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Abstract
Interannual precipitation variability profoundly influences society via its effects on agriculture,
water resources, infrastructure, and disaster risks. In this study, we use daily in situ precipitation
observations from the global historical climatology network-daily (GHCN-D) to assess the ability
of 21 Coupled Model Intercomparison Project Phase 6 (CMIP6) models, including the 50-member
fifth-generation Canadian Earth System Model single model initial-condition large ensemble
(CanESM5_SMILE), to realistically simulate historical interannual precipitation variability trends
within 17 regions of the contiguous United States (CONUS). We assess how accurately the CMIP6
simulations align with observational data across annual, summer, and winter periods, focusing on
four key hydrometeorological metrics, including interannual precipitation variability, relative
interannual precipitation variability (coefficient of variation), annual mean precipitation, and
annual wet day frequency. Our findings reveal that CMIP6 ensemble members generally reproduce
the spatial patterns of observed trends in annual mean precipitation. In most regions, models agree
well with the signs of observed changes in annual mean precipitation, though discrepancies in
trend magnitude are evident. Further, observed trends in winter mean precipitation broadly
exhibit a spatial pattern similar to that of the observed annual mean. However, analysis of the
CanESM5_SMILE shows that trends in precipitation variability may primarily be the result of
model-simulated internal variability, suggesting caution in interpreting multi-model
single-realization ensemble results. Challenges in accurately simulating interannual precipitation
variability underscore the need for ongoing model refinement and validation to enhance climate
projections, especially in regions vulnerable to extreme precipitation events.

1. Introduction

Understanding precipitation variability—the deviation of precipitation at different timescales from the mean
state (Akinsanola et al 2020a)—plays a crucial role in the effective management of water resources and in
safeguarding against successive hydrological extremes (Masson-Delmotte et al 2021). For instance,
precipitation variabilities at daily-to-decadal timescales have been linked to catastrophic successive extreme
events, including large-scale droughts and floods (e.g. Li et al 2013, Stevenson et al 2015). Precipitation
variability is also tied to significant impacts on food security through altered streamflow and increased
drought incidence, leading to decreased crop yields (Riha et al 1996, Barlow et al 2001, Abghari et al 2013).
The United States (U.S.) has experienced a series of unusual droughts and flood events in recent decades
(Griffin and Anchukaitis 2014, Corringham et al 2019), many of which have caused hundreds of millions of
dollars in damages. Rising population, increased development, and climate change will worsen the risk
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associated with hydrometeorological events in future decades (Masson-Delmotte et al 2021, Furtak and
Wolińska 2023). Therefore, an improved understanding of precipitation variability and related trends,
especially at regional scales, is crucial for informing accurate policy and management decisions. This is
particularly true for sectors geared toward adapting to imminent hydrometeorological threats (Wood and
Ludwig 2020, Wood et al 2021) through agricultural planning practices, water resource management,
infrastructure planning, and disaster risk reduction.

Several studies have examined historical precipitation characteristics, including precipitation variability,
over the U.S. instrumental record. Most of them reported a decrease in mean precipitation over the
southwestern U.S. but increased precipitation over the Midwest and Great Plains (Nash et al 2017, Harp and
Horton 2023). These findings are consistent with a general drying trend over the western U.S. since the
1970s, especially in the southwest, where mild to extreme drought has persisted for the past four decades
(Peterson et al 2013, Williams et al 2022). Similarly, the frequency and intensity of extreme precipitation
events have also increased in many parts of the country (Karl and Knight 1998, Alexander et al 2006,
Groisman et al 2012). For instance, the Northeast, Great Plains, Midwest, and Southeast of the U.S. have
experienced a significant increase in the number and intensity of heavy precipitation events in recent decades
(Kunkel et al 2013, Nash et al 2017, Harp and Horton 2022). On the other hand, interannual precipitation
variability has exhibited diverse changes, with rising variability in the southeast, a decline in the far west, and
mixed signals in the Rocky Mountains and north-central U.S. (Harp and Horton 2023). These observed
changes in precipitation characteristics have implications for flooding, water resource management, and
ecosystem dynamics.

In general, recent changes in precipitation have been linked to greater moisture availability associated
with rising global temperatures (i.e. the Clausius–Clapeyron relationship) and altered large-scale
atmospheric circulations caused by climate change (e.g. Polade et al 2014), with the planetary energy budget
setting the boundaries for precipitation changes (Pendergrass and Hartmann 2014). Global circulation
models have been widely used to understand historical and future changes in climate phenomena at global
and regional scales. Moreover, outputs from these models are increasingly applied beyond the scientific
domain, particularly within climate impact assessments and decision-making processes (Rowell 2019,
Akinsanola et al 2020b, Masson-Delmotte et al 2021, U.S. Global Change Research Program 2023). Therefore,
a thorough evaluation of model performance is imperative. Coupled Model Intercomparison Project Phase 6
(CMIP6) represents the latest generation of climate models (Eyring et al 2016) coordinated by the World
Climate Research Programme (WCRP). Previous studies focused on the U.S. have assessed the performance
of CMIP6 models in simulating precipitation characteristics such as, but not limited to, mean climatology
(Rivera and Arnould 2020) and extreme events (Srivastava et al 2020, Akinsanola et al 2020c). To build on
these efforts, and informed by recent characterizations of observed changes in variability by Harp and
Horton (2023), we aim to assess the performance of CMIP6 models with a focus on their ability to reproduce
observed historical changes in the interannual precipitation variability across the contiguous U.S. (CONUS).

