
Nature Cities

nature cities

https://doi.org/10.1038/s44284-024-00102-zArticle

Widespread global exacerbation of extreme 
drought induced by urbanization

Shuzhe Huang1, Siqi Wang    2, Yuan Gan    1, Chao Wang    1  , 
Daniel E. Horton    3, Chuxuan Li    3, Xiang Zhang    2, Dev Niyogi4, Jun Xia5 & 
Nengcheng Chen    1,2,6 

Urbanization exerts considerable impact on ecological, environmental and 
meteorological processes and systems. However, the effects of urbanization 
on local drought remain under-explored. Here we characterize the effects 
of urbanization on drought across the world’s cities using global weather 
station observations. We find that drought severity has increased at ~36% of 
global sites, while the extreme (less than a fifth) Standardized Precipitation 
Evapotranspiration Index has increased at ~43% of the city sites globally. We 
investigate the primary driving mechanisms behind drought exacerbation 
using physics-based weather research and forecasting model simulations. 
We find that urbanization induced warmer and drier urban environments, 
which has suppressed light rainfall and aggravated extreme local drought 
conditions. Furthermore, mid-twenty-first century CMIP6 projections 
indicate that nearly 57 and 70% of urban regions would consistently suffer 
exacerbated drought severity and extreme Standardized Precipitation 
Evapotranspiration Index due to urban expansion. Our findings highlight 
cities causing rainfall extremes and call for heightened attention to urban 
drought preparedness in the face of continued urbanization, population 
growth and climate change.

Drought is one of the Earth system’s most profound and impactful 
extremes and has brought far-reaching consequences and cascading 
impacts across the globe, including ecological imbalances, water cycle 
degradation, food insecurity, economic losses and societal upheaval1–3. 
Traditionally, drought can be classified into four types, including mete-
orological drought (precipitation and atmospheric moisture deficit), 
agricultural drought (rainfall and soil moisture deficit), hydrological 
drought (surface runoff/groundwater and streamflow deficit) and 
socio-economic drought (deficit in water leading to societal impacts). In 
the context of ongoing global warming, aridity—characterized by inad-
equate atmospheric moisture supply and escalating water demand—has 

exhibited an increasing trend4,5. Recent studies have provided robust 
evidence linking the increased frequency and severity of drought to 
anthropogenic activities, with a particular emphasis on greenhouse 
gas emissions over the past half century6,7. However, as one of the most 
representative and apparent human activities, urbanization and its 
implications on local drought have also raised considerable concerns 
due to the growing population in cities in the Anthropocene epoch8–10. 
While some reports mention the potential association between urbani-
zation and drought development11,12, responses of local drought (espe-
cially meteorological drought) to urbanization still lack quantitative 
evidence and mechanistic understanding, particularly at global scales.
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we identify the major associations between urbanization and local 
drought. To further elucidate how drought responds to urbanization, 
we apply the weather research and forecasting (WRF) high-resolution 
regional atmospheric model to simulate local drought under highly 
urbanized scenarios (URB) and non-urbanized scenarios (NOURB) in six 
representative cities spread across each continent. Subsequently, we 
delve into the potential mechanisms underlying the effects of urbani-
zation. Thus, our study is guided by three primary research questions:

	(1)	 What associations exist between urbanization and local drought 
development across the globe?

	(2)	How does urbanization lead to local drought modification in 
cities?

	(3)	Will the detected urbanization effects persist in the future?

By addressing these questions, our findings enhance our under-
standing of the role of urbanization in shaping drought patterns—a 
critical step towards sustainable and informed urban development.

Results
Historical changes in local drought due to urbanization
To identify the potential associations between urbanization and local 
drought, we quantify the effects of urbanization on local drought 
using both in situ (station-scale) and ERA5-Land reanalysis (city-
scale) data. We characterize local drought using six drought met-
rics, including four annual sums of SPEI with varying intensity levels 
(extreme (<5th percentile), heavy (5th–10th percentile), moderate 
(10th–20th percentile) and light (20th–30th percentile) SPEI) and 
two drought characteristics (duration and severity)32. Here, drought 
duration (length of a drought event) and drought severity (cumula-
tive negative SPEI values during a drought event) are extracted using 
run theory on SPEI (flowchart in Supplementary Fig. 3). To minimize 
the impacts of potential regional confounding factors and further 
quantify the effects of urbanization on the six drought metrics, we 
perform urban–rural analyses at two scales. For station-scale analyses, 
we pair urban in situ stations with rural stations within a 100 km buffer 
(Methods). For city-scale analyses, we define urban regions using the 
urban boundaries provided by the Global Urban Boundary (GUB) 
dataset33. Corresponding rural regions are defined as the outward 
buffers of the urban boundaries using approximately the same land 
areas as contained within the urban boundaries34. To ultimately assess  
the effects of urbanization on local drought, for urban–rural sta-
tion- and city-scale pairs, we compute the difference of each paired 
urban and rural drought metric trend: when negative and signifi-
cant (P < 0.050), we describe urbanization as exacerbating drought, 
when positive and significant (P < 0.050), urbanization has mitigated 
drought and when statistically indistinguishable, we indicate no dis-
cernible relationship.

