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—— Abstract

Recent advancements in quantum technologies, particularly in quantum sensing and simulation,

have facilitated the generation and analysis of inherently quantum data. This progress underscores
the necessity for developing efficient and scalable quantum data management strategies. This goal
faces immense challenges due to the exponential dimensionality of quantum data and its unique
quantum properties such as no-cloning and measurement stochasticity. Specifically, classical storage
and manipulation of an arbitrary n-qubit quantum state requires exponential space and time. Hence,
there is a critical need to revisit foundational data management concepts and algorithms for quantum
data. In this paper, we propose succinct quantum data sketches to support basic database operations
such as search and selection. We view our work as an initial step towards the development of
quantum data management model, opening up many possibilities for future research in this direction.
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1 Introduction

Quantum information and computing, rooted in the principles of quantum mechanics, have
emerged as an important field of study with far-reaching effects across a broad spectrum
of disciplines. Central to the concept of quantum computing are quantum bits (or qubits),
which set themselves apart from classical bits due to their ability to exist in a superposition of
states, allowing a quantum computer to offer the potential computational advantage against
classical computing.

Although significant advancements have been made in the development of quantum
algorithms after several decades of research, only a handful provably outperform their
classical counterparts. Notable examples include Shor’s algorithm for factorization [48],
Grover’s algorithm for search [20], and linear system solvers [24]. These quantum algorithms
typically start by encoding classical input data into quantum states, execute a series of
quantum operations, and then measure the resulting quantum states and carry out specific
post-processing on the measurement outcomes. The reasons for the difficulties in the design
of quantum algorithms that can outperform classical counterparts on classical input data
remain elusive.

In this paper, we take a different perspective, directing our attention towards quantum
data themselves. The nature, along with scientific experiments spanning physics, chemistry,
material science, biology, and other fields, generates massive quantities of quantum data
every day. Sources include Hawking Radiation, Cosmic Microwave Background, quantum
effects in neutron stars, quantum states in ultra-cold atoms, quantum information in DNA
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replication, etc. In many scenarios, there is a need for us to preserve quantum data that has
been collected from nature or generated in labs for future analysis. For example, scientists
often use photons collected from remote stars to study the properties of those astronomical
objects. It would be beneficial to store those photons as quantum states in a database,
since it may not be feasible to collect fresh photons from those astronomical objects at
the time of data analysis. In the case that the quantum states are prepared in the labs,
generating fresh copies of quantum states on demand is often time-consuming. Let us
use quantum simulation as an example. Quantum simulation is a prominent advantage of
quantum computers, with significant implications for numerous areas of scientific research,
including computer-aided drug design [44], high-energy physics [36], quantum chemistry [52]
and many-body physics [49]. Quantum simulation typically relies on solving the Schrédinger
equation for the underlying Hamiltonian. The Hamiltonian is implemented by a quantum
circuit, which is applied to an initial quantum state to generate target quantum states. The
construction of the Hamiltonians and the preparation of the target states can be rather
time-consuming.! Storing the generated molecular quantum states in a database would
eliminate the need to repeat the state preparation procedures during data analysis.

Once the quantum states are stored in a database, and assuming each state is associated
with additional information such as the nature sources recorded at the time of collection or
parameters of the experimental setup used to produce them, numerous applications can be
envisioned. For example, if scientists receive photons from an unknown remote star, they
can search a photon database to find a matching quantum state. Upon finding a match, they
can retrieve its associated properties and other information, such as the time and method of
its previous observation. They may also want to sort the states using a local observable (see
Definition 9 in Section 3) with respect to certain properties (such as energy or momentum)
to get an order of the photons in the database, aiding in the understanding of the spectrum
of the corresponding stars in the universe. In quantum simulation, if we want to produce
molecular states with average energy levels above a certain threshold relative to a specific
local observable, we can perform a selection operation in our database to identify those states,
and then use the associated parameters for the experimental setup to produce more of such
quantum states.

Nevertheless, quantum data management remains in its infant stage. Some of the
previously mentioned motivating examples are more like anticipated future problems. There
has been research that leverages quantum data for learning or optimization, such as quantum
machine learning [29, 22, 3|, quantum variational optimization algorithm [26, 15]. and
quantum neural network [46, 42, 16, 28, 40, 18]. However, their primary focus is on the
sample complexity (namely, the number of copies of the quantum state needed for the task)
and the convergence to optimal points, rather than on developing methods for the efficient
representation and storage of quantum data for subsequent analysis.

In this paper, we introduce several quantum data sketches to support basic database
operations in a sustainable and efficient manner. This paper does not aim to formulate a
comprehensive quantum data management model. Rather, we view our work as an initial step
towards developing a sustainable model for representing, querying, and analyzing quantum
data at scale.

! For instance, the Hamiltonian of the two-dimensional Fermi-Hubbard model on an 8 x 8 lattice already
requires approximately 107 Toffoli gates [38], which directly contribute to the query time if states need
to be generated from scratch at query.
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Unique Challenges in the Quantum World. The quantum world possesses several unique
properties, such as superposition and entanglement, that can be leveraged to reduce resource
usage in computing and information exchange. However, some of these features also post
significant challenges to quantum data management. We highlight a few below.
Post-Measurement State Disturbance. The only way to extract information from a

quantum state is to perform quantum measurements and observe probabilistic outcomes.

However, each measurement has the effect of perturbing the quantum state. This characteristic
implies that a quantum state might not be reusable post-measurement. In other words, we
may need to consume many identical copies of a quantum state in order to derive enough
useful information about it. This phenomenon is in stark contrast with the classical setting,
in which we can consistently access the same data element for a number of times, always
yielding the same result.

No-cloning. A natural thought to resolve the issue caused by state disturbance is to
clone the quantum state before the operations. Unfortunately, the no-cloning theorem (see,
e.g., [41]) in quantum mechanics asserts that it is impossible to create an exact copy of an
arbitrary unknown quantum state.

