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Abstract

The availability and spatial landscape of marine oxygen and related redox-sensitive elemental
cycles has changed dramatically over the last 4 billion years. This chapter uses a database
framework to synthesize recent quantitative and conceptual advances in this story, emphasizing an
integrated view of modern and ancient processes. We highlight three main timescales of marine
redox evolution: modern and anthropogenic, glacial-interglacial, and geologic. On modern and
anthropogenic timescales, the discussion focuses on defining redox thresholds and physical and
biogeochemical mechanisms driving spatiotemporal variations. For ancient timescales, we
synthesize proxy constraints on coupled ocean-atmosphere redox dynamics and feedbacks with
biological and geologic evolution.

Keywords:
e Ancient seawater chemistry
Biogeochemical cycles
Carbon cycle
GEOTRACES
Oceanic Anoxic Events
Ocean oxygenation
Oxygen deficient zone
Paleoredox proxies
Redox-sensitive elements and their isotopes
Sedimentary Geochemistry and Paleoenvironment Project
Sediment diagenesis

Key points/objectives:
e Ocean redox on modern and anthropogenic timescales
¢ Origin, distribution, and characteristics of oxygen deficient zones
e Evolution of redox on glacial-interglacial timescales
¢ Evolution of ocean redox on geologic timescales
e Neoarchean disequilibria and oxygen oases
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1 Introduction

A major challenge over the 21% century is documenting and predicting the impacts of
ongoing climate change on Earth’s atmosphere and ocean and how these changes may impact life.
The ocean’s dissolved oxygen (O) availability and its related redox state is no exception. Multiple
studies since the beginning of the 21% century have documented declines in O availability in the
global ocean, tentatively linked to climate change, including the expansion of naturally existing
O: deficient zones in the open ocean as well as the increased occurrence and frequency of low-O»
waters along global coastlines. Urgent impetuses in light of these observations include: (1)
understanding the mechanisms and feedbacks driving ongoing observations of marine O decline;
(2) incorporating these feedbacks into models intended to predict future marine O decline, thus
aiding strategic policy but also predicting where to look to observe and understand changes going
forward; and (3) understanding the degree to which natural climate change in Earth’s ancient past
can provide quantitative insights into ongoing and future climate change.

Our ongoing anthropogenic experiment with climate change and the increased frequency
of available data presents multiple opportunities to understand the Earth system across the past,
present, and future. Indeed, we truly live in a golden age of observation, and once again, marine
redox geochemistry is no exception. Modern seawater observations in databases and data products
such as GEOTRACES, NOAA’s World Ocean Atlas (WOA), among others (e.g., Ocean
Observatories Initiative or OOI, World Ocean Climate Experiment or WOCE, Climate Variability
and Predictability or CLIVAR, biogeochemical Argo), are at the forefront of calibrating models
and understanding processes important for interpreting paleoredox conditions from sediment
geochemistry archives—for example, cores collected through the International Ocean Discovery
Program (IODP) and compilations available via the Sedimentary Geochemistry and
Paleoenvironments Project (SGP; Farrell et al. (2021)). In this way, the long-established principle
that the “present is the key to the past” should remain front and center; yet much of this potential
currently remains untapped due to combinations of lag times and disconnects between merging
insights and resources between modern and deep-time chemical oceanography research.
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The goal of this synthesis is to pose and address major questions about Earth’s present and
past ocean redox chemistry. Why do redox states differ between modern O2 minimum zones? How
do modern O; spatial patterns inform the geochemical proxies that are used to interpret past ocean
conditions? What was the tempo of ancient ocean oxidation and how did it relate to major tectonic
and biotic changes? When did Earth’s oceans transition from background reducing redox states to
the background oxic conditions observed today? These are all questions at the forefront of
connecting redox geochemistry across time and space. We aim to address each of them through
discussion of recent breakthroughs—highlighting next steps and community challenges going
forward—but also novel synthesis and discussion from integrating recent databases covering
modern and ancient marine redox geochemistry. The topic of this synthesis chapter—ocean redox,
past and present—is admittedly far-reaching, and hence we will not cover every aspect here. That
said, there have been a range of reviews and important syntheses in the decade since the publication
of the last Treatise chapter covering ancient redox (Lowenstein et al., 2013) and we will point the
reader to these existing resources.

In light of these goals, we ultimately organize this synthesis into three main sections based
on different time frames with distinct time-scale-dependent processes. Modern: An overview of
emerging insights into variations in and drivers of modern spatiotemporal redox variations across
the ocean’s major O2 deficient zones. This discussion is bolstered by multivariate constraints and
visualizations of redox-sensitive and related elemental cycles from NOAA’s WOA and
GEOTRACES databases/products. Recent: An overview of recent findings and challenges
regarding marine redox cycling on glacial-interglacial timescales. Ancient: An overview of recent
findings and challenges regarding the oxygenation of Earth’s oceans on geologic timescales,
supported by explorations of novel paleoredox proxy compilations from the SGP database and
other sources.

1.1 Nomenclature for tracers defining redox and O; levels

Modern chemical and paleo- oceanographers often use different as well as overlapping, but
variably defined, nomenclature to discuss marine redox (reduction-oxidation) and O; levels. To
circumvent this challenge, we broadly support the suggestion of Canfield and Thamdrup (2009)—
i.e., that terms such as ‘suboxic’ are confusing and are best replaced by more specific terms
defining the dominant electron acceptors in each zone. We support the continued expansion of this
approach to the ancient—i.e., what major zone of electron acceptors does a given redox tracer
define? We summarize these zones for common paleoredox proxies in Figure 1. The paleoredox
proxies, which are discussed in detail in Section 4, are commonly trace elements with limited
contribution to organic matter remineralization and can be directly related to the major electron
acceptors to which their reduction or proxy expression most clearly overlaps. This concept applies
to both water column and pore fluid redox conditions, which are distinct but represent a vertical
continuum of the ‘redox ladder’. We recognize that there can be significant overlap in these so-
called ‘zones’ (for example nitrogenous and manganous), and when this is the case, this should be
communicated. In alignment with previous work (Moffitt et al., 2015), we will consider
“hypoxia”—a term that originated from physiological studies equivalent to 2 mg O, L or ~61
umol O, kg'! (Hofmann et al., 2011)—as the O threshold that characterizes oxygen deficient
zones.
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Figure 1. Redox and paleoredox ladder. Includes redox-sensitive elements used to distinguish specific redox regimes and modern
and paleoredox proxies from carbonates and shales that track those conditions. Note that the term euxinia is exclusive for water
columns and ‘sulfidic’ is preferred for pore waters. Proxy details are discussed further in Section 4.

Throughout this chapter, we will discuss redox dynamics of the ocean-atmosphere system
using the framing shown in Figure 2. When and how the redox evolution of the ocean-atmosphere
system proceeds through Earth history is broadly defined by four major Stages (Figure 2A-D). The
key features of the oceanic redox structure include oxygenation of the atmosphere, which is
described relative to present atmospheric levels (PAL). The shallow ocean generally refers to the
uppermost 100-200 m (typically the photic zone) that can be influenced by atmospheric O; through
wind-driven mixing. Vertical O: stratification defines much of Earth’s past until the Paleozoic
(Figure 2 A-C) and continues to be a feature where O deficient or minimum zones develop (Figure
2C-D). The degree of O> consumption within these zones varies in the modern and has varied
through Earth history, reaching euxinia (extreme reducing conditions where sulfide is available in
the water column) further in the past (e.g., Figure 2C). Oxygen minimum zones (OMZs) differ
from oxygen deficient zones (ODZs) in that the latter specifically refer to regions where O2 levels
are low enough to limit aerobic respiration, i.e. ‘functional anoxia’ characterized by denitrification
and the presence of nitrite (generally requires sub-uM O»; (Thamdrup et al., 2012)). In this Chapter,
we generally refer to ODZs for consistency and because a key consideration for past and present
marine redox conditions is the impact on marine animal habitability.
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Figure 2. Stages in oceanic redox structure through Earth history. Int = intermediate redox conditions (e.g., nitrogenous).

1.2 Integrating mechanisms with a mass balance perspective of ocean O

The spatial distribution of Oz and development of ODZs in the modern ocean highlights
the processes and reactions within and between the atmosphere, surface ocean, and deep ocean
reservoirs (Figure 3A). Today, nearly all the O, is present in the atmosphere (>99%) compared to
the oceans (Keeling et al., 1993). In this case, air-sea exchange, temperature, and ocean circulation
control the physical solubility of O, the physical transport of nutrients, and the biological
processes that consume and produce O Together, these dictate the spatial gradients of O:
discussed in Section 2 and the temporal changes from the transition from an icehouse in Section
3. This can be considered the perspective of the O, system furthest from steady state, given that
these processes vary on seasonal to decadal to millennial scales. Models that can simulate O
changes through these processes include some General Circulation Models (GCMs; e.g.,
Kwiatkowski et al. (2020)) and Regional Ocean Modeling System simulations (ROMS; e.g.,
Montes et al. (2014)).

Considerations of O> mass balance on longer time scales, beyond seasonal-millennial
scales, are the focus of Section 4 (the ancient). On geologic time scales—which extend beyond
those of the processes controlling the spatial gradients between the atmosphere, shallow ocean,
and deep ocean—we can simplify the view of Oz mass balance by focusing on a single atmosphere-
ocean O3 reservoir. Here, there are two additional time scales that are relevant to O, mass balance,
and therefore the relationship between biogeochemical and geologic processes. The first concerns
the inventory of the limiting nutrient, increases in primary productivity, and aerobic
respiration/remineralization that drives O demand, and is most relevant on timescales of ~10*
years (Figure 3B; (Lenton et al., 2018)) and is partially discussed in Section 3. With higher nutrient
delivery to the ocean-atmosphere system, primary productivity (Equation 1) increases, which
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increases the flux of O being added. This is generally balanced by an output flux where O is
consumed by aerobic respiration (e.g., Equation 1), which increases with higher primary
productivity, akin to dead zones in the modern ocean that are dominated by continental runoff
inputs. This simple mass balance can break down (i.e., the flux of O produced from primary
productivity does not equal the flux of O, consumed through aerobic respiration) in the case of
transient increases or decreases to nutrients (primarily considered to be phosphate). Models that
can simulate these processes include, but are not limited to, CANOPS (Ozaki et al., 2022), cGENIE
(van de Velde et al., 2021), and LOSCAR (Zeebe, 2012); key to these are inclusion of nutrients
and marine biogeochemical processes, ideally both in the water column and in the sediments.

However, it should be obvious that on long time scales and with the consideration of
geologic processes, O» production and consumption through these two fluxes should balance
(Lenton et al., 2018). When considering geologic processes, two key processes become critical
(Figure 3C): (1) the geologic removal and exposure of organic carbon and other reductants and (2)
the exogenic input of reductants. Here, the inventory of reductants encompasses organic carbon,
mineral sources of electron donors (e.g., pyrite), and atmosphere- and mantle-derived reducing
gases (e.g., H2). To illustrate, the burial of organic carbon produced by photosynthesis, either on
land or in the ocean, will remove a sink for O2 consumption, resulting in a buildup of O in the
atmosphere-ocean reservoir (e.g., Figure 3). In parallel, the exposure of sedimentary organic
carbon, such as through uplift and exposure of marine sedimentary rocks, would introduce an O
sink, resulting in lower O in the atmosphere-ocean reservoir. In this view, the organic carbon
cycle is considered to be the dominant control on the redox state of the ocean-atmosphere system
(see Box 1: Linking changes in redox conditions to the carbon isotope record for discussion about
C isotopes and O7). Mass balance models that consider some of these factors include COPSE
(Lenton et al., 2018) and GEOCARB (Berner, 2006b).

Other long-term processes related to changes in inputs and outputs of oxidants and
reductants include fluctuations in (1) hydrothermal-derived reductants (such as Fe?* or H»S), with
a key example being the Cretaceous Oceanic Anoxic Event 2 event (Jenkyns et al., 2017, Nana
Yobo et al., 2022); (2) mantle-derived H> or CH4 via volcanic degassing (Kasting et al., 1993,
Kvenvolden and Rogers, 2005, Kadoya et al., 2020); (3) H> escape from the upper atmosphere
(Catling et al., 2001); (4) or a change in the igneous lithology exposed through Earth’s history as
a result of planetary differentiation (Leong et al., 2021). On planetary timescales, a change in
mantle redox chemistry and a secular decrease in atmospheric CO», required to balance the
carbonate-silicate weathering cycle while accommodating increasing solar luminosity, would
starve the biosphere, decreasing Oz production and ultimately returning the Earth to a permanently
deoxygenated state (Ozaki and Reinhard, 2021).

Ultimately, knowledge of both modern and ancient biogeochemistry play complimentary
roles in the development of models used to understand mechanisms controlling ocean redox
conditions on any timescale. The modern ocean-atmosphere and experimental work form the basis
of models used to provide mechanisms for proxy observations across geologic time, while the
geologic record provides a framework for understanding perturbations in the age of the
Anthropocene.
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Figure 3. Key fluxes relevant to O> mass balance in the ocean on different temporal and spatial scales. (A) Where spatial
relationships of O> are critical to deconvolve, key processes between atmosphere, shallow ocean, and deep ocean O; reservoirs
are driven by chemical properties (e.g., Oz solubility), physical transport (upwelling, downwelling, horizontal circulation), and O>
consumption and production within each reservoir (photosynthesis, biological and abiotic removal of O,). (B) On longer
timescales, the “average” redox state of the atmosphere-ocean system can be represented as one box. Here, the availability of
nutrients drives primary productivity, the production of organic matter, and the subsequent consumption of O via aerobic
respiration. This can lead to “supercharged” O, consumption and the transient increase of marine anoxia. (C) On longer
timescales, the organic carbon cycle is considered to be balanced (O, production via productivity and O, consumption via
remineralization of organic matter). In this scenario, geologic processes involving sedimentation and burial of reductants (organic
matter, minerals such as pyrite), tectonics, uplifi, and oxidation of sedimentary reductants (organic matter, pyrite),; and the balance
of reducing gases entering and escaping the atmosphere/ocean through volcanism and atmospheric photochemistry become the
critical sources and sinks.

2 Modern: ocean redox on modern and anthropogenic timescales

We first provide a detailed overview of the distribution and major factors modulating
marine O availability in the modern ocean. We note that the O> cycle was reviewed in detail in
the previous Treatise Edition (Petsch, 2014). We build on this here by incorporating water-column
trace element data—in line with our broader theme of “redox”—but also by providing perspectives
on Oz and redox-sensitive element distribution and drivers through the lens of the NOAA World
Ocean Atlas and GEOTRACES. Figure 3 provides a synthesis of major processes impacting the
distribution of marine oxygen in the modern. Below we discuss these within this context, starting
with sources and sinks.

2.1 Modern O> inputs and outputs

2.1.1 Source: Air-sea equilibrium and marine photosynthesis at the sea surface

Air-sea gas exchange plays a fundament role in modulating marine O: at both the ocean
surface and its deepest depths. The degree of air-sea exchange is defined by O, saturation—
calculated as a function of the O> content of the atmosphere and in situ water specific temperature,
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salinity, and pressure. Today’s atmospheric pO- is ~21%, but this value has varied widely in the
past, as is discussed in later sections. Given that atmospheric O today is relatively homogenous,
the in situ marine conditions play the biggest role in modulating absolute O, contents via air-sea
exchange. While salinity can play an essential role in coastal, estuarine settings, there are no major
salinity impacts on O2 in the open ocean (Colt, 1985). Temperature is more spatially variable—for
example across latitudinal gradients—and can vary widely temporally due to seasonal variations,
thus impacting O; solubility.

Figure 4 shows the maximum seasonal seawater O saturation within the mixed layer at a
given latitude and longitude. While most of the ocean is defined by air-sea saturation broadly—or
at least during some portion of the year—the most striking observation is the temporal variability
at many locations. This variability is mostly defined by the Northern and Southern Hemisphere
summer and winter, with oversaturation and O: outgassing in their respective summer and
undersaturation and ingassing in their respective winter (Najjar and Keeling, 2000). Both of these
endmember variations in O, saturation are functions of multiple processes occurring throughout
the year and can be broken into two broad categories: physical processes modulating the degree of
air-to-sea exchange and in situ marine O sources via photosynthesis (reviewed in Palevsky and
Nicholson (2018)).

Regarding the degree of exchange with the atmosphere, at the most basic level, physical
processes—specifically sea ice—can act to block air-sea exchange. The buildup of winter sea ice
can explain limited O saturation at extreme latitudes seen in the winter months in Figure 4. Wind
speed and temperature are additional examples of a physical processes that can also impact the
efficiency of air-sea exchange of gases, including O». For example, the uptake of atmospheric O
to the surface ocean is modulated in part by the duration of exposure of water masses to the
atmosphere—thus increasing total O, uptake—and the duration of their convective mixing during
cold months, which leads to deeper convection (Sun et al., 2017). To a first order, lower
temperatures increase Oz solubility; however, the combination of wind speed and temperature are
primary controls on mixing by impacting stratification and gas exchange velocity. Thus, increased
wind speeds and decreased temperatures can lead to O declines at the sea surface due to mixing
with subsurface water lower in Oz. As shown in Figure 4, this is particularly pronounced in the
winter months. Because air-sea exchange velocities are also a function of air-sea O gradients, this
has the impact of increasing the rate of surface O uptake and thus increasing the rate of the transfer
of Oz to the subsurface. Conversely, summertime stratification directly decreases the entrainment
of lower O, waters from the subsurface to the sea surface, which can increase surface O, saturation
(Boyer et al., 1999). Vertical mixing is directly impacted by ocean warming by both increasing
temperature—thus decreasing O: solubility—and stratification, limiting air-sea exchange.
Together, these factors impact dissolved O broadly by decreasing a primary source of O2 to depths
below the winter mixed layer (Keeling et al., 2010).

Biological activity, specifically in sifu photosynthesis, plays a fundamental role in
controlling seasonal variations in O2 supersaturation at the sea surface (Equation 1). While
decreases in the availability of light associated with winter months plays a primary role in
modulating photosynthetic activity at high latitudes, we note that most of the variation in O»
supersaturation occurs at mid-latitudes, with equatorial regions showing much more limited
variability. This contrast is ultimately due to the importance of nutrient availability in limiting
photosynthetic activity. Specifically, at mid-latitudes, ventilation during winter mixing plays a key
role in re-introducing subsurface nutrients to starved surface phytoplankton communities. This
ultimately leads to local photosynthetic activity increasing local Oz and thus O» saturation. In

10
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contrast, highly stratified equatorial waters have largely zonal flow and are nutrient-limited due to

limited supply from deep subsurface waters.
energy

CO,+HO < » CH,0+O0,
«——— respiration photosynthesis —

Equation 1

It is important to note that, in addition to a source of Oz, primary production is an important
catalysis for biogeochemical reactions and therefore a sink for a multitude of nutrients and related
trace elements, including redox-sensitive elements. Horner et al. (2021) provide an extensive
review of the impacts of productivity on trace element signatures, including their use as
paleoproductivity proxies. Additionally, cycling of key trace elements (and their isotopes) is
discussed in a complementary Chapter in this Treatise (Little et al., this issue; Farmer et al., this
issue). A key take home point is that the canonical Redfield Ratio (C:N:P of 124:16:1) can be used
to determine which nutrients are limiting (as well as the stoichiometry from the simplified
expression for organic carbon shown in Equation 1). The Redfield ratio can also be extended to
include many non-limiting trace elements still essential to primary production (adapted from (Ho
et al., 2003, Martin and Knauer, 1973, Elderfield and Truesdale, 1980)). In Equation 2, note that
we have bolded redox-sensitive elements also commonly used as redox tracers in modern and
ancient marine systems, including throughout this Chapter. The implication is that a multitude of
processes beyond redox, including productivity and related biogeochemical reactions, are
important for the cycling of these trace elements and their isotopes in the ocean (Janssen et al.,
2020).

C124,000N16,000P1,00091,300K1,700M 9560 C 500110575 o F€7 52N gCUy 35CT 3300 19Cd 21 M0 o3

Equation 2

boreal winter boreal winter

)
mixed layer depth (m)

boreal summer boreal summer

max O, (% deviation from saturation)
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mixed layer depth (m)

max O, (% deviation from saturation)

-20 10°

Figure 4: Left: Seasonal variations in maximum O; saturation within the mixed layer for boreal winter and summer. Right: Mixed
layer depth for boreal winter and summer. Note that each panel shows maximum O saturation for a given latitude and longitude
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based on calculations of O saturation from temperature, pressure, depth, and observed O; from the seasonal 1 deg gridded
WOA 2018 (Boyer et al., 2018). Labels on right hand panels mark important areas of bottom or intermediate water formation
(Weddell Sea (WS), Ross Sea (RS), Greenland-Norwegian Sea (GNS), Labrador Sea (LS)), Antarctic Polar Front (APF)).

2.1.2  Source: Circulation transports O: to the ocean interior

The sole source of O: to the ocean interior is vertical mixing and the formation and
subduction of sea-surface water masses. As discussed in the previous section, winter mixing plays
a key role in introducing O to the subsurface, as deep as 1000 m or more in some localities (Figure
4). However, subducting water masses are critical for ventilation of O2 to intermediate and deeper
depths. Specifically, water masses formed at the surface at high latitudes are subducted where
weather fronts and related sea ice formation combine to force subduction via density increases
and/or wind patterns. For example, the Sub-Antarctic Mode Water (SAMW) and Antarctic
Intermediate Waters (AAIW) form and subduct at the Antarctic Polar Front (APF) (labeled in
Figure 4). Because of local biogeochemical processes at the site of water mass formation, these
water masses can have distinct pre-formed O», nutrient (commonly denoted as PO4* or NO), and
related trace element signatures that together can be used as tracers of individual water masses
throughout the subsurface oceans.