We calculate the proportions of stations and cities with each type 
of urbanization effect for six drought metrics (Fig. 1a,b). We find nota-
ble discrepancies in the effects of urbanization on different drought 
intensity levels of SPEI. At the station scale, we find that urbanization 
exerts a limited impact on light and moderate drought (SPEI), with 
the percentages of positively and negatively affected stations lower 
than 10%. However, a different distribution emerges for heavy SPEI, 
where urbanization shows a negative relationship with heavy SPEI at 
15.94% of stations (nearly three times the number of positively affected 
stations). Such different effects of urbanization are most pronounced 
for extreme SPEI and drought severity. Specifically, urbanization is 
found to significantly worsen extreme SPEI and drought severity for 
around 43 and 36% of the stations worldwide, which are about five 
and four times the number of positively affected stations, respec-
tively. We also examine the sensitivity of the quantitative results to the 
buffer distance during urban–rural pairing (Supplementary Fig. 4).  
Results obtained using 50 and 150 km buffer distances align with 
the 100 km-based results in Fig. 1a. City-scale results share similar 

Extensive efforts have been dedicated to investigating urbani-
zation-induced alterations to local water cycles and meteorology13,14. 
Based on the Clausius–Clapeyron relation, the water vapor holding 
capacity of the atmosphere increases ~6–7% for every 1 °C increase in 
temperature. This theoretical relationship partly explains the intensi-
fied extreme rainfall and the increased frequency of flooding events 
in a warming climate15. In cities, it is widely recognized that urbaniza-
tion transforms urban landscapes into heat-absorbing surfaces (for 
example, buildings, streets), creating locally warmer conditions, also 
known as the urban heat island (UHI)16,17. As warming drives variations 
in rainfall, enhanced heavy rainfall in urban regions has been widely 
observed and investigated18–20. Specifically, the UHI-thermal perturba-
tion can cause destabilization of the boundary layer and result in down-
stream translation of the UHI circulation21. In addition, the UHI may also 
generate localized convection with the enhanced surface roughness 
and further intensify extreme rainfall22,23. Conversely, urbanization is 
also likely to cause changes in surface atmospheric humidity between 
urban and rural areas, compounded by the removal of vegetation, 
which reduces urban evapotranspiration16,24.

In light of these dynamics, we propose that urbanization may 
also exert substantial influence on the development of local drought 
conditions. However, current knowledge concerning the attribution 
of drought development mainly focuses on large-scale forcings at 
regional to global scales, while the understanding of the impact of 
urbanization on local drought remains limited. Although urban regions 
are local in scale and only occupy ~3% of Earth’s surface, nearly ~50% 
of the total population lives in cities, a number projected to reach 68% 
by 2050 (ref. 25). The dense concentration of population and frequent 
anthropogenic alterations in urban environments has made profound 
impacts on the water cycle and ecosystems at local to global scales10,14. 
For instance, ref. 26 delved into the causes of atmospheric dryness over 
25 large urban agglomerations in the world and highlighted the role of 
urbanization in modifying local humidity through evapotranspiration. 
Reference 27 also highlighted the significance of considering urban 
development in projecting compound climate extremes27. Neverthe-
less, there is still a lack of global-scale quantitative understanding 
regarding whether and to what extent urbanization exacerbates or 
mitigates local drought.

Water resources in urban areas are generally controlled by a mix 
of local climate and hydrologic systems28. Specifically, local climate 
systems determine the water balance from precipitation, evapotran-
spiration and infiltration, while hydrologic systems control water avail-
ability by accounting for the transfers of surface and subsurface water29. 
The occurrence of urban drought disrupts the balance between local 
water supply and demand. For instance, decreased precipitation may 
reduce the inflows to surface water reservoirs, causing groundwater 
compensation, resulting in groundwater declines. Consequently, cities 
must adapt their water management strategies to deal with changing 
conditions. Indeed, many world cities such as Cape Town and São Paulo 
have faced or are facing a countdown to ‘Day Zero’, when cities can no 
longer afford to supply water to their residents30. Reference 31 also 
pointed out that future drought is likely to aggravate urban inequali-
ties, public health and related water crises. Given these motivations, 
investigating the effects and driving mechanisms of urbanization on 
the extent and distribution of city-level drought is an essential step 
towards sustainable urban development and planning.

Here, we provide a quantitative analysis of the effects of urbani-
zation on local drought development based on local observations 
and model simulations. We explore urbanization-induced changes 
in different drought characteristics (that is, duration, severity) and 
intensity levels (that is, extreme, heavy, moderate and light)32. The 
associations between urbanization and various drought metrics are 
quantified through the lens of trend differences between urban–rural 
pairs. By examining the spatial and temporal distributions of urbani-
zation effects on each drought metric for global urban–rural pairs, 
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patterns with station-scale results, where roughly 39.1 and 33.7% of 
cities demonstrate urbanization-induced exacerbations on extreme 
SPEI and drought severity (Fig. 1b).