Lack of Large-Scale Quantum Storage Systems. At the time of writing this paper, we are
not aware of any reliable large-scale quantum storage systems. One reason for this is that
qubits are highly susceptible to environmental disruptions such as temperature variations,
electromagnetic radiation, or particle interactions. These disruptions lead to what is known
as decoherence [35], resulting in the loss of quantum information.

Moreover, due to the quantum state disturbance and the no-cloning principle, even if
we successfully build viable large-scale quantum storage systems in the future, we still need
many identical copies of the quantum state for any nontrivial database operation. This
implies that in order to accommodate an unlimited number of database operations (i.e., to
be sustainable), we must prepare an unlimited number of copies for each quantum state in
the storage, which is certainly not practical.

An alternative approach is to first learn the classical description of each quantum state and
store it in a classical memory for future operations. Indeed, we believe that for the purpose

of quantum data management, we have to store quantum states in the classical format.

However, learning and storing the full information of a quantum state as a classical object is
both time and space expensive, as the dimensionality of a quantum state is exponential in
terms of the number of qubits.

We thus propose to design succinct classical representations (or, sketches) of quantum
states that can be used to perform database operations efficiently. Based on the particular
database operation it is intended to support, each sketch preserves only partial information
of a quantum state. This is also the reason why we may be able to make the size of the
sketch to be o(d), where d is the dimension of the quantum state. We also note that the
sample complexity for constructing data sketches is a secondary consideration for database
management systems, as it is just a one-time preprocessing step in the database design. This
is where our work departs from the quantum state learning/tomography literature, which we
will discuss in Section 1.1.

Our Contribution. We give the first systematic approach to designing space-efficient sketches

for quantum states. These sketches can then be used to develop time-efficient algorithms for

basic database operations. In particular:

1. In Section 3, we have formalized a set of basic database operations for quantum data,
including search, selection, sorting, and join. These operations differ from those for
classical data as they inherently incorporate approximation in their definitions.
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2. Our main technical results are the first set of classical vector sketches that preserve,
up to a distortion of (1 4 ¢) for an arbitrarily small ¢ > 0, the trace distance of the
quantum states with probability (1 —4). Our sketches have sizes O(log(1/68)/:?), which is
independent of the dimension of the states. Coupled with efficient nearest neighbor search
via locality sensitive hashing, they can be used to support the search and join operations
with time sublinear in the database size and independent of the state dimension. See
Section 4.1.

3. We make use of classical shadow seeds of quantum states [32] to approximate the
expectation value of any given k-local observable (to be defined in Section 3.3) using
time and space independent of the dimension of the state. We also present a new hybrid
quantum-classical algorithm to accelerate the query time. This sketch can be used for
selection and sorting operations. See Section 4.2.

Paper Outline. In Section 2, we review some background on quantum information and
computing as well as tools for classical data management. In Section 3, we define a set
of basic database operations for quantum data. After these preparations, in Section 4,
we present our classical sketches of quantum states and illustrate how to perform various
database operations using these sketches. We review works that are most relevant to this
paper in Section 1.1 and propose several directions for future research in Section 5.

1.1 Related Work

We are not aware of any prior work on designing classical sketches of quantum data, except
for the paper [32] discussed in Section 4.2. There have been effort aiming to introduce
quantum computing, quantum algorithms and quantum machine learning to the database
community [13, 55, 39, 51, 9, 53]. We refer the readers to the recent tutorial [23] for an
overview of these works. However, these initiatives either attempt to design and perform
database operations directly on quantum data (i.e., assuming database elements are stored
as quantum states) or focused on speeding up databases query optimization and transactions
on classical data, setting them apart from the objectives pursued in this paper.

There are works [54, 33| focusing on applying classical data compression techniques (such
as quantization) to the quantum state vector during quantum simulation. We note that our
approach with sketches is quite different, as we aim to extract relevant information (often
independent of the quantum states’ dimension) for various database operations.

Quantum State Learning. Many studies have explored the task of characterizing and
learning properties of a quantum state using multiple copies of the state, including approximate
state discrimination [12], quantum state discrimination [27], quantum state tomography [21, 43],
quantum state property testing [25], quantum state certification [7], shadow tomography [2, 6],
and pretty good tomography [1].

In the problem of approximate state discrimination, we are promised that a query quantum
state ¢ belongs to a set S of quantum states. The algorithm’s task is to return a state ¢ € S
such that D(¢, 1) < e. The algorithm for approximate state discrimination proposed in [12]
can be used together with the equality testing to handle the search operation when the
available number of copies of the query state is limited, at the cost of larger time and space
complexities. However, the need of fresh copies of database states for equality testing would
undermine the long-term sustainability of the database system.
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The problem of quantum state discrimination is very similar: We are again promised

that the query state ¢ belongs to a set S, but now the algorithm needs to return the ezact ¢.

Harrow and Winter [27] gave an algorithm for this problem where the sample complexity of
the query state depends on a parameter F', which is the maximum pairwise fidelity of states
in the set S.

In the quantum state tomography, we wanted to learn an unknown quantum state up to
a trace distance e. Optimal sample complexity ©(d/e?) has been identified [21, 43].

Quantum state property testing [25] and quantum state certification [7] can be seen as
relaxations of aforementioned problems. In the former, we are given a query state ¢ and a
set S of quantum states, and asked to test whether ¢ € S or ¢ is e-far from S (that is, for
any state ¢ € S, we have D(¢,1) > €), and in the latter, we are given a query state ¢ and
a known state 1, and asked to test whether ¢ = ¢ or D(¢,%) > €. The main issue with
property testing and certification in the setting of data management is that the decision can
be arbitrary even if the query state is very close to (but not the same as) a database state.

Both shadow tomography and pretty good tomography focus on approximating ¢! M;¢
for a query state ¢ and a set of known binary measurements {M;} [2, 6], or a distribution on
them [1]. However, these algorithms cannot be used for the (7, €)-selection for an arbitrary
observable M given at the time of query. Their running time is also polynomial in terms of
the state dimension d. Recently, Gong and Aaronson [19] generalized shadow tomography to
a fized set of measurements with multiple outcomes.

To the best of our knowledge, all the previous work on quantum state learning focuses on
the sample complexity, but not on the space complexity for representing the quantum states
for various data management operations.

