t.)

Check for
Updates

Bit Blasting Probabilistic Programs

POORVA GARG, University of California, Los Angeles, USA

STEVEN HOLTZEN, Northeastern University, USA

GUY VAN DEN BROECK, University of California, Los Angeles, USA
TODD MILLSTEIN, University of California, Los Angeles, USA

Probabilistic programming languages (PPLs) are an expressive means for creating and reasoning about
probabilistic models. Unfortunately hybrid probabilistic programs that involve both continuous and discrete
structures are not well supported by today’s PPLs. In this paper we develop a new approximate inference
algorithm for hybrid probabilistic programs that first discretizes the continuous distributions and then performs
discrete inference on the resulting program. The key novelty is a form of discretization that we call bit blasting,
which uses a binary representation of numbers such that a domain of 2 discretized points can be succinctly
represented as a discrete probabilistic program over poly(b) Boolean random variables. Surprisingly, we prove
that many common continuous distributions can be bit blasted in a manner that incurs no loss of accuracy
over an explicit discretization and supports efficient probabilistic inference. We have built a probabilistic
programming system for hybrid programs called HyBit, which employs bit blasting followed by discrete
probabilistic inference. We empirically demonstrate the benefits of our approach over existing sampling-based
and symbolic inference approaches

CCS Concepts: « Mathematics of computing — Probabilistic representations; Probabilistic inference
problems.

Additional Key Words and Phrases: discretization, bit blasting, probabilistic inference

ACM Reference Format:
Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2024. Bit Blasting Probabilistic
Programs. Proc. ACM Program. Lang. 8, PLDI, Article 182 (June 2024), 24 pages. https://doi.org/10.1145/3656412

1 INTRODUCTION

Probabilistic programming languages (PPLs) are an expressive means for creating and reasoning
about probabilistic models. Many such models are naturally hybrid, involving both continuous (e.g.,
Gaussian distributions) and discrete structures (e.g., Bernoulli random variables, if statements and
other control flow). For example, hybrid models arise in applications such as medical diagnosis,
gene expression and cyber-physical systems [Chen et al. 2020; Lee and Seshia 2017].
Unfortunately, hybrid programs are not well supported by today’s PPLs. The primary analysis
task in probabilistic programming languages is probabilistic inference, computing the probability
that an event occurs according to the distribution defined by the program. Existing inference
algorithms employ forms of sampling to perform approximate inference. Some approaches, notably
Hamiltonian Monte Carlo, used in the PPLs Pyro and Stan [Bingham et al. 2019; Gorinova et al. 2021],
do not support discrete random variables, instead requiring them to be (manually or automatically)
marginalized out. However, this approach has numerous fatal cases that explode exponentially

Authors’ addresses: Poorva Garg, University of California, Los Angeles, USA, poorvagarg@cs.ucla.edu; Steven Holtzen,
Northeastern University, Boston, USA, s.holtzen@northeastern.edu; Guy Van den Broeck, University of California, Los
Angeles, USA, guyvdb@cs.ucla.edu; Todd Millstein, University of California, Los Angeles, USA, todd@cs.ucla.edu.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/6-ART182

https://doi.org/10.1145/3656412

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0003-4753-3974
HTTPS://ORCID.ORG/0000-0002-8190-5412
HTTPS://ORCID.ORG/0000-0003-3434-2503
HTTPS://ORCID.ORG/0000-0002-2031-1514
https://doi.org/10.1145/3656412
https://orcid.org/0000-0003-4753-3974
https://orcid.org/0000-0002-8190-5412
https://orcid.org/0000-0003-3434-2503
https://orcid.org/0000-0002-2031-1514
https://doi.org/10.1145/3656412
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3656412&domain=pdf&date_stamp=2024-06-20

182:2 Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein

Table 1. Distributions with sound and efficient bit blasting subsumed by mixed-gamma densities.

Distribution Density Distribution Density
a.a-1,-fx
Uniform 1 Gamma & xr ﬂa;:
—|xZp|
Linear x Laplace ﬁe 5
Polynomial x" Chi-squared — xileT
22T(%)
v+l
. -2 x*\" 2
Exponential Ae™** Student-T ¢(1+ %)

in the number of discrete variables.! Other sampling-based approaches are universal and so can
handle discreteness, such as importance sampling, Markov Chain Monte Carlo and Sequential
Monte Carlo, etc. [Koller and Friedman 2009]. However, these algorithms are known to struggle
with multimodal distributions [Yao et al. 2021], which arise through discreteness, as well as with
programs that condition on low-probability events.

In this paper we develop a new inference algorithm for hybrid probabilistic programs via
discretization: we convert the continuous distributions in a hybrid program to discrete distributions.
This yields a fully discrete probabilistic program on which existing algorithms for discrete inference
can be used. Discretization approximates a continuous distribution as a sequence of intervals,
with each interval associated with the probability of the value falling in that interval. Forms of
discretization have been used in prior work [Albarghouthi et al. 2017; Beutner et al. 2022; Claret
et al. 2013; Huang et al. 2021] but they all scale linearly in the number of intervals. This imposes a
clear tradeoff: one needs many small intervals in order to avoid losing too much precision, but the
cost of inference quickly becomes prohibitive as the number of intervals grows.

We introduce a new approach to discretization that we call bit blasting, by analogy with the
technique of the same name in verification [Bruttomesso and Sharygina 2009]. The key property of
a bit blasted discretization is that it uses only poly(log n) Boolean random variables to represent a
discretization on n intervals. This is achieved by employing a binary representation of numbers
and representing discretizations as discrete probabilistic programs over this binary representation.
At first blush, this succinct representation would appear to lose too much accuracy to be a viable
strategy, but we present both theoretical and empirical results to the contrary.

First, we prove that a large class of common continuous densities can be bit blasted soundly,
that is with no loss of accuracy versus a naive discretization. Table 1 lists example distributions
that are in this class; we refer to the entire class as mixed-gamma distributions.

For instance, consider discretizing a continuous uniform distribution between 0 and 1. Naive
discretization to 232 intervals requires enumeration of 232 values. Instead, this distribution can
be represented in binary as a tuple of 32 Bernoulli random variables of the form f1ip(0.5), i.e.,
coin tosses that are equally likely to have the value 0 or 1. This observation is not new, and a
similar result holds for exponential distributions as well [Marsaglia 1971]. However, the bit blasted
discretizations of other mixed-gamma densities are novel. Further, unlike the case for uniforms
and exponentials, these discretizations are not defined as simply a tuple of independent Bernoulli
random variables but rather require full-fledged discrete probabilistic programs over such variables.

A succinct representation does not necessarily imply efficient inference, which is hard in general.
As our second contribution, however, we prove that bit blasted mixed-gamma distributions are not
only sound and succinct, but they also support polynomial-time inference in the number of bits of
precision. Specifically, we prove that the knowledge compilation approach to discrete probabilistic

Indeed, the Pyro documentation states that it cannot support more than 25 discrete variables in CUDA and 64 discrete
variables on a CPU [Bingham et al. 2018].

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

Bit Blasting Probabilistic Programs 182:3

inference [Chavira and Darwiche 2008; Chavira et al. 2006; De Raedt et al. 2007; Fierens et al. 2015;
Holtzen et al. 2020], which reduces inference to weighted model counting on a boolean formula,
has this property for bit blasted mixed-gamma distributions. Therefore, the process of bit blasting a
mixed-gamma distribution followed by discrete inference via knowledge compilation is guaranteed
to take time that is polynomial in the bitwidth used for discretization.

Third, we have used the above theoretical results to design a new probabilistic programming
system called HyBit that performs non-stochastic approximate inference for hybrid probabilistic
programs via bit blasting. HyBit is a discrete probabilistic language that includes support for
fixed-point binary numbers and associated arithmetic operations, and it is implemented as an
embedded domain specific language in Julia [Bezanson et al. 2017]. The HyBit API allows users
to produce bit blasted fixed-point approximations of arbitrary continuous distributions. Mixed-
gamma distributions can be represented by their sound bit blasted discrete distributions. For other
distributions the API enables users to employ piece-wise discrete approximations, where each piece
is itself a bit blasted mixed-gamma distribution.

HyBit leverages knowledge compilation to perform exact inference on the given discrete
probabilistic program. In the worst case, the inference for an arbitrary hybrid probabilistic program
via bit blasting can be exponential in the number of bits, but we empirically demonstrate the benefits
of our approach. We show that HyBit performs better than existing sampling-based and symbolic
inference approaches on a comprehensive benchmark suite of hybrid probabilistic programs.

Overall, we present the following contributions in this paper:

(1) We motivate the challenges for inference on hybrid probabilistic programs in Section 2.

(2) We present a new form of discretization called bit blasting that is characterized by its
succinctness in the number of discrete intervals in Section 3.

(3) We present a class of continuous distributions, namely mixed-gamma distributions, for
which a sound bit blasted representation exists. We formalize this construction and prove
its properties in Section 3. We further prove that knowledge compilation based inference
scales polynomially in the bitwidth for these distributions.

(4) We describe the HyBit PPL and its new inference algorithm via bit blasting in Section 4.

(5) In Section 5, we empirically compare HyBit with other PPLs on benchmarks obtained
from the existing literature. We also characterize the behavior of HyBit with respect to its
hyperparameters, i.e. number of bits and pieces.

HyBit is available at https://github.com/Tractables/Dice.jl/tree/hybit. The full version of this paper
is available on arXiv as [Garg et al. 2023], which contains full proofs.

2 MOTIVATING EXAMPLES

This section motivates the challenge of inference for hybrid probabilistic programs using three
examples. First, we present an example from computational biology with inherent logical structure.
Next, we show an example from the literature with a multimodal posterior arising due to discrete
control flow. Finally, we show an example of low probability observations through conjugate
Gaussians. We then investigate the performance of various inference algorithms, including HyBit.
The examples demonstrate the advantages of HyBit over other approximate inference algorithms.
We provide a detailed comparison with several approximate and exact baselines in Section 5.

2.1 Logical Structure

We present a simplified example from computational biology which relates genetic expression with
blood sugar levels. Figure 1 shows the probabilistic program, where the task is to get the updated
belief of a gene’s occurrence in a patient given their blood sugar levels.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

https://github.com/Tractables/Dice.jl/tree/hybit

182:4 Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein

The first four lines of the probabilistic program in Figure 1 use a beta distribution as the prior
probability of each of T genes occurring in the general population. The syntax f1ip(8) denotes
a Bernoulli random variable with success probability 6. On line 5, the program uses the syntax
reduce(]|, gene) to denote the expression \/iT:1 genel[i]. In other words, the patient is considered
to have diabetes if at least one of the genes is expressed. What follows is multiple readings of
the patient’s blood sugar level. For each reading a random variable first defines the blood sugar
depending on whether they have diabetes. Then we use the syntax observe (y, v) to condition on
the random variable y having the value v — in the program this is used to condition on actual
blood-sugar readings from the patient. Finally, on line 12, the program queries for the expectation
of the posterior distribution of the occurrence of the first gene.