To gain deeper insights into the distinct urbanization effects on 
extreme SPEI and drought severity, we conduct a more exhaustive 
analysis on their spatial distributions (Fig. 1c–f). In general, stations 
with aggravated extreme SPEI and drought severity due to urbanization 
are distributed widely across the globe, particularly concentrated in the 
western United States and eastern China. The city-scale distributions 
(Fig. 1d,f) provide more detailed results in South America, Africa and 
central Asia, where limited in situ stations are available. The results 
show that the negative urbanization effects are also notable in southern 
South America, southern Africa and India. Among four climate zones, 
the tropical region exhibits the most pronounced negative urbaniza-
tion effects on extreme SPEI and drought severity, followed by arid 

and temperate climate areas (Fig. 1g). By continents, the urbanization 
effects are more pronounced in Asia, North America and Africa (Sup-
plementary Fig. 5). To analyse the potential influencing factors of the 
effects, we quantify the effects of urbanization on several drought-
related factors, including precipitation, temperature, vapor pressure 
deficit (VPD) and enhanced vegetation index (EVI; Supplementary  
Fig. 6). The average urbanization effects on precipitation and tempera-
ture are negative and positive, respectively, for stations with negative 
urbanization effects on drought, indicating a decrease in precipita-
tion and enhanced UHI with urbanization. In addition, urbanization is 
associated with increased VPD, which could pose challenges for local 
water availability and atmospheric humidity35. Meanwhile, the loss 
of vegetation often associated with urbanization further decreases 
urban evapotranspiration, resulting in the intensification of local 
atmospheric dryness (Supplementary Fig. 6d).
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Fig. 1 | Urbanization effects on various drought metrics. a,b, The proportions 
of stations (a) and cities (b) with different types of urbanization effect (UE) 
for the six drought metrics using a 100 km urban–rural buffer threshold. 
Blue, orange and red bars represent the stations and/or cities with statistically 
significant negative UE, statistically significant positive UE and insignificant UE, 
respectively. c–f, The spatial distributions of UE on extreme SPEI and drought 
severity across world’s stations and cities. The subfigures show the statistical 

distributions of the UE. Here, the negative and/or positive UE represents that 
urbanization exacerbates and/or mitigates drought conditions: distribution of 
UE on extreme SPEI (station) (c), distribution of UE on extreme SPEI (city) (d), 
distribution of UE on drought severity (station) (e) and distribution of UE on 
drought severity (city) (f). g, The UE on extreme SPEI and drought severity across 
four different climate zones based on the city-scale data, respectively. In this 
case, the negative UE and positive UE are visualized separately.
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Conversely, the positively affected stations and cities, that is, 
locales where urbanization reduces drought severity, are scattered 
across continents, particularly coastal areas such as the western United 
States, Mediterranean and eastern Australia. To examine the potential 
coastal effects on urbanization-induced drought changes, we analyse 
the relationship between urbanization and distance to the coastline 
(Supplementary Fig. 7). We observe that the coastal effects are more 
prominent for cities with positive urbanization effects, of which urban-
ization-induced drought mitigation is more pronounced for coastal 
cities, especially in temperate and arid regions.

We further analyse patterns of urbanization effects by subdividing 
cities for different areal extents, vegetation cover and urbanization 
intensities. Here the cities are classified into small, medium, large 
and mega according to 0–25th, 25th–50th, 50th–75th and 75th–100th 
percentiles of urban areas, respectively. Similarly, vegetation cover 
is characterized by average EVI for each city and classified into low, 
medium, medium-high and high according to 0–25th, 25th–50th, 
50th–75th and 75th–100th percentiles of EVI. For both extreme SPEI 
and drought severity, urbanization effects generally enhance with 
increasing city areas (Supplementary Fig. 8a,b). In other words, large 
and mega cities are prone to more considerable exacerbation of local 
drought than smaller cities (with average urbanization effects on 
extreme SPEI and drought severity of −0.149 and −0.092, and −0.090 
and −0.023 for mega and small cities, respectively). Urbanization 
effects on local drought also vary according to the average vegetation 
cover for cities (Supplementary Fig. 8c,d). Specifically, cities with low 
vegetation density are found to have more extreme SPEI (−0.140) and 
drought severity (−0.089): trends probably attributable to, and in some 
cases a result of, the reduced cooling effect and evapotranspiration 
from vegetation36. Additionally, we analyse the relationship between 
urbanization effects and urbanization intensity characterized by the 
percentage of impervious surface area within a 2 km buffer for each 
station (Supplementary Fig. 9). We observe that higher urbanization 
intensity leads to greater extreme SPEI and drought severity with linear 
slopes of −0.0015 (P < 0.050) and −0.0008 (P < 0.100), respectively.

We also analyse the effects of urbanization on seasonal variations 
of drought and drought event frequency. We find that the effect of 
urbanization on drought exhibits substantial seasonality, with the 
most prominent negative effects during warm seasons, such as sum-
mer and negligible effects in winter (Supplementary Fig. 10). Further, 
we use return periods to characterize the drought frequency, which 
represents the time interval between drought events. We calculate the 
drought return period based on the joint distribution of drought dura-
tion and drought severity modeled by a copula function (Methods).  
Given drought events with the same duration and severity, urban 
regions exhibit shorter return periods compared to rural regions (Sup-
plementary Fig. 11). In other words, urban areas are at a heightened risk 
of experiencing a given magnitude or intensity of drought event. For 
more detailed drought frequency results, refer to Supplementary Text 
1 and Supplementary Fig. 11.