2 Preliminaries

We start by giving a gentle introduction of the basics of quantum information and computing,
particularly for readers who are not in the field yet. For a comprehensive treatment on this
topic, we refer the readers to standard textbooks in the field, such as [41].

Quantum States and Qubits. The first axiom of quantum mechanics is concerned with
quantum state as a way to describe a quantum system, such as a qubit. For accessibility of
the paper we focus on pure state that are represented by complex-valued vectors. Moreover,
we assume that each quantum data point is stored in n-qubits. Therefore, the dimentionality

of the space is d = 2". In that case, the quantum stats are unit-norm vectors in C¢.

Following the Dirac bra-ket notation, a vector u € C? is simply denoted by the ket |u). As
an example, a qubit is a 2-dimensional vector represented as |¢) = «ag |0) + oy |1), where
|a0\2 + |oz1|2 = 1. This decomposition is typically called a superposition. A well-known
superposition is the state %(\0) + |1)). Similarly, an n-qubit state is represented by a

‘ s _ 2 _
superposition as [u) = 30, . ceo 1y Qo |10 @), where 30 o yn 03, = 1

For compactness, we use [i) to represent each |z - - - x,,), where i is the decimal representation
of the binary string xy - - - .

Quantum Operations. The second axiom of quantum mechanics states that the evolution
of quantum states are described via unitary transformation. A unitary transformation is
represented by a unitary matrix U such that UTU = UUT = I. If the initial state is |¢), then
the evolved state is U |¢). In quantum computing U is typically implemented in terms of
elementary quantum logical gates. In this perspective, one can study the gate complexity of
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implementing U. This axiom implies a unique feature of quantum, known as the no-cloning
principle that prohibits making copies of quantum data. As a result one needs to adopt data
management procedures that abide this rule.

Quantum Measurements. The third axiom of quantum mechanics asserts that any classical
information about a quantum state is obtained via measuring it. The act of measuring
a quantum system will collapse the quantum state inevitably. The specific outcome of a
measurement is probabilistic and is governed by the Born’s law. These probabilities are
determined by the initial state of the system and the nature of the interaction between the
system and the measuring device. Measuring in an n-qubit system is typically modeled
in the so-called computational basis. When the quantum state is in the superposition
|¢) = >, a; |i), the outcome of the measurement in the computational basis is going to be
i € [2"] with probability p; = |;|?. For instance, measuring the state %(|0> + |1)) produces
a random uniform binary output. The stochasticity of quantum measurements is another
feature that calls for probabilistic data management frameworks. Moreover, the state collapse
phenomenon significantly complicates the tasks, as the quantum state cannot be entirely
“recycled” following a measurement.

One may attempt to think of a quantum state |¢) = >, a; [i) - as far as measurement is
concerned - as a discrete probability distribution {p1,...,pa}, but there are two fundamental
differences. First, the coefficients (called amplitudes) «;’s are complex numbers that make
superposition and interference possible. Second, the probability of an outcome in quantum
mechanics is found by taking the absolute square of the amplitude, that is, p; = |a;|%.

In general, a certain measurement M on a quantum state can be obtained in three stages:
(i) applying an appropriate quantum operator U to the state, (ii) measuring the evolved
state U |¢) in the computational basis; and (iii) applying classical post processing on the
measurement outcomes. This procedure is compactly modeled as a matrix M called an
observable that is multiplied by the original state |¢). The eigenvalues of M represent the
possible values of the measurement outcomes. Moreover, by M(|$)) we denote the probability
distribution of the measurement outcomes after applying M on |¢). Because the outcomes
are probabilistic, we are often interested in their expectation values. The expectation of the
outcome distributed by M(|¢)) is equal to (¢|M|p), where (¢| is the complex conjugate
transpose of the vector |¢).

Standard Math Notations Versus Dirac Notations. As this paper is intended for an
audience within the database community, we recognize that the Dirac bra-ket notation might
appear unfamiliar to database researchers without a background in quantum information
and computing. To simplify, in the main text we express a pure quantum state as a column
vector with dimensions denoted as d, and use ¢ and ¢’ to denote |¢) and (|, respectively.
We use ¢' M ¢ to denote the expectation value (¢|M|¢) of an observable M. Throughout
the paper, we reserve the notations ¢ and v for quantum states.

We have included a more formal (but still gentle) introduction of quantum information
and computing using Dirac bra-ket notations in the full version of this paper [56].

Trace Distance. Given two quantum states ¢ and v, we define their trace distance to be

D(¢, ) = /1 — |)T¢|>. The trace distance is the most widely used distance measure for
quantum states in the literature.



Q. Zhang and M. Heidari

2.1 Performance Metrics

In the context of quantum data, similar to classical database design, the efficiency of space and
time is crucial during database initialization, indexing, and querying. Minimizing the number
of quantum state copies used for constructing sketches is also important, as obtaining state
copies can be costly and they cannot be fully recycled due to post-measurement disturbance.
However, as we mentioned earlier, sample complexity is a secondary consideration in the
data management setting, since the sketch-building/initialization is a one-time process.

A unit-time quantum operation comprises standard single-qubit gates like the Hadamard
gate, Pauli gates, phase gate, and T' gate, as well as a two-qubit gate, such as the Controlled-
NOT (CNOT) gate, that enables entangling operations.? The combination of these gates is
sufficient to approximate any unitary operation to arbitrary accuracy. We call these gates
unit gates, and define the size of a circuit (for representing a unitary operation) to be the
number of unit gates in the circuit.

As mentioned, a typical quantum measurement M on n qubit systems consists of a
unitary operator Up, followed by measurement in computational basis and classical post
processing. Assuming that the classical post processing is polynomial, the overall time cost is
typically dominated by the gate complexity of Uaq. It has been shown in [50] that a circuit
depth of ©(2"/n) (i.e., ©(d/logd)) is needed for constructing an arbitrary unitary operator
U. To simplify matters, we assume that both executing an arbitrary d-dimensional quantum
measurement and preparing an arbitrary d-dimensional state require O(d) quantum time.

