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Abstract— Orthogonal time frequency space (OTFS) is a
promising modulation scheme for wireless communication in
high-mobility scenarios. Recently, a reservoir computing (RC)
based approach has been introduced for online subframe-based
symbol detection in the OTFS system, where only a limited num-
ber of over-the-air (OTA) pilot symbols are utilized for training.
However, this approach does not leverage the domain knowledge
specific to the OTFS system to fully unlock the potential of
RC. This paper introduces a novel two-dimensional RC (2D-RC)
method that incorporates the domain knowledge of the OTFS
system into the design for symbol detection in an online subframe-
based manner. Specifically, as the channel interaction in the
delay-Doppler (DD) domain is a two-dimensional (2D) circular
operation, the 2D-RC is designed to have the 2D circular padding
procedure and the 2D filtering structure to embed this knowledge.
With the introduced architecture, 2D-RC can operate in the DD
domain with only a single neural network, instead of necessitating
multiple RCs to track channel variations in the time domain
as in previous work. Numerical experiments demonstrate the
advantages of the 2D-RC approach over the previous RC-based
approach and compared model-based methods across different
OTFS system variants and modulation orders.

Index Terms— 2D-RC, OTFS, online learning, deep learning,
symbol detection, channel equalization.

I. INTRODUCTION

NEXT-GENERATION wireless communication systems
are required to support reliable communication quality

in high-speed scenarios, such as high-speed railways,
unmanned aerial vehicles, and low earth orbit [1]. However,
in such scenarios, orthogonal frequency division multiplexing
(OFDM), which is a key physical layer waveform of
4G LTE-Advanced and 5G NR [2], suffers from the
inter-carrier interference (ICI) caused by the high Doppler
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spread. Recently, OTFS modulation has emerged as a
promising modulation scheme for reliable communications
in high-mobility scenarios [3]. Different from OFDM which
multiplexes information symbols in the time-frequency (TF)
domain, OTFS is a 2D modulation scheme that transmits
information symbols in the DD domain. In the DD domain,
each transmitted symbol spreads over the TF domain and
experiences the full TF-domain channel. Therefore, OTFS
provides the potential of achieving full channel diversity [4],
[5]. More recent work has also analyzed the channel
predictability in the DD domain of the OTFS system [6].

The benefits of adopting OTFS modulation in high-mobility
scenarios have attracted substantial interest in investigating
low-complexity equalization techniques for the OTFS system.
Existing approaches can be roughly divided into two branches:
model-based methods and learning-based approaches. Model-
based approaches are designed based on analyzing the
input-output relationship and the structure of the equiva-
lent channel matrix in the OTFS system. Specifically, a set
of linear equalizers [7], [8], [9] is introduced to conduct
low-complexity linear minimum mean square error (LMMSE)
detection by taking advantage of the channel structure. For
example, the double block circulant structure of the channel
in the DD domain is leveraged in [7] under the bi-orthogonal
pulse shaping assumption. The quasi-banded structure of the
time-domain equalization matrix is utilized for low complexity
matrix inversion in [8]. The block circulant structure of the
DD-domain equivalent channel in the OFDM-based OTFS
system with rectangular pulse shaping is exploited in [9].

Furthermore, multiple non-linear detectors are developed
to approach the maximum a posteriori (MAP) performance
with a lower complexity than the MAP [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19]. For instance, the message
passing algorithm (MPA) [10] is developed to conduct the
low complexity detection based on the Gaussian assumption
of the interference and the sparsity of the channel matrix in
the DD domain. The hybrid MAP and parallel interference
cancellation (Hybrid-MAP-PIC) algorithm in [19] combines
the symbol-wise MAP approach with the MPA to achieve
a better performance than the MPA at the cost of a higher
computational complexity. When it comes to the case with
factional Doppler shifts, the cross-domain iterative detection
approach in [18] is designed to iteratively perform the LMMSE
detection in the time domain and the symbol-by-symbol
detection in the DD domain. The cross-domain method can
approach the performance of the symbol-wise MAP detector.
However, the computational complexity of this algorithm is on
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a cubic order of the subframe size, which is computationally
expensive for practical systems. In the continuous-Doppler-
spread scenario, the iterative least squares minimum residual
(LSMR)-based equalizer [16] is introduced to iteratively
conduct LSMR detection and interference cancellation. The
LSMR-based approach outperforms MPA and maintains a
lower computational complexity than the MPA. While model-
based approaches are explainable and easy to analyze, they
usually rely on explicit system modeling and accurate channel
state information (CSI) estimation. The performance of such
methods suffers from system model mismatch and channel
estimation error.

Learning-based detection approaches leverage the power of
neural networks (NNs) to learn the mapping from the received
signal to the transmitted one, which does not necessarily
require explicit system modeling and knowledge of the CSI.
Existing learning-based algorithms can be broadly classified
as offline learning methods and online learning methods.
Most existing learning-based techniques are offline learning
methods, which rely on extensive offline training data and
a long training time [20], [21], [22], [23], [24]. Approaches
under this category, such as convolutional neural network
(CNN)-based techniques in [20] and [22], the multi-layer
perceptron (MLP)-based method in [21], the GAMP-NET
in [23], and the graph neural network (GNN)-based algorithm
in [24], train NNs offline with a large amount of training data
and then directly deploy the trained NN online. However,
when the online data distribution is different from offline
training data distribution, these offline learning approaches
may have the “uncertainty in generalization’ issue [2] and
experience performance degradation. Furthermore, due to the
dynamic channel environment, the modern cellular system has
dynamic transmission modes through rank adaptation, link
adaptation, and scheduling operations, which are all performed
on a subframe basis [25]. The discrepancy between the mode
of offline training and online deployment may prevent the
offline-trained models from being adopted online.

To address the above challenges, an online learning
algorithm for the OTFS symbol detection is developed in our
previous work [26], which can be learned with only the limited
over-the-air (OTA) training pilots and dynamically updated on
a subframe basis. This approach utilizes reservoir computing
(RC), which is a particular type of recurrent neural network
(RNN), to achieve online subframe-based learning. Compared
with a typical RNN, RC only contains a few trainable param-
eters, allowing for an efficient and simple training procedure
with limited training data. While the previous RC-based
approach can achieve compelling performance, it operates in
the time domain and therefore requires multiple RCs to track
the channel changes. Furthermore, it directly applies the RC
structure in [27], which is designed for the OFDM system,
and does not incorporate the domain knowledge of the OTFS
system to unleash the full potential of RC.

In this work, we introduce a novel 2D-RC structure for
the online subframe-based symbol detection task in the OTFS
system. The introduced 2D-RC retains the advantages of RC
that can be learned with limited OTA training pilots within
each subframe and dynamically updated on a subframe basis,

which differentiates it from existing offline learning methods
that rely on extensive training data and a long training time.
Compared with the RC-based online learning method in [26],
2D-RC further incorporates the domain knowledge of the
OTFS system into the design. Specifically, the channel in
the DD domain works as a 2D circular operation over the
transmitted symbols in the OTFS system. This domain knowl-
edge is integrated into the 2D-RC through the design of the
2D circular padding operation and the 2D filtering structure.
By incorporating the domain knowledge, 2D-RC can operate
in the DD domain with only a single NN, which is shown to
be more effective than the previous RC-based approach with
multiple RCs in the time domain. The contributions of this
work are summarized as the following:

• We introduce a novel 2D-RC structure to conduct
symbol detection in the OTFS system in an online
subframe-based fashion. The 2D-RC embeds the domain
knowledge of the 2D circular channel interaction in
the DD domain into its design, which uses 2D circular
padding and a 2D filtering structure. By embedding
the domain knowledge, 2D-RC can achieve substantial
performance improvement over the previous RC-based
approach in different variants of the OTFS system and
under different modulation orders.

• The 2D-RC approach offers better generalization ability
than the previous RC-based approach. Instead of requir-
ing multiple RCs to achieve a satisfactory performance,
the 2D-RC necessitates only a single NN for processing,
which eliminates the requirement to configure the
number of RCs. Evaluation results show that 2D-RC
with a single NN achieves better performance than the
multiple-RC approach in various compared scenarios.