To examine uncertainties in the quantitative results, we conduct 
a series of sensitivity tests using different SPEI time scales (daily to 
monthly scales) and calculation units (station to grid cell units). Overall, 
results from these comparative tests provide additional corroborat-
ing evidence of the exacerbating effects of urbanization on extreme  
SPEI and drought severity (Supplementary Text 2 and Supplementary 
Figs. 12 and 13).

Potential mechanistic explanation
To advance our understanding of how urbanization leads to the exac-
erbation of drought in cities, we use WRF simulations to model local 
drought evolution and evaluate the changes in drought between two 
urbanization scenarios: a URB and a NOURB. The simulations are per-
formed in six representative urban clusters across different continents 
due to their notable urban expansion and historical severe drought 

occurrences31,37–39. The six urban clusters are the Yangtze River Delta 
(YRD) urban cluster in Asia, Madrid urban cluster in Europe, Illinois–
Wisconsin–Indiana (IWI) urban cluster in North America, the São Paulo 
urban cluster in South America, Cape Town urban cluster in Africa 
and the New South Wales (NSW) urban cluster in Australia (Fig. 2a). By 
validating against local observations, the WRF simulations successfully 
reproduce observed meteorological variations (Supplementary Text 
3 and Supplementary Figs. 14 and 15).

To characterize the urbanization effects on local drought condi-
tions, we calculate the change in drought metrics between the URB and 
NOURB scenarios. By replacing impervious grid cells with vegetated 
grid cells, urban regions experience substantial changes in drought 
conditions (Fig. 2b). Substantial increases in extreme SPEI are observed 
across all regions, with average change rates substantially greater than 
zero, indicating an exacerbation of drought conditions due to urbani-
zation. Prominent urbanization effects are identified in the São Paulo 
urban cluster and the YRD urban cluster, with average change rates 
of 8.8 and 6.3%, followed by the IWI urban cluster (5.5%), NSW urban 
cluster (3.5%), Cape Town urban cluster (2.9%) and Madrid urban cluster 
(2.8%). Changes in drought severity show similar patterns to extreme 
SPEI, where the YRD and São Paulo urban clusters experience an exac-
erbation of 3.7 and 3.3%, respectively, under URB conditions. Results 
for other drought indices can be found in Supplementary Fig. 16.

We assume that the drought changes in urban regions between 
the URB and NOURB scenarios can be primarily attributed to urbaniza-
tion-induced modifications on local meteorological and hydrological 
processes. Thus, we analyzed the changes of several drought-related 
hydrometeorological factors between the URB and NOURB scenarios, 
aiming to explore potential mechanisms underlying urbanization-
induced drought exacerbation. Urbanization typically involves replace-
ment of cropland and vegetated areas with impervious surfaces, 
substantially affecting local water and energy balances35,40. Notably, 
we observe a change rate of 7.3% in air temperature from the NOURB to 
URB scenario, demonstrating the well-documented UHI effect (Fig. 3). 
Reduction of vegetated regions (that is, forest, cropland) also decreases 
latent heat flux for 509.33 W/m2 in average over six urban clusters (with 
an average change rate of −87.1% in WRF simulations), which hampers 
water vapor exchange and evapotranspiration41,42. The expansion of 
impervious surface modifies soil heat capacity and infiltration rates, 
leading to elevated sensible heat flux for 326.89 W/m2 in average (with 
an average change rate of 75.2% in WRF simulations)43. The cumulative 
impact of these factors amplifies VPD (with an average change rate of 
44.9%), increases potential evapotranspiration (PET) (with an average 
change rate of 6.7%) and diminishes relative humidity (with an average 
change rate of −9.98%), ultimately creating drier conditions within 
cities: also known as the urban dry island (UDI) effect26,44–46. The height-
ened VPD and drier urban environment can create conditions that are 
not conducive for rainfall and suppress light rainfall (with an average 
change rate of −2.8%), resulting in support for drought to sustain32. 
According to the combined effects of the urbanization-induced factors, 
we find that extreme SPEI and drought severity are exacerbated by 6.2 
and 3.6% between the URB and NOURB scenarios.

Future projection of drought development under 
urbanization
Building on historical evidence that underscores the prominent nega-
tive effects of urbanization on extreme SPEI and drought severity, we 
extend our investigation to project the effects of future urbanization. 
Considering the relatively coarse spatial resolution of standard CMIP6 
models, our analysis is conducted using HighResMIP models that simu-
late the Shared Socioeconomic Pathway (SSP) 5-8.5 scenario47. The SSP 
5-8.5 is assumed to represent a high level of urban expansion through-
out the twenty-first century. We initially define the urban regions using 
the urban boundaries provided by the GUB dataset and create the cor-
responding rural buffers as done in the city-scale analyses. Further, we 
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follow urban expansion estimates from 2020 to 2050 in the SSP 5-8.5 
scenario to update our urban or rural classification48. Updates of urban 
and rural regions are conducted for each decade during 2020–2050. 
After regridding the HighResMIP simulations to 0.1°, we calculate and 

average the drought metric time series for the updated urban and rural 
regions and compute the trends for 30 IPCC-AR6 regions.