2.2 Nearest Neighbor in High Dimensions

As quantum states are inherently high dimensional, even after effective sketching and
summarization that we will illustrate in the subsequent sections, we will thus use Approximate
Nearest Neighbor (ANN) via Locality Sensitive Hashing (LSH) to further speed up some
database operations. This subsection will take a brief detour from our discussion of quantum
data management.

» Definition 1 ((r, 3)-ANN-search). Let X be a database containing a set of vectors in R?
and ¢ € R? be a query vector. Let dist(-,-) be a distance function. If there is at least one
vector p € X with dist(p,q) < r, return any p’ € X with dist(p’,q) < Br. Otherwise, either
return a p' € X with dist(p’,q) < Br or return (.

Let us focus on the case that the distance function dist(,-) is ¢1 or £3. Indyk and
Motwani [34] showed that (r, 3)-ANN can be solved efficiently via LSH. The idea is that we
first apply multiple hash functions to each vector in X; this part can be pre-computed and
stored as an indexing. At the time of query, we apply the same set of hash functions to the
query vector q. We then run over all vectors p € X such that p and ¢ collide (i.e., fall into
the same bin) on at least one hash function, and return the first vector p if dist(p, q) < Br.
If no such p found after traversing a certain number of vectors in X, we return (.

We will use ANN(g, X,r,3) to denote the (r, 3)-ANN search for a query vector ¢ in
database X. The following is a summary of results on LSH-based ANN for ¢; /¢ distances.

» Theorem 2 ([34, 14, 5]). For dist(-,-) being {1 or L2, a database X of m vectors, and a
d-dimensional vector q, there is an algorithm that solves ANN(q, X, 7, ) using O(dm +m'*7)
space and O(dm?) classical time, where v ~ 1/ for {1 distance and vy =~ 1/3? for {y distance.

2 We refer the readers to [41] for a detailed introduction of these gates.
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» Remark 3. We note that if we do not terminate the algorithm after encounter the first p € X
such that dist(p,q) < fr, then the same algorithm can return a subset Y C X including all
vectors p such that dist(p,q) < r, and excluding all vectors p such that dist(p,q) > Br.

» Remark 4. We can also use LSH to find a set J of pairs of vectors such that J includes all
pairs (p, q) such that dist(p,q) < r, and excludes all pairs (p, q) such that dist(p,q) > Pr.
To this end, we first hash all vectors, and then check the distances of all pairs of vectors that
collide on at least one hash function.

3 Basic Operations on Quantum Data

The characteristics of quantum information dictate that we can only obtain an approzimation
of a quantum state ¢ with a finite number of quantum state copies. A celebrated result in
quantum state tomography states that to learn an unknown n-qubit quantum state ¢ up
to a trace distance €, we already need 2 (d/ 62) copies of the quantum state, where d = 2™
is the dimension of ¢ [21, 43]. We thus consider two quantum states ¢, 1 with D(¢,¢) <e
the same state. Consequently, all the operations that we support in a quantum database
also need to be approximate. The precise definition of “approximation” varies for different
operations.

In this section, we formulate basic quantum data operations that we aim to support using
our proposed sketches. When we say the return of a quantum state ¢, we are referring to its
identifier.

3.1 Equality Test

In the classical data setting, the equality test on two data objects returns 1 if p = ¢, and
returns 0 otherwise. In the quantum setting, since we cannot distinguish two quantum states
using o(d/e?) copies of the states if their trace distance is at most &, we need to introduce
the approximation version of the equality test:

» Definition 5 ((¢, 8)-equality-test). Given two quantum states ¢ and 1, output 1 if D(¢, ) <
e, and 0 if D(¢p,v) > Pe. The output can be arbitrary if € < D(¢,) < Pe.

In words, we consider two quantum states the same if their trace distance is at most ¢,
and different if their trace distance is more than fe. If the distance falls between the two
values, then the decision can be arbitrary. The gap between yes and no is inevitable for
quantum data.

Given two quantum states ¢ and v, which may be unknown, the standard method for
estimating their trace distance is the swap test [8]. The algorithm uses a controlled-SWAP
gate (can be implemented using O(n) = O(log d) unit gates) and two single-qubit Hadamard
1+|<;;Tw|2 _ 1 D@

gates. The test outputs 1 with probability , and 0 otherwise. Therefore,
using Og (6% log %) such tests (the constant hidden in the big-O depends on the constant ),
we can differentiate the case D(¢, 1) > fe from D(¢, 1) < & with a probability 1 — 4.

The main issue with this algorithm is that we have to consume fresh copies of database
states for each equality test, which is unsustainable for a database system that is designed to

answer an unlimited number of queries.
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3.2 Search and Join

In the classical data setting, given a set of objects X = {p1,...,p,} and a query object ¢,
the search operation returns some p; € X such that p; = ¢ if such p; exists, and () otherwise.
In the quantum setting, again due to the difficulty of distinguishing two quantum states
within a distance of €, we propose the following approximation version.

» Definition 6 ((g, §)-search). Given a query state ¢ and a database X, if there exist a state
¥ € X such that D(¢,v) < g, return a state ¢’ € X with D(¢,¢") < fe. Otherwise, either
return a state ' € X with D(¢,v’") < Be or return 0.

In other words, if there exists a state in the database which has a trace distance no more
than ¢ from the query state ¢, we return a state in X whose distance is no more than Se
from ¢ (similar to the ANN search). Else if all states in the database have distances larger
than e from the query state, we return (). In other cases, we either return a database state
with distance no more than Be from the query state or return .

The most straightforward way is to perform the (e, 8)-equality-test for each database
state ¢ € X with the query state ¢. By the above algorithm for equality test (setting
§ = 1/m?), we can determine with probability (1 —md) = (1 — o(1)) whether there exists a
state ¢ € X such that the (g, 8)-equality-test on ¢ and 1 returns 1. The above procedure
takes O (mlogdlogm/e?) quantum time, which is linear in terms of the number of states in
the database. Another significant limitation of this method is the necessity of using fresh
copies of the database states for each search operation because of the equality test, making
the database system unsustainable.