Figure 2 shows the results of inference
with a timeout of 20 minutes on this pro-
gram using different inference algorithms,
as the number of genes (T) increases. Stan
uses Hamiltonian Monte Carlo, which does
not directly support discrete random vari-
ables. Instead, they are marginalized out, ei-

1 for i in 1:T

2 gene_occurrence[i] = beta(1, 1)
gene[i] = flip(gene_occurrencel[i])

. end

5 diabetes = reduce(|, gene)

6 blood_sugarl = if diabetes normal(80, 2)

ther manually or automatically using vari- .
able elimination [Gorinova et al. 2020]. As N
shown in the figure, Stan times out when 9
there are more than 15 genes — as its strat- 10
egy scales exponentially in T. The same issue 1
of exponential blowup plagues GuBPI [Beut- 12

else normal(135, 2) end
observe(blood_sugaril, 79)
blood_sugar2 = if diabetes normal(80, 2)
else normal(135, 2) end
observe(blood_sugar2, 136)
return Expectation(gene_occurrence[1])

ner et al. 2022], which employs a combina-
tion of symbolic evaluation and discretiza-
tion to find upper and lower bounds. As the

Figure 1. Example 1: Gene Expression

figure shows, the universal sampling methods MCMC with a Metropolis Hastings kernel (WebPPL
MH) and Sequential Monte Carlo (WebPPL SMC) can scale and provide reasonable accuracy. Exact
inference strategy Psi [Gehr et al. 2016] also scales well with the number of discrete random
variables when the program is written to avoid a large discrete state space. AQUA discretizes hybrid

programs [Huang et al. 2021] but does not support this program.

Our system and approach, HyBit, scales to 50
genes and has the least absolute error among approx-
imate inference algorithms. The program, when writ-
ten in HyBit, is represented by its discrete bit-level
abstraction. The user, while writing the program
can employ the HyBit API to replace all continuous
distributions (specifically on Lines 2, 6, 9 in Figure 1)
with their bit blasted discrete approximations. As
a result, we now have a discrete program with dis-
tributions over Boolean and fixed-point numbers.
Note that now observe on Line 8 conditions on the
fact that the value of the discrete distribution for
blood_sugar1 lies in the interval corresponding to
the value 79.

In the experiment shown we use a bitwidth of
25 — each continuous distribution is discretized as a

‘ Stan

0.005 Stan Timeout
- —e— Psj
g 0.004 A 8 —e— HyBit
i WebPPL MH
4 0.003 ! e WebPPL SMC
% -~ GuBPI
2 0.002 -#8 GuBPI timeout
<

0.001 1 g T

T R e ——————————

10 20 30 40 50

Number of Discrete Variables (T)

Figure 2. Scaling on Logical Constraints. HyBit
scales to 50 genes with the least absolute error.
The graph for Psi and HyBit overlap closely.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

Bit Blasting Probabilistic Programs 182:5

0.175 0.175 0.175
—— HyBit —— HyBit — AQUA

0.15 0.15 0.15)

Stan HMC Run 1 SMC —— HyBit

Stan HMC Run 2 0125 0.125

0.1 0.1 01

—— HyBit
MCMC MH Run 1
MCMC MH Run 2

0.125

0.075 0.075 0.075
0.05 0.05 0.05

0.025 0.025 0.025

(a) (b) (© (d)

Figure 4. Posterior from different baselines compared with that of HyBit for Figure 3. HyBit and WebPPL
SMC are able to identify both the modes in the posterior distribution. (a) Different runs of WebPPL MCMC
with a Metropolis Hastings kernel converge to different modes. (b) Different runs of Stan HMC converge
to different modes. (c) Different runs of WebPPL SMC are able to find both the modes. (d) AQUA with its
adaptive interval strategy only finds the more probable mode

program over a tuple of 25 bits interpreted as a fixed-point number. Further, we approximate these
continuous distribution using 4096 pieces, each of which is a bit blasted exponential distribution.
Naive discretization with 25 bits would be prohibitively slow, as it yields 2%° intervals i.e. 134M
intervals. However, our bit blasted program only uses 53K coin flips (Boolean random variables) to
represent them. Moreover, knowledge compilation based inference [Fierens et al. 2015; Holtzen
et al. 2020] automatically identifies and exploits conditional independences in the program’s logical
structure and helps to scale inference. More details of this experiment can be found in the appendix.

2.2 Handling Multimodality

This section presents an example of a multimodal distribution to highlight another challenge for
inference on hybrid probabilistic programs. Multimodal distributions have multiple peaks separated
by low probability regions. These distributions commonly emerge in various applications such
as sensor network localization, cosmology and many more [Shaw et al. 2007; Tak et al. 2018]. We
adapt an example from the existing literature [Yao et al. 2021], as shown in Figure 3.

The probabilistic program shown in Fig-
ure 3 is hard for existing probabilistic in-
ference approaches. The datapts on Line 3
has nine entries, with two-thirds being 5
and the other one-third being —5. This leads
to the posterior for (y, p12) being bimodal
around (5, —5) and (-5, 5). As the number of

1 mul = uniform(-16, 16)

2 mu2 = uniform(-16, 16)

s datapts = [5, 5, 5, 5, 5, 5, -5, -5, -5]
. for data in datapts

5 y = if flip($) normal(mul, 1)

6 else normal(mu2, 1) end

data points increases with the same propor- . observe(y, data)
tion, the posterior of (y4, uz) converges to s end
(5, —5). However, in the presence of limited 9 return mul

data points, the posterior for y; is bimodal
around 5 and —5.

The existence of multiple modes chal-
lenges sampling-based algorithms as they
tend to get stuck in one of the modes. Specifically, WebPPL using MCMC with a Metropolis Hast-
ings kernel and both Stan and WebPPL using HMC end up arbitrarily in one of the modes and fail
to explore the other mode. Figures 4a and 4b show the results obtained using WebPPL MCMC and
Stan HMC respectively, where two different runs get stuck in two different modes. On the other

Figure 3. Example 2: Yao-Vehtari-Gelman model

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

182:6 Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein

hand, HyBit performs exact inference on its discrete abstraction and so explores the distribution
globally, allowing it to identify both modes. Sequential Monte Carlo (SMC) (Figure 4c), Psi and
GuBPI also explore the distribution globally and thus, are able to find both modes. Finally, to address
the computational challenge of direct discretization, AQUA adapts its discretizing intervals to focus
on high probability regions, and ends up only identifying the higher probability mode (Figure 4d).

2.3 Handling Low Probability Observations

This section presents conjugate Gaussians (Figure 5)
with low probability observations. In Figure 5, the poste-
rior distribution for random variable mu is queried after
conditioning on low probability data on Lines 2 and 3.

Why are low probability observations hard? Intu-
itively, general-purpose sampling algorithms begin sam-
pling from the prior distribution and struggle to find sam-
ples with considerable weight. Only after a very large
number of samples do these algorithms manage to sample
from the true posterior. On the other hand, HyBit explores the domain of the posterior distribution
globally, via exact inference on a bit blasted abstraction, and so it is insensitive to this issue.

Figure 6 plots the true prior and

1 mu = normal(@, 1)

2 observe(normal(mu, 1), 8)
5 observe(normal(mu, 1), 9)
. return mu

Figure 5. Example 3: Conjugate Gaussians

0.175 . posterior distributions along with re-
—— Prior (N(0, 1)) .)

015 Posterior (N(5.66. 0.57)) sults from different inference algo-
—— HyBit estimated posterior rithms. For the sampling-based algo-

R — GuBPI upper bound . . .
= 1] — GuBPllower bound rithms MCMC with a Metropolis Hast-
S 0075 SMC estimated posterior ings kernel and SMC, we obtained and
'005 MG estimated postertor plotted 1000 samples after running the
' corresponding WebPPL [Goodman and
0:022 Stuhlmdtller 2014] program. The im-
%55 50 35 0o 25 50 75 100 portance sampling algorithm was not

X able to obtain any sample with non-

negligible weight for this program. The
samplers are shifting the posterior to-
wards the true posterior distribution
but require many more samples to
achieve that. Even after sampling about 16M and 65K samples respectively, the expectation of
the samples obtained from MCMC and SMC have absolute error of 0.549798 and 1.520776. GuBPI
reports upper and lower bounds on the probability for each interval and incurs an absolute error of
2.33. On the other hand, the posterior distribution from HyBit overlaps perfectly with the ground
truth. Stan HMC handles low probability observations well and obtains high accuracy. Psi also
obtains the exact symbolic expression for the posterior distribution. Finally, the mean of AQUA’s
reported posterior had an error of 5.66 as it fails to make any update to the prior of .

Figure 6. Results for Example 3. The HyBit estimated posterior
overlaps closely with the true posterior distribution.

3 BIT BLASTING: KEY INSIGHTS

To scale inference on hybrid probabilistic programs with respect to discrete structure, we need an
algorithm that treats discreteness as first class, and that discretizes away continuous structure. This
section defines the semantic notion of bit blasting and sets it up as a special case of discretization
with desirable properties. Then, we provide bit blasting functions for common classes of continuous

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

Bit Blasting Probabilistic Programs 182:7

distributions. We provide discretization techniques that are sound (accurate up to b bits), succinct,
and amenable to efficient inference.

3.1 Discretization and Bit Blasting

In the standard terminology of probability theory [Rosenthal 2006], a probability space (Q, 3, y)
consists of a sample space Q, a g-algebra on Q denoted ¥, and a probability measure on ¥ denoted p.
In a general sense, a discretization function takes as input such a probability space (Q, %, u) and
outputs a discrete probability space (Qp, Zp, pp) where Qp is a countable set.

We will study a more specific notion of discretization: one that takes as input a continuous
distribution over a finite interval and outputs a discrete distribution over 2° points for some number
of bits b. Formally, let [/, u) be an interval with [, u € R. For the input probability space, we use
B([l,u)) to denote the Borel o-algebra of subsets of interval [I, u) [Rosenthal 2006]. For the output
probability space, we write P (S) to refer to the power set (a o-algebra) of set S. Moreover, we will
assume the sample space to be discretized as follows.