Figure 4 displays the variations and trends of monthly SPEI based on 
the ensemble mean of the selected HighResMIP models (Supplementary 
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Fig. 2 | Percentage changes of extreme SPEI and drought severity due to 
urbanization based on WRF simulation. To deepen the understanding of 
urbanization effects on local drought development, we perform WRF simulations 
over six selected urban clusters across each continent, namely the YRD urban 
cluster in Asia, the Madrid (MAD) urban cluster in Europe, the IWI urban cluster in 
North America, the São Paulo urban cluster (SP) in South America, the Cape Town 
urban cluster (CT) in Africa and the NSW urban cluster in Australia. a, Locations 
and urban development for the six selected regions. b, The spatial distributions 
and box plots of change rates for extreme SPEI and drought severity in each 

region. Change rates are defined as the relative change of the drought metric in 
the URB scenario compared to that in the NOURB scenario. A positive change 
indicates that the drought metric is exacerbated due to urbanization. Gray 
backgrounds are the major urban regions and dashed lines indicate state and/or 
provincial boundaries. The change rates in the box plots correspond to drought 
metrics computed within gray background areas. For each box plot, the center 
and lower and upper lines of the box represent the median and the 25 and 75% 
quantiles, respectively. The lower and upper bounds of the whiskers represent 
minima and maxima with the range based on 1.5× interquartile range.
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Table 2) during the period of 2015 to 2050. Supplementary Fig. 17 shows 
the results from individual models. In general, the results suggest that 
drought conditions are expected to be intensified in most regions over 
the next three decades, as indicated by the overall decreasing trends 
of the drought metric time series. By comparing trends in the drought 
metrics between urban and rural grid cells, the effects of urbanization 
are shown to persist in future scenarios. Among the selected IPCC-AR6 
regions, urban SPEI shows a more considerable decrease in 20 out of 
30 regions, with an average decreasing slope of −0.0015 per month. 
Furthermore, Supplementary Figs. 18 and 19 present variations and 
trends of extreme SPEI and drought severity calculated by daily High-
ResMIP meteorological data. Results reveal that nearly 70 and 57% of 
urban regions exhibit worsening extreme SPEI and drought severity, 
with average slopes of −1.02 and −1.52 yr−1, respectively.

Overall, our quantitative results based on historical observational 
records and our HighResMIP simulation analyses highlight increasing 
drought with urban expansion, particularly with respect to extreme 
SPEI and drought severity.

Discussion
While previous studies have revealed that anthropogenic activi-
ties, such as the emission of greenhouse gases, have driven global 
drought signals throughout the twentieth and twenty-first centuries, 
the role of urbanization as a notable human contribution to urban 
hydroclimatic extremes such as droughts has remained uncharac-
terized11,32. Here, we present a comprehensive analysis of the effect 
of urbanization on local drought using historical evidence and  
future projections.
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Fig. 3 | Schematic diagram of potential mechanisms underlying the effects 
of urbanization on local drought. a, The potential mechanism of how 
urbanization affects drought through meteorological and anthropogenic 
feedbacks. The up and down arrows indicate increase and decrease in a variable 
due to urbanization. The average change rate (Ave. CR) of each variable over the 
six regions is also presented in the figure. The tree and building components  
in a are designed by vectorpocket and/or macrovector (Freepik.com).  

ET, evapotranspiration. b, The box plots of the change rates for the WRF-simulated 
variables in the six regions, including relative humidity (RH), VPD, temperature, 
light rainfall, PET, latent heat flux and sensible heat flux. For each box plot, the 
center and lower and upper lines of the box represent the median and the  
25 and 75% quantiles, respectively. The lower and upper bounds of the whiskers 
represent minima and maxima with the range based on 1.5× interquartile range.
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From a global perspective, our observational results underscore 
substantial and non-negligible influences of urbanization on local 
drought. Over half of the world’s cities exhibit pronounced urbaniza-
tion effects, albeit with discernible disparities in the impacts across 
different gradations of drought events. In contrast to medium to low 
intensity level droughts, extreme drought exhibits more significant 
effects under urbanization, with an overwhelming number of cities 

exhibiting exacerbated extreme SPEI and drought severity (Fig. 1a,b). 
The cities that show reduction in drought under urbanization are 
sparsely scattered across continents but cluster near the coastlines, 
especially in the western United States and Mediterranean regions8,49. 
Coastal cities benefit from the ocean’s moisture source, while land–sea 
breezes serve to regulate urban sensible heat and elevate humidity 
levels50. For instance, Mediterranean climate leads to lower summer 
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Fig. 4 | Future projection of urbanization effects on local drought 
development across different IPCC-AR6 regions based on monthly SPEI. The 
central map illustrates the location and extent of each IPCC-AR6 region. For each 
subfigure, the left axis shows the temporal variations of SPEI in urban (blue line) 
and rural (orange line) areas, respectively. Here, monthly SPEI is calculated based 
on the ensemble mean of three HighResMIP models. The bar chart in the right 
panel represents the trend of the corresponding urban or rural series calculated 
by Sen’s slope. The bar that has passed Mann–Kendall trend test is depicted 
with diagonal lines. The selected IPCC-AR6 regions include Western North 
America (WNA), Central North America (CNA), Eastern North America (ENA), 

