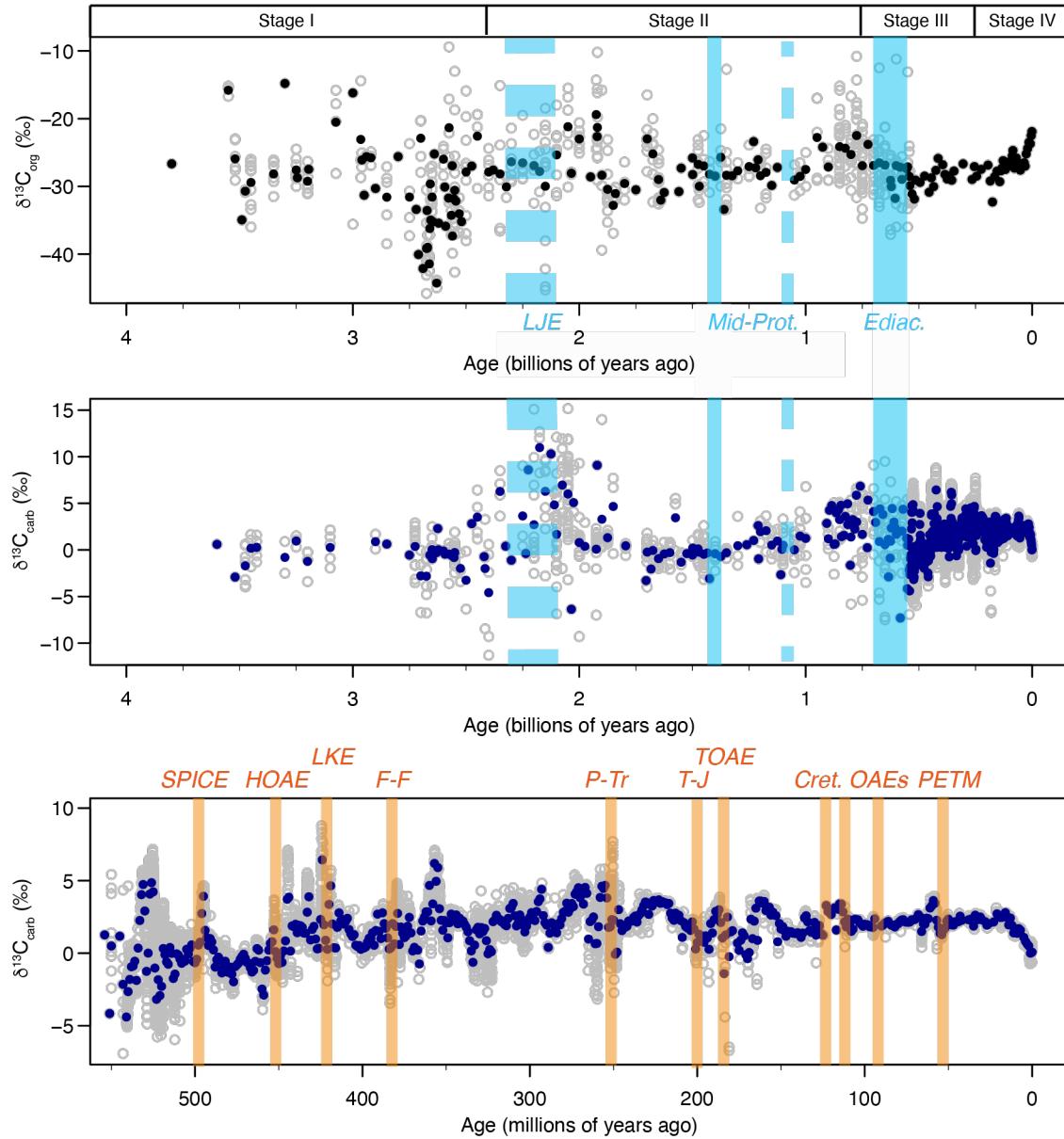
1909 *4.3.2 Ocean redox conditions and evolution of complex life*

1910 The rise of dissolved O₂ in the Neoproterozoic correlates to changes in the biomarker
1911 record that suggests a coupling to the rise of eukaryotes. Similar to the temporal relationship
1912 between the appearance of cyanobacteria and the GOE, there is evidence that algae evolved prior
1913 to but did not proliferate until the Neoproterozoic (**Figure 13**). Specifically, molecular clock
1914 estimates place the last common ancestor of algae from 1.9-1.4 Ga (Parfrey et al., 2011, Sanchez-
1915 Baracaldo et al., 2017). The first fossil evidence for red algae is at ~1.2 Ga (Butterfield, 2015) and
1916 the first fossil and porphyrin-based evidence for the presence of green algae does not occur until
1917 ~1.05 Ga (Gibson et al., 2018, Gueneli et al., 2018). However, sterane biomarkers are not found
1918 in the fossil record until 0.9 Ga and sterane/hopane ratios show a pronounced increase during the
1919 Cryogenian, 0.72-0.64 Ga (Brocks et al., 2017, Hoshino et al., 2017, Isson et al., 2018). Higher
1920 sterane/hopane ratios in the sedimentary biomarker record are interpreted to represent a significant
1921 presence of eukaryotes—which produce steranes—relative to bacterially derived hopanes in
1922 driving primary productivity in the ocean. The biomarker record thus indicates a rapid and
1923 permanent shift in the food chain. Embedded within this shift from bacterial to eukaryotic
1924 dominated preservation of primary producers is a shift from a dominance of red to green algae at
1925 the Sturtian glaciation (Isson et al., 2018). The establishment of eukaryotes as primary producers
1926 in marine systems is hypothesized to lead to ecological pressures at higher trophic levels toward
1927 larger grazers, the evolution of predators, and more complex organismal interactions (Brocks,
1928 2018). Further, the establishment of larger primary producers would have also resulted in a more
1929 dynamic biological pump (Lenton and Daines, 2018), increasing organic carbon burial fluxes
1930 which may be a potential cause for Neoproterozoic O₂ rise.

1931 The causal relationship between Neoproterozoic oxidation and the rise of complex life is
1932 highly debated (Cole et al., 2020, Mills et al., 2022, Sperling et al., 2022). Redox conditions in the
1933 Neoproterozoic are noted for being highly variable (Section 4.3.1) and O₂ levels did not cause
1934 animal to evolve (Knoll and Carroll, 1999). Instability and spatial heterogeneous redox conditions
1935 may have hampered metazoan evolution (Johnston et al., 2012, Johnston et al., 2013, Macdonald
1936 et al., 2013, Wood et al., 2015, Sahoo et al., 2016). Alternatively, fluctuations in marine redox
1937 conditions may provide evolutionary pressures that result in greater diversification and periods of
1938 innovation (Wood and Erwin, 2018). Although it is without question that metazoans require O₂ to
1939 perform aerobic respiration, the amount of O₂ that is necessary, particularly for basal animals, is
1940 not known. Experiments with demosponges—expected to be representative of the physiology and
1941 O₂ requirements of the earliest animals that are extant today—indicate that survival is possible
1942 even at O₂ levels of 0.5 to 4.0% PAL (Mills et al., 2014), and O₂ as a limitation on multicellular
1943 animals has been argued to be unlikely for most of the mid-Proterozoic and later (Sperling et al.,
1944 2022). The bilaterian body plan exemplified by the Ediacaran fauna, which, though now extinct,
1945 are regarded as the earliest bilaterians (Evans et al., 2020a), would have higher O₂ demands than
1946 demosponges depending on the respiratory system of these organisms (reviewed in Sperling et al.
1947 (2015a)). Estimates of O₂ demand for small bilaterians, based on calculations of O₂ diffusion and

1948 circulatory systems for a long worm body plan, are <0.5% PAL (Sperling et al., 2013). The ability
1949 of bilaterians to tolerate such low O₂ levels is supported by observations of modern animals in
1950 waters with dissolved O₂ as low as 0.02 mL L⁻¹ (Sperling et al., 2015a) as well as genetic
1951 adaptations for anaerobic metabolism (Mueller et al., 2012, Mentel et al., 2014).

1952 In addition to the low dissolved O₂ threshold for basal animals and bilaterians, whether O₂
1953 is even the limiting factor for animals is debated. Indeed, the argument has been made that higher
1954 O₂ is not a precursor requirement for animals but rather the biogeochemical consequence of animal
1955 evolution and associated higher organic carbon burial fluxes (Butterfield, 2009). Accompanying
1956 the rise of animals and their greater complex behaviors in the Cambrian and early Paleozoic,
1957 including substrate-penetrating bioturbation, was also the ability for biological innovation to
1958 directly impact redox conditions of the ocean (Butterfield, 2018, Tarhan et al., 2015, Tarhan, 2018,
1959 Boyle et al., 2014, Boyle et al., 2018). Additionally, ecophysiological constraints suggest that
1960 temperature stability may be more important for Ediacaran biota than the O₂ concentration alone
1961 (Boag et al., 2018). Using constraints from modern cnidarians, these authors suggest that deep,
1962 colder waters—even if lower in O₂ than warmer surface waters—produced optimal conditions for
1963 early animals. Despite this debate, low to moderate O₂ levels of the early Phanerozoic can help to
1964 explain the frequency and severity of extinctions in the early Paleozoic compared to the Stage IV
1965 interval of Earth’s redox history (Sperling et al. (2022); **Figure 13**).


1966 Therefore, although the role of O₂ in directly controlling early bilaterian evolution is
1967 debated (Evans et al., 2018), there is support for the hypothesis that O₂ controlled the ecological,
1968 physiological, and morphological characteristics of metazoans (Sperling et al., 2022) and even
1969 early mass extinctions (Evans et al., 2022). This includes more complex substrate interaction
1970 behavior, such as burrowing and other bioirrigation. As a further example, the rise of predation
1971 alongside increases in O₂ highlights how greater energy resources available from aerobic
1972 respiration may have led to carnivory and the development of more complex trophic structures
1973 (Sperling et al., 2013, Sperling et al., 2022). The rise of carnivory may be partially a consequence
1974 of the positive relationship between O₂ and body size, which has been argued for early marine
1975 animals in the Ediacaran and Cambrian as well as gigantic terrestrial insects in the late Paleozoic
1976 and Cretaceous (Dudley, 1998, Knoll and Carroll, 1999, Butterfield, 2007, Harrison et al., 2010,
1977 Payne et al., 2011, Clapham and Karr, 2012, Schachat et al., 2018, Zhuravlev and Wood, 2020).
1978 Overall, the increase in body size over the Phanerozoic may reflect the increase in oxidation of the
1979 atmosphere-ocean system as well (Heim et al., 2015).

1980 An additional biological innovation that is closely tied to ocean redox is the development
1981 of increasingly skeletonized phytoplankton and zooplankton. The rise of biomineralization from
1982 the late Ediacaran through the early Paleozoic (Knoll, 2003, Porter, 2007, Zhuravlev and Wood,
1983 2008) and the Mesozoic appearance or expansion of skeletonized diatoms, forams, and
1984 coccolithophorids (Ridgwell, 2005) had major impacts on the biological pump. Specifically,
1985 skeletonization is hypothesized to increase the depth of remineralization, which Earth system
1986 models have shown to effectively oxygenate the oceans, particularly in shelf environments,
1987 through the deepening of the OMZ (Meyer et al., 2016, Lu et al., 2018).

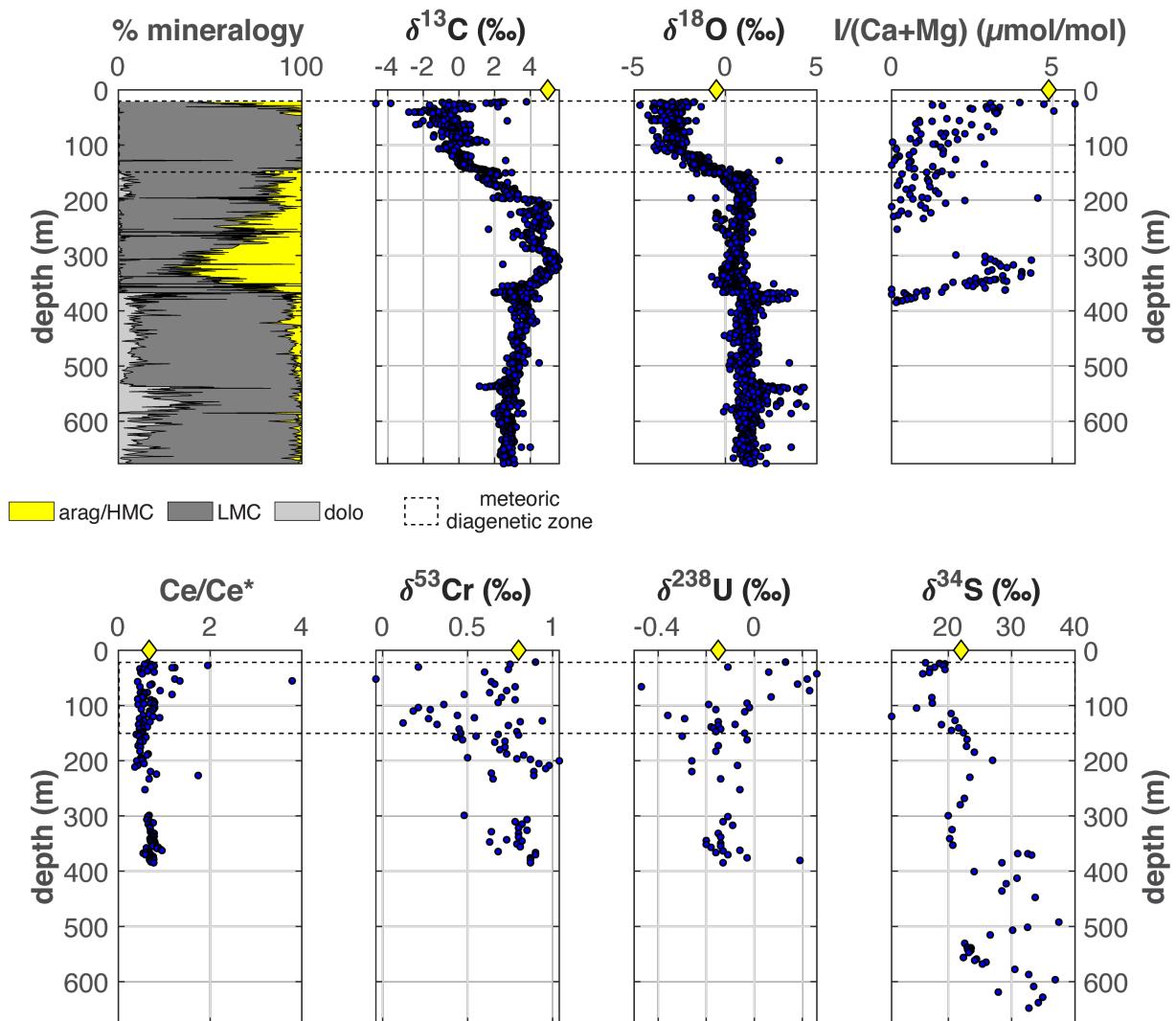
1988 This section highlights the “chicken and egg” challenges of linking O₂ with evolutionary
1989 and ecological patterns of complex life in Earth’s history (see Cole et al. (2020) for a useful point-
1990 counterpoint discussion of some of the arguments covered in this section). Ultimately, while there
1991 is little doubt that the specific redox conditions of the oceans remain an important consequence of
1992 and in some cases, critical necessity, for biospheric evolution, we expect that the why’s, how’s,

1993 and when's will continue to drive and advance innovative research in geobiology, with major
 1994 implications for future climate change as well as for astrobiology.

1995
 1996
 1997

1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008

Figure 17. Compilations of (top) organic carbon isotopes (Krissansen-Totton and Catling, 2017) and (middle) carbonate carbon isotopes (Krissansen-Totton and Catling, 2017, Saltzman and Thomas, 2012). (bottom) Carbonate carbon isotopes for the Phanerozoic only. The solid circles are the binned data (averages for every 1 Myr bins) and the open circles are the entire compilation. Key OOE (blue bars) and OAEs (orange bars) discussed in Section 4 are marked, with the width of the bar arbitrary. The dashed blue bars indicate proposed (but debated) OOEs. LJE=Lomagundi-Jatuli Event (~2.3 to 2.1 Ma), Mid-Prot.=Mid-Proterozoic (~1.4 Ga and ~1.1 Ga), Ediac.=multiple Ediacaran OOE (~640 to 520 Ma), SPICE=Steptoean Positive Carbon Isotope Excursion (~499 Ma), HOAE=Hirnantian Ocean Anoxic Event (~466 Ma), LKE=Late Silurian Lau/Kozlowskii Event (~424 Ma), F-F=Frasnian-Fammenian Lower and Upper Kellwasser events (~372 Ma), P-Tr=Permian-Triassic (~252 Ma), T-J=Triassic-Jurassic (~200 Ma), TOAE=Toarcian Ocean Anoxic Event (~184 Ma), Cret. OAEs=Cretaceous OAEs (OAE-1a, ~120 Ma; OAE-1b, ~111 Ma; OAE-2, ~94 Ma), PETM=Paleocene-Eocene Thermal Maximum (~56 Ma).


Box 1: Linking changes in redox conditions to the carbon isotope record

Because there are excellent reviews of proxies already published (see **Table 1**), in this Chapter we have focused on the interpretations and implications of redox proxies used to reconstruct past redox conditions. Carbon isotopes are one of the most applied geochemical proxies used to infer changes in O_2 concentrations through Earth history, and so we include this synthesis of recent ideas surrounding if and how carbon isotope records are linked to atmosphere-ocean redox conditions. The link between carbon and redox conditions arises because the proportion of organic carbon burial relative to the total burial of carbon from the ocean-atmosphere system (f_{org}) reflects geological processes that impact redox conditions (Broecker, 1970). Because photosynthesis imparts a large isotope fractionation between inorganic and organic carbon (Hayes and Waldbauer, 2006), buried organic carbon has a lower $\delta^{13}C$ value than inorganic carbon (e.g., carbonate sediments), and therefore increased (decreased) burial of organic carbon would result in a higher (lower) $\delta^{13}C$ of the remaining seawater reservoir of total carbon. Using this framework, the modern mean seawater $\delta^{13}C$ of $\sim 1\text{‰}$ roughly corresponds to $f_{org} = 0.2$ (Kump and Arthur, 1999).

The output fluxes of organic carbon burial in terrestrial and marine environments have short-term and long-term implications for O_2 (**Figure 3**; reviewed in Lenton et al. (2016)). Redox conditions in terrestrial and marine settings can be directly linked to organic carbon contents through two non-exclusive mechanisms. First, higher amounts of organic carbon burial can be a direct consequence of greater primary productivity, which leads to greater consumption of O_2 through higher rates of aerobic respiration of sinking organic matter. Triggers for higher primary productivity, including weathering and volcanism-induced delivery of nutrients (Berner, 2006a), can also result in changes in $\delta^{13}C$ via the increase of mantle-derived volcanic CO_2 . Second, higher preservation of organic carbon in seafloor sediments corresponds to lower bottom water O_2 concentrations, limiting remineralization pathways to anaerobic metabolisms. Therefore, the direct consequence of lower O_2 (through the production of organic matter and higher preservation) is higher organic carbon burial. On longer time scales, a negative feedback is introduced that results in the opposite relationship (Berner, 2006a, Berner, 2001). Because burial of marine and terrestrial organic carbon removes a major reductant from the ocean-atmosphere system, higher fluxes of organic carbon burial result in a build-up of atmospheric O_2 (e.g., Equation 1). Therefore, the relationship between O_2 and organic carbon, and by extension, $\delta^{13}C$, depends on the spatiotemporal scale of interest.

Based on this long-established framework, a major question is how the C isotope record is representative of global changes in O_2 . A compilation of published C isotope records (**Figure 17**) demonstrates that there are major transient and baseline shifts through time, reflected in both the carbonate and organic carbon $\delta^{13}C$ records. The interpretation of these $\delta^{13}C$ compilations has been long investigated, connecting the global carbon and O_2 biogeochemical cycles (Veizer et al., 1999, Saltzman and Thomas, 2012, Krissansen-Totton et al., 2015, Bachan et al., 2017). A major assumption is that the C isotope record is representative of global changes to the ocean-atmosphere C isotope reservoir. This assumption has been challenged, most strikingly by observations in Neogene carbonate sediments (Oehlert and Swart, 2014,

Swart, 2008, Geyman and Maloof, 2019) that highlight the role of diagenesis and local heterogeneity in impacting bulk carbonate $\delta^{13}\text{C}$ as well as carbonate paleoredox proxies (Figure 18). These factors have also been proposed to impact long-term compilations of $\delta^{13}\text{C}$ (Ahm and Husson, 2022), although comparisons of carbonate, marine organic carbon, and terrestrial organic carbon $\delta^{13}\text{C}$ can help to support or challenge interpretations of “global” $\delta^{13}\text{C}$ signals. Additional caveats to the potential for $\delta^{13}\text{C}$ to track redox conditions are other mechanisms that can impact $\delta^{13}\text{C}$ independent of O_2 changes, such as the potential for sea-level change and associated weathering/flux changes to impact $\delta^{13}\text{C}$ (Saltzman et al., 2015), the release of ^{12}C -enriched sources such as volcanism, organic carbon weathering, or methane (Dickens, 2011, Frieling et al., 2016), and the role of authigenic carbonate precipitation (Higgins et al., 2009, Schrag et al., 2013, Wang et al., 2023). Though these processes have been linked to specific $\delta^{13}\text{C}$ excursions, it is currently not clear whether they could play a role in driving the major baseline shifts such as in the Neoproterozoic.

Figure 18. Data from the Neogene to Pleistocene from the Clino core on the Bahamas Bank. The Clino core provides an example of a potential Rosetta’s Stone in quantifying paleoredox proxy behavior during carbonate diagenesis, covering a time period

of relatively stable ocean redox but capturing variability in carbon diagenesis, which influences proxy signatures. This includes meteoric diagenesis, driving the negative carbon isotope excursion in the top of the core, and marine burial diagenesis. Data come from multiple sources (Chen et al., 2018, Hardisty et al., 2017, Liu et al., 2019, Wang et al., 2021, Higgins et al., 2018, Melim et al., 1995, Murray et al., 2021, Stewart et al., 2015).

2009

2010 4.3.3 Carbon isotopes and Neoproterozoic OOE

2011 The relationship between $\delta^{13}\text{C}$ and redox change in the Neoproterozoic has been a cause
2012 of frequent debate. For example, the negative $\sim 20\text{\textperthousand}$ Shuram excursion (also called the Shuram-
2013 Wonoka excursion) that occurred at ca. 574 to 567 Ma appears to correspond to global
2014 oxygenation. Specifically, there is evidence for increased SO_4^{2-} , IO_3^- , Mn oxides, U, and other
2015 trace metals across this interval (Hardisty et al., 2017, Loyd et al., 2012, Osburn et al., 2015, Zhang
2016 et al., 2019, Li et al., 2017, Sahoo et al., 2016, Fike et al., 2006). S and U isotope records hint at a
2017 global decrease in pyrite burial (Osburn et al., 2015) and an increase in the extent of oxygenated
2018 seafloor at the start of the Shuram (Zhang et al., 2019). That said, the global C cycle interpretations
2019 of the Shuram excursion are heavily disputed (Derry, 2010, Husson et al., 2015). Similar to the
2020 LJE (Section 4.2.4), explanations for this excursion have been difficult to reconcile with the
2021 canonical f_{org} framework linking positive (negative) C isotope changes to higher (lower) organic
2022 carbon burial. The nadir $\delta^{13}\text{C}_{\text{carb}}$ value for the Shuram varies geographically but is consistently
2023 below the mantle $\delta^{13}\text{C}$ value of $\sim -6\text{\textperthousand}$ (Kump and Arthur, 1999), ranging from ~ -15 to $\sim -10\text{\textperthousand}$ (see
2024 recent compilation in Busch et al. (2022)). The traditional $\delta^{13}\text{C}$ interpretative framework of simply
2025 a lower f_{org} is not a realistic explanation because the Shuram represents values well below the
2026 mantle-input $\delta^{13}\text{C}$, and therefore requires alternative explanations including novel carbon pools
2027 related to spatial biogeochemical processes, methane addition, or diagenesis (Husson et al., 2015,
2028 Tziperman et al., 2011, Rothman et al., 2003, Knauth and Kennedy, 2009, Bjerrum and Canfield,
2029 2011, Busch et al., 2022). Recent arguments even suggest that similar U isotope signals could be
2030 generated via euxinic-ferruginous transitions (Gong et al., 2023) and that trace element records
2031 from shales provide limited, if any, evidence for oxygenation (Ostrander, 2023).