As discussed in later sections and recently reviewed (Reinhard and Planavsky, 2022),
ancient atmospheric O was not always high enough to supply surface waters with O, levels
sustainable for preservation to the ocean interior during subduction. However, in today’s well
oxygenated atmosphere, the O> levels, nutrients concentrations, and other geochemical signatures
are often considered semi-conservative, and thus largely unchanging from their pre-formed values
along and within the ocean’s subsurface. For this reason, an increasingly used and powerful tool
in ocean transect studies is an Optimum Multi-Parameter Analysis (OMPA) to quantify the
contribution of individual water masses at a given location (Shrikumar et al., 2022, Peters et al.,
2018, Jenkins et al., 2015, Evans et al., 2020b). An OMPA uses pre-defined conservative physical
properties (e.g., potential temperature, salinity, potential density anomaly, silicate, PO4* or NO)
of individual water masses and then applies a least-squares solution to determine the contributions
of these water masses to a given sample. The combination of water mass analyses and applications
of atmosphere-sourced geochemical dating tools (e.g., CFCs, SFs) can be used to determine the
age of a water mass in a given location—i.e., how long since water mass formation and subduction
occurred. Importantly, while OMPA parameters are chosen because of semi-conservative
behavior, these parameters themselves or additional geochemical signatures may evolve along
with circulation patterns of the water mass circulation due to biogeochemical impacts (e.g.,
respiration, discussed in detail in the next section) and/or benthic and hydrothermal fluxes (e.g.,
Fe, discussed in detail in Section 2.2.4). In these cases, an OMPA can be a powerful tool to
deconvolve and isolate the roles of conservative water-mass mixing and these non-conservative
processes (Fitzsimmons et al., 2016, Le Roy et al., 2018, Roshan and Wu, 2015a, Roshan and Wu,
2015b). One ultimate implication is that subsurface features in geochemical profiles may reflect
an integration of the pre-formed chemistry, post-subduction biogeochemical evolution, and then
the conservative mixing of variable water masses with likely differences in each of the former.

Other key advances on the frontier of understanding near-surface Oz sources include the
incorporation of bubbles into models for air-sea exchange (Sun et al., 2017). Bubbles are created
during wind-driven convection at the surface and provide gases, including O», independent of their
saturation in local waters. We note as well that, while recent studies have explored geochemical
applications of machine learning—for example, I, C, Ba, and N (Huang et al., 2021, Sherwen et

12



425
426
427

428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

al., 2019, Tang et al., 2019, Mete et al., 2023)—there have been no studies to date exploring
machine learning as a tool to predict marine O availability and co-varying parameters.

2.1.3  Sink: Respiration

Respiration during the remineralization of organic carbon is the primary consumption
process of Oz in the modern ocean. Oxidants are sequentially reduced in the order of the highest
to lowest free energy change per mole of organic carbon oxidized (Figure 3) (Froelich et al., 1979).
This is referred to as the redox ladder and approximates redox states by describing the relative
abundance of oxidants with known energetic yields at a given time or location. When O2 is widely
available, like in today’s well-oxygenated ocean, aerobic respiration is the most favorable
metabolism—yielding nearly an order of magnitude more energy per mole of carbon than
anaerobic metabolisms—and O; abundance in the modern ocean is responsible for the
overwhelming majority of organic matter remineralized within the water column. Ultimately, <1%
of organic matter is exported to the deep sea and potentially preserved in the sediments (Hedges
and Keil, 1995).

In addition to O saturation, another important measure of O: cycling is apparent O
utilization (AOU), which describes O; loss via the difference of measured and predicted O; at
saturation. Respiration of organic carbon in well-oxygenated seawater is an essential component
of the biological pump cycling of C and nutrients from the surface to deeper waters and sediments.
Specifically, the remineralization of organic carbon consumes ambient Oz but releases CO2, N,
P—as well as the trace elements shown in Equation 2—to intermediate-depth waters (Shankle et
al., 2021). Respiration contributes to the non-conservative behavior of O, nutrients and trace
elements during water-mass evolution, which is essential to consider in addition to ocean
circulation when viewing and interpreting any vertical profiles. For example, changes in pH, CO2,
and related parameters provide a metric for the age of deep waters in the global ocean. Interactions
with sediments in bottom waters hosting remineralization of organic carbon and diffusion across
the sediment water interface provides an additional opportunity for the evolution of water-mass
geochemistry.

Although only a fraction of organic carbon makes it to the seafloor and through burial (e.g.,
remineralization in the sediment column), it is important to remember that the long-term burial
and sequestration of organic carbon in sediments is among the key drivers of Oz accumulation in
our atmosphere and oceans (Figure 3c). Specifically, as outlined in Equation 1, when organic
carbon is buried it is removed from potential respiration, and thus Oz accumulates. Organic carbon
burial, along with pyrite formation, are key components of mass balance models considering O:
accumulation on geologic timescales (Berner and Raiswell, 1983, Berner, 1982). An illustration
of this process comes from real-time observations of Oz decline in the atmosphere associated with
the recent oxidation of fossil fuels (Battle et al., 1996, Bender et al., 1994b, Bender et al., 1994a).

An exciting frontier is determining the impact of reactive O species (ROS)—e.g.,
hydrogen peroxide (H20>) and superoxide (O2")—on the marine O, cycle and in the cycling of
carbon and trace elements (Hansel and Diaz, 2021). For example, a recent study identified
extracellular superoxide production via the reduction of O2 as a sink corresponding to as much as
5-19% of the global O, budget (Sutherland et al., 2020). Further, superoxide has been demonstrated
to play an essential role in Mn?" (Learman et al., 2011) and perhaps I" (Li et al., 2014) oxidation,
acts as both an oxidant and reductant for Cu and Fe (Hansard et al., 2011, Rose, 2012, Voelker and
Sedlak, 1995, Voelker et al., 2000), and reacts with dissolved organic matter (Heller and Croot,
2010, Wuttig et al., 2013).
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2.1.4 What is the distribution of bottom water O>?

Figure 5 shows a map of global bottom water O, concentrations and demonstrates clear
variations within and between ocean basins. Like that of ODZs discussed in Section 2.2, bottom-
water Oy is largely a function of the length of time water masses have been isolated from O;
recharge from the atmosphere, or Oz age. We note two prominent observations from Figure 5: low
Oz levels around the “rim” of ocean basins, particularly the Indian and Pacific Oceans, as well as
lower overall bottom water O: in the Pacific and Indian relative to the Atlantic Ocean.

The O»z-depleted waters at intermediate depths within the rims of the Pacific and Indian
Oceans and in the Eastern Atlantic can be explained by the presence of ODZs at intermediate
depths within these basins (Figure 6). As shown in Figure 7, the ODZs are developed in regions
dominated by upwelling along the eastern boundary currents, and O»-depleted water then extends
laterally at intermediate depths. For the Pacific and Indian Oceans, Figure 7 and Error! Reference
source not found. show that the ODZs can extend across the ocean basins, intersecting with the
shelfs along the opposite margins. As discussed in the Section 2.2, shorter thermocline ventilation
timescales and thus O2 ages in the Atlantic prevent the formation of expansive low Oz bottom
waters relative to the Pacific and Indian Oceans.

A similar explanation accounts for the higher overall bottom water Oz observed in the
Atlantic relative to the Pacific and Indian Oceans. Specifically, downwelling and bottom water
formation at high latitudes of the Atlantic and Southern Ocean are the ultimate source of bottom
waters to the Pacific and Indian Oceans (Figure 5 and Error! Reference source not found.). The
Atlantic is most proximal to these bottom water formation sites, with the flushing from the nutrient
poor, but O rich, North Atlantic Deep Water (NADW) resulting in relatively higher O. In
contrast, similar sites of intermediate or deep water flushing are not present in the Pacific or Indian
Oceans. Accordingly, longer O age for ocean basins furthest along the flow path from these sites
of ventilation—i.e., the Pacific and Indian Oceans—results in lower overall O2 due to integrated
consumption along the flow path.

Although there are large variations in bottom water O> globally, we note that <1% of
seafloor area is estimated to be characterized by anoxia. As discussed in the Section 2.2, bottom-
water Oz levels or redox conditions play an important role regulating global trace element fluxes
to and from the sediments. The resulting isotope composition or trace element concentrations of
sediments are commonly used in models estimating the global seafloor area of various redox states
in Earth’s past. For example, using Cr, Mo, and Re mass balance models, the modern redox
distribution of the seafloor has been estimated as 0.11% by area anoxic and 1-5% reducing or
suboxic (Reinhard et al., 2013c, Sheen et al., 2018). Anoxia in these studies is typically defined
by the presence of sulfide in bottom waters or the benthic boundary layer and reducing/suboxia is
defined by low O levels preventing the burial of Mn and Fe oxides (typically 10-100 uM), all of
which can have major implications for isotope fractionations or authigenic burial rates for redox-
sensitive trace elements.
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Figure 5. Concentrations of bottom water O from WOAI1S (Boyer et al., 1999). The Z-axis shows the depth at which the O:
concentrations are from, which represents the closest depth to the seafloor available from the WOA1S. We note that the WOA1S8
does not contain data below 5500 m, thus in deeper areas the plot misrepresents seafloor features. Note that the z-axis is not fully
resolvable here and is simply intended to show the depth range and basic seafloor feature. The lines and arrows show
generalized patterns of thermohaline circulation and areas of deep-water formation.

2.2 Origin, characteristics, and distribution of O, deficient zones

Figure 6 summarizes the physical, chemical, and biological factors, discussed in detail in this
subsection, that result in vertical redox gradients of present-day ODZs. Many of these factors are
also important for ancient upwelling regions, but with a greater diversity of atmospheric, ODZ,
and bottom-water redox states (e.g., oxic, ferruginous, euxinic, anoxic, etc).
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Figure 6: Cartoon of modern O; deficient zone emphasizing the controls on redox conditions, including the major factors
modulating each control. For example, the riverine nutrient flux is a function of the riverine bedrock lithology, uplift and other
tectonic parameters, climate — pCO>—that drives local hydrology and biospheric weathering.

2.2.1 The general origin and redox characteristics of O: deficient zones

Whereas air-sea exchange buffers the impacts of respiration on O, accumulation through
most of the ocean, ODZs represent expansive regions where Oz concentrations are depleted, thus
excluding macrofauna and supporting diverse microbial metabolisms. The most extreme ODZs
are found in the Eastern Tropical North Pacific (ETNP), Eastern Tropical South Pacific (ETSP),
Arabian Sea, Bay of Bengal, and the Benguela and Mauritania Upwelling zones (all labeled in
Figure 7a). The total volume of ODZ cores (where O2 <20 pmol kg'!') has been estimated as
102 £ 15 x 10 km?, or ~7% of the total ocean volume (Paulmier and Ruiz-Pino, 2009).

Sources and sinks necessary for the formation and maintenance of ODZs are not different
from the processes described above for the marine O: cycle broadly, but instead represent an
extreme endmember where O, demand exceeds supply (as discussed above, ultimately from air-
sea exchange and in situ production in surface waters). Specifically, ODZs are poorly ventilated
water masses found in upwelling regions characterized by a combination of sustained O, depletion
and increased nutrients and CO,. Both upwelling and air-sea exchange can be impacted by wind:
higher winds would increase mixing in the upper ocean, and intensifying wind stress can
strengthen upwelling (Bakun and Weeks, 2004, Deutsch et al., 2006, Deutsch et al., 2014,
Friedrich et al., 2006, Lovenduski et al., 2008). As described above, the O, nutrient levels, and
CO: concentrations of water masses together represent the evolution of deep and intermediate
waters removed from exchange with the atmosphere and are products of respiration of organic
carbon over variable timescales. While the burial of organic carbon represents one endmember of
the biogeochemical carbon pump, providing O, to the atmosphere, these ODZ regions also
represent pathways of return and outgassing for older CO: (Siani et al., 2013, Anderson et al.,
2009, Broullon et al., 2020) and nutrients (e.g., Si, N, P, Fe, others in Equation 2 and Figure 9) back
to surface waters via upwelling. Upwelling of these remineralized nutrients contributes to
enhanced primary production, seen through global maps of chlorophyll in marine surface waters,
which can contribute to O, supersaturation in local surface waters (Figure 4); however, the more
pronounced impact is the contribution of carbon export to respiration in subsurface waters.
Together, this local O, demand and the circulation of poorly ventilated subsurface waters are the
drivers of ODZ development.
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An important research direction going forward is increasing our understanding of O>
variability at sub-umol kg! levels in and between ODZs. Water column O, concentrations are
most commonly characterized by in situ CTD measurements or Winkler titration, which both have
lower-end detection limits near 1 umol kg™!; however, multiple recent studies over the last decade
have utilized STOX sensors—with O, at detection limits closer to 10 nmol kg'—which have
revealed O, variations at sub-pumol kg! levels that are important catalysts and limitations for
metabolisms (Revsbech et al., 2009, Ulloa et al., 2012). These studies also reveal important
differences between the ODZs in terms of background O levels. Specifically, O2 surveys in the
ETNP and ETSP found O> commonly below detection limits (as low as <10 nmol kg™!) within the
ODZ core—termed functional anoxia—but in some localities up to 400 nmol kg'! (Canfield et al.,
2019, Larsen et al., 2016, Tiano et al., 2014, De Brabandere et al., 2014, Padilla et al., 2016,
Thamdrup et al., 2012, Thamdrup et al., 2019, Tsementzi et al., 2016, Kalvelage et al., 2015, Penn
et al., 2016, Sun et al., 2021, Gazitua et al., 2021). In contrast to the widespread functional anoxia
of the ETSP and ETNP, a study from the Benguela Upwelling zone found below detection O
(<100 nmol kg!) along the shelf but also elevated O> near 2-6 umol kg! in nearby stations
(Kalvelage et al., 2015). In a further contrast, a Bay of Bengal study found persistent detectable
O in the 10-200 nmol kg™! range (Bristow et al., 2017, Larsen et al., 2016).

Understanding the distribution of O, at sub-pumol kg™! levels is important for interpreting
variations in microbial metabolisms, discussed in detail below. Oz levels commonly reported at <1
umol kg! are in fact overlooking O, variations important for understanding biogeochemical and
related mixing dynamics within the ODZ. For example, N and Mn redox cycling has been
demonstrated to be sensitive to O at levels of 5-30 and 100 nmol kg™!, respectively (Thamdrup et
al., 2012, Bristow et al., 2016, Clement et al., 2009). Other N redox cycling pathways—e.g.,
annamox and N> and N>O production—as well as CH4 cycling, are also sensitive to sub-pmol kg’
' O, variations (Dalsgaard et al., 2014, Thamdrup et al., 2019). While some quantifiable sub-pmol
kg! Oz concentrations within ODZs are interpreted as reflecting the transient intrusion of external
water masses (Thamdrup et al., 2012), other studies have also demonstrated evidence for the in
situ creation of “aerobic” zones within functionally anoxic areas via diurnal photosynthetic O
production or nitrous oxide disproportionation (Canfield et al., 2019, Kraft et al., 2022, Garcia-
Robledo et al., 2017). We also note, as discussed in detail in later sections, that these sub-pmol kg
10, levels are relevant to what has been constrained or predicted for much of Earth’s oceans in
the geologic past. This implies that relating geochemical proxy variations to specific sub-pmol kg
1O, levels requires modern field or experimental studies characterizing the thresholds relevant for
redox-active geochemical cycling.
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Figure 7: Characterization of minimum O; from the 2018 WOA (Boyer et al., 2018). A.) Minimum O concentrations across the
global ocean for the annually averaged WOA data. B.) The difference between the highest and lowest minimum O; concentration
between the winter, spring, summer, and autumn WOA datasets. C.) Depth of minimum O concentrations for the annually
averaged WOAIS. D.) The difference between the highest and lowest depth of minimum O, concentration between the boreal
winter, spring, summer, and autumn WOAIS. E.) Thickness of ODZ with Oy < 75 umol kg'' based on annual WOAIS8 for the
annually averaged WOAIS. F.) The difference in ODZ thickness with O, < 75 umol kg™ between the boreal winter, spring, summer,
and autumn WOAIS. G.) The potential density anomaly at the depth of minimum O; concentration for annually averaged WOAIS.
H.) The difference between the highest and lowest potential density anomalies from the depths of minimum O, concentration
between the boreal winter, spring, summer, and autumn WOAIS.

Modern O» deficient waters support diverse metabolisms and redox reactions and can be
characterized by combinations of nitrogenous, iodinous, manganous, and to a lesser extent
ferruginous conditions (Figure 1). An example is shown in Figure 8 for the ETSP. Most
prominently, anaerobic N cycling dominates in ODZs and is an important contributor to global N
cycling, accounting for at least 33% of the loss of fixed nitrogen from the global oceans (Codispoti
etal., 2001, Galloway et al., 2004). Specifically, secondary NO;” maxima—that below the primary
maxima from nitrification observed in surface waters—formed from the reduction of NOs™ are a
global feature of ODZs. Nitrite is further reduced to N2 through heterotrophic denitrification and/or
annamox or to NHy through dissimilative reduction. In addition, intermediate reduction can form
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N20 gas, a greenhouse gas contributing to global warming (Babbin et al., 2015). lodine cycling in
ODZs has received increased recent attention, including detailed transect studies (Moriyasu et al.,
2020, Rapp et al., 2019, Rapp et al., 2020, Cutter et al., 2018) and identification of genes specific
to dissimilatory 103" reduction (Reyes-Umana et al., 2022, Saunders et al., 2022). Because I is a
trace element in seawater—with a mean concentration of ~0.45 uM (Chance et al., 2014)— the
reduction of 103" to I" is not a major contributor to organic matter remineralization. Nonetheless,
the pronounced I" maxima occurs at depths in the water column that typically overlap with that of
NOy in ODZs and therefore can be applied as a redox tracer.

Ferruginous and manganous conditions—or elevated water-column dissolved Fe** and
Mn?*—may best track benthic reductive fluxes maintained within ODZ water columns. Dissolved
Fe and Mn concentrations have been studied extensively in several ODZs, including the ETNP
(Hopkinson and Barbeau, 2007, Bian et al., 2023, Rue et al., 1997), ETSP (Noftke et al., 2012,
Vedamati et al., 2014, Cutter et al., 2018), the Benguela Upwelling Current (Noble et al., 2012,
Liu et al., 2022), and the Arabian Sea in the Indian Ocean (Moffett et al., 2007, Moffett and
German, 2020, Singh et al., 2023). In shelf sediments located within the upper part of ODZs, the
reduction of Fe and Mn oxides, delivered via Fe and Mn “particulate shuttles”—the transport of
oxidized Fe- and Mn-bearing particles from the more oxygenated upper water column (Scholz et
al., 2014a)—results in a benthic flux of reduced Fe and Mn from sedimentary pore fluids into the
water column. This effect, which is identified by peaks in Fe?" at water depths where NO»-
concentrations are high (Heller et al., 2017, Cutter et al., 2018, Bolster et al., 2022) results in the
covariation between Fe and Mn in the water columns of the ETNP, Benguela, and the Arabian Sea
(discussed further in Section 2.2.3; (Resing et al., 2015, Noble et al., 2012, Bolster et al., 2022,
Liu et al., 2022, Moffett and German, 2020)). Lower Fe concentrations at greater depths has been
interpreted to reflect NO>™ or NO3™ scavenging and export of Fe (Lam et al., 2020). Though this
redox-sensitive cycling can maintain Fe and Mn levels necessary for biological processes, it does
not reflect productivity nor respiration. We note that additional sources of Fe and Mn include
hydrothermal inputs, which can even be an important source to mid-ocean oligotrophic surface
waters (Figure 8) (Fitzsimmons et al., 2014).

Although euxinia is not a prominent feature of modern ODZs, multiple recent works have
provided evidence of active S cycling. This includes likely SO4> reduction within anaerobic
microniches but also sulfidic plumes sourced from local benthic fluxes. For example, plumes of
hydrogen sulfide within the ETSP (Schlosser et al., 2018) and Benguela Upwelling Zone (Lavik
et al., 2009, Bruchert et al., 2003, Ohde and Dadou, 2018) have been documented to have
concentrations as high as 6 and 40 pM, respectively. We note that the highest water column sulfide
concentrations are typically associated with bottom waters and—similar to dissolved Fe and Mn—
elevated hydrogen sulfide is likely sustained via benthic fluxes. Indeed, these sulfidic plumes can
also contain elevated dissolved Fe and may themselves be important for benthic Fe mobilization
(Schlosser et al., 2018). While likely not the primary source of dissolved water column sulfide
(Lavik et al., 2009), we also note that S cycling within anaerobic microniches of sinking organic
particles has recently been documented to play an important role in the global C and N cycles
(Raven et al., 2021, Bianchi et al., 2018, Carolan et al., 2015, Canfield et al., 2010), and hence
likely others. Specifically, sulfurization of organic particles may enhance organic carbon burial
fluxes and consideration of anaerobic microniches nearly doubles global estimates of
denitrification rates. Anaerobic microniches have also been observed even within oxic water
columns and sediments (Shanks and Reeder, 1993, Jorgensen, 1977, Cutter and Krahforst, 1988),
thus further expanding their potential global importance to the cycling of organic carbon and of
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redox-sensitive elements. However, research to date is lagging in demonstrating the potential
diversity of other particle-hosted metabolisms and their significance to broader ocean chemistry.
For example, given the fast reaction between 103" and sulfide (faster than that of O, and sulfide;
e.g., Jia-Zhong and Whitfield (1986)), sulfide production may contribute to the 103 minima
observed in global ODZs, but this has yet to be investigated.