• The 2D-RC can be readily adapted to different variants
of the OTFS system without the requirement of channel
knowledge, which is different from model-based
approaches that require knowledge of the CSI and
are tailored for specific types of OTFS systems with
specific assumptions. Experimental results reveal the
advantages of the 2D-RC over the compared model-based
approaches across different OTFS system variants.

The remainder of this paper is organized as follows. Sec. II
briefly discusses the preliminaries of RC. Sec. III presents the
basics of the OTFS system. Sec. IV introduces the designed
2D-RC approach. Sec. V analyzes the complexity of 2D-RC.
Sec. VI provides the performance evaluation of the 2D-RC
with our previous RC-based approach and model-based detec-
tion methods for the OTFS system. The paper is concluded in
Sec. VII.

Notations: Non-bold letter, bold lowercase letter, bold
uppercase letter, and bold Euler script letter, i.e., x, x, X ,
and X, denote scalar, vector, matrix, and tensor, respectively.
C represents the complex number set and R is the real number
set. FM and F

H

M
denote the normalized M -point discrete

Fourier transform (DFT) and M -point inverse discrete Fourier
transform (IDFT), respectively. (·)† represents the Moore-
Penrose inverse. (·)T denotes the transpose operation. →·↑M
and ↓·↔ stand for the modulo operator of divider M and
the floor operation, respectively. vec(·) denotes the operation
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Fig. 1. 1D-RC Structure. For simplicity, the extended state and nonlinear function are ignored here. In the figure, the target output is a sequence with
No = 1.

of vectoring the matrix by stacking along the columns, and
vec→1(·) denotes unfolding the vector to a matrix by filling
the matrix column by column. IM is a M -dimensional identity
matrix. ↗ denotes the Hadamard product operation between
two matrices. The n-mode Hadamard product between the
matrix U ↘ CIn↑In+1 and the N -dimensional tensor X ↘
CI1↑I2↑···↑IN is defined as

(U ↗n X)[i1, . . . , in, in+1, . . . , iN ]
= U [in, in+1] · X[i1, . . . , in, in+1, . . . , iN ],

where U [in, in+1] is the (in, in+1)-th element in U , and
X[i1, . . . , in, in+1, . . . , iN ] is the (i1, . . . , in, in+1, . . . , iN )-th
element in X. The concatenation of two tensors X1 and
X2 along the n-th dimension is represented by catn(X1,X2).

II. PRELIMINARIES – RESERVOIR COMPUTING

RC is a class of RNNs for processing temporal or sequential
data. It consists of an RNN-based reservoir to map inputs
into a high-dimensional state space and an output layer to
learn the projection of the target to the high-dimensional
state space [28]. The characteristic feature of RC is that the
reservoir weights are fixed after being randomly initialized
and only the output layer is updated through a simple linear
regression. The fast and simple training process differenti-
ates RC from other RNNs and enables its broad application
in different research areas [29], [30], [31], [32]. Recently,
RC has shown its effectiveness in the symbol detection task
for both the OFDM system [27], [33], [34], [35], [36],
[37] and the OTFS system [26]. In this work, we focus on
customizing RC for the symbol detection task in the OTFS
system, instead of directly applying the existing structure
of RC as in [26]. Before we introduce our designed RC
structure, we briefly review the processing procedures of
RC that have been adopted in previous works [26], [27],
[34], [35], [36]. For ease of discussion, we refer to the
existing RC structure as “1D-RC” for the remainder of this
paper.

Fig. 2. The windowing process in 1D-RC.

A. Pre-Processing
1) Windowing: Suppose the sequential input is Y ↭

[y(0),y(1), . . . ,y(Lt ≃ 1)] ↘ CNy↑Lt , where Ny is the
input dimension, and Lt is the sequential length of the input.
A sliding window is adopted in the pre-processing procedure
to increase the short-term memory of RC [27]. Specifically, the
windowed input is obtained by stacking a sequence of input
vectors within the sliding window length Nw, which can be
written as yw(t) ↭ [y(t)T ,y(t≃ 1)T , . . . ,y(t≃Nw + 1)T ]T .
The yw(t) ↘ CNi is the windowed input vector at time step t
(t = 0, 1, . . . , Lt≃1), where Ni = NyNw is dimension of the
windowed input. When t < Nw ≃ 1, zeros are added at the
end of yw(t) to maintain the input length of Ni. The matrix
form of the windowed input is obtained by concatenating
the windowed input vector at each time step, i.e., Yw ↭
[yw(0),yw(1), . . . ,yw(T ≃ 1)] ↘ CNi↑Lt . The windowing
process is illustrated in Fig. 2. For simplicity, Ny is assumed
to be 1 in the figure.

2) Padding: RC requires a degree of forgetfulness to
remove the impact from the random initialization of the
internal state [38]. Therefore, the input is further padded with
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zeros at the end to facilitate the learning process of the optimal
forget length for the internal state. The padded input is denoted
as Ỹ ↭ [Yw,0Ni↑Lf ] ↘ CNi↑(Lt+Lf ), where Lf is the
maximum forget length of the internal state and 0Ni↑Lf is
a zero matrix of size Ni ⇐ Lf .

B. Structure of 1D-RC

As shown in Fig. 1, the 1D-RC has a recurrent structure as
RNNs. Denote ỹ(n) ↘ CNi as the n-th column of Ỹ (n =
0, 1, . . . , Lt +Lf ≃1). The state transition equation of 1D-RC
is expressed as

u(n) = f(Wi ỹ(n) + Wres u(n≃ 1)), (1)

where u(n) ↘ CNn is the internal state vector of RC; Wi ↘
CNn↑Ni and Wres ↘ CNn↑Nn are the input weights and
reservoir weights, respectively; and f(·) is the nonlinear acti-
vation function. The state u(≃1) is initialized as a zero vector.
The input and reservoir weights are randomly sampled from a
uniform distribution and remain unchanged after initialization.
The reservoir weight matrix Wres is set to be sparse and have
a spectral radius smaller than 1 to asymptotically eliminate the
impact of the initial condition [28], [39], [40]. The estimated
output from RC is obtained by

ô(n) = Wo ũ(n) (2)

where ô(n) ↘ CNo is the estimated output, No is the
output dimension, ũ(n) = [ỹ(n)T ,u(n)T ]T ↘ CNn+Ni

is the extended state, and Wo ↘ CNo↑(Nn+Ni) is the
learnable output weight matrix. After processing the whole
sequence, the extended state matrix Ũ ↘ C(Nn+Ni)↑(Lt+Lf )

and estimated output matrix Ô ↘ CNo↑(Lt+Lf ) can be
formed by Ũ ↭ [ũ(0), ũ(1), . . . , ũ(Lt + Lf ≃ 1)] and Ô ↭
[ô(0), ô(1), . . . , ô(Lt + Lf ≃ 1)], respectively.

C. Learning Algorithm

Suppose the target output is X ↭ [x(0),x(1), . . . ,x(Lt ≃
1)] ↘ CNo↑Lt . The objective function of learning RC is

min
lf↓Lf

min
Wo

||Ôlf ≃X||2
F
, (3)

where Ôlf ↭ Ô[:, lf : lf + Lt ≃ 1] ↘ CNo↑Lt is the truncated
estimated output by taking the columns of Ô from index lf
to lf + Lt ≃ 1, and lf is a given forget length in the forget
length set Lf with maximum length Lf . By substituting (2)
into (3), the loss function can be further written as

min
lf↓Lf

min
Wo

||Wo Ũlf ≃X||2
F
, (4)

where Ũlf ↭ Ũ [:, lf : lf + Lt ≃ 1] is the truncated extended
state matrix.