As such, the goal of this study is to perform a regionally-focused assessment of the changes in interannual
precipitation variability across the CONUS in CMIP6 model simulations of the historical period (i.e.
1951–2014). Our analysis explores the following questions: (1) How does the magnitude of annual and
seasonal variability simulated by the CMIP6 models compare to observed values across the CONUS? (2)
How do trends of observed and CMIP6-simulated precipitation variability vary spatially across CONUS? (3)
What context can the CanESM5_SMILE-simulated internal variability provide regarding trends identified in
the CMIP6 multi-model single-realization ensemble?

2. Data andmethods

The historical (1951–2014) daily precipitation datasets assessed in this study are sourced from CMIP6 model
simulations (Eyring et al 2016). Building upon the successes of previous phases, CMIP6 aims to improve the
realism and fidelity of climate simulation output over previous phases. This is achieved through
advancements in model physics, parameterizations, and higher resolutions (Eyring et al 2016, Meehl et al
2020). Moreover, while previous phases predominantly relied on representative concentration pathways
(RCPs) as the framework for emission scenarios, CMIP6 has embraced shared socioeconomic pathways
(SSPs), which amalgamate both greenhouse gas emissions and socioeconomic variables. Through
coordinated experiments and standardized protocols, CMIP6 facilitates the comparison of model outputs
and the assessment of model performance and uncertainties across different scenarios and periods (Eyring
et al 2016). Previous studies have shown that, in the historical framework, climate model uncertainties are of
two types: internal variability and model (or structural) uncertainty (Lehner et al 2020, Qiu et al 2024).
Model uncertainty arises from the fact that different climate models simulate complex processes differently,
e.g. cloud formation and ocean-atmosphere interactions and feedback mechanisms. In contrast, natural
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fluctuations within the climate system cause internal variability. In this study, we explore uncertainties
associated with the structural uncertainties of models by employing a 21-member multi-model single
realization ensemble, hereafter referred to as the CMIP6 multi-model ensemble, and uncertainties associated
with model-simulated internal variability using the 50-member CanESM5 single model initial-condition
large ensemble (SMILE). Details (names, respective institutions, and spatial resolutions) of the 21-member
CMIP6 multi-model ensemble are described in table S1. The selection of the 21 CMIP6 models was based on
their use in Akinsanola et al (2020), which evaluated the performance of CMIP6 models in simulating
seasonal extreme precipitation indices across the U.S. Construction of our CMIP6 multi-model ensemble
follows guidance from the Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report
(AR6) (Masson-Delmotte et al 2021). A single realization from each model’s simulation of the historical
period is utilized, i.e. the first member (r1i1p1f1). Selecting a single member ensures equal treatment and
weighting for all models, and practically speaking, the first realization (i.e. r1) is consistently available from
all modeling groups, thus providing the most comprehensive multi-model ensemble.

To examine the influence of internal variability, we use the 50-member CanESM5_SMILE. We chose
CanESM5 because it had the most realizations available at the time of analysis. CanESM5 is a fully coupled
ocean-atmosphere-land-sea ice climate model (Swart et al 2019) consisting of 50 ensemble members with
165 yr integrations from 1850 to 2014. Owing to the experimental design, differences between individual
SMILE realizations are solely attributed to internally generated climate variability. Using first-order
conservative remapping, all model data are gridded onto a spatial grid of 2.81◦ × 2.81◦ (the lowest model
resolution) to ensure consistency and facilitate comparison across all model datasets. This is a commonly
used best practice in the literature (e.g. Srivastava et al 2020, Akinsanola et al 2020c, Taguela et al 2022,
Bobde et al 2024).

Daily in situ precipitation observations from the Global Historical Climatology Network daily
(GHCN-D) are employed to provide verification data for the model outputs. Compiled by NOAA’s National
Centers for Environmental Information, the GHCN-D database encompasses records from over 2,000
stations across the U.S., constituting the most comprehensive collection of daily U.S. data available (Menne
et al 2012). GHCN-D observations, sensitive to 0.1 mm, undergo 19 quality control tests to identify duplicate
data, climatological outliers, and other inconsistencies (Durre et al 2010). We limit our set of GHCN-D
station observations to data suitable for long-term trend analysis by requiring station records to possess 90%
or more complete station-years to qualify, where we define a complete station-year as having 90% or more of
all potential daily observations. Rather than analyzing station records individually, spatial aggregation is
employed to provide a larger sample size and a more comprehensive regional view of change over time, given
the inherent limitations of individual station statistics and internal climate variability. Our analysis is focused
on the contiguous U.S. and is conducted over 17 domains delineated by the National Ecological Observatory
Network (NEON; figure S1). These domains, designed to be climatically homogeneous, were established
using temperature- and precipitation-informed geographic clustering (National Ecological Observatory
Network n.d., Keller et al 2008, Schimel 2011). The number of qualifying stations within each region ranged
from 51 (Northern Rockies) to 374 (Prairie Peninsula; figure S1).