ODZ formation is initiated along productive coastlines, but their extensive lateral open
ocean area is the result of continued, offshore subsurface circulation of these semi-conservative
O2 deficient water masses. As discussed above, productive continental margin sediments are the
primary source of Fe and Mn within ODZ water columns. Similarly, I and N redox chemistry
initiated in the water columns and sediments of these upwelling zones may be the primary sources
of I and NO;" that are retained in offshore reducing waters. One of the most prominent examples
1s the 13CW water mass, which is linked to the formation and circulation of ODZ waters from
both the ETNP and ETSP within the ~26.25 kg m™ potential density anomaly (Peters et al., 2018,
Evans et al., 2020b). In offshore transects, semi-conservative mixing between the 13CW and
adjacent water masses has been demonstrated to play an essential role in I distribution (Evans et
al., 2020b, Hardisty et al., 2021). An important area of study going forward is the quantification
of water mass contributions to global ODZ transects along with redox-sensitive elements, thus
allowing for better quantification of the role of in situ vs. ex situ geochemistry in relation to ODZ
chemistry.
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Figure 8. Select geochemical data from GEOTRACES GP16 cruise transecting the Eastern Tropical South Pacific ODZ from Peru
to Tahiti (Cutter et al., 2018, Schlitzer et al., 2018, GEOTRACES Intermediate Data Product Group, 2021). Figure made in Ocean
Data View.
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2.2.2 What are drivers of inter- and intra- O: spatiotemporal variations?

Not all ODZs are created equally. Notable differences include the spatial variability in sub-
umol kg O concentrations that were already discussed in Section 2.2.1. Ultimately, several
factors can influence O, availability in ODZs. As reviewed in Oschlies et al. (2018), O, sources
can be impacted by temperature effects on O solubility, increased stratification limiting the
exchange of Oo-rich surface waters and Oz-poor subsurface waters, wind-driven changes in
overturning circulation, and freshwater inputs decreasing deep meridional overturning at high
latitudes. O2 consumption can be impacted by temperature effects on metabolic rates, the quality
and/or quantity of sinking particles, and nutrient supply from the ocean interior, land, or the
atmosphere.

Figure 7 demonstrates spatial and temporal variations in the minimum O, depth, thickness,
and potential density anomaly (sigma-theta) of modern ODZs. As reviewed extensively in previous
works (Paulmier and Ruiz-Pino, 2009, Karstensen et al., 2008), these characteristics provide basic
constraints on the source of water masses hosting ODZs. The most prominent observation is that
the most extensive and intense ODZs are observed in the Pacific and Indian Oceans. In contrast,
the Benguela and Mauritanian ODZs of the South and North Atlantic, respectively, occupy limited
water column areas and have less reducing cores, with higher O> concentrations compared to their
Pacific and Indian counterparts. Another prominent observation is that ODZ thickness and depth
is greatest in the North Pacific relative to other ODZs. The drivers of these observations are
discussed in more detail below.

The Atlantic and Pacific ODZs are located in regions not reached by the equatorward flow
of oxygenated waters from the subtropics—or shadow zones (Luyten et al., 1983). These sluggish
flow regimes result in a similar pattern of Eastern Boundary Current distribution in the North and
South Pacific and Atlantic Oceans. However, the lesser extent of ODZs and higher maximum O>
values in the Atlantic relative to the Pacific distinguishes the two basins. On a first order, these
differences are related to the relative size of the ocean basins themselves compared to their
thermocline ventilation rates (Karstensen et al., 2008). Specifically, the thermocline volume in the
Pacific is three times larger than that of the Atlantic and is renewed at a substantially slower rate,
thus impacting the rate of Oz replenishment vs loss and acting as a primary control on ODZ extent.
The limited ventilation in the Pacific vs the Atlantic can be quantified via their O ages, which also
differ between the North and South for the two basins (Karstensen et al., 2008). The Atlantic is
overall best ventilated. In the Pacific, more limited ventilation, and a larger water volume result in
much older O; ages and thus more extensive volume of and lower Oz within ODZs. This situation
is particularly exacerbated in the North Pacific, which occupies approximately 1/4™ of the
thermocline volume of the Atlantic and Pacific but is characterized by 1/8" of the renewal rate
(Karstensen et al., 2008).

The ODZs in the Indian Ocean are most similar to the Pacific, with extensive volumes of
water with O, < 20 umol kg'!. While the O, ages and renewal rates for the Indian Ocean have not
been estimated to our knowledge, the ODZs are similarly regulated by sluggish ventilation of the
thermocline (Tomczak and Godfrey, 2003). A front at 15 °S is created by the inflow of the
Australasian Mediterranean Water (AAMW) mass from the Pacific to the Indian Ocean (Quadfasel
and Schott, 1982). At the front, an intense O gradient is formed, creating the ODZ in the Arabian
Sea. Active deoxygenation does not extend into the Bay of Bengal (Howell et al., 1997), likely
contributing to the higher minimum, yet still sub-pmol kg !, Oz values and more limited active N
cycle in this region.
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A seasonal comparison of ODZ properties demonstrated that permanent ODZs may
contract/expand by as much as 10-15% annually (Paulmier and Ruiz-Pino, 2009). We also present
visualizations of seasonality in Error! Reference source not found. by comparing the minimum
and maximum properties of ODZs at the depth of minimum O across the four seasons. Winter
mixing in the Gulf of Alaska and West Bering Sea contributes to a strong seasonal dynamic of the
ODZ (Paulmier and Ruiz-Pino, 2009). The West Bering Sea and Gulf of Alaska ODZs develop
mostly in the boreal winter and in the fall-to-spring, respectively, with O fluctuations in the ODZ
core above and below 20 umol/kg in many locations (Paulmier and Ruiz-Pino, 2009). For other
ODZs, the cores are relatively stable while the fringes, particularly in the South Pacific, have the
potential to be seasonally dynamic and show the largest seasonal variations (Figure 7).

In the Arabian Sea, the seasonal Asian monsoon has a strong impact on the ODZ, which is
reflected in part in Error! Reference source not found. by the large seasonal swing in the depth and
sigma-theta of minimum O> (Schmidt et al., 2020). The ODZ vertical expansion is highest during
the boreal winter monsoon, with the most seasonal O, concentration along the 27 kg m™ isopycnal
due to ventilation from the Persian Gulf and Red Sea water masses (Schmidt et al., 2020, Banse et
al., 2014). Other factors contributing to seasonal variations in ODZs generally include seasonal
wind patterns impacting upwelling rates, eddy fluxes on the ODZ fringes introducing Oz and often
hosting denitrification, and associated nutrient feedbacks impacting primary production and
zooplankton biomass (Bhaskar et al., 2021, Wishner et al., 2013, Vergara et al., 2016, Margolskee
et al., 2019, Evans et al., 2020b). Beyond seasonal timescales, the ETSP ODZ has also been
reported to show as much as a 60% reduction in the sea floor area characterized by O> levels
<20 pmol kg ! during El Nifio years (Helly and Levin, 2004).
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Figure 9. A.) Plot of potential
density anomaly (sigma-theta) vs.
O,, nutrient, and trace element
concentrations for different ocean
basins for the entire GEOTRACES
database (Schlitzer et al., 2018,
GEOTRACES Intermediate Data
Product Group, 2021). These are the
same data evaluated using the PCA
in Figure 10. The transparent data
points represent data at depths with
O, concentration >100 pmol kg!
while the opaque data points are
from depths with O, concentrations
<100 pumol kg'. The elements are
shown in order of descending
maximum concentration.
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2.2.3  Patterns of dissolved O, trace elements, and nutrients in modern water columns

A current frontier is fingerprinting variable ODZ controls via their trace element
compositions. The GEOTRACES data provide the opportunity to explore the relationship between
the processes impacting O»-deficient waters and biogeochemically relevant elemental
concentrations and by extension, their geochemical cycles. Trace element and isotope data from
GEOTRACES were introduced in the last Treatise Edition (Bruland et al., 2014) and cycling of
many key elements are discussed in this Treatise Edition (Little et al., this issue; Farmer et al., this
issue).

Here we focus on ocean redox controls on trace element distributions. To investigate the
controls on the variability of the data shown in Figure 9, we conducted Principal Component
Analysis (PCA), a statistical tool that allows us to evaluate differences in key data from the
GEOTRACES 2021 database (GEOTRACES Intermediate Data Product Group, 2021) between
different ODZs as well as between O»-deplete and O»-replete water masses (Figure 10; e.g., Bolster
et al., 2022). We limited our analysis to samples that contained all of the parameters shown in
Figure 10. Due to this limitation and the limited data availability for low O waters, we use a higher
cutoff of [O2] < 100 uM for identifying ODZ water masses and refer to samples where [O2] > 100
uM as well-oxygenated waters. Therefore, some of these waters have O, levels above the hypoxia
threshold and expand into regions that technically are not considered ODZs.

Water mass characteristics (depth, sigma-theta, and dissolved O: recorded as “0”),
dissolved macronutrient concentrations (P), dissolved micronutrient concentrations (Fe, Mn, Zn,
Ni), and dissolved concentrations of other essential nutrients (Si, Cd, Co) can be compared across
ocean basins where ODZs can be observed. Fe-limitation is a well-recognized phenomenon in
oligotrophic settings (Martin et al., 1994, Fitzsimmons and Conway, 2023); Si and Cd are critical
elements for diatoms and Co and Mn can limit primary productivity. Bioessential elements such
as Fe, Mn, Co and Zn are also redox sensitive and therefore trace metal patterns in ODZs can
reflect not just biogeochemical cycling (e.g., productivity and remineralization) but also abiotic
redox and non-redox processes (reviewed in Horner et al. (2021)).

Though these variables are all treated as independent, there are likely co-dependencies that
can be observed in the relationships in Figure 9 and Figure 10. For example, in all analyses, depth
and sigma-theta are closely aligned, which is logical given that density is a function of temperature
and pressure, which changes with water depth. In sum, the PC1 and PC2 for these data describe
most of the variance observed in the global datasets (~60% and 15-22%, respectively). The main
observations from the PCA are:

1. The PCA for the global dataset (Figure 10A) strongly reflects the differences between
ocean basins (Figure 10B vs. Figure 10C). Within the global dataset and for well-
oxygenated regions, the largest sources of variance between ocean basins are the
distribution of nutrients and O concentrations, which are inversely related. The North
Atlantic is generally best oxygenated, followed by the South Atlantic, South Pacific,
Indian, and North Pacific regions. As discussed previously, this reflects the development
of young, well-oxygenated sub-surface waters in the Atlantic. Similarly, the concentrations
of nutrients, as well as average water depth/sigma-theta, increase in the order listed above.

2. For the PCAs of the global dataset and well-oxygenated water masses (Figure 10A,B), the
distribution of Mn is inverse to Fe and the other micronutrients discussed above,
highlighting Mn cycling in well-oxygenated waters that broadly reflects well known, non-
redox-based processes such as photoreduction and/or external fluxes.
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3. The PCA for O>-depleted waters (Figure 10C) also shows a strong correlation with
depth/sigma-theta and nutrients (Cd, P, Zn, Si), which are the variables most closely
aligned with PC1 (59.1%). The different ocean basins are arrayed along PC1, and primarily
reflect differences in nutrient availability. The relative abundance of nutrients in the O»-
depleted waters of these ocean basins is also similar to the order observed in the global
dataset, with higher concentrations in the North Pacific and decreasing in the Indian, South
Pacific, North Atlantic, and South Atlantic basins. Note that we did not perform an
ANOVA or other test of the significance of these difference in concentrations. Compared
to the global PCA, however (Figure 10A and B), the relationship between O and nutrients
is weak in Oz-depleted waters (Oz is more closely aligned with PC2 instead of PC1).

4. Although most of the variance between Oz-depleted waters of different basins is attributed
to nutrients, PC2 (22.3%) reflects different controls on redox-sensitive elements and O>
compared to the global dataset. Specifically, PC2 identifies Mn and Fe as behaving roughly
similar and inversely with O2 concentrations. In other words, higher Mn and Fe are found
to correspond to lower Oz concentrations, and this appears to be most important for the
North Pacific and Indian Ocean basin data. This relationship is reasonable because the
dissolved forms of Mn and Fe are expected in low-O> water masses due to their redox-
dependent solubility. This is supported by a PCA of GEOTRACES data from the ETNP
that shows a strong correspondence of Mn and Fe with nitrite (Bolster et al., 2022).

This analysis identifies a few key features that define the major redox controls in the
modern ocean and potential geochemical signals that record this behavior. First, there is a clear
grouping of nutrients and bioessential elements (Cd, Ni, P, Si, Zn) whose cycling is similar and
whose concentrations can pinpoint well-oxygenated, high-density waters. We suggest that these
are linked via water mass age. As discussed above in Section 2.2.1, variation in Oz ages is an
important control on bottom water O, as well as O> within ODZs, ultimately resulting in the
differences in O seen between ocean basins and across N-S transects (Figure 8). Elevated
nutrients are also closely tied to Oz ages because they reflect similar inputs from remineralization
(Equation 1 and Equation 2) as well as limited ventilation or re-supply from nutrient-starved
surface waters.

In Oz-depleted waters, however, the relationship between nutrients and O is weaker. The
correlation between the bioessential elements and depth/sigma-theta in Figure 10 reflects the
increase of dissolved concentrations from remineralization via the biological pump (Liu et al.,
2022). Importantly, the concentrations of these nutrient-type trace elements are typically much
more elevated in ODZ regions relative to oxygenated regions (Figure 9). Differences in
concentrations of bioessential elements and/or the depth of the O, minima drive the differences
between O2-depleted waters of different ocean basins, which are arrayed along the PC1 axis: water
depths and nutrients are both highest in the North Pacific (also seen in Figure 9), followed by the
Indian, South Pacific, North Atlantic, and South Atlantic basins. This generally corresponds to the
age of upwelling water-masses, with the oldest, most nutrient-replete waters found in the Pacific
and relatively younger, more nutrient-deplete waters in the Atlantic (Karstensen et al., 2008). As
discussed previously, the PCA therefore provides further evidence that the geochemical
composition of trace elements—in addition to O3 levels, CO,, pH—are related to water-mass age
(Section 2.1.3).

For water masses with O concentrations >100 uM, Fe and Mn diverge (Figure 10B). In
the global dataset, Mn is positively correlated with O2 whereas it is negatively correlated with O
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in Oz-depleted waters. Dissolved Fe is generally inversely correlated with oxygen, regardless of
whether O is high or low. We hypothesize that the Fe-O, inverse relationship reflects that Fe is a
limiting nutrient for primary productivity in many modern ocean basins (Martin et al., 1994).
Additionally, inputs of total dissolved Fe (dominantly Fe?") in well-oxygenated waters below
ODZs in the Arabian Sea and Peru Margins are sourced by hydrothermal plumes as well as
dissolution and desorption from slope sediments (Moffett and German, 2020, Resing et al., 2015,
Horner et al., 2015) (Figure 8). In the South Atlantic, dissolved Fe and Co are both elevated, even
under oxic conditions below the ODZ core, because they can be stabilized in the upwelling zone
by abundant organic ligands and subsequently transported laterally into oxygenated waters (Liu et
al., 2022).

The inverse correlation between Mn and O: is important because Mn is not a limiting
nutrient and its cycling reflects more than redox processes. For example, nutrient profiles are
characterized by very low concentrations in the eutrophic zone from uptake during primary
productivity, but elevated dissolved Mn concentrations at the same depths can result from supply
from continental runoff near the mouths of rivers and dust inputs near continental margins. This is
observed off the coast of the ETNP, such as near the mouth of the Rio Balsas, Mexico (Bolster et
al., 2022, Landing and Bruland, 1987). Additionally, photoreduction of Mn oxides can result in
higher Mn in surface waters than expected (Sunda et al., 1983). Below ODZs, where dissolved O:
concentrations are elevated from old intermediate and bottom waters, elevated Mn is observed
from hydrothermal seafloor activity that result in high fluxes of Mn but low dissolved Fe, which
in contrast is quickly oxidized and titrated out of solution. Compared to Fe, oxidation of Mn is
kinetically slower (Moffett and German, 2020) and hydrothermal Mn plumes can persist (e.g., the
East Pacific Rise in Figure 8). High Mn concentrations in deep, well-oxygenated waters have also
been observed in the Arabian Sea (Moffett and German, 2020) and in the ETNP (Bolster et al.,
2022).

Therefore, the combination of bioessential elements, Fe, and Mn in a given water mass can
be useful for characterizing the productivity and redox dynamics of a given region. First, a
correlation between Fe and Mn is a good indicator of Oz-deficient conditions, whereas the lack of
a correlation may indicate other non-redox processes and therefore are more likely to represent
waters with more O». Higher concentrations of bioessential elements (P, micronutrients) primarily
reflect water mass age and ocean-scale circulation patterns. These patterns have potential promise
for more nuanced understanding of redox in ancient oceans, if some assumptions are made about
how these signals are transferred to marine sedimentary records.
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Figure 10: Principal component analysis of GEOTRACES data (GEOTRACES Intermediate Data Product Group, 2021), including
depth, sigma-theta, CTD-collected O> concentrations, and Cd, Mn, Fe, Ni, Zn, Si, and P concentrations. (4) PC1 and PC2 of all
data for the Indian (Ind), North Atlantic (NAtl), North Pacific (NPac), South Atlantic (SAtl), and South Pacific (SPac). (B) PCI
and PC?2 for samples where O; concentrations are > 100 uM. (C) PCI and PC2 for samples where O> concentrations are < 100
uM as a rough filter for ODZs. Note that the axes scales differ for each plot.

2.2.4 Implications for fingerprinting ancient redox processes

In the last decade, there has been a broad push to advance paleoredox proxy calibrations
beyond the Black Sea and other modern euxinic basins, and to better understand our ability to
recognize ODZ-like settings in the ancient past. Targeted sediment and water column studies from
individual ODZs, as well as data collection programs like GEOTRACES have played a major role
in this important frontier. To be clear, the translation between water column geochemistry and
sedimentary geochemistry is not straightforward. Nonetheless, the use of proxies necessitates
understanding the links and limitation for the application of redox-sensitive and/or bioessential
elements from sediments as a reflection of water column concentrations and/or processes.

An important finding from the PCA results and recent studies is a reminder of the strong
link that benthic and diagenetic processes also have on water column geochemistry, which must
be integrated into paleoredox interpretation. The geochemical cycles of Fe and Mn are often
interpreted as paleoredox proxies, as the burial of Fe-Mn oxides—Ilinked to the areal extent of
oxygenated bottom waters—is an important sink for many redox-sensitive trace elements,
impacting their availability and isotopic compositions in seawater. Iron cycling is more directly
traced via Fe isotopes and the abundance of Fe within specific mineral fractions, i.e. Fe speciation
used to distinguish between euxinic from ferruginous conditions (Raiswell et al., 2018). The PCA
in Figure 10 indicates a strong link between Oz and Mn and Fe cycling within ODZs. As reviewed
in Section 2.2.1, the concentrations of Fe and Mn are primarily sourced from benthic fluxes, and
thus reflect diagenetic processes, but their accumulation and transport within the water column are
related to water column redox conditions allowing for their persistence.

We suggest that there is an important need to more specifically calibrate the integrated
impact of benthic processes on Fe and Mn-based paleoredox proxies. The GEOTRACES analyses
builds on recent studies suggesting that Fe speciation ratios, and particularly those intended to
characterize ferruginous conditions—can be complicated by sedimentary transformation of Fe-
bearing mineral phases. Indeed, ODZs offer the only modern marine analogue of so called
‘ferruginous’ conditions, but multiple lines of evidence suggest that ferruginous conditions may
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have been widespread in the past and likely characteristically different than today. Modern
ferruginous lakes may actually represent the best analogues for ancient ferruginous marine settings
because modern high marine SO4* limits Fe mobilization due to pyrite formation (Swanner et al.,
2020). That said, modern studies can provide a framework for interpreting ancient Fe/Mn cycling
while simultaneously constraining the limitations of these proxies for understanding ancient
paleoredox environments lacking true modern analogues (Pasquier et al., 2022, Hepburn et al.,
2020, Slotznick et al., 2020, Slotznick et al., 2022).

Specifically, early diagenetic processes readily impact the distribution of Fe-bearing
phases, including redox reactions involving Fe(IIl)-(oxyhydr)oxide under oxic or anoxic water
columns. As discussed in Section 2.2.3, the impact of this can be observed in elevated Mn and Fe
concentrations in low-O; waters (Figure 10). As a result, Fe speciation may be most strongly linked
to benthic Fe fluxes which remobilize Fe across redox gradients (Scholz et al., 2011, Moffett and
German, 2020, Bolster et al., 2022). For example, Figure 8 shows elevated bottom water Fe along
the Peru margin slope both within and outside the ODZ, which is supported by Fe speciation data
indicating sedimentary remobilization within the ODZ and deposition along the ODZ fringes
(Scholz et al., 2014a, Scholz et al., 2014b, Lam et al., 2020). The sediment-water interface is also
itself a redox gradient, with Fe (and Mn) mobilization from anoxic pore fluids to the water column
and deposition downslope (Severmann et al., 2006). Ultimately the extent of the effect of the
benthic Fe flux on Fe speciation ratios is determined by the abundance of sulfide, which in turn is
related to the degree of organic carbon loading. Because ODZs are commonly loci of high organic
carbon burial, where some Fe(Il) diffuses from the pore fluids to the water column, a significant
portion of Fe(Il) must also be stabilized by sulfide during early diagenesis. Regardless, the net
effect of reduction of Fe(Ill)-minerals in reducing sediments is to decrease highly reactive pools
of Fe (e.g., Fenr/Fer) (Pasquier et al., 2022).

Similar benthic fluxes for Mn (Scholz et al., 2014a), Co (Liu et al., 2022), I (see excess I"
> 500 nM in Figure 8) and likely other trace metals also indicate that analogous combinations of
diagenetic fluxes and low water-column O are expected to also impact concentrations, enrichment
factors, and normalized ratios (e.g., [metal]/[Al]) of redox-sensitive elements in the sedimentary
record more broadly. Diffusive benthic fluxes of other elements such as sulfide and U are also
expected in ODZs due to the concentration gradients that form during early diagenesis (Lau et al.,
2020). Notably, the GEOTRACES data suggest that high productivity regions where oxidized
solid phases can be transported downslope may result in lower-than-expected proxy ratios for a
low-O; setting.

This discussion is an important reminder that early and late diagenetic processes can
strongly impact the sedimentary geochemical record post-depositionally but also more directly
impact water column conditions that are critical for linking environmental and biotic change
through time. Therefore, mechanistic studies that probe the relative roles of water-column and
sedimentary geochemical processes on proxy records continue to be a major area of research in
understanding past ocean redox.