The objective is learned by alternatively learning the output
weights Wo and the forget length lf . Specifically, for a given
forget length lf , the optimal output weights are acquired by
the close-form least square (LS) solution

Ŵ
lf
o = X Ũ

†
lf

. (5)

The optimal forget length is determined by the length that
achieves the minimum loss after plugging in the Ŵ

lf
o , which

can be expressed as

l̂f = argmin
lf↓Lf

||Ŵ lf
o Ũlf ≃X||2

F
. (6)

D. Testing With 1D-RC
During the testing stage, the estimated output X̂test ↘

CNo↑Lt is given by

X̂test = Ŵ
l̂f
o Ũ

(test)

l̂f
, (7)

where Ŵ
l̂f
o is the learned output weight with the optimal

forget length l̂f , and Ũ
(test)

l̂f
= Ũ

(test)[:, l̂f : l̂f + Lt ≃ 1]
is the truncated extended state matrix at the test time using
the optimal forget length l̂f .

III. SYSTEM MODEL

The transmitter and receiver structures in the OTFS system
are shown in Fig. 3. The Q quadrature amplitude modulation
(Q-QAM) symbols from the modulation alphabet set A are
modulated in the DD domain, which forms the transmitted
signal X of size M ⇐N in the DD domain. M and N denote
the number of delay bins and Doppler bins, respectively.

A. OTFS Transmitter and Receiver
The transmitted signal X in the DD domain is converted

to the TF domain through inverse symplectic finite Fourier
transform (ISFFT) operation, which can be written as

Xtf = ISFFT(X) = FMXF
H

N
, (8)

where Xtf represent the TF domain signal. The TF domain
signal is then transformed to the time domain signal S ↘
CM↑N for transmission by the Heisenberg transform. The
transmitted signal can be expressed as

S = GtxF
H

M
Xtf = GtxXF

H

N
, (9)

where Gtx = diag[gtx(0), gtx(T/M), . . . , gtx((M ≃
1)T/M))] ↘ CM↑M is a diagonal matrix formed by the
samples from the transmit pulse shaping waveform gtx(t) with
duration T . When adopting the rectangular pulse shaping,
Gtx is an identity matrix with Gtx = IM . The vector form
can be written as s = vec(S) ↘ CMN↑1.

The received time domain signal r is converted back to the
TF domain Ytf through the Winger transform, which can be
formulated by

Ytf = FMGrxvec→1(r), (10)

where Grx = diag[grx(0), grx(T/M), . . . , grx((M ≃
1)T/M))] ↘ CM↑M is formed by the samples from the
received pulse-shaping waveform grx(t). The DD domain
received signal Y is obtained by applying the SFFT to the
Ytf , which is expressed as

Y = SFFT(Ytf ) = F
H

M
YtfFN . (11)

In this work, we consider the practical rectangular transmit and
received pulse shaping waveforms, in which case Gtx and Grx

are reduced to the identity matrix, i.e., Gtx = Grx = IM [41].
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Fig. 3. OTFS system diagram.

Fig. 4. OTFS system variants.

B. Channel
The channel response of the time-varying channel in the

DD domain can be represented by

h(ω, ε) =
P→1∑

i=0

hiϑ(ω ≃ ωi)ϑ(ε ≃ εi),

where hi, ωi, and εi represent the complex path gain, delay,
and Doppler shift of the i-th path; P is the number of
propagation paths. The normalized delay shift li and Doppler
shift ϖi are given by ωi = li

M!f
and εi = ωi

NT
, where li and ϖi

are not necessarily integers, and !f is the subcarrier spacing.
In the time domain, the received signal can be expressed as [3]

r(t) =
∫ ∫

h(ω, ε)s(t≃ ω)ej2εϑ(t→ϖ)dωdε + w(t),

where s(t) denotes the transmitted signal, and w(t) is the
additive Gaussian noise.

C. Variants of OTFS System
We consider two variants of the OTFS system: the

RCP-OTFS system and the CP-OTFS system. As shown in
Fig. 4, in the RCP-OTFS system, a single cyclic prefix (CP)
with a length larger than the maximum delay length is added to
the beginning of the OTFS subframe to avoid the interference
between two consecutive OTFS subframes. Alternatively, the
CP-OTFS system can be implemented as an overlay of the
OFDM system, where CP is added for each OFDM symbol
in the subframe, i.e., N CPs for one OTFS subframe. The
RCP-OTFS system has a higher spectral efficiency than the
CP-OTFS system as only one CP is adopted for the entire
subframe [41]. On the other hand, the CP-OTFS system is
more compatible with the existing OFDM system, since it
can be implemented by adding a pre-processing block and
a post-processing block to the OFDM system [9], [26].

The input-output relationships in the DD domain of both
systems are summarized below. For ease of discussion,
we only show the relationship with integer delay and integer
Doppler in (12) and (14). The relationships with fractional
delay and fractional Doppler and the derivation are provided
in (36) and (38) in the Appendix A. For simplicity, we omit
the noise term.

1) RCP-OTFS System: The input-output relationship in the
DD domain for the RCP-OTFS system after adding and
removing the CP is given as

Y [l, k] =
P→1∑

i=0

hiz
ki(↔l→li↗M )ϱli [l, k]X[→l ≃ li↑M , →k ≃ ki↑N ],

(12)

where Y [l, k] is the (l, k)-the element in the received
DD-domain signal Y with l = 0, 1, . . . ,M ≃ 1 and k =
0, 1, . . . , N ≃1; z is defined as z ↭ ej

2ω
NM ; li and ki represent

the integer delay and integer Doppler; the ϱli [l, k] denotes

ϱli [l, k] ↭
{

e→j
2ωk
N , if l < li

1, otherwise.
(13)

2) CP-OTFS System: The DD-domain input-output rela-
tionship in the CP-OTFS system after adding and removing
the CP is expressed as

Y [l, k] =
P→1∑

i=0

hiz̃
ki(Ncp+l→li)X[→l ≃ li↑M , →k ≃ ki↑N ], (14)

where z̃ ↭ e
j

2ω
N(M+Ncp) and Ncp is the CP length.

As shown in (12) and (14), the difference between the
relationship in the RCP-OTFS and the CP-OTFS mainly lies in
the phase terms: zki(↔l→li↗M ) and z̃ki(Ncp+l→li), respectively.
In addition, the relationship in the RCP-OTFS system has an
extra phase term ϱli [l, k] that is conditioned on the value
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Fig. 5. Pilot patterns. The green grids are filled with known pilot symbols.
The green grid with a square marker denotes the spike pilot. The cross markers
represent guard symbols. The blank region represents data symbol positions.

of l. In other words, the inter-symbol interference that is
not removed in the RCP-OTFS system is lumped into the
extra phase term in the DD domain for the detector to
handle [10]. While the analysis of phase differences is based
on the case with integer delay and integer Doppler, the same
observation also applies to the input and output relationship
with fractional delay and fractional Doppler, which are shown
in the Appendix A.

From relationships with integer delay and integer Doppler
in (12) and (14) and relationships with fractional delay and
fractional Doppler in (36) and (38), we can obtain a general
form of the input-output relationship in the DD domain.
Specifically, in general, the input-output relationship in the
DD domain of both systems can be written as

Y [l, k] =
M→1∑

l→=0

N→1∑

k→=0

Hl,k[l↘, k↘]X[→l ≃ l↘↑M , →k ≃ k↘↑N ], (15)

where Hl,k[l↘, k↘] is the effective DD-domain channel.
As shown in (15), the channel interaction with the transmitted
symbols in the DD domain is a 2D circular operation.

D. Problem Formulation
The symbol detection task in the OTFS system is to recover

the transmitted DD-domain symbol X in one OTFS subframe
from the received signal r. In this work, we consider a
practical setting, where the perfect CSI is not available.