2032 In contrast to the Shuram, other transient Ediacaran OOE are not clearly related to
2033 systematic shifts in the $\delta^{13}\text{C}$, at least within the Doushantuo Formation in South China (Sahoo et
2034 al., 2016). Similarly, the Cryogenian Taishir negative $\delta^{13}\text{C}$ excursion of $\sim -15\text{\textperthousand}$, which is best
2035 recorded in Mongolian strata spanning the non-glacial interval (Macdonald et al., 2009), has been
2036 noted to correspond to a negative shift in U isotopes (Lau et al., 2017b). This has been alternatively
2037 interpreted as a long-term expansion of seafloor anoxia or a shift from euxinic to ferruginous
2038 conditions (Wei et al., 2021), both of which persist even when the $\delta^{13}\text{C}$ record returns to baseline
2039 values. In combination, the lack of clear correlation between drivers of $\delta^{13}\text{C}$ excursions and
2040 transient or long-term redox makes it a challenge to interpret the Neoproterozoic $\delta^{13}\text{C}$ record as a
2041 consistent recorder of the ocean-marine redox state.

2042 Interestingly, these Precambrian oxygenation “excursions”—that correspond to both
2043 positive and negative $\delta^{13}\text{C}$ shifts—may be at least in part related to the timescale of these shifts;
2044 specifically, if the LJE does indeed represent an oxygenation event of some magnitude, it could be
2045 related to the generation of large amounts of organic matter that were subsequently buried, whereas
2046 the shorter-lived OOE could be related to C cycle perturbations that led to temporary oxygenation.
2047 Similarly, the Shuram $\delta^{13}\text{C}$ has been tied to C cycle dynamics unique to the Ediacaran (Tziperman
2048 et al., 2011), and potentially did not reflect organic carbon burial directly but rather the
2049 biogeochemical changes that resulted from greater oxygenation.

2050 It is important to note that the baseline redox state of the Precambrian oceans is one with a
2051 poorly ventilated, predominantly anoxic deep ocean (**Figure 2**). It is possible that transient shifts
2052 to greater anoxia within such an ocean would be difficult to detect given this baseline state. Within
2053 this context, a curious observation about the Precambrian C isotopes record, and specifically in the
2054 Cryogenian and the Neoproterozoic, are steady-state $\delta^{13}\text{C}$ values that are much higher (5 to 10‰)
2055 compared to prior and subsequent time intervals. The cause of these high baseline values, and
2056 potential implications for both short-term and longer-term redox conditions, remain unexplained
2057 (Halverson et al., 2005, Schrag et al., 2013). It is difficult to reconcile how persistently high $\delta^{13}\text{C}$
2058 values could be related to long-term higher organic carbon burial as the expectation is that this
2059 would be corrected by the negative feedback generating higher atmospheric $p\text{O}_2$. Perhaps these
2060 high $\delta^{13}\text{C}$ values simply reflect the unique redox stratified ocean and separation of different carbon
2061 pools (Bristow and Kennedy, 2008) during the Neoproterozoic (see also Fakraee et al. (2021)).
2062
2063

2064 4.4 Stage IV: OOE to OAE transition

2065 4.4.1 *When was the deep ocean oxygenated?*

2066 With the Neoproterozoic to Paleozoic transition, the redox structure of the ocean underwent
2067 the final change to the present-day configuration shown in **Figure 2** where the deep ocean became
2068 fully oxygenated. As discussed in Section 2, this does not signify that O_2 levels in the deep ocean
2069 are equivalent to the surface ocean in all locations; the O_2 content of modern bottom waters
2070 indicates that regions of water-column productivity, including mouths of rivers and upwelling
2071 regions, produce bottom-waters where O_2 is low enough to impact habitability (**Error! Reference**
2072 **source not found.**). However, the vast majority of bottom-water O_2 distribution today is
2073 sufficiently high to sustain diverse and abundant metazoan communities. This is possible only
2074 when atmospheric O_2 levels were sufficiently high that O_2 consumption through sinking organic
2075 carbon (i.e., the biological pump) did not significantly reduce O_2 levels everywhere. The exact
2076 atmospheric O_2 level that was required to produce well-oxygenated deep oceans is dependent on
2077 parameters of the biological pump, the assumed nutrient availability, as well as ocean
2078 configuration. A recent model suggests that the deep ocean is ventilated when atmospheric $p\text{O}_2$
2079 reaches >30% PAL (Reinhard and Planavsky, 2022).

2080 The establishment of modern redox structures can be distinguished by the change in
2081 shallow marine carbon redox proxies. Specifically, high $\text{I}/(\text{Ca}+\text{Mg})$ and low Ce/Ce^* bookmark
2082 this transition and can both be related to an overall well-oxygenated ocean because globally
2083 persistent shallow marine O_2 at high levels can only be sustained (1) when atmospheric O_2 is high
2084 and (2) when resupply of well-oxygenated deep oceans to the surface is also high. The change
2085 point analysis in **Figure 15** indicates that this likely occurred in the late Paleozoic (Wallace et al.,
2086 2017, Lu et al., 2018). Though it may seem paradoxical to utilize proxies for local, shallow redox
2087 to represent deep water O_2 , recent studies of iodate-iodide dynamics in the modern highlight the
2088 fact that the oxidation of I^- to IO_3^- is slow and elevated near-surface IO_3^- likely reflects persistent
2089 oxygenation of intermediate and deep ocean masses that resupply IO_3^- to the surface oceans
2090 (Hardisty et al., 2020, Hardisty et al., 2021).

2091 Similar to the change points of trace element proxies in the Neoproterozoic, the changes in
2092 $\delta^{34}\text{S}_{\text{py}}$ in the Paleozoic are also closely linked to a decrease in seafloor anoxia (**Figure 15**).
2093 Specifically, $\delta^{34}\text{S}_{\text{py}}$ is a proxy for the degree of pyrite burial, which is intimately linked with the

2096 extent of seafloor anoxia. Increased pyrite burial has the dual effect of acting as a sink for SO_4^{2-} —
2097 which is reduced to sulfide in anoxic environments, forming pyrite—and in turn impacting the
2098 sulfur isotope composition of both SO_4^{2-} and pyrite. Smaller marine SO_4^{2-} pools, estimated to be
2099 <2.5 mM as late as the Cambrian (Gill et al., 2011), ultimately have less buffering capacity and
2100 are more sensitive to changes in $\delta^{34}\text{S}_{\text{sulfate}}$ resulting from sulfate reduction. Together, this means
2101 that coupled increases in marine sulfate tied to lower pyrite burial fluxes ushered in a change point
2102 for $\delta^{34}\text{S}_{\text{py}}$ to much more negative values, reflecting changes in the $\Delta^{34}\text{S}_{\text{sulfate-py}}$. In comparison,
2103 higher seawater SO_4^{2-} in the late Paleozoic (Horita et al., 2002, Lowenstein et al., 2003) resulted
2104 in $\delta^{34}\text{S}_{\text{sulfate}}$ records that are more stable and better buffered against global change. Hence, while
2105 the initial $\delta^{34}\text{S}_{\text{CAS}}$ change point at 2.5 Ga represents an initial increase in seawater SO_4^{2-} linked to
2106 increases in atmospheric O_2 and terrestrial weathering of pyrite—i.e., the source of sulfur to the
2107 oceans—the later $\delta^{34}\text{S}_{\text{py}}$ change point at 0.38 Ga represents a stabilization of marine SO_4^{2-} via a
2108 decrease in pyrite burial—i.e., the sink of sulfur from the oceans (**Figure 15**). Similarly, the contrast
2109 in the change points for $\delta^{238}\text{U}_{\text{sh}}$ (2.35 Ga), [U] (0.37 Ga), and carbonate associated uranium
2110 isotopes ($\delta^{238}\text{U}_{\text{CAU}}$; 0.39 Ga) can reflect changes in sources and sinks of the U cycle related to
2111 redox changes. The change point for $\delta^{238}\text{U}_{\text{sh}}$ broadly concurrent with the GOE likely reflects an
2112 increase in oxidative weathering of uraninite (Partin et al., 2013, Kendall et al., 2013) and the
2113 establishment of a seawater U reservoir with seawater $\delta^{238}\text{U}$ that could vary from crustal values.
2114 Because U reduction in anoxic and euxinic seafloor is the largest sink of seawater U and imparts
2115 a significant isotope fractionation (Dunk et al., 2002, Andersen et al., 2014), the Paleozoic change
2116 points for [U] and $\delta^{238}\text{U}_{\text{CAU}}$ reflect a decrease in U removal as seafloor oxygenation spread.

2117 With the establishment of a fully oxygenated ocean, where regions with low O_2 are limited
2118 to areas with high productivity, the redox dynamics of the marine realm switched between one
2119 where perturbations to the redox state was defined by OAEs and not OOEIs. This is not to claim
2120 that OAEs are non-existent prior to the late Paleozoic, mainly that short-term (<~1 Myr)
2121 perturbations to the atmosphere-ocean O_2 system result in OAEs, whereas such transient
2122 perturbations related to O_2 prior to this transition resulted in OOEIs, such as in the Ediacaran (Sahoo
2123 et al., 2012, Sahoo et al., 2016). In fact, longer-term perturbations (>1 Myr) to the O_2 system prior
2124 to this transition result in larger, and more prolonged increases in anoxia (Reershemius and
2125 Planavsky, 2021). As discussed in the preceding sections, this transition was likely gradual and/or
2126 dynamic.

2127 This general feature of Earth history, where transient perturbations to O_2 go from OOEIs to
2128 OAEs, hides the complexity of individual events, which occur in distinct biogeochemical contexts
2129 such as the biological pump (Ridgwell, 2005, Meyer et al., 2016) or the feedbacks related to
2130 bioturbation (Berner and Westrich, 1985, Boyle et al., 2014, Tarhan et al., 2015, Dale et al., 2016)
2131 and from different specific triggers leading to anoxia (e.g., exogenous vs. endogenous processes).
2132 In other words, the triggers and mechanisms leading to individual OAEs and OOEIs were not the
2133 same. Nonetheless, this shift from transient OOEIs to OAEs overall corresponds to the carbonate
2134 U isotope record (Reershemius and Planavsky, 2021), reductions in carbon isotope excursions
2135 through the Phanerozoic (Bachan et al., 2017), and the change points in shallow marine redox
2136 proxies (carbonate I/(Ca+Mg) and Ce/Ce*; **Figure 15**).

2139 **4.4.2 Carbon isotopes and Phanerozoic OAEs**

2140 In the Phanerozoic $\delta^{13}\text{C}$ record, more anoxia can correspond to either negative or positive
2141 $\delta^{13}\text{C}$ excursions and reveal the potential roles of external (exogeneous) vs. internal (endogeneous)
2142 drivers of C cycle change.

2143 Key examples when deoxygenation is associated with a negative $\delta^{13}\text{C}$ excursion (**Figure**
2144 **17**) include anoxic events that are linked to volcanic (or carbon-input) triggers, including the end-
2145 Permian and end-Triassic mass extinctions (Lau et al., 2016, Jost et al., 2017), the Toarcian OAE
2146 (Them et al., 2018), and the Paleocene-Eocene Thermal Maximum, or PETM (Clarkson et al.,
2147 2021). Most of these events are linked to major volcanic events and specifically Large Igneous
2148 Provinces (LIPs), which would have resulted in the addition of volcanic-derived C with low $\delta^{13}\text{C}$
2149 values. The potential mechanism between volcanism and anoxia includes global warming-induced
2150 changes in ocean circulation (Winguth et al., 2012, Penn et al., 2018), greater weathering and
2151 delivery of nutrients (Zhang et al., 2018), and intensification of the biological pump (Meyer et al.,
2152 2011, Hülse et al., 2021). The C isotope source for the PETM is also likely related to a C input
2153 event (Dickens, 2011), but its transient nature (duration of ~10 kyr) results in a relatively short-
2154 lived increase in anoxia (Clarkson et al., 2021). Therefore, negative $\delta^{13}\text{C}$ associated with greater
2155 anoxia after the oxygenation of the deep ocean is generally a sign of a change in carbon inputs that
2156 lead to deoxygenation.

2157 Key examples of intervals where deoxygenation is instead associated with a positive $\delta^{13}\text{C}$
2158 (**Figure 17**) include the Cambrian Steptoean Carbon Isotope Excursion (SPICE (Dahl et al., 2014,
2159 Gill et al., 2011)), the Lau-Kozlowskii Excursion in the Silurian (Bowman et al., 2021), the
2160 Cenomanian-Turonian Ocean Anoxic Event 2 (OAE 2; (Jenkyns et al., 1994, Eldrett et al., 2014)),
2161 and the Miocene “Monterey” excursion (White et al., 1992, Flower and Kennett, 1993)—see also
2162 (Hess et al., 2023, Li et al., 2023, Auderset et al., 2022). The $\delta^{13}\text{C}$ in these examples are often
2163 interpreted as a direct recorder of higher organic carbon burial, although the duration of the
2164 excursion matters. The early Paleozoic positive $\delta^{13}\text{C}$ excursions may be related to the fact that the
2165 deep ocean had not fully developed modern levels of oxygenation, with significantly shorter $\delta^{13}\text{C}$
2166 excursions in the Mesozoic and Cenozoic reflecting a better ventilated ocean. The SPICE is also
2167 complex, with higher anoxia corresponding to the initial positive $\delta^{13}\text{C}$ excursion and *more* O₂
2168 associated with the end of the excursion, related to the positive feedback on O₂ from higher organic
2169 carbon burial (Dahl et al., 2014). For OAE 2, a combination of S and Tl isotopes suggest seafloor
2170 euxinia as extensive as 5%, perhaps initiating up to 54 kyr prior to the carbon isotope excursion
2171 itself (Ostrander et al., 2017, Owens et al., 2017). Similar pre- $\delta^{13}\text{C}$ excursion initiation of anoxia
2172 has also been inferred for the Toarcian OAE (Them et al., 2018). These examples highlight the
2173 potential for C isotopes to also record changes in the carbon sinks (compared to the sources that
2174 result in negative $\delta^{13}\text{C}$ excursions), with the triggers in this case related more to internal,
2175 endogenous factors such as reorganization of ocean circulation in the Miocene. The OAE 2 event
2176 is an outlier as it has also been linked to LIPs (Turgeon and Creaser, 2008) but a significant
2177 negative $\delta^{13}\text{C}$ excursion is absent for this event.

2178 Major shifts in the baseline $\delta^{13}\text{C}$ in the Devonian or the Carboniferous are absent. A
2179 positive shift is expected if greater terrestrial organic carbon burial followed the evolution and
2180 proliferation of land plants and coal deposits—an ecological shift that has been linked to great
2181 amounts of O₂ in the atmosphere (Algeo et al., 1995, Algeo and Scheckler, 1998, Berner and
2182 Canfield, 1989). For example, a +2‰ increase in carbonate $\delta^{13}\text{C}$ has been linked to the initial
2183 colonization of early plants near the Ordovician/Silurian boundary (Lenton et al., 2016) as higher
2184 O₂ levels led to higher continental weathering and increased organic carbon burial. Another

expectation is a change in the carbon isotope fractionation between carbonate and organic carbon with the rise of C3 dominance in land plants, which is hypothesized to explain the increase in the $\delta^{13}\text{C}$ of terrestrial organic matter in the Carboniferous (Peters-Kottig et al., 2006). Despite these major changes in the locus of organic carbon burial with the evolution of terrestrial ecosystems, it is possible that the overall net change in organic carbon, and therefore the impact on $\delta^{13}\text{C}$, was muted as the terrestrial and marine organic carbon sinks rebalanced due to geographic changes in weathering, nutrients, and productivity.

We return to the original question introduced in *Box 1: Linking changes in redox conditions to the carbon isotope record*: Is there a relationship between $\delta^{13}\text{C}$ and redox state of the oceans? Based on this overview, an association between C isotopes and O₂ change is more evident for the Phanerozoic than the Precambrian. However, there is no consistency between increased or decreased anoxia with a $\delta^{13}\text{C}$ shift of a given direction, and this demonstrates the complexity of understanding $\delta^{13}\text{C}$ excursions as recording either a trigger to anoxia/oxia or the direct effect of the organic carbon cycle itself. There are currently no examples where the redox state of the ocean changed without a concomitant change in $\delta^{13}\text{C}$, although this could be a sampling bias issue as these times would appear less interesting biogeochemically. Nonetheless, the many studies that compare $\delta^{13}\text{C}$ shifts to redox proxies do indicate support for $\delta^{13}\text{C}$ to mark changes in the redox state of the oceans.

5 Future Directions

A range of key insights into marine redox evolution have emerged in the last decade. As always, however, developments in our understanding beget more questions and challenges. It is also humbling to remember that even as our perspectives grow and our constraints are refined, the community is still addressing fundamental questions which were initiated by earlier generations. For paleoceanography—while much has been learned—defining when, where, and how oxygen and associated redox-sensitive elemental cycles were perturbed across key intervals are still heavily debated. For chemical oceanography and diagenesis, quantifying redox-sensitive trace element and isotope relationships to the global carbon and oxygen cycles are still a central challenge. As these fields—which are inherently linked—continue to advance within and beyond these important questions, it is clear from this synthesis and others that we are at the cusp of many important step changes. While there are many, we highlight below important community-wide challenges going forward which leverage recent advances.

- **Integration, curation, and co-analysis of modern and deep time oceanographic data archives:** While new geochemical data from oceanographic transects or sedimentary sections are essential for filling in environmental and temporal gaps, the potential of existing data archives are just beginning to be explored. Indeed, statistical and comprehensive analyses of existing databases and incorporation into models—e.g., data analytics, machine learning, and process-based studies—are the new frontier. Ongoing efforts to curate modern and ancient geochemical databases—e.g., GEOTRACES and SGP—are essential frameworks for these future studies. Importantly, while the differences in geochemical archives may call for different databases, ancient and modern geochemical archives are inherently complimentary and thus should be coordinated and introduced as

such. In this way, future studies can use databases to identify key spatiotemporal gaps, which includes identifying data gaps necessary for constraining palaeoceanographic evolution. For example, many paleoredox studies focus on defined $\delta^{13}\text{C}$ excursions, meaning there are important data gaps in defining baseline conditions.

- **Defining O_2 thresholds for redox-sensitive elements:** For both modern chemical and paleoceanography, it is essential to define the O_2 limits associated with oxidation and reduction reactions across redox boundaries. Continued efforts to calibrate redox tracers are necessary for understanding potential variations in metabolic processes within or between ODZs but are also essential for defining O_2 values associated with known redox-transitions in Earth history. For example, comparison of benthic and planktonic C isotopes and $\text{I}/(\text{Ca}+\text{Mg})$ have been applied to quantify O_2 levels in the Pleistocene and Holocene (Section 3). Further back in Earth history (Section 4), the fractionations associated with $\delta^{53}\text{Cr}$ and $\Delta^{33}\text{S}$ are associated with well-defined transitions and associated O_2 thresholds, but these constraints are still being determined for other paleoredox proxies. This is an active area of research and, because calibrations should consider modern seawater and sediments, also helps to refine our understanding of the current state of these geochemical cycles. Targeted studies defining O_2 across redox gradients—e.g., depth profiles, experiments—using STOX or other sensors sensitive to sub- $\mu\text{mol kg}^{-1}$ O_2 are essential given the demonstrated importance of these low O_2 levels for aerobic life and most redox-sensitive elemental cycles in the studies to date.
- **Quantifying water mass ages alongside trace element and isotope variations:** As highlighted in this Chapter, determining the relationship between O_2 and water-mass ages provides a mechanistic framework for understanding differences in O_2 abundance and geochemical spatial variation between ODZs. A future challenge is expanding similar approaches to trace element and isotope studies in order to elucidate biogeochemical evolution within and differences between ODZs. The PCA presented in Section 2—based on a relatively limited dataset compared to the broader GEOTRACES compilation—indicates that new insights may emerge with wider efforts at data collection of redox-sensitive elements as well as trace nutrient concentrations.
- **Constraints on trace elements and isotope variations on seasonal and anthropogenic timescales:** Time-series focused projects and databases such as the Ocean Observatory Initiative, Bermuda Atlantic Time Series, Hawaii Ocean Time Series, and the Atlantic Meridional Transect provide unprecedented constraints on temporal variations on daily, seasonal, and annual timescales in key parameters such as C cycling and pH, among others. However, redox-sensitive trace element and isotopes are not routinely measured at the same temporal resolution, limiting our understanding of variations in these geochemical cycles across most timescales. Indeed, our understanding of trace element and isotope variations across geologic time may rival or surpass that across diurnal to anthropogenic timescales. Although logistical constraints play a key role in these gaps—e.g., limited deployable sensors and rigorous/cumbersome sampling requirements—the absence of more detailed modern constraints limit interpretations of these geochemical cycles across modern to geologic timescales.

- **Linking water column and sedimentary redox processes:** The sedimentary geochemical record that forms the basis of redox reconstructions in the past relies on filtering these signals through a myriad of water-column, syn-depositional, and post-depositional processes—including processes broadly included in the theme of “diagenesis.” The heterogeneity of water-column geochemistry, including significant variations in trace element compositions even between modern ODZs, was discussed in detail in this synthesis. Interpreting sedimentary geochemistry also requires consideration of interactions across the sediment-water interface that add complexity to what is ultimately recorded in the sedimentary record. Developing nuanced and mechanistic models that link these processes are an area of active research in modern chemical oceanography as well as in deep-time paleoceanography and can be probed with more sediment and porewater sampling as well as reactive-transport modeling and spatially resolved biogeochemical models. The latter in particular can help to reveal whether local changes, including diagenesis, can reflect global climate, tectonic, or geobiological changes.
- **Mechanistic constraints on paleoredox evolution:** While there is a growing arsenal of paleoredox proxies and associated records, a major theme is that the mechanisms driving redox transitions are still debated. For example, as highlighted in this chapter, the mechanisms driving increases in atmospheric and oceanic O₂ at the GOE, in the Neoproterozoic, and within the Paleozoic remain largely unresolved. A future challenge is bolstering ongoing efforts to integrate modern chemical oceanographic observations and experimental constraints into Earth System models aimed at understanding the driving mechanisms for important paleoredox transitions.
- **Temporal constraints on paleoredox evolution:** A major challenge to understanding driving mechanisms for paleoredox evolution is the limited constraints on the timing and tempo associated with these transitions. This is particularly true in the Precambrian where an essential lack of fossil-based correlations means that even determining synchronicity of geochemical records can be contentious. For example, the timing of GOE and LJE remain largely unresolved and the duration and synchronicity of major carbon isotope excursions such as the Shuram-Wonoka in the Ediacaran is highly disputed. A future challenge is bolstering ongoing geochronological studies of these key events/intervals in order to place temporal constraints necessary for stratigraphic correlation and mechanistic models.
- **Relationships between O₂, biological evolution, and habitability:** The geobiological questions posed in this synthesis that link marine redox conditions with the evolution of microscopic and macroscopic life require continued focus on modern constraints. This includes metagenomic analysis of diverse environments that span a range of redox conditions, experiments and models to determine the physiological limits of different extant taxa, and biological oceanographic observations that can improve how biogeochemical processes are integrated into climate models at different levels of complexity. This work will be central to projections of climate change on future marine redox conditions and the impacts on habitability. In Earth history, model-data comparison can help to reveal links between the role that O₂ plays on biotic change (and vice versa) and continued geochronological efforts to refine the rate and timing of both environmental and biotic evolution will test the temporal relationships between redox and life.

2322 **6 References**

2323

2324 AHM, A.-S. & HUSSON, J. 2022. *Local and Global Controls on Carbon Isotope Chemostratigraphy*,
2325 Cambridge University Press.

2326 ALCOTT, L. J., MILLS, B. J. W., BEKKER, A. & POULTON, S. W. 2022. Earth's Great Oxidation Event
2327 facilitated by the rise of sedimentary phosphorus recycling. *Nature Geoscience*, 15, 210.