Trends or changes in precipitation at the NEON-domain level are characterized using a trend-free
pre-whitened form the regional Mann–Kendall trend test (Hussain and Mahmud 2019). The Mann–Kendall
test is a widely used nonparametric statistical method for analyzing trends in climatological and hydrological
time series data. Originally proposed by Mann (1945), it has since been extensively applied to environmental
time series. This test offers two key advantages over other regression techniques: it does not require the data
to follow a normal distribution, and it demonstrates low sensitivity to sudden changes caused by
inhomogeneities within the time series. Mann-Kendall trend tests are thus suitable for detecting robust
trends in hydrological time series (Hamed 2008) and are commonly used in studies assessing trends of
precipitation over time (e.g. Roque-Malo and Kumar 2017, Panda and Sahu 2019, Zhang et al 2021, Harp
and Horton 2023, Fattah et al 2024). Since annual trends are ultimately aggregates of seasonal patterns and
trends, analyses are conducted on both annual and seasonal scales. The seasonal analyses presented herein
are for the summer and winter seasons. We use four precipitation metrics to evaluate the ability of CMIP6
models to capture historical trends across the U.S. These metrics include changes in interannual
precipitation variability, relative interannual variability (also known as coefficient of variation), annual mean
precipitation, and annual wet day frequency, where a wet day is defined as a station day observing 1 mm or
more of precipitation (a threshold common in precipitation analyses; e.g. Giorgi et al 2019). Here, we define
interannual variability as the 11 year running standard deviation of annual precipitation; we use an 11 year
window to lessen the impact of common modes of natural climate variability. We define relative interannual
variability similarly, dividing the 11 year running standard deviation of annual precipitation (interannual
variability) by the running mean of the same 11 year period. By doing so, the relative interannual variability
accounts for changes in the interannual variability that are simply byproducts of shifting baselines of annual
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mean precipitation. Collectively, these four variables either directly characterize interannual variability or
provide crucial information to explain shifts in interannual variability (Harp and Horton 2023).

3. Results

3.1. Spatial distribution of annual and seasonal mean precipitation
We first assess the spatial distribution of observed annual mean precipitation across the 17 different NEON
regions of the CONUS (figure S1). In the GHCN-D observations (figure 1(A)w), high values of annual mean
precipitation (six regions> 1,200 mm, nine regions> 800 mm) are evident over the eastern CONUS,
particularly in the U.S. southeast, while low values (< 600 mm) dominate the western CONUS. The Pacific
Northwest is an exception, where mean annual precipitation exceeds 1400 mm. The lowest mean
precipitation is found over the Southern Rockies and Colorado Plateau, the Desert Southwest, and the Great
Basin, each with less than 400 mm of precipitation annually.

Individual CMIP6 model single realizations (figure 1(A)a–u), along with the multi-model ensemble
mean (referred to hereafter as ‘EnsMean’; figure 1(A)v), reasonably capture the spatial distribution of the
observed mean annual precipitation, albeit with varying magnitudes and noticeable biases. For instance,
most CMIP6 ensemble members exhibit the lowest mean precipitation values in the Desert Southwest, while
the Pacific Northwest generally exhibits the highest simulated values. In addition, almost all models, except
for NorESM2-LM and NorESM2-MM, overestimate precipitation over most regions (10 of 16; figures 1(B)
and S2(a)) while all models except for NESM3 underestimate precipitation over the Southeast. Most
individual models demonstrate a pronounced overestimation (around twice the observed values) in the
Great Basin and Northern Rockies regions (figures 1(B) and S2(b)). On the other hand, across the Southeast
region, all of the selected models (except NESM3) exhibit a dry bias (indicated in red: figures 1(B) and
S2(a)), with the MIROC6 model realization displaying the greatest negative bias (figure 1(B)) of
approximately 20% (figure S2(b)). The CMIP6 models also reasonably represent the spatial distribution of
observed mean summer (figure S3(A)) and winter (figure S4(A)) precipitation, despite notable biases
(figures S3(B) and S4(B)) across different regions. In winter, the EnsMean shows a positive bias across all
regions except the Southeast, with the largest positive bias observed in the Great Basin and Northern Rockies,
exceeding 50 mm (figure S4(B-v)).

The 50-members of the CanESM5 SMILE likewise reasonably capture the spatial distribution of the
observed mean annual precipitation (figure S5(a-xx)), with the ensemble mean of the CanESM5 realizations
demonstrating remarkable fidelity with observed magnitudes (figure S5(yy)). However, most realizations
(figure S6(a-xx)), along with the ensemble mean (figure S6(yy)), exhibit positive bias in eastern and western
clusters of regions, such as in the Great Basin, Northern Rockies, Northeast and Mid Atlantic, while the
Pacific Northwest depicts a negative bias in all CanESM5 realizations. In addition, the ensemble mean of
CanESM5 (figure S6(yy)) exhibits a lower bias across most regions compared to the CMIP6 EnsMean (figure
S6(zz)).