2.3 Anthropogenic impacts on ocean redox

The evidence for anthropogenic impacts on ocean redox conditions indicates significant
declines in dissolved Oz concentrations for much of the ocean (Keeling et al., 2010, Breitburg et
al., 2018, Oschlies et al., 2018). Since 1950, a 2% decline in marine O> has been observed
(Schmidtko et al., 2017, Stramma et al., 2008). Supporting this, a decrease in atmospheric potential
02 (APO), which reflects exchange of O, with the oceans, was observed from 1990 to 2010 in the
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northern and southern hemisphere (Keeling et al., 2010). Based on this measure, the oceans are
estimated to be losing ~40 Tmol O, yr!. In the 2014 Intergovernmental Panel on Climate Change
(IPCC) report (Hoegh-Guldberg et al., 2014), decreases in dissolved O> were recognized that are
consistent with warming temperatures, increased stratification and microbial respiration, coastal
eutrophication, and drawdown of O in semi-enclosed seas, coastal boundary systems, some
eastern boundary upwelling ecosystems, subtropical gyres, and the deep sea. From 1970 to 2010,
the upper 1000 m of the ocean lost 0.5 to 3.3% of its dissolved O content (Bindoff et al., 2019),
with the magnitude of decrease modulated by interannual and inter-decadal climate variability
(Cooley et al., 2022). The area of expanded OMZs since the 1950s is approximately equivalent to
the area of the European Union, with the volume of completely anoxic waters quadrupling over
that time span (Breitburg et al., 2018). The expansion of coastal waters that are now hypoxic
includes a compilation of 500 sites, more than 90% of which were previously not known to be
hypoxic (Breitburg et al., 2018).

This trend toward more extensive and more severe hypoxia is expected to continue over the
next century. Community Earth System Models suggest that O> may decrease in the subsurface by
approximately 0.05 to 0.15 mmol m™ (equivalent to a 4 to 11% decrease compared to 1995-2014
levels) by 2100 depending on the model boundary conditions and the assumed emission scenario
(Kwiatkowski et al., 2020). Spatially dissolved O2 was modeled to decrease most significantly in
the North Pacific and in parts of the Southern Ocean (Kwiatkowski et al., 2020). Model predictions
for globally decreasing O: are in strong agreement with each other, but vary regionally depending
on changes in wind stress, coastal processes, and organic matter supply. Confidence that ODZs
and seasonally hypoxic waters will expand is high but changes in productivity from climate- and
wind-driven upwelling is less clear. There is high confidence that future predicted hypoxia will
impact commercial fisheries and habitat loss. Additive effects on ecosystems between ocean
acidification, warming, and hypoxia, especially in productive upwelling regions, have been
recognized to be a growing concern for marine environments and impacts on humans (Bindoff et
al., 2019, Cooley et al., 2022).

The direct anthropogenic effects on ocean redox conditions are myriad (Breitburg et al.,
2018, Cooley et al., 2022). Direct effects on solubility (i.e., higher temperatures decreasing O>
saturation) account for ~15% of total global oxygen loss, with a significant impact (~50%) in the
upper 1000 m (Helm et al., 2011, Schmidtko et al., 2017). The burning of fossil fuels has decreased
atmospheric Oz (Keeling and Manning, 2014), leading to lower O dissolved in seawater. In shelf
seas, seasonal bottom-water hypoxia occurs due to warming thanks to riverine nutrient loading
and freshwater input, leading to stratification, which reduces O penetration into deep waters, and
productive conditions, which increases O2 demand. In eastern boundary upwelling systems,
intensification of ocean upwelling leads to enhanced anoxia and acidification, but uncertainty
remains for specific regions due to contradictory observations. Anthropogenic eutrophication,
including organic matter addition and pollution-induced atmospheric inputs of iron, have enhanced
deoxygenation (Breitburg et al., 2018, Cooley et al., 2022). By 2100, dissolved O is expected to
decrease in critical marine biomes, including coastal seas, coral reefs, kelp systems, upwelling
zones, and polar regions, with varying severity (Kwiatkowski et al., 2020).

Indirect mechanisms of warming temperatures, including greater stratification and changes
to circulation patterns, are more difficult to accurately represent and predict (Oschlies et al., 2018)
but are significant (Breitburg et al., 2018). Understanding the mechanisms linking surface winds
to upwelling in key productive regions of the ocean, mainly in coastal regions, is a critical need
for predicting the extent and severity of future hypoxia (Hoegh-Guldberg et al., 2014). Model
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improvements that are needed include better representation of transport processes, higher spatial
resolution, and a focus on wind forcings and overturning of the deep ocean (Oschlies et al., 2018).
Another key need is to better understand how microbial metabolic feedbacks will respond to
changing temperature, which will ultimately drive O2 concentrations in the deep ocean. Where
nutrient trends (e.g., nitrate) regionally lead to redox stratification is another area of needed future
study, with significant uncertainty in how warming will result in ocean deoxygenation in
subtropical oceans, especially for major ODZs (Cooley et al., 2022). Additionally, incorporation
of improved biogeochemical schemes, including redox-dependent nutrient stoichiometries, would
improve GCM predictions of anthropogenic effects on ocean O distributions (Oschlies et al.,
2018).

3 Recent: Evolution of ocean redox on glacial-interglacial timescales

Quaternary climate changes, marked by glacial-interglacial cycles driven by shifts in
Earth’s orbital parameters, extend the timescale of processes impacting ocean redox described
above in Section 2. These processes can include broader changes in climate that drive fluctuations
in the O sources and sinks (Figure 3). Previous research on ocean Oz change on glacial-interglacial
timescales has focused predominantly on the deglaciation since the Last Glacial Maximum (LGM;
~27 to 20 ka). Reconstructions of changes in the ocean redox state, including changes in ODZs,
over this interval are instructive because the deglacial period (18 to 11 ka) represents a relatively
rapid and major global climate warming event, punctuated by shorter-lived cooling and warming
periods (Figure 11). Over this time, sea surface temperatures are estimated to have increased by ~
4 to 8 °C (Osman et al., 2021) and atmospheric pCO2 by ~80 ppm (Petit et al., 1999, Monnin et
al., 2001, Liithi et al., 2008).

In this section, we summarize changes in ocean O> and ODZs that reflect aggregated
climatic signals from major changes in orbital parameters and specifically the warming from a
world with extensive continental ice sheets through the Holocene (last 10 ka) to a period of relative
climate stability. The examples in this section can provide useful insight into the future of ocean
oxygenation from anthropogenic warming and climate change. Therefore, research in developing
qualitative and quantitative Oz proxies, reconstructing Oz depth gradients, and increasing spatial
sampling of sites important for ODZ and water-mass redox reconstructions are all critical needs
(Section 3.1). Further, integrating oceanographic, climatic, and modeling constraints are necessary
to understand how regional and global climate factors compete or balance to impact the overall
redox landscape, including ODZ development (Section 3.2). Last, we discuss the role of sea-level
change on redox conditions—a factor that can be overlooked for this time period (Section 3.3).
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Figure 11. Overview of redox and climate reconstructions from the Last Glacial Maximum (LGM), through the Deglacial, and into
the Holocene. The Deglacial was punctuated by the Bolling-Allerod warming event and the Younger Dryas cooling event. Relative
changes in oxic (blue) and intermediately/severely hypoxic (gray) conditions are shown for ODZs and key water masses
(summarized from Moffitt et al., 2015 and other sources in text). (s) indicates shallow and (d) indicates deep. NP = North
Pacific/Subarctic Pacific, CC = California Current, MM = Mexico Margin, EP = Equatorial Eastern Pacific, Ind = Indian Ocean,
IM = Iberian Margin, SO = Southern Ocean. Benguela Current not shown due to lack of glacial-interglacial variability. Climate
proxy records, top to bottom: atmospheric pCO; (Liithi et al., 2008), global benthic 6'°0 stack (Lisiecki and Stern, 2016), Vostok
surface temperature changes calculated from snow oD (Petit et al., 1999), and Greenland Ice Sheet Project 2 (GISP2) temperature
reconstructed from snow '80/'°0 (Grootes and Stuiver, 1997).
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3.1 Patterns of ocean O2 change since the Last Glacial Maximum

Globally, shallow-marine O2 is higher during the LGM compared to the deglaciation,
whereas the deep ocean was less well oxygenated (Figure 11) (Lu et al., 2020a, Jaccard and
Galbraith, 2011). Similarly, reconstructions of Oz during older Pleistocene periods suggest cooling
is broadly associated with low O; in intermediate and deep waters—e.g., the Amundson Sea of the
Southern Ocean (Lu et al., 2016), the Iberian Margin (Hoogakker et al., 2015), and North Atlantic
(Hoogakker et al., 2016). These broad redox shifts are also observed in ODZs during the LGM,
but regional variability exists that reflects both differences between northern and southern
hemisphere warming and cooling over the deglaciation as well as regional climate (Figure 11; e.g.,
upwelling strength). The extent of ODZs since the LGM has been reconstructed for the Subarctic
Pacific, California Current, Baja and Mexico Margins, the Equatorial Pacific and Humboldt
Current, the Benguela Current, and the Oman/Pakistan Margin (Moffitt et al., 2015). Using
sediment core logs from continental margins (within 400 nautical miles of the continental
coastline, plus the Galapagos Islands), evidence for various degrees of hypoxia, relative to the
impact on bilaterian behavior and habitability, were compiled from: (1) sedimentary data, and
specifically the presence of laminations that form from the absence of bioturbation; (2) benthic
foraminiferal diversity, density, and abundance, based on thresholds defined by specific taxa; and
(3) geochemical proxies, including N isotopes that trace water masses and nutrients, redox-
sensitive trace elements that record redox and/or productivity (Re, Cr, U, Mo, Cd), and C isotopes
of planktonic forams that track productivity and carbon export. Evaluating the compilation as a
whole, and accounting for the incomplete temporal and spatial coverage of the sediment core
records, ODZs exhibited a trend toward more anoxic conditions during the deglaciation and toward
the present (Moffitt et al., 2015). Actual trends in redox conditions vary between ODZs, with some
reflecting larger scale climatic changes and others modulated by regional processes. Below, we
briefly summarize the synthesis from Moffitt et al. (2015). We refer the reader there for additional
details and references therein and include more recent studies where applicable (Figure 11).

Subarctic (North) Pacific: the extensive, intermediate water ODZ here is controlled by
poorly ventilated, nutrient-rich and O-depleted North Pacific Deep Water. Today, there is a
seasonal ODZ in the Gulf of Alaska, with expansion of hypoxic waters toward Russia in the winter
((Paulmier and Ruiz-Pino, 2009); Figure 7). During the LGM, the deep North Pacific was
ferruginous and became more oxic during the deglaciation (Jaccard et al., 2009), with greatest O
depletion during peak Bolling-Allered warming (~14 ka). The region overall experienced more
extensive and severe hypoxia during warming periods (intensified at 14 ka), with relatively
shallow hypoxia (~600 mbsl), attributed to lower O: solubility and higher respiration rates
(Praetorius et al., 2015). The absence of hypoxia during Younger Dryas cooling (~12.9 to 11.7 ka)
suggests a high sensitivity to global climate trends. This ODZ became relatively well oxygenated
at 10 ka, but the return of hypoxia at 4 ka throughout the region also supports a global climate
control. Recent investigations of the stratigraphic relationships between ash, volcanic fractions
(eNd), redox-sensitive trace metals, and benthic foraminifera in the Gulf of Alaska suggest that
regional volcanism, stimulated by ice unloading of the Cordilleran ice sheet, resulted in iron
fertilization that led to deoxygenation (Du et al., 2022). This mechanism is proposed to have acted
to further enhance and sustain deoxygenation resulting from broader deglacial warming trends.

California Current region: the ODZ here reflects seasonal upwelling that intensifies in
the boreal spring, with accompanying high productivity. Today the loci of O depletion occurs
within 200 km of the coastline and within relatively deep waters (~600 mbsl) extending almost 1.5
km deep (Figure 7). O; is replenished by North Pacific Intermediate Water which is mixed with

32



1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190

poorly oxygenated southern-sourced intermediate waters. During the LGM, intermediate waters
(~1000 mbsl) were oxygenated whereas deep waters were hypoxic. During the Bolling-Allerad,
intermediate to severe hypoxia occurred at all depths, with a respite to oxic conditions at 12 ka,
midway through the deglaciation and synchronous with Younger Dryas cooling observed
throughout the Northern Hemisphere. During Termination 1B (11.7 ky), regional hypoxia
returned, especially at shallower depths (400-600 mbsl), that continued through the deglaciation.

Mexico Margin: the ODZ in this region is modulated by high productivity, a sharp
pycnocline, and slow circulation. The upper boundary of the ODZ is shallow (up to 100 mbsl in
the south; Figure 7) due to the intrusion of intermediate waters with low Oz. During the LGM, only
the deepest waters were depleted in O>. Bottom-water oxygenation increased through the
deglaciation to the present day, though the timing is spatially variable. Changes in redox are
potentially linked to the depth of the thermocline and nutricline, as well as relatively low
productivity during the LGM because of reduced upwelling. In sum, regional controls appear to
modulate ODZ variability in the Mexico Margin, compared to the other sites that more strongly
reflect northern hemispheric climatic changes.

Humboldt Current and Eastern Equatorial Pacific: the ODZ in this region (roughly
equivalent to the ETSP) is driven by upwelling of nutrient-rich southern hemispheric intermediate
waters and extreme productivity, resulting in a thick, intense, and shallow ODZ (up to 50 mbsl and
~500 m thick zone of extremely O>-depleted waters; Figure 7). During the LGM, only deep waters
were characterized by mild hypoxia with surface and intermediate waters well-oxygenated. Deep
waters became oxygenated from 10 to 5 ka, depending on the depth and spatial location. Shoaling
of the ODZ began ~17 ka with severe hypoxia present at the upper boundary of the ODZ. Hypoxia
at intermediate depths persisted throughout the deglaciation but attenuated at shallow depths by
10 ka, returning to oxic conditions. Changes in redox through the deglaciation follow Southern
Hemisphere patterns instead of Northern Hemisphere patterns. More recently, qualitative and
quantitative constraints from planktonic foraminiferal I/(Ca+Mg) (to constrain the upper water
column) and a benthic foraminiferal 8'*Cear isotope gradient (to constrain bottom water O2) from
cores off the coast of Costa Rica and offshore in the eastern equatorial cold tongue of the eastern
tropical Pacific indicate relatively low Oz (40-60 pmol kg™!) in intermediate and deep waters during
the LGM and during the early deglaciation (Hoogakker et al., 2018). In contrast to previous studies,
surface O; at these sites is reconstructed to be relatively low during the LGM.

Indian Ocean: this vertically extensive ODZ (>1000 m; Figure 7) is controlled by nutrient
delivery, ventilation by intermediate and deep waters, and mixing of deep waters. The ODZ is
seasonally dynamic due to monsoonal patterns that control upwelling of nutrient-rich waters.
Changes in the ODZ reflect changes in productivity, potentially due to climate-driven monsoons.
Therefore, ODZ weakening is observed during cooling events (Heinrich 1 and the YD); changes
here are rapid. More recent constraints on the Arabian Sea ODZ from benthic forams, I/(Ca+Mg),
and authigenic U records indicate that bottom-water oxygenation was higher during the glaciation
and then steadily decreased during deglaciation into the Holocene (Lu et al., 2020a). Estimates of
bottom water O» concentration indicate that it has remained below 30 umol kg! over the last 30
ka, reaching modern levels of ~5 umol kg! around 11 ka (Lu et al., 2020a, Lu et al., 2022).

Benguela Current: Compared to the above examples that track major hemispheric climate
trends, the Benguela Current ODZ is interpreted to reflect regional climatic controls. This ODZ is
associated with high productivity and seasonal upwelling. It is shallower and more spatially limited
compared to other ODZs (Figure 7). Hypoxic waters are relatively shallow, reaching depths up to
50 m. During the LGM, bottom-waters were continuously anoxic (Riedinger et al., 2021). The
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proxy records here do not suggest a change in oxygenation driven by deglaciation but instead
regional changes in productivity and upwelling (Mollenhauer et al., 2002, Moffitt et al., 2015).
However, the role of deep-water circulation patterns has recently been argued to impact
productivity and thus ODZ severity during the deglaciation (Riedinger et al., 2021).

Southern Ocean: The Southern Ocean plays an important role in controlling O»
concentrations in deep waters that subsequently ventilate the ocean elsewhere. Records of redox-
sensitive trace metals (Mn/Al, authigenic U) and reconstructions of opal burial fluxes, collected
from two sediment cores near the Weddell Sea where the Antarctic Bottom Water forms Figure 4,
suggest that during the LGM, low organic carbon supply to the seafloor corresponded to poorly
oxygenated deep waters (Jaccard et al., 2016). Semi-quantitative constraints on surface-water O
from I/(Ca+Mg) planktonic foram records collected from a sediment core in the Amundson Sea
suggest upper ocean O, was below 70 umol kg™! during the LGM (Lu et al., 2016). During cold
phases of the deglaciation (identified in the Northern Hemisphere, e.g., Younger Dryas), Weddell
Sea records indicate higher bottom-water O concentrations (Jaccard et al., 2016). This is attributed
to a decrease in iron fertilization by dust and enhanced ventilation of the deep ocean. Differences
in Oz concentrations in the Southern Ocean compared to the deep North Atlantic during Heinrich
Stadial 1 (17.5-14.7 kyr) suggest hemispheric differences in ventilation and a larger influence of
Fe supply in this site. However, during Younger Dryas cooling the Southern Ocean experienced a
transient increase in ventilation also observed in records globally. This example reflects the
potential for individual water masses to reflect both global and regional processes controlling
redox conditions—and that they can sometimes conflict.

In addition to reconstructions of major ODZs, proxy records have also been implemented
to track O, content variability for other key water masses. For example, O of bottom waters along
the Iberian Margin track northward recirculating North Atlantic Deep Water. Reconstructions of
bottom-water O using a calibrated carbon isotope gradient reconstructed with infaunal and
epifaunal benthic forams suggest levels were below 200 umol kg! during the LGM and as low as
160 pmol kg™ during Heinrich-1 (~15 ka), after which O increased rapidly to levels well above
230 pumol kg! (Hoogakker et al., 2015). Reconstructions of bottom-water O, from the deep
northeast Atlantic obtained using the same method also indicate that O, was lower during the LGM
(Hoogakker et al., 2015).

3.2 Mechanisms linking deglacial warming with ODZ change

Deoxygenation of deep waters during glacial intervals may be linked to a combination of
reduced ventilation and slower circulation that impact Oz resupply as well as higher productivity
rates (Lu et al., 2020). Warming during interglacial intervals can impact ocean oxygenation
through: (1) direct solubility effects of higher ocean temperatures; (2) changes in O, demand, and
(3) changes in ocean circulation patterns (Jaccard et al., 2014). Lower solubility of O from
warming results in expansion of ODZs (Jaccard et al., 2014, Keeling et al., 2010, Praetorius et al.,
2015). Further, photosynthetic and microbial respiration rates are argued to be temperature
dependent (Eppley, 1972, Matsumoto, 2007, Boscolo-Galazzo et al., 2021), and so warming also
increases Oz demand in ODZs (Matear and Hirst, 2003, Bograd et al., 2008). The processes
described here illustrate how global climate changes can be connected to parallel patterns in
oxygenation or deoxygenation in ODZs, which are also subject to regional controls and variability.

Following ODZ expansion, the release of iron from hypoxic sediments has been proposed
to act as a positive feedback to sustain hypoxic conditions (Davies et al., 2011, Praetorius et al.,
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2015, Du et al., 2022). Similarly, enhanced nutrient delivery from eutrophication due to a more
vigorous terrestrial hydrologic cycle can intensify O, demand during warming intervals (Keeling
et al., 2010). Conversely, a database of sediment nitrogen isotopes indicate a substantial increase
in the rates of denitrification through the deglaciation (Galbraith and Kienast, 2013). Coupled with
lower dust fluxes during interglacial periods (Winckler et al., 2008), nutrient limitation may have
dominated most areas of the ocean (i.e., outside of ODZs and river mouths).

Global changes in ocean circulation during deglaciation are hypothesized to have resulted
in ventilation of the deep sea that would have increased O concentrations in intermediate and deep
waters. A key example is the strengthening of the Atlantic Meridional Ocean Circulation (AMOC)
during the Belling-Allered Antarctic Cold Reversal (14.5 to 12.5 ka), associated with warming in
the Northern Hemisphere. This is associated with a major expansion of oxygen-deficient waters in
the Northern Hemisphere and in the Indian Ocean (Jaccard and Galbraith, 2011, Jaccard et al.,
2014). This can reflect the rapid delivery of freshwater to the surface ocean during warming that
decreased O supply to the thermocline and resulted in greater stratification, especially at locations
key to subsurface water formation (Jaccard and Galbraith, 2011). Conversely, in the ETNP, a
weakening of the AMOC during early deglaciation (~16 to 18 ka) intensified upper water column
Oz depletion, perhaps with greater productivity from higher nutrient delivery from southern deep
waters and higher upwelling rates (Hoogakker et al., 2018).

Additionally, the O content in upwelling eastern boundary currents varied during
deglaciation, also due to warming and cooling on large spatial scales. Changes in upwelling
strength of these boundary currents, which control Oz resupply, predominantly reflects land-ocean
temperature differentials and associated wind regimes (Deutsch et al., 2014, Wang et al., 2015).
For example, a decrease of wind-driven upwelling since the late Holocene has been reconstructed
in the eastern equatorial Atlantic (Kohfeld et al., 2005).

As discussed in Section 2.3, areas of future work include further characterizing the
mechanistic relationships between temperature, microbial rates and O, demand, and circulation
patterns and O resupply. Such relationships are critical for model predictions of future and past
ocean redox changes.