To aid the detection of the unknown data symbols, the pilot
symbols, which are known at both the transmitter and receiver
sides, are inserted in each subframe. In this paper, we con-
sider two pilot structures for symbol detection approaches
in the OTFS system: the blockwise pilot pattern and the
spike pilot pattern, which are shown in Fig. 5. For learning-
based approaches in the OTFS system, the blockwise pilot
structure is adopted in the delay-Doppler domain, where pilot
symbols are placed in a block of the subframe. For model-
based schemes in the OTFS system that require knowledge
of the CSI, the spike pilot pattern is utilized for channel
estimation [42]. Specifically, a spike pilot is transmitted along
with guard symbols surrounding it. The guard symbols are
set to occupy the full Doppler axis following the pilot pattern
introduced in [42]. The spike pilot is placed in the middle of
the pilot region, as shown in Fig. 5(b). The pilot occupancy for

the spike pilot pattern includes both the spike pilot and guard
symbols. All the considered pilot patterns are set to have the
same pilot overhead.

Different pilot structures are adopted for the learning-based
approaches and model-based methods in the OTFS system.
The reason is that model-based approaches need to avoid
interference between pilot symbols and data symbols to have
an accurate channel estimation. In contrast, learning-based
approaches need to learn from cases when such interference
is present to prevent model mismatches during training and
testing. Furthermore, to avoid discrepancies between pilot and
data symbols that could lead to training and testing model
mismatches, pilot symbols are sampled randomly from the
modulation alphabet set rather than being set as a spike.
Therefore, the superimposed pilot pattern in [43], which
overlays a spike pilot onto data symbols, is not considered
for learning-based methods in this paper. More details about
the choice of pilot patterns for learning-based and model-based
approaches re provided in [26] and [36]. It is noteworthy that
other alternative interleaved and superimposed pilot patterns
have already been investigated in [26], which do not show
comparable performance to the blockwise pilot pattern for
the 1D-RC method. For a fair comparison with the 1D-RC
approach and paper conciseness, we mainly focus on the
blockwise pilot pattern.

Denote ! as the pilot position indication matrix with
1 indicating the pilot positions and 0 specifying the data
position. For the introduced learning-based approach, the input
to the NN is the received DD-domain signal Y , which is
obtained by transforming the time-domain signal r into the DD
domain. The training target is composed of the pilot symbols
modulated in the DD domain. Therefore, the training dataset
within one subframe can be written as

{Y ,Xtrain ↭ !↗X}.

Accordingly, the testing dataset can be obtained by

{Y ,Xtest ↭ !̄↗X},

where !̄ is the complement of !.

IV. INTRODUCED APPROACH

In this section, we introduce the 2D-RC approach for online
subframe-based symbol detection in the OTFS system. The
introduced 2D-RC retains the same simple training process
as RC, enabling it to perform online symbol detection with
limited training pilots on a subframe basis. Moreover, it is
uniquely designed to facilitate online symbol detection tai-
lored towards the OTFS system. Specifically, the DD-domain
channel works as a 2D circular operation over transmitted
symbols in the OTFS system as shown in (15). To equalize
this 2D circular channel effect, 2D-RC is designed to have
a 2D circular padding procedure and a 2D filtering structure.
By embedding the domain knowledge of the OTFS system,
2D-RC can work in the DD domain with only a single NN
for detection, as opposed to the 1D-RC approach [26] that
exploits multiple RCs to track the channel variations in the
time domain. It is noteworthy that the incorporated 2D circular
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TABLE I
NOTATIONS APPEARING IN 2D-RC

operation exists in the DD-domain input-output relationship in
general regardless of the exact channel model. Therefore, the
specific channel model does not change the design of the 2D-
RC algorithm. Notations are summarized in Tab. I.

A. Pre-Processing
The introduced 2D-RC conducts the detection process in

the DD domain. Therefore, the input is the received signal
Y ↘ CM↑N in the DD domain. Similar to 1D-RC, the pre-
processing procedures, including windowing and padding, are
also adopted before the processing of 2D-RC. The difference
is that the pre-processing steps for 2D-RC are conducted in a
2D way. Furthermore, based on the input-output relationship,
we add the phase compensation step for the RCP-OTFS
system.

1) Phase Compensation: As shown in (12), the input-output
relationship in the RCP-OTFS system has an extra phase
term that is conditioned on the delay index of the received
signal. The extra phase term may result in a training and
testing mismatch when adopting the block pilot pattern. The
phase change may not be captured during the training stage
when the block pilots are placed in the middle of the OTFS
subframe. Therefore, for the RCP-OTFS system, we add a
phase compensation step to roughly compensate for the phase
change in the received signal. Specifically, the received signal
after phase compensation can be written as

Yc[l, k] ↭
{

Y [l, k]ej
2ωk
N , if l < lc

Y [l, k], otherwise,
(16)

where Yc[l, k] and Y [l, k] are the (l, k)-th element in the
phase-compensated received signal Yc and the received signal
Y , respectively; l = 0, 1, . . . ,M ≃ 1 and k = 0, 1, . . . , N ≃
1; and lc is a tunable parameter. For the CP-OTFS sys-
tem, the phase compensation step is skipped and we have
Yc = Y .

2) 2D Windowing: We adopt a 2D sliding window with
size Mw⇐Nw to process the input, where Mw is the window
size along the delay dimension and Nw is the window size
along the Doppler dimension. For each Yc[l, k], the windowing
region is obtained by Yw[l, k] = Yc[l ≃ Mw + 1 : l, k ≃
Nw + 1 : k] ↘ CMw↑Nw . When the l < Mw ≃ 1 or k <
Nw ≃ 1, zeros are filled in the windowing region to maintain
the window size of Mw⇐Nw. The windowed input is formed
by yw[l, k] = vec(rev(Yw[l, k]T )) ↘ CNi , where rev(·) stands
for reserving the values in the matrix along both dimensions,
vec(·) represents vectoring the matrix by stacking along the
columns, and Ni = MwNw. By collecting all the yw[l, k],
we obtain an input tensor Yw ↘ CNi↑M↑N . Fig. 7 visualizes
the 2D windowing process.

3) 2D Circular Padding: As in 1D-RC, 2D-RC also needs
to learn the optimal forget length to eliminate the impact of
the initial state. Based on the padding process in 1D-RC,
we design a 2D circular padding process to facilitate the
learning process of the optimal forget length. Let Mf and
Nf be the maximum forget length along the delay and
Doppler dimension, respectively. The 2D padded input Ỹ ↘
CNi↑(M+Mf )↑(N+Nf ) is obtained by concatenating the Yw
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Fig. 6. 2D-RC Structure. For simplicity, the nonlinear function and the extended state are ignored here.

Fig. 7. The windowing process in 2D-RC.

along the second and third dimensions as follows:

Ỹ = cat2(cat3(Yw, Yw[:, :, 0 : Nf ≃ 1]),
cat3(Yw[:, 0 : Mf ≃ 1, :],Yw[:, 0 : Mf ≃ 1, 0 : Nf ≃ 1])).

Note that this padding process is different from the zero
padding process for 1D-RC in Sec. II-A. The circular padding
is employed in 2D-RC, where the values at the start are utilized
to pad at the end of the corresponding dimension. The reason
is that in the OTFS system, the received signal is acquired
through a 2D circular operation between the channel and the
input signal in the DD domain. The circular operation in
the input-output relationship inspires the utilization of the 2D
circular padding.