A closely related operation to search is join, which is one of the most important operations
in relational database systems. We introduce the quantum version of natural join as follows.

» Definition 7 ((¢, 8)-natural-join). Given two databases X andY of quantum states, we want
to output a set that includes all pairs of states (¢,v) (¢ € X, € Y) such that D(p,v) < ¢,
and excludes all pairs (¢,v) such that D(¢,v) > Be. The decisions for other pairs can be
arbitrary.

3.3 Selection and Sorting

In relational databases for classical data, selection is typically denoted by og(R), where R is a
relation and 6 is a propositional formula that involves an attribute, a comparison operator in
the set {<, >, <,>,=,#}, and a constant value for comparison (e.g., age > 8). However, in
the quantum data setting, quantum states cannot be directly compared. We can only apply
a measurement M on the state ¢ and get a random outcome according to the distribution
M(¢). As a classical analog, we would say a person’s age is 5 with probability 0.6 and 10
with probability 0.4.2> We thus look at the expectation value ¢! M¢ for the observable M
corresponding to M.

The quantity ¢’ M¢ holds significant importance in quantum mechanics (see, e.g., the
textbook [45]). It can be used to provide an estimate of the system’s average energy in a
particular state, describe the level of non-classical correlations between entangled particles,
quantify quantum information such as entropy, coherence, and entanglement, etc.

We define the e-approximate “>” selection operation for quantum data as follows.

3 This assembles probabilistic databases, but in the quantum data setting the probability distribution is
not given explicitly, and the support size of the distribution is exponential in terms of the number of
qubits of each quantum state.
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» Definition 8 ((n, £)-selection). Given a database X, an observable M, a threshold n, and
an error parameter €, return a set of states S C X such that S includes all database states ¢
such that ¢T Mo > n, but excludes all ¢ such that pTM¢p < n —e.

Note that the e-approximate equality selection can be implemented by taking the difference
between (n — g,¢)-selection and (1 + 2¢,¢)-selection, which includes all ¢ with n — e <
dT M@ < n+ e and excludes all ¢ with ¢TMp < n— 2 or ¢ M¢ > 1+ 2¢. In the context of
approximation, we can consider “<” and “>" the same as “<” and “>”, respectively.

We also note that (e, 3)-search can also be handled by looking at ¢'M¢ for a specific
observable M, although this solution is not as efficient as that using the particular sketches
that we shall design for the search operation. We have included a reduction from (e, §)-search
to (n, €)-selection in the full version of this paper [56].

In the context of databases, we are particularly interested in the following type of
observables.

» Definition 9 (k-local observable). An observable O of a system with n qubits is called
k-local if it can be written as a sum of a constant number of terms, each acting on at most k
qubits. For instance, a 2-local observable in a 3-qubit system might look like:

O =018 I3+ I; ® Oag,

Where O12 and Osg are operators acting on the pairs of qubits (1,2) and (2,3) respectively,
while I3 and Iy are the identity operators acting on the remaining qubits.

k-local observables have been well studied in the literature (see [11, 37] and references
therein). They are interesting because, in most practical scenarios, our goal is to identify
specific properties of a quantum state (e.g., the energy, momentum, or spin of a photon) that
rely on a small subset of qubits of the state. This is similar to the classical setting where
most queries depend on a few attributes of a relational database table. For example, suppose
we want to retrieve all records in a table containing patient information for individuals aged
80 years or older with systolic blood pressure at least 140, we only need to look at two
attributes in the table: age and blood pressure. If we view each qubit of a quantum state as
an attribute (e.g., spin, position, momentum, polarization, etc.), then a k-local observable
performs selection on at most & attributes of the quantum state.

A related problem of selection is sorting. As a motivation, we would like to sort a set of
given quantum states according to their average energy with respect to an observable determ-
ined by a particular application. Note that there is no natural order between the quantum
states themselves. Therefore, introducing an observable and computing the expectation value
is somewhat necessary to establish a total order between the quantum states.

We define the sorting operation with respect to an observable M as follows. Similar to
the selection operation, we introduce an additive approximation ¢ in the sorted order.

» Definition 10 (e-sorting). Given a database X of m states, an observable M, and an
error parameter €, return an order (¢1,¢2,...,0m) of the states in X such that for all
i=1,...,m—1, we have ¢;| M¢; < ;11" M 1 +e.

4  Sketches for Quantum Data Operations

In this section, we introduce two quantum data sketches, vector sketches and shadow seeds,
which are summaries of the original states for efficiently handling previously mentioned
database operations.
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Before delving into the details, let us use metaphors to provide some very high-level
intuition of the two data summarizing methods. The vector sketches can be seen as capturing
snapshots of the state from different angles, while each shadow seed can be seen as a piece of
information gleaned from the state. Using multiple shadow seeds, we can reconstruct the
original state at varying levels of resolution.

4.1 Vector Sketches for Equality-Test, Search, and Join

The concept of vector sketch is to represent a quantum state ¢ as a vector in R* with t < d
instead of a vector in C¢, while preserve certain distance properties. In this section, we
design vector sketches for quantum states and then use them to conduct equality test, search,
and join.

A natural way to construct the sketch is to take a number of random measurements on
¢, and write down the measurement outcomes as a vector. The following result is due to
Sen [47], rewritten for pure quantum states.

» Theorem 11 ([47]). Let ¢ and ¥ be two pure quantum states in CL. With probability
at least (1 — e_Q(d)) over the choice of a random measurement basis My = {Mi, ..., My},
there exists a universal constant ¢ € (0,1) such that

¢ D(¢,¢) < [[Ma(¢) = Ma()ly < D(¢,¢). (1)

Theorem 11 connects the trace distance of two quantum states to the ¢; distance of their
measurement outcome distributions. We note that the distortion in (1), D(¢,)/(cD(¢,v)) =
1/c, is a big constant whose value left unspecified in [47].

Vectors Mg(¢) and M (1)) are discrete distributions with outcomes {1,2, ..., d}. It is well-
known that for a discrete distribution y over a domain of size d, using © ((d + log(1/6))/€?)
samples we can obtain an empirical distribution f& such that ||x — z||; < € with probability
1 -6 (see, e.g., [10]).