3.3 Sea-level change: does oxygen rise or fall?

Many studies of modern and recent anoxia do not consider sea level as a major control on
the ODZ and instead favor explanations involving processes on shorter timescales. However, there
remain many unanswered questions regarding the importance of sea level in controlling ODZs that
are relevant on glacial-interglacial as well as geologic timescales, a pressing gap in the context of
future global warming and sea-level rise. Specifically, sea-level rise (i.e., marine transgression) is
speculated to have increased anoxic conditions via expansion of ODZs during many of the mass
extinctions in the Paleozoic and Mesozoic (Hallam, 1989, Hallam and Wignall, 1999). For
example, sea-level rise has been associated with the organic-rich black shales of the Cretaceous
Oceanic Anoxic Events (OAEs) (Jenkyns, 1980, Leckie et al., 2002, Voigt et al., 2006). Indeed,
sea level has varied dramatically over the Phanerozoic, as reflected in sequence stratigraphic
patterns (Hallam, 1989, Haq et al., 1987, Vail et al., 1984). Ice volume fluctuations and mantle
processes drive this variability—the latter including changes in plate spreading and subduction
rates, as well as more general dynamic topography linked to mantle flow—and it is characterized
by regional and global scale geometries.

Multiple mechanisms linking sea-level rise to fluctuations of the ODZ have been suggested
that rely on changes in the demand of O: in the ocean via variations in nutrient cycling (Figure
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12); yet, these proposed conceptual models do not make consistent predictions for changes in
oxygenation. Several models suggest that a sea-level rise would lead to shoaling of anoxic waters
(Figure 12B), resulting in inhospitable continental shelves (Hallam, 1989, Saltzman et al., 2015,
Lau et al., 2016). Moreover, marine transgression would result in a larger continental shelf area
influenced by wind- or tidal-mixing (Figure 12C), leading to greater recycling of sediment-sourced
nutrients that increase productivity and O; utilization (Jenkyns, 1980). Finally, enhanced
evaporation during transgressions has been proposed to generate oxygen-poor warm and salty
waters (Figure 12D) that stimulate circulation and upwelling (Arthur et al., 1987). In contrast, other
models link higher sea levels with a diminished ODZ and a more ventilated ocean: greater shelf
area has been proposed to act as a nutrient buffer (Figure 12E), sequestering phosphate and
reducing productivity and thus O utilization (Bjerrum et al., 2006, Ozaki and Tajika, 2013). In
addition to nutrient cycling, changes in the continental shelf area from glacial regression and
interglacial transgression are expected to also impact the export of organic carbon to the deep
ocean, resulting in lower and higher oxygenation of deep water, respectively (Wallmann, 2003).
Incorporating these nutrient effects, modeling results suggest sea-level change is a primary factor
on primary production, and therefore deep ocean O, during deglaciation but is also modulated by
changes in circulation and weathering of nutrients (Tsandev et al., 2008).

A Lowstand

B Shoaling of the OMZ C Wind/tida!—driven mixing of
shelf nutrients

D Evaporation-driven upwelling E Nutrient trap and reduced productivity
high rates of evaporation

Figure 12. Potential effects proposed on a generic Oz minimum zone due to a transition from a (4) lowstand to (B-E) highstand.
See text for further details for each scenario. These changes could occur concurrently with changes in temperature-driven O;
solubility, increased stratification or changes in circulation due to global climate, or temperature-dependent changes to the
biological pump.

36



1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346

Many of the mechanisms that have been proposed to link sea-level rise with expanded
ODZs (Figure 12) are challenging to support directly by observations. Biogeochemical models that
suggest that the size of the phosphate nutrient reservoir may reduce drastically with sea-level rise,
limiting deoxygenation (Bjerrum et al., 2006, Ozaki and Tajika, 2013), also lack geological
evidence from redox proxies. Because sea-level change occurs alongside major climate change, it
is not straightforward to directly link sea level with ocean redox changes (e.g., Tsandev et al.,
2008). In comparison, studies of recent changes to ODZs do not consider local sea level. Studies
that compile sediment data to reconstruct changes in the depth and intensity of OMZs (such as
those discussed above) either use a simple or no eustatic adjustment to correct for changes in depth
and shoreline location (Reichart et al., 1998, Cannariato and Kennett, 1999, Jaccard and Galbraith,
2011, Moffitt et al., 2015). However, regional sea level change can vary dramatically (by 30 to 50
m), and sediment-water column feedbacks, including redox-dependent burial and benthic diffusive
fluxes, may play an unrecognized role in modulating ODZs. Therefore, this represents an
important frontier in future research of past and future redox change.

4 Ancient: Evolution of ocean redox on geologic timescales

The history of oxygenation of the atmosphere is intrinsically linked to the oxidation of the
ocean, and vice versa. For ancient studies, atmospheric O thresholds are commonly referenced as
percent of atmospheric levels (PAL), which relates pO: levels back to that relative to the modern
atmosphere, or 21%. For marine oxygen, the PAL definition requires determining the atmospheric
Oz level required to sustain a specific distribution of marine O;.

When possible, it is important to link a given proxy or zone to specific Oz levels, allowing
diverse element cycles to act as O tracers in modern and ancient systems. These thresholds can
be difficult or not realistic to define for major redox zones or specific proxies. Therefore, often
proxies and tracers are referenced back to the “paleoredox ladder” shown in Figure 1. Further, the
O, thresholds may vary depending on multiple factors (e.g., pH, competing oxidants/reductants,
biotic vs abiotic reactions). In Table 1 we summarize O, and/or redox thresholds for a suite of
commonly applied paleoredox proxies. These constraints are based on combinations of modeling
studies, modern field observations, and experiments. For redox-sensitive elements, these
thresholds can be defined for both oxidation—for example, at what O levels does 103" form—or,
conversely, reduction—for example, at what O levels does 103™ reduction occur?

Importantly, as many thorough and recent reviews for modern and ancient tracers already
exist, it is not our aim to replicate those here. Citations are given to these reviews and syntheses
and appropriate details are given to provide context for discussion and interpretations.

Table 1. Summary of proxies with binary shifts related to O> evolution. For proxies relevant for
the GOE (S-MIF, red beds, redox-sensitive detrital minerals, and I/(Ca+Mg)), the timing of
change is based on detailed analysis of median last/first occurrence from Hodgkiss and Sperling
et al. (2022), while other proxies are derived from the discussion of change point analysis results
in Section 4.

Interval of Proxy O: implications Timing of Proxy review citation
change change (Ga)
Stage 1: Geochemical Local marine O2<10 pmol kg! | Oldest at 2.9 (Olson et al., 2013)
Neoarchean proxies for Ga
oxygen oases
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aerobic Fe/Mn
cycling
Stage 2: Great S-MIF Disappearance associated with | 2.19 (CPA = (Poulton et al., 2021,
Oxidation >10- % PAL 2.51) Uveges et al., 2023)
Event and mid- | Red beds Deposition associated with 3 x | 2.48 (Farquhar et al., 2011)
Proterozoic 10_2 % PAL
Redox Disappearance from 2.22 (Johnson et al., 2014)
sensitive sedimentary record suggestive
detrital of 5% to 5 x 10* % PAL
minerals
I/(Ca+tMg) Increase suggestive of >1 pmol | 2.45 (Lu et al., 2020b,
kg ! local marine O» Hardisty et al., 2014)
3**Scas Increase suggestive of presence | 2.38 (Johnson et al., 2021,
of SO4* reservoir and >103 % Johnson et al., 2019)
PAL
8738 Ushale Variability from crustal values | 2.35 (Kendall et al., 2013)
indicates oxidative weathering
of uraninite
Stage 3: 833 Crshale Variability from crustal values | 0.83 (Planavsky et al.,
Neoproterozoic suggestive of >1 % PAL 2014b)
Oxidation [Re]shate Higher values = Decrease in 0.59 (Sheen et al., 2018)
Event euxinic/ferruginous seafloor
and a area
persistently [V]shale Higher values = Decrease in 0.54 (Nielsen, 2020)
stratified ocean euxinic/ferruginous/manganous
seafloor area
[Mo]shale Higher values = Decrease in 0.54 (Algeo and Lyons,
euxinic seafloor area 2006, Hlohowsky;j et
al., 2021)
Stage 4: OOE- | Ce/Ce* Lower values = Decreased 0.43 (Wallace et al., 2017)
to-OAE redox stratification
transition and 5**Spy Higher values = Decrease in | 0.38 (Canfield, 2001)
ventilation of euxinic seafloor area
the deep ocean | [Ulshate Higher values = Decrease in 0.37 (Partin et al., 2013)
euxinic/ferruginous seafloor
area
8% Ucas Higher values = Decrease in 0.39 (Zhang et al., 2020, Lau
euxinic/ferruginous seafloor etal., 2019)
area
I/(CatMg) Decreased redox stratification 0.21 (Luetal., 2020b, Lu et
al., 2018)

In Figure 13 we provide a synthesis of the relationship between atmospheric, surface ocean,
and deep ocean redox through geologic time, which considers both PAL and the dominant marine
redox zones based on the available electron acceptors (e.g., Figure 1). This synthesis is in part
bolstered by an evaluation of data from the Sedimentary Geochemistry and Paleoenvironments
(SGP) database (Farrell et al., 2021) and determining changes through time via a change point
analysis (CPA) (Cole et al., 2020). We use this analysis to support the reconstruction of timing of
ocean redox changes over Earth history and implications of these changes on geobiological events
in Figure 13 and Figure 14. Specifically, we separate atmosphere-ocean oxidation into four distinct
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eras distinguished by a combination of steady states and transitions in atmospheric oxygenation
(Figure 2).

Stage I: An anoxic atmosphere-ocean system, with isolated O> oases present in the
Neoarchean.
Stage II: Initial atmosphere and near-surface oxidation at the Great Oxidation Event. Stage

IT includes the middle Proterozoic. Oxidative weathering on land increased the
sources of redox-sensitive elements to the ocean, thus increasing their reservoir
sizes. Atmospheric Oz may still be at levels allowing for marine O> oases.

Stage I11: Increase in atmospheric oxygenation in the Neoproterozoic and into the early
Paleozoic transitioning to an air-sea equilibrium regime. While widespread deep
ocean anoxia and vertical/lateral redox stratification was maintained, a shift toward
less reducing seafloors decreased the sinks of many redox-sensitive elements, thus
increasing their reservoir sizes.

Stage IV: Increase in atmospheric oxygenation in the late Paleozoic leading to deep ocean
ventilation. A shift toward more oxidizing seafloors decreased the sinks of many
redox-sensitive elements, further increasing their reservoir sizes.

We note that the transition into Stage IV ushers the marine redox state from the era of so-
called ‘Oceanic Oxic Events’ (OOE), where broad marine anoxic conditions are episodically
punctuated by oxygenation events, to the ‘Oceanic Anoxic Event’ (OAE) era, where broadly oxic
marine conditions are episodically punctuated by anoxic events.

Importantly, the CPA used to define these stages broadly shows consistent patterns of
redox evolution. As shown in Table 1, the change points occur for groups of proxies that require
analogous redox thresholds. That said, we note that the timing of transitions between the stages
remain poorly defined and that the CPA results for a given element are partially dependent on the
availability of data. In many cases, data availability is biased toward oxygenation or anoxic events
and thus there are limited constraints on baseline redox conditions, which is an important frontier
for improving confidence in defining the timing and nature of redox transitions. Future studies
might use mass balance models of Re, Cr, Mo, and U to link the timing of their relative change
points to reservoir size increases driven by dynamic ferruginous and euxinic conditions; however,
here, due to data limitations for some elements, we more conservatively interpret their changes
across the Neoproterozoic and Paleozoic to reflect shrinking seafloor area characterized by both
ferruginous and euxinic conditions due to progressive oxygenation of the deep ocean during the
transition between Stages III and IV.
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Figure 13. Top Panel: Important evolutionary first appearances from the geologic record. Further descriptions and citations are
described in the text (specifically Section 4.3.2). Middle Panel: Reconstruction of atmospheric O» concentrations through time in
percent present atmospheric levels (PAL). Axes on right shows the proposed O: levels for proxies used to reconstruct the O
curve. € refers to Cambrian biota (Sperling et al., 2015a). Bottom Panel: Representation of shallow and deep ocean redox
regimes. Colors correspond to Figure 1. Red is indicative of ferruginous conditions, purple indicative of euxinic conditions,
yellow indicative of iodinous conditions, and blue indicative of oxic conditions. Oscillating blue line indicates shallow variability
linked to oxygen oases.

4.1 Stage I: Neoarchean Disequilibria and O oases

4.1.1 Whatis an O; oasis?

Most models for the oxygenation of Earth’s atmosphere include marine O oases—isolated
hot spots of local O production at levels above that expected from equilibrium with the
atmosphere—as a precursor or contemporary phenomenon (Fischer, 1965, Kasting, 1992, Olson
et al., 2013). Specifically, the main source for O in the atmosphere both today and in the ancient
past is via oxygenic photosynthesis. Models of ancient oceans predict similar regions of marine
O2 sources and sinks to and from the atmosphere as that observed today (Olson et al., 2013), but
these trends are exacerbated by several important factors.

First, a key characteristic of ancient O> oasis is O concentrations in excess of that
sustainable through sea-air equilibrium. Oz oasis models suggest the potential for O»
concentrations from in sifu production alone as high as 10 umol kg'! even if the atmosphere is
completely anoxic. These maximum values can vary according to a number of factors, discussed
below, but are also important in setting the threshold at which the atmospheric O concentrations
transition from an Oz oasis to an equilibrium ocean where air-sea exchange of O, determines stable
shallow marine O; levels (Reinhard and Planavsky, 2022).

Second, anoxic oceans allowed for the accumulation of relatively high concentrations of
dissolved Fe, Mn, and sometimes sulfide, sourced from combinations of continental, sediment,
and hydrothermal fluxes and local biogeochemistry (e.g., sulfate reduction). These reductants
would act as Oy titrants that limited the spatial extent of marine Oz accumulation both laterally and
vertically. Oz oasis models (Reinhard et al., 2016b) explicitly consider Fe as the primary marine
O, titrant. In oligotrophic areas beyond these O oases, local Oz sources are mostly limited to air-
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sea exchange, meaning the maximum O: concentrations are set by equilibrium with the
atmosphere. Importantly, the flux of reduced titrants can result in estimated minimum O>
concentrations well below the value set by air-sea exchange.

The third key feature of O oasis is their spatiotemporal instability driven by daily and/or
seasonal availability of nutrients and sunlight. Specifically, O2 concentrations would have varied
along with seasonal changes in light and upwelling intensity—a key driver of nutrient sources to
shallow waters—that impact primary production and thus local O concentrations even today
(Figure 4). During periods of minimum biological O production, local O, concentrations would
have trended toward air-sea equilibrium.

4.1.2 What is the geochemical evidence for O: oases?

While O2 oases are a predicted feature for the transition period between the emergence of
oxygenic photosynthesis and the oxygenation of Earth’s atmosphere, direct geochemical evidence
for their existence is limited and often controversial (reviewed in Reinhard and Planavsky, 2022).
Frankly, this is not surprising—even if they were common—given the challenges toward
recognizing O, oases with proxy records. These include but are not limited to: their spatially
isolated nature, limited geologic preservation of shallow open ocean environments, contamination
of oxidant signals given the long period of atmospheric oxygenation since the Great Oxidation
Event (GOE, section 4.2), and the limited availability of sedimentary archives without significant
high-temperature alterations that complicate clear interpretations of proxy evidence.

While O; oases may have persisted well into the Proterozoic (see Section 4.2.6), the
clearest evidence for their existence comes from the Archean, with the oldest dating back to nearly
3.0 Ga. Two key basic observations are necessary to demonstrate an O oasis: contemporary
evidence for low atmospheric O>—most prominently the presence of sulfur mass-independent
fractionation (S-MIF; (Uveges et al., 2023))—and evidence for redox-active marine geochemical
cycles requiring dissolved O availability. The majority of this evidence is linked to oxidative
cycling of Fe and Mn. Active Fe cycling is consistent with evidence for background ferruginous
oceans during this time, and consequently, Fe fluxes from surrounding ferruginous waters are
incorporated into O; oases models as the primary marine O; sink. Relevant proxies include 8°*Mo,
rare earth element (REE) pattern changes and the cerium anomaly (Ce/Ce*), and §°°Fe anomalies
that are all linked to oxidative cycling of Fe and/or Mn in the ~2.9 Ga Singeni formation
(Planavsky et al., 2014a, Ossa et al., 2018, Riding et al., 2022), ~2.8 Ga Steep Rock Formation
(Riding et al., 2014) and 2.5-2.68 Ga Campbellrand-Malmani platform (Czaja et al., 2012),
respectively. While Fe isotope fractionations can be specifically linked to oxidation-reduction
reactions, 6°*Mo and REE shifts are linked to Fe and Mn cycling through isotope fractionations
and uptake specific to sorption on Fe/Mn oxides. Other interpretations of O oases comes from
putative evidence for methane oxidation—also in the ~2.8 Ga Steep Rock (Hayes, 1994)—and for
local N oxidation in the ~2.7 Ga Jeerinah formation and Campbellrand-Malmani platform
(Godfrey and Falkowski, 2009, Koehler et al., 2018).

4.1.3  ‘Whiffs’ vs O: oases

So-called “whiffs” of O; are distinct from marine O: oases in that they specifically imply
accumulation of O in the atmosphere at some combination of levels, time, or spatial scales below
that required for the effective elimination of the S-MIF. Indeed, transient or low, but non-zero,
levels of atmospheric O are predicted to result from sea-to-air fluxes in association with Oz oases.
Thus, like O> oases, ‘whiffs’ are a pre-GOE phenomenon expected perhaps as early as the advent
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of oxygenic photosynthesis. Again similar to O oases, direct evidence for ‘whiffs’ are
controversial (Slotznick et al., 2022, Ostrander et al., 2019) and require the presence of S-MIF
alongside evidence for weathering of redox-sensitive minerals and elemental cycles, but in this
case linked to terrestrial environments.

The earliest claims of ‘whiffs’ of atmospheric O; date back to 3 Ga and are evidenced from
8>3Cr fractionations requiring Mn and hence O; cycling on land (Crowe et al., 2013). These isotope
fractionations may require as much as 1% PAL, or three orders of magnitude more than the pre-
GOE O concentration constrained by the S-MIF record (Cole et al., 2016). Given the presence of
the S-MIF and lack of 8%Cr fractionations beyond the rocks examined, this evidence requires
temporally limited or strictly local atmospheric O» fluxes. Beyond §>Cr isotopes, most evidence
for pre-GOE atmospheric O2 fluxes comes indirectly from increases in the marine reservoir sizes
of redox-sensitive metals—chiefly, S, Mo, and Re, but also N, Tl, Se, and U—sourced from
oxidative weathering of terrestrial sulfides in the ~2.7 Ga Jeerinah formation and ~2.5 Ga Mt.
McRae shale (Scott et al., 2011, Duan et al., 2010, Reinhard et al., 2009, Kaufman et al., 2007,
Anbar et al., 2007, Ostrander et al., 2019, Stueeken et al., 2015, Kendall et al., 2013, Garvin et al.,
2009). Indeed, modeling and experimental studies predict oxidative sulfide dissolution at pO, <
1073 % PAL—the threshold required for termination of the S-MIF (Johnson et al., 2021, Johnson
et al., 2019, Reinhard et al., 2013a). An alternative hypothesis to transient and/or limited O»
increases is that Oz oases may have existed in association with microbial mats in freshwater benthic
and soil environments (Planavsky et al., 2021, Wilmeth et al., 2022, Lalonde and Konhauser,
2015).
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Figure 14. Proxy compilations averaged at 1 million year-bin intervals and listed in the order of their corresponding change point
(vertical red lines). Carbonate records are shown in blue and shale records in black. The shale [Mo], [V], and [U] records are
derived from the SGP database (Farrell et al., 2021), filtered to only include samples where Feur/Fer < 1, [Mo] < 500 ppm, [U]
< 500 ppm, and [V] < 1000 ppm. Other records come from independent sources, including [Re] (Sheen et al., 2018), Ce/Ce*
(Wallace et al., 2017), I/(Ca+Mg) (Lu et al., 2018), 638U (Chen et al., 2021), and Cr isotopes (Cole et al., 2020, Mdnd et al.,
2022). S isotope compilation courtesy of B.C. Gill and additional sources (Present et al., 2020). S-MIF record from Uveges et al.,
(2023). Note that the binned data for 1/(Ca+Mg) show the maximum values of each 1 million year-bin interval and the
corresponding change point. A paired t-test of the pre- and post- change point data populations revealed p-values are < 107 for
all proxies except for 633U, and [Re] (p values equal 3.3x10° and 1.1x1073, respectively). A note about compilations that are not
depicted: a compilation of Fe speciation was recently published and is not included here (Pasquier et al., 2022). As of this review,
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the 6** Mo and > Tl compilations exhibit significant temporal gaps and therefore are not suitable for similar statistical treatment
as the records shown above.

4.2 Stage II: The Great Oxidation Event and mid-Proterozoic

4.2.1 What geochemical evidence is there for the GOE?

The Great Oxidation Event (GOE) was originally recognized from broad shifts in redox-
sensitive minerals in sedimentary rocks. Specifically, the loss of detrital pyrite and other reduced
minerals (e.g., uraninite, siderite; Johnson et al., 2014) and the appearance of red beds, gypsum
deposits, and Superior-type iron formations, all mark the broad oxidation of S and Fe exposed to
the atmosphere (reviewed in Farquhar et al. (2011)). Since then, multiple lines of geochemical
evidence have been generated that support the GOE. Most prominently, the disappearance of S-
MIF is well accepted as a marker for a transition to an atmosphere with pO, > 103 % PAL (Table
1). Other proxy records specific to the GOE include the transition from the absence to the presence
of 105 (Hardisty et al., 2014), increases in marine SO4> (Blattler et al., 2018), transitions to
aerobic N cycling (Zerkle et al., 2017), and increases in marine U concentrations (Partin et al.,
2013).