Northern Central America (NCA), Southern Central America (SCA), Caribean 
(CAR), Northwestern South America (NWS), Northern South America (NSA), 
Northeastern South America (NES), Southwestern South America (SWS), South 
American Monsoon (SAM), Southeastern South America (SES), Northern Europe 
(NEU), Western and Central Europe (WCE), Eastern Europe (EEU), Mediterranean 
(MED), Western Africa (WAF), Central Africa (CAF), South of Eastern Africa 
(SEAF), East of Southern Africa (ESAF), Western Siberia (WSB), Eastern Siberia 
(ESB), Western and Central Asia (WCA), Eastern and Central Asia (ECA), Eastern 
Asia (EAS), Arabian Peninsula (ARP), Southern Asia (SAS), Southeastern Asia 
(SEA), Eastern Australia (EAU) and Southern Australia (SAU).
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temperature in coastal cities compared to their inland counterparts, 
while the influence of the Pacific Ocean helps to moderate wet and dry 
conditions of the cities in the southwestern US cities (for example, Los 
Angeles)49. These moderating factors, along with mitigated UHI and 
UDI effects, may partially explain the reduced exacerbation effects of 
urbanization on local drought potential among coastal cities.

To gain deeper insights into the mechanistic understanding 
underlying the exacerbation effects of urbanization on local drought, 
we perform WRF simulations to model the urbanization-induced 
rainfall changes between a URB and a NOURB in six representative 
urban regions. Our findings indicate that the transition from rural 
to highly urbanized setting leads to a roughly 3–9% amplification of 
extreme SPEI and drought severity. By examining the variations in 
key drought-related factors between URB and NOURB scenarios, the 
simulations show that the increased water demand along with the drier 
and warmer urban environments together contribute to the amplifi-
cation of drought in urban cores32,41. Our simulated results agree with 
ref. 36, who observed significant surface warming trends in the urban 
cores relative to rural surroundings in more than 2,000 global cities. 
The combined effects of UHI and UDI lead to lower probability of the 
occurrence of light rainfall. Previous studies support our findings 
that urbanization may enhance the asymmetrical changes in rainfall 
patterns, where extreme heavy rainfall increases while light rainfall 
decreases51. Nevertheless, it should be noted that the mechanistic 
pathway that we highlight (Fig. 3) represents just one potential mecha-
nism of the effects of urbanization on local drought, and underlying 
processes may vary across cities depending on the climatic condi-
tions, vegetation cover, topography and other factors27. The complex 
interaction and feedback between urbanization and land–atmosphere 
conditions in shaping drought patterns warrant further in-depth and 
physics-based local studies.

Furthermore, we project the effects of future urbanization on local 
drought using CMIP6 HighResMIP model simulations. The mid-twenty-
first century projection shows that urban regions suffer higher drought 
risk than rural regions in ~70% of the selected IPCC-AR6 subregions. 
Amplification of extreme SPEI and drought severity is mainly associated 
with the conversion of cropland or contemporary vegetated areas into 
impervious surfaces, resulting in increased sensible heat and reduced 
atmospheric humidity. Previous research has projected that by 2050, 
nearly half of the global population living in cities will experience water 
scarcity52. The projected intensification of local drought is likely to 
aggravate such water-scarce conditions in urban settings. Meanwhile, 
the projected changes in urban drought will also hinder the realization 
of at least three Sustainable Development Goals of the UN 2030 Agenda, 
such as Goal 6 ‘Clean water and sanitation’, Goal 11 ‘Sustainable cities 
and communities’ and Goal 15 ‘Life on land’29.

To cope with the challenge of urban drought, we highlight several 
nature-based and infrastructure-based actions to help city stakehold-
ers improve urban drought resilience. From a nature-based perspec-
tive, urban green spaces (for example, parks, green roofs, wetlands) 
can in some instances serve as effective mitigators of the effects of 
urbanization on local drought36. Reference 26 analyzed the relationship 
between urban dryness and evapotranspiration and highlighted the 
efficiency of restoring evapotranspiration in dealing with the negative 
effects of the UHI and UDI. In this study, we also observe the reduced 
urbanization-induced exacerbation effects on local drought with the 
increased density of vegetation cover (Supplementary Fig. 7). Thus, it is 
worthy to carefully design, manage and maintain urban vegetation and 
ecosystems, which are the major regulators of atmospheric moisture 
in urban areas53. From an anthropogenic infrastructure-based perspec-
tive, a more flexible and reliable urban water supply system is needed. 
For instance, the urban water supply portfolio should be diversified by 
considering various alternative water sources, including desalination, 
sectional water transfer, urban rainwater harvesting and greywater 
recycling28,52. In addition to nature-based and infrastructure-based 

solutions, development of comprehensive water management plans 
that include public awareness education and water conservation meas-
ures are needed29.