3.2. Trends in annual mean precipitation and wet day frequency
To properly contextualize changes in the interannual variability of precipitation, we first assess observed
changes in annual, summer, and winter mean precipitation over all U.S. regions (figure 2(a)). We found
increases in annual mean precipitation in most regions except over the Pacific Northwest and Northern
Rockies, where a decrease is evident (figure 2(a)). The observed increases range from 5 to 22 mm decade−1,
with the largest increases (>20 mm decade−1) occurring in regions east of the Rocky Mountains, such as
Prairie Peninsula, Ozarks Complex, and Northeast. Observed decreasing trends exist within the Pacific
Northwest and Northern Rockies regions, with values of−2 and−12 mm decade−1, respectively. Seasonally,
the observed trends in winter mean precipitation display a spatial pattern similar to that found in the annual
mean, with increases generally in regions located east of the Rocky Mountains (figure 2(c)), except the
Southeast and Mid Atlantic regions. Although this spatial pattern is less pronounced in summer
(figure 2(b)), we identified some regions with greater precipitation increases (Prairie Peninsula, Southern
Plains, and Northeast) in the summer (⩾5 mm decade−1) compared to winter (∼4 mm decade−1).

To determine how well CMIP6 models capture precipitation trends, the magnitude of simulated trends
from the models that comprise our CMIP6 multi-model ensemble are assessed against observed trends. The
spatial patterns of annual mean precipitation trends in the EnsMean (figure S11v) largely mirror the spatial
pattern in observed trends but generally underestimate the magnitude of the positive trends, especially over
the Prairie Peninsula, Southern Plains, and Ozarks Complex regions. Individual models exhibit differing
regional annual mean precipitation trend magnitudes (figure S11). Nevertheless, in 10 of 16 regions, at least
60% of the models agree with the sign of the observed annual mean precipitation change (figure 2(d)), with
the highest agreement (>75%) evident over the Great Basin, Great Lakes, and Mid Atlantic regions. In the
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Figure 1. (A) Annual mean precipitation (mm) from 1951–2014 for (a-u) each included CMIP6 model (labeled), (v) the
21-member CMIP6 ensemble mean, and (w) the GHCN-D observations for each of 17 NEON domains (white-blue fill). (B) Bias
in annual mean precipitation for each CMIP6 model (a-u) along with their ensemble mean (v) with respect to observations
(red-blue fill).

Northern Rockies, fewer models (∼30%) agree with the sign of the observed change; this region exhibits the
lowest inter-model agreement on the sign of observed changes. Seasonally, while over 75% of models agree
on a decrease in summer precipitation in the Pacific Northwest, model agreement is generally low across
most regions (figure 2(e)). In winter, however, inter-model agreement is higher in the northern regions and
lower in the southern regions, with 76% agreement in the Great Lakes and just 43% agreement in the
Southern Plains (figure 2(f)). Figures 2(g)–(i) further summarizes the spread of models’ annual, summer
and winter mean precipitation trends across different regions. The spread of the simulated annual trends is
the smallest (largest) over the Pacific Northwest (Pacific Southwest) (figure 2(g)). This illustrates uncertainty
in the simulated annual mean precipitation changes in the Pacific Southwest region, consistent with the low
number of individual models (∼40%) that agree on the sign of the observed change (figure 2(d)). Although
at least 50% of models agree on the sign of the observed change in the Prairie Peninsula, Ozarks Complex,
and Northeast regions (figure 2(d)), the observed positive trends are largely underestimated by the majority
of the CMIP6 models (figure 2(g)). In summer, the largest spread in the simulated precipitation trends is
over the Southern Plains while in winter, it is observed over the Desert Southwest (figures 2(h) and (i)).
Additionally, in winter, most models tend to underestimate the observed trends in these regions, which is
consistent with the low agreement on the signs of the observed changes (figures 2(e)–(f)).
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Figure 2. Trends in annual, summer, and winter mean precipitation. Observed precipitation trends in each NEON region from
GHCN-D observations for (a) annual, (b) summer, and (c) winter precipitation (mm/decade; red-blue fill). Regions with no
trend are shaded in gray. (d)–(f) The proportion of the 21 CMIP6 model ensemble that agree with the direction of the observed
trends for (d) annual, (e) summer, and (f) winter precipitation (% of models; red-blue fill). The percentage of the CMIP6 model
ensemble that agrees with no trend (gray) is indicated in text. (g)–(i) The spread of model-simulated trends in (g) annual, (h)
summer, and (i) winter precipitation as a percentage of the corresponding annual or seasonal mean precipitation in observations
for each NEON region (%/decade). Large black points mark trends in GHCN-D observations, smaller black points indicate
CMIP6 model trends outliers.