B. Structure of 2D-RC
Denote ỹ[m, n] ↘ CNi as the (m, n)-th element along the

second and third dimensions of the pre-processed input Ỹ,
where m = 0, 1, . . . ,M + Mf ≃ 1 and n = 0, 1, . . . , N +
Nf ≃ 1. We design the state transition equation for 2D-RC as

u[m, n] = f(Wi ỹ[m, n] + Wr u[m≃ 1, n]
+ Wd u[m≃ 1, n≃ 1] + Wc u[m, n≃ 1]), (17)

where u[m, n] ↘ CNn represent state vector for the (m, n)-th
input; Nn stands for the number of neurons; Wi ↘ CNn↑Ni

is the input weight matrix; Ni denote the input dimension;
Wr ↘ CNn↑Nn , Wc ↘ CNn↑Nn , and Wd ↘ CNn↑Nn denote
the reservoir weights along the row, column, and diagonal
directions, respectively; f(·) is the nonlinear activation func-
tion. The input weights and reservoir weights are all randomly
initialized by sampling from a uniform distribution. In line
with the 1D-RC approach, all reservoir weights are configured
to be sparse with spectral radii less than 1. The initial states
u[≃1, n], u[m,≃1], and u[≃1,≃1] are all initialized as zero
vectors. The output equation is formulated as

Ô[m, n] = Wo ũ[m, n], (18)

ũ[m, n] =
[
ỹ[m, n]
u[m, n]

]
, (19)

where ũ[m, n] ↘ CNn+Ni is the extended state formed by
concatenating the input and the state, Wo ↘ C1↑(Nn+Ni)

stands for the output weights. By collecting all the state
vectors u[m, n], the extended state vectors ũ[m, n], and the
estimated output Ô[m, n], we can obtain the state tensor
U ↘ CNn↑(M+Mf )↑(N+Nf ), the extended state tensor Ũ ↘
C(Nn+Ni)↑(M+Mf )↑(N+Nf ) and the estimated output matrix
Ô ↘ C(M+Mf )↑(N+Nf ). The structure is shown in Fig. 6.

C. Learning Algorithm
Like 1D-RC, only the output weights are learned during

training. The training loss for 2D-RC is given as

min
mf↓Lm,nf↓Ln

min
Wo

||!↗ Ômf ,nf ≃Xtrain||2F , (20)

where Ômf ,nf = Ô[mf : mf + M ≃ 1, nf : nf + N ≃ 1] ↘
CM↑N represents the truncated output, mf is a forget length
in the delay forget length set Lm with Mf as the maximum
delay forget length, and nf is a forget length in the Doppler
forget length set Ln with Nf as the maximum Doppler forget
length. By vectorizing the output and the target, the training
objective can be further written as

min
mf↓Lm,nf↓Ln

min
Wo

||vec(!↗ Ômf ,nf )≃ vec(Xtrain)||22. (21)
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Let Ũmf ,nf = Ũ[:, mf : mf + M ≃ 1, nf : nf + N ≃ 1] ↘
C(Nn+Ni)↑M↑N be the truncated extended state. The masked
truncated extended state tensor is denoted as Ūmf ,nf =
!↗2 Ũmf ,nf , where ↗2 represents conducting the Hadamard
product along the second and third dimensions. The masked
truncated extended state matrix Ūmf ,nf = vec2(Ūmf ,nf ) ↘
C(Nn+Ni)↑MN is formed by vectoring the last two dimensions
of Ūmf ,nf with vec2(·) denoting vectoring along the second
and third dimensions. Then by substituting (18) into (21), the
objective function becomes

min
mf↓Lm,nf↓Ln

min
Wo

||WoŪmf ,nf ≃ (vec(Xtrain))T ||22. (22)

Following the training strategy in 1D-RC, the forget length
and the output weights are learned alternatively. We first fix
the forget length mf and nf and obtain the trained output
weights by the LS solution

Ŵ
(mf ,nf )
o = (vec(Xtrain))T

Ū
†
mf ,nf

. (23)

Then the optimal forget lengths along the delay dimension
and Doppler dimension are learned by finding the length that
minimizes the loss after plugging in the Ŵ

(mf ,nf )
o , i.e.,

m̂f , n̂f = argmin
mf↓Lm,nf↓Ln

||Ŵ (mf ,nf )
o Ūmf ,nf ≃(vec(Xtrain))T ||22.

(24)

Instead of searching through all the possible delay and Doppler
forget length pairs, we first find the optimal Doppler forget
length and then find the optimal delay forget length to reduce
the training complexity.

D. Testing With 2D-RC
At the testing stage, the transmitted symbols x̂ ↘ C1↑MN

are estimated by

x̂ = Q(Ŵ (m̂f ,n̂f )
o Ũm̂f ,n̂f ), (25)

where Ŵ
(m̂f ,n̂f )
o is the trained output matrix when utilizing

the forget length m̂f and n̂f , Ũm̂f ,n̂f = vec2(Ũm̂f ,n̂f ) ↘
C(Nn+Ni)↑MN is obtained by vectoring the truncated
extended state tensor Ũm̂f ,n̂f with forget length m̂f and n̂f ,
and Q(·) is the quantization operation that maps the output
to the constellation points. The transmitted data symbols are
extracted with

X̂data = !̄↗ X̂, (26)

where X̂ = vec→1(x̂) ↘ CM↑N is the matrix formed by
filling the matrix column by column.

V. COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity
of 2D-RC and compare it with existing approaches for the
OTFS system. We focus on the computational complexity of
matrix multiplication and pseudo-inverse. The computational
cost for matrix addition is ignored here as they are negligible
compared to matrix multiplication and inverse. Note that the
complexity for the pseudo-inverse of a matrix with size M⇐N
(M < N ) is O(MN2) when implemented with the singular

value decomposition. For ease of discussion, we denote the
pilot overhead as ς = |!|

MN
, where |!| denotes the number

of ones within the pilot mask !. Note that guard symbols in
the spike pilot pattern are considered as pilot positions and
therefore counted in the pilot overhead.

The training complexity of RC consists of two parts: the
state transition and the output weights estimation. The state
transition in (17) has a total complexity of O(Nn(Ni +
3Nn)(M + Mf )(N + Nf )) ⇒ O(Nn(Ni + 3Nn)MN).
The output matrix estimation is obtained by computing the
pseudo-inverse of the extended state followed by the multi-
plication of the target and the inverse of the extended state,
as shown in (23). As Ni + Nn < ςMN in practice, the com-
plexity for calculating the pseudo-inverse of the extended state
in (23) is O((Nn +Ni)(ςMN)2) for the given forget lengths
along delay and Doppler dimensions. The computational com-
plexity for the matrix multiplication in (23) is O(ςMN(Ni +
Nn)). Therefore, the output weights estimation process in (23)
has a complexity of O((Ni +Nn)((ςMN)2 +ςMN)). When
considering the forget length searching process, the complexity
becomes O((Ni + Nn)((ςMN)2 + ςMN)(|Lm| + |Ln|)),
where the |Lm| and |Ln| denote the cardinality of the set
Lm and Ln, respectively. The total training complexity is
O(Nn(Ni+3Nn)MN+(Ni+Nn)((ςMN)2+ςMN)(|Lm|+
|Ln|)). During the testing stage, only the output estima-
tion step in (25) needs to be considered, as the states are
pre-computed at the training stage. Therefore, the total testing
complexity of the 2D-RC is O((Ni + Nn)MN).

For the 1D-RC approach in [26], multiple 1D-RCs are
adopted for detection, where each RC is utilized to learn
a local channel feature. When considering the windowing
and padding, the state transition processes for V number of
1D-RCs have a total complexity of O(Nn(Ni+Nn)(MN/V +
Lf )V ) ⇒ O(Nn(Ni + Nn)MN). For the output matrix
estimation process of each 1D-RC, we consider two cases:
(1) Ni + Nn ⇑ ςMN/V ; (2) Ni + Nn > ςMN/V . When
Ni + Nn ⇑ ςMN/V , the matrix pseudo inverse in (5) has
a complexity of O((Ni + Nn)(ςMN)2/V 2). The complexity
of the matrix multiplication in (5) is O((Ni + Nn)ςMN/V ).
Then the total computational complexity of the output matrix
estimation in (5) is O((Ni +Nn)((ςMN)2/V 2 +ςMN/V )).
When considering the forget length learning process and V
number of 1D-RCs, the complexity becomes O(|Lf |(Ni +
Nn)((ςMN)2/V + ςMN)), where |Lf | is the number of
forget length in the set Lf . Thus, the total training complexity
is O((Ni +Nn)(NnMN + |Lf |(ςMN)2/V + |Lf |ςMN)) in
the case of Ni + Nn ⇑ ςMN/V . Similarly, when V is large
enough to have Ni + Nn > ςMN/V , i.e., a large number
of 1D-RCs is adopted, we can obtain the total training com-
plexity as O((Ni + Nn)(NnMN + |Lf |(Ni + Nn)ςMNV +
|Lf |ςMN)), which is proportional to the number of RCs. The
total testing complexity is O((Nn + Ni)MN), as the internal
states of RC are all pre-computed at the training stage and
only the output estimation process is conducted.