» Corollary 12. Let My(¢) and My(1h) be the empirical distributions of measurement
outcomes by applying My in Theorem 11 to cs(d + log(1/6))/e? (for a sufficiently large
constant cg) copies of ¢ and ¥, respectively. With probability 1 — 6 — e~ D we have

¢ D(9.v) ~ e < | Ma(0) - Ma() || < D(@v) +e.

where ¢ € (0,1) is a universal constant.

We can view ./T/l/d(qb) and m(w) as two empirical probability vectors. However, since
d = 2" for a n-qubit state, it is both space-expensive to store M4(¢) and time-expensive to
use it for database operations.

Embedding to L;-space. We aim to address the issue of efficiency in both time and space
by showing that there is another distribution of measurements whose number of outcomes
is independent of the state dimension d, for which a similar connection exists between the
trace distance of two quantum states and the ¢; distance of the corresponding measurement
outcome distributions. Moreover, the distortion of our sketching can be made arbitrarily
close to 1 (compared with 1/¢ in (1)). It is worth noting that this distortion will significantly
impact the efficiency of the search and join operations, as we will discuss shortly.
Our result is summarized in the following theorem.
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» Theorem 13. Let ¢ and v be two pure d-dimensional quantum states. For any ¢ > 0,
there is a distribution © of measurements with k = clog(1/38) /1> outcomes for a sufficiently
large constant ¢, such that a measurement My, sampled randomly from w satisfies

(1=4)D(9,9) < \/gCTIIMk(@ = M)y < (1 +0)D(¢,¢)

with probability at least (1 — &), where ¢, € [0.48,1/2] is a universal computable constant.
Additionally, the measurement sampling can be completed in O(log8 d) time, and the sampled
measurement can be represented as a quantum circuit with a gate complexity of O(log2 d).

Proof Overview. At a high level, our approach leverages form dimension reduction through
quantum measurements. We make use of a technique called pretty good measurement [31]
to generate random projective quantum measurements M with k outcomes. The output of
these measurements are random vectors serving as the embedding of the state ¢ into R¥.
We start by picking a random basis for C? based on the Haar measure [30]. Let x4, y; (t =

1,...,d) be independent Gaussian random variables with mean zero and variance o2 = 2—1d,
and let g £ (c1,...,cq) € C? be a random vector where ¢; = x; + 4y;. We repeat this process
and generate d compler Gaussian random vectors gi,...,g94. These vectors are linearly

independent with probability one; but they are not necessarily orthonormal. We make use
of pretty good measurement to orthogonalize and normalize these vectors. More precisely,
we construct the operator (matrix) I' = D ield) 91 g+, and define the vector , £ I'~1/2g, for
each t € [d]. We can show that 71,...,74 are linearly independent and are orthonormal.
Moreover, the distribution of 7, is unitary invariant, and hence the Haar measure. Intuitively,
7¢ is distributed uniformly over surface of the unit sphere in C?. Next, we randomly group
v¢’s into k groups and form random projection operators as

I = Z (’Yi)JWf (jzla""k;)
Leld/k]
Let My = {IIy,--- ,II;} be the corresponding measurement. Clearly, M is a valid meas-
urement with probability one. This random measurement facilitates an embedding of the
quantum states in C? into R*. We carefully analyze the distortion of the embedding (i.e.,
the outcome distribution by applying M to the quantum state) using tools from the con-
centration of measures and properties of the Haar distribution. We show that the distortion
of this embedding is no more than (1 + ¢) with probability (1 — §) when k = clog(1/6)/:? for
a constant ¢. The complete proof can be found in the full version of this paper [56].

The measurement construction described above could require polynomial time in d.
However, we demonstrate that it can be sampled more efficiently from the Clifford group
in classical time O(log8 d), leveraging the properties of unitary 2-designs from quantum
information theory. The details can be found in the full version of this paper [56]. <

To approximate \/%CTHM]C((ﬁ) — My(¢)||; up to an additive error €, we have to approx-

imate ||[Mpg(¢) — Mg(¥)|l; up to € = —==—. We have the following immediate corollary.

Vd/k-cr

» Corollary 14. For any ¢ > 0, let k = clog(1/8) /1% for a sufficiently large constant ¢, and
let M(¢) and m(w) be the empirical distributions of the outcomes by applying independent
random measurements My, in Theorem 13 to csd/€* (for a sufficiently large constant cs)
copies of ¢ and 1, respectively. With probability at least 1 — §, we have

(1= Do) —e <[ Le,

where ¢, € [0.48,/2] is the same constant in Theorem 13.

Mi(9) = Mu(@)| < (1 +0D(6,9) +e,
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Embedding to Lo-space. The sketch we have constructed for the Li-space can also be
applied to the Lo-space, albeit through a different analysis. The ¢ distance is interesting
since we know from Theorem 2 that /5 enjoys a slightly better ANN scheme in term of time
and space complexities, which will be useful for speeding up search and join operations. The
proof of the following theorem can be found in the full version of this paper [56].

» Theorem 15. Let ¢ and ¥ be two pure d-dimensional quantum states. For any ¢ > 0,
there is a distribution T of measurements with k = clog(1/8)/1? outcomes for a sufficiently
large constant ¢, such that a measurement My, sampled randomly from w satisfies

(1=0)D(¢,9) < \/glle(fb) — Mi(¥)lly < (1 +¢)D(, ¥)

with probability at least 1 — . Additionally, the measurement sampling can be completed in
O(log8 d) time, and the sampled measurement can be represented as a quantum circuit with a
gate complezity of O(log®d).

For a discrete distribution z over a domain of size d for any d > 1, it takes © (log(1/6)/€?)
samples to obtain an empirical distribution f such that ||p — fi]|, < € with probability 1 — ¢
(see, e.g., [10]). We have the following corollary.