Trends in annual, summer, and winter wet day frequency are presented in figure 3 for both GHCN-D
observations and members of the CMIP6 multi-model ensemble. There are areas of pronounced increases in
annual precipitation frequency in observations, with values exceeding 0.6 d decade−1 over the Great Lakes,
Prairie Peninsula, and the Northeast regions (figure 3(a)). Conversely, decreasing trends in annual
precipitation frequency (<−0.6 d decade−1) dominate the Northern Rockies, Mid Atlantic, and Southeast
regions. While many regions show negligible changes in precipitation frequency at both annual and seasonal
scales (figures 3(a)–(c)), the observed annual increase in the Pacific Southwest, Great Lakes, and Prairie
Peninsula aligns with positive trends in winter (figure 3(c)). In contrast, the annual increase in the Northeast
is consistent with summer trends in the Northeast (figure 3(b)) although the change in wet day frequency
during summer is minimal. Conversely, the decreases in annual precipitation frequency in the Pacific
Northwest, Northern Rockies, Mid-Atlantic, and Southeast regions align with negative trends in winter
(figure 3(c)). Generally, observed trends in wet day frequency were marginal, regardless of time frame.

The CMIP6 ensemble member-simulated trends in precipitation frequency vary widely (figure S12). For
instance, CMCC-ESM2 and MRI-ESM2-0 exhibit increased annual precipitation frequency in almost all
regions, whereas the NESM3 indicates the opposite. In general, the EnsMean trend of the models is
consistent with observations from the Pacific Northwest, Northern Plains, Northern Rockies, Great Lakes,
Northeast, and Prairie Peninsula, albeit with discrepancies in magnitude (figure S12v). Nevertheless, over
60% of the models agree with the observed trend over the Pacific Northwest, Northern Plains, and Great
Lakes regions (figure 3(d)). This agreement was reduced to 50% over the Southern Rockies and Colorado
Plateau and less than 40% over most other regions where non-zero trends are observed. In both summer and
winter, the CMIP6 ensemble members largely exhibit low agreement (less than 40%) in regions where
non-zero trends in precipitation frequency are observed (figures 3(e) and (f)). In general, most of the model
simulations overestimate (underestimate) trends in annual precipitation frequency in the Mid Atlantic and
Southeast (Prairie Peninsula) (figures 3(g)–(h) and S16(b)). However, the CMIP6 multi-model ensemble
spread is relatively small in these regions. Conversely, simulated trends in precipitation frequency in the
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Figure 3. Trends in annual, summer, and winter precipitation frequency. Observed trends in precipitation frequency in each
NEON region from GHCN-D observations for (a) annual, (b) summer, and (c) winter precipitation (mm/decade; red-blue fill).
Regions with no trend are shaded in gray. (d)–(f) The proportion of the 21 CMIP6 model ensemble that agree with the direction
of the observed trends for (d) annual, (e) summer, and (f) winter precipitation (% of models; red-blue fill). The percentage of the
CMIP6 model ensemble that agrees with no trend (gray) is indicated in text. (g)–(i) The spread of model-simulated trends in (g)
annual, (h) summer, and (i) winter precipitation frequency as a percentage of the corresponding annual or seasonal mean
precipitation frequency in observations for each NEON region (%/decade). Large black points mark trends in GHCN-D
observations, smaller black points indicate CMIP6 model trends outliers.

Southern Plains and Southern Rockies and Colorado Plateau regions have a large spread, suggesting
potentially large structural uncertainties.

3.3. Trends in interannual precipitation variability
Given robust trends in observed annual precipitation and wet day frequency—as well as the mixed
consistency on sign agreement with annual mean precipitation and wet day frequency trends within the
CMIP6 multi-model ensemble—it is important to also assess whether precipitation variability has changed
and is well captured by the CMIP6 multi-model ensemble. At the annual scale, we identify trends in observed
interannual and relative interannual precipitation variability (figures 4(a) and S14(a)). We found a strong
increase in the two metrics along the West Coast and northern East Coast, broadly speaking. The greatest
observed increases exceed 8 mm decade−1 in interannual precipitation variability (Mid Atlantic and Pacific
Northwest; figure 4(a)) and 0.01/decade in relative interannual precipitation variability (Pacific Northwest,
Pacific Southwest, and Great Basin; Figure S14a). In summer (winter), regions located east (west) of the
Rocky Mountains generally exhibit an increase in both metrics (figures 4(b) and (c), S14(b) and (c)). Nearly
all regions exhibit a positive trend in relative interannual precipitation variability in summer (figure S14(b)).

The pattern of the simulated trends varies widely among CMIP6 ensemble members and from one region
to another (figures S13, S15, S16(c) and (d)). However, by exhibiting reduced bias in most regions compared
to individual CMIP6 model single realizations (figures S16(c) and (d)), the EnsMean captures the spatial
pattern of the observed trends comparatively well, although the stronger increasing trends in coastal regions
are underestimated (figures S13 and S15). Overall, about∼60% of the ensemble members agree on the sign
of observed change of interannual variability over the Great Basin, Central Plains, Southern Plains, and some
eastern regions (figure 4(d)), while the Ozarks Complex depicts the lowest model agreement (∼30%). In
summer (winter), the highest model agreement is exhibited in the Southeast (Northern Plains) region, while
the lowest is in the Northern Plains (Northeast and Appalachians and Cumberland Plateau) (figures 4(e) and
(f)). In most regions, the number of CMIP6 ensemble members agreeing on the observed sign of change in
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Figure 4. Trends in interannual variability of annual, summer, and winter precipitation. Observed trends in the interannual
variability of precipitation in each NEON region from GHCN-D observations for (a) annual, (b) summer, and (c) winter
precipitation (mm/decade; green-purple fill). (d)–(f) The proportion of the 21 CMIP6 model ensemble that agree with the
direction of the observed trends for the interannual variability of (d) annual, (e) summer, and (f) winter precipitation (% of
models; red-blue fill). (g)–(i) The spread of model-simulated trends in the interannual variability of (g) annual, (h) summer, and
(i) winter precipitation as a percentage of the corresponding annual or seasonal mean interannual variability of precipitation in
observations for each NEON region (%/decade). Large black points mark trends in GHCN-D observations, smaller black points
indicate CMIP6 model trend outliers.