The combination of the disappearance of S-MIF and the sustained lack of Cr isotope
fractionations constrain atmospheric O to have increased from <10~ % PAL to a range of ~107
to 1 % PAL at the GOE. Unlike “whiffs” or O, oases, these geochemical transitions are broad and
perhaps unidirectional and are thus less disputed as representing atmospheric O>. Part of the
challenge for future work is providing quantitative constraints on the other oxidative cycles
initiated at the GOE. For example, the O» concentrations necessary to support oxidative cycles for
I and N are not well quantified and may help refine constraints on GOE atmospheric O:
concentrations.

4.2.2 Great Oxidation Event or Great Oxidation Transition?

The GOE is debated to be a sharp binary switch in atmospheric Oz at 2.33 Ga (Luo et al.,
2016) versus a broad transition spanning >300 My (Gumsley et al., 2017, Poulton et al., 2021,
Hodgskiss and Sperling, 2022). There are three primary issues that complicate our understanding
of the length and timing of the GOE: (1) Poor age constraints, sampling biases, and differential
timing among variable proxies (Hodgskiss and Sperling, 2022); (2) Recent evidence suggesting
that the S-MIF transition was not binary and included multiple reversals over a prolonged period
(Poulton et al., 2021); and (3) Sedimentary recycling of S-MIF that implies the potential for a lag
time, by as much as 10-100 My, between the loss of S-MIF in the atmosphere and the preservation
of the full transition in the geologic record (Reinhard et al., 2013b).

In essence, the GOE is bookmarked by the initial and final loss of the S-MIF, occurring
from 2.5-2.43 Ga initially and permanent loss near 2.22 Ga (Poulton et al., 2021). Importantly,
given the potential for sedimentary recycling of pyrite retaining the presence of S-MIF even after
its loss in the atmosphere, this could put the initial loss of the S-MIF closer to 2.6 Ga—hence
overlapping with some so-called “whiffs” of O2. These interpretations of an earlier initiation of the
GOE are also supported by both the initial transition in the I/(Ca+Mg) record (Table 1) and the
appearance of red beds. The late complete disappearance of S-MIF puts the end of the GOE as late
as 2.19 Ga, which implies potential overlap with the Lomagundi-Jatuli carbon isotope excursion,
which has itself has been linked to oxygenation (Section 4.2.4).
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We note that the I/(Cat+tMg) record presents a significant opportunity to expand our
understanding of the GOE (Hodgskiss and Sperling, 2022, Hardisty et al., 2014). Specifically, the
current record across the GOE is from a coarse survey of Archean to Paleoproterozoic carbonate
successions and analysis of more sections or stratigraphic analyses of individual sections spanning
proposed GOE initiations could likely provide more insight into the timing of the first carbonate-
bound [—i.e., dissolved marine [O3;—appearance in the rock record.

4.2.3 What caused the GOE?

Given uncertainty of the timing and duration of the GOE, it is not surprising that a clear
driving mechanism of the GOE has not been resolved. That said, multiple plausible candidates
have been suggested, all linked in part to the inputs of O2 to the atmosphere necessary to overcome
the addition and large reservoir of reductants that titrate O, (reviewed in Lyons et al. (2014))—
sources vs sinks. The proposed mechanisms for the GOE are outlined in Figure 16, with an
emphasis on indirect geologic and biological mechanisms acting as initial drivers of geochemical
evolution. On the source side, these drivers include, but are not limited to the biological advent of
oxygenic photosynthesis, large igneous provinces, widespread glaciation, the initiation of plate
tectonics, hydrogen escape, and a decrease in reductant fluxes related to impactors from space and
abiotic and biotic methane formation.

The simplest explanation for the GOE is that it marks the advent and/or proliferation of
oxygenic photosynthesis (Fischer et al., 2016). Indeed, a fundamental question at the heart of the
investigation of early O is understanding when oxygenic photosynthesis itself evolved. If the GOE
is the advent of oxygenic photosynthesis, this requires that pre-GOE evidence of aerobic processes
record late-stage alteration or are non-specific to Oz (Slotznick et al., 2022). Though molecular
clocks support a pre-GOE origin for cyanobacteria and diversification at the GOE (Schirrmeister
et al., 2013, Fournier et al., 2021), we also note that the earliest fossil evidence for cyanobacteria
comes from 1.9 Ga (Hofmann, 1976). Sterane biomarkers previously interpreted to indicate pre-
GOE oxygenic photosynthesis (2-methyl-hopanes; (Brocks et al., 1999)) are non-diagnostic
(Rashby et al., 2007) and records of these steranes in pre-GOE rocks have been re-interpreted to
reflect younger contaminants (French et al., 2015). In this view, the rise of O at the GOE itself is
the clearest proxy for the emergence of cyanobacteria.

Other models also link the GOE to enhanced O, production at this time—regardless of
whether oxygenic photosynthesis may have existed prior to the GOE—with limited marine
productivity maintaining low O; relative to reductant fluxes in the atmosphere/ocean. Specifically,
a proliferation of oxygenic photosynthesis is tied to enhanced nutrient delivery to the oceans at the
GOE (Gumsley et al., 2017). Importantly, this hypothesis builds on the likely temporal overlap
between the GOE and Paleoproterozoic glaciation and low-latitude large igneous provinces (LIPs).
Specifically, low latitude LIPs documented from this period are hypothesized to have triggered
enhanced chemical weathering of continental flood basalts. Chemical weathering resulted in CO»
drawdown, ushering in the documented low-latitude glaciation but also supplying extensive
nutrients. A nutrient-based origin to the GOE and other oxidation events is supported by increases
in P contents of igneous rocks and sedimentary rocks at the GOE and later oxidation events (Cox
etal., 2018, Alcott et al., 2022, Bayon et al., 2022). The increase in nutrients fueled photosynthetic
activity which in turn increased O; fluxes to the atmosphere, initiating the GOE. Further, tectonic
forcing—the initiation of plate tectonics in the Paleoproterozoic—may have resulted in greater
subduction of carbon into the mantle as graphite or increased burial in association with Fe-oxides,

45



1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642

which both could have led to an increase in atmospheric Oz accumulation (Duncan and Dasgupta,
2017, Zhao et al., 2023).

The coincidence of the GOE with low latitude glaciation during the first great ‘Snowball
Earth’ in the Paleoproterozoic also provides evidence for a potential tipping point with O
overcoming reductive fluxes of methane (CHa) at this time (Goldblatt et al., 2006, Pavlov et al.,
2000). Similar to P, a change in marine Ni fluxes—a key micronutrient for methanogens—may
have also played a role in limiting CH4 fluxes (Wang et al., 2019). Other positive feedbacks leading
to higher net Oz export include the titration of reductants resulting from increasing the competitive
niches of oxygenic over anoxygenic photosynthesizers (Ozaki et al., 2019) and increases in SO4*
fluxes that supplied O via pyrite formation and limited atmospheric CH4 fluxes (Heard et al.,
2020).

On the flip side, a second model more explicitly ties the GOE to a decrease in reductants
relative to Oz sources. Such a process could have been protracted, with O2 production via oxygenic
photosynthesis predating the GOE but limiting atmospheric pO: to trace levels. For example, rapid
crustal growth at 2.7 Ga may have resulted in an increase in subaerial relative to submarine
volcanism leading to higher CO2/H20 and SO2/H;O ratios of volcanic gases compared to reduced
C and S equivalents (Gaillard et al., 2011, Kump and Barley, 2007, Meng et al., 2022, Kadoya et
al., 2020, Holland, 2009). Related mechanisms tie the development of an O3 layer at the GOE as
a new irreversible state (Goldblatt et al., 2006). More recently, models and spherule-bed records
suggest oxygenation at the GOE was linked to lower reductant fluxes from impactors particularly
prevalent during the late Archean (Marchi et al., 2021).

4.2.4 Lomagundi-Jatuli Oz overshoot: Fact or fiction?

The Lomagundi-Jatuli event, or LJE, is the most positive and longest-lived carbon isotope
excursion in Earth history. It lasted from 2.3-2.1 Ga and 8'3Cea values often reach +10%o, with
extreme values above +20%o0 (Karhu and Holland, 1996, Prave et al., 2022). In the context of
traditional carbon isotope interpretations (see Box 1: Linking changes in redox conditions to the
carbon isotope record)—where positive 8'*Ccar, excursions reflect increased organic carbon burial
and thus an increase in marine and atmospheric O budgets—the LJE has traditionally been
interpreted to reflect a major increase in atmospheric Oz (Karhu and Holland, 1996). As mentioned
above, it remains unclear whether such an oxygenation event is coupled to the GOE or stands as a
separate event. Follow up work in the last decade testing hypotheses of atmospheric/marine O»
increases has yielded mixed results, thus forcing reconsideration of the origins and interpretations
of the carbon isotope excursion (Fakhraee et al., 2023).

Beyond the carbon isotopes themselves, the strongest supporting evidence for oxygenation
comes from the S and Cr isotope records. This includes both the S concentration and isotope
composition of carbonate-associated sulfate (CAS) as well as records of S minerals, specifically
gypsum and anhydrite, over this interval. Collectively, these widespread observations point to a
large increase in the concentrations of dissolved SO4* in the ocean over this interval (Blattler et
al., 2018, Planavsky et al., 2012), which is consistent with atmospheric oxidation and increased
weathering of terrestrial pyrite yielding higher SO4* fluxes to and preservation within the ocean.
Specifically, higher [CAS] point to increased dissolved ambient SO4?* abundance. Importantly,
[CAS] is often overprinted to lower values during diagenesis (Gill et al., 2008, Lau and Hardisty,
2022), so there is not currently a well-accepted explanation for how these increases might have
resulted from any post-depositional alterations. Further, observed positive excursions in **Scas
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are linked to increases in pyrite formation and burial sourced from a relatively large marine SO4*
pool (Planavsky et al., 2012). Sulfate reduction to sulfide within larger SO4> pools sustain larger
Raleigh fractionations than smaller SO4* pools, thus increasing 3**Surate as reduction continues.
Notably, these 6**Scas values track that of coeval §°*S in evaporites, again making diagenetic
interpretations difficult. The increase in the evaporite minerals gypsum and anhydrite during the
LJE also independently point to an increase in marine SO4* availability, and thus oxygenation to
some degree, at least in shallow water settings (Bléttler et al., 2018).

More recently, positive Cr isotope values from 2.1-2.0 Ga mudstones of the Onega Basin
provide strong evidence for atmospheric oxygenation exceeding 1.0% PAL (Ménd et al., 2022).
We note that there is limited evidence for positive Cr isotope fractionations prior to 0.8 Ga,
suggesting a baseline of atmospheric O levels below this low O threshold. Because mudstones
and black shales—often necessary for the application of trace metals and their isotopes as
paleoredox proxies—are relatively limited during the LJE excursion, the temporal extent of Cr
isotope records—especially to older intervals—is currently limited. Future studies should focus on
expanding the Cr isotope and related records to better understand oxygenation across the duration
of the LJE.

Other geochemical records fall short of identifying unambiguous oxidation during the LJE
compared to preceding and subsequent time intervals. For example, there are I/(Ca+Mg) values
higher than the Proterozoic baseline across the LJE (Hardisty et al., 2017), but relatively higher
values are not uncommon in later Proterozoic intervals where widespread oxygenation is not
invoked (Figure 14). Importantly, even the highest I/(Ca+Mg) values are still within a range
observed within or adjacent to modern low O> zones. It might be easy to dismiss these
observations—given that, like [CAS], I/(CatMg) is easily diagenetically overprinted to lower
values (Lau and Hardisty, 2022)—but they are consistent with other proxies as well. For example,
the [U] record from black shales provides evidence for a larger U reservoir from greater surface
oxidation of uraninite (Partin et al., 2013); however, this increase is small relative to later intervals
and is also not resolvable with binned averages (Figure 14). Other trace element records in shales
that similarly reflect reservoir sizes linked to broader oxidizing conditions (e.g., Mo, Cr) do not
show clear increases across the LJE.

Together, these records suggest oxidation concurrent with the LJE—which may or may not
be linked with the GOE itself—but not to the degree implied by traditional interpretations of the
carbon isotope record. This obviously points to a need to resolve the degree in which feedbacks
linked to oxidation may have propagated and exacerbated such a long-lived and positive carbon
isotope excursion in a Proterozoic world very different than today. A recent study provides
intriguing evidence that the 8°Cca, excursion may be facies dependent and found nearly
exclusively in shallow marine deposits (Prave et al., 2022). This finding indicates the possibility
that local processes, akin to that already observed in modern shallow marine environments, could
be responsible for the LJE (Swart and Eberli, 2005, Geyman and Maloof, 2019). Still, these models
require an answer to why such large positive 8'*Ccar, values are not found during surrounding time
intervals. An additional hypothesis for the LJE is local methane oxidation tied to an increase in
marine SO4*, which would cause higher §°Cpic values in pore waters hosting carbonate
precipitation (Hayes and Waldbauer, 2006). Alternatively, local SO4* reduction tied to methane
oxidation may play a role, but on a global instead of local scale, thus altering the DIC composition
of seawater (Schrag et al., 2013). To be clear, however, for both methane-related models, the
negative 8'3C sink is still physically missing from the observed sedimentary record and
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Figure 15. Change point analyses of redox proxy records. The analysis is based on data averaged for 1 million year-binned
intervals. For I/(Ca+Mg), the analysis also considered the maximum values at 1 million year-bin intervals (I/(Ca+Mg)max. A
paired t-test of the pre- and post- change point data populations revealed p-values < 107 for all proxies except for 53Uy, and
[Re] (p = 3.3x107 and 1.1x10°, respectively). Colors correspond to that in Figures I and 13 (red = ferruginous; green =
manganous, purple = euxinic, yellow = iodinous) and indicate least reducing water column redox conditions leading to proxy
change.

4.2.5 Mid-Proterozoic biogeochemical stasis?

Following the LJE, multiple lines of evidence point to a long-term decline in atmospheric
O: and biogeochemical stasis (1.8-0.8 Ga; e.g., Hodgskiss et al. (2019)). The middle Proterozoic
is so famous for stasis—both in redox conditions and for eukaryotic life and biological evolution—
that the term “boring billion” has become a cliché for describing this interval. The most prominent
evidence for biogeochemical stasis through the middle Proterozoic is the relatively invariant
records of carbon isotopes (which rarely deviate from 0%o) and concentrations and isotopes of
redox-sensitive trace elements (Figure 14 and Figure 17). However, several recent studies have
challenged this premise, including that of stasis and that of low O-.
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Importantly, the Cr isotope record provides a key set of evidence for a long-term baseline
of Oz as low as <1% PAL, but there is some evidence for punctuated oxygenation. For example,
positive Cr isotope anomalies from shales of the ~1.4 Ga Shennongjia Group in South China
provide some evidence for an oxygenation event during this time (Canfield et al., 2018). We note
that increases in I/(Cat+tMg), some trace metals, and Ce/Ce* anomalies from nearby intervals
collectively point to oxygenation against a backdrop of low Oz conditions—i.e., an OOE. Less
convincing, in our view, is Cr isotope evidence from carbonates for oxygenation during this
interval and other portions of the mid-Proterozoic. The Cr isotope record in carbonates suggests
02 >1% PAL in every section analyzed to date (Gilleaudeau et al., 2016). This may represent a
more detailed view of redox with ocean depth—with carbonates and shales archiving shallow and
deeper waters, respectively—but other evidence suggests the potential for diagenetic alterations to
have a potentially major effect on interpretations of these data (Wang et al., 2021). Regardless,
going forward it will be important to demonstrate the reliability of the carbonate Cr record, such
as via a lack of fractionations in Archean carbonates where the S-MIF is consistent with
atmospheric Oz <0.001% PAL.

A recent review paper highlights the potential for multiple mid-Proterozoic OOE’s,
including at 1.4 Ga (as highlighted above) but also at 1.1 Ga (Diamond and Lyons, 2018). This in
part relies on the 3>3Cr record of carbonates discussed above, but also on evidence for increased
Mn deposition (Spinks et al., 2023) as well as higher Re concentrations (Figure 14). Some tentative
evidence for a broader shift in redox conditions starting at 1.1 Ga—as opposed to a discrete
event—is a shift toward a more positive baseline in 8'3Ccan, (Kah et al., 2004). This transition can
be generally observed in Figure 17.

4.2.6 Proterozoic O; oases?

Model reconstructions of marine Oz constrained by atmospheric redox proxies predict the
persistence of Oz oases well into the Proterozoic, but clear marine geochemical evidence for oases
is still lacking. Specifically, Cr isotope predictions for a mid-Proterozoic atmosphere with O
concentrations <1% PAL imply marine Oz concentrations sustained via air-sea exchange to be
<2.5 umol kg!' (Planavsky et al., 2014b). This value is below the maximum of 10 pmol kg™!
possible in local areas of high photosynthesis predicted in models considering mid-Proterozoic
and Archean constraints (Reinhard et al., 2016a).

One of the major challenges in recognizing mid-Proterozoic O2 oases is that, unlike the
Archean, evidence of oxidative geochemical cycles is widespread, but the dissolved O» thresholds
for these proxies are not well defined. For this reason, distinguishing between background O of
<2.5 umol kg '-—that possible from air-sea exchange—vs values up to 10 umol kg-'—that possible
from localized photosynthesis—is challenging with current paleoproxy constraints. For example,
the I/(Ca+Mg) record suggests a distinct redox landscape pre vs post GOE (absence vs presence
of 103, respectively), indicating a clear increase in oxidizing capacity (Hardisty et al., 2014,
Hardisty et al., 2017). However, estimates of the O, thresholds for 103 formation or persistence
range from <1 pmol kg! to 30 umol kg™! (Hardisty et al., 2014, Lu et al., 2016). Importantly, the
shift in I/(Ca+Mg) at the GOE cannot currently be used to determine if O> oases were present pre-
or post-GOE. In this conceptual model, IOz~ may have formed at local O; oasis pre-GOE, but
Archean air-sea Oz exchange and extremely low O values at oases led to rapid 103 reduction,
thus limiting its spatiotemporal accumulation and retention in the carbonate record. Alternatively,
the elevated post-GOE marine Oz concentrations sustained via air-sea exchange may have risen
above values important for 103" accumulation, thus minimizing the role of Oz oases in 103
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formation. Further, O> oases after the GOE could have acted as geochemical hotspots for the
formation of low levels of 103” while the increase in minimum O; values from air-sea exchange
could have sustained the circulation of 103" in oligotrophic regions beyond the oases (Hardisty et
al., 2021). Regardless, we note that there are limited I/(Ca+Mg) records prior to the GOE and thus
it remains tentative to rule out pre-GOE marine 10;3” accumulation.

4.2.7 What was the redox state of the mid-Proterozoic Ocean?

Against the backdrop of low O>—potentially punctuated by infrequent OOEs, if any—
there has been much focus on understanding the background redox states of the Proterozoic ocean.
Efforts to quantify the amounts and stability of near-surface O are important given their
implications for early animals (Section 4.3.2). Beyond this, however, what were the redox states
with respect to the paleoredox ladder shown in Figure 1? Did the redox states vary over time? Are
there clear spatial differences between near-surface and deep ocean redox conditions? These
outstanding questions remain unaddressed.

Starting with near-surface conditions, some of the clearest constraints come from carbonate
I/(Cat+Mg) ratios, which provide abundant evidence for iodinous conditions—or those supporting
partial 103" reduction (Figure 14). Specifically, I/(Ca+Mg) ratios point to low 103" abundances
throughout the mid-Proterozoic that are similar to that observed in modern low Oz zones. We note
that diagenesis can decrease primary I/(Ca+Mg) ratios (Hardisty et al., 2017, Lau and Hardisty,
2022)—which amplifies the significance of non-zero iodine values in carbonate—but this is
unlikely to explain the lack of any known elevated modern-like values until the Neoproterozoic.
In addition to preservation, more constraints are needed to connect the presence of low but non-
zero 103" to specific Oz levels or timescales of accumulation. Beyond I/(Ca+Mg), REE anomalies
(i.e., Ce/Ce*) provide additional evidence for redox stratification and prevalent manganous
conditions in the Proterozoic (Wallace et al., 2017).

Further, combinations of [Cr], [U], [Mo], and Fe speciation in shales are consistent with
widespread low O; conditions maintaining small marine reservoir sizes and short residence times.
The combined redox sensitivities of Cr to anoxic (ferruginous + euxinic) and Mo to euxinic
conditions have been used to constrain 30-40% of the seafloor as anoxic and 1-10% as euxinic
(Reinhard et al., 2013c). Importantly, Fe speciation data indicate that conditions were more broadly
ferruginous. A statistical assessment of Fe speciation data through the Proterozoic provides
evidence that ferruginous conditions dominated the deep ocean until well into the Paleozoic
(Sperling et al., 2015b). Together these trace element and Fe speciation observations support
widespread ferruginous relative to euxinic conditions (Planavsky et al., 2011) in contrast to
previous models that predicted widespread euxinia during this interval (i.e., the ‘Canfield Ocean’;
(Canfield, 1998)).
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4.3 Stage III: Neoproterozoic through Paleozoic: a protracted transition?

4.3.1 Neoproterozoic redox landscape

The Neoproterozoic is considered a major transition in the evolution of life and
environment. Chief amongst geobiological changes is a multitude increase in the evidence for
eukaryotic life, biomarker sterane-based evidence for early sponges, increases in fossil abundance,
as well as the first ichnofabrics indicative of complex organisms, including their movement
(discussed in detail in Section 4.3.2). Further, like many of the redox transitions before it, the
environmental perturbations of the Neoproterozoic are characterized by large carbon isotope
excursions. Indeed, a new backdrop of positive 8'*Cear starts as early as 1.1 Ga and persists into
the Paleozoic (Kah et al., 2004). However, the Neoproterozoic is unique in that the baseline 8'3Carb
is punctuated by multiple extreme negative 8'3Cecary events, including the largest and longest in
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Earth history (the Shuram-Wonoka excursion). Hypothesis specific to the origins of these carbon
isotope excursions are discussed in detail in Section Error! Reference source not found., but we
highlight below their association with variations in redox-sensitive trace elements indicative of a
baseline shift in oxygenation.