DEFINITION 1 (b-BIT INTERVAL). A b-bit interval [I, u], is the set of points obtained by dividing
[1,u) into 2° intervals: [u], = {r | r2® € Z,r € [Lu)}

We are now ready to define the notion of discretization function used in this paper.

DEFINITION 2 (b-BIT DISCRETIZATION FUNCTION). A b-bit discretization function takes as input
a probability space ([I,u), B([I,u)), 1), a bit width b € Z* and outputs a discrete probability space
([l ulp, P([L,ulp), pp) for some measure up.

ExaMpLE 1. Let 7 be a uniform distribution on the unit interval, described by the probability
space ([0, 1), B([0,1)), i) such that the probability density function specified by u is 1 on the unit
interval. Consider a function dy that takes 7 as input and outputs the probability space (S, P(S), up)
where S = {0,0.25,0.5,0.75} and up is a probability measure on P(S). Then d is a 2-bit discretization
function. As a concrete example up can be defined as {0 — 0.1,0.25 — 0.2,0.5 — 0.3,0.75 — 0.4}2.

As the example shows, one can come up with any arbitrary b-bit discretization function. To
qualify them further, we need a notion of accuracy — soundness up to b bits defined as follows.

DEFINITION 3 (SOUNDNESS OF b-BIT DISCRETIZATION FUNCTION). For any integer b > 0, a b-bit
discretization function is b-sound for a particular input probability space ([I,u), B([L u)), p) if it
outputs a discrete probability space ([I,u)p, P ([1, ulp), up) such that the following holds:

1

vx e [Lul, / " du(y) = up({x))

ExXAMPLE 2. Let dy be a b-bit discretization function that takes 7 (as defined in Example 1) as input
and outputs the probability space (S, P(S), up) where S = {0,0.25,0.5,0.75} and up can be defined as
{0 — 0.25,0.25 — 0.25,0.5 — 0.25,0.75 — 0.25}. Then d; is a sound 2-bit discretization function for
the probability space 7.

Before we define a b-bit blasting function, we need to fix a generic representation of discrete
probability distributions. To that purpose, we define the concept of a discrete probabilistic closure,
akin to probabilistic Turing machines [Arora and Barak 2006].

Each probabilistic closure is a deterministic function from a set of biased coin flips to a discrete
set. This induces a probability distribution on the output of the function through probabilities

2We define discrete probability measures iy using a mapping from single elements in the sample space S to their probabilities,
which can then be used to compute yp for any set in P (S).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

182:8 Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein

associated with coin flips. It also consists of an accepting Boolean formula that handles observations
and limits the set of values that input flips can take. We provide a formal definition below:

DEFINITION 4 (DISCRETE PROBABILISTIC CLOSURE). A discrete probabilistic closure is defined
as the tuple (¢,y, w) where w is a vector of Boolean random variables (or biased coin flips), ¢ is a
deterministic function from {T,F}¥! to a finitely countable set S and y is a deterministic Boolean
formula over variables in w.

The semantics of a discrete probabilistic closure, i.e. {(¢, y, w)) defines a probability space (S, P(S), 1)

such that

VT C S, u(T) = EW(W(};V)(;T) ry) if En(y) #0

ExXAMPLE 3. From Example 2, consider pp = {0 — 0.25,0.25 — 0.25,0.5 — 0.25,0.75 — 0.25}.
Up can be represented using a discrete probabilistic closure using the function naive_unif, the weight
function w and the accepting Boolean formula y as follows:

1 1 1
y=T w:[f0—>flipz,f1—>flip§,fz—>flip5]
Now, one can calculate the probability that naive_unif returns 0.5 as follows:
Pr(val = 0.5) = Pr(=f3) Pr(=f)Pr(f3) = (1 - 0.25)(1 — 0.33)0.5 = 0.25

Note that as explained by Example 3, any discrete dis-
tribution pip over 2 values can be represented as a discrete
probabilistic closure (¢, y, w) where |w| = 20 — 1.

Dice [Holtzen et al. 2020] and Problog [Fierens et al.
2015] are examples of PPLs that directly fit into the para-
digm of a discrete probabilistic closure.

We want a discrete probabilistic closure to be more suc-
cinct — of size polynomial in the number of bits of precision,
b. To this purpose, we define a bit blasting function.

i1 function naive_unif(fy, fi, f2)
2 val = if fy then @

3 else if fi then 0.25

4 else if f, then 0.5

5 else 0.75

6 return val

DEFINITION 5 (b-BIT BLASTING FUNCTION). A b-bit blasting function [.], is a b-bit discretization
function that outputs a discrete probabilistic closure (¢, y, w) that uses a number of Boolean random
variables that is polynomial in the number of bits b, that is, |w| € O(poly(b))

It follows from Definitions 3, 4 and 5 that for an integer b > 0, a b-bit blasting function is sound

for a given probability space ([, u), B([L,u)), p) if

Vx € [Lul, / P au(y) = ().

Bit blast([.]»)
([Lu), B([Lu]),) (o.v,w)

/)

([L.u]p. P ([Lulp). up)

Figure 7. Commutative diagram for a b-sound bit blasting function

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

Bit Blasting Probabilistic Programs 182:9

ExXAMPLE 4. Again, consider the result of the sound 2-bit discretization function from Example 2,
that is pp = {0 — 0.25,0.25 — 0.25,0.5 — 0.25,0.75 — 0.25}. Measure jip can alternatively
be represented using a discrete probabilistic closure using the function bitblast_unif, the weight
function w and the accepting Boolean formula y as follows:

1 1

Note that in bitblast_unif, fy and fi are being used as bits in the binary representation of the
variable val. Now, one can calculate the probability that bitblast_unif returns 0.5 as follows:

Pr(val = 0.5) = Pr(fy)Pr(=f;) = (0.5)(1 — 0.5) = 0.25

We would like to point out that bitblast_unif uses only 2 coin flips to represent a distribution
over 4 values. It can be generalized to use b coin flips
to represent a uniform distribution over 2° values. On
the other hand, naive_unif uses 3 coin flips and would
generalize to use 2° —1 coin flips. Hence, bitblast_unif
is a viable output for a b-bit blasting function. In the next

i function bitblast_unif(fy, fi)
2 bitg = if fp then 1 else ©
3 bit; = if fi then 1 else ©

4 val = Dito, bity
2 4 section, we provide details for the b-bit blasting functions
5 return val

for exponential and mixed-gamma distributions.

3.2 Concrete Bit Blasting Function: Preliminaries

Next, our goal is to provide a concrete instantiation of a sound bit blasting function for mixed
gamma distributions, which have probability density functions as defined below.

DEFINITION 6 (GENERALIZED-GAMMA DENSITY). Given parametersa € Z* and € R, a generalized-
gamma density 1, g is a probability density function over the interval [0, 1) of the form
x%ePx
”a,ﬂ(x) = f

[0.1) yae/”y dy '

DEFINITION 7 (MIXED-GAMMA DENSITY). Given a collection of N € Z* generalized-gamma
densities 14, g, with their associated weights a; € [0, 1] such that SN a; = 1, a mixed-gamma density
Y is a probability density function over the interval [0, 1) of the form

N
Y(x) = Z a;Tg, p;(X).
i=1

For notational convenience, we confine the continuous distributions to the unit interval to get
discrete distributions over a b-bit unit interval. We generalize our approach to any finite interval
for building the probabilistic programming system HyBit based on bit blasting.

To describe our construction of the bit blasting function, we make use of Dice [Holtzen et al.
2020]. Dice already compiles its programs to weighted Boolean formulas (via the ~ judgement) that
fit the definition of a discrete probabilistic closure.® This allows us to only define a ~»j, judgment
from probability density functions to Dice programs to specify a bit blasting function. Dice also
defines a distributional semantics function [.], : p — V — [0, 1] that takes as input a Dice
program p and outputs a normalized probability distribution (described as a function from the set
of values V to probabilities). We use the function [.], to argue about soundness of our construction
later. More details about syntax and semantics of Dice can be found in the appendix.

3Dice compiles to weighted Boolean formulas (¢, y, w) where ¢ outputs (tuples of) Boolean values, y represents observations
in a Dice program and w consists of weights associated with Boolean variables (biased coin flips)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

182:10 Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein

The compilation judgement for mixed-gamma densities are of the form Y ~s;, p where p are
Dice programs. We further provide the following definitions for b-equivalence between densities
and Dice programs and b-succinctness of Dice programs.

DEFINITION 8 (BINARIZING FUNCTION). The binarizing function for b bits, (.), takes as input a

numberr € [0, 1], and returns a b-bit tuple (vy, (vq, (... 0p) ...)) such thatr = 5’:1 %

DEFINITION 9 (B-EQUIVALENCE). A mixed-gamma density Y and a Dice program p are b-equivalent
for some b € Z* if forallr € [0,1],

1
21

/ * Y(y) dy = [plp (()s)

Note that b-equivalence is analogous to b-soundness but is specialized for Dice programs.

DEFINITION 10. The flip count function flip_count (.) takes as input a Dice program p and
outputs the number of Boolean random variables (coin flips).

DEFINITION 11. Compilation ~y, is b-succinct for Y if Ik > 0,Vb € Z* such that if Y ~»p, p, then
flip_count (p) < kb

We define b-succinctness such that the Dice program p employs coin flips linear in the number of
bits b. Observe that b-succinctness imposes a stricter condition than that required by a b-bit blasting
function (which requires poly(b) coin flips). This implies that if we have a b-succinct judgment
for a mixed-gamma density, then we can have a b-bit blasting function for that distribution. We
describe this in more detail later.

3.3 Judgment ~;, and bit blasting

This section describes the rules for the judgement ~s;,. We first describe the rules for an exponential
distribution and then move on to generalized gamma distributions. Finally, we describe the rule for
mixed-gamma densities. For each of the rules Y ~»;, p, we prove the b-equivalence of the density Y
and the Dice program p and the b-succinctness of p. Detailed proofs can be found in the appendix.
We also describe how ~»;, allows us to construct a bit blasting function for mixed-gamma densities.

3.3.1 Exponential Distribution, my . Let us first consider the uniform distribution (70,0), @ special
case of an exponential distribution. If we bit blast a uniform distribution using b bits into 2°
intervals, we end up with a discrete distribution Dy, over [0, 1], with 2° discrete points each having
probability zih A straightforward discretization strategy enumerates 2° values using 2° —1 coin flips.
But the same can be achieved using a tuple of b bits, where each bit is an unbiased coin f1ip(0.5).