the relative interannual precipitation variability (figures S14(d) and (e)) mirrors that of interannual
precipitation variability (figures 4(d) and (e)), albeit with some differences. For instance, the percentage
agreement of interannual precipitation variability (figure 4(d)) is higher than that of relative interannual
precipitation variability (figure S14(d)) in the Southern Plains. A similar pattern is observed in the Great
Lakes during winter.

The spread of the CMIP6 ensemble member trends is also analyzed with respect to the observed trends
(figures 4(g)–(i) and S14(g)–(i)). This spread is largest for both metrics of variability in the Great Lakes,
Southeast, Southern Rockies and Colorado Plateau, and Pacific Southwest regions, with the spread between
−10% to 15% in the Pacific Southwest (figures 4(g) and S14(g)). This highlights the uncertainty among
annual CMIP6 ensemble member trends in those regions. In addition, the spread of winter trends is
generally greater than in summer (figures 4(i) and S14(i)). Overall, trends in the four metrics show
substantial regional variability across the U.S., with varying levels of regional spread among the CMIP6
ensemble members. This spread underscores potentially substantial model uncertainty, with some areas
exhibiting weaker model agreement than others, especially regarding trends in precipitation frequency. To
further contextualize this model uncertainty, we also examine the spread of realizations–or internal
variability–within the CanESM5 large ensemble.

3.4. CanESM5 SMILE and the potential role of internal variability
Internal variability refers to the natural fluctuations that occur within the simulated climate system, arising
from the intricate and chaotic interactions between the atmosphere, oceans, land, and ice (Blanusa et al
2023). This section assesses the contribution of internal variability in the interannual trends of precipitation
over CONUS using the CanESM5_SMILE simulations. In figures 5 and S17, spatial patterns in annual mean
precipitation and precipitation frequency trends vary between realizations. Despite this, CanESM5_SMILE
mean trends are somewhat aligned with observed trends, though with reduced trend magnitudes (figure 5).
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Figure 5. Trends in mean annual precipitation for CanESM5 SMILE. (a) Map of regional trends in annual mean precipitation for
NEON regions for each CanESM5 SMILE model realization (a-xx; labeled), the ensemble mean of the CanESM5 large ensemble
(yy), the ensemble mean of the CMIP6 model realizations (zz), and GHCN-D observations (aaa; mm/decade; red-blue fill). (b)
The spread of annual mean precipitation trends across the 50 realizations of the CanESM5 SMILE as a percentage of the annual
mean precipitation in GHCN-D observations for each NEON region (%/decade). Large black points represent the observed
trends, while smaller points are outliers.

For example, the CanESM5_SMILE mean simulates an increase along the east coast of the CONUS,
consistent with observations (figure 5(aaa)) and the CMIP6 EnsMean (figure 5(zz)). However, the
CanESM5_SMILE mean indicates decreasing trends in the central and western U.S., which contrasts with
widespread increases (central U.S.) and mixed trends (western U.S.) in observations.

The spread in annual mean precipitation and frequency trends from the 50 CanESM5 members is highest
in the Desert Southwest, Southern Rockies and Colorado Plateau, Great Basin, and Pacific Southwest. A
wider spread suggests greater internal variability in the simulated changes in those regions. Additionally,
since internal variability tends to cancel out when averaging across members, the CanESM5_SMILE mean is
used here to isolate the forced response (figures 5(yy) and S17(yy)). In most regions, the CanESM5_SMILE
mean trend is smaller than that of individual realizations. This implies that trends in precipitation identified
in individual ensemble members are a manifestation of the model’s internal variability rather than a response
to historical forcings.

The simulated annual trends in interannual and relative interannual precipitation variability of the 50
CanESM5_SMILE members and their ensemble mean are presented in figures S18 and S19, respectively.
Their spatial pattern varies from one realization to another, with the largest spread in the trends of the 50
members observed in the Great Basin (interannual variability) and Pacific Southwest regions (relative
interannual variability). Similar to the trends in mean precipitation and frequency, the magnitudes of the
CanESM5_SMILE mean trends in interannual and relative interannual precipitation variability are low in all
the regions compared to that of individual ensemble realization. As explained above, this indicates that
model internal variability likely dominates total uncertainty in the simulated trends. To demonstrate the
consequences of this finding, we plot the ratio of the spread of CanESM SMILE realization trends to that of
the CMIP6 multi-model ensemble trends for both interannual and relative interannual precipitation
variability (figures 6(c) and (d)). We find that in many NEON regions, the spread of the CanESM5
SMILE-simulated trends in internal variability is equal to or exceeds the spread of the CMIP6 multi-model
ensemble trends.