2328 ALGEO, T. J., BERNER, R. A., MAYNARD, J. B. & SCHECKLER, S. E. 1995. Late Devonian Oceanic
2329 Anoxic Events and Biotic Crises: "Rooted" in the Evolution of Vascular Land Plants? *GSA*
2330 *TODAY*, 4.

2331 ALGEO, T. J. & LYONS, T. W. 2006. Mo–total organic carbon covariation in modern anoxic
2332 marine environments: Implications for analysis of paleoredox and paleohydrographic
2333 conditions. *Paleoceanography* [Online], 21.

2334 ALGEO, T. J. & SCHECKLER, S. E. 1998. Terrestrial-marine teleconnections in the Devonian: links
2335 between the evolution of land plants, weathering processes, and marine anoxic events.
2336 *Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences*,
2337 353, 113-130.

2338 ALLEN, P. A. & ETIENNE, J. L. 2008. Sedimentary challenge to Snowball Earth. *Nature*
2339 *Geoscience*, 1, 817-825.

2340 ANBAR, A. D., DUAN, Y., LYONS, T. W., ARNOLD, G. L., KENDALL, B., CREASER, R. A., KAUFMAN,
2341 A. J., GORDON, G. W., SCOTT, C. & GARVIN, J. 2007. A whiff of oxygen before the great
2342 oxidation event? *Science*, 317, 1903-1906.

2343 ANDERSEN, M. B., ROMANIELLO, S., VANCE, D., LITTLE, S. H., HERDMAN, R. & LYONS, T. W.
2344 2014. A modern framework for the interpretation of $^{238}\text{U}/^{235}\text{U}$ in studies of ancient
2345 ocean redox. *Earth and Planetary Science Letters*, 400, 184-194.

2346 ANDERSON, R. F., ALI, S., BRADTMILLER, L. I., NIELSEN, S. H. H., FLEISHER, M. Q., ANDERSON, B.
2347 E. & BURCKLE, L. H. 2009. Wind-Driven Upwelling in the Southern Ocean and the
2348 Deglacial Rise in Atmospheric CO₂. *Science*, 323, 1443-1448.

2349 ARTHUR, M. A., SCHLANGER, S. O. & JENKYNS, H. C. 1987. The Cenomanian-Turonian Oceanic
2350 Anoxic Event, II. Palaeoceanographic controls on organic-matter production and
2351 preservation. In: BROOKS, J. & FLEET, A. J. (eds.) *Marine Petroleum Source Rocks*.

2352 AUDERSET, A., MORETTI, S., TAPHORN, B., EBNER, P. R., KAST, E., WANG, X. T., SCHIEBEL, R.,
2353 SIGMAN, D. M., HAUG, G. H. & MARTINEZ-GARCIA, A. 2022. Enhanced ocean
2354 oxygenation during Cenozoic warm periods. *Nature*, 609, 77-+.

2355 BABBIN, A. R., BIANCHI, D., JAYAKUMAR, A. & WARD, B. B. 2015. Rapid nitrous oxide cycling in
2356 the suboxic ocean. *Science*, 348, 1127-1129.

2357 BACHAN, A., LAU, K. V., SALTZMAN, M. R., THOMAS, E., KUMP, L. R. & PAYNE, J. L. 2017. A
2358 model for the decrease in amplitude of carbon isotope excursions across the
2359 Phanerozoic. *American Journal of Science*, 317, 641-676.

2360 BAKUN, A. & WEEKS, S. J. 2004. Greenhouse gas buildup, sardines, submarine eruptions and the
2361 possibility of abrupt degradation of intense marine upwelling ecosystems. *Ecology*
2362 *Letters*, 7, 1015-1023.

2363 BANSE, K., NAQVI, S. W. A., NARVEKAR, P. V., POSTEL, J. R. & JAYAKUMAR, D. A. 2014. Oxygen
2364 minimum zone of the open Arabian Sea: variability of oxygen and nitrite from daily to
2365 decadal timescales. *Biogeosciences*, 11, 2237-2261.

2366 BATTLE, M., BENDER, M., SOWERS, T., TANS, P. P., BUTLER, J. H., ELKINS, J. W., ELLIS, J. T.,
2367 CONWAY, T., ZHANG, N., LANG, P. & CLARKE, A. D. 1996. Atmospheric gas
2368 concentrations over the past century measured in air from firn at the South Pole.
2369 *Nature*, 383, 231-235.

2370 BAYON, G., BINDEMAN, I. N. N., TRINQUIER, A., RETALLACK, G. J. & BEKKER, A. 2022. Long-term
2371 evolution of terrestrial weathering and its link to Earth's oxygenation. *Earth and*
2372 *Planetary Science Letters*, 584.

2373 BENDER, M., SOWERS, T. & LABEYRIE, L. 1994a. The Dole Effect and its variations in the last
2374 130,000 years as measured in the Vostok Ice Core. *Global Biogeochemical Cycles*, 8, 363-
2375 376.

2376 BENDER, M. L., SOWERS, T., BARNOLA, J. M. & CHAPPELLAZ, J. 1994b. Changes in the O_2
2377 / N_2 ratio of the atmosphere during recent decades reflected in the composition of air in
2378 the Firn at Vostok Station, Antarctica. *Geophysical Research Letters*, 21, 189-192.

2379 BERNER, R. A. 1982. Burial of organic carbon and pyrite sulfur in the modern ocean: its
2380 geochemical and environmental significance. *Am. J. Sci*, 282, 451-473.

2381 BERNER, R. A. 2001. Modeling atmospheric O_2 over Phanerozoic time. *Geochimica et*
2382 *Cosmochimica Acta*, 65, 685-694.

2383 BERNER, R. A. 2006a. GEOCARBSULF: A combined model for Phanerozoic atmospheric O_2 and
2384 CO_2 . *Geochimica Et Cosmochimica Acta*, 70, 5653-5664.

2385 BERNER, R. A. 2006b. GEOCARBSULF: A combined model for Phanerozoic atmospheric O_2 and
2386 CO_2 . *Geochimica Et Cosmochimica Acta*, 70, 5653-5664.

2387 BERNER, R. A. & CANFIELD, D. E. 1989. A new model for atmospheric oxygen over Phanerozoic
2388 time. *Am. J. Sci*, 289, 333-361.

2389 BERNER, R. A. & RAISWELL, R. 1983. Burial of organic carbon and pyrite sulfur in sediments over
2390 Phanerozoic time: a new theory. *Geochimica et Cosmochimica Acta*, 47, 855-862.

2391 BERNER, R. A. & WESTRICH, J. T. 1985. Bioturbation and the Early Diagenesis of Carbon and
2392 Sulfur. *American Journal of Science*, 285, 193-206.

2393 BHASKAR, T., SARMA, V. & KUMAR, J. P. 2021. Potential Mechanisms Responsible for Spatial
2394 Variability in Intensity and Thickness of Oxygen Minimum Zone in the Bay of Bengal.
2395 *Journal of Geophysical Research-Biogeosciences*, 126.

2396 BIAN, X., YANG, S.-C., BOLSTER, K. M., MORIYASU, R., MOFFETT, J. W. & JOHN, S. G. 2023.
2397 Biogeochemical cycling of Cd, Mn, and Ce in the Eastern Tropical North Pacific oxygen-
2398 deficient zone. *Limnology and Oceanography*, 68, 483-497.

2399 BIANCHI, D., WEBER, T. S., KIKO, R. & DEUTSCH, C. 2018. Global niche of marine anaerobic
2400 metabolism expanded by particle microenvironments. *Nature Geoscience*, 11, 263-+.

2401 BINDOFF, N. L., CHEUNG, W. W., KAIRO, J. G., ARÍSTEGUI, J., GUINDER, V. A., HALLBERG, R.,
2402 HILMI, N. J. M., JIAO, N., KARIM, M. S. & LEVIN, L. 2019. Changing ocean, marine
2403 ecosystems, and dependent communities. *IPCC special report on the ocean and*
2404 *cryosphere in a changing climate*, 477-587.

2405 BJERRUM, C. J., BENDTSEN, J. & LEGARTH, J. J. F. 2006. Modeling organic carbon burial during
2406 sea level rise with reference to the Cretaceous. *Geochemistry, Geophysics, Geosystems*,
2407 7, Q05008.

2408 BJERRUM, C. J. & CANFIELD, D. E. 2011. Towards a quantitative understanding of the late
2409 Neoproterozoic carbon cycle. *Proceedings of the National Academy of Sciences*, 108,
2410 5542-5547.

2411 BLÄTTLER, C. L., CLAIRE, M. W., PRAVE, A. R., KIRSIMAE, K., HIGGINS, J. A., MEDVEDEV, P. V.,
2412 ROMASHKIN, A. E., RYCHANIKH, D. V., ZERKLE, A. L., PAISTE, K., KREITSMANN, T.,
2413 MILLAR, I. L., HAYLES, J. A., BAO, H., TURCHYN, A. V., WARKE, M. R. & LEPLAND, A. 2018.
2414 Two-billion-year-old evaporites capture Earth's great oxidation. *Science*, 360, 320.

2415 BOAG, T. H., STOCKEY, R. G., ELDER, L. E., HULL, P. M. & SPERLING, E. A. 2018. Oxygen,
2416 temperature and the deep-marine stenothermal cradle of Ediacaran evolution.
2417 *Proceedings of the Royal Society B*, 285, 1-10.

2418 BOGRAD, S. J., CASTRO, C. G., DI LORENZO, E., PALACIOS, D. M., BAILEY, H., GILLY, W. &
2419 CHAVEZ, F. P. 2008. Oxygen declines and the shoaling of the hypoxic boundary in the
2420 California Current. *Geophysical Research Letters*, 35.

2421 BOLSTER, K. M., HELLER, M. I., MULHOLLAND, M. R. & MOFFETT, J. W. 2022. Iron and
2422 manganese accumulation within the Eastern Tropical North Pacific oxygen deficient
2423 zone. *Geochimica Et Cosmochimica Acta*, 334, 259-272.

2424 BOSCOLO-GALAZZO, F., CRICHTON, K. A., RIDGWELL, A., MAWBEY, E. M., WADE, B. S. &
2425 PEARSON, P. N. 2021. Temperature controls carbon cycling and biological evolution in
2426 the ocean twilight zone. *Science*, 371, 1148.

2427 BOWMAN, C. N., THEM, T. R., II, KNIGHT, M. D., KALJO, D., ERIKSSON, M. E., HINTS, O.,
2428 MARTMA, T., OWENS, J. D. & YOUNG, S. A. 2021. A multi-proxy approach to constrain
2429 reducing conditions in the Baltic Basin during the late Silurian Lau carbon isotope
2430 excursion. *Palaeogeography Palaeoclimatology Palaeoecology*, 581.

2431 BOYER, T., CONKRIGHT, M. E. & LEVITUS, S. 1999. Seasonal variability of dissolved oxygen,
2432 percent oxygen saturation, and apparent oxygen utilization in the Atlantic and Pacific
2433 Oceans. *Deep-Sea Research Part I-Oceanographic Research Papers*, 46, 1593-1613.

2434 BOYER, T. P., GARCÍA, H. E., LOCARNINI, R. A., ZWENG, M. M., MISHONOV, A. V., REAGAN, J. R.,
2435 WEATHERS, K. A., BARANOVA, O. K., PAVER, C. R. & SEIDOV, D. 2018. World Ocean Atlas.

2436 BOYLE, R. A., DAHL, T. W., BJERRUM, C. J. & CANFIELD, D. E. 2018. Bioturbation and
2437 directionality in Earth's carbon isotope record across the Neoproterozoic-Cambrian
2438 transition. *Geobiology*, 16, 252-278.

2439 BOYLE, R. A., DAHL, T. W., DALE, A. W., SHIELDS-ZHOU, G. A., ZHU, M., BRASIER, M. D.,
2440 CANFIELD, D. E. & LENTON, T. M. 2014. Stabilization of the coupled oxygen and
2441 phosphorus cycles by the evolution of bioturbation. *Nature Geoscience*, 7, 671-676.

2442 BREITBURG, D., LEVIN, L. A., OSCHLIES, A., GRÉGOIRE, M., CHAVEZ, F. P., CONLEY, D. J.,
2443 GARÇON, V., GILBERT, D., GUTIÉRREZ, D., ISENSEE, K., JACINTO, G. S., LIMBURG, K. E.,
2444 MONTES, I., NAQVI, S. W. A., PITCHER, G. C., RABALAIS, N. N., ROMAN, M. R., ROSE, K.
2445 A., SEIBEL, B. A., TELSZEWSKI, M., YASUHARA, M. & ZHANG, J. 2018. Declining oxygen in
2446 the global ocean and coastal waters. *Science*, 359, eaam7240.

2447 BRISTOW, L. A., CALLBECK, C. M., LARSEN, M., ALTABET, M. A., DEKAEZEMACKER, J., FORTH, M.,
2448 GAUNS, M., GLUD, R. N., KUYPERS, M. M. M., LAVIK, G., MILUCKA, J., NAQVI, S. W. A.,

2449 PRATIHARY, A., REVSBECH, N. P., THAMDRUP, B., TREUSCH, A. H. & CANFIELD, D. E.
2450 2017. N₂ production rates limited by nitrite availability in the Bay of Bengal oxygen
2451 minimum zone. *Nature Geoscience*, 10, 24-29.

2452 BRISTOW, L. A., DALSGAARD, T., TIANO, L., MILLS, D. B., BERTAGNOLLI, A. D., WRIGHT, J. J.,
2453 HALLAM, S. J., ULLOA, O., CANFIELD, D. E. & REVSBECH, N. P. 2016. Ammonium and
2454 nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters.
2455 *Proceedings of the National Academy of Sciences*, 113, 10601-10606.

2456 BRISTOW, T. F. & KENNEDY, M. J. 2008. Carbon isotope excursions and the oxidant budget of
2457 the Ediacaran atmosphere and ocean. *Geology*, 36, 863-866.

2458 BROCKS, J. J. 2018. The transition from a cyanobacterial to algal world and the emergence of
2459 animals. *Emerging Topics in Life Sciences*, 2, 181-190.

2460 BROCKS, J. J., JARRETT, A. J. M., SIRANTOINE, E., HALLMANN, C., HOSHINO, Y. & LIYANAGE, T.
2461 2017. The rise of algae in Cryogenian oceans and the emergence of animals. *Nature*,
2462 548, 578-+.

2463 BROCKS, J. J., LOGAN, G. A., BUICK, R. & SUMMONS, R. E. 1999. Archean molecular fossils and
2464 the early rise of eukaryotes. *Science*, 285, 1033-1036.

2465 BROECKER, W. S. 1970. A boundary condition on the evolution of atmospheric oxygen. *Journal*
2466 *of Geophysical Research (1896-1977)*, 75, 3553-3557.

2467 BROUILLON, D., PEREZ, F. F., VELO, A., HOPPEMA, M., OLSEN, A., TAKAHASHI, T., KEY, R. M.,
2468 TANHUA, T., MAGDALENA SANTANA-CASIANO, J. & KOZYR, A. 2020. A global monthly
2469 climatology of oceanic total dissolved inorganic carbon: a neural network approach.
2470 *Earth System Science Data*, 12, 1725-1743.

2471 BRUCHERT, V., JORGENSEN, B. B., NEUMANN, K., RIECHMANN, D., SCHLOSSER, M. & SCHULZ, H.
2472 2003. Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central
2473 Namibian coastal upwelling zone. *Geochimica Et Cosmochimica Acta*, 67, 4505-4518.

2474 BRULAND, K., MIDDAG, R. & LOHAN, M. 2014. Controls of trace metals in seawater. In 'Treatise
2475 on Geochemistry'.(Eds H. Holland and K. Turekian.) pp. 19-51. Elsevier: Amsterdam,
2476 Netherlands.

2477 BUSCH, J. F., HODGIN, E. B., AHM, A.-S. C., HUSSON, J. M., MACDONALD, F. A., BERGMANN, K.
2478 D., HIGGINS, J. A. & STRAUSS, J. V. 2022. Global and local drivers of the Ediacaran
2479 Shuram carbon isotope excursion. *Earth and Planetary Science Letters*, 579, 117368.

2480 BUTTERFIELD, N. J. 2007. Macroevolution and macroecology through deep time. *Palaeontology*,
2481 50, 41-55.

2482 BUTTERFIELD, N. J. 2009. Oxygen, animals and oceanic ventilation: an alternative view.
2483 *Geobiology*, 7, 1-7.

2484 BUTTERFIELD, N. J. 2015. Early evolution of the eukaryote. *Palaeontology*, 58, 5-17.

2485 BUTTERFIELD, N. J. 2018. Oxygen, animals and aquatic bioturbation: An updated account.
2486 *Geobiology*, 16, 3-16.

2487 CANFIELD, D. 1998. A new model for Proterozoic ocean chemistry. *Nature*, 396, 450-453.

2488 CANFIELD, D. E. 2001. Biogeochemistry of sulfur isotopes. *Stable Isotope Geochemistry*, 43, 607-
2489 636.

2490 CANFIELD, D. E., KRAFT, B., LOSCHER, C., BOYLE, R. A., THAMDRUP, B. & STEWART, F. J. 2019.
2491 The regulation of oxygen to low concentrations in marine oxygen-minimum zones.
2492 *Journal of Marine Research*, 77, 297-324.

2493 CANFIELD, D. E., STEWART, F. J., THAMDRUP, B., DE BRABANDERE, L., DALSGAARD, T., DELONG,
2494 E. F., REVSBECH, N. P. & ULLOA, O. 2010. A Cryptic Sulfur Cycle in Oxygen-Minimum-
2495 Zone Waters off the Chilean Coast. *Science*, 330, 1375-1378.

2496 CANFIELD, D. E. & THAMDRUP, B. 2009. Towards a consistent classification scheme for
2497 geochemical environments, or, why we wish the term 'suboxic' would go away.
2498 *Geobiology*, 7, 385-392.

2499 CANFIELD, D. E., ZHANG, S., FRANK, A. B., WANG, X., WANG, H., SU, J., YE, Y. & FREI, R. 2018.
2500 Highly fractionated chromium isotopes in Mesoproterozoic-aged shales and
2501 atmospheric oxygen. *Nature Communications*, 9.

2502 CANNARIATO, K. G. & KENNEDY, J. P. 1999. Climatically related millennial-scale fluctuations in
2503 strength of California margin oxygen-minimum zone during the past 60 k.y. *Geology*, 27,
2504 975.

2505 CAROLAN, M. T., SMITH, J. M. & BEMAN, J. M. 2015. Transcriptomic evidence for microbial
2506 sulfur cycling in the eastern tropical North Pacific oxygen minimum zone. *Frontiers in*
2507 *Microbiology*, 6.

2508 CATLING, D. C., ZAHNLE, K. J. & MCKAY, C. P. 2001. Biogenic methane, hydrogen escape, and
2509 the irreversible oxidation of early Earth. *Science*, 293, 839-843.

2510 CHANCE, R., BAKER, A. R., CARPENTER, L. & JICKELLS, T. D. 2014. The distribution of iodide at
2511 the sea surface. *Environmental Science-Processes & Impacts*, 16, 1841-1859.

2512 CHEN, X., ROMANILO, S. J., HERRMANN, A. D., HARDISTY, D., GILL, B. C. & ANBAR, A. D. 2018.
2513 Diagenetic effects on uranium isotope fractionation in carbonate sediments from the
2514 Bahamas. *Geochimica Et Cosmochimica Acta*, 237, 294-311.

2515 CHEN, X., TISSOT, F. L. H., JANSEN, M. F., BEKKER, A., LIU, C. X., NIE, N. X., HALVERSON, G. P.,
2516 VEIZER, J. & DAUPHAS, N. 2021. The uranium isotopic record of shales and carbonates
2517 through geologic time. *Geochimica Et Cosmochimica Acta*, 300, 164-191.

2518 CLAPHAM, M. E. & KARR, J. A. 2012. Environmental and biotic controls on the evolutionary
2519 history of insect body size. *Proceedings of the National Academy of Sciences*, 109,
2520 10927-10930.

2521 CLARKSON, M. O., LENTON, T. M., ANDERSEN, M. B., BAGARD, M.-L., DICKSON, A. J. & VANCE,
2522 D. 2021. Upper limits on the extent of seafloor anoxia during the PETM from uranium
2523 isotopes. *Nature Communications*, 12, 399.

2524 CLEMENT, B. G., LUTHER, G. W. & TEBO, B. M. 2009. Rapid, oxygen-dependent microbial Mn (II)
2525 oxidation kinetics at sub-micromolar oxygen concentrations in the Black Sea suboxic
2526 zone. *Geochimica et Cosmochimica Acta*, 73, 1878-1889.

2527 CODISPOTI, L. A., BRANDES, J., CHRISTENSEN, J. P., DEVOL, A. H., NAQVI, S. W. A., PAERL, H. &
2528 YOSHINARI, T. 2001. The oceanic fixed nitrogen and nitrous oxide budgets: moving
2529 targets as we enter the anthropocene? *Scientia Marina*, 65, 85-105.

2530 COLE, D. B., MILLS, D. B., ERWIN, D. H., SPERLING, E. A., PORTER, S. M., REINHARD, C. T. &
2531 PLANAVSKY, N. J. 2020. On the co-evolution of surface oxygen levels and animals.
2532 *Geobiology*, 18, 260-281.

2533 COLE, D. B., REINHARD, C. T., WANG, X., GUEGUEN, B., HALVERSON, G. P., GIBSON, T.,
2534 HODGSKISS, M. S., MCKENZIE, N. R., LYONS, T. W. & PLANAVSKY, N. J. 2016. A shale-
2535 hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. *Geology*,
2536 G37787. 1.

2537 COLT, J. 1985. American Fisheries Society Special Publication No. 14. Computation of dissolved
2538 gas concentrations in water as functions of temperature, salinity, and pressure. *Colt, J.*
2539 *American Fisheries Society Special Publication, No. 14. Computation of Dissolved Gas*
2540 *Concentrations in Water as Functions of Temperature, Salinity, and Pressure.* Vi+154p.
2541 *American Fisheries Society: Bethesda, Md., USA. Illus. Paper, VI+154P-VI+154P.*

2542 COOLEY, S., SCHOEMAN, D., BOPP, L., BOYD, P., DONNER, S., ITO, S.-I., KISSLING, W.,
2543 MARTINETTO, P., OJEA, E. & RACAULT, M.-F. 2022. Oceans and coastal ecosystems and
2544 their services. *IPCC AR6 WGII.* Cambridge University Press.

2545 COX, G. M., HALVERSON, G. P., MINARIK, W. G., LE HERON, D. P., MACDONALD, F. A.,
2546 BELLEFROID, E. J. & STRAUSS, J. V. 2013. Neoproterozoic iron formation: An evaluation
2547 of its temporal, environmental and tectonic significance. *Chemical Geology*, 362, 232-
2548 249.

2549 COX, G. M., HALVERSON, G. P., STEVENSON, R. K., VOKATY, M., POIRIER, A., KUNZMANN, M., LI,
2550 Z.-X., DENYSZYN, S. W., STRAUSS, J. V. & MACDONALD, F. A. 2016. Continental flood
2551 basalt weathering as a trigger for Neoproterozoic Snowball Earth. *Earth and Planetary*
2552 *Science Letters*, 446, 89-99.

2553 COX, G. M., LYONS, T. W., MITCHELL, R. N., HASTEROK, D. & GARD, M. 2018. Linking the rise of
2554 atmospheric oxygen to growth in the continental phosphorus inventory. *Earth and*
2555 *Planetary Science Letters*, 489, 28-36.

2556 CROWE, S. A., DØSSING, L. N., BEUKES, N. J., BAU, M., KRUGER, S. J., FREI, R. & CANFIELD, D. E.
2557 2013. Atmospheric oxygenation three billion years ago. *Nature*, 501, 535-538.

2558 CUTTER, G. A. & KRAHFORST, C. F. 1988. Sulfide in surface waters of the Western Atlantic
2559 Ocean. *Geophysical Research Letters*, 15, 1393-1396.