» Corollary 16. For any ¢ > 0, let k = clog(1/68)/:? for a sufficiently large constant c, and
let ./T/l/k(qﬁ) and /\A/l/k(w) be the empirical distributions of the outcomes by applying independent
random measurements My, in Theorem 15 to csdlog(1/8)/e? (for a sufficiently large constant
¢s) copies of ¢ and ¥, respectively. With probability 1 — §, we have

(1= () — e < | ¥ute) - Fatw|, < 14D, 0) +-

Johnson-Lindenstrauss Lemma in Our Context. It is natural to ask whether existing
dimension reduction techniques, such as the Johnson-Lindenstrauss (JL) lemma, can be
applied directly to the d-dimensional vector representation a(¢) = (a1, ...,aq) € C¢ of a
quantum state ¢, or the outcome distribution p(¢) = (p1,...,pq) € R? (p; = |ai|2) when
measured in the computational basis. After all, we can use quantum tomography to learn
the representation («,...,a4) approximately. We would like to first point out that a
direct application will not work, since we can construct simple examples demonstrating
inherent distortions between the trace distance of quantum states and the ¢; /¢ distances
of their d-dimensional vector representations («a(¢) or p(¢)), even when all the coordinates
are real-valued and before any dimension reduction step. We leave the detailed examples
and calculation to the full version of this paper [56]. In our examples, for the «(¢) vector
representation, the distortions between the trace distance of quantum states and the ¢; and
{5 distances of the two corresponding vectors are at least \/% and /1.5, respectively. And
for the p(¢) vector representation, the distortions between the trace distance of quantum
states and the ¢; and ¢ distances of the two corresponding vectors are at least V3 and
\/3d/4, respectively. Moreover, the JL lemma only takes real vectors.

We also note that there exists a near-linear lower bound for dimension reduction in the
L, space [4], indicating that, unlike the JL lemma for Ly space, dimension reduction in the
L1 space is not generally possible.

We note that there is a way to circumvent the issues for embedding quantum states
into the Ly space: for each state ¢, we write its density matrix ¢¢! as a real-valued 2d>
dimensional vector v4. By some calculation, we can show that the {, distance of vy and
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vy, preserves the trace distance of the two original pure states ¢ and . We then perform

dimension reduction on the vectors vy using the JL lemma. Our sketching algorithm has

the following advantages compared with this “full tomography plus JL lemma” approach

(setting the error probability 6 = 0.01):

1. The memory usage of our sketch construction is independent of d, while the memory
needed for storing the classical vector representation of the quantum state ¢ is O(d) and
that for the density matrix ¢¢t is O(d?).

2. Our sketch construction takes O(d/e?) time, while the full (pure) quantum state tomo-
graphy takes O(d?/e%) [17] time and the dimension reduction using the JL lemma needs
another O(d?/e?) time.

These comparisons demonstrate that our sketch construction using direct quantum meas-

urements significantly outperforms the method of first converting the quantum state to its

classical description followed by dimension reduction, both in terms of time and space, which
are the main focus of this paper.

We now apply our embedding results to database operations.

The Equality-Test Operation. We observe that Corollary 14 and Corollary 16 directly
provide a way for solving (e, 3)-equality-test. We just set + = ¢ = 5,
{5 distances between the two vector sketches /,\;l/k(cé) and .X/lvk(w) to estimate D(¢, ) up
to an additive error € with probability 1 — 4. The running time is bounded by O(k) =

O(log(1/9)/e?).

and use the ¢ or

The Search Operation. We now illustrate how to use vector sketches and approximate
nearest neighbor (ANN) to perform (e, 5)-search on quantum states.
Let € and (1+¢) be the additive error and multiplicative error in Corollary 14/Corollary 16

for building {mw) ‘ peX }, respectively. We assume that an LSH indexing structure

has already been built on top of ./,\/Tk((b)’s to achieve the time and space usages stated in
Theorem 2. To handle (g, 3)-search, we call ANN (/\/;l;((b)7 {m(w) ’ (NS X} , (14 0)e, 5nn),

where B, = B/(1 4+ ¢+ €/¢) is the parameter for the tradeoff between the distortion and
the time/space complexity in ANN. By Corollary 14/Corollary 16 and Theorem 2, if there
exists a state 1) € X such that D(¢,¢) < ¢, then ANN returns a state ¢’ € D such that
D(¢,v") < Be. On the other hand, ANN either returns a state ¢’ € D with D(¢,v") < fe,
or returns ().

By Theorem 2, it takes O(km?) = O(m? logm/e?) classical time to perform the search.
The space for storing the LHS index is O(km + m'™) = O(mlogm/e? + m!™7), where
v & 1/Bpn for €1 and v =~ 1/52,, for L.

We note that in the above approach, we have to make sure that 3,, > 1. In other words,
we can only handle (e, 8)-search with 8 > (1+¢+¢/e). However, since € and ¢ can be positive
constants arbitrarily close to 0, we can essentially handle all constants § > 1. Certainly,
the higher the value of 3, the larger f3,,, that we can pick for reducing the query time and
space usage in the ANN search. In practice, a reasonably large constant 5 may be okay, as
the trace distance between two quantum states that are generated by separate entities or
experiments is typically much larger than that between two states originating from the same
entity or experiment (due to quantum noise or preparation errors).

Setting § = 1/m?, + = 0.01 and ¢ = 0.0l¢, we have (3,, > 0.983, and consequently
v < 1.05/3%. Applying our vector sketch with respect to the £5 distance and the corresponding
ANN search, we have the following theorem.



Q. Zhang and M. Heidari

. , , 14192 . ,
» Theorem 17. There is an indez of size O (% +m " 8% ), using which we can solve

(¢, B)-search on a database of m quantum states with success probability 1 — o(1) and classical

. 1.05 logm
time O (m 5% - 257 ).

Note that the index space cost is independent of d, and the query time is sublinear in m
(for 5 > +/1.05) and independent of the state dimension d.

The Join Operation. The sketch-based approach can also be used for join. Given a set of
sketch vectors {Mk(q’)) ‘ RS X}, we can apply the same hashing process as that for the

ANN search, and then verify (by computing the actual distance) all pairs of vectors that
collide on at least one hash function. The space cost is the same as that of the search. The
query time is dependent on the size of the join output, but it is still independent of the state
dimension d.