The MPA [10], LSMR-based approach [16], and LMMSE
detector require channel knowledge for detection. As dis-
cussed in [26], the complexity of channel estimation with
the approach in [42] is O(ςMN). The testing complexity of

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on August 04,2025 at 17:41:06 UTC from IEEE Xplore.  Restrictions apply. 



17834 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 23, NO. 12, DECEMBER 2024

TABLE II
COMPUTATION COMPLEXITY

MPA is O(Niter|A|P̃MN), where Niter is the number of
iterations, |A| is the size of the modulation alphabet set, and
P̃ is the total number of estimated taps including the number
of estimated virtual taps due to the effect of fractional delay
and fractional Doppler. The LSMR-based method in [16] has
a testing complexity of O(IKP̃MN), where I denotes the
number of iterations for LSMR and K is the number of itera-
tions for interference cancellation. The direct implementation
of the LMMSE approach has a computational complexity in
the order of O(M3N3) [8]. In [9], the complexity of the
LMMSE detector can be reduced to O(MNP̃ logN).

The computational complexities of different detection
schemes are summarized in Tab. II. While 2D-RC and 1D-RC
may be set with different parameters depending on the sim-
ulation performance, the training and testing complexities of
these two approaches are in the same order of magnitude.
Furthermore, when Ni +Nn < P̃Niter|A|, Ni +Nn < P̃IK,
and Ni +Nn < P̃ logN , RC-based approaches can have lower
testing computational costs than MPA, LSMR-based approach,
and low-complexity LMMSE, respectively.

VI. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of 2D-RC
for symbol detection in the OTFS system. Unless otherwise
specified, we consider the uncoded OTFS system. We adopt
N = 14 following the 3GPP 5G NR standard [44]. The
number of subcarriers is set as M = 1024. The carrier
frequency is 4 GHz and subcarrier spacing is 15 KHz. The
3GPP 5G NR clustered delay line (CDL) channel with delay
profile “CDL-C” [45] is considered. The delay spread is
10 ns. Unless otherwise specified, the user velocity is set as
150 km/h. As a practical channel model, the delay and Doppler
shifts of the CDL channel are fractional after normalization.
The pilot overhead is 4.69%, which is set to satisfy the pilot
overhead requirement specified in [44] and [46]. With the pilot
overhead, the number of delay grids occupied by pilot symbols
for both the blockwise pilot pattern and the spike pilot pattern
is 48. All the compared approaches adopt the same training
overhead for a fair comparison.

In Fig. 8 and Fig. 9, we investigate how the number of neu-
rons and the window size affect the training normalized mean
square error (NMSE) and testing NMSE of 2D-RC. As shown
in Fig. 8, the training NMSE exhibits a decreasing trend with
the increase of both the number of neurons and the window
size. This observation can be attributed to the fact that as the
number of neurons increases, the 2D-RC model is capable

Fig. 8. Training NMSE with different numbers of neurons and window sizes.

Fig. 9. Testing NMSE with different numbers of neurons and window sizes.

of mapping the input to a higher-dimensional state space,
consequently expanding the model capacity. Furthermore, the
windowing operation employed on the input can be interpreted
as incorporating multiple skip connections within the neural
network architecture, as discussed in [26]. The presence of
skip connections behaves as multiple ensembles of NN mod-
els, further increasing the model capacity [48]. The increased
model capacity enables the 2D-RC to capture more complex
patterns from the input data, leading to a lower training NMSE.
However, due to overfitting, the testing NMSE increases when
the model capacity is too large, as shown in Fig. 9. Therefore,
there is a trade-off between the number of neurons and the
window size. Based on the above analysis and the simulation,
the parameters of 2D-RC are set as Nn = 6, Mw = 4,
Nw = 14, and lc = 7. The delay forget length and Doppler
forget length are searched in the range of 7 to 8 and the range
of 13 to 14, respectively. The spectral radii of all the reservoir
weights are configured as 0.9 and the sparsities are set as 0.6.
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The parameters of 2D-RC are empirically determined through
simulations. The nonlinear activation function is selected as
the hyperbolic tangent function. The quantization operation is
set as the nearest neighbor mapping.

The following schemes are compared in this paper.

• 1D-RC: The time-domain 1D-RC approach introduced
in [26], where multiple RCs are required to track the
channel changes. The parameters of the 1D-RC approach
are set as Nn = 12, Nw = 10, and V = 7, where
V denotes the number of 1D-RCs. The forget length is
searched in the range from 0 to 22 with a step size of 2.

• MPA-Estimated-CSI: The MPA introduced in [10]. The
number of iterations is 30 and the damping factor is set
as 0.6. The estimated CSI is obtained by the channel
estimation approach in [42].

• LSMR-Estimated-CSI: The iterative LSMR-based
method [16] using estimated CSI in [42]. The number
of iterations for interference cancellation is set as 5 and
10 for QPSK and 16 QAM, respectively. The number of
iterations for LSMR is 15 for both modulation schemes.

• LMMSE-Estimated-CSI: The LMMSE detector in the
OTFS system, which is implemented in the time domain
with the block-wise channel inverse to reduce the com-
putational complexity [49]. The CSI is estimated in the
DD domain with the approach in [42].

• LMMSE-OFDM-Estimated-CSI: The LMMSE equaliza-
tion in the OFDM system with the LMMSE channel
estimation in the TF domain [47]. More details about the
adopted pilot pattern in the OFDM system are provided
in Appendix B.

For the blockwise pilot pattern, pilot symbols are randomly
sampled from the modulation alphabet set. For the spike pilot
pattern with guard symbols, the power of the spike pilot is
set to ensure that the OTFS subframe with the spike pilot pat-
tern has approximately the same peak-to-average power ratio
(PAPR) as utilizing the blockwise pilot pattern. The reason is
that a high PAPR may compel the power amplifier (PA) to
operate in the non-linear region, resulting in signal distortion
and spectral spreading, as discussed in [50]. Therefore, we set
the power of the spike pilot by constraining the PAPR. This
setting is equivalent to transmitting the spike pilot with a pilot
power of around 20 dBW for QPSK and 22 dBW for 16
QAM. Depending on the tested signal-to-noise ratio (SNR) and
modulation order, the received pilot SNR ranges from around
20 dB to 47 dB, which covers the commonly considered pilot
SNRs in existing works, e.g., [12], [26], and [51].

In Fig. 10(a) and Fig. 10(b), we show the bit error rate
(BER) performance of different approaches in the RCP-OTFS
system under the QPSK and 16 QAM modulations, respec-
tively. Compared with the existing learning-based 1D-RC
method, 2D-RC is demonstrated to have better performance
under both the QPSK and 16 QAM modulations, especially
in the high SNR regime. Note that 7 RCs are utilized in
the 1D-RC approach, while only a single NN is exploited
for 2D-RC. The reason is that the 1D-RC method directly
adopts the existing RC architecture in the time domain and
does not leverage domain knowledge of the OTFS system

for its design. When operating in the time domain, multiple
RCs are required to track the changes in the time-varying
channel. Instead, 2D-RC incorporates the 2D circular structure
in the DD-domain input-output relationship into its design.
By incorporating structural knowledge, even with a single NN,
2D-RC is more effective than the 1D-RC method that adopts
multiple RCs. The 2D-RC also outperforms compared model-
based approaches, i.e., LMMSE, MPA, and the LSMR-based
approach, when employing the estimated channel. Different
from the model-based approaches that rely on the knowledge
of CSI, the introduced learning-based 2D-RC approach does
not require channel knowledge. Therefore, the performance of
2D-RC is not affected by the accuracy of channel estimates
and can be more easily adopted in practical scenarios when
it is hard to obtain an accurate CSI. Furthermore, while a
reduced CP overhead is adopted in the RCP-OTFS system, all
the considered OTFS-based detectors in the RCP-OTFS system
are still shown to perform better than the LMMSE approach
in the OFDM system in mid to low SNR regimes. We further
evaluate the performance of compared approaches under both
the QPSK and 16 QAM modulation in the CP-OTFS system.
As illustrated in Fig. 10(c) and Fig. 10(d), 2D-RC continues
to show an outstanding performance gain over the 1D-RC
method and model-based approaches with estimated CSI,
which demonstrates the generalization ability of 2D-RC in
various scenarios.