2560 CUTTER, G. A., MOFFETT, J. G., NIELSDOTTIR, M. C. & SANIAL, V. 2018. Multiple oxidation state
2561 trace elements in suboxic waters off Peru: In situ redox processes and
2562 advective/diffusive horizontal transport. *Marine Chemistry*, 201, 77-89.

2563 CZAJA, A. D., JOHNSON, C. M., RODEN, E. E., BEARD, B. L., VOEGELIN, A. R., NAEGLER, T. F.,
2564 BEUKES, N. J. & WILLE, M. 2012. Evidence for free oxygen in the Neoarchean ocean
2565 based on coupled iron-molybdenum isotope fractionation. *Geochimica Et Cosmochimica*
2566 *Acta*, 86, 118-137.

2567 DAHL, T. W., BOYLE, R. A., CANFIELD, D. E., CONNELLY, J. N., GILL, B. C., LENTON, T. M. &
2568 BIZZARRO, M. 2014. Uranium isotopes distinguish two geochemically distinct stages
2569 during the later Cambrian SPICE event. *Earth and Planetary Science Letters*, 401, 313-
2570 326.

2571 DALE, A. W., BOYLE, R. A., LENTON, T. M., INGALL, E. D. & WALLMANN, K. 2016. A model for
2572 microbial phosphorus cycling in bioturbated marine sediments: Significance for
2573 phosphorus burial in the early Paleozoic. *Geochimica et Cosmochimica Acta*, 189, 251-
2574 268.

2575 DALSGAARD, T., STEWART, F. J., THAMDRUP, B., DE BRABANDERE, L., REVSBECH, N. P., ULLOA,
2576 O., CANFIELD, D. E. & DELONG, E. F. 2014. Oxygen at Nanomolar Levels Reversibly
2577 Suppresses Process Rates and Gene Expression in Anammox and Denitrification in the
2578 Oxygen Minimum Zone off Northern Chile. *Mbio*, 5.

2579 DAVIES, M. H., MIX, A. C., STONER, J. S., ADDISON, J. A., JAEGER, J., FINNEY, B. & WIEST, J. 2011.
2580 The deglacial transition on the southeastern Alaska Margin: Meltwater input, sea level
2581 rise, marine productivity, and sedimentary anoxia. *Paleoceanography*, 26, PA2223.

2582 DE BRABANDERE, L., CANFIELD, D. E., DALSGAARD, T., FRIEDERICH, G. E., REVSBECH, N. P.,
2583 ULLOA, O. & THAMDRUP, B. 2014. Vertical partitioning of nitrogen-loss processes across
2584 the oxic-anoxic interface of an oceanic oxygen minimum zone. *Environmental*
2585 *Microbiology*, 16, 3041-3054.

2586 DERRY, L. A. 2010. A burial diagenesis origin for the Ediacaran Shuram–Wonoka carbon isotope
2587 anomaly. *Earth and Planetary Science Letters*, 294, 152-162.

2588 DEUTSCH, C., BERELSON, W., THUNELL, R., WEBER, T., TEMS, C., MCMANUS, J., CRUSIUS, J., ITO,
2589 T., BAUMGARTNER, T., FERREIRA, V., MEY, J. & VAN GEEN, A. 2014. Centennial changes
2590 in North Pacific anoxia linked to tropical trade winds. *Science*, 345, 665-668.

2591 DEUTSCH, C., EMERSON, S. & THOMPSON, L. 2006. Physical-biological interactions in North
2592 Pacific oxygen variability. *Journal of Geophysical Research: Oceans*, 111.

2593 DIAMOND, C. W. & LYONS, T. W. 2018. Mid-Proterozoic redox evolution and the possibility of
2594 transient oxygenation events. *Emerging Topics in Life Sciences*, 2, 235-245.

2595 DICKENS, G. R. 2011. Down the Rabbit Hole: toward appropriate discussion of methane release
2596 from gas hydrate systems during the Paleocene-Eocene thermal maximum and other
2597 past hyperthermal events. *Climate of the Past*, 7, 831-846.

2598 DODD, M. S., SHI, W., LI, C., ZHANG, Z. H., CHENG, M., GU, H. D., HARDISTY, D. S., LOYD, S. J.,
2599 WALLACE, M. W., HOOD, A. V., LAMOTHE, K., MILLS, B. J. W., POULTON, S. W. & LYONS,
2600 T. W. 2023. Uncovering the Ediacaran phosphorus cycle. *Nature*, 618, 974-+.

2601 DU, J., MIX, A. C., HALEY, B. A., BELANGER, C. L. & SHARON 2022. Volcanic trigger of ocean
2602 deoxygenation during Cordilleran ice sheet retreat. *Nature*, 611, 74-80.

2603 DUAN, Y., ANBAR, A. D., ARNOLD, G. L., LYONS, T. W., GORDON, G. W. & KENDALL, B. 2010.
2604 Molybdenum isotope evidence for mild environmental oxygenation before the Great
2605 Oxidation Event. *Geochimica Et Cosmochimica Acta*, 74, 6655-6668.

2606 DUDLEY, R. 1998. Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial
2607 locomotor performance. *The Journal of Experimental Biology*, 201, 1043-1050.

2608 DUNCAN, M. S. & DASGUPTA, R. 2017. Rise of Earth's atmospheric oxygen controlled by
2609 efficient subduction of organic carbon. *Nature Geoscience*, 10, 387-+.

2610 DUNK, R. M., MILLS, R. A. & JENKINS, W. J. 2002. A reevaluation of the oceanic uranium budget
2611 for the Holocene. *Chemical Geology*, 190, 45-67.

2612 ELDERFIELD, H. & TRUESDALE, V. W. 1980. On the biophilic nature of iodine in seawater. *Earth*
2613 *and Planetary Science Letters*, 50, 105-114.

2614 ELDRETT, J. S., MINISINI, D. & BERGMAN, S. C. 2014. Decoupling of the carbon cycle during
2615 Ocean Anoxic Event 2. *Geology*, 42, 567-570.

2616 EPPELY, R. W. 1972. Temperature and phytoplankton growth in the sea. *Fish. bull.*, 70, 1063-
2617 1085.

2618 EVANS, S. D., DIAMOND, C. W., DROSER, M. L. & LYONS, T. W. 2018. Dynamic oxygen and
2619 coupled biological and ecological innovation during the second wave of the Ediacara
2620 Biota. *Emerging Topics in Life Sciences*, 2, 223-233.

2621 EVANS, S. D., HUGHES, I. V., GEHLING, J. G. & DROSER, M. L. 2020a. Discovery of the oldest
2622 bilaterian from the Ediacaran of South Australia. *Proceedings of the National Academy
2623 of Sciences*, 117, 7845-7850.

2624 EVANS, S. D., TU, C., RIZZO, A., SURPRENANT, R. L., BOAN, P. C., MCCANDLESS, H., MARSHALL,
2625 N., XIAO, S. & DROSER, M. L. 2022. Environmental drivers of the first major animal
2626 extinction across the Ediacaran White Sea-Nama transition. *Proceedings of the National
2627 Academy of Sciences of the United States of America*, 119, e2207475119-e2207475119.

2628 EVANS, Z. C., BOLES, E., KWIECINSKI, J. V., MULLEN, S., WOLF, M., DEVOL, A. H., MORIYASU, R.,
2629 NAM, S., BABBIN, A. R. & MOFFETT, J. W. 2020b. The role of water masses in shaping the
2630 distribution of redox active compounds in the Eastern Tropical North Pacific oxygen
2631 deficient zone and influencing low oxygen concentrations in the eastern Pacific Ocean.
2632 *Limnology and Oceanography*.

2633 FABRE, S. & BERGER, G. 2012. How tillite weathering during the snowball Earth aftermath
2634 induced cap carbonate deposition. *Geology*, 40, 1027-1030.

2635 FAKHRAEE, M., TARHAN, L. G., PLANAVSKY, N. J. & REINHARD, C. T. 2021. A largely invariant
2636 marine dissolved organic carbon reservoir across Earth's history. *Proceedings of the
2637 National Academy of Sciences of the United States of America*, 118.

2638 FAKHRAEE, M., TARHAN, L. G., REINHARD, C. T., CROWE, S. A., LYONS, T. W. & PLANAVSKY, N. J.
2639 2023. Earth's surface oxygenation and the rise of eukaryotic life: Relationships to the
2640 Lomagundi positive carbon isotope excursion revisited. *Earth-Science Reviews*, 240.

2641 FARQUHAR, J., ZERKLE, A. L. & BEKKER, A. 2011. Geological constraints on the origin of oxygenic
2642 photosynthesis. *Photosynthesis Research*, 107, 11-36.

2643 FARRELL, U. C., SAMAWI, R., ANJANAPPA, S., KLYKOV, R., ADEBOYE, O. O., AGIC, H., AHM, A.-S.
2644 C., BOAG, T. H., BOWYER, F., BROCKS, J. J., BRUNOIR, T. N., CANFIELD, D. E., CHEN, X.,
2645 CHENG, M., CLARKSON, M. O., COLE, D. B., CORDIE, D. R., CROCKFORD, P. W., CUI, H.,
2646 DAHL, T. W., MOURO, L. D., DEWING, K., DORNBOS, S. Q., DRABON, N., DUMOULIN, J.
2647 A., EMMINGS, J. F., ENDRIGA, C. R., FRASER, T. A., GAINES, R. R., GASCHNIG, R. M.,
2648 GIBSON, T. M., GILLEAUDEAU, G. J., GILL, B. C., GOLDBERG, K., GUILBAUD, R.,
2649 HALVERSON, G. P., HAMMARLUND, E. U., HANTSOO, K. G., HENDERSON, M. A.,
2650 HODGSKISS, M. S. W., HORNER, T. J., HUSSON, J. M., JOHNSON, B., KABANOV, P.,
2651 BRENNIN KELLER, C., KIMMIG, J., KIPP, M. A., KNOLL, A. H., KREITSMANN, T.,
2652 KUNZMANN, M., KURZWEIL, F., LEROY, M. A., LI, C., LIPP, A. G., LOYDELL, D. K., LU, X.,
2653 MACDONALD, F. A., MAGNALL, J. M., MAND, K., MEHRA, A., MELCHIN, M. J., MILLER, A.
2654 J., MILLS, N. T., MWINDE, C. N., O'CONNELL, B., OCH, L. M., OSSA OSSA, F., PAGES, A.,
2655 PAISTE, K., PARTIN, C. A., PETERS, S. E., PETROV, P., PLAYTER, T. L., PLAZA-TORRES, S.,
2656 PORTER, S. M., POULTON, S. W., PRUSS, S. B., RICHOZ, S., RITZER, S. R., ROONEY, A. D.,
2657 SAHOO, S. K., SCHOEPPER, S. D., SCLAFANI, J. A., SHEN, Y., SHORTTLE, O., SLOTZNICK, S.
2658 P., SMITH, E. F., SPINKS, S., STOCKEY, R. G., STRAUSS, J. V., STUEKEN, E. E.,
2659 TECKLENBURG, S., THOMSON, D., TOSCA, N. J., UHLEIN, G. J., VIZCAINO, M. N., WANG,
2660 H., WHITE, T., WILBY, P. R., WOLTZ, C. R., et al. 2021. The Sedimentary Geochemistry
2661 and Paleoenvironments Project. *Geobiology*, 19, 545-556.

2662 FIKE, D. A., GROTZINGER, J. P., PRATT, L. M. & SUMMONS, R. E. 2006. Oxidation of the
2663 Ediacaran Ocean. *Nature*, 444, 744-747.

2664 FISCHER, A. G. 1965. Fossils, early life, and atmospheric history. *Proceedings of the National*
2665 *Academy of Sciences*, 53, 1205-1215.

2666 FISCHER, W. W., HEMP, J. & JOHNSON, J. E. 2016. Evolution of Oxygenic Photosynthesis. In:
2667 JEANLOZ, R. & FREEMAN, K. H. (eds.) *Annual Review of Earth and Planetary Sciences*, Vol
2668 44.

2669 FITZSIMMONS, J. N., BOYLE, E. A. & JENKINS, W. J. 2014. Distal transport of dissolved
2670 hydrothermal iron in the deep South Pacific Ocean. *Proceedings of the National*
2671 *Academy of Sciences*, 111, 16654-16661.

2672 FITZSIMMONS, J. N. & CONWAY, T. M. 2023. Novel insights into marine iron biogeochemistry
2673 from iron isotopes. *Annual Review of Marine Science*, 15, 383-406.

2674 FITZSIMMONS, J. N., CONWAY, T. M., LEE, J. M., KAYSER, R., THYNG, K. M., JOHN, S. G. & BOYLE,
2675 E. A. 2016. Dissolved iron and iron isotopes in the southeastern Pacific Ocean. *Global*
2676 *Biogeochemical Cycles*, 30, 1372-1395.

2677 FLOWER, B. P. & KENNEDY, J. P. 1993. Relations between Monterey Formation deposition and
2678 middle Miocene global cooling: Naples Beach section, California. *Geology*, 21, 877-880.

2679 FOURNIER, G. P., MOORE, K. R., RANGEL, L. T., PAYETTE, J. G., MOMPEN, L. & BOSAK, T. 2021.
2680 The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages.
2681 *Proceedings of the Royal Society B-Biological Sciences*, 288.

2682 FRENCH, K. L., HALLMANN, C., HOPE, J. M., SCHOON, P. L., ZUMBERGE, J. A., HOSHINO, Y.,
2683 PETERS, C. A., GEORGE, S. C., LOVE, G. D., BROCKS, J. J., BUICK, R. & SUMMONS, R. E.
2684 2015. Reappraisal of hydrocarbon biomarkers in Archean rocks. *Proceedings of the*
2685 *National Academy of Sciences of the United States of America*, 112, 5915-5920.

2686 FRIEDRICH, T., OSCHLIES, A. & EDEN, C. 2006. Role of wind stress and heat fluxes in interannual-
2687 to-decadal variability of air-sea CO₂ and O₂ fluxes in the North Atlantic. *Geophysical*
2688 *Research Letters*, 33.

2689 FRIELING, J., SVENSEN, H. H., PLANKE, S., CRAMWINCKEL, M. J., SELNES, H. & SLUIJS, A. 2016.
2690 Thermogenic methane release as a cause for the long duration of the PETM.
2691 *Proceedings of the National Academy of Sciences of the United States of America*, 113,
2692 12059-12064.

2693 FROELICH, P. N., KLINKHAMMER, G., BENDER, M. A. A., LUEDTKE, N., HEATH, G. R., CULLEN, D.,
2694 DAUPHIN, P., HAMMOND, D., HARTMAN, B. & MAYNARD, V. 1979. Early oxidation of
2695 organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic
2696 diagenesis. *Geochimica et Cosmochimica Acta*, 43, 1075-1090.

2697 GAILLARD, F., SCAILLET, B. & ARNDT, N. T. 2011. Atmospheric oxygenation caused by a change
2698 in volcanic degassing pressure. *Nature*, 478, 229-U112.

2699 GALBRAITH, E. D. & KIENAST, M. 2013. The acceleration of oceanic denitrification during
2700 deglacial warming. *Nature Geoscience*, 6, 579-584.

2701 GALLOWAY, J. N., DENTENER, F. J., CAPONE, D. G., BOYER, E. W., HOWARTH, R. W., SEITZINGER,
2702 S. P., ASNER, G. P., CLEVELAND, C. C., GREEN, P. A., HOLLAND, E. A., KARL, D. M.,
2703 MICHAELS, A. F., PORTER, J. H., TOWNSEND, A. R. & VOROSMARTY, C. J. 2004. Nitrogen
2704 cycles: past, present, and future. *Biogeochemistry*, 70, 153-226.

2705 GARCIA-ROBLEDO, E., PADILLA, C. C., ALDUNATE, M., STEWART, F. J., ULLOA, O., PAULMIER, A.,
2706 GREGORI, G. & REVSBECH, N. P. 2017. Cryptic oxygen cycling in anoxic marine zones.

2707 *Proceedings of the National Academy of Sciences of the United States of America*, 114,
2708 8319-8324.

2709 GARVIN, J., BUICK, R., ANBAR, A. D., ARNOLD, G. L. & KAUFMAN, A. J. 2009. Isotopic Evidence
2710 for an Aerobic Nitrogen Cycle in the Latest Archean. *Science*, 323, 1045-1048.

2711 GAZITUA, M. C., VIK, D. R., ROUX, S., GREGORY, A. C., BOLDUC, B., WIDNER, B., MULHOLLAND,
2712 M. R., HALLAM, S. J., ULLOA, O. & SULLIVAN, M. B. 2021. Potential virus-mediated
2713 nitrogen cycling in oxygen-depleted oceanic waters. *Isme Journal*, 15, 981-998.

2714 GEOTRACES INTERMEDIATE DATA PRODUCT GROUP 2021. The GEOTRACES Intermediate Data
2715 Product 2021 (IDP2021). NERC EDS British Oceanographic Data Centre NOC.

2716 GEYMAN, E. C. & MALOOF, A. C. 2019. A diurnal carbon engine explains ^{13}C -enriched
2717 carbonates without increasing the global production of oxygen. *Proceedings of the*
2718 *National Academy of Sciences*, 116, 24433-24439.

2719 GIBSON, T. M., SHIH, P. M., CUMMING, V. M., FISCHER, W. W., CROCKFORD, P. W., HODGSKISS,
2720 M. S. W., WORNDLE, S., CREASER, R. A., RAINBIRD, R. H., SKULSKI, T. M. & HALVERSON,
2721 G. P. 2018. Precise age of *Bangiomorpha pubescens* dates the origin of eukaryotic
2722 photosynthesis. *Geology*, 46, 135-138.

2723 GILL, B. C., LYONS, T. W. & FRANK, T. D. 2008. Behavior of carbonate-associated sulfate during
2724 meteoric diagenesis and implications for the sulfur isotope paleoproxy. *Geochimica et*
2725 *Cosmochimica Acta*, 72, 4699-4711.

2726 GILL, B. C., LYONS, T. W., YOUNG, S. A., KUMP, L. R., KNOLL, A. H. & SALTZMAN, M. R. 2011.
2727 Geochemical evidence for widespread euxinia in the Later Cambrian ocean. *Nature*, 469,
2728 80-83.

2729 GILLEAUDEAU, G., FREI, R., KAUFMAN, A., KAH, L., AZMY, K., BARTLEY, J., CHERNYAVSKIY, P. &
2730 KNOLL, A. 2016. Oxygenation of the mid-Proterozoic atmosphere: clues from chromium
2731 isotopes in carbonates.

2732 GODFREY, L. V. & FALKOWSKI, P. G. 2009. The cycling and redox state of nitrogen in the
2733 Archean ocean. *Nature Geoscience*, 2, 725-729.

2734 GOLDBLATT, C., LENTON, T. M. & WATSON, A. J. 2006. Bistability of atmospheric oxygen and the
2735 Great Oxidation. *Nature*, 443, 683-686.

2736 GONG, Z., WEI, G.-Y., FAKHRAEE, M., ALCOTT, L. J., JIANG, L., ZHAO, M. & PLANAVSKY, N. J.
2737 2023. Revisiting marine redox conditions during the Ediacaran Shuram carbon isotope
2738 excursion. *Geobiology*.

2739 GROOTES, P. M. & STUIVER, M. 1997. Oxygen 18/16 variability in Greenland snow and ice with
2740 10^{-3} - to 10^5 - year time resolution. *Journal of Geophysical Research-Oceans*, 102, 26455-
2741 26470.

2742 GUENELI, N., MCKENNA, A. M., OHKOUCHI, N., BOREHAM, C. J., BEGHIN, J., JAVAUX, E. J. &
2743 BROCKS, J. J. 2018. 1.1-billion-year-old porphyrins establish a marine ecosystem
2744 dominated by bacterial primary producers. *Proceedings of the National Academy of*
2745 *Sciences of the United States of America*, 115, E6978-E6986.

2746 GUMSLEY, A. P., CHAMBERLAIN, K. R., BLEEKER, W., SOEDERLUND, U., DE KOCK, M. O.,
2747 LARSSON, E. R. & BEKKER, A. 2017. Timing and tempo of the Great Oxidation Event.
2748 *Proceedings of the National Academy of Sciences of the United States of America*, 114,
2749 1811-1816.

2750 HALLAM, A. 1989. The case for sea-level change as a dominant causal factor in mass extinction
2751 of marine invertebrates. *Philosophical Transactions of the Royal Society of London B.*,
2752 325, 437-455.

2753 HALLAM, A. & WIGNALL, P. B. 1999. Mass extinctions and sea-level changes. *Earth-Science
2754 Reviews*, 48, 217-250.

2755 HALVERSON, G. P., HOFFMAN, P. F., SCHRAG, D. P., MALOOF, A. C. & RICE, A. H. N. 2005.
2756 Toward a Neoproterozoic composite carbon-isotope record. *Geological Society of
2757 America Bulletin*, 117, 1181-1207.

2758 HANSARD, S. P., EASTER, H. D. & VOELKER, B. M. 2011. Rapid Reaction of Nanomolar Mn(II)
2759 with Superoxide Radical in Seawater and Simulated Freshwater. *Environmental Science
2760 & Technology*, 45, 2811-2817.

2761 HANSEL, C. M. & DIAZ, J. M. 2021. Production of Extracellular Reactive Oxygen Species by
2762 Marine Biota. In: CARLSON, C. A. & GIOVANNONI, S. J. (eds.) *Annual Review of Marine
2763 Science*, Vol 13, 2021.

2764 HAQ, B. U., HARDENBOL, J. & VAIL, P. R. 1987. Chronology of Fluctuating Sea Levels Since the
2765 Triassic. *Science*, 235, 1156-1167.

2766 HARDISTY, D., HORNER, T., WANKEL, S., BLUSZTAJN, J. & NIELSEN, S. 2020. Experimental
2767 observations of marine iodide oxidation using a novel sparge-interface MC-ICP-MS
2768 technique. *Chemical Geology*, 532.

2769 HARDISTY, D. S., HORNER, T. J., EVANS, N., MORIYASU, R., BABBIN, A. R., WANKEL, S. D.,
2770 MOFFETT, J. W. & NIELSEN, S. G. 2021. Limited iodate reduction in shipboard seawater
2771 incubations from the Eastern Tropical North Pacific oxygen deficient zone. *Earth and
2772 Planetary Science Letters*, 554.

2773 HARDISTY, D. S., LU, Z., BEKKER, A., DIAMOND, C. W., GILL, B. C., JIANG, G., KAH, L. C., KNOLL, A.
2774 H., LOYD, S. J., OSBURN, M. R., PLANAVSKY, N. J., WANG, C., ZHOU, X. & LYONS, T. W.
2775 2017. Perspectives on Proterozoic surface ocean redox from iodine contents in ancient
2776 and recent carbonate. *Earth and Planetary Science Letters*, 463, 159-170.

2777 HARDISTY, D. S., LU, Z., PLANAVSKY, N. J., BEKKER, A., PHILIPPOT, P., ZHOU, X. & LYONS, T. W.
2778 2014. An iodine record of Paleoproterozoic surface ocean oxygenation. *Geology*, 42,
2779 619-622.

2780 HARRISON, J. F., KAISER, A. & VANDENBROOKS, J. M. 2010. Atmospheric oxygen level and the
2781 evolution of insect body size. *Proceedings of the Royal Society B-Biological Sciences*, 277,
2782 1937-1946.

2783 HAYES, J. 1994. Global methanotrophy at the Archean-Proterozoic transition. *Early Life on
2784 Earth, Nobel Symposiin No. 84*, 220-236.

2785 HAYES, J. M. & WALDBAUER, J. R. 2006. The carbon cycle and associated redox processes
2786 through time. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 361,
2787 931-950.

2788 HEARD, A. W., DAUPHAS, N., GUILBAUD, R., ROUXEL, O. J., BUTLER, I. B., NIE, N. X. & BEKKER, A.
2789 2020. Triple iron isotope constraints on the role of ocean iron sinks in early atmospheric
2790 oxygenation. *Science*, 370, 446-449.

2791 HEDGES, J. I. & KEIL, R. G. 1995. Sedimentary organic-matter preservation - an assessment and
2792 speculative synthesis. *Marine Chemistry*, 49, 81-115.

2793 HEIM, N. A., KNOPE, M. L., SCHAAAL, E. K., WANG, S. C. & PAYNE, J. L. 2015. Cope's rule in the
2794 evolution of marine animals. *Science*, 347, 867-870.