4. Discussion and summary

Evaluating the historical performance of CMIP6 models is crucial for understanding the impacts of climate
change on hydrological cycles and precipitation patterns. Numerous studies (e.g. Agel and Barlow 2020,
Srivastava et al 2020, Akinsanola et al 2020b, Wang and Asefa 2024) have evaluated the ability of CMIP6
models to represent the historical mean and extreme precipitation in the U.S. However, despite its
significance for climate impact studies and policy-making, the interannual variability of precipitation has not
been thoroughly evaluated. To address this gap, this study analyzes interannual precipitation variability
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Figure 6. Percent of the variability in CMIP6 model trends in annual mean precipitation (a), precipitation frequency (b),
interannual variability (c), and relative interannual variability (d) spanned by the CanESM5 SMILE trends. These values are
calculated by dividing the difference between the maximum and minimum trend values in the CanESM5 SMILE with the
difference between the maximum and minimum trend values in the CMIP6 multi-model ensemble for each region.

across the contiguous U.S., utilizing observational data and outputs from CMIP6 models at both annual and
seasonal scales. By employing regional Mann-Kendall trend tests, we examined trends in four key
precipitation metrics: interannual precipitation variability, relative interannual variability, annual mean
precipitation, and annual wet day frequency. Our analysis covered 17 climatically homogeneous domains,
providing valuable insights into the ability of CMIP6 models to replicate observed precipitation patterns. We
also use the 50-member CanESM5 SMILE simulations to provide context on the role of internal variability
when identifying observed trends in CMIP6 model simulations.

Our results reveal a general increase in observed annual mean precipitation across most regions, though
with notable regional variations in trends. The most significant increases occurred east of the Rocky
Mountains. The observed trends in winter mean precipitation broadly exhibit a spatial pattern similar to that
of the annual mean, except in the southeast U.S., where the spatial pattern in summer differs from that of
winter. This finding agrees with that of Wang et al (2021), who demonstrated that summer total precipitation
in southeastern regions of CONUS is tied to accumulated cyclone energy (ACE) and therefore cyclone season,
whereas winter total precipitation in this area is strongly linked to El Niño-Southern Oscillation (ENSO).

While the CMIP6 ensemble members generally reproduced the spatial patterns of mean annual
precipitation trends, discrepancies in magnitude were evident. However, at both annual and seasonal scales,
CMIP6 members demonstrated modest to good agreement with the signs of observed changes in most
regions except for winter in the Southern Plains, where agreement is 43% (figure 2(f)). Low agreement may
be attributable to the inherent challenges in accurately simulating large-scale processes that govern
precipitation interannual variability, such as the ENSO (Huang 2016). Conversely, ensemble members
typically exhibited low agreement with the signs of observed changes for the simulated trends in wet day
frequency, particularly in winter. Previous studies have shown that changes in mean precipitation are driven
by changes in wet day frequency, daily precipitation intensity, or a combination of both (Harp and Horton
2023). Our findings suggest that a model’s ability to replicate observed changes in mean precipitation
accurately may be associated with their proficiency in replicating changes in daily precipitation intensity, as
most models fail to simulate the signs of observed changes in wet day frequency.

Both interannual and relative interannual precipitation variability exhibit increases along the West Coast
and Northeast in observations. These changes may be associated with the variability of inland moisture
penetration from neighboring oceans (Hoerling et al 2016) since the trend is not evident in the interior U.S.
In addition, the annual increase in interannual precipitation variability observed over the Pacific Northwest
(Northeast) aligns with, and may be driven by, winter (summer) trends (figures 4(a)–(c)). Our analysis
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revealed that individual CMIP6 ensemble members struggle to accurately capture the broad spatial patterns
and magnitude of trends in interannual variability when compared to observational data. Similarly, the
EnsMean did not successfully replicate spatial patterns in relative interannual variability trends. This may be
partly due to an inability to capture changes in frequency. For instance, in the Pacific Southwest, few
ensemble members agreed on the signs of observed changes in interannual precipitation variability, which
coincides with their inability to simulate changes in wet day frequency. Despite this potential physics-based
explanation, it is important to note that while no individual CMIP6 ensemble member, nor the ensemble
mean, replicates the observed trend magnitudes in all NEON domains, all observed trend magnitudes in all
regions are captured within the ensemble spread, typically within the interquartile range (figures 4(g)–(i)).