4.2 Shadow Seeds for Selection and Sorting

In this section, we develop a classical data summarization that can be used to estimate
the expectation value ¢! M¢ for an arbitrary k-local observable M. We make use of the
classical shadow tomography (CST), introduced in [32], to approximate ¢'M¢ up to a small
additive error. CST tries to extract minimal information about the quantum state, without
performing complete tomography, to estimate certain properties of the state described by
observables.

For completeness, let us briefly describe the CST procedure using Pauli measurements.
For each of the N copies of ¢, we select n unitary operators, U, ...,U,, randomly and
independently from the set {I, H,STH}, where H is the Hadamard gate and S = v/Z
is the square root of the Pauli-Z gate; Their matrix representations can be found in the
full version of this paper [56]. We then apply U, to the j-th qubit of ¢ and measure the
state on the computational basis. The result is a binary string b1,...,b, € {0,1}. The n
pairs {b;, index(U;))}7_; form a row vector, where index(U;) is the index of U; in the set
{I,H,STH}. We then repeat this process for N times, getting N rows, forming the seed
matrix A(¢) = {b; j, index(U; ;) }ie[n],jen)- We call A(¢) the shadow seeds. Clearly, A(¢)
can be stored using O(nNN) classical bits, since each entry of A(¢) belongs to {0,1} x {0, 1,2}.

At the time of query, given a k-local observable M, we first construct k-local classical
shadows ¢; of the database state ¢ from each row i € [N] of its seed matrix A(¢) with
respect to the k-local observable M. Suppose M depends non-trivially on the k qubits
indexed by Q £ {q1,...,qx}. Let eg = (0,1)T,e; = (1,0)T be the standard basis vectors
in the two dimensional plane. For each row ¢ € [N] and column j € @, we first construct
a vector v; ; = U jep, .. Next, we construct the i-th shadow as a 2k % 2% matrix pi =

®jEQ (SUi,jvJJ — I), where I is the 2 x 2 identity matrix. Finally, the estimator for
¢t M¢ is given by T = + ZiE[N] tr{Mp;}. The following theorem states that T is a good
approximation of the expectation value ¢f M.

» Theorem 18 (Based on [32]). The above procedure prepares an N x n shadow seed matriz
A(9) given N copies of an n-qubit quantum state ¢, such that for any given k-local observable
M, if N > 4’“\|M||i010g(1/5)/52, the estimator T approzimates ¢t M ¢ up to an additive error
& with probability (1 — &) using A(®). Moreover, the time for computing ¢' M using A(p) is
bounded by O (22*N) (o< 16%), and the space for storing A(¢) is O(Nn) classical bits.

Note that the space cost and query time are both independent of the state dimension d.
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Typically, the k-local observable M can be expressed as a quantum circuit with poly(k)
gate complexity. In this case, we propose a new estimation algorithm to further improve the
total query time from O(16%) to O(9%) (omitting other less critical factors) by an approach
we call QCQC (quantum—-classical »quantum—classical). We have the following theorem,
whose proof can be found in the full version of this paper [56].

» Theorem 19. There is a procedure for preparing an N X n shadow seed matriz A(¢p)
given N copies of an n-qubit quantum state ¢, such that for any given k-local observable
M with poly(k) gate complexity, if N > 9’“\|M||iolog(1/5)/€2, we can approzimate ¢t Mo up
to an additive error & with probability (1 — §) using A(¢). Moreover, the quantum time for
computing ¢t M using A(¢) is bounded by O (N poly(k)) (< 9*), and the space for storing
A(¢p) is O(Nn) classical bits.

The Selection Operation. It is easy to see that Theorem 19 directly implies an algorithm
for handling (7, €)-selection: Setting & = 1/m?, we can estimate ¢'M¢ up to an additive
error € with probability (1 —1/m?) for each n-qubit database state ¢ using an N x n shadow
seed matrix, where N > 9"“||MH§O -2logm/e?. By a union bound over m database states, we
can solve the (n, €)-selection problem with probability (1 —1/m). The query time is bounded
by Nm - poly(k) = 9*mlogm - poly(k)|| M||>, /&2.

» Theorem 20. There is an index of size O (anW2log m/EQ), using which we can solve
for any k-local observable M (||M|| . < W) the (n,€)-selection on a database of m n-qubit
quantum states with success probability (1 —o(1)) and quantum time 9*mlog mW 2 poly(k) /.

The Sorting Operation. Since the shadow seed matrix can be used for estimating the
expectation value ¢ M¢ up to an additive error €, we can use it for e-sorting with the same
space and time complexity as that for the selection operation.

5 Conclusion and Future Work

In this paper, we have defined basic database queries for quantum data and proposed several
classical sketches of quantum states to facilitate these queries. We consider our work a
preliminary step towards a comprehensive quantum data management system. Numerous
questions and directions remain open following this work. We list a few below.

Support More Data Operations. This paper primarily focuses on two basic database
operations: search and selection, along with several related operations. We would like to
expand the support to more complex operations for data analytics, such as clustering and
classification, for which we may need to develop new classical summaries of the quantum
states for the sake of efficiency.

Mixed States. In various scenarios, such as when the description of a quantum system
is unknown due to quantum noise, the use of a density operator (or, density matrix) for
describing mized quantum states becomes more convenient. Suppose the quantum system is
in one of a collection of d-dimensional pure states {¢1,..., ¢}, we can represent a mixed
quantum state as p = Ele pi¢i¢ﬁ, where p1,...,pr > 0 and Zf:i p; = 1. We can view p as
a convex combination of outer products of pure states ¢;, where each (Z)iqﬁﬁ is associated with
a probability p;. We anticipate that results presented in this paper can be extended to mixed
states, although the technical aspects of this generalization require further investigation.
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The Integration with the Theory of Relational Databases. A key feature of our proposed
model is that quantum data is represented entirely in the classical format. This unique
aspect enables us to integrate our model with established theories related to indexing,

query execution, and query optimization in relational databases designed for classical data.

However, the integration process will likely require the redesign of multiple components to

accommodate the inherent differences stemming from the distinct definitions of database

operations for quantum data.
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