The strategy to bit blast a uniform distribution using its binary representation works because of
the independence between binary digits. The same strategy can be extended to general exponential
distributions as well. This fact was shown in a classic paper in the statistics literature [Marsaglia
1971]. We formalize that idea using the following rule.

B
e2b

DEFINITION 12. The function flip_param: RXZ* — [0, 1] is defined flip_param(f, b) =

w\‘%

1+e2

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

Bit Blasting Probabilistic Programs 182:11

fresh yi, v, - - . ¥
flip_param(f,1) =6, flip_param($,2)=6, ... flip_param(p,b) =0,
(Expo0)
let y; = flip(6;y) in
let y, = flip(6;) in
To,p b ..
let y, = flip(8p) in
i, 2y Gooey YR e o))

We prove the b-equivalence of the density 7y s and the Dice program in rule Expo0 and b-
succinctness of the latter in the following lemmas. It is more straightforward to see the succinctness
of the Dice program — it uses only b coin flips.

LEMMA 1. Vb € Z*, B € R, p, if mo g ~p P, then mo g and p are b-equivalent.
LEMMA 2. Vf € R, wy, is b-succinct for m g

We provide detailed proofs of the above lemmas in the appendix. For rest of the paper, we
consider exponential distributions as primitives to build other distributions, since these are the
only ones that enjoy the property of independent bits. But, sound bit blasting functions are still
possible for other distributions, as we show next.

3.3.2 Gamma Distribution mr g. To come up with a sound bit blasting function for 1, 5, we present a
key mathematical insight. Consider the program in Figure 8a. Continuous random variables X and Y
have a uniform (1) and exponential (1 g) distribution respectively. It returns the new distribution
of X after conditioning on the inequality Y < X. It turns out that the posterior distribution is a
specific gamma distribution 7; 5. We show the resulting calculation below, where pdf refers to the
probability density function.

1

pdf (Y) - pdf (X) - 1(Y < X) dy = /x 1- e dy oc xeP* (1)

y=0

pAf(X]Y < X) o /

y=0

What happens if we discretize the program in Figure 8a using b bits? We get the program in
Figure 8b where each continuous random variable has been replaced with its bit blasted counterpart
(X replace by X, and so on). We have already seen that for uniform and exponential distributions,
b-equivalent Dice programs exist. But what about the other constructs? As Figure 8d demonstrates,
observe (Y, < Xp) incurs error over its continuous counterpart observe (X < Y). The good
news is that we can account for the error as shown by the following equations:

Pr(Xb | Y<X) = Pr(Xb, Y, <Xp | Y<X) +PI‘(Xb,Yb =X, | Y<X)

= Pr(Xb | Y, < Xb) -Pr(Yb < Xp | Y<X) +Pr(Xb | Yy == Xp, Y<X) -Pr(Yb ==X} | Y<X).
—,——
Output of the discrete program Correction o[719,45

The correction term in the above equations when computed algebraically turns out to be propor-
tional to the exponential density (7 5). So now, the resulting discrete probabilistic program after
correction looks as shown in Figure 8c where 6 = Pr(Y, == X|Y < X).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

182:12 Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein

Y ~ uniform(@, 1) Yp ~ Luniform(@, 1)1, Yp ~ [uniform(@, 1)1,

1 1 1
2 X ~ exponential(f) 2 Xp ~ [exponential(f)], 2 Xp ~ [exponential(f)]y
3 observe(Y < X) 5 observe(Yy < Xp) 5 C ~ [exponential(f)],
4+ return X 4+ return Xp 4 observe(Y, < Xp)
5 Z = 1if flip(@) then C
(a) Continuous probabilistic (b) bit blasted probabilistic pro- else X
program for density xePx gram analogous to program 8a s+ return Z

(c) Sound bit blasted probabilistic
program for density xef*

PI‘(Xb | Y, ==X, Y < X)

Correction C in Figure 8c « [exponential (f)]s

2

PI‘(Xb | Y, < Xb)
N———e
0.75 Y Output of program in Figure 8b

X

(d) Sound b-bit blasting of xeP*. Prior densities for X and Y (shown in blue) when conditioned on Y < X
(shown in violet) returns the posterior for X (shown in orange).

Figure 8. Key insight in bit blasting xePx probability density. [.]; refers to discretization of a continuous
density into 2 intervals and Xj, refers to the discretization of X.

The rule Expol and Trans-expolzero (in the appendix) captures the above intuition. Here,
unifObs(y, b) =p is ahelper judgment where p constructs a uniform distribution that it condi-
tions through observe on being less than y.

fresh yi, y2, ¥3 B#0
o= Bt -ef)
T (1P (P (B-1)41)

To,p b P1 unifObs(y;, b) =p;

(Expol)
let y; = py in

let _ = p; in
mp -y let y, = py in
let y; = flip(0) in
if y; then y, else y,
We prove the b-equivalence and b-succinctnesss. The proof for b-equivalence is much more involved
but it is easy to see that the Dice program in the above rule uses 3b + 1 coin flips: b coin flips in each
occurrence of py, b coin flips in p; and 1 coin flip in the if then else guard to create a mixture.

LEMMA 3. Vb € Z*, B # 0 € R, p, if my g ~ P, then my g and p are b-equivalent.

LEMMA 4. Vf € R~y is b-succinct for i g

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

Bit Blasting Probabilistic Programs 182:13

3.3.3 Generalized Gamma Distribution . g. The previous subsection

shows how conditioning on the inequality (Y < X) introduces a linear Y ~ uniform(@, 1)

1
factor to 7o g to obtain 7y 5. Note that conditioning on (Y < X) intro- : Xb~ f(X)Y <X
duces a linear factor regardless of what initial probability density X ' ?ezjize)(()
4

had. That is, if X’s initial probability density was f(x), the resulting
density of the following probabilistic program would be x f(x). This
implies that if we can bit blast f(x), we can bit blast xf(x). We still need to account for the error
incurred by observe (Y, < Xp) ie. Pr(Xp|Yy == Xp, Y < X). It turns out that the correction term
is a mixture of gamma distributions which can be bit blasted soundly as well. We provide the
judgement rule and proof of the following lemma in the appendix.

LEMMA 5. Vb,a € Z*, B € R, p, if o p ~p P, then 7, g and p are b-equivalent.
LEMMA 6. VB € R, a € Z*, ~y, is b-succinct for 7, p

3.3.4 Mixture of Gamma Distributions }.; a; 7, p,. Since generalized gamma densities 7, 4 can
be bit blasted, mixed gamma densities can be bit blasted as well. One bit blasts each individual
generalized gamma density and creates their mixture using if then else constructs as follows.

fresh yi, ¥v2, ¥3

Vot e~ B i\i;l l_a‘;N g fy ~b P2 Vi,a; € [0,1] 2511 a; =1
let y; = flip(ay) in
let y, = py in
N 2 !
Diz1 GiTa p; “b let y3 = p, in

if y; then y, else y;
(Trans-mix)

We prove the following theorems with details in the appendix.
THEOREM 7. YY,b € Z*,p, if Y ~»}, p then Y and p are b-equivalent.
THEOREM 8. ~», is b-succinct for all mixed-gamma densities Y

Now that we have specified the rules for judgment ~»;,, we specifically define a sound bit
blasting function for all mixed-gamma densities Y, that is ~» 0 ~msy,.

THEOREM 9. ~» 0 ~y, is a sound b-bit blasting function

Earlier work [Holtzen et al. 2020] defines the judgment ~» that takes as input a Dice program
p and outputs a weighted Boolean formula (¢, y, w) that aligns with Definition 4 of a discrete
probabilistic closure. And since s, is b-succinct for all mixed-gamma densities by Theorem 8,
~» always outputs a w with poly(b) coin flips. Thus, ~»» o ~», is a b-bit blasting function. Earlier
work [Holtzen et al. 2020] also proves the correctness of compilation to weighted Boolean formula
with respect to the semantics of the Dice program. This fact combined with Theorem 7 concludes
that ~» o w3, is a sound b-bit discretization function. Detailed proofs can be found in the appendix.

3.3.5 Example: Laplace Distribution. Previous sections described how mixed gamma densities
can be bit blasted when they are confined to a unit interval. But how can distributions that are
shifted or scaled to other finite intervals be bit blasted? We explain it through the example of a
Laplace distribution. A Laplace distribution has two parameters: location (¢) and scale (b) and has
the probability density function as described below where x € R.

o
lx—pl ebe x2pu
_u

b

1
Laplace(x|p, b) = %e’T = {

SR SR

e be

&~ &~

x<p

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

182:14 Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein

Let us consider the Laplace distribution truncated at the interval [y — r, u + r). We assume that
r would be a suitable power of 2 allowing product with r (denoted by r X p) to be just a decimal
shift and y to be a b-bit representable number allowing precise shifting of p. First we generate the
exponentials scaled for an interval of width r instead of width 1:

To,— % b Py T, 5 b P2
And then we create a mixture of them:
Laplace(x|p, b) ~»p if flip 0.5 then p+r X p; elsep—r+rxp,

Since p; and p, use b coin flips each, the program shown above uses 2b coin flips and ~» o v, isa
sound bit blasting function for Laplace distributions as well.

3.4 How does bit blasting help in inference?

We have demonstrated sound bit blasting functions for mixed gamma distributions. But how does
that help in inference for probabilistic programs with these distributions? To answer this question,
we focus on a particular inference strategy - that is knowledge compilation. We first describe the
necessary preliminaries about knowledge compilation and then argue about how the programs
obtained through ~»;, are efficient for knowledge compilation.

Knowledge compilation based approaches [Fierens et al. 2015; Holtzen et al. 2020] for exact
discrete probabilistic inference compile discrete probabilistic programs into weighted Boolean
formulas that are represented using (reduced) ordered binary decision diagrams (OBDDs). These
OBDDs are single rooted in case of a single Boolean random variable being returned and multi-
rooted in case of a tuple of Boolean random variables being returned. By fixing a value for all the flips
(biased coin flips with associated weights) in the program, and by traversing the OBDD following
those values (solid line for true, dashed for false), we reach the terminal corresponding to the value
of each bit. The operation of weighted model counting computes the probability of reaching the
1-terminal for each bit in the returned value. It is a dynamic programming algorithm that runs in
time linear in the OBDD size. The size of an OBDD for a Boolean formula ¢, denoted OBDD(¢), is
the number of nodes in the OBDD. Thus, if we can obtain a smaller OBDD representation for a
distribution, we can efficiently compose it with other constructs in a discrete probabilistic program.