2795 HELLER, M. I. & CROOT, P. L. 2010. Superoxide Decay Kinetics in the Southern Ocean.
2796 *Environmental Science & Technology*, 44, 191-196.

2797 HELLER, M. I., LAM, P. J., MOFFETT, J. W., TILL, C. P., LEE, J.-M., TONER, B. M. & MARCUS, M. A.
2798 2017. Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies
2799 non-oxygen dependent Fe oxidation. *Geochimica Et Cosmochimica Acta*, 211, 174-193.

2800 HELLY, J. J. & LEVIN, L. A. 2004. Global distribution of naturally occurring marine hypoxia on
2801 continental margins. *Deep-Sea Research Part I-Oceanographic Research Papers*, 51,
2802 1159-1168.

2803 HELM, K. P., BINDOFF, N. L. & CHURCH, J. A. 2011. Observed decreases in oxygen content of the
2804 global ocean. *Geophysical Research Letters*, 38.

2805 HEPBURN, L. E., BUTLER, I. B., BOYCE, A. & SCHRÖDER, C. 2020. The use of operationally-
2806 defined sequential Fe extraction methods for mineralogical applications: A cautionary
2807 tale from Mössbauer spectroscopy. *Chemical Geology*, 543, 119584.

2808 HESS, A. V., AUDERSET, A., ROSENTHAL, Y., MILLER, K. G., ZHOU, X. L., SIGMAN, D. M. &
2809 MARTINEZ-GARCIA, A. 2023. A well-oxygenated eastern tropical Pacific during the warm
2810 Miocene. *Nature*, 619, 521-+.

2811 HIGGINS, J. A., BLÄTTLER, C. L., LUNDSTRON, E. A., SANTIAGO-RAMOS, D. P., AKHTAR, A. A.,
2812 AHM, A. S. C., BIALIK, O., HOLMDEN, C., BRADBURY, H. J., MURRAY, S. T. & SWART, P. K.
2813 2018. Mineralogy, early marine diagenesis, and the chemistry of shallow water
2814 carbonate sediments. *Geochimica et Cosmochimica Acta*.

2815 HIGGINS, J. A., FISCHER, W. W. & SCHRAG, D. P. 2009. Oxygenation of the ocean and sediments:
2816 Consequences for the seafloor carbonate factory. *Earth and Planetary Science Letters*,
2817 284, 25-33.

2818 HIGGINS, J. A. & SCHRAG, D. P. 2003. Aftermath of a snowball Earth. *Geochemistry Geophysics
2819 Geosystems*, 4.

2820 HLOHOSKYJ, S. R., CHAPPAZ, A. & DICKSON, A. J. 2021. Molybdenum as a Paleoredox Proxy:
2821 Past, Present, and Future. *Elements in Geochemical Tracers in Earth System Science*.

2822 HO, T. Y., QUIGG, A., FINKEL, Z. V., MILLIGAN, A. J., WYMAN, K., FALKOWSKI, P. G. & MOREL, F.
2823 M. 2003. The elemental composition of some marine phytoplankton 1. *Journal of
2824 phycology*, 39, 1145-1159.

2825 HODGSKISS, M. S. W., CROCKFORD, P. W., PENG, Y., WING, B. A. & HORNER, T. J. 2019. A
2826 productivity collapse to end Earth's Great Oxidation. *Proceedings of the National
2827 Academy of Sciences of the United States of America*, 116, 17207-17212.

2828 HODGSKISS, M. S. W. & SPERLING, E. A. 2022. A prolonged, two-step oxygenation of Earth's
2829 early atmosphere: Support from confidence intervals. *Geology*, 50, 158-162.

2830 HOEGH-GULDBERG, O., CAI, R., POLOCZANSKA, E. S., BREWER, P. G., SUNDBY, S., HILMI, K.,
2831 FABRY, V. J., JUNG, S., SKIRVING, W., STONE, D., BURROWS, M. T., BELL, J., CAO, L.,
2832 DONNER, S., EAKIN, C. M., EIDE, A., HALPERN, B., MCCLAIN, C. R., O'CONNOR, M. I.,
2833 PARMESAN, C., PERRY, R. I., RICHARDSON, A. J., BROWN, C. J., SCHOEMAN, D.,
2834 SIGNORINI, S., SYDEMAN, W., ZHANG, R., VAN HOODONK, R. & MCKINNELL, S. M. 2014.
2835 The Ocean. In: BARROS, V. R., FIELD, C. B., DOKKEN, D. J., MASTRANDREA, M. D., MACH,
2836 K. J., BILIR, T. B., CHATTERJEE, M., EBI, K. L., ESTRADA, Y. O., GENOVA, R. C., GIRMA, B.,

2837 KISSEL, E. S., LEVY, A. N., MACCRACKEN, S., MASTRANDREA, P. R. & WHITE, L. L. (eds.)
2838 *Climate Change 2014: Impacts, Adaptation, and Vulnerability, Pt B: Regional Aspects:*
2839 *Working Group II Contribution to the Fifth Assessment Report of the Intergovernmental*
2840 *Panel on Climate Change.*

2841 HOFFMAN, P. F. 1998. A Neoproterozoic Snowball Earth. *Science*, 281, 1342-1346.

2842 HOFFMAN, P. F. 2016. Cryoconite pans on Snowball Earth: supraglacial oases for Cryogenian
2843 eukaryotes? *Geobiology*, 14, 531-542.

2844 HOFFMAN, P. F., ABBOT, D. S., ASHKENAZY, Y., BENN, D. I., BROCKS, J. J., COHEN, P. A., COX, G.
2845 M., CREVELING, J. R., DONNADIEU, Y., ERWIN, D. H., FAIRCHILD, I. J., FERREIRA, D.,
2846 GOODMAN, J. C., HALVERSON, G. P., JANSEN, M. F., LE HIR, G., LOVE, G. D.,
2847 MACDONALD, F. A., MALOOF, A. C., PARTIN, C. A., RAMSTEIN, G., ROSE, B. E. J., ROSE, C.
2848 V., SADLER, P. M., TZIPERMAN, E., VOIGT, A. & WARREN, S. G. 2017. Snowball Earth
2849 climate dynamics and Cryogenian geology-geobiology. *Science Advances*, 3, e1600983.

2850 HOFFMAN, P. F. & SCHRAG, D. P. 2002. The snowball Earth hypothesis: testing the limits of
2851 global change. *Terra Nova*, 14, 129-155.

2852 HOFMANN, A. F., PELTZER, E. T., WALZ, P. M. & BREWER, P. G. 2011. Hypoxia by degrees:
2853 Establishing definitions for a changing ocean. *Deep-Sea Research Part I-Oceanographic*
2854 *Research Papers*, 58, 1212-1226.

2855 HOLLAND, H. D. 2009. Why the atmosphere became oxygenated: A proposal. *Geochimica Et*
2856 *Cosmochimica Acta*, 73, 5241-5255.

2857 HOOGAKKER, B. A. A., ELDERFIELD, H., SCHMIEDL, G., MCCAVE, I. N. & RICKABY, R. E. M. 2015.
2858 Glacial-interglacial changes in bottom-water oxygen content on the Portuguese margin.
2859 *Nature Geoscience*, 8, 40-43.

2860 HOOGAKKER, B. A. A., LU, Z., UMLING, N., JONES, L., ZHOU, X., RICKABY, R. E. M., THUNELL, R.,
2861 CARTAPANIS, O. & GALBRAITH, E. 2018. Glacial expansion of oxygen-depleted seawater
2862 in the eastern tropical Pacific. *Nature*, 562, 410-413.

2863 HOOGAKKER, B. A. A., THORNALLEY, D. J. R. & BARKER, S. 2016. Millennial changes in North
2864 Atlantic oxygen concentrations. *Biogeosciences*, 13, 211-221.

2865 HOPKINSON, B. M. & BARBEAU, K. A. 2007. Organic and redox speciation of iron in the eastern
2866 tropical North Pacific suboxic zone. *Marine Chemistry*, 106, 2-17.

2867 HORITA, J., ZIMMERMANN, H. & HOLLAND, H. D. 2002. Chemical evolution of seawater during
2868 the Phanerozoic: Implications from the record of marine evaporites. *Geochimica et*
2869 *Cosmochimica Acta*, 66, 3733-3756.

2870 HORNER, T. J., LITTLE, S. H., CONWAY, T. M., FARMER, J. R., HERTZBERG, J. E., JANSSEN, D. J.,
2871 LOUGH, A. J. M., MCKAY, J. L., TESSIN, A., GALER, S. J. G., JACCARD, S. L., LACAN, F.,
2872 PAYTAN, A., WUTTIG, K. & PRODUCTIVITY, G. P. B. 2021. Bioactive Trace Metals and
2873 Their Isotopes as Paleoproductivity Proxies: An Assessment Using GEOTRACES-Era Data.
2874 *Global Biogeochemical Cycles*, 35.

2875 HORNER, T. J., WILLIAMS, H. M., HEIN, J. R., SAITO, M. A., BURTON, K. W., HALLIDAY, A. N. &
2876 NIELSEN, S. G. 2015. Persistence of deeply sourced iron in the Pacific Ocean.
2877 *Proceedings of the National Academy of Sciences of the United States of America*, 112,
2878 1292-1297.

2879 HORTON, F. 2015. Did phosphorus derived from the weathering of large igneous provinces
2880 fertilize the Neoproterozoic ocean? *Geochemistry Geophysics Geosystems*, 16, 1723-
2881 1738.

2882 HOSHINO, Y., POSHIBAEVA, A., MEREDITH, W., SNAPE, C., POSHIBAEV, V., VERSTEEGH, G. J. M.,
2883 KUZNETSOV, N., LEIDER, A., VAN MALDEGEM, L., NEUMANN, M., NAEHER, S.,
2884 MOCZYDLOWSKA, M., BROCKS, J. J., JARRETT, A. J. M., TANG, Q., XIAO, S., MCKIRDY, D.,
2885 DAS, S. K., ALVARO, J. J., SANSJOFRE, P. & HALLMANN, C. 2017. Cryogenian evolution of
2886 stigmasteroid biosynthesis. *Science Advances*, 3.

2887 HOWELL, E. A., DONEY, S. C., FINE, R. A. & OLSON, D. B. 1997. Geochemical estimates of
2888 denitrification in the Arabian Sea and the Bay of Bengal during WOCE. *Geophysical
2889 Research Letters*, 24, 2549-2552.

2890 HUANG, K.-J., TENG, F.-Z., SHEN, B., XIAO, S., LANG, X., MA, H.-R., FU, Y. & PENG, Y. 2016.
2891 Episode of intense chemical weathering during the termination of the 635 Ma Marinoan
2892 glaciation. *Proceedings of the National Academy of Sciences*, 113, 14904-14909.

2893 HUANG, Y., NICHOLSON, D., HUANG, B. & CASSAR, N. 2021. Global Estimates of Marine Gross
2894 Primary Production Based on Machine Learning Upscaling of Field Observations. *Global
2895 Biogeochemical Cycles*, 35.

2896 HUSSON, J. M., HIGGINS, J. A., MALOOF, A. C. & SCHOENE, B. 2015. Ca and Mg isotope
2897 constraints on the origin of Earth's deepest $\delta^{13}\text{C}$ excursion. *Geochimica et Cosmochimica
2898 Acta*, 160, 243-266.

2899 HÜLSE, D., LAU, K. V., VAN DE VELDE, S. J., ARNDT, S., MEYER, K. M. & RIDGWELL, A. 2021. End-
2900 Permian marine extinction due to temperature-driven nutrient recycling and euxinia.
2901 *Nature Geoscience*, 14, 862-867.

2902 ISSON, T. T., LOVE, G. D., DUPONT, C. L., REINHARD, C. T., ZUMBERGE, A. J., ASAEL, D.,
2903 GUEGUEN, B., MCCROW, J., GILL, B. C., OWENS, J., RAINBIRD, R. H., ROONEY, A. D.,
2904 ZHAO, M.-Y., STUEKEN, E. E., KONHAUSER, K. O., JOHN, S. G., LYONS, T. W. &
2905 PLANAVSKY, N. J. 2018. Tracking the rise of eukaryotes to ecological dominance with
2906 zinc isotopes. *Geobiology*, 16, 341-352.

2907 JACCARD, S., GALBRAITH, E., FRÖLICHER, T. & GRUBER, N. 2014. Ocean (De)oxygenation Across
2908 the Last Deglaciation: Insights for the Future. *Oceanography*, 27, 26-35.

2909 JACCARD, S. L. & GALBRAITH, E. D. 2011. Large climate-driven changes of oceanic oxygen
2910 concentrations during the last deglaciation. *Nature Geoscience*, 5, 151-156.

2911 JACCARD, S. L., GALBRAITH, E. D., MARTINEZ-GARCIA, A. & ANDERSON, R. F. 2016. Covariation
2912 of deep Southern Ocean oxygenation and atmospheric CO_2 through the last ice age.
2913 *Nature*, 530, 207.

2914 JACCARD, S. L., GALBRAITH, E. D., SIGMAN, D. M., HAUG, G. H., FRANCOIS, R., PEDERSEN, T. F.,
2915 DULSKI, P. & THIERSTEIN, H. R. 2009. Subarctic Pacific evidence for a glacial deepening
2916 of the oceanic respiration carbon pool. *Earth and Planetary Science Letters*, 277, 156-165.

2917 JANSSEN, D. J., RICKLI, J., QUAY, P. D., WHITE, A. E., NASEMANN, P. & JACCARD, S. L. 2020.
2918 Biological Control of Chromium Redox and Stable Isotope Composition in the Surface
2919 Ocean. *Global Biogeochemical Cycles*, 34.

2920 JENKINS, W. J., SMETHIE, W. M., JR., BOYLE, E. A. & CUTTER, G. A. 2015. Water mass analysis for
2921 the US GEOTRACES (GA03) North Atlantic sections. *Deep-Sea Research Part II-Topical
2922 Studies in Oceanography*, 116, 6-20.

2923 JENKYNS, H. C. 1980. Cretaceous anoxic events: from continents to oceans. *Journal of the*
2924 *Geological Society*, 137, 171-188.

2925 JENKYNS, H. C., DICKSON, A. J., RUHL, M. & VAN DEN BOORN, S. H. J. M. 2017. Basalt-seawater
2926 interaction, the Plenus Cold Event, enhanced weathering and geochemical change:
2927 deconstructing Oceanic Anoxic Event 2 (Cenomanian-Turonian, Late Cretaceous).
2928 *Sedimentology*, 64, 16-43.

2929 JENKYNS, H. C., GALE, A. S. & CORFIELD, R. M. 1994. Carbon- and oxygen-isotope stratigraphy of
2930 the English Chalk and Italian Scaglia and its palaeoclimatic significance. *Geological*
2931 *Magazine*, 131, 1-34.

2932 JIA-ZHONG, Z. & WHITFIELD, M. 1986. Kinetics of inorganic redox reactions in seawater: I. The
2933 reduction of iodate by bisulphide. *Marine Chemistry*, 19, 121-137.

2934 JOHNSON, A. C., OSTRANDER, C. M., ROMANILO, S. J., REINHARD, C. T., GREANEY, A. T.,
2935 LYONS, T. W. & ANBAR, A. D. 2021. Reconciling evidence of oxidative weathering and
2936 atmospheric anoxia on Archean Earth. *Science Advances*, 7.

2937 JOHNSON, A. C., ROMANILO, S. J., REINHARD, C. T., GREGORY, D. D., GARCIA-ROBLEDO, E.,
2938 REVSBECH, N. P., CANFIELD, D. E., LYONS, T. W. & ANBAR, A. D. 2019. Experimental
2939 determination of pyrite and molybdenite oxidation kinetics at nanomolar oxygen
2940 concentrations. *Geochimica Et Cosmochimica Acta*, 249, 160-172.

2941 JOHNSON, B. W., POULTON, S. W. & GOLDBLATT, C. 2017. Marine oxygen production and open
2942 water supported an active nitrogen cycle during the Marinoan Snowball Earth. *Nature*
2943 *Communications*, 8.

2944 JOHNSON, J. E., GERPHEIDE, A., LAMB, M. P. & FISCHER, W. W. 2014. O₂ constraints from
2945 Paleoproterozoic detrital pyrite and uraninite. *Geological Society of America Bulletin*,
2946 126, 813-830.

2947 JOHNSTON, D. T., POULTON, S. W., GOLDBERG, T., SERGEEV, V. N., PODKOVYROV, V.,
2948 VOROB'EVA, N. G., BEKKER, A. & KNOLL, A. H. 2012. Late Ediacaran redox stability and
2949 metazoan evolution. *Earth and Planetary Science Letters*, 335-336, 25-35.

2950 JOHNSTON, D. T., POULTON, S. W., TOSCA, N. J., O'BRIEN, T., HALVERSON, G. P., SCHRAG, D. P.
2951 & MACDONALD, F. A. 2013. Searching for an oxygenation event in the fossiliferous
2952 Ediacaran of northwestern Canada. *Chemical Geology*, 362, 273-286.

2953 JORGENSEN, B. B. 1977. Bacterial sulfate reduction within reduced microfiches of oxidized
2954 marine sediments. *Marine Biology*, 41, 7-17.

2955 JOST, A. B., BACHAN, A., VAN DE SCHOOTBRUGGE, B., LAU, K. V., WEAVER, K. L., MAHER, K. &
2956 PAYNE, J. L. 2017. Uranium isotope evidence for an expansion of marine anoxia during
2957 the end-Triassic extinction. *Geochemistry, Geophysics, Geosystems*, 18, 3093-3108.

2958 KADOYA, S., CATLING, D. C., NICKLAS, R. W., PUCHTEL, I. S. & ANBAR, A. D. 2020. Mantle cooling
2959 causes more reducing volcanic gases and gradual reduction of the atmosphere.
2960 *Geochemical Perspectives Letters*, 13, 25-29.

2961 KAH, L. C., LYONS, T. W. & FRANK, T. D. 2004. Low marine sulphate and protracted oxygenation
2962 of the proterozoic biosphere. *Nature*, 431, 834-838.

2963 KALVELAGE, T., LAVIK, G., JENSEN, M. M., REVSBECH, N. P., LOESCHER, C., SCHUNCK, H., DESAI,
2964 D. K., HAUSS, H., KIKO, R., HOLTAPPELS, M., LAROCHE, J., SCHMITZ, R. A., GRACO, M. I. &
2965 KUYPERS, M. M. M. 2015. Aerobic microbial respiration In oceanic oxygen minimum
2966 zones. *Plos One*, 10.

2967 KARHU, J. A. & HOLLAND, H. D. 1996. Carbon isotopes and the rise of atmospheric oxygen.
2968 *Geology*, 24, 867-870.

2969 KARSTENSEN, J., STRAMMA, L. & VISBECK, M. 2008. Oxygen minimum zones in the eastern
2970 tropical Atlantic and Pacific oceans. *Progress in Oceanography*, 77, 331-350.

2971 KASEMANN, S. A., POGGE VON STRANDMANN, P. A. E., PRAVE, A. R., FALLICK, A. E., ELLIOTT, T.
2972 & HOFFMANN, K.-H. 2014. Continental weathering following a Cryogenian glaciation:
2973 Evidence from calcium and magnesium isotopes. *Earth and Planetary Science Letters*,
2974 396, 66-77.

2975 KASTING, J. 1992. Models relating to Proterozoic atmospheric and ocean chemistry. *The
2976 Proterozoic Biosphere: A Multidisciplinary Study*, 1185-1187.

2977 KASTING, J. F., EGGLER, D. H. & RAEBURN, S. P. 1993. Mantle Redox Evolution and the Oxidation
2978 State of the Archean Atmosphere. *The Journal of Geology*, 101, 245-257.

2979 KAUFMAN, A. J., JOHNSTON, D. T., FARQUHAR, J., MASTERSON, A. L., LYONS, T. W., BATES, S.,
2980 ANBAR, A. D., ARNOLD, G. L., GARVIN, J. & BUICK, R. 2007. Late Archean biospheric
2981 oxygenation and atmospheric evolution. *Science*, 317, 1900-1903.

2982 KEELING, R. & MANNING, A. 2014. Studies of recent changes in atmospheric O₂ content.
2983 *Treatise on Geochemistry: Second Edition*.

2984 KEELING, R. F., KOERTZINGER, A. & GRUBER, N. 2010. Ocean Deoxygenation in a Warming
2985 World. *Annual Review of Marine Science*.

2986 KEELING, R. F., NAJJAR, R. P., BENDER, M. L. & TANS, P. P. 1993. What atmospheric oxygen
2987 measurements can tell us about the global carbon cycle. *Global Biogeochemical Cycles*,
2988 7, 37-67.

2989 KENDALL, B., BRENNECKA, G. A., WEYER, S. & ANBAR, A. D. 2013. Uranium isotope fractionation
2990 suggests oxidative uranium mobilization at 2.50 Ga. *Chemical Geology*, 362, 105-114.

2991 KIRSCHVINK, J. L. 1992. Late Proterozoic Low-Latitude Global Glaciation: the Snowball Earth. *In:*
2992 SCHOPF, J. W. & KLEIN, C. (eds.) *The Proterozoic Biosphere*. New York: Cambridge
2993 University Press.

2994 KNAUTH, L. P. & KENNEDY, M. J. 2009. The late Precambrian greening of the Earth. *Nature*, 460,
2995 728-732.

2996 KNOLL, A. H. 2003. Biomineralization and Evolutionary History. *Reviews in Mineralogy and
2997 Geochemistry*, 54, 329-356.

2998 KNOLL, A. H. & CARROLL, S. B. 1999. Early Animal Evolution: Emerging Views from Comparative
2999 Biology and Geology. *Science*, 284, 2129-2137.

3000 KOEHLER, M. C., BUICK, R., KIPP, M. A., STUEKEN, E. E. & ZALOUMIS, J. 2018. Transient surface
3001 ocean oxygenation recorded in the similar to 2.66-Ga Jeerinah Formation, Australia.
3002 *Proceedings of the National Academy of Sciences of the United States of America*, 115,
3003 7711-7716.

3004 KOHFELD, K. E., QUÉRÉ, C. L., HARRISON, S. P. & ANDERSON, R. F. 2005. Role of Marine Biology
3005 in Glacial-Interglacial CO₂ Cycles. *Science*, 308, 74-78.

3006 KRAFT, B., JEHMLICH, N., LARSEN, M., BRISTOW, L. A., KONNEKE, M., THAMDRUP, B. &
3007 CANFIELD, D. E. 2022. Oxygen and nitrogen production by an ammonia-oxidizing
3008 archaeon. *Science*, 375, 97.

3009 KRISSANSEN-TOTTON, J., BUICK, R. & CATLING, D. C. 2015. A statistical analysis of the carbon
3010 isotope record from the Archean to Phanerozoic and implications for the rise of oxygen.
3011 *American Journal of Science*, 315, 275-316.

3012 KRISSANSEN-TOTTON, J. & CATLING, D. C. 2017. Constraining climate sensitivity and continental
3013 versus seafloor weathering using an inverse geological carbon cycle model. *Nature
3014 Communications*, 8.

3015 KUMP, L. R. & ARTHUR, M. A. 1999. Interpreting carbon-isotope excursions: carbonates and
3016 organic matter. *Chemical Geology*, 161, 181-198.

3017 KUMP, L. R. & BARLEY, M. E. 2007. Increased subaerial volcanism and the rise of atmospheric
3018 oxygen 2.5 billion years ago. *Nature*, 448, 1033-1036.

3019 KVENVOLDEN, K. A. & ROGERS, B. W. 2005. Gaia's breath - global methane exhalations. *Marine
3020 and Petroleum Geology*, 22, 579-590.

3021 KWIATKOWSKI, L., TORRES, O., BOPP, L., AUMONT, O., CHAMBERLAIN, M., CHRISTIAN, J. R.,
3022 DUNNE, J. P., GEHLEN, M., ILYINA, T., JOHN, J. G., LENTON, A., LI, H., LOVENDUSKI, N. S.,
3023 ORR, J. C., PALMIERI, J., SANTANA-FALCON, Y., SCHWINGER, J., SEFERIAN, R., STOCK, C.
3024 A., TAGLIABUE, A., TAKANO, Y., TJIPUTRA, J., TOYAMA, K., TSUJINO, H., WATANABE, M.,
3025 YAMAMOTO, A., YOOL, A. & ZIEHN, T. 2020. Twenty-first century ocean warming,
3026 acidification, deoxygenation, and upper-ocean nutrient and primary production decline
3027 from CMIP6 model projections. *Biogeosciences*, 17, 3439-3470.