The role of internal variability in climate model simulations has been shown to be substantial and
comparable to externally forced responses (Deser et al 2020). Previous studies have demonstrated that the
distribution of continental-to-regional scale trends from a climate variable created using a CMIP ensemble
can be narrower in magnitude than a distribution created from a SMILE (Mankin et al 2015, 2020, Deser
et al 2020, Lehner and Deser 2023). Thus, a CMIP6 multi-model ensemble, particularly one that uses only a
single realization from each model like that employed in the present study, may underpredict internal/
natural variability. Consequently, its distribution may be less likely than a SMILE to include the observed
trend and may improperly characterize uncertainty in results. Our results have demonstrated that internal
variability, as captured by the 50-member CanESM5 SMILE, may account for much of the inter-model
variability within the CMIP6 ensemble. In agreement with the findings from Mankin et al (2015, 2020), this
indicates that internal climate variability may account for a large part of the multi-model uncertainty.
However, we acknowledge that model-simulated internal variability in SMILEs can suffer from both under-
and over-estimation of natural variability and that these biases may differ regionally (Suarez-Gutierrez et al
2021). We likewise acknowledge that our findings could differ if a SMILE for each of the 21 CMIP6 models
were utilized. Cumulatively, these points suggest that efforts to improve the skill of individual models and,
thus, reduce structural uncertainties, may be limited both by irreducible uncertainties and limited/biased
estimates of natural variability.

We caveat our study methodology by first noting that comparing station observations against climate
model output has limitations, even when data are regionally aggregated. For instance, while we regrid CMIP6
outputs onto a common grid to allow for direct model comparison, the resultant number of climate model
data points is limited and may not be truly representative of the underlying precipitation patterns (figure S1).
Additionally, despite the much denser network of station observations within the U.S. compared to our
common climate model grid, the placement of rain gauges is often near cities or other points of
socioeconomic importance (e.g. airports) and is not evenly distributed spatially throughout regions (Villarini
et al 2008). This is particularly true in sparsely populated and mountainous areas. Thus, while aggregating at
a climatically-informed regional scale allows for a more robust trend analysis of individual station data
records, the inconsistent distribution of gauge networks may overrepresent particular areas within regions,
and some regions may possess limited station availability. This may also introduce discrepancies with our
climate model output as data are confined to their underlying grid regardless of the underlying climatological
features. We also assume that the NEON domains we use here possess internally consistent climate—as they
are designed by construction—but domain boundaries are inevitably imperfect and within-domain
variability persists. Additionally, trends for one region (Atlantic Neotropical) are not characterized here as
the small region is not represented in the common grid. Finally, although regridding climate model output is
the best way to allow comparison, this process can introduce systematic bias (Rajulapati et al 2021).

While this study has provided valuable insights into precipitation trends and interannual variability
within the CanESM5 SMILE and CMIP6 historical multi-model ensemble, there are several remaining
avenues for advancing this work. One promising direction would disentangle forced trends from internal
variability by utilizing the accompanying pre-industrial control (piControl) simulations. For example,
splitting the CanESM5 piControl into segments paralleling the historical ensemble members would allow for
a direct comparison of the forced trends with internal variability alone. This approach would provide
statistical and practical significance to the trends observed in the historical runs and contextualize them
relative to internal variability as simulated by CanESM5. Extending this analysis to the CMIP6 multi-model
ensemble by using the piControl runs of each participating model would further enhance understanding of
forced trends and variability across a broader range of models. Such a formal attribution framework could
isolate the role of external forcing on precipitation variability and trends, offering insights critical for
improving model simulations and guiding climate adaptation strategies. In addition to exploring forced and
internal variability, future studies could also investigate variability on shorter timescales, such as
sub-seasonal or daily precipitation accumulations. These analyses would provide a more comprehensive
understanding of the drivers of precipitation variability, particularly in the context of extreme events, and
complement the interannual variability focus of this study. Building on the results presented here, these
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follow-up analyses could yield a more complete picture of precipitation variability and its underlying
mechanisms, representing important steps toward more robust climate modeling and prediction efforts.

Foreknowledge of expected precipitation is critical to a number of water resource-dependent fields. From
agricultural crop yields to hydroelectric power generation to lake level dependent recreation, the ability to
plan for, and build according to, a climatological expectation is both economically and infrastructurally
essential (Rowhani et al 2011, Sloat et al 2018, Boadi and Owusu 2019, Shortridge 2019, Qin et al 2020,
Gronewold et al 2021). Given the importance of this foreknowledge, building confidence in both model
projections and their underlying uncertainties via analyses of model replication of historical trends is needed.
Our study highlights opportunities for improvement in simulating precipitation variability using CMIP6
models. All told, we find evidence of model skill as well as opportunities for model improvement. Our results
show the CMIP6 multi-model ensemble demonstrates some skill in capturing broad-scale spatial patterns in
trends in annual precipitation, though discrepancies in magnitude and regional trends are prevalent.
Additionally, while we find an inability of the CMIP6 multi-model ensemble to reproduce observed trends in
the other precipitation metrics examined in aggregate, observed trends do predominately lie within the
spread of the CMIP6 multi-model ensemble, indicating that individual ensemble members possess the ability
to replicate trends in interannual variability. While these results underscore the need for ongoing model
refinement, validation, and examination in the context of internal variability, we note that efforts to advance
these model aspects may be constrained by irreducible uncertainty of internal variability. Ultimately,
addressing these issues is crucial for improving the accuracy of climate projections, especially in regions
vulnerable to extreme precipitation events and variability.
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