The change point analysis in Figure 15 provides evidence from multiple proxies for a
change in baseline redox conditions spanning the Neoproterozoic and into the Paleozoic. Most
prominently, the Cr isotope record shows a shift to positive values as the new baseline, providing
quantitative evidence for an increase in atmospheric Oz levels near 0.8 Ga. Coinciding with this
shift and subsequently in the Neoproterozoic, multiple other trace element proxies have change
points indicative of higher marine and atmospheric Oz levels—specifically Re, Mo, and V. While
this implies a baseline shift in atmospheric O levels, it is important to emphasize that the
Neoproterozoic oceans were broadly low in O> (Sperling et al., 2015b). Against this backdrop,
there is evidence for more frequent OOEs relative to the preceding mid-Proterozoic.

Importantly, the Fe speciation record offers little evidence for global redox changes
through the Neoproterozoic and even the Paleozoic (Sperling et al., 2015b, Pasquier et al., 2022).
Indeed, the protracted timing of change points from the Neoproterozoic through the middle to late
Paleozoic (Figure 15) lends support to the emerging hypothesis that this was truly a transition to a
fully oxygenated deep ocean, and not a geological rapid event isolated to the Neoproterozoic
(Sperling et al., 2015b, Wallace et al., 2017, Lu et al., 2018, Cole et al., 2020). The fact that the
change points are spread over a temporal range—and do not coincide relatively neatly as for the
GOE—and that the order of changes for the redox-sensitive trace elements in our compilation (Re,
Mo, V) broadly align with expected redox sensitivities based on Figure 1, support a gradual
increase in marine oxidation.

In the Phanerozoic—following the OOE-to-OAE transition—increases in trace metal
contents are most simply interpreted as changes in basinal restriction that impact the seawater
supply of trace elements to marginal anoxic basins (e.g., Hancock et al., 2019). This can also be
true in the Neoproterozoic; however, the most parsimonious explanation for higher trace element
concentration in Figure 15 is a secular change in redox-sensitive trace element seawater
concentrations. Thus, higher [Re], [Mo], and [V] of black shales is consistent with increases in
their marine reservoir size (Tribovillard et al., 2006). These increases in reservoir size are
interpreted to be redox-dependent increases in sources and decreases in sinks of these elements to
and from the ocean. For example, the main supply of Re and Mo to the ocean are riverine inputs
fueled by oxidative weathering of sulfides on land (Miller et al., 2011). Similar to the increases in
marine SO4* recorded over time, these higher supplies are fundamentally linked to O availability
in the atmosphere. However, results from pyrite oxidation experiments at low Oz indicate that the
most prominent increases in supply of trace elements associated with sulfide oxidation likely
occurred during the GOE (Johnson et al., 2019), as this process is most sensitive to low levels of
O: (Table 1). This suggests that increases in reservoir size during the Neoproterozoic may be most
closely tied to reduced anoxic (ferruginous and/or euxinic) bottom waters which act as a primary
sink for these and many other trace elements (Figure 15).

The decline of anoxic bottom waters is consistent with the expansion of the eukaryotic
fossil record through this interval, which implies O> above thresholds necessary for aerobic
metabolisms. These thresholds themselves are debated, ranging from <1% PAL to 1-3% PAL, and
thus place these redox changes right at the cusp of the threshold for positive Cr isotope
fractionations at 1% PAL (Planavsky et al., 2014b). In addition to absolute O, thresholds, the
timescales of O availability are also expected to increase once the ocean transitions from an oasis
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to equilibrium regime. Notably, the 1% PAL threshold for O; at 0.8 Ga from Cr isotopes still does
not rule out the potential for dynamic O oases, however, considering that as much as 10 pmol kg
10, (or 2.1% PAL) is necessary for this oasis-to-equilibrium regime transition (Reinhard et al.,
2016a, Reinhard and Planavsky, 2022). We note, as discussed in more detail in Table 1, that
records for other proxies with specific Oz thresholds are limited after the Cr isotope change point.
Biological constraints on O2 (i.e., body size and motility) indicate levels closer to 10% PAL were
not reached until the Cambrian (Sperling et al., 2015a). Unlike geochemical proxies, evidence
from the fossil record does not rule out higher O prior to these evolutionary events, as the timing
of biological innovations can lag behind environmental transitions.

Given that widespread deep-ocean anoxia persisted in the Neoproterozoic and early
Paleozoic, the driver of the change point in the shale trace element record in Figure 15 is an
increased frequency of OOEs relative to the mid-Proterozoic. Limited age constraints often make
it difficult to correlate geographically disconnected shale stratigraphic sections and can be further
complicated by the potential for local basin hydrography as a key player in trace element
chemostratigraphy. These OOEs are commonly linked to negative carbon isotope excursions
through the Neoproterozoic (Section 4.3.3). Although this can support a link to redox changes,
because so many of these carbon isotope records come from carbonate archives, there is also
vigorous debate regarding diagenetic vs local vs global carbon cycle origins of geochemical signals
(see Box 1: Linking changes in redox conditions to the carbon isotope record).

Unique to this stage and controls on redox are ‘Snowball Earths.” The Neoproterozoic is
notable for two major glaciation episodes—the Sturtian and Marinoan (Kirschivink, 1992,
Hoffman, 1998)—that mark the beginning and end of the Cryogenian Period. Sedimentary
evidence suggests the presence of glaciers even at equatorial latitudes (Hoffman and Schrag,
2002), although the exact extent of ice is a topic of debate (Runnegar, 2000, Allen and Etienne,
2008). Nonetheless, widespread sea ice and associated climate change likely had an impact on the
redox conditions of the ocean. For example, banded iron formations disappear for much of the
Proterozoic but make a re-appearance during the Cryogenian glaciations—especially the
Sturtian—which suggest anoxic and ferruginous conditions (Tahata et al., 2015), especially in
marginal basins that could have maintained high Fe from hydrothermal and detrital sources (Cox
et al., 2013). If these glaciations were not truly widespread, then areas of open ocean could have
maintained air-sea gas exchange that resulted in Oz-replete surface waters, sustaining life
(Pierrehumbert et al., 2011). Evidence for open-ocean conditions during the Marinoan come from
N isotope data that indicate an active N cycle and biological production in the surface waters,
despite deep waters being ferruginous (Johnson et al., 2017, Sahoo et al., 2012). However, waters
with sufficient O, are still possible in a regime where the oceans are completely frozen. One
possibility is the supply of O> from subglacial meltwater, which is inferred from redox proxy
gradients from ice-proximal to ice-distal strata in the Sturtian (Lechte et al., 2019). Alternatively,
cryoconite holes in ice shelves, resulting from dust-induced melting, could have supported O
supply to the surface ocean and small-scale refugia for life, particularly microbial ecosystems
(Hoffman, 2016).

The terminations of both Cryogenian glaciations may also have implications for marine
redox evolution. Massive weathering that brought the Earth out of a glaciated state (Le Hir et al.,
2009, Rooney et al., 2013, Kasemann et al., 2014, Huang et al., 2016) is hypothesized to result in
the widespread cap carbonates characteristic of Snowball glaciations (Fabre and Berger, 2012,
Hoffman et al., 2017, Higgins and Schrag, 2003). The Cryogenian is also notable for containing
several large igneous providences and associated volcanism (Cox et al., 2016, Macdonald and
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Wordsworth, 2017). The combination of high weathering rates and widespread fresh basalts may
have resulted in large fluxes of P to the oceans (Horton, 2015), which has been suggested as at
least one trigger of oxidation of the oceans (Dodd et al., 2023). Support for this hypothesis comes
from U isotopes in Mongolian carbonates following the Sturtian (Lau et al., 2017a) and trace
element concentrations that imply an OOE directly following deposition of the Marinoan cap
carbonate in the lower Doushantuo Formation (Sahoo et al., 2016).

4.3.2  Ocean redox conditions and evolution of complex life

The rise of dissolved O; in the Neoproterozoic correlates to changes in the biomarker
record that suggests a coupling to the rise of eukaryotes. Similar to the temporal relationship
between the appearance of cyanobacteria and the GOE, there is evidence that algae evolved prior
to but did not proliferate until the Neoproterozoic (Figure 13). Specifically, molecular clock
estimates place the last common ancestor of algae from 1.9-1.4 Ga (Parfrey et al., 2011, Sanchez-
Baracaldo et al., 2017). The first fossil evidence for red algae is at ~1.2 Ga (Butterfield, 2015) and
the first fossil and porphyrin-based evidence for the presence of green algae does not occur until
~1.05 Ga (Gibson et al., 2018, Gueneli et al., 2018). However, sterane biomarkers are not found
in the fossil record until 0.9 Ga and sterane/hopane ratios show a pronounced increase during the
Cryogenian, 0.72-0.64 Ga (Brocks et al., 2017, Hoshino et al., 2017, Isson et al., 2018). Higher
sterane/hopane ratios in the sedimentary biomarker record are interpreted to represent a significant
presence of eukaryotes—which produce steranes—relative to bacterially derived hopanes in
driving primary productivity in the ocean. The biomarker record thus indicates a rapid and
permanent shift in the food chain. Embedded within this shift from bacterial to eukaryotic
dominated preservation of primary producers is a shift from a dominance of red to green algae at
the Sturtian glaciation (Isson et al., 2018). The establishment of eukaryotes as primary producers
in marine systems is hypothesized to lead to ecological pressures at higher trophic levels toward
larger grazers, the evolution of predators, and more complex organismal interactions (Brocks,
2018). Further, the establishment of larger primary producers would have also resulted in a more
dynamic biological pump (Lenton and Daines, 2018), increasing organic carbon burial fluxes
which may be a potential cause for Neoproterozoic O rise.

The causal relationship between Neoproterozoic oxidation and the rise of complex life is
highly debated (Cole et al., 2020, Mills et al., 2022, Sperling et al., 2022). Redox conditions in the
Neoproterozoic are noted for being highly variable (Section 4.3.1) and Oz levels did not cause
animal to evolve (Knoll and Carroll, 1999). Instability and spatial heterogeneous redox conditions
may have hampered metazoan evolution (Johnston et al., 2012, Johnston et al., 2013, Macdonald
et al., 2013, Wood et al., 2015, Sahoo et al., 2016). Alternatively, fluctuations in marine redox
conditions may provide evolutionary pressures that result in greater diversification and periods of
innovation (Wood and Erwin, 2018). Although it is without question that metazoans require O to
perform aerobic respiration, the amount of O» that is necessary, particularly for basal animals, is
not known. Experiments with demosponges—expected to be representative of the physiology and
O: requirements of the earliest animals that are extant today—indicate that survival is possible
even at Oy levels of 0.5 to 4.0% PAL (Mills et al., 2014), and O, as a limitation on multicellular
animals has been argued to be unlikely for most of the mid-Proterozoic and later (Sperling et al.,
2022). The bilaterian body plan exemplified by the Ediacaran fauna, which, though now extinct,
are regarded as the earliest bilaterians (Evans et al., 2020a), would have higher O, demands than
demosponges depending on the respiratory system of these organisms (reviewed in Sperling et al.
(2015a)). Estimates of O, demand for small bilaterians, based on calculations of O diffusion and
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circulatory systems for a long worm body plan, are <0.5% PAL (Sperling et al., 2013). The ability
of bilaterians to tolerate such low O: levels is supported by observations of modern animals in
waters with dissolved O> as low as 0.02 mL L (Sperling et al., 2015a) as well as genetic
adaptations for anaerobic metabolisms (Mueller et al., 2012, Mentel et al., 2014).

In addition to the low dissolved O, threshold for basal animals and bilaterians, whether O-
is even the limiting factor for animals is debated. Indeed, the argument has been made that higher
02 is not a precursor requirement for animals but rather the biogeochemical consequence of animal
evolution and associated higher organic carbon burial fluxes (Butterfield, 2009). Accompanying
the rise of animals and their greater complex behaviors in the Cambrian and early Paleozoic,
including substrate-penetrating bioturbation, was also the ability for biological innovation to
directly impact redox conditions of the ocean (Butterfield, 2018, Tarhan et al., 2015, Tarhan, 2018,
Boyle et al., 2014, Boyle et al., 2018). Additionally, ecophysiological constraints suggest that
temperature stability may be more important for Ediacaran biota than the O2 concentration alone
(Boag et al., 2018). Using constraints from modern cnidarians, these authors suggest that deep,
colder waters—even if lower in Oz than warmer surface waters—produced optimal conditions for
early animals. Despite this debate, low to moderate O levels of the early Phanerozoic can help to
explain the frequency and severity of extinctions in the early Paleozoic compared to the Stage IV
interval of Earth’s redox history (Sperling et al. (2022); Figure 13).

Therefore, although the role of O: in directly controlling early bilaterian evolution is
debated (Evans et al., 2018), there is support for the hypothesis that O> controlled the ecological,
physiological, and morphological characteristics of metazoans (Sperling et al., 2022) and even
early mass extinctions (Evans et al., 2022). This includes more complex substrate interaction
behavior, such as burrowing and other bioirrigation. As a further example, the rise of predation
alongside increases in Oz highlights how greater energy resources available from aerobic
respiration may have led to carnivory and the development of more complex trophic structures
(Sperling et al., 2013, Sperling et al., 2022). The rise of carnivory may be partially a consequence
of the positive relationship between O and body size, which has been argued for early marine
animals in the Ediacaran and Cambrian as well as gigantic terrestrial insects in the late Paleozoic
and Cretaceous (Dudley, 1998, Knoll and Carroll, 1999, Butterfield, 2007, Harrison et al., 2010,
Payne et al., 2011, Clapham and Karr, 2012, Schachat et al., 2018, Zhuravlev and Wood, 2020).
Overall, the increase in body size over the Phanerozoic may reflect the increase in oxidation of the
atmosphere-ocean system as well (Heim et al., 2015).

An additional biological innovation that is closely tied to ocean redox is the development
of increasingly skeletonized phytoplankton and zooplankton. The rise of biomineralization from
the late Ediacaran through the early Paleozoic (Knoll, 2003, Porter, 2007, Zhuravlev and Wood,
2008) and the Mesozoic appearance or expansion of skeletonized diatoms, forams, and
coccolithophoorids (Ridgwell, 2005) had major impacts on the biological pump. Specifically,
skeletonization is hypothesized to increase the depth of remineralization, which Earth system
models have shown to effectively oxygenate the oceans, particularly in shelf environments,
through the deepening of the OMZ (Meyer et al., 2016, Lu et al., 2018).

This section highlights the “chicken and egg” challenges of linking O with evolutionary
and ecological patterns of complex life in Earth’s history (see Cole et al. (2020) for a useful point-
counterpoint discussion of some of the arguments covered in this section). Ultimately, while there
is little doubt that the specific redox conditions of the oceans remain an important consequence of
and in some cases, critical necessity, for biospheric evolution, we expect that the why’s, how’s,
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and when’s will continue to drive and advance innovative research in geobiology, with major
implications for future climate change as well as for astrobiology.
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Figure 17. Compilations of (top) organic carbon isotopes (Krissansen-Totton and Catling, 2017) and (middle) carbonate carbon
isotopes (Krissansen-Totton and Catling, 2017, Saltzman and Thomas, 2012). (bottom) Carbonate carbon isotopes for the
Phanerozoic only. The solid circles are the binned data (averages for every 1 Myr bins) and the open circles are the entire
compilation. Key OOEs (blue bars) and OAEs (orange bars) discussed in Section 4 are marked, with the width of the bar arbitrary.
The dashed blue bars indicate proposed (but debated) OOEs. LIE=Lomagundi-Jatuli Event (~2.3 to 2.1 Ma), Mid-Prot=Mid-
Proterozoic (~1.4 Ga and ~1.1 Ga), Edia.=multiple Ediacaran OOEs (~640 to 520 Ma), SPICE=Steptoean Positive Carbon
Isotope Excursion (~499 Ma), HOAE=Hirnantian Ocean Anoxic Event (~466 Ma), LKE=Late Silurian Lau/Kozlowskii Event
(~424 Ma), F-F=Frasnian-Fammenian Lower and Upper Kellwasser events (~372 Ma), P-Tr=Permian-Triassic (~252 Ma), T-
J=Triassic-Jurassic (~200 Ma), TOAE=Toarcian Ocean Anoxic Event (~184 Ma), Cret. OAEs=Cretaceous OAEs (OAE-1a, ~120
Ma; OAE-1b, ~111 Ma; OAE-2, ~94 Ma), PETM=Paleocene-Eocene Thermal Maximum (~56 Ma).
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Box 1: Linking changes in redox conditions to the carbon isotope record

Because there are excellent reviews of proxies already published (see Table 1), in this Chapter
we have focused on the interpretations and implications of redox proxies used to reconstruct
past redox conditions. Carbon isotopes are one of the most applied geochemical proxies used
to infer changes in O, concentrations through Earth history, and so we include this synthesis
of recent ideas surrounding if and how carbon isotope records are linked to atmosphere-ocean
redox conditions. The link between carbon and redox conditions arises because the proportion
of organic carbon burial relative to the total burial of carbon from the ocean-atmosphere
system (forg) reflects geological processes that impact redox conditions (Broecker, 1970).
Because photosynthesis imparts a large isotope fractionation between inorganic and organic
carbon (Hayes and Waldbauer, 2006), buried organic carbon has a lower &'3C value than
inorganic carbon (e.g., carbonate sediments), and therefore increased (decreased) burial of
organic carbon would result in a higher (lower) §'3C of the remaining seawater reservoir of
total carbon. Using this framework, the modern mean seawater 83C of ~1%. roughly
corresponds to forg = 0.2 (Kump and Arthur, 1999).

The output fluxes of organic carbon burial in terrestrial and marine environments have short-
term and long-term implications for O, (Figure 3; reviewed in Lenton et al. (2016)). Redox
conditions in terrestrial and marine settings can be directly linked to organic carbon contents
through two non-exclusive mechanisms. First, higher amounts of organic carbon burial can be
a direct consequence of greater primary productivity, which leads to greater consumption of
0, through higher rates of aerobic respiration of sinking organic matter. Triggers for higher
primary productivity, including weathering and volcanism-induced delivery of nutrients
(Berner, 2006a), can also result in changes in §'3C via the increase of mantle-derived volcanic
CO;. Second, higher preservation of organic carbon in seafloor sediments corresponds to lower
bottom water O; concentrations, limiting remineralization pathways to anaerobic
metabolisms. Therefore, the direct consequence of lower O, (through the production of
organic matter and higher preservation) is higher organic carbon burial. On longer time scales,
a negative feedback is introduced that results in the opposite relationship (Berner, 20063,
Berner, 2001). Because burial of marine and terrestrial organic carbon removes a major
reductant from the ocean-atmosphere system, higher fluxes of organic carbon burial result in
a build-up of atmospheric O; (e.g., Equation 1). Therefore, the relationship between O, and
organic carbon, and by extension, §13C, depends on the spatiotemporal scale of interest.

Based on this long-established framework, a major question is how the C isotope record is
representative of global changes in O,. A compilation of published C isotope records (Figure
17) demonstrates that there are major transient and baseline shifts through time, reflected in
both the carbonate and organic carbon &'3C records. The interpretation of these 63C
compilations has been long investigated, connecting the global carbon and O, biogeochemical
cycles (Veizer et al., 1999, Saltzman and Thomas, 2012, Krissansen-Totton et al., 2015, Bachan
et al.,, 2017). A major assumption is that the C isotope record is representative of global
changes to the ocean-atmosphere C isotope reservoir. This assumption has been challenged,
most strikingly by observations in Neogene carbonate sediments (Oehlert and Swart, 2014,
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Swart, 2008, Geyman and Maloof, 2019) that highlight the role of diagenesis and local
heterogeneity in impacting bulk carbonate 6'3C as well as carbonate paleoredox proxies
(Figure 18). These factors have also been proposed to impact long-term compilations of 63C
(Ahm and Husson, 2022), although comparisons of carbonate, marine organic carbon, and
terrestrial organic carbon 63C can help to support or challenge interpretations of “global” §*3C
signals. Additional caveats to the potential for §3C to track redox conditions are other
mechanisms that can impact §'3C independent of O, changes, such as the potential for sea-
level change and associate weathering/flux changes to impact 6§'3C (Saltzman et al., 2015), the
release of '2C-enriched sources such as volcanism, organic carbon weathering, or methane
(Dickens, 2011, Frieling et al., 2016), and the role of authigenic carbonate precipitation (Higgins
et al., 2009, Schrag et al., 2013, Wang et al., 2023). Though these processes have been linked
to specific §13C excursions, it is currently not clear whether they could play a role in driving the
major baseline shifts such as in the Neoproterozoic.
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Figure 18. Data from the Neogene to Pleistocene from the Clino core on the Bahamas Bank. The Clino core provides an example
of a potential Rosetta’s Stone in quantifying paleoredox proxy behavior during carbonate diagenesis, covering a time period
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of relatively stable ocean redox but capturing variability in carbon diagenesis, which influences proxy signatures. This includes
meteoric diagenesis, driving the negative carbon isotope excursion in the top of the core, and marine burial diagenesis. Data
come from multiple sources (Chen et al., 2018, Hardisty et al., 2017, Liu et al., 2019, Wang et al., 2021, Higgins et al., 2018,
Melim et al., 1995, Murray et al., 2021, Stewart et al., 2015).