3028 LALONDE, S. V. & KONHAUSER, K. O. 2015. Benthic perspective on Earth's oldest evidence for
3029 oxygenic photosynthesis. *Proceedings of the National Academy of Sciences of the United
3030 States of America*, 112, 995-1000.

3031 LAM, P. J., HELLER, M. I., LERNER, P. E., MOFFETT, J. W. & BUCK, K. N. 2020. Unexpected Source
3032 and Transport of Iron from the Deep Peru Margin. *Acs Earth and Space Chemistry*, 4,
3033 977-992.

3034 LANDING, W. M. & BRULAND, K. W. 1987. The contrasting biogeochemistry of iron and
3035 manganese in the Pacific Ocean. *Geochimica et Cosmochimica Acta*, 51, 29-43.

3036 LARSEN, M., LEHNER, P., BORISOV, S. M., KLIMANT, I., FISCHER, J. P., STEWART, F. J., CANFIELD,
3037 D. E. & GLUD, R. N. 2016. In situ quantification of ultra-low O₂ concentrations in oxygen
3038 minimum zones: Application of novel optodes. *Limnology and Oceanography-Methods*,
3039 14, 784-800.

3040 LAU, K. V. & HARDISTY, D. S. 2022. Modeling the impacts of diagenesis on carbonate paleoredox
3041 proxies. *Geochimica Et Cosmochimica Acta*, 337, 123-139.

3042 LAU, K. V., LYONS, T. W. & MAHER, K. 2020. Uranium reduction and isotopic fractionation in
3043 reducing sediments: Insights from reactive transport modeling. *Geochimica et
3044 Cosmochimica Acta*, 287, 65-92.

3045 LAU, K. V., MACDONALD, F. A., MAHER, K. & PAYNE, J. L. 2017a. Uranium isotope evidence for
3046 temporary ocean oxygenation in the aftermath of the Sturtian Snowball Earth. *Earth and
3047 Planetary Science Letters*, 458, 282-292.

3048 LAU, K. V., MAHER, K., ALTINER, D., KELLEY, B. M., KUMP, L. R., LEHRMANN, D. J., SILVA-
3049 TAMAYO, J. C., WEAVER, K. L., YU, M. Y. & PAYNE, J. L. 2016. Marine anoxia and delayed
3050 Earth system recovery after the end-Permian extinction. *Proceedings of the National
3051 Academy of Sciences of the United States of America*, 113, 2360-2365.

3052 LAU, K. V., MAHER, K., BROWN, S. T., JOST, A. B., ALTINER, D., DEPAOLO, D. J., EISENHAUER, A.,
3053 KELLEY, B. M., LEHRMANN, D. J., PAYTAN, A., YU, M., SILVA-TAMAYO, J. C. & PAYNE, J. L.
3054 2017b. The influence of seawater carbonate chemistry, mineralogy, and diagenesis on
3055 calcium isotope variations in Lower-Middle Triassic carbonate rocks. *Chemical Geology*,
3056 471, 13-37.

3057 LAU, K. V., ROMANIELLO, S. J. & ZHANG, F. 2019. *The uranium isotope paleoredox proxy*,
3058 Cambridge University Press.

3059 LAVIK, G., STÜHRMANN, T., BRÜCHERT, V., VAN DER PLAS, A., MOHRHOLZ, V., LAM, P.,
3060 MUßMANN, M., FUCHS, B. M., AMANN, R. & LASS, U. 2009. Detoxification of sulphidic
3061 African shelf waters by blooming chemolithotrophs. *Nature*, 457, 581-584.

3062 LE HIR, G., DONNADIEU, Y., GODDÉRIS, Y., PIERREHUMBERT, R. T., HALVERSON, G. P.,
3063 MACOIN, M., NÉDÉLEC, A. & RAMSTEIN, G. 2009. The snowball Earth aftermath:
3064 Exploring the limits of continental weathering processes. *Earth and Planetary Science
Letters*, 277, 453-463.

3065 LE ROY, E., SANIAL, V., CHARETTE, M. A., VAN BEEK, P., LACAN, F., JACQUET, S. H. M.,
3066 HENDERSON, P. B., SOUHAUT, M., GARCIA-IBANEZ, M. I., JEANDEL, C., PEREZ, F. F. &
3067 SARTHOU, G. 2018. The Ra-226-Ba relationship in the North Atlantic during GEOTRACES-
3068 GA01. *Biogeosciences*, 15, 3027-3048.

3069 LEARMAN, D. R., VOELKER, B. M., VAZQUEZ-RODRIGUEZ, A. I. & HANSEL, C. M. 2011. Formation
3070 of manganese oxides by bacterially generated superoxide. *Nature Geoscience*, 4, 95-98.

3071 LECHTE, M. A., WALLACE, M. W., HOOD, A. V. S., LI, W., JIANG, G., HALVERSON, G. P., ASAEL, D.,
3072 MCCOLL, S. L. & PLANAVSKY, N. J. 2019. Subglacial meltwater supported aerobic marine
3073 habitats during Snowball Earth. *Proceedings of the National Academy of Sciences*, 116,
3074 25478-25483.

3075 LECKIE, R. M., BRALOWER, T. J. & CASHMAN, R. 2002. Oceanic anoxic events and plankton
3076 evolution: Biotic response to tectonic forcing during the mid-Cretaceous.
3077 *Paleoceanography*, 17, 13-1-13-29.

3078 LENTON, T. M., DAHL, T. W., DAINES, S. J., MILLS, B. J. W., OZAKI, K., SALTZMAN, M. R. &
3079 PORADA, P. 2016. Earliest land plants created modern levels of atmospheric oxygen.
3080 *Proceedings of the National Academy of Sciences of the United States of America*, 113,
3081 9704-9709.

3082 LENTON, T. M. & DAINES, S. J. 2018. The effects of marine eukaryote evolution on phosphorus,
3083 carbon and oxygen cycling across the Proterozoic–Phanerozoic transition. *Emerging
3084 Topics in Life Sciences*, 2, 267-278.

3085 LENTON, T. M., DAINES, S. J. & MILLS, B. J. 2018. COPSE reloaded: An improved model of
3086 biogeochemical cycling over Phanerozoic time. *Earth-Science Reviews*, 178, 1-28.

3087 LEONG, J. A. M., ELY, T. & SHOCK, E. L. 2021. Decreasing extents of Archean serpentization
3088 contributed to the rise of an oxidized atmosphere. *Nature Communications*, 12.

3089 LI, C., HARDISTY, D. S., LUO, G., HUANG, J., ALGEO, T. J., CHENG, M., SHI, W., AN, Z., TONG, J. &
3090 XIE, S. 2017. Uncovering the spatial heterogeneity of Ediacaran carbon cycling.
3091 *Geobiology*, 15, 211-224.

3092 LI, H.-P., DANIEL, B., CREELEY, D., GRANDBOIS, R., ZHANG, S., XU, C., HO, Y.-F., SCHWEHR, K. A.,
3093 KAPLAN, D. I. & SANTSCHI, P. H. 2014. Superoxide production by a manganese-oxidizing

3095 bacterium facilitates iodide oxidation. *Applied and environmental microbiology*, 80,
3096 2693-2699.

3097 LI, Z. Y., ZHANG, Y. G., TORRES, M. & MILLS, B. J. W. 2023. Neogene burial of organic carbon in
3098 the global ocean. *Nature*, 613, 90-+.

3099 LISIECKI, L. E. & STERN, J. V. 2016. Regional and global benthic $\delta^{18}\text{O}$ stacks for the
3100 last glacial cycle. *Paleoceanography*, 31, 1368-1394.

3101 LIU, T., KRISCH, S., XIE, R. C., HOPWOOD, M. J., DENGLER, M. & ACHTERBERG, E. P. 2022.
3102 Sediment Release in the Benguela Upwelling System Dominates Trace Metal Input to
3103 the Shelf and Eastern South Atlantic Ocean. *Global Biogeochemical Cycles*, 36.

3104 LIU, X.-M., HARDISTY, D. S., LYONS, T. W. & SWART, P. K. 2019. Evaluating the fidelity of the
3105 cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas
3106 Bank. *Geochimica Et Cosmochimica Acta*, 248, 25-42.

3107 LOVENDUSKI, N. S., GRUBER, N. & DONEY, S. C. 2008. Toward a mechanistic understanding of
3108 the decadal trends in the Southern Ocean carbon sink. *Global Biogeochemical Cycles*, 22.

3109 LOWENSTEIN, T. K., HARDIE, L. A., TIMOFEEFF, M. N. & DEMICCO, R. V. 2003. Secular variation
3110 in seawater chemistry and the origin of calcium chloride basinal brines. *Geology*, 31,
3111 857-860.

3112 LOWENSTEIN, T. K., KENDALL, B. & ANBAR, A. 2013. The geologic history of seawater. *The
3113 Oceans and Marine Geochemistry*. Elsevier Inc.

3114 LOYD, S. J., MARENCO, P. J., HAGADORN, J. W., LYONS, T. W., KAUFMAN, A. J., SOUR-TOVAR, F.
3115 & CORSETTI, F. A. 2012. Sustained low marine sulfate concentrations from the
3116 Neoproterozoic to the Cambrian: Insights from carbonates of northwestern Mexico and
3117 eastern California. *Earth and Planetary Science Letters*, 339-340, 79-94.

3118 LU, W., RICKABY, R. E. M., HOOGAKKER, B. A. A., RATHBURN, A. E., BURKETT, A. M., DICKSON, A.
3119 J., MARTINEZ-MENDEZ, G., HILLENBRAND, C.-D., ZHOU, X., THOMAS, E. & LU, Z. 2020a.
3120 I/Ca in epifaunal benthic foraminifera: A semi-quantitative proxy for bottom water
3121 oxygen in a multi-proxy compilation for glacial ocean deoxygenation. *Earth and
3122 Planetary Science Letters*, 533.

3123 LU, W., RIDGWELL, A., THOMAS, E., HARDISTY, D. S., LUO, G., ALGEO, T.J., SALTZMAN, M. R.,
3124 GILL, B. C., SHEN, Y., LING, H. F., EDWARDS, C. T., WHALEN, M. T., ZHOU, X., GUTCHESS,
3125 K. M., JIN, L., RICKABY, R. E. M., JENKYNS, H. C., LYONS, T. W., LENTON, T. M., KUMP, L.
3126 R. & LU, Z. 2018. Late inception of a resiliently oxygenated upper ocean. *Science*, in
3127 press.

3128 LU, W., WANG, Y., OPPO, D. W., NIELSEN, S. G. & COSTA, K. M. 2022. Comparing paleo-
3129 oxygenation proxies (benthic foraminiferal surface porosity, I/Ca, authigenic uranium)
3130 on modern sediments and the glacial Arabian Sea. *Geochimica Et Cosmochimica Acta*,
3131 331, 69-85.

3132 LU, Z., HOOGAKKER, B. A. A., HILLENBRAND, C.-D., ZHOU, X., THOMAS, E., GUTCHESS, K. M., LU,
3133 W., JONES, L. & RICKABY, R. E. M. 2016. Oxygen depletion recorded in upper waters of
3134 the glacial Southern Ocean. *Nature Communications*, 7.

3135 LU, Z., LU, W., RICKABY, R. E. & THOMAS, E. 2020b. *Earth History of Oxygen and the iprOxy*,
3136 Cambridge University Press.

3137 LUO, G., ONO, S., BEUKES, N. J., WANG, D. T., XIE, S. & SUMMONS, R. E. 2016. Rapid
3138 oxygenation of Earth's atmosphere 2.33 billion years ago. *Science Advances*, 2.

3139 LUYTEN, J. R., PEDLOSKY, J. & STOMMEL, H. 1983. THE VENTILATED THERMOCLINE. *Journal of*
3140 *Physical Oceanography*, 13, 292-309.

3141 LYONS, T. W., REINHARD, C. T. & PLANAVSKY, N. J. 2014. The rise of oxygen in Earth's early
3142 ocean and atmosphere. *Nature*, 506, 307-315.

3143 LÜTHI, D., LE FLOCH, M., BEREITER, B., BLUNIER, T., BARNOLA, J.-M., SIEGENTHALER, U.,
3144 RAYNAUD, D., JOUZEL, J., FISCHER, H., KAWAMURA, K. & STOCKER, T. F. 2008. High-
3145 resolution carbon dioxide concentration record 650,000–800,000 years before present.
3146 *Nature*, 453, 379-382.

3147 MACDONALD, F. A., JONES, D. S. & SCHRAG, D. P. 2009. Stratigraphic and tectonic implications
3148 of a newly discovered glacial diamictite–cap carbonate couplet in southwestern
3149 Mongolia. *Geology*, 37, 123-126.

3150 MACDONALD, F. A., STRAUSS, J. V., SPERLING, E. A., HALVERSON, G. P., NARBONNE, G. M.,
3151 JOHNSTON, D. T., KUNZMANN, M., SCHRAG, D. P. & HIGGINS, J. A. 2013. The
3152 stratigraphic relationship between the Shuram carbon isotope excursion, the
3153 oxygenation of Neoproterozoic oceans, and the first appearance of the Ediacara biota
3154 and bilaterian trace fossils in northwestern Canada. *Chemical Geology*, 362, 250-272.

3155 MACDONALD, F. A. & WORDSWORTH, R. 2017. Initiation of Snowball Earth with volcanic sulfur
3156 aerosol emissions. *Geophysical Research Letters*.

3157 MARCHI, S., DRABON, N., SCHULZ, T., SCHAEFER, L., NESVORNY, D., BOTTKE, W. F., KOEBERL, C.
3158 & LYONS, T. 2021. Delayed and variable late Archaean atmospheric oxidation due to
3159 high collision rates on Earth. *Nature Geoscience*, 14, 827.

3160 MARGOLSKY, A., FRENZEL, H., EMERSON, S. & DEUTSCH, C. 2019. Ventilation Pathways for the
3161 North Pacific Oxygen Deficient Zone. *Global Biogeochemical Cycles*, 33, 875-890.

3162 MARTIN, J. H., COALE, K. H., JOHNSON, K. S., FITZWATER, S. E., GORDON, R. M., TANNER, S. J.,
3163 HUNTER, C. N., ELROD, V. A., NOWICKI, J. L., COLEY, T. L., BARBER, R. T., LINDLEY, S.,
3164 WATSON, A. J., VAN SCY, K., LAW, C. S., LIDDICOAT, M. I., LING, R., STANTON, T.,
3165 STOCKEL, J., COLLINS, C., ANDERSON, A., BIDIGARE, R., ONDRUSEK, M., LATASA, M.,
3166 MILLERO, F. J., LEE, K., YAO, W., ZHANG, J. Z., FRIEDERICH, G., SAKAMOTO, C., CHAVEZ,
3167 F., BUCK, K., KOLBER, Z., GREENE, R., FALKOWSKI, P., CHISHOLM, S. W., HOGE, F., SWIFT,
3168 R., YUNGEL, J., TURNER, S., NIGHTINGALE, P., HATTON, A., LISS, P. & TINDALE, N. W.
3169 1994. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. *Nature*,
3170 371, 123-129.

3171 MARTIN, J. H. & KNAUER, G. A. 1973. Elemental composition of plankton. *Geochimica Et
3172 Cosmochimica Acta*, 37, 1639-1653.

3173 MATEAR, R. J. & HIRST, A. C. 2003. Long-term changes in dissolved oxygen concentrations in the
3174 ocean caused by protracted global warming. *Global Biogeochemical Cycles*, 17.

3175 MATSUMOTO, K. 2007. Biology-mediated temperature control on atmospheric
3176 CO_2 and ocean biogeochemistry. *Geophysical Research Letters*, 34.

3177 MELIM, L. A., SWART, P. K. & MALIVA, R. G. 1995. Meteoric-like fabrics forming in marine
3178 waters: implications for the use of petrography to identify diagenetic environments.
3179 *Geology*, 23, 755-758.

3180 MENG, X., SIMON, A. C., KLEINSASSER, J. M., MOLE, D. R., KONTAK, D. J., JUGO, P. J., MAO, J. &
3181 RICHARDS, J. P. 2022. Formation of oxidized sulfur-rich magmas in Neoarchaean
3182 subduction zones. *Nature Geoscience*, 15, 1064-+.

3183 MENTEL, M., ROETTGER, M., LEYS, S., TIELENS, A. G. M. & MARTIN, W. F. 2014. Of early animals,
3184 anaerobic mitochondria, and a modern sponge. *Bioessays*, 36, 924-932.

3185 METE, Ö., SUBHAS, A., KIM, H., DUNLEA, A., WHITMORE, L., SHILLER, A., GILBERT, M., LEAVITT,
3186 W. & HORNER, T. 2023. Barium in seawater: Dissolved distribution, relationship to
3187 silicon, and barite saturation state determined using machine learning. *Earth System
3188 Science Data Discussions*, 2023, 1-42.

3189 MEYER, K. M., RIDGWELL, A. & PAYNE, J. L. 2016. The influence of the biological pump on ocean
3190 chemistry: implications for long-term trends in marine redox chemistry, the global
3191 carbon cycle, and marine animal ecosystems. *Geobiology*, 14, 207-219.

3192 MEYER, K. M., YU, M., JOST, A. B., KELLEY, B. M. & PAYNE, J. L. 2011. $\delta^{13}\text{C}$ evidence that high
3193 primary productivity delayed recovery from end-Permian mass extinction. *Earth and
3194 Planetary Science Letters*, 302, 378-384.

3195 MILLER, C. A., PEUCKER-EHRENBRINK, B., WALKER, B. D. & MARCANTONIO, F. 2011. Re-
3196 assessing the surface cycling of molybdenum and rhenium. *Geochimica et Cosmochimica
3197 Acta*, 75, 7146-7179.

3198 MILLS, D. B., BOYLE, R. A., DAINES, S. J., SPERLING, E. A., PISANI, D., DONOGHU, I. C. J. &
3199 LENTON, T. M. 2022. Eukaryogenesis and oxygen in Earth history. *Nature Ecology &
3200 Evolution*, 6, 520-532.

3201 MILLS, D. B., WARD, L. M., JONES, C., SWEETEN, B., FORTH, M., TREUSCH, A. H. & CANFIELD, D.
3202 E. 2014. Oxygen requirements of the earliest animals. *Proceedings of the National
3203 Academy of Sciences*, 111, 4168-4172.

3204 MOFFETT, J. W. & GERMAN, C. R. 2020. Distribution of iron in the Western Indian Ocean and
3205 the Eastern tropical South Pacific: An inter-basin comparison. *Chemical Geology*, 532.

3206 MOFFETT, J. W., GOEFFERT, T. J. & NAQVI, S. W. A. 2007. Reduced iron associated with
3207 secondary nitrite maxima in the Arabian Sea. *Deep-Sea Research Part I-Oceanographic
3208 Research Papers*, 54, 1341-1349.

3209 MOFFITT, S. E., MOFFITT, R. A., SAUTHOFF, W., DAVIS, C. V., HEWETT, K. & HILL, T. M. 2015.
3210 Paleoceanographic Insights on Recent Oxygen Minimum Zone Expansion: Lessons for
3211 Modern Oceanography. *Plos One*, 10.

3212 MOLLENHAUER, G., SCHNEIDER, R. R., MULLER, P. J., SPIESS, V. & WEFER, G. 2002.
3213 Glacial/interglacial variability in the Benguela upwelling system: Spatial distribution and
3214 budgets of organic carbon accumulation. *Global Biogeochemical Cycles*, 16.

3215 MONNIN, E., INDERMUHLE, A., DALLENBACH, A., FLUCKIGER, J., STAUFFER, B., STOCKER, T. F.,
3216 REYNAUD, D. & BARNOLA, J.-M. 2001. Atmospheric CO_2 Concentrations over the Last
3217 Glacial Termination. *Science*, 291, 112-114.

3218 MONTES, I., DEWITTE, B., GUTKNECHT, E., PAULMIER, A., DADOU, I., OSCHLIES, A. & GARCON,
3219 V. 2014. High-resolution modeling of the Eastern Tropical Pacific oxygen minimum zone:
3220 Sensitivity to the tropical oceanic circulation. *Journal of Geophysical Research-Oceans*,
3221 119, 5515-5532.

3222 MORIYASU, R., EVANS, Z. C., BOLSTER, K. M., HARDISTY, D. S. & MOFFETT, J. W. 2020. The
3223 Distribution and Redox Speciation of Iodine in the Eastern Tropical North Pacific Ocean.
3224 *Global Biogeochemical Cycles*.

3225 MUELLER, M., MENTEL, M., VAN HELLEMOND, J. J., HENZE, K., WOEHLE, C., GOULD, S. B., YU,
3226 R.-Y., VAN DER GIEZEN, M., TIELENS, A. G. M. & MARTIN, W. F. 2012. Biochemistry and

3227 Evolution of Anaerobic Energy Metabolism in Eukaryotes. *Microbiology and Molecular*
3228 *Biology Reviews*, 76, 444-495.

3229 MURRAY, S. T., HIGGINS, J. A., HOLMDEN, C., LU, C. J. & SWART, P. K. 2021. Geochemical
3230 fingerprints of dolomitization in Bahamian carbonates: Evidence from sulphur, calcium,
3231 magnesium and clumped isotopes. *Sedimentology*, 68, 1-29.

3232 MÄND, K., PLANAVSKY, N. J., PORTER, S. M., ROBBINS, L. J., WANG, C., KREITSMANN, T., PAISTE,
3233 K., PAISTE, P., ROMASHKIN, A. E., DEINES, Y. E., KIRSIMÄE, K., LEPLAND, A. &
3234 KONHAUSER, K. O. 2022. Chromium evidence for protracted oxygenation during the
3235 Paleoproterozoic. *Earth and Planetary Science Letters*, 584, 117501.

3236 NAJJAR, R. G. & KEELING, R. F. 2000. Mean annual cycle of the air-sea oxygen flux: A global
3237 view. *Global Biogeochemical Cycles*, 14, 573-584.

3238 NANA YOBO, L., HOLMDEN, C., BRANDON, A. D., LAU, K. V., ELDRETT, J. S. & BERGMAN, S. 2022.
3239 LIP volcanism (not anoxia) tracked by Cr isotopes during Ocean Anoxic Event 2 in the
3240 proto-North Atlantic region. *Geochimica et Cosmochimica Acta*, 332, 138-155.

3241 NIELSEN, S. G. 2020. *Vanadium Isotopes: A Proxy for Ocean Oxygen Variations*, Cambridge
3242 University Press.

3243 NOBLE, A. E., LAMBORG, C. H., OHNEMUS, D. C., LAM, P. J., GOEPFERT, T. J., MEASURES, C. I.,
3244 FRAME, C. H., CASCIOTTI, K. L., DITULLIO, G. R., JENNINGS, J. & SAITO, M. A. 2012. Basin-
3245 scale inputs of cobalt, iron, and manganese from the Benguela-Angola front to the
3246 South Atlantic Ocean. *Limnology and Oceanography*, 57, 989-1010.

3247 NOFFKE, A., HENSEN, C., SOMMER, S., SCHOLZ, F., BOHLEN, L., MOSCH, T., GRACO, M. &
3248 WALLMANN, K. 2012. Benthic iron and phosphorus fluxes across the Peruvian oxygen
3249 minimum zone. *Limnology and Oceanography*, 57, 851-867.

3250 OEHLMERT, A. M. & SWART, P. K. 2014. Interpreting carbonate and organic carbon isotope
3251 covariance in the sedimentary record. *Nature Communications*, 5, 1-7.

3252 OHDE, T. & DADOU, I. 2018. Seasonal and annual variability of coastal sulphur plumes in the
3253 northern Benguela upwelling system. *Plos One*, 13.

3254 OLSON, S. L., KUMP, L. R. & KASTING, J. F. 2013. Quantifying the areal extent and dissolved
3255 oxygen concentrations of Archean oxygen oases. *Chemical Geology*, 362, 35-43.