We discuss and prove formally how every program obtained through the judgement s
compiles into a weighted Boolean formula that compiles to a multi-rooted OBDD that grows linearly
in the number of bits as opposed to the worst case exponentially. Recall that Dice programs compile
to weighted Boolean formula (¢, y, w) where ¢ is the (tuple of) Boolean formulae corresponding to
the return value of the program, y is the accepting Boolean formula to encode observations and w
is the weight function with flip probabilities.

THEOREM 10. VY, p, ¢, y, w, 3k, Vb, if Y ~»p, p andp ~» (@,y, w), then there exists a variable
orderI1 of Boolean random variables in w such that OBDD(¢) + OBDD(y) < kb

We now provide intuition for the proof of the above theorem. Note that in the programs
obtained through the judgement ~»;, there are only two constructs that depend on the number of
bits: (1) construction of exponential distribution 7 g, and (2) conditioning on inequality between
an exponential and a uniform distribution through unifObs(y, b). We provide intuition how the
OBDD size for these constructs increase linearly in the number of bits, b.

3.4.1 Exponential Distribution. In Figure 9, we 3-bit blast an exponential distribution, i.e. we have a
discrete exponential distribution over 8 values (0, 0.125, 0.25, . . ., 0.875). The figure shows a 3-rooted
OBDD where each root labeled as by, b; and b; represents a bit in the returned value of 3 bits.
Consider that we fix the value of the flip corresponding to the node f; to be true, then for b, we would

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

Bit Blasting Probabilistic Programs 182:15

reach the terminal 1 and its value would be assigned 1. The operation of
weighted model counting (WMC) would calculate the probability of b,
to be 1 as 6.14e~° as node f; has probability 6.14e~° to be true. Similarly
WMC can be used for other roots of this OBDD. Since each bit needs
one OBDD node, the overall OBDD size grows linearly with the number
of bits. Since WMC runs in time linear in the OBDD size, probabilistic
inference for an exponential distribution would run linear in the number
of bits O (b). Another example of OBDD for a uniform distribution can
be found in the appendix.

For all programs p obtained through the judgement ws, if p m»> Figure 9. Compiled BDD
(¢,y,w), then ¢ is the tuple of Boolean formulae representing the return for exponential (-3) =¥,
value of the program. We argue that the return value of p is always a
mixture of exponential distributions making its OBDD size linear in the number of bits.

3.4.2 Conditioning on inequality between an exponential and a uniform distribution. The rules for
judgment ~»;, use the helper judgment unifObs(y, b) = p to condition on an inequality between
binary representations of a uniform distribution and an exponential distribution.

DEFINITION 13 (INEQUALITY FUNCTION). A b-bit inequality function, LTy : {0,1}* x {0,1}? —
{0, 1} takes as input two b-bit numbers x,y and outputs 1 if x < y and 0 otherwise. Thus,

X1Y1 b=1

LTp((x1, .. xp), (Y15 - - - Yp)) =
! ! —x1y1 + (~x1=ys + Xy LTpoy (o, %), (Yoo yp)) b > 1

We prove the following lemma which states that the OBDD size for the inequality function
grows linearly with the number of bits.

LEmMA 11. 3k, Vb, for the variable order x1,y1, X2, Y2, - . -, Xp, Yp, the size of the OBDD, that is
OBDD(LT((x1,%2, ..., %), (Y1, Y2, - - -, Yp))) < kb.

Since the only constructs that depend on the number of bits (exponential distributions and
inequalities) grow linearly with the number of bits, Theorem 10 holds intuitively. We provide a
formal proof in the appendix.

4 HYBIT: A PROBABILISTIC PROGRAMMING SYSTEM

The previous section described how to bit blast mixed-gamma distributions. We further use
it to build a probabilistic program system HyBit for hybrid probabilistic programs. This section
describes its syntax and implementation and elaborates on two important aspects: piece-wise
approximations of continuous distributions and advantages of a binary representation.

1T ::= Bool | DistFix{m,n}

2 v ::=T | F | DistFix{n,n}(r)

5 e ::=x | v | flip 0 | general_gamma(n,n,n,r,r,r) | bitblast(n, pdf,n,b,rr)
4 | if e then e else e | observe e | op"(e1, ..., en)

Figure 10. Syntax for the core HyBit expressions. DistFix{n, n} refers to the type of fixed-point numbers. The
metavariable r ranges over real numbers, n over integers, b over Booleans, x over variable names, and 6 over real
numbers in the range [0, 1]. The metavariable pdf ranges over continuous density functions pdf : R — R. op™
ranges over arithemtic operations with n-arity. We explain the API DistFix, general_gamma and bitblast
and their arguments in Figure 11.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

182:16 Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein

DistFix{W, F}
Parameters: W: total number of bits being used; F: number of bits after the binary point

DistFix{W, F} general_gamma(int W, int F, int alpha, float beta, float 11, float ul)
Parameters: W, F:number of bits for bit blasting; alpha, beta: parameters of the density 7, g

11, ul:range of the continuous density
Returns: Sound bit blasted distribution of type DistFix{W, F}

DistFix{W, F} bitblast(int W, int F, function pdf, int pieces, bool dist,
float 11, float ul)
Parameters: W, F: number of bits for bit blasting; pdf: continuous density function
pieces: number of pieces; 11, ul:range of the continuous density
dist: Boolean indicating whether to use linear or exponential pieces
Returns: Bit blasted distribution of type DistFix{W, F}

Dict{float, float} pr(DistFix{W, F} var)

float expectation(DistFix{W, F} var)

float variance(DistFix{W, F} var)

Parameters: var: random variable

Returns: Probability distribution / expectation / variance of var.

Figure 11. API for HyBit.

4.1 HyBit — Syntax and Implementation Details

We build a probabilistic programming system HyBit around sound bit blasting of mixed-gamma den-
sities and approximate bit blasting of other continuous distributions. HyBit has been implemented
as a shallow embedded domain specific language in Julia [Bezanson et al. 2017].

The core syntax of HyBit expressions is given in Figure 10. It provides support for distributions
over Booleans (flip 0) and fixed-point numbers (general_gamma and bitblast). It supports
Boolean operations (-, A, V) and arithmetic operations (+, -, %, /, %, <, ==) over these distributions
as well as hard observations for probabilistic conditioning (observe). For all the constructs in
Figure 10, HyBit performs a non-standard execution and compiles them to OBDDs to perform
probabilistic inference. Since HyBit has been implemented as a library in Julia, HyBit programmers
can also make use of Julia constructs such as (bounded) loops, tuples and functions. As an example,
a for loop from Julia can be used with HyBit constructs in the loop body to build a probabilistic
model. HyBit is available as an open source repository with a comprehensive set of examples. *.

Figure 11 contains more details on the API of HyBit. DistFix{W, F} is the type of fixed point
numbers of bitwidth W with F bits after the binary point. The function general-gamma performs
sound bit blasting of a specified generalized gamma density to the given fixed-point W and F.
Sound bit blasting of mixed-gamma densities is achieved by using the if-then-else construct
over generalized gamma densities. The function bitblast is used for bit blasting any arbitrary
continuous distribution using piece-wise approximation, employing the bits and pieces specified
using the parameters W, F, and pieces. The API also allows the user to choose the type of discrete
distribution — linear or exponential — for the piece-wise approximation. The parameters of linear

4https://github.com/Tractables/Dice.jl/tree/hybit

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

https://github.com/Tractables/Dice.jl/tree/hybit

Bit Blasting Probabilistic Programs 182:17

(slope) and exponential (f) pieces are automatically chosen o ..

such that the ratio of probabilities of the first and last interval ’ :gzi

is the same as that for the naive discretization. Finally, the API ~ ©3 M —~p=8

also provides functions for querying the probability distribu- é 0.2 fr3] “p=16

tion, expectation and the variance of a random variable. The < o)

next subsections describe piece-wise approximations and the ' VAR

computation of expectation and variance in more detail. 0.0tsssersseeenlls . M3eresceeeses
X

4.2 Piece-wise Approximations

Even though mixed-gamma distributions capture many nat- Figure 12. Bit blasted Gaussian distri-
ural distributions, there are other commonly occurring ones, bution using 5 bits in the range [-8, 8)
such as the Gaussian. It is an open problem as to whether Using exponential pieces p —for 2, 4,
Gaussians admit a sound bit blasting function, let alone one 8 and 16 pieces.
that compiles to a compact OBDD. For such distributions, one
can instead use a piece-wise approximation.

Let C be an arbitrary continuous probability distribution over the interval [/, u). To bit blast
C using a piece-wise distribution with t pieces, C is approximated using a mixture of t dis-
crete probability distributions over disjoint intervals. For every piece, one creates a shifted and
scaled instance of a bit blasted mixed-gamma density and then creates a mixture of them. Note
that since each piece uses O(b) coin flips, a piece-wise distribution with ¢ pieces uses O(tb)
coin flips. Section 5 shows empirical advantages of this approach. This piece-wise approxima-
tion using linear or exponential pieces can be easily built using the bitblast API available in
HyBit (Figure 11). Figure 12 shows bit blasting of a Gaussian distribution using 2, 4, 8 and 16
pieces, where each piece is a bit blasted exponential. This provides the user with the conven-
tional trade off between accuracy and performance. We elaborate more on this in Section 5.2.

4.3 Advantages of the Binary Representation 10t * z::’\vlszf:s;‘:j::"
The binary representation has important advantages for prob- @ 10
abilistic reasoning beyond the succinctness that bit blasting ¢
provides. First, many hybrid probabilistic models involve arith- 10
metic operation on continuous random variables. Since we T R I
use a binary representation of fixed point numbers, arithmetic 25 5o 75 100 135 150
operations such as +, ¥, /, < are compiled as Boolean formulas Bits
over binary numbers (similar to ALU circuits in architecture). (a) Expectation
This representation allows probabilistic inference (specifically ——
. . . 10! e Bitwise Variance

the knowledge compilation approach that we employ) to iden- Naive Variance
tify and exploit the structure that exists in arithmetic, such @ 10
as conditional independences among the resulting bits ina 2
computation. Recent work [Cao et al. 2023] described this F 10 PRI
compilation and showed its advantage empirically for inte- w2, g0
gers; HyBit leverages these advantages for computations over 25 50 75 100 125 150
fixed-point numbers. Bits

The binary representation also enables an optimized com- (b) Variance

putation of expectation and variance. Naive computation of

expectation and variance for a distribution over 2% values Figure 13. Speedup in computing ex-
requires one to compute probability of 2° values. Bitwise rep- pectation and variance

resentation allows one to achieve this computation by only

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

182:18 Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein

computing probability of b bits which gives an exponential improvement. Note that in the worst
case for an arbitrary hybrid probabilistic program, getting the corresponding OBDD for the binary
representation can itself be exponential in the number of bits. But for the class of mixed-gamma
distributions, this conversion is linear in the number of bits (Theorem 10). We formalize the com-
putation of expectation and variance in the following two theorems and provide proofs in the
appendix.