4.3.3 Carbon isotopes and Neoproterozoic OOEs

The relationship between 8'*C and redox change in the Neoproterozoic has been a cause
of frequent debate. For example, the negative ~20%o0 Shuram excursion (also called the Shuram-
Wonoka excursion) that occurred at ca. 574 to 567 Ma appears to correspond to global
oxygenation. Specifically, there is evidence for increased SO4*, 105", Mn oxides, U, and other
trace metals across this interval (Hardisty et al., 2017, Loyd et al., 2012, Osburn et al., 2015, Zhang
etal., 2019, Li et al., 2017, Sahoo et al., 2016, Fike et al., 2006). S and U isotope records hint at a
global decrease in pyrite burial (Osburn et al., 2015) and an increase in the extent of oxygenated
seafloor at the start of the Shuram (Zhang et al., 2019). That said, the global C cycle interpretations
of the Shuram excursion are heavily disputed (Derry, 2010, Husson et al., 2015). Similar to the
LJE (Section 4.2.4), explanations for this excursion have been difficult to reconcile with the
canonical f,, framework linking positive (negative) C isotope changes to higher (lower) organic
carbon burial. The nadir 83 Ccary value for the Shuram varies geographically but is consistently
below the mantle 3'3C value of ~-6%o (Kump and Arthur, 1999), ranging from ~-15 to ~-10%o (see
recent compilation in Busch et al. (2022)). The traditional §'*C interpretative framework of simply
a lower for¢ 1s not a realistic explanation because the Shuram represents values well below the
mantle-input 8'3C, and therefore requires alternative explanations including novel carbon pools
related to spatial biogeochemical processes, methane addition, or diagenesis (Husson et al., 2015,
Tziperman et al., 2011, Rothman et al., 2003, Knauth and Kennedy, 2009, Bjerrum and Canfield,
2011, Busch et al., 2022). Recent arguments even suggest that similar U isotope signals could be
generated via euxinic-ferruginous transitions (Gong et al., 2023) and that trace element records
from shales provide limited, if any, evidence for oxygenation (Ostrander, 2023).

In contrast to the Shuram, other transient Ediacaran OOEs are not clearly related to
systematic shifts in the 8'3C, at least within the Doushantuo Formation in South China (Sahoo et
al., 2016). Similarly, the Cryogenian Taishir negative §!°C excursion of ~-15%o, which is best
recorded in Mongolian strata spanning the non-glacial interval (Macdonald et al., 2009), has been
noted to correspond to a negative shift in U isotopes (Lau et al., 2017b). This has been alternatively
interpreted as a long-term expansion of seafloor anoxia or a shift from euxinic to ferruginous
conditions (Wei et al., 2021), both of which persist even when the §'*C record returns to baseline
values. In combination, the lack of clear correlation between drivers of §'3C excursions and
transient or long-term redox makes it a challenge to interpret the Neoproterozoic 8'3C record as a
consistent recorder of the ocean-marine redox state.

Interestingly, these Precambrian oxygenation “excursions”—that correspond to both
positive and negative 8'3C shifts—may be at least in part related to the timescale of these shifts;
specifically, if the LJE does indeed represent an oxygenation event of some magnitude, it could be
related to the generation of large amounts of organic matter that were subsequently buried, whereas
the shorter-lived OOEs could be related to C cycle perturbations that led to temporary oxygenation.
Similarly, the Shuram §'*C has been tied to C cycle dynamics unique to the Ediacaran (Tziperman
et al., 2011), and potentially did not reflect organic carbon burial directly but rather the
biogeochemical changes that resulted from greater oxygenation.
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It is important to note that the baseline redox state of the Precambrian oceans is one with a
poorly ventilated, predominantly anoxic deep ocean (Figure 2). It is possible that transient shifts
to greater anoxia within such an ocean would be difficult to detect given this baseline state. Within
this context, a curious observation about the Precambrian C isotopes record, and specifically in the
Cryogenian and the Neoproterozoic, are steady-state 3'C values that are much higher (5 to 10%o)
compared to prior and subsequent time intervals. The cause of these high baseline values, and
potential implications for both short-term and longer-term redox conditions, remain unexplained
(Halverson et al., 2005, Schrag et al., 2013). It is difficult to reconcile how persistently high §'*C
values could be related to long-term higher organic carbon burial as the expectation is that this
would be corrected by the negative feedback generating higher atmospheric pO,. Perhaps these
high 8'3C values simply reflect the unique redox stratified ocean and separation of different carbon
pools (Bristow and Kennedy, 2008) during the Neoproterozoic (see also Fakraee et al. (2021)).

4.4 Stage IV: OOE to OAE transition

4.4.1 When was the deep ocean oxygenated?

With the Neoproterozoic to Paleozoic transition, the redox structure of the ocean underwent
the final change to the present-day configuration shown in Figure 2 where the deep ocean became
fully oxygenated. As discussed in Section 2, this does not signify that Oz levels in the deep ocean
are equivalent to the surface ocean in all locations; the O content of modern bottom waters
indicates that regions of water-column productivity, including mouths of rivers and upwelling
regions, produce bottom-waters where Oz is low enough to impact habitability (Error! Reference
source not found.). However, the vast majority of bottom-water O: distribution today is
sufficiently high to sustain diverse and abundant metazoan communities. This is possible only
when atmospheric Oz levels were sufficiently high that O, consumption through sinking organic
carbon (i.e., the biological pump) did not significantly reduce O levels everywhere. The exact
atmospheric O level that was required to produce well-oxygenated deep oceans is dependent on
parameters of the biological pump, the assumed nutrient availability, as well as ocean
configuration. A recent model suggests that the deep ocean is ventilated when atmospheric pO»
reaches >30% PAL (Reinhard and Planavsky, 2022).

The establishment of modern redox structures can be distinguished by the change in
shallow marine carbon redox proxies. Specifically, high I/(Ca+Mg) and low Ce/Ce* bookmark
this transition and can both be related to an overall well-oxygenated ocean because globally
persistent shallow marine O; at high levels can only be sustained (1) when atmospheric O is high
and (2) when resupply of well-oxygenated deep oceans to the surface is also high. The change
point analysis in Figure 15 indicates that this likely occurred in the late Paleozoic (Wallace et al.,
2017, Lu et al., 2018). Though it may seem paradoxical to utilize proxies for local, shallow redox
to represent deep water Oz, recent studies of iodate-iodide dynamics in the modern highlight the
fact that the oxidation of I" to 103" is slow and elevated near-surface 103" likely reflects persistent
oxygenation of intermediate and deep ocean masses that resupply 103" to the surface oceans
(Hardisty et al., 2020, Hardisty et al., 2021).

Similar to the change points of trace element proxies in the Neoproterozoic, the changes in
834Spy in the Paleozoic are also closely linked to a decrease in seafloor anoxia (Figure 15).
Specifically, 83*S,y is a proxy for the degree of pyrite burial, which is intimately linked with the
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extent of seafloor anoxia. Increased pyrite burial has the dual effect of acting as a sink for SO4*—
which is reduced to sulfide in anoxic environments, forming pyrite—and in turn impacting the
sulfur isotope composition of both SO4>* and pyrite. Smaller marine SO4* pools, estimated to be
<2.5 mM as late as the Cambrian (Gill et al., 2011), ultimately have less buffering capacity and
are more sensitive to changes in 8**Ssue resulting from sulfate reduction. Together, this means
that coupled increases in marine sulfate tied to lower pyrite burial fluxes ushered in a change point
for 8%#Spy to much more negative values, reflecting changes in the A3*Sguifatepy. In comparison,
higher seawater SO4*" in the late Paleozoic (Horita et al., 2002, Lowenstein et al., 2003) resulted
in 8**Ssuifate Tecords that are more stable and better buffered against global change. Hence, while
the initial 5°*Scas change point at 2.5 Ga represents an initial increase in seawater SO4?" linked to
increases in atmospheric O> and terrestrial weathering of pyrite—i.e., the source of sulfur to the
oceans—the later 83*Spy change point at 0.38 Ga represents a stabilization of marine SO4* via a
decrease in pyrite burial—i.e., the sink of sulfur from the oceans (Figure 15). Similarly, the contrast
in the change points for 8*3%Uq (2.35 Ga), [U] (0.37 Ga), and carbonate associated uranium
isotopes (8**Ucau; 0.39 Ga) can reflect changes in sources and sinks of the U cycle related to
redox changes. The change point for 6**%Ug, broadly concurrent with the GOE likely reflects an
increase in oxidative weathering of uraninite (Partin et al., 2013, Kendall et al., 2013) and the
establishment of a seawater U reservoir with seawater 3***U that could vary from crustal values.
Because U reduction in anoxic and euxinic seafloor is the largest sink of seawater U and imparts
a significant isotope fractionation (Dunk et al., 2002, Andersen et al., 2014), the Paleozoic change
points for [U] and 3*%Ucau reflect a decrease in U removal as seafloor oxygenation spread.

With the establishment of a fully oxygenated ocean, where regions with low O; are limited
to areas with high productivity, the redox dynamics of the marine realm switched between one
where perturbations to the redox state was defined by OAEs and not OOEs. This is not to claim
that OAEs are non-existent prior to the late Paleozoic, mainly that short-term (<~1 Myr)
perturbations to the atmosphere-ocean O> system result in OAEs, whereas such transient
perturbations related to Oz prior to this transition resulted in OOEs, such as in the Ediacaran (Sahoo
et al., 2012, Sahoo et al., 2016). In fact, longer-term perturbations (>1 Myr) to the Oz system prior
to this transition result in larger, and more prolonged increases in anoxia (Reershemius and
Planavsky, 2021). As discussed in the preceding sections, this transition was likely gradual and/or
dynamic.

This general feature of Earth history, where transient perturbations to Oz go from OOEs to
OAE:s, hides the complexity of individual events, which occur in distinct biogeochemical contexts
such as the biological pump (Ridgwell, 2005, Meyer et al., 2016) or the feedbacks related to
bioturbation (Berner and Westrich, 1985, Boyle et al., 2014, Tarhan et al., 2015, Dale et al., 2016)
and from different specific triggers leading to anoxia (e.g., exogenous vs. endogenous processes).
In other words, the triggers and mechanisms leading to individual OAEs and OOEs were not the
same. Nonetheless, this shift from transient OOEs to OAEs overall corresponds to the carbonate
U isotope record (Reershemius and Planavsky, 2021), reductions in carbon isotope excursions
through the Phanerozoic (Bachan et al., 2017), and the change points in shallow marine redox
proxies (carbonate I/(Ca+Mg) and Ce/Ce*; Figure 15).
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4.4.2 Carbon isotopes and Phanerozoic OAEs

In the Phanerozoic 8'*C record, more anoxia can correspond to either negative or positive
8!3C excursions and reveal the potential roles of external (exogeneous) vs. internal (endogeneous)
drivers of C cycle change.

Key examples when deoxygenation is associated with a negative §'°C excursion (Figure
17) include anoxic events that are linked to volcanic (or carbon-input) triggers, including the end-
Permian and end-Triassic mass extinctions (Lau et al., 2016, Jost et al., 2017), the Toarcian OAE
(Them et al., 2018), and the Paleocene-Eocene Thermal Maximum, or PETM (Clarkson et al.,
2021). Most of these events are linked to major volcanic events and specifically Large Igneous
Provinces (LIPs), which would have resulted in the addition of volcanic-derived C with low §'*C
values. The potential mechanism between volcanism and anoxia includes global warming-induced
changes in ocean circulation (Winguth et al., 2012, Penn et al., 2018), greater weathering and
delivery of nutrients (Zhang et al., 2018), and intensification of the biological pump (Meyer et al.,
2011, Hiilse et al., 2021). The C isotope source for the PETM is also likely related to a C input
event (Dickens, 2011), but its transient nature (duration of ~10 kyr) results in a relatively short-
lived increase in anoxia (Clarkson et al., 2021). Therefore, negative §'3C associated with greater
anoxia after the oxygenation of the deep ocean is generally a sign of a change in carbon inputs that
lead to deoxygenation.

Key examples of intervals where deoxygenation is instead associated with a positive §'*C
(Figure 17) include the Cambrian Steptoean Carbon Isotope Excursion (SPICE (Dahl et al., 2014,
Gill et al., 2011)), the Lau-Kozlowskii Excursion in the Silurian (Bowman et al., 2021), the
Cenomanian-Turonian Ocean Anoxic Event 2 (OAE 2; (Jenkyns et al., 1994, Eldrett et al., 2014)),
and the Miocene “Monterey” excursion (White et al., 1992, Flower and Kennett, 1993)—see also
(Hess et al., 2023, Li et al., 2023, Auderset et al., 2022). The §!3C in these examples are often
interpreted as a direct recorder of higher organic carbon burial, although the duration of the
excursion matters. The early Paleozoic positive 8'°C excursions may be related to the fact that the
deep ocean had not fully developed modern levels of oxygenation, with significantly shorter §!*C
excursions in the Mesozoic and Cenozoic reflecting a better ventilated ocean. The SPICE is also
complex, with higher anoxia corresponding to the initial positive 8!°C excursion and more O,
associated with the end of the excursion, related to the positive feedback on O> from higher organic
carbon burial (Dahl et al., 2014). For OAE 2, a combination of S and Tl isotopes suggest seafloor
euxinia as extensive as 5%, perhaps initiating up to 54 kyr prior to the carbon isotope excursion
itself (Ostrander et al., 2017, Owens et al., 2017). Similar pre-6'3C excursion initiation of anoxia
has also been inferred for the Toarcian OAE (Them et al., 2018). These examples highlight the
potential for C isotopes to also record changes in the carbon sinks (compared to the sources that
result in negative 8'3C excursions), with the triggers in this case related more to internal,
endogenous factors such as reorganization of ocean circulation in the Miocene. The OAE 2 event
is an outlier as it has also been linked to LIPs (Turgeon and Creaser, 2008) but a significant
negative §!°C excursion is absent for this event.

Major shifts in the baseline 3!°C in the Devonian or the Carboniferous are absent. A
positive shift is expected if greater terrestrial organic carbon burial followed the evolution and
proliferation of land plants and coal deposits—an ecological shift that has been linked to great
amounts of Oy in the atmosphere (Algeo et al., 1995, Algeo and Scheckler, 1998, Berner and
Canfield, 1989). For example, a +2%o increase in carbonate 3'3C has been linked to the initial
colonization of early plants near the Ordovician/Silurian boundary (Lenton et al., 2016) as higher
O levels led to higher continental weathering and increased organic carbon burial. Another
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expectation is a change in the carbon isotope fractionation between carbonate and organic carbon
with the rise of C3 dominance in land plants, which is hypothesized to explain the increase in the
8!3C of terrestrial organic matter in the Carboniferous (Peters-Kottig et al., 2006). Despite these
major changes in the locus of organic carbon burial with the evolution of terrestrial ecosystems, it
is possible that the overall net change in organic carbon, and therefore the impact on §'3C, was
muted as the terrestrial and marine organic carbon sinks rebalanced due to geographic changes in
weathering, nutrients, and productivity.

We return to the original question introduced in Box 1: Linking changes in redox conditions
to the carbon isotope record: Ts there a relationship between 8'3C and redox state of the oceans?
Based on this overview, an association between C isotopes and O change is more evident for the
Phanerozoic than the Precambrian. However, there is no consistency between increased or
decreased anoxia with a §!3C shift of a given direction, and this demonstrates the complexity of
understanding 8!°C excursions as recording either a trigger to anoxia/oxia or the direct effect of
the organic carbon cycle itself. There are currently no examples where the redox state of the ocean
changed without a concomitant change in 8'°C, although this could be a sampling bias issue as
these times would appear less interesting biogeochemically. Nonetheless, the many studies that
compare 8'3C shifts to redox proxies do indicate support for 8'3C to mark changes in the redox
state of the oceans.

5 Future Directions

A range of key insights into marine redox evolution have emerged in the last decade. As always,
however, developments in our understanding beget more questions and challenges. It is also
humbling to remember that even as our perspectives grow and our constraints are refined, the
community is still addressing fundamental questions which were initiated by earlier generations.
For paleoceanography—while much has been learned—defining when, where, and how oxygen
and associated redox-sensitive elemental cycles were perturbed across key intervals are still
heavily debated. For chemical oceanography and diagenesis, quantifying redox-sensitive trace
element and isotope relationships to the global carbon and oxygen cycles are still a central
challenge. As these fields—which are inherently linked—continue to advance within and beyond
these important questions, it is clear from this synthesis and others that we are at the cusp of many
important step changes. While there are many, we highlight below important community-wide
challenges going forward which leverage recent advances.

e Integration, curation, and co-analysis of modern and deep time oceanographic data
archives: While new geochemical data from oceanographic transects or sedimentary
sections are essential for filling in environmental and temporal gaps, the potential of
existing data archives are just beginning to be explored. Indeed, statistical and
comprehensive analyses of existing databases and incorporation into models—e.g., data
analytics, machine learning, and process-based studies—are the new frontier. Ongoing
efforts to curate modern and ancient geochemical databases—e.g., GEOTRACES and
SGP—are essential frameworks for these future studies. Importantly, while the differences
in geochemical archives may call for different databases, ancient and modern geochemical
archives are inherently complimentary and thus should be coordinated and introduced as
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such. In this way, future studies can use databases to identify key spatiotemporal gaps,
which includes identifying data gaps necessary for constraining palaeoceanographic
evolution. For example, many paleoredox studies focus on defined 8'3C excursions,
meaning there are important data gaps in defining baseline conditions.

Defining O: thresholds for redox-sensitive elements: For both modern chemical and
paleoceanography, it is essential to define the O; limits associated with oxidation and
reduction reactions across redox boundaries. Continued efforts to calibrate redox tracers
are necessary for understanding potential variations in metabolic processes within or
between ODZs but are also essential for defining O; values associated with known redox-
transitions in Earth history. For example, comparison of benthic and planktonic C isotopes
and I/(Ca+Mg) have been applied to quantify Oz levels in the Pleistocene and Holocene
(Section 3). Further back in Earth history (Section 4), the fractionations associated with
&>3Cr and A*S are associated with well-defined transitions and associated O, thresholds,
but these constraints are still being determined for other paleoredox proxies. This is an
active arca of research and, because calibrations should consider modern seawater and
sediments, also helps to refine our understanding of the current state of these geochemical
cycles. Targeted studies defining O» across redox gradients—e.g., depth profiles,
experiments—using STOX or other sensors sensitive to sub-umol kg™! O, are essential
given the demonstrated importance of these low O levels for aerobic life and most redox-
sensitive elemental cycles in the studies to date.

Quantifying water mass ages alongside trace element and isotope variations: As
highlighted in this Chapter, determining the relationship between O> and water-mass ages
provides a mechanistic framework for understanding differences in O2 abundance and
geochemical spatial variation between ODZs. A future challenge is expanding similar
approaches to trace element and isotope studies in order to elucidate biogeochemical
evolution within and differences between ODZs. The PCA presented in Section 2—based
on a relatively limited dataset compared to the broader GEOTRACES compilation—
indicates that new insights may emerge with wider efforts at data collection of redox-
sensitive elements as well as trace nutrient concentrations.

Constraints on trace elements and isotope variations on seasonal and anthropogenic
timescales: Time-series focused projects and databases such as the Ocean Observatory
Initiative, Bermuda Atlantic Time Series, Hawaii Ocean Time Series, and the Atlantic
Meridional Transect provide unprecedented constraints on temporal variations on daily,
seasonal, and annual timescales in key parameters such as C cycling and pH, among others.
However, redox-sensitive trace element and isotopes are not routinely measured at the
same temporal resolution, limiting our understanding of variations in these geochemical
cycles across most timescales. Indeed, our understanding of trace element and isotope
variations across geologic time may rival or surpass that across diurnal to anthropogenic
timescales. Although logistical constraints play a key role in these gaps—e.g., limited
deployable sensors and rigorous/cumbersome sampling requirements—the absence of
more detailed modern constraints limit interpretations of these geochemical cycles across
modern to geologic timescales.
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Linking water column and sedimentary redox processes: The sedimentary geochemical
record that forms the basis of redox reconstructions in the past relies on filtering these
signals through a myriad of water-column, syn-depositional, and post-depositional
processes—including processes broadly included in the theme of “diagenesis.” The
heterogeneity of water-column geochemistry, including significant variations in trace
element compositions even between modern ODZs, was discussed in detail in this
synthesis. Interpreting sedimentary geochemistry also requires consideration of
interactions across the sediment-water interface that add complexity to what is ultimately
recorded in the sedimentary record. Developing nuanced and mechanistic models that link
these processes are an area of active research in modern chemical oceanography as well as
in deep-time paleoceanography and can be probed with more sediment and porewater
sampling as well as reactive-transport modeling and spatially resolved biogeochemical
models. The latter in particular can help to reveal whether local changes, including
diagenesis, can reflect global climate, tectonic, or geobiological changes.

Mechanistic constraints on paleoredox evolution: While there is a growing arsenal of
paleoredox proxies and associated records, a major theme is that the mechanisms driving
redox transitions are still debated. For example, as highlighted in this chapter, the
mechanisms driving increases in atmospheric and oceanic O at the GOE, in the
Neoproterozoic, and within the Paleozoic remain largely unresolved. A future challenge is
bolstering ongoing efforts to integrate modern chemical oceanographic observations and
experimental constraints into Earth System models aimed at understanding the driving
mechanisms for important paleoredox transitions.

Temporal constraints on paleoredox evolution: A major challenge to understanding
driving mechanisms for paleoredox evolution is the limited constraints on the timing and
tempo associated with these transitions. This is particularly true in the Precambrian where
an essential lack of fossil-based correlations means that even determining synchroneity of
geochemical records can be contentious. For example, the timing of GOE and LJE remain
largely unresolved and the duration and synchronicity of major carbon isotope excursions
such as the Shuram-Wonoka in the Ediacaran is highly disputed. A future challenge is
bolstering ongoing geochronological studies of these key events/intervals in order to place
temporal constraints necessary for stratigraphic correlation and mechanistic models.

Relationships between O3, biological evolution, and habitability: The geobiological
questions posed in this synthesis that link marine redox conditions with the evolution of
microscopic and macroscopic life require continued focus on modern constraints. This
includes metagenomic analysis of diverse environments that span a range of redox
conditions, experiments and models to determine the physiological limits of different
extant taxa, and biological oceanographic observations that can improve how
biogeochemical processes are integrated into climate models at different levels of
complexity. This work will be central to projections of climate change on future marine
redox conditions and the impacts on habitability. In Earth history, model-data comparison
can help to reveal links between the role that O plays on biotic change (and vice versa)
and continued geochronological efforts to refine the rate and timing of both environmental
and biotic evolution will test the temporal relationships between redox and life.
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