In Fig. 11, we provide the performance comparison of the
2D-RC and 1D-RC approaches under different user mobility
in the CP-OTFS system with QPSK modulation. As shown
in the figure, the 2D-RC approach consistently exhibits a
significant performance gain over the 1D-RC method across
various velocities, especially in the high SNR regime. The
reason is that the 1D-RC scheme operates in the time domain,
where the channel undergoes more substantial changes with
the increase of user mobility. Consequently, as the velocity
increases, the disparity between the channel in the pilot region
and the channel in the data region becomes more significant.
The mismatch between the training and testing leads to infe-
rior performance of the 1D-RC in higher mobility scenarios.
On the other hand, the 2D-RC incorporates the structural
knowledge of the OTFS system into its design and conducts
detection in the DD domain. The increase in mobility causes
more severe inter-Doppler interference in the DD domain
due to the fractional Doppler effect, resulting in performance
degradation of the 2D-RC. However, the pilot symbols still
experience similar channel impairments as the data symbols
when the user speed changes. Due to the reduced training
and testing discrepancies, the 2D-RC method demonstrates
larger performance gains over the 1D-RC approach in higher
mobility cases.

We also perform the simulation when the low-density parity-
check (LDPC) coding is adopted. In 3GPP 5G NR [52], the
code rate can range from 0.0762 to 0.9258. In the simu-
lation, the code rate is set as 0.3125. Fig. 12 presents the
block error rate (BLER) of different approaches in the coded
CP-OTFS system with QPSK modulation. As indicated in the
figure, when LDPC coding is exploited, our 2D-RC approach
continues to outperform the compared detectors. Particularly,
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Fig. 10. BER comparison in the RCP-OTFS system and the CP-OTFS system under QPSK and 16 QAM modulations. For model-based methods in the OTFS
system (MPA, LSMR-based method, and LMMSE detector), CSI is obtained by the channel estimation approach in [42]. The performance of the LMMSE
detector in the OFDM system (denoted as “LMMSE-OFDM”) is provided as a baseline. The CSI in the OFDM system is estimated by the LMMSE channel
estimation method in the TF domain [47].

Fig. 11. BER comparison of 1D-RC and 2D-RC under different velocities
in the CP-OTFS system under QPSK.

to achieve a target BLER of 10% specified by the 3GPP 5G
NR [52], 2D-RC can achieve around 2 dB to 3 dB gain
over conventional model-based approaches using estimated

Fig. 12. BLER comparison of different detectors in the CP-OTFS system
with QPSK modulation and LDPC coding.

CSI. The results further demonstrate the effectiveness of the
2D-RC approach when channel coding is utilized.

In Fig. 13, we delve deeper into the BER performance
comparison between 2D-RC and conventional model-based
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Fig. 13. BER comparison between 2D-RC and conventional model-based
methods under different channel estimation accuracies in the CP-OTFS system
under 16 QAM. “Estimated-CSI” denotes CSI estimated by the method
in [42]. “Estimated-BEM-CSI” represents CSI initially estimated by the same
method, followed by GCE-BEM interpolation discussed in [53].

methods, considering the impact of channel estimation accu-
racies in the CP-OTFS system under 16 QAM modulation.
Specifically, this comparison presents the performance of
model-based methods, including MPA, LMMSE detector,
and LSMR-based scheme, each employing two different
CSI estimation methods. “Estimated-CSI” denotes the CSI
acquired by the approach in [42], while “Estimated-BEM-
CSI” indicates the CSI that is initially estimated by the same
approach and then interpolated by the generalized complex
exponential basis expansion model (GCE-BEM) as discussed
in [53]. The oversampling factor is chosen as 2 and the
number of basis functions is set as 4 based on the parameter
selection discussion in [53]. Fig. 13 illustrates that improv-
ing channel estimation accuracy through GCE-BEM channel
interpolation enhances the BER performance of conventional
model-based methods. The results highlight that the efficacy
of these model-based methods highly depends on the chan-
nel estimation quality. While more precise channel estimates
can be obtained through channel interpolation, there is an
accompanying increase in computational complexity [53]. Fur-
thermore, the uncertainty of channel estimation errors presents
a challenge in reliably gauging the practical performance of
model-based methods. On the other hand, 2D-RC continues to
outperform these model-based approaches. As 2D-RC does not
leverage any knowledge of CSI, it maintains performance con-
sistency and computational efficiency regardless of the utilized
channel estimation technique. This characteristic positions
2D-RC as a more feasible option for practical deployment,
especially in scenarios where accurate CSI is challenging to
obtain.

Fig. 14 shows the total number of complex multiplica-
tions for one OTFS subframe as a function of different
subframe sizes under 16 QAM modulation. It is notewor-
thy that the number of complex multiplications for one
OTFS subframe includes both the training\channel estimation
and the testing\detection for one subframe. For model-based
approaches such as MPA and LSMR, the computational com-
plexity depends on the number of estimated paths P̃ , which
includes the number of virtual taps due to the fractional delay
and fractional Doppler. In the evaluation, P̃ is set as the

Fig. 14. The number of complex multiplications versus OTFS block sizes
in the CP-OTFS system under 16 QAM.

maximum possible number of estimated paths. Specifically,
the maximum possible number of estimated paths is calculated
as ςMN/2 when utilizing the channel estimation approach
in [42], where ς is the pilot overhead. It can be observed from
the figure that the 2D-RC algorithm has lower computational
complexity than the model-based MPA and LSMR methods,
even when the number of complex multiplications for training
is considered in this comparison. The low computational
complexity includes both training and testing differs 2D-RC
from other offline learning methods that rely on a long training
time. While 2D-RC is shown to have higher computational
complexity than the 1D-RC method, it can offer a much better
performance than the 1D-RC scheme.

VII. CONCLUSION

In this paper, we introduce a learning-based 2D-RC
approach for the symbol detection task in the OTFS system.
The introduced 2D-RC approach enjoys the same advantage
as the previous RC-based approach, which can conduct online
subframe-based symbol detection with a limited amount of
training data. The difference is that, unlike the previous
RC-based approach that adopts the existing RC structure in
the time domain, the introduced 2D-RC scheme is designed
to embed the 2D circular channel interaction in the DD
domain into its architecture. By incorporating the domain
knowledge of the OTFS system, the 2D-RC approach with
a single NN is shown to have significant performance gains
over the previous work with multiple RCs in various scenarios.
Furthermore, compared with the model-based approaches, the
2D-RC does not require any channel knowledge and has
lower computational complexity. The results also demonstrate
that the 2D-RC outperforms the LMMSE, the MPA, and the
LSMR-based method with the estimated CSI across different
OTFS system variants and different modulation orders.

APPENDIX A
INPUT-OUTPUT RELATIONSHIP WITH FRACTIONAL DELAY

AND FRACTIONAL DOPPLER

The vectorized form of the received signal in the DD domain
with rectangular pulse shaping can be represented by [41]

y = (FN ⇓ IM )H(FH

N
⇓ IM )x, (27)
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where y = vec(Y) and x = vec(X) are the vectorized
received and transmitted signal in the DD domain, and H ↘
CMN↑MN is the time-domain channel matrix.