THEOREM 12. Let D be a discrete probability distribution over the interval [0,2") represented as a
distribution over n bits as (b, by_1, . . ., by), then the expectation of D can be computed using linearity
of expectation as follows:

2"-1

E[D] = > i-pr(i) = E(zn] 2/71p;) = Z 271 pr(b))

i=0 j=1 j=1

THEOREM 13. Let D be a discrete probability distribution over the interval [0, 2") represented as a

distribution over n bits as (by, by—1, ..., b1), then the variance of D can be computed as follows:
2n-1
Var[D] = pr(i) - (E(D))” = Var(z 2/7b)) = Z Z 252 pr(by A by) = pr(bp)pr(by)]
i=0 k=1 I=1

Example. Consider a discrete uniform distribution Uy over the integers {0, 1, 2, 3} represented
using two bits, (X3, X1). The direct way of calculating the expectation and variance of this uniform
distribution requires inferring the probability of all the integers in the domain. But Theorems 12
and 13 allow us to compute these quantities by using only the probabilities of the individual bits.

2
Z 2771 pr(b;) =15 Var[Uy] = Z Z 22 pr(by A b)) — pr(by)pr(by)] = 1.25
Jj=1 k=1 I=1
Figure 13 empirically shows the performance benefits in computing expectation and variance of a
distribution as we increase the number of bits in bit blasting a standard normal distribution.

5 EMPIRICAL EVALUATION

We evaluate the practicality of bit blasting on real-life probabilistic programs. We have carried out
relevant experiments to investigate the following questions:
Q1: How does HyBit perform in comparison to existing inference algorithms? Section 5.1
Q2: How effective is the piece-wise approximation? Section 5.2

5.1 Comparison with existing inference algorithms

5.1.1 Approximate Inference Algorithms. We evaluate HyBit against two classes of approximate
inference algorithms.

Sampling Methods We compare against WebPPL rejection sampling, MCMC sampling (with
a Metropolis Hastings kernel), SMC sampling and Stan HMC as representatives of this class.

Discretization Methods We compare against AQUA and GuBPI in this class of inference
algorithms [Beutner et al. 2022; Huang et al. 2021].

Comparing performance of different probabilistic programming systems is a challenging task
since performance is directly affected by the structure of the program. We write equivalent programs
for these benchmarks in each system and put in our best effort to optimize them. The tables in this
section and subsequent sections report the mean value of absolute error over 10 runs for stochastic
algorithms. For other inference algorithms, we report output of a single run. All experiments were
single-threaded and were carried out on a server with 2.4 GHz CPU and 512 GB RAM.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

Bit Blasting Probabilistic Programs

Table 2 reports the results of performance evaluation of
HyBit against other approximate inference algorithms. We take
all the hybrid and continuous benchmarks on which Psi [Gehr
et al. 2016] was evaluated and a few more relevant benchmarks
from existing work [Huang et al. 2021]. We put in our best

182:19

Table 3. Comparison of HyBit with
Psi, an exact inference PPL. ’¢’ de-
notes a timeout, X’ denotes result

unsolved by Mathematica

effort to compute ground truth for these benchmarks either an- Benchmarks HyBit Psi
alytically or using computer algebra systems. We include only

those benchmarks in our evaluation for which we were able to weekend

compute the ground truth reliably. We report the absolute error spacex

with respect to the ground truth for all the benchmarks. For ~ GPA

benchmarks that returned a non-boolean value, we compute le:egr?rigar

the absolute error of expectation for each of the approaches. We
report the minimum error achieved by an inference algorithm
within a timeout of 20 minutes.

conjugate gaussians
normal_mixture (6)
normal_mixture (y)

normal_mixture (y2)
zeroone (w1)
zeroone (W2)

For all the benchmarks, HyBit replaced mixed-gamma dis-
tributions with their sound bit blasted distribution and all other
distributions with their linear piece-wise approximation 7 o.

AN NANE N N NN NN NN N N N N N NN
NN X NN eeee NN %N % N\ %

coinBias
The employed bits and pieces for each benchmark are reported Addfun/sum
in Table 2. To run Stan on these benchmarks, we make use of ClickGraph
SlicStan [Gorinova et al. 2020] to get the Stan program with ~ trueskill
marginalized discrete random variables. For all WebPPL base- CiTnTcaﬁr%ag

clinicaltrial
lines, default settings were used for all the sampling algorithms 450 00 o

with maximum number of samples within 20 minutes.

Table 2. Comparison of HyBit against other approximate inference algorithms. Each row consists of one entry
in bold indicating the lowest absolute error achieved among all inference algorithms. A X’ denotes that the
baseline does not support inference for the benchmark. A ’¢’ denotes timeout. A ’co’ denotes infinite bounds.

Benchmarks HyBit AQUA WebPPL Stan GuBPI
Bit Pieces rejection MCMC SMC

Pi [@10kdiver [n.d.]] 1.05E-04 14 - X 8.30E-05 9.66E-05 1.38E-03 4.84E-05 X
weekend [Gehr et al. 2016] 2.08E-08 24 4096 X 1.57E-02 1.57E-02 1.66E-02 X 2.50E-05
spacex [canyon289 2022] 6.94E-04 19 32 X 9.06E-04 3.24E-03 1.88E-02 1.15E-04

GPA [Wu et al. 2018] 2.22E-16 25 4096 3.62E-01 1.70E-02 9.39E-03 1.51E-02 X 3.88E-01
Tug of war [Huang et al. 2021] 4.50E-07 22 16 X 6.93E-04 6.94E-04 2.35E-03 4.51E-05

altermu2 [Nishihara et al. 2013] 3.48E-06 17 256 3.41E-07 ¢ 4.61E-01 4.38E-01 1.68E-03 1.57E-02
conjugate gaussians

[Jordan 2010] 4.92E-06 23 16 0.99 2.19E-04 3.53E-04 3.18E-03 1.06E-04 1.09E-03
normal_mix (0)

[Huang et al. 2021] 5.49E-05 9 64 4.13E-07 ¢ 3.90E-04 5.30E-03 4.29E-01 (S
normal_mix (1)

[Huang et al. 2021] 5.20E-03 9 16 7.55E-06 ¢ 1.36E-03 2.00E-02 1.87E+01 9.21E+00
normal_mix (p2)

[Huang et al. 2021] 3.92E-03 9 32 8.65E-06 ¢ 7.11B-04 1.15E-02 1.77E+01 9.44E+00
zeroone (w1) [Bissiri et al. 2016] 9.40E-05 16 - 5.66E-02 1.73E-01 o0
zeroone (w2) [Bissiri et al. 2016] 4.51E-04 19 — 3.69E+00 1.64E+00 1.64E+00 1.66E+00 2.38E-01 o0
coinBias [Gehr et al. 2016] 2.02E-07 22 4096 6.25E-02 1.69E-05 7.73E-05 1.22E-03 1.18E-05 4.01E-03
Addfun/sum [Gehr et al. 2016] 3.81E-06 23 16 X 4.41E-04 1.69E-03 5.41E-03 8.45E-05 3.12E-02
ClickGraph [Gehr et al. 2016] 1.75E-03 10 - X 7.29E-04 1.22E-03 3.41E-03 2.80E-05 ¢
trueskill [Gehr et al. 2016] 3.05E-03 10 16 X 1.81E-04 4.22E-04 1.68E-03 6.88E-05 ¢
clinicaltriall [Gehr et al. 2016] 5.27E-16 8 - X 1.51E-01 1.53E-01 1.49E-01 9.27E-04
clinicaltrial2 [Gehr et al. 2016] 6.81E-07 12 - X 1.42E-01 1.43E-01 1.42E-01 4.54E-05 2.86E-01
addfun/max [Gehr et al. 2016] 2.93E-07 23 128 X 4.38E-04 6.11E-04 3.26E-03 1.19E-04 8.56E-01

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

182:20 Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein

weekend

addFun_max spacex
altermu2 = ! 1500 P

3000

1000
2000

10001 ™

-

2? 2° 28 21 2} 22 27 29 2 22 25 28 211
. Pi . " : : . .
Linear Pieces # Linear Pieces # Linear Pieces # Linear Pieces

altermu2 addFun_max spacex weekend

2 0 o

o2 2 23 26 29 p3e) 2¢ 26 28 210 P38 23 26 29 2
Linear Pieces # Linear Pieces # Linear Pieces # Linear Pieces

Figure 14. Runtime and Accuracy trends with respect to linear pieces for different bitwidths

As Table 2 shows, HyBit with bit blasting is comparable with the existing approaches on all
the benchmarks, even better on 11/19 of them. For the other 8 benchmarks, HyBit achieves a very
close accuracy. AQUA performs better on only four of the benchmarks and GuBPI fails to obtain
good accuracy. This is primarily because their enumerative discretization does not scale well for
higher precision. WebPPL and Stan (equipped with automated marginalization through SlicStan)
support most of the benchmarks but do not achieve good accuracy within the threshold time. This
is because sampling based algorithms are stochastic and cannot obtain sufficiently many samples
from the true posterior in limited time.

5.1.2 Exact Inference Algorithms. Table 3 compares HyBit against a probabilistic programming
system that performs exact inference using algebraic methods i.e. Psi [Gehr et al. 2016]. We put in
our best effort to translate the benchmarks for optimal performance in Psi. It would often output a
symbolic expression which we would feed to Mathematica for further simplification. Computing
and simplifying these algebraic expressions is not a trivial task and hence, Psi timed out on 6 of
these benchmarks and Mathematica failed to simplify 4 of these benchmarks. HyBit works for all
19 benchmarks as it reduces the computation to discrete inference on Boolean random variables
and approximates the inference query.

5.2 How effective is piece-wise approximation?

We analyze the tradeoff between performance and accuracy when using different numbers of pieces
to approximate the continuous distribution. Figure 14 demonstrates the trends of runtime and
accuracy with the increase in pieces for different bitwidths for four benchmarks. As the number of
linear pieces increases, runtime tends to first decrease and then increase. As the number of pieces
increases, the accuracy tends to improve as shown by the lower four plots. This is because as we
increase the number of pieces, continuous distributions are replaced with more accurate bit blasted
distributions. That accuracy improvement comes at the cost of increased runtime after a certain
sweet spot. The appendix provides additional experiments that also justify the usage of piece-wise
approximations over an approach based on the central limit theorem.