We acknowledge the presence of several limitations in our study. 
Previous research has confirmed the uncertainties of CMIP6 models 
in the projection of anthropogenic effects6,54. Similarly, biases also 
appear in the WRF simulations, influenced by the initial and boundary 
conditions and parameterization55. Consequently, the quantitative 
results may exhibit a degree of error. Nevertheless, given our study’s 
emphasis on discerning differences between urban–rural pairs and 
model experiments, the inherent biases are minimized6. In addition, 
we recognize that while long-term drought events can inflict lasting 
damage on urban ecosystems, we define drought on a short-term daily 
scale to facilitate a more precise quantification of different drought 
levels and to capture the immediate impacts of urbanization, which 
are particularly relevant in light of the increasing frequency of flash 
droughts3,27,56. We also perform sensitivity tests by using monthly scale 
SPEI and the results generally align with the evidence based on daily 
data. Moreover, constrained by the lack of globally applicable long-
term and high-resolution (both spatial and temporal) meteorological 
satellite data for urban areas, we mainly adopt in situ observations, 
ERA5-Land product and CMIP6 simulations with barely satisfactory 
spatial resolution (~10–25 km). Likewise, the future projection is only 
conducted in SSP 5-8.5 scenario due to the lack of lower emission sce-
narios data with relatively high spatial resolution. In future work, it 
would be ideal to work with higher spatial resolution fusion datasets 
and model simulations (for example, SSP 1-2.6, SSP 2-4.5, SSP 3-7.0) to 
deepen our understanding of local drought changes and its evolutions. 
It is also important to note that, drought is not only deficit in rainfall and 
the SPEI or changes in rainfall relative to urbanization. Demand, which 
is an important component, is not considered in this study, especially 
for the future projections.

By providing these insights into the drought responses to urbani-
zation, our quantitative results highlight the uneven contribution of 
urbanization on local drought. Again, these results are not inconsist-
ent to the rainfall enhancement noted due to urbanization in prior 
studies. This is because, the enhancement over or downwind of cities 
also implies reduction in the vicinity of cities. From the perspectives 
of observation to model simulation and historical evidence to future 
projection, we confirm the overwhelming exacerbation of extreme 
SPEI and drought severity under urbanization and explore the poten-
tial mechanism. As urban expansion continues alongside population 
growth, cities are confronted with substantial challenges in reconciling 
increased water demand with diminished water supply under global 
warming and drought stress. In pursuit of sustainable urban develop-
ment, our findings seek to add further body of evidence and implica-
tions on the role of urbanization in driving local drought variations 
and hydroclimatic extremes.

Methods
Data
In situ data. We collected observational daily precipitation and  
temperature data from multiple sources, including the Global Surface 
Summary of the Day (GSOD), Global Historical Climatology Network 
(GHCN), European Climate Assessment Dataset (ECAD) and the China 
Meteorological Administration (CMA), spanning the period from 1980 
to 2020 (refs. 32,57). Our initial step involved the removal of dupli-
cate stations from these four datasets. Subsequently, we conducted 
a quality control process to eliminate low-quality and missing data 
points based on quality control files. Specifically, for GHCN data, the 
records with an observation value of 9,999 (that is, missing data) and 
quality flag other than blank (that is, did not fail any quality assurance 
check) were removed. For GSOD, the records with observation values 
of 99.99 or 9,999.9 and quality attributes of incomplete data reports 
were removed. For ECAD, the records with quality code of ‘1’ (that is, 
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suspect) and ‘9’ (that is, missing) were removed. For CMA, the records 
with observation values of 32,766 (that is, missing) and quality code 
other than ‘0’ were removed. To ensure adequate quantity of observa-
tions, we retained only the sites with over 75% completeness for both 
precipitation and temperature records. To fill the gap of the missing 
values for each station, we adopted three multi-source meteorological 
products, including Climate Hazards Group InfraRed Precipitation 
with Station data (CHIRPS), NOAA Climate Prediction Centre (CPC) 
and ERA5-Land58,59. The selections of these three products were based 
on the sufficient time range (1980–2020) and relatively high spatio-
temporal resolution compared to the available precipitation products 
(Supplementary Table 1). Due to the scale mismatch between station-
scale (point) data and gridded data (pixel), errors may exist between 
the in situ measurements and these three products. To minimize the 
uncertainties of the individual products, the ensemble mean of these 
three products was calculated to fill the missing values. Finally, the 
spatial distribution of the processed stations is shown in Supplemen-
tary Fig. 1a.

Model-based data. To study the urbanization effects on the city scale, 
we used the hourly fifth-generation European Centre for Medium-
Range Weather Forecasts atmospheric reanalysis of the global climate 
(ERA5-Land) with 0.1° spatial resolution during the period of 1980 to 
2020 (ref. 59). The selected variables included total precipitation, 2 m 
temperature, dewpoint temperature, wind speed, surface solar radia-
tion downwards and surface pressure. The hourly data were resampled 
to daily data. Meanwhile, we also used ERA5 at all pressure levels and 
surface level as the initial and boundary conditions for WRF simulation.