3256 OSBURN, M. R., OWENS, J., BERGMANN, K. D., LYONS, T. W. & GROTZINGER, J. P. 2015.
3257 Dynamic changes in sulfate sulfur isotopes preceding the Ediacaran Shuram Excursion.
3258 *Geochimica et Cosmochimica Acta*, 170, 204-224.

3259 OSCHLIES, A., BRANDT, P., STRAMMA, L. & SCHMIDTKO, S. 2018. Drivers and mechanisms of
3260 ocean deoxygenation. *Nature Geoscience*, 11, 467-473.

3261 OSMAN, M. B., TIERNEY, J. E., ZHU, J., TARDIF, R., HAKIM, G. J., KING, J. & POULSEN, C. J. 2021.
3262 Globally resolved surface temperatures since the Last Glacial Maximum. *Nature*, 599,
3263 239-244.

3264 OSSA, F. O., HOFMANN, A., WILLE, M., SPANGENBERG, J. E., BEKKER, A., POULTON, S. W.,
3265 EICKMANN, B. & SCHOENBERG, R. 2018. Aerobic iron and manganese cycling in a redox-
3266 stratified Mesoarchean epicontinental sea. *Earth and Planetary Science Letters*, 500, 28-
3267 40.

3268 OSTRANDER, C. M. 2023. Mulling and nulling the coeval rise of Ediacaran oxygen and animals.
3269 *Earth and Planetary Science Letters*, 614.

3270 OSTRANDER, C. M., NIELSEN, S. G., OWENS, J. D., KENDALL, B., GORDON, G. W., ROMANIELLO,
3271 S. J. & ANBAR, A. D. 2019. Fully oxygenated water columns over continental shelves
3272 before the Great Oxidation Event. *Nature Geoscience*, 12, 186.

3273 OSTRANDER, C. M., OWENS, J. D. & NIELSEN, S. G. 2017. Constraining the rate of oceanic
3274 deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~94 Ma).
3275 *Science Advances*, 3, e1701020.

3276 OWENS, J. D., LYONS, T. W., HARDISTY, D. S., LOWERY, C. M., LU, Z., LEE, B. & JENKYNS, H. C.
3277 2017. Patterns of local and global redox variability during the Cenomanian–Turonian
3278 Boundary Event (Oceanic Anoxic Event 2) recorded in carbonates and shales from
3279 central Italy. *Sedimentology*, 168-185.

3280 OZAKI, K., COLE, D. B., REINHARD, C. T. & TAIKA, E. 2022. CANOPS-GRB v1.0: a new Earth
3281 system model for simulating the evolution of ocean-atmosphere chemistry over
3282 geologic timescales. *Geoscientific Model Development*, 15, 7593-7639.

3283 OZAKI, K. & REINHARD, C. T. 2021. The future lifespan of Earth's oxygenated atmosphere.
3284 *Nature Geoscience*, 14, 138.

3285 OZAKI, K. & TAIKA, E. 2013. Biogeochemical effects of atmospheric oxygen concentration,
3286 phosphorus weathering, and sea-level stand on oceanic redox chemistry: Implications
3287 for greenhouse climates. *Earth and Planetary Science Letters*, 373, 129-139.

3288 OZAKI, K., THOMPSON, K. J., SIMISTER, R. L., CROWE, S. A. & REINHARD, C. T. 2019. Anoxygenic
3289 photosynthesis and the delayed oxygenation of Earth's atmosphere. *Nature
3290 Communications*, 10.

3291 PADILLA, C. C., BRISTOW, L. A., SARODE, N., GARCIA-ROBLEDO, E., GOMEZ RAMIREZ, E.,
3292 BENSON, C. R., BOURBONNAIS, A., ALTABET, M. A., GIRGUIS, P. R., THAMDRUP, B. &
3293 STEWART, F. J. 2016. NC10 bacteria in marine oxygen minimum zones. *Isme Journal*, 10,
3294 2067-2071.

3295 PALEVSKY, H. I. & NICHOLSON, D. P. 2018. The North Atlantic Biological Pump: Insights from the
3296 ocean observatories initiative Irminger Sea array. *Oceanography*, 31, 42-49.

3297 PARFREY, L. W., LAHR, D. J. G., KNOLL, A. H. & KATZ, L. A. 2011. Estimating the timing of early
3298 eukaryotic diversification with multigene molecular clocks. *Proceedings of the National
3299 Academy of Sciences of the United States of America*, 108, 13624-13629.

3300 PARTIN, C. A., BEKKER, A., PLANAVSKY, N. J., SCOTT, C. T., GILL, B. C., LI, C., PODKOVYROV, V.,
3301 MASLOV, A., KONHAUSER, K. O., LALONDE, S. V., LOVE, G. D., POULTON, S. W. & LYONS,
3302 T. W. 2013. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen
3303 levels from the record of U in shales. *Earth and Planetary Science Letters*, 369-370, 284-
3304 293.

3305 PASQUIER, V., FIKE, D. A., REVILLON, S. & HALEVY, I. 2022. A global reassessment of the controls
3306 on iron speciation in modern sediments and sedimentary rocks: A dominant role for
3307 diagenesis. *Geochimica Et Cosmochimica Acta*, 335, 211-230.

3308 PAULMIER, A. & RUIZ-PINO, D. 2009. Oxygen minimum zones (OMZs) in the modern ocean.
3309 *Progress in Oceanography*, 80, 113-128.

3310 PAVLOV, A. A., KASTING, J. F., BROWN, L. L., RAGES, K. A. & FREEDMAN, R. 2000. Greenhouse
3311 warming by CH₄ in the atmosphere of early Earth. *Journal of Geophysical Research:
3312 Planets*, 105, 11981-11990.

3313 PAYNE, J. L., MCCLAIN, C. R., BOYER, A. G., BROWN, J. H., FINNEGAN, S., KOWALEWSKI, M.,
3314 KRAUSE, R. A., LYONS, S. K., MCSHEA, D. W., NOVACK-GOTTSCHALL, P. M., SMITH, F. A.,
3315 SPAETH, P., STEMPIEN, J. A. & WANG, S. C. 2011. The evolutionary consequences of
3316 oxygenic photosynthesis: a body size perspective. *Photosynthesis Research*, 107, 37-57.

3317 PENN, J., WEBER, T. & DEUTSCH, C. 2016. Microbial functional diversity alters the structure and
3318 sensitivity of oxygen deficient zones. *Geophysical Research Letters*, 43, 9773-9780.

3319 PENN, J. L., DEUTSCH, C., PAYNE, J. L. & SPERLING, E. A. 2018. Temperature-dependent hypoxia
3320 explains biogeography and severity of end-Permian marine mass extinction. *Science*,
3321 362, 1-6.

3322 PETERS, B. D., JENKINS, W. J., SWIFT, J. H., GERMAN, C. R., MOFFETT, J. W., CUTTER, G. A.,
3323 BRZEZINSKI, M. A. & CASCIOTTI, K. L. 2018. Water mass analysis of the 2013 US
3324 GEOTRACES eastern Pacific zonal transect (GP16). *Marine Chemistry*, 201, 6-19.

3325 PETERS-KOTTIG, W., STRAUSS, H. & KERP, H. 2006. The land plant $\delta^{13}\text{C}$ record and
3326 plant evolution in the Late Palaeozoic. *Palaeogeography, Palaeoclimatology,*
3327 *Palaeoecology*, 240, 237-252.

3328 PETIT, J. R., JOUZEL, J., RAYNAUD, D., BARKOV, N. I., BARNOLA, J. M., BASILE, I., BENDER, M.,
3329 CHAPPELLAZ, J., DAVIS, M., DELAYGUE, G., DELMOTTE, M., KOTLYAKOV, V. M.,
3330 LEGRAND, M., LIPENKOV, V. Y., LORIUS, C., PEPIN, L., RITZ, C., SALTZMAN, E. &
3331 STIEVENARD, M. 1999. Climate and atmospheric history of the past 420,000 years from
3332 the Vostok ice core, Antarctica. *Nature*, 399, 429-436.

3333 PETSCH, S. T. 2014. The global oxygen cycle. Treatise in Geochemistry (2nd Edition).

3334 PIERREHUMBERT, R. T., ABBOT, D. S., VOIGT, A. & KOLL, D. 2011. Climate of the
3335 Neoproterozoic. *Annual Review of Earth and Planetary Sciences*, 39, 417-460.

3336 PLANAVSKY, N. J., ASAEL, D., HOFMANN, A., REINHARD, C. T., LALONDE, S. V., KNUDSEN, A.,
3337 WANG, X., OSSA, F. O., PECOITS, E. & SMITH, A. J. 2014a. Evidence for oxygenic
3338 photosynthesis half a billion years before the Great Oxidation Event. *Nature geoscience*,
3339 7, 283-286.

3340 PLANAVSKY, N. J., BEKKER, A., HOFMANN, A., OWENS, J. D. & LYONS, T. W. 2012. Sulfur record
3341 of rising and falling marine oxygen and sulfate levels during the Lomagundi event.
3342 *Proceedings of the National Academy of Sciences*, 109, 18300-18305.

3343 PLANAVSKY, N. J., CROWE, S. A., FAKHRAEE, M., BEATY, B., REINHARD, C. T., MILLS, B. J. W.,
3344 HOLSTEGE, C. & KONHAUSER, K. O. 2021. Evolution of the structure and impact of
3345 Earth's biosphere. *Nature Reviews Earth & Environment*, 2, 123-139.

3346 PLANAVSKY, N. J., MCGOLDRICK, P., SCOTT, C. T., LI, C., REINHARD, C. T., KELLY, A. E., CHU, X.,
3347 BEKKER, A., LOVE, G. D. & LYONS, T. W. 2011. Widespread iron-rich conditions in the
3348 mid-Proterozoic ocean. *Nature*, 477, 448-451.

3349 PLANAVSKY, N. J., REINHARD, C. T., WANG, X., THOMSON, D., MCGOLDRICK, P., RAINBIRD, R. H.,
3350 JOHNSON, T., FISCHER, W. W. & LYONS, T. W. 2014b. Low Mid-Proterozoic atmospheric
3351 oxygen levels and the delayed rise of animals. *Science*, 346, 635-638.

3352 PORTER, S. M. 2007. Seawater Chemistry and Early Carbonate Biomineralization. *Science*, 316,
3353 1302-1302.

3354 POULTON, S. W., BEKKER, A., CUMMING, V. M., ZERKLE, A. L., CANFIELD, D. E. & JOHNSTON, D.
3355 T. 2021. A 200-million-year delay in permanent atmospheric oxygenation. *Nature*, 592,
3356 232-+.

3357 PRAETORIUS, S. K., MIX, A. C., WALCZAK, M. H., WOLHOWE, M. D., ADDISON, J. A. & PRAHL, F.
3358 G. 2015. North Pacific deglacial hypoxic events linked to abrupt ocean warming. *Nature*,
3359 527, 362-366.

3360 PRAVE, A. R., KIRSIMAE, K., LEPLAND, A., FALICK, A. E., KREITSMANN, T., DEINES, Y. E.,
3361 ROMASHKIN, A. E., RYCHANCHIK, D. V., MEDVEDEV, P. V., MOUSSAVOU, M., BAKAKAS,
3362 K. & HODGSKI, M. S. W. 2022. The grandest of them all: the Lomagundi-Jatuli Event
3363 and Earth's oxygenation. *Journal of the Geological Society*, 179.

3364 PRESENT, T. M., ADKINS, J. F. & FISCHER, W. W. 2020. Variability in Sulfur Isotope Records of
3365 Phanerozoic Seawater Sulfate. *Geophysical Research Letters*, 47.

3366 QUADFASEL, D. R. & SCHOTT, F. 1982. Water-mass distributions at intermediate layers off the
3367 Somali Coast during the onset of the southwest monsoon, 1979. *Journal of Physical*
3368 *Oceanography*, 12, 1358-1372.

3369 RAISWELL, R., HARDISTY, D., LYONS, T., CANFIELD, D., OWENS, J., PLANAVSKY, N., POULTON, S.
3370 & REINHARD, C. 2018. The iron paleoredox proxies: A guide to the pitfalls, problems and
3371 proper practice. *American Journal of Science*.

3372 RAPP, I., SCHLOSSER, C., BARRAQUETA, J. L. M., WENZEL, B., LUDKE, J., SCHOLTEN, J., GASSER,
3373 B., REICHERT, P., GLEDHILL, M., DENGLER, M. & ACHTERBERG, E. P. 2019. Controls on
3374 redox-sensitive trace metals in the Mauritanian oxygen minimum zone. *Biogeosciences*,
3375 16, 4157-4182.

3376 RAPP, I., SCHLOSSER, C., BROWNING, T. J., WOLF, F., LE MOIGNE, F. A. C., GLEDHILL, M. &
3377 ACHTERBERG, E. P. 2020. El Nino-Driven Oxygenation Impacts Peruvian Shelf Iron Supply
3378 to the South Pacific Ocean. *Geophysical Research Letters*, 47.

3379 RASHBY, S. E., SESSIONS, A. L., SUMMONS, R. E. & NEWMAN, D. K. 2007. Biosynthesis of 2-
3380 methylbacteriohopanepolyols by an anoxygenic phototroph. *Proceedings of the*
3381 *National Academy of Sciences of the United States of America*, 104, 15099-15104.

3382 RAVEN, M. R., KEIL, R. G. & WEBB, S. M. 2021. Microbial sulfate reduction and organic sulfur
3383 formation in sinking marine particles. *Science*, 371, 178.

3384 REERSHEMIUS, T. & PLANAVSKY, N. J. 2021. What controls the duration and intensity of ocean
3385 anoxic events in the Paleozoic and the Mesozoic? *Earth-Science Reviews*, 221, 103787.

3386 REICHART, G. J., LOURENS, L. J. & ZACHARIASSE, W. J. 1998. Temporal variability in the northern
3387 Arabian Sea oxygen minimum zone (OMZ) during the last 225,000 years.
3388 *Paleoceanography*, 13, 607-621.

3389 REINHARD, C., PLANAVSKY, N., OLSON, S., LYONS, T. & ERWIN, D. 2016a. Earth's oxygen cycle
3390 and the evolution of metazoan life. *Proceedings of the National Academy of Sciences*.

3391 REINHARD, C. T., LALONDE, S. V. & LYONS, T. W. 2013a. Oxidative sulfide dissolution on the
3392 early Earth. *Chemical Geology*, 362, 44-55.

3393 REINHARD, C. T. & PLANAVSKY, N. J. 2022. The History of Ocean Oxygenation. *Annual Review of*
3394 *Marine Science*, 14, 331-353.

3395 REINHARD, C. T., PLANAVSKY, N. J. & LYONS, T. W. 2013b. Long-term sedimentary recycling of
3396 rare sulphur isotope anomalies. *Nature*, 497, 100-103.

3397 REINHARD, C. T., PLANAVSKY, N. J., OLSON, S. L., LYONS, T. W. & ERWIN, D. H. 2016b. Earth's
3398 oxygen cycle and the evolution of animal life. *Proceedings of the National Academy of*
3399 *Sciences*, 113, 8933-8938.

3400 REINHARD, C. T., PLANAVSKY, N. J., ROBBINS, L. J., PARTIN, C. A., GILL, B. C., LALONDE, S. V.,
3401 BEKKER, A., KONHAUSER, K. O. & LYONS, T. W. 2013c. Proterozoic ocean redox and
3402 biogeochemical stasis. *Proceedings of the National Academy of Sciences*, 110, 5357-
3403 5362.

3404 REINHARD, C. T., RAISWELL, R., SCOTT, C., ANBAR, A. D. & LYONS, T. W. 2009. A late Archean
3405 sulfidic sea stimulated by early oxidative weathering of the continents. *Science*, 326,
3406 713-716.

3407 RESING, J. A., SEDWICK, P. N., GERMAN, C. R., JENKINS, W. J., MOFFETT, J. W., SOHST, B. M. &
3408 TAGLIABUE, A. 2015. Basin-scale transport of hydrothermal dissolved metals across the
3409 South Pacific Ocean. *Nature*, 523, 200-U140.

3410 REVSBECH, N. P., LARSEN, L. H., GUNDERSEN, J., DALSGAARD, T., ULLOA, O. & THAMDRUP, B.
3411 2009. Determination of ultra-low oxygen concentrations in oxygen minimum zones by
3412 the STOX sensor. *Limnol. Oceanogr. Methods*, 7, 371-381.

3413 REYES-UMANA, V., HENNING, Z., LEE, K., BARNUM, T. P. & COATES, J. D. 2022. Genetic and
3414 phylogenetic analysis of dissimilatory iodate-reducing bacteria identifies potential
3415 niches across the world's oceans. *Isme Journal*, 16, 38-49.

3416 RIDGWELL, A. 2005. A Mid Mesozoic Revolution in the regulation of ocean chemistry. *Marine
3417 Geology*, 217, 339-357.

3418 RIDING, R., FRALICK, P. & LIANG, L. 2014. Identification of an Archean marine oxygen oasis.
3419 *Precambrian Research*, 251, 232-237.

3420 RIDING, R., LIANG, L. & FRALICK, P. 2022. Oxygen-induced chemocline precipitation between
3421 Archean Fe-rich and Fe-poor carbonate seas. *Precambrian Research*, 383.

3422 RIEDINGER, N., SCHOLZ, F., ABSHIRE, M. L. & ZABEL, M. 2021. Persistent deep water anoxia in
3423 the eastern South Atlantic during the last ice age. *Proceedings of the National Academy
3424 of Sciences of the United States of America*, 118.

3425 ROONEY, A. D., MACDONALD, F. A., STRAUSS, J. V., DUDAS, F. O., HALLMANN, C. & SELBY, D.
3426 2013. Re-Os geochronology and coupled Os-Sr isotope constraints on the Sturtian
3427 snowball Earth. *Proceedings of the National Academy of Sciences*, 111, 51-56.

3428 ROSE, A. L. 2012. The influence of extracellular superoxide on iron redox chemistry and
3429 bioavailability to aquatic microorganisms. *Frontiers in Microbiology*, 3.

3430 ROSHAN, S. & WU, J. F. 2015a. Cadmium regeneration within the North Atlantic. *Global
3431 Biogeochemical Cycles*, 29, 2082-2094.

3432 ROSHAN, S. & WU, J. F. 2015b. Water mass mixing: The dominant control on the zinc
3433 distribution in the North Atlantic Ocean. *Global Biogeochemical Cycles*, 29, 1060-1074.

3434 ROTHMAN, D. H., HAYES, J. M. & SUMMONS, R. E. 2003. Dynamics of the Neoproterozoic
3435 carbon cycle. *Proceedings of the National Academy of Sciences of the United States of
3436 America*, 100, 8124-8129.

3437 RUE, E. L., SMITH, G. J., CUTTER, G. A. & BRULAND, K. W. 1997. The response of trace element
3438 redox couples to suboxic conditions in the water column. *Deep-Sea Research Part I-
3439 Oceanographic Research Papers*, 44, 113-134.

3440 RUNNEGAR, B. 2000. Loophole for snowball Earth. *Nature*, 405, 403-404.

3441 SAHOO, S. K., PLANAVSKY, N. J., JIANG, G., KENDALL, B., OWENS, J. D., WANG, X., SHI, X.,
3442 ANBAR, A. D. & LYONS, T. W. 2016. Oceanic oxygenation events in the anoxic Ediacaran
3443 ocean. *Geobiology*, 14, 457-468.

3444 SAHOO, S. K., PLANAVSKY, N. J., KENDALL, B., WANG, X., SHI, X., SCOTT, C., ANBAR, A. D.,
3445 LYONS, T. W. & JIANG, G. 2012. Ocean oxygenation in the wake of the Marinoan
3446 glaciation. *Nature*, 489, 546-549.

3447 SALTZMAN, M. R., EDWARDS, C. T., ADRAIN, J. M. & WESTROP, S. R. 2015. Persistent oceanic
3448 anoxia and elevated extinction rates separate the Cambrian and Ordovician radiations.
3449 *Geology*, 43, 807-810.

3450 SALTZMAN, M. R. & THOMAS, E. 2012. Carbon Isotope Stratigraphy. *The Geologic Time Scale*.
3451 Elsevier.

3452 SANCHEZ-BARACALDO, P., RAVEN, J. A., PISANI, D. & KNOLL, A. H. 2017. Early photosynthetic
3453 eukaryotes inhabited low-salinity habitats. *Proceedings of the National Academy of
3454 Sciences of the United States of America*, 114, E7737-E7745.

3455 SAUNDERS, J. K., MCILVIN, M. R., DUPONT, C. L., KAUL, D., MORAN, D. M., HORNER, T.,
3456 LAPERRIERE, S. M., WEBB, E. A., BOSAK, T., SANTORO, A. E. & SAITO, M. A. 2022.
3457 Microbial functional diversity across biogeochemical provinces in the central Pacific
3458 Ocean. *Proceedings of the National Academy of Sciences of the United States of
3459 America*, 119, e2200014119-e2200014119.

3460 SCHACHAT, S. R., LABANDEIRA, C. C., SALTZMAN, M. R., CRAMER, B. D., PAYNE, J. L. & BOYCE, C.
3461 K. 2018. Phanerozoic pO_2 and the early evolution of terrestrial animals. *Proceedings of
3462 the Royal Society B: Biological Sciences*, 285, 20172631.

3463 SCHIRRMEISTER, B. E., DE VOS, J. M., ANTONELLI, A. & BAGHERI, H. C. 2013. Evolution of
3464 multicellularity coincided with increased diversification of cyanobacteria and the Great
3465 Oxidation Event. *Proceedings of the National Academy of Sciences of the United States
3466 of America*, 110, 1791-1796.

3467 SCHLITZER, R., ANDERSON, R. F., DODAS, E. M., LOHAN, M., GEIBERE, W., TAGLIABUE, A.,
3468 BOWIE, A., JEANDEL, C., MALDONADO, M. T., LANDING, W. M., COCKWELL, D., ABADIE,
3469 C., ABOUCHAMI, W., ACHTERBERG, E. P., AGATHER, A., AGUILAR-ISLAS, A., VAN AKEN, H.
3470 M., ANDERSEN, M., ARCHER, C., AURO, M., DE BAAR, H. J., BAARS, O., BAKER, A. R.,
3471 BAKKER, K., BASAK, C., BASKARAN, M., BATES, N. R., BAUCH, D., VAN BEEK, P., BEHRENS,
3472 M. K., BLACK, E., BLUHM, K., BOPP, L., BOUMAN, H., BOWMAN, K., BOWN, J., BOYD, P.,
3473 BOYE, M., BOYLE, E. A., BRANELLEC, P., BRIDGESTOCK, L., BRISSEBRAT, G., BROWNING,
3474 T., BRULAND, K. W., BRUMSACK, H.-J., BRZEZINSKI, M., BUCK, C. S., BUCK, K. N.,
3475 BUESSELER, K., BULL, A., BUTLER, E., CAI, P., CAMARA MOR, P., CARDINAL, D., CARLSON,
3476 C., CARRASCO, G., CASACUBERTA, N., CASCIOTTI, K. L., CASTRILLEJO, M., CHAMIZO, E.,
3477 CHANCE, R., CHARETTE, M. A., CHAVES, J. E., CHENG, H., CHEVER, F., CHRISTL, M.,
3478 CHURCH, T. M., CLOSSET, I., COLMAN, A., CONWAY, T. M., COSSA, D., CROOT, P.,
3479 CULLEN, J. T., CUTTER, G. A., DANIELS, C., DEHAIRS, F., DENG, F., DIEU, H. T., DUGGAN,
3480 B., DULAQUAIS, G., DUMOUSSEAUD, C., ECHEGOYEN-SANZ, Y., EDWARDS, R. L.,
3481 ELLWOOD, M., FAHRBACH, E., FITZSIMMONS, J. N., FLEGAL, A. R., FLEISHER, M. Q., VAN
3482 DE FLIERDT, T., FRANK, M., FRIEDRICH, J., FRIPAT, F., FROELLJE, H., GALER, S. J. G.,
3483 GAMO, T., GANESHARAM, R. S., GARCIA-ORELLANA, J., GARCIA-SOLSONA, E., GAULT-
3484 RINGOLD, M., GEORGE, E., et al. 2018. The GEOTRACES Intermediate Data Product 2017.
3485 *Chemical Geology*, 493, 210-223.