6 RELATED WORK

Probabilistic programming has been an an active area of research both from the perspective of
semantics and inference [Dahlqvist et al. 2023; Milch et al. 2005]. This section positions HyBit with
respect related work. At a high level, the key distinction in HyBit is the development of bit blasting
for succinct discretization of hybrid probabilistic programs.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

Bit Blasting Probabilistic Programs 182:21

Discretization approaches. Prior approaches that discretize continuous or hybrid probabilistic
programs estimate the posterior by exhaustively enumerating all of the discretized values [Huang
et al. 2021], which does not scale to provide sufficient accuracy in many cases. One prior discretiza-
tion technique also employs a bit representation [Claret et al. 2013]. However, their approach is
not a form of bit blasting, since it is not succinct and still in general produces a representation that
is proportional to the number of discretized points. Finally, a recent approach uses discretization to
produce upper and lower bounds on the posterior of a probabilistic program [Beutner et al. 2022].

Inference algorithms for hybrid probabilistic programs. Other research specifically targets hybrid
probabilistic programs. Leios [Laurel and Misailovic 2020] continualizes the hybrid probabilistic
program in order to harness the power of existing continuous inference algorithms. HyBit, on the
other hand discretizes the hybrid programs which helps in scaling inference for hybrid programs
specifically with respect to the discrete structure. SPPL supports hybrid programs by translating
them to specific representations for inference [Saad et al. 2021]. However, these representations
constrain the hybrid programs that can be supported. For instance, SPPL does not support arith-
metic on continuous random variables while HyBit can. Finally, probabilistic logic programming
languages have been extended to support hybrid models using interval traces [Gutmann et al. 2011].

Algebraic approaches. Some PPL inference algorithms produce closed form algebraic expressions
to encode probability distributions and then use symbolic techniques to perform exact inference
[Gehr et al. 2016; Hur et al. 2014; Narayanan et al. 2016]. However, these systems are necessarily
limited in their expressivity and the programs that they can handle, as shown in Table 3.

Path based inference algorithms. A common class of inference algorithms for PPLs are operational:
they record traces on the program by using concrete values of the random variables. This includes
sampling algorithms and variational approximations [Bingham et al. 2019; Carpenter et al. 2017;
Chaganty et al. 2013; Dillon et al. 2017; Goodman et al. 2008; Hur et al. 2015; Kucukelbir et al.
2015; Mansinghka et al. 2013, 2018; Minka et al. 2014; Pfeffer 2007; Saad and Mansinghka 2016;
Tristan et al. 2014; van de Meent et al. 2015; Wingate and Weber 2013; Wood et al. 2014]. Sampling
algorithms like rejection sampling and MCMC methods are universal but have known limitations
such as difficulty in handling multi-modality and low-probability evidence, as described in Section 2.
More sophisticated techniques like Hamiltonian Monte Carlo and variational approximation address
these limitations but impose constraints of continuity and almost-everywhere differentiability, so
they must resort to marginalizing out all discrete structure.

Use of a binary representation. Bit blasting has been a widespread technique in software verifica-
tion, used in constraint solvers to reason about arithmetic using a bit representation [Bruttomesso
and Sharygina 2009]. Recent work in scaling inference for probabilistic programs over integers
also employs a binary representation for numbers [Cao et al. 2023], in order to exploit conditional
independences in that representation. The bit blasting in HyBit is inspired by these techniques but
has a different purpose and hence a very different technical approach: to develop succinct, and in
many cases provably sound, approximations of continuous probability distributions.

7 CONCLUSION AND FUTURE WORK

In this work, we motivated the need for new inference methods for hybrid probabilistic programs.
We described bit blasting, whereby hybrid probabilistic programs are succinctly discretized and then
analyzed using algorithms for discrete inference. We characterized a class of continuous densities —
mixed-gamma densities — for which bit blasting is not only succinct but also sound relative to an
explicit discretization approach as well as provably efficient to analyze. We then presented a new
PPL HyBit that employs a novel inference algorithm for hybrid programs based on bit blasting. We
demonstrated the performance benefits of HyBit over existing approximate inference algorithms.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

182:22 Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein

In future work, we hope to expand the class of distributions that can be bit blasted soundly. We
plan to investigate how HyBit can be extended to support hierarchical Bayesian models. We plan
to enhance its usability by not requiring user to specify the hyperparameters for every probabilistic
program. We are also interested to explore the integration of HyBit with other inference approaches,
to leverage their relative strengths for support of a wider range of hybrid probabilistic programs.

ACKNOWLEDGMENTS

The authors would like to thank previous and current members of Star Al lab for helpful discussions
and emotional support. This work was funded in part by the DARPA PTG Program under award
HR00112220005, the DARPA ANSR program under award FA8750-23-2-0004, NSF grants #IIS-
1943641, #1IS-1956441, #CCF-1837129, and a gift from Relational AI. GVdB discloses a financial
interest in Relational AL

ARTIFACT

HyBit probabilistic programming system is available as an open source repository on GitHub at
https://github.com/Tractables/Dice.jl/tree/hybit with thorough documentation for reusability. It is
also available as an archived version on Zenodo [Garg et al. 2024] with comprehensive instructions
and scripts for reproducibility of experiments reported in the paper.

REFERENCES

@10kdiver. [n.d.]. @10kdiver. https://twitter.com/10kdiver/status/15033077559767654437s=20&t=
Ux1C55thW5qnCPVOHoxguQ. [Online; accessed 14-March-2022].

Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V. Nori. 2017. FairSquare: Probabilistic Verification of Program
Fairness. Proc. ACM Program. Lang. 1, OOPSLA, Article 80 (Oct. 2017), 30 pages. https://doi.org/10.1145/3133904

S. Arora and B. Barak. 2006. Computational Complexity: A Modern Approach. Cambridge University Press. https:
//theory.cs.princeton.edu/complexity/book.pdf

Raven Beutner, Luke Ong, and Fabian Zaiser. 2022. Guaranteed Bounds for Posterior Inference in Universal Probabilistic
Programming. https://doi.org/10.48550/ARXIV.2204.02948

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. 2017. Julia: A fresh approach to numerical computing.
SIAM Review 59, 1 (2017), 65-98. https://doi.org/10.1137/141000671

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul
Szerlip, Paul Horsfall, and Noah D. Goodman. 2018. Pyro documentation. https://pyro.ai/examples/enumeration.html

Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh,
Paul Szerlip, Paul Horsfall, and Noah D Goodman. 2019. Pyro: Deep universal probabilistic programming. The Journal of
Machine Learning Research 20, 1 (2019), 973-978.

P. G. Bissiri, C. C. Holmes, and S. G. Walker. 2016. A general framework for updating belief distributions. Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 78, 5 (feb 2016), 1103-1130. https://doi.org/10.1111/rssb.12158

Roberto Bruttomesso and Natasha Sharygina. 2009. A scalable decision procedure for fixed-width bit-vectors. In 2009
IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers. 13-20. https://doi.org/10.
1145/1687399.1687403

canyon289. 2022. Spacex. (2022). https://gist.github.com/canyon289/73890bab211c5cbaea41ad6f32df01a5

William X. Cao, Poorva Garg, Ryan Tjoa, Steven Holtzen, Todd Millstein, and Guy Van den Broeck. 2023. Scaling integer
arithmetic in probabilistic programs. In Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence
(Pittsburgh, PA, USA) (UAI "23). JMLR.org, Article 25, 11 pages.

Bob Carpenter, Andrew Gelman, Matthew D. Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt, Marcus Brubaker,
Jigiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A Probabilistic Programming Language. Journal of Statistical Software
76, 1(2017), 1-32. https://doi.org/10.18637/jss.v076.101

Arun Chaganty, Aditya Nori, and Sriram Rajamani. 2013. Efficiently sampling probabilistic programs via program analysis.
In Artificial Intelligence and Statistics. 153-160.

Mark Chavira and Adnan Darwiche. 2008. On Probabilistic Inference by Weighted Model Counting. J. Artificial Intelligence
172, 6-7 (April 2008), 772-799. https://doi.org/10.1016/j.artint.2007.11.002

Mark Chavira, Adnan Darwiche, and Manfred Jaeger. 2006. Compiling Relational Bayesian Networks for Exact Inference.
IJAR 42, 1-2 (May 2006), 4-20.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

https://github.com/Tractables/Dice.jl/tree/hybit
https://twitter.com/10kdiver/status/1503307755976765443?s=20&t=Ux1C55thW5qnCPVOHoxguQ
https://twitter.com/10kdiver/status/1503307755976765443?s=20&t=Ux1C55thW5qnCPVOHoxguQ
https://doi.org/10.1145/3133904
https://theory.cs.princeton.edu/complexity/book.pdf
https://theory.cs.princeton.edu/complexity/book.pdf
https://doi.org/10.48550/ARXIV.2204.02948
https://doi.org/10.1137/141000671
https://pyro.ai/examples/enumeration.html
https://doi.org/10.1111/rssb.12158
https://doi.org/10.1145/1687399.1687403
https://doi.org/10.1145/1687399.1687403
https://gist.github.com/canyon289/73890bab211c5cbaea41ad6f32df01a5
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1016/j.artint.2007.11.002

Bit Blasting Probabilistic Programs 182:23

Irene Y. Chen, Shalmali Joshi, Marzyeh Ghassemi, and Rajesh Ranganath. 2020. Probabilistic Machine Learning for Healthcare.
arXiv:2009.11087 [stat.ML]

Guillaume Claret, Sriram K. Rajamani, Aditya V. Nori, Andrew D. Gordon, and Johannes Borgstréom. 2013. Bayesian
Inference Using Data Flow Analysis. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering
(Saint Petersburg, Russia) (ESEC/FSE 2013). Association for Computing Machinery, New York, NY, USA, 92-102. https:
//doi.org/10.1145/2491411.2491423

Fredrik Dahlqvist, Alexandra Silva, and William Smith. 2023. Deterministic stream-sampling for probabilistic programming:
semantics and verification. arXiv:2304.13504 [cs.PL]

Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. 2007. ProbLog : A Probabilistic Prolog and Its Applications to Link.
Proc. of IJCAI (2007), 2468-2473.