For the RCP-OTFS system, the time-domain channel matrix
can be expressed by H =

∑
P→1
i=0 hi”li#ωi , with ”li ↘

CMN↑MN models the delay effect of the i-th path, and
#ωi ↘ CMN↑MN models the Doppler shift effect of the
i-th path. Matrices ”li and #ωi are defined as ”li ↭
FMNDMN (li)FH

MN
and #ωi ↭ DMN (≃ϖi), where the

DMN (x) ↘ CMN↑MN is a diagonal matrix with the (r, c)-th
element {DMN (x)}r,c = z→xrϑr,c; the ϑr,c is the Dirac delta
function with ϑr,c = 1 for r = c and ϑr,c = 0 otherwise.
Define the OTFS modulation matrix as O ↭ FN ⇓ IM ↘
CMN↑MN . Then (27) can be written as

y = OHOHx =
P→1∑

i=0

hi O”liO
H

︸ ︷︷ ︸
↭Hli

O#ωiO
H

︸ ︷︷ ︸
↭Hεi

x, (28)

where the delay matrix factor for a single path can be further
written as Hli = OFH

MN
DMN (li)FMNOH . For ease of

discussion, we denote vi ↭ Hωix and yi ↭ Hlivi.
We start by finding an analytical expression for the (r, c)-th

element of the delay matrix factor Hli :

{Hli}r,c

=
MN→1∑

t=0

{OFH

MN
}r,t{DMN (li)}t,t{FMNOH}t,c

=
MN→1∑

t=0

{FMNOH}≃
t,r

{DMN (li)}t,t{FMNOH}t,c

=
1
M

MN→1∑

t=0

zt↔r↗M→tli→t↔c↗M ϑ↔t↗N ,⇐ c
M ⇒ϑ↔t↗N ,⇐ r

M ⇒. (29)

Let t = mN + n where m = ↓ t

N
↔ and n = →t↑N , then

{Hli}r,c

=
1
M

M→1∑

m=0

N→1∑

n=0

z(mN+n)↔r↗M→(mN+n)li

⇐ z→(mN+n)↔c↗M ϑn,⇐ c
M ⇒ϑn,⇐ r

M ⇒

=
1
M

M→1∑

m=0

z(mN+⇐ c
M ⇒)↔r↗M→(mN+⇐ c

M ⇒)li→(mN+⇐ c
M ⇒)↔c↗M

⇐ ϑ⇐ c
M ⇒,⇐ r

M ⇒

= z⇐
c

M ⇒(↔r↗M→↔c↗M→li) · 1
M

M→1∑

m=0

zm(↔r↗M→↔c↗M→li)Nϑ⇐ c
M ⇒,⇐ r

M ⇒

= z⇐
c

M ⇒(↔r↗M→↔c↗M→li)SM (→r↑M ≃ →c↑M ≃ li)ϑ⇐ c
M ⇒,⇐ r

M ⇒,

(30)

where SM (x) ↭ 1
M

ejε
M↑1

M x sin εx

sin εx/M
. Substituting r = kM+l

and c = k↘M + l↘ in (30), we have

{Hli}kM+l,k→M+l→

= zk(l→l
→→li)SM (l ≃ l↘ ≃ li)ϑk,k→

= zk(l→l
→→li)

M→1∑

d=0

ϑ↔l→l→↗M ,dSM (d≃ li)ϑk,k→

=
M→1∑

d=0

ϱd[l, k]zk(↔l→l
→↗M→li)ϑ↔l→l→↗M ,dSM (d≃ li)ϑk,k→

=
M→1∑

d=0

ϱd[l, k]zk(d→li)SM (d≃ li)ϑ↔l→l→↗M ,dϑk,k→ . (31)

Denote Vi[l, k] as the (l, k)-th element in Vi = vec→1(vi)
and Yi[l, k] as the (l, k)-th element in Yi = vec→1(yi). The
yi = Hlivi is equivalent to

Yi[l, k]=
M→1∑

l→=0

M→1∑

d=0

ϱd[l, k]zk(d→li)SM (d≃ li)ϑ↔l→l→↗M ,dVi[l↘, k↘]

=
M→1∑

d=0

ϱd[l, k]zk(d→li)SM (d≃ li)Vi[→l ≃ d↑M , k↘].

(32)

Similarly, we find an analytical expression for the (r, c)-th
element of the Doppler matrix factor Hωi :

{Hωi}r,c

=
1
N

MN→1∑

t=0

zrωi→⇐ r
M ⇒⇐ t

M ⇒M+⇐ t
M ⇒⇐ c

M ⇒Mϑ↔r↗M ,↔t↗M
ϑ↔t↗M ,↔c↗M

.

(33)

Let t = nM + m where m = →t↑M and n = ↓ t

M
↔, then

{Hωi}r,c

=
1
N

N→1∑

n=0

M→1∑

m=0

z(nM+m)ωi→n⇐ r
M ⇒M+n⇐ c

M ⇒Mϑ↔r↗M ,mϑm,↔c↗M

= z↔c↗M ωiSN (↓ c

M
↔ ≃ ↓ r

M
↔+ ϖi)ϑ↔r↗M ,↔c↗M

. (34)

Denote X[l, k] as the (l, k)-th element in X = vec→1(x).
Then vi = Hωix is equivalent to

Vi[l, k] =
N→1∑

k→=0

zlωiSN (ϖi ≃ k↘)X[l, →k ≃ k↘↑N ]. (35)

Substituting (32) and (35) into (28) and replacing the
variable d with l↘, we get the final input-output relationship

Y [l, k] =
M→1∑

l→=0

N→1∑

k→=0

P→1∑

i=0

hiϱl→ [l, k]zk(l→→li)+ωi(↔l→l
→↗M )

⇐ SM (l↘ ≃ li)SN (ϖi ≃ k↘)X[→l ≃ l↘↑M , →k ≃ k↘↑N ]

=
M→1∑

l→=0

N→1∑

k→=0

Hl,k[l↘, k↘]X[→l ≃ l↘↑M , →k ≃ k↘↑N ], (36)

where

Hl,k[l↘, k↘] =
P→1∑

i=0

hiϱl→ [l, k]zk(l→→li)+ωi(↔l→l
→↗M )

⇐ SM (l↘ ≃ li)SN (ϖi ≃ k↘). (37)

When li and ϖi are integers, the (36) simplifies to (12).
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Fig. 15. Pilot pattern in the OFDM system. The green grid boxes are filled
with known pilot symbols. The blank region represents data symbol positions.

For the CP-OTFS system, based on the derivation in [54],
the input-output relationship with fractional delay and frac-
tional Doppler can be written as

Y [l, k] =
M→1∑

l→=0

N→1∑

k→=0

P→1∑

i=0

hiz̃
ωi(Ncp+l→li)SM (l ≃ l↘ ≃ li)

⇐ SN (k↘ ≃ k + ϖi)X[l↘, k↘],

=
M→1∑

l→=0

N→1∑

k→=0

P→1∑

i=0

hiz̃
ωi(Ncp+l→li)SM (l↘ ≃ li)

⇐ SN (ϖi ≃ k↘)X[→l ≃ l↘↑M , →k ≃ k↘↑N ]

=
M→1∑

l→=0

N→1∑

k→=0

Hl[l↘, k↘]X[→l ≃ l↘↑M , →k ≃ k↘↑N ]. (38)

where

Hl[l↘, k↘] =
P→1∑

i=0

hiz̃
ωi(Ncp+l→li)SM (l↘ ≃ li)SN (ϖi ≃ k↘).

(39)

When li and ϖi are integers, the (38) can be written as (14).

APPENDIX B
PILOT PATTERN IN THE OFDM SYSTEM

In the OFDM system, the scattered stairwise pilot pattern in
the TF domain is adopted for the LMMSE channel estimation,
which is shown in Fig. 15. Specifically, pilots are placed in
a scattered way with a spacing of 2 along both the time and
frequency axis to ensure a more accurate channel estimation.
The channel is first estimated at pilot locations and then
interpolated over data symbol locations with the channel
estimation method in [47]. Note that the pilot overhead of
this pilot pattern is set to be the same as the pilot patterns
utilized in the OTFS system.
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