3486 SCHLOSSER, C., STREU, P., FRANK, M., LAVIK, G., CROOT, P. L., DENGLER, M. & ACHTERBERG, E.
3487 P. 2018. H₂S events in the Peruvian oxygen minimum zone facilitate enhanced dissolved
3488 Fe concentrations. *Scientific Reports*, 8.

3489 SCHMIDT, H., CZESCHEL, R. & VISBECK, M. 2020. Seasonal variability of the Arabian Sea
3490 intermediate circulation and its impact on seasonal changes of the upper oxygen
3491 minimum zone. *Ocean Science*, 16, 1459-1474.

3492 SCHMIDTKO, S., STRAMMA, L. & VISBECK, M. 2017. Decline in global oceanic oxygen content
3493 during the past five decades. *Nature*, 542, 335-339.

3494 SCHOLZ, F., HENSEN, C., NOFFKE, A., ROHDE, A., LIEBETRAU, V. & WALLMANN, K. 2011. Early
3495 diagenesis of redox-sensitive trace metals in the Peru upwelling area - response to
3496 ENSO-related oxygen fluctuations in the water column. *Geochimica Et Cosmochimica
3497 Acta*, 75, 7257-7276.

3498 SCHOLZ, F., SEVERMANN, S., MCMANUS, J. & HENSEN, C. 2014a. Beyond the Black Sea
3499 paradigm: The sedimentary fingerprint of an open-marine iron shuttle. *Geochimica Et
3500 Cosmochimica Acta*, 127, 368-380.

3501 SCHOLZ, F., SEVERMANN, S., MCMANUS, J., NOFFKE, A., LOMNITZ, U. & HENSEN, C. 2014b. On
3502 the isotope composition of reactive iron in marine sediments: Redox shuttle versus early
3503 diagenesis. *Chemical Geology*, 389, 48-59.

3504 SCHRAG, D. P., HIGGINS, J. A., MACDONALD, F. A. & JOHNSTON, D. T. 2013. Authigenic
3505 Carbonate and the History of the Global Carbon Cycle. *Science*, 339, 540-543.

3506 SCOTT, C. T., BEKKER, A., REINHARD, C. T., SCHNETGER, B., KRAPEŽ, B., RUMBLE III, D. & LYONS,
3507 T. W. 2011. Late Archean euxinic conditions before the rise of atmospheric oxygen.
3508 *Geology*, 39, 119-122.

3509 SEVERMANN, S., JOHNSON, C. M., BEARD, B. L. & MCMANUS, J. 2006. The effect of early
3510 diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in
3511 continental margin sediments. *Geochimica et Cosmochimica Acta*, 70, 2006-2022.

3512 SHANKLE, M. G., BURLS, N. J., FEDOROV, A. V., THOMAS, M. D., LIU, W., PENMAN, D. E., FORD,
3513 H. L., JACOBS, P. H., PLANAVSKY, N. J. & HULL, P. M. 2021. Pliocene decoupling of
3514 equatorial Pacific temperature and pH gradients. *Nature*, 598, 457-+.

3515 SHANKS, A. L. & REEDER, M. L. 1993. REDUCING MICROZONES AND SULFIDE PRODUCTION IN
3516 MARINE SNOW. *Marine Ecology Progress Series*, 96, 43-47.

3517 SHEEN, A. I., KENDALL, B., REINHARD, C. T., CREASER, R. A., LYONS, T. W., BEKKER, A., POULTON,
3518 S. W. & ANBAR, A. D. 2018. A model for the oceanic mass balance of rhenium and
3519 implications for the extent of Proterozoic ocean anoxia. *Geochimica Et Cosmochimica
3520 Acta*, 227, 75-95.

3521 SHERWEN, T., CHANCE, R. J., TINEL, L., ELLIS, D., EVANS, M. J. & CARPENTER, L. J. 2019. A
3522 machine-learning-based global sea-surface iodide distribution. *Earth System Science
3523 Data*, 11, 1239-1262.

3524 SHRIKUMAR, A., LAWRENCE, R. & CACCIOTTI, K. L. 2022. PYOMPA version 0.3. *Authorea
3525 Preprints*.

3526 SIANI, G., MICHEL, E., DE POL-HOLZ, R., DEVRIES, T., LAMY, F., CAREL, M., ISGUDER, G.,
3527 DEWILDE, F. & LOURANTOU, A. 2013. Carbon isotope records reveal precise timing of
3528 enhanced Southern Ocean upwelling during the last deglaciation. *Nature
3529 Communications*, 4.

3530 SINGH, N. D., SINGH, S. K., MALLA, N. & CHINNI, V. 2023. Biogeochemical cycling of dissolved
3531 manganese in the Arabian Sea. *Geochimica et Cosmochimica Acta*.

3532 SLOTZNICK, S. P., JOHNSON, J. E., RASMUSSEN, B., RAUB, T. D., WEBB, S. M., ZI, J.-W.,
3533 KIRSCHVINK, J. L. & FISCHER, W. W. 2022. Reexamination of 2.5-Ga "whiff" of oxygen
3534 interval points to anoxic ocean before GOE. *Science Advances*, 8.

3535 SLOTZNICK, S. P., SPERLING, E. A., TOSCA, N. J., MILLER, A. J., CLAYTON, K. E., VAN HELMOND, N.
3536 A. G. M., SLOMP, C. P. & SWANSON-HYSELL, N. L. 2020. Unraveling the Mineralogical
3537 Complexity of Sediment Iron Speciation Using Sequential Extractions. *Geochemistry*
3538 *Geophysics Geosystems*, 21.

3539 SPERLING, E. A., BOAG, T. H., DUNCAN, M. I., ENDRIGA, C. R., MARQUEZ, J. A., MILLS, D. B.,
3540 MONARREZ, P. M., SCLAFANI, J. A., STOCKEY, R. G. & PAYNE, J. L. 2022. Breathless
3541 through Time: Oxygen and Animals across Earth's History. *Biological Bulletin*.

3542 SPERLING, E. A., FRIEDER, C. A., RAMAN, A. V., GIRGUIS, P. R., LEVIN, L. A. & KNOLL, A. H. 2013.
3543 Oxygen, ecology, and the Cambrian radiation of animals. *Proceedings of the National
3544 Academy of Sciences*, 110, 13446-13451.

3545 SPERLING, E. A., KNOLL, A. H. & GIRGUIS, P. R. 2015a. The Ecological Physiology of Earth's
3546 Second Oxygen Revolution. *Annual Review of Ecology, Evolution, and Systematics*, 46,
3547 215-235.

3548 SPERLING, E. A., WOLOCK, C. J., MORGAN, A. S., GILL, B. C., KUNZMANN, M., HALVERSON, G. P.,
3549 MACDONALD, F. A., KNOLL, A. H. & JOHNSTON, D. T. 2015b. Statistical analysis of iron
3550 geochemical data suggests limited late Proterozoic oxygenation. *Nature*, 523, 451-454.

3551 SPINKS, S. C., SPERLING, E. A., THORNE, R. L., LAFOUNTAIN, F., WHITE, A. J. R., ARMSTRONG, J.,
3552 WOLTERING, M. & TYLER, I. M. 2023. Mesoproterozoic surface oxygenation
3553 accompanied major sedimentary manganese deposition at 1.4 and 1.1 Ga. *Geobiology*,
3554 21, 28-43.

3555 STEWART, J. A., GUTJAHR, M., PEARCE, F., SWART, P. K. & FOSTER, G. L. 2015. Boron during
3556 meteoric diagenesis and its potential implications for Marinoan snowball Earth δ11B-pH
3557 excursions. *Geology*, 43, 627-630.

3558 STRAMMA, L., JOHNSON, G. C., SPRINTALL, J. & MOHRHOLZ, V. 2008. Expanding Oxygen-
3559 Minimum Zones in the Tropical Oceans. *Science*, 320, 655-658.

3560 STUEEKEN, E. E., BUICK, R. & ANBAR, A. D. 2015. Selenium isotopes support free O₂ in the
3561 latest Archean. *Geology*, 43, 259-262.

3562 SUN, D., ITO, T. & BRACCO, A. 2017. Oceanic Uptake of Oxygen During Deep Convection Events
3563 Through Diffusive and Bubble-Mediated Gas Exchange. *Global Biogeochemical Cycles*,
3564 31, 1579-1591.

3565 SUN, X., FREY, C., GARCIA-ROBLEDO, E., JAYAKUMAR, A. & WARD, B. B. 2021. Microbial niche
3566 differentiation explains nitrite oxidation in marine oxygen minimum zones. *Isme Journal*,
3567 15, 1317-1329.

3568 SUNDA, W. G., HUNTSMAN, S. A. & HARVEY, G. R. 1983. Photoreduction of manganese oxides in
3569 seawater and its geochemical and biological implications. *Nature*, 301, 234-236.

3570 SUTHERLAND, K. M., WANKEL, S. D. & HANSEL, C. M. 2020. Dark biological superoxide
3571 production as a significant flux and sink of marine dissolved oxygen. *Proceedings of the
3572 National Academy of Sciences of the United States of America*, 117, 3433-3439.

3573 SWANNER, E. D., LAMBRECHT, N., WITTKOP, C., HARDING, C., KATSEV, S., TORGESON, J. &
3574 POULTON, S. W. 2020. The biogeochemistry of ferruginous lakes and past ferruginous
3575 oceans. *Earth-Science Reviews*, 211.

3576 SWART, P. K. 2008. Global synchronous changes in the carbon isotopic composition of
3577 carbonate sediments unrelated to changes in the global carbon cycle. *Proceedings of the
3578 National Academy of Sciences of the United States of America*, 105, 13741-13745.

3579 SWART, P. K. & EBERLI, G. 2005. The nature of the $\delta^{13}\text{C}$ of periplatform sediments:
3580 implications for stratigraphy and the global carbon cycle. *Sedimentary Geology*, 175,
3581 115-129.

3582 TAHATA, M., SAWAKI, Y., YOSHIYA, K., NISHIZAWA, M., KOMIYA, T., HIRATA, T., YOSHIDA, N.,
3583 MARUYAMA, S. & WINDLEY, B. F. 2015. The marine environments encompassing the
3584 Neoproterozoic glaciations: Evidence from C, Sr and Fe isotope ratios in the Hecla Hoek
3585 Supergroup in Svalbard. *Precambrian Research*, 263, 19-42.

3586 TANG, W., LI, Z. & CASSAR, N. 2019. Machine Learning Estimates of Global Marine Nitrogen
3587 Fixation. *Journal of Geophysical Research-Biogeosciences*, 124, 717-730.

3588 TARHAN, L. G. 2018. The early Paleozoic development of bioturbation—Evolutionary and
3589 geobiological consequences. *Earth-Science Reviews*, 178, 177-207.

3590 TARHAN, L. G., DROSER, M. L., PLANAVSKY, N. J. & JOHNSTON, D. T. 2015. Protracted
3591 development of bioturbation through the early Palaeozoic Era. *Nature Geoscience*, 8,
3592 865-869.

3593 THAMDRUP, B., DALSGAARD, T. & REVSBECH, N. P. 2012. Widespread functional anoxia in the
3594 oxygen minimum zone of the Eastern South Pacific. *Deep Sea Research Part I:
3595 Oceanographic Research Papers*, 65, 36-45.

3596 THAMDRUP, B., STEINSDOTTIR, H. G. R., BERTAGNOLLI, A., PADILLA, C., PATIN, N. V., GARCIA-
3597 ROBLEDO, E., BRISTOW, L. A. & STEWART, F. J. 2019. Anaerobic methane oxidation is an
3598 important sink for methane in the ocean's largest oxygen minimum zone. *Limnology and
3599 Oceanography*, 64, 2569-2585.

3600 THEM, T. R., GILL, B. C., CARUTHERS, A. H., GERHARDT, A. M., GRÖCKE, D. R., LYONS, T. W.,
3601 MARROQUÍN, S. M., NIELSEN, S. G., TRABUCHO ALEXANDRE, J. P. & OWENS, J. D. 2018.
3602 Thallium isotopes reveal protracted anoxia during the Toarcian (Early Jurassic)
3603 associated with volcanism, carbon burial, and mass extinction. *Proceedings of the
3604 National Academy of Sciences*, 115, 6596-6601.

3605 TIANO, L., GARCIA-ROBLEDO, E., DALSGAARD, T., DEVOL, A. H., WARD, B. B., ULLOA, O.,
3606 CANFIELD, D. E. & REVSBECH, N. P. 2014. Oxygen distribution and aerobic respiration in
3607 the north and south eastern tropical Pacific oxygen minimum zones. *Deep-Sea Research
3608 Part I-Oceanographic Research Papers*, 94, 173-183.

3609 TOMCZAK, M. & GODFREY, J. S. 2003. *Regional oceanography: an introduction*, Daya books.

3610 TRIBOVILLARD, N., ALGEO, T. J., LYONS, T. & RIBOULLEAU, A. 2006. Trace metals as paleoredox
3611 and paleoproductivity proxies: An update. *Chemical Geology*, 232, 12-32.

3612 TSANDEV, I., SLOMP, C. P. & VAN CAPPELLEN, P. 2008. Glacial-interglacial variations in marine
3613 phosphorus cycling: Implications for ocean productivity. *Global Biogeochemical Cycles*,
3614 22.

3615 TSEMENTZI, D., WU, J., DEUTSCH, S., NATH, S., RODRIGUEZ-R, L. M., BURNS, A. S., RANJAN, P.,
3616 SARODE, N., MALMSTROM, R. R., PADILLA, C. C., STONE, B. K., BRISTOW, L. A., LARSEN,

3617 M., GLASS, J. B., THAMDRUP, B., WOYKE, T., KONSTANTINIDIS, K. T. & STEWART, F. J.
3618 2016. SAR11 bacteria linked to ocean anoxia and nitrogen loss. *Nature*, 536, 179-+.

3619 TURGEON, S. C. & CREASER, R. A. 2008. Cretaceous oceanic anoxic event 2 triggered by a
3620 massive magmatic episode. *Nature*, 454, 323-326.

3621 TZIPERMAN, E., HALEVY, I., JOHNSTON, D. T., KNOLL, A. H. & SCHRAG, D. P. 2011. Biologically
3622 induced initiation of Neoproterozoic snowball-Earth events. *Proceedings of the National
3623 Academy of Sciences*, 108, 15091-15096.

3624 ULLOA, O., CANFIELD, D. E., DELONG, E. F., LETELIER, R. M. & STEWART, F. J. 2012. Microbial
3625 oceanography of anoxic oxygen minimum zones. *Proceedings of the National Academy
3626 of Sciences of the United States of America*, 109, 15996-16003.

3627 UVEGES, B. T., IZON, G., ONO, S., BEUKES, N. J. & SUMMONS, R. E. 2023. Reconciling discrepant
3628 minor sulfur isotope records of the Great Oxidation Event. *Nature communications*, 14,
3629 279-279.

3630 VAIL, P. R., HARDENBOL, J. & TODD, R. G. 1984. Jurassic Unconformities, Chronostratigraphy,
3631 and Sea-Level Changes from Seismic Stratigraphy and Biostratigraphy. *AAPG Special
3632 Bulletin*, 129-144.

3633 VAN DE VELDE, S. J., HÜLSE, D., REINHARD, C. T. & RIDGWELL, A. 2021. Iron and sulfur cycling in
3634 the cGENIE. muffin Earth system model (v0. 9.21). *Geoscientific Model Development*, 14,
3635 2713-2745.

3636 VEDAMATI, J., GOEPFERT, T. & MOFFETT, J. W. 2014. Iron speciation in the eastern tropical
3637 South Pacific oxygen minimum zone off Peru. *Limnology and Oceanography*, 59, 1945-
3638 1957.

3639 VEIZER, J., ALA, D., AZMY, K., BRUCKSCHEN, P., BUHL, D., BRUHN, F., CARDEN, G. A. F., DIENER,
3640 A., EBNETH, S., GODDERIS, Y., JASPER, T., KORTE, C., PAWELLEK, F., PODLAHA, O. G. &
3641 STRAUSS, H. 1999. $^{87}\text{Sr}/^{86}\text{Sr}$, $\delta^{13}\text{C}$ and $\delta^{18}\text{O}$ evolution of Phanerozoic seawater. *Chemical
3642 Geology*, 161, 59-88.

3643 VERGARA, O., DEWITTE, B., MONTES, I., GARCON, V., RAMOS, M., PAULMIER, A. & PIZARRO, O.
3644 2016. Seasonal variability of the oxygen minimum zone off Peru in a high-resolution
3645 regional coupled model. *Biogeosciences*, 13, 4389-4410.

3646 VOELKER, B. M. & SEDLAK, D. L. 1995. Iron reduction by photoproduced superoxide in seawater.
3647 *Marine Chemistry*, 50, 93-102.

3648 VOELKER, B. M., SEDLAK, D. L. & ZAFIRIOU, O. C. 2000. Chemistry of superoxide radical in
3649 seawater: Reactions with organic Cu complexes. *Environmental Science & Technology*,
3650 34, 1036-1042.

3651 VOIGT, S., GALE, A. S. & VOIGT, T. 2006. Sea-level change, carbon cycling and palaeoclimate
3652 during the Late Cenomanian of northwest Europe; an integrated palaeoenvironmental
3653 analysis. *Cretaceous Research*, 27, 836-858.

3654 WALLACE, M. W., HOOD, A. V., SHUSTER, A., GREIG, A., PLANAVSKY, N. J. & REED, C. P. 2017.
3655 Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land
3656 plants. *Earth and Planetary Science Letters*, 466, 12-19.

3657 WALLMANN, K. 2003. Feedbacks between oceanic redox states and marine productivity: A
3658 model perspective focused on benthic phosphorus cycling. *Global Biogeochemical
3659 Cycles*, 17.

3660 WANG, C. L., REINHARD, C. T., RYBACKI, K. S., HARDISTY, D. S., OSSA, F. O., WANG, X. L.,
3661 HOFMANN, A., ASAEL, D., ROBBINS, L. J., ZHANG, L. C. & PLANAVSKY, N. J. 2021.
3662 Chromium isotope systematics and the diagenesis of marine carbonates. *Earth and*
3663 *Planetary Science Letters*, 562.

3664 WANG, D., GOUHIER, T. C., MENGE, B. A. & GANGULY, A. R. 2015. Intensification and spatial
3665 homogenization of coastal upwelling under climate change. *Nature*, 518, 390-394.

3666 WANG, J., TARHAN, L. G., JACOBSON, A. D., OEHLERT, A. M. & PLANAVSKY, N. J. 2023. The
3667 evolution of the marine carbonate factory. *Nature*.

3668 WANG, S.-J., RUDNICK, R. L., GASCHNIG, R. M., WANG, H. & WASYLENKI, L. E. 2019.
3669 Methanogenesis sustained by sulfide weathering during the Great Oxidation Event.
3670 *Nature Geoscience*, 12, 296-+.

3671 WEI, G.-Y., PLANAVSKY, N. J., HE, T., ZHANG, F., STOCKEY, R. G., COLE, D. B., LIN, Y.-B. & LING,
3672 H.-F. 2021. Global marine redox evolution from the late Neoproterozoic to the early
3673 Paleozoic constrained by the integration of Mo and U isotope records. *Earth-Science*
3674 *Reviews*, 214.

3675 WHITE, L. D., GARRISON, R. E. & BARRON, J. A. 1992. Miocene intensification of upwelling along
3676 the California margin as recorded in siliceous facies of the Monterey Formation and
3677 offshore DSDP sites. *Geological Society, London, Special Publications*, 64, 429-442.

3678 WILMETH, D. T., LALONDE, S. V., BERELSON, W. M., PETRYSHYN, V., CELESTIAN, A. J., BEUKES, N.
3679 J., AWRAMIK, S. M., SPEAR, J. R., MAHSEREDJIAN, T. & CORSETTI, F. A. 2022. Evidence
3680 for benthic oxygen production in Neoarchean lacustrine stromatolites. *Geology*, 50, 907-
3681 911.

3682 WINCKLER, G., ANDERSON, R. F., FLEISHER, M. Q., MCGEE, D. & MAHOWALD, N. M. 2008.
3683 Covariant Glacial-Interglacial Dust Fluxes in the Equatorial Pacific and Antarctica |
3684 *Science*, 320, 93-96.

3685 WINGUTH, A. M. E., THOMAS, E. & WINGUTH, C. 2012. Global decline in ocean ventilation,
3686 oxygenation, and productivity during the Paleocene-Eocene Thermal Maximum:
3687 Implications for the benthic extinction. *Geology*, 40, 263-266.

3688 WISHNER, K. F., OUTRAM, D. M., SEIBEL, B. A., DALY, K. L. & WILLIAMS, R. L. 2013. Zooplankton
3689 in the eastern tropical north Pacific: Boundary effects of oxygen minimum zone
3690 expansion. *Deep-Sea Research Part I-Oceanographic Research Papers*, 79, 122-140.

3691 WOOD, R. & ERWIN, D. H. 2018. Innovation not recovery: dynamic redox promotes metazoan
3692 radiations: Dynamic redox promotes radiations. *Biological Reviews*, 93, 863-873.

3693 WOOD, R. A., POULTON, S. W., PRAVE, A. R., HOFFMANN, K. H., CLARKSON, M. O., GUILBAUD,
3694 R., LYNE, J. W., TOSTEVIN, R., BOWYER, F., PENNY, A. M., CURTIS, A. & KASEMANN, S. A.
3695 2015. Dynamic redox conditions control late Ediacaran metazoan ecosystems in the
3696 Nama Group, Namibia. *Precambrian Research*, 261, 252-271.

3697 WUTTIG, K., HELLER, M. I. & CROOT, P. L. 2013. Pathways of Superoxide (O₂(-)) Decay in the
3698 Eastern Tropical North Atlantic. *Environmental Science & Technology*, 47, 10249-10256.

3699 ZEEBE, R. E. 2012. LOSCAR: Long-term ocean-atmosphere-sediment carbon cycle reservoir
3700 model v2. 0.4. *Geoscientific Model Development*, 5, 149.

3701 ZERKLE, A. L., POULTON, S. W., NEWTON, R. J., METTAM, C., CLAIRE, M. W., BEKKER, A. &
3702 JUNIUM, C. K. 2017. Onset of the aerobic nitrogen cycle during the Great Oxidation
3703 Event. *Nature*, 542, 465-+.

3704 ZHANG, F., LENTON, T. M., DEL REY, A., ROMANILO, S. J., CHEN, X., PLANAVSKY, N. J.,
3705 CLARKSON, M. O., DAHL, T. W., LAU, K. V., WANG, W., LI, Z., ZHAO, M., ISSON, T.,
3706 ALGEO, T. J. & ANBAR, A. D. 2020. Uranium isotopes in marine carbonates as a global
3707 ocean paleoredox proxy: A critical review. *Geochimica Et Cosmochimica Acta*, 287, 27-
3708 49.

3709 ZHANG, F., XIAO, S., ROMANILO, S. J., HARDISTY, D., LI, C., MELEZHIK, V., POKROVSKY, B.,
3710 CHENG, M., SHI, W., LENTON, T. M. & ANBAR, A. D. 2019. Global marine redox changes
3711 drove the rise and fall of the Ediacara biota. *Geobiology*, 17, 594-610.

3712 ZHANG, F. F., ROMANILO, S. J., ALGEO, T. J., LAU, K. V., CLAPHAM, M. E., RICHOZ, S.,
3713 HERRMANN, A. D., SMITH, H., HORACEK, M. & ANBAR, A. D. 2018. Multiple episodes of
3714 extensive marine anoxia linked to global warming and continental weathering following
3715 the latest Permian mass extinction. *Science Advances*, 4.

3716 ZHAO, M., MILLS, B. J., HOMOKY, W. B. & PEACOCK, C. L. 2023. Oxygenation of the Earth aided
3717 by mineral-organic carbon preservation. *Nature Geoscience*, 1-6.

3718 ZHURAVLEV, A. Y. & WOOD, R. 2020. Dynamic and synchronous changes in metazoan body size
3719 during the Cambrian Explosion. *Scientific Reports*, 10.

3720 ZHURAVLEV, A. Y. & WOOD, R. A. 2008. Eve of biomineralization: Controls on skeletal
3721 mineralogy. *Geology*, 36, 923.

3722