Joshua V Dillon, Ian Langmore, Dustin Tran, Eugene Brevdo, Srinivas Vasudevan, Dave Moore, Brian Patton, Alex Alemi,
Matt Hoffman, and Rif A Saurous. 2017. TensorFlow Distributions. arXiv preprint arXiv:1711.10604 (2017).

Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda Janssens, and
Luc De Raedt. 2015. Inference and learning in probabilistic logic programs using weighted Boolean formulas. J. Theory
and Practice of Logic Programming 15(3) (2015), 358 — 401. https://doi.org/10.1017/S1471068414000076

Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2023. Bit Blasting Probabilistic Programs.
arXiv:2312.05706 [cs.PL]

Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2024. Bit Blasting Probabilistic Programs. https:
//doi.org/10.5281/zenodo.10901544

Timon Gehr, Sasa Misailovic, and Martin Vechev. 2016. Psi: Exact symbolic inference for probabilistic programs. In
International Conference on Computer Aided Verification. Springer, 62-83.

Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B. Tenenbaum. 2008. Church: a
language for generative models. In Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence (UAI).

Noah D Goodman and Andreas Stuhlmiiller. 2014. The Design and Implementation of Probabilistic Programming Languages.
http://dippl.org. Accessed: 2022-10-26.

Maria I. Gorinova, Andrew D. Gordon, Charles Sutton, and Matthijs Va kar. 2021. Conditional Independence by Typing.
ACM Transactions on Programming Languages and Systems 44, 1 (dec 2021), 1-54. https://doi.org/10.1145/3490421

Maria I Gorinova, Dave Moore, and Matthew D Hoffman. 2020. Automatic Reparameterisation of Probabilistic Programs.
International Conference on Machine Learning (ICML) (2020).

Bernd Gutmann, Manfred Jaeger, and Luc De Raedt. 2011. Extending ProbLog with Continuous Distributions. In Inductive
Logic Programming, Paolo Frasconi and Francesca A. Lisi (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 76-91.

Steven Holtzen, Guy Van den Broeck, and Todd Millstein. 2020. Scaling Exact Inference for Discrete Probabilistic Programs.
Proc. ACM Program. Lang. (OOPSLA) (2020). https://doi.org/10.1145/3428208

Zixin Huang, Saikat Dutta, and Sasa Misailovic. 2021. AQUA: Automated Quantized Inference for Probabilistic Programs. In
International Symposium on Automated Technology for Verification and Analysis. Springer, 229-246.

Chung-kil Hur, Aditya V. Nori, Sriram K. Rajamani, and Selva Sammuel. 2015. A Provably Correct Sampler for Probabilistic
Programs. FSTTCS FSTTCS (2015), 1-14. https://doi.org/10.4230/LIPIcs. FSTTCS.2015.475

Chung-Kil Hur, Aditya V. Nori, Sriram K. Rajamani, and Selva Samuel. 2014. Slicing probabilistic programs. Proc. of PLDI
(2014), 133-144. https://doi.org/10.1145/2594291.2594303

Michael I Jordan. 2010. Stat260: Bayesian Modeling and Inference: The Conjugate Prior for the Normal Distribution.
http://www.cs.berkeley.edu/~jordan/courses/260-spring10/lectures/lecture5.pdf

D. Koller and N. Friedman. 2009. Probabilistic graphical models: principles and techniques. MIT press.

Alp Kucukelbir, Rajesh Ranganath, Andrew Gelman, and David Blei. 2015. Automatic variational inference in Stan. In
Advances in neural information processing systems. 568-576.

Jacob Laurel and Sasa Misailovic. 2020. Continualization of Probabilistic Programs With Correction. In Programming
Languages and Systems, Peter Miiller (Ed.). Springer International Publishing, Cham, 366-393.

Edward A. Lee and Sanjit A. Seshia. 2017. Introduction to Embedded Systems, A Cyber-Physical Systems Approach.
Vikash Mansinghka, Tejas D Kulkarni, Yura N Perov, and Josh Tenenbaum. 2013. Approximate bayesian image interpretation
using generative probabilistic graphics programs. In Advances in Neural Information Processing Systems. 1520-1528.
Vikash K. Mansinghka, Ulrich Schaechtle, Shivam Handa, Alexey Radul, Yutian Chen, and Martin Rinard. 2018. Probabilistic
Programming with Programmable Inference. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). ACM, New York, NY, USA, 603-616. https:

//doi.org/10.1145/3192366.3192409

George Marsaglia. 1971. Random Variables with Independent Binary Digits. The Annals of Mathematical Statistics 42, 6
(1971), 1922 - 1929. https://doi.org/10.1214/aoms/1177693058

Brian Milch, Bhaskara Marthi, Stuart Russell, David Sontag, Daniel L. Ong, and Andrey Kolobov. 2005. BLOG: Probabilistic
Models with Unknown Objects. In Proceedings of the 19th International Joint Conference on Artificial Intelligence (Edinburgh,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

https://arxiv.org/abs/2009.11087
https://doi.org/10.1145/2491411.2491423
https://doi.org/10.1145/2491411.2491423
https://arxiv.org/abs/2304.13504
https://doi.org/10.1017/S1471068414000076
https://arxiv.org/abs/2312.05706
https://doi.org/10.5281/zenodo.10901544
https://doi.org/10.5281/zenodo.10901544
http://dippl.org
https://doi.org/10.1145/3490421
https://doi.org/10.1145/3428208
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.475
https://doi.org/10.1145/2594291.2594303
http://www.cs.berkeley.edu/~jordan/courses/260-spring10/lectures/lecture5.pdf
https://doi.org/10.1145/3192366.3192409
https://doi.org/10.1145/3192366.3192409
https://doi.org/10.1214/aoms/1177693058

182:24 Poorva Garg, Steven Holtzen, Guy Van den Broeck, and Todd Millstein

Scotland) (IJCAI’05). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1352-1359.

T. Minka,].M. Winn, J.P. Guiver, S. Webster, Y. Zaykov, B. Yangel, A. Spengler, and J. Bronskill. 2014. Infer.NET 2.6. Microsoft
Research Cambridge. http://research.microsoft.com/infernet.

Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov. 2016. Probabilistic inference by
program transformation in Hakaru (system description). In International Symposium on Functional and Logic Programming
- 13th International Symposium, FLOPS 2016, Kochi, Japan, March 4-6, 2016, Proceedings. Springer, 62-79. https://doi.org/
10.1007/978-3-319-29604-3_5

Robert Nishihara, Thomas Minka, and Daniel Tarlow. 2013. Detecting Parameter Symmetries in Probabilistic Models.
https://doi.org/10.48550/ARXIV.1312.5386

Avi Pfeffer. 2007. A general importance sampling algorithm for probabilistic programs. (2007). http://nrs.harvard.edu/urn-
3:HUL.InstRepos:25235125

Jeffrey S. Rosenthal. 2006. A first look at rigorous probability theory (second ed.). World Scientific Publishing Co. Pte. Ltd.,
Hackensack, NJ. xvi+219 pages.

Feras Saad and Vikash Mansinghka. 2016. A Probabilistic Programming Approach To Probabilistic Data Analysis. In
Advances in Neural Information Processing Systems (NIPS).

Feras A. Saad, Martin C. Rinard, and Vikash K. Mansinghka. 2021. SPPL: Probabilistic Programming with Fast Exact Symbolic
Inference. In PLDI 2021: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Design and
Implementation (Virtual, Canada). ACM, New York, NY, USA, 804-819. https://doi.org/10.1145/3453483.3454078

J. R. Shaw, M. Bridges, and M. P. Hobson. 2007. Efficient Bayesian inference for multimodal problems in cosmology. Monthly
Notices of the Royal Astronomical Society 378, 4 (jun 2007), 1365-1370. https://doi.org/10.1111/j.1365-2966.2007.11871.x

Hyungsuk Tak, Xiao-Li Meng, and David A. van Dyk. 2018. A Repelling—-Attracting Metropolis Algorithm for Multimodality.
Journal of Computational and Graphical Statistics 27, 3 (jul 2018), 479-490. https://doi.org/10.1080/10618600.2017.1415911

Jean-Baptiste Tristan, Daniel Huang, Joseph Tassarotti, Adam Pocock, Stephen J. Green, and Guy L. Steele. 2014. Augur:
Data-Parallel Probabilistic Modeling. In Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 2 (Montreal, Canada) (NIPS’14). MIT Press, Cambridge, MA, USA, 2600-2608.

Jan-Willem van de Meent, Hongseok Yang, Vikash Mansinghka, and Frank Wood. 2015. Particle Gibbs with Ancestor
Sampling for Probabilistic Programs. In AISTATS.

David Wingate and Theophane Weber. 2013. Automated variational inference in probabilistic programming. arXiv preprint
arXiv:1301.1299 (2013).

Frank Wood, Jan Willem Meent, and Vikash Mansinghka. 2014. A new approach to probabilistic programming inference. In
Artificial Intelligence and Statistics. 1024-1032.

Yi Wu, Siddharth Srivastava, Nicholas Hay, Simon Du, and Stuart Russell. 2018. Discrete-Continuous Mixtures in Probabilistic
Programming: Generalized Semantics and Inference Algorithms. https://doi.org/10.48550/ARXIV.1806.02027

Yuling Yao, Aki Vehtari, and Andrew Gelman. 2021. Stacking for Non-mixing Bayesian Computations: The Curse and
Blessing of Multimodal Posteriors. arXiv:2006.12335 [stat. ME]

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 182. Publication date: June 2024.

https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.1007/978-3-319-29604-3_5
https://doi.org/10.48550/ARXIV.1312.5386
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25235125
http://nrs.harvard.edu/urn-3:HUL.InstRepos:25235125
https://doi.org/10.1145/3453483.3454078
https://doi.org/10.1111/j.1365-2966.2007.11871.x
https://doi.org/10.1080/10618600.2017.1415911
https://doi.org/10.48550/ARXIV.1806.02027
https://arxiv.org/abs/2006.12335

	Abstract
	1 Introduction
	2 Motivating Examples
	2.1 Logical Structure
	2.2 Handling Multimodality
	2.3 Handling Low Probability Observations

	3 Bit Blasting: Key Insights
	3.1 Discretization and Bit Blasting
	3.2 Concrete Bit Blasting Function: Preliminaries
	3.3 Judgment b and bit blasting
	3.4 How does bit blasting help in inference?

	4 HyBit: A Probabilistic Programming System
	4.1 HyBit — Syntax and Implementation Details
	4.2 Piece-wise Approximations
	4.3 Advantages of the Binary Representation

	5 Empirical Evaluation
	5.1 Comparison with existing inference algorithms
	5.2 How effective is piece-wise approximation?

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