CMIP6 was applied in our study for future projection60. Specifi-
cally, to project the future changes of local drought under urbaniza-
tion, we used monthly and daily HighResMIP models in CMIP6. In this 
case, we only used the precipitation and temperature data because of 
the limited availability of high-resolution meteorological variables in 
the HighResMIP mode. Supplementary Table 2 lists the selected High-
ResMIP models for future projection of urbanization effects.

Auxiliary data. For the classification of urban and rural regions, we 
first obtained Global Impervious Surface Area 2.0 (GISA2.0) product 
with a spatial resolution of 30 m. The GISA2.0 has improved from 
its predecessor by dividing the grid and performing with different 
enhancement techniques, which has shown excellent performance 
in urban studies61. We also adopted GUB data, which can capture the 
geolocations of world’s cities well33. The land cover data were obtained 
from yearly MCD12Q1 product, which follows the International Geo-
sphere-Biosphere Programme classification system. We also adopted 
the future urban expansion data from 2020 to 2050 under the SSP 5-8.5 
scenario generated by ref. 48. In addition, the 1 km Köppen–Geiger 
climate classification data were used to define the major climate zones 
for the investigation of urbanization effects under different climatic 
backgrounds62.

Definition of drought metrics
To examine the urbanization effects on local meteorological drought, 
we took the Standardized Precipitation Evapotranspiration Index (SPEI) 
as the major index to characterize drought condition63. Superior to 
drought indices such as Palmer Drought Severity Index, SPEI has flex-
ible timescale, which enables it to monitor short-, mid- and long-term 
drought conditions. Meanwhile, as urbanization usually accompanies 
with frequent alteration of impervious surface and vegetation cover, 
the consideration of evapotranspiration in SPEI can make it better 
reflect the impact of atmospheric dryness on water resources and 
ecosystems.

SPEI is obtained by normalizing the water balance (calculated 
by precipitation minus PET) into log-logistic distribution, which was 
widely adopted in previous studies6,64. There are various methods to 

calculate PET, including the widely used Thornthwaite method and the 
acknowledged most accurate FAO-56 Penman–Monteith method. Con-
sidering the limited number of variables provided by in situ stations, 
we adopted Thornthwaite method to calculate PET for observational 
data. The equation of Thornthwaite method is given as follows:

PET =
⎧
⎨
⎩

16C( 10T
I
)
a

0 ≤ T ≤ 26.5 ∘C

C (−415.85 + 32.24T − 0.43T 2) T > 26.5 ∘C
(1)

where T and I are temperature and thermal index, respectively, and a 
is a function of I. The detailed calculation can refer to ref. 65. In addi-
tion, to compare with the Thornthwaite-based results, we also applied 
Penman–Monteith equation to calculate PET in city-scale analysis as 
ERA5-Land could provide sufficient number of variables. The Pen-
man–Monteith equation is given as follows:

PET =
0.408Δ (Rn − G) + γ

900
(T+273)

u2(es − ea)
Δ + γ(1 + 0.34u2)

(2)

where T and u2 are daily air temperature and 2 m wind speed; Δ is the 
slope of vapor pressure curve; Rn is the net radiation; G is the soil heat 
flux density; es and ea are the saturation vapor pressure and actual vapor 
pressure, respectively, and γ is the air psychrometric constant66. Here 
we also evaluate the performance of PET calculated by Thornthwaite 
and Penman–Monteith methods for all in situ stations in 2020 (Sup-
plementary Fig. 2). Although differences exist between the Thornth-
waite PET and Penman–Monteith PET, the results show a significant 
positive relationship with Pearson correlation coefficient, root mean 
square error (r.m.s.e.) and mean absolute error of 0.843, 1.013 mm and 
0.913 mm, respectively. In other words, the Thornthwaite PET is able 
to present similar trend as Penman–Monteith PET.

To further characterize drought development in urban regions, we 
defined six drought metrics based on SPEI32. First, for each single unit 
(that is, station or pixel), we determined the thresholds for extreme, 
heavy, moderate and light SPEI as the 5th, 10th, 20th and 30th percen-
tiles of the SPEI during the period of 1980 to 2000 (ref. 67). Then the 
extreme, heavy, moderate and light SPEI values were classified on the 
basis of the defined thresholds and the annual sums for extreme, heavy, 
moderate and light SPEI were calculated for each year, respectively. 
In addition, we extracted two major drought characteristics (that is, 
drought duration and drought severity) based on run theory. The run 
theory can identify drought events based on SPEI series (Supplemen-
tary Fig. 3). For each drought event, the drought duration is the time 
length of the event and the drought severity is the cumulative nega-
tive SPEI values during the drought event. The annual total duration 
and severity were further calculated based on the identified drought 
events in each year.

Quantification of urbanization effects on local drought
To quantify the effects of urbanization on local drought, we first classify 
urban and rural stations by considering the dynamic land use changes, 
using the time-varying GISA2.0 data44. The study period (1980–2020) 
was separated at intervals of 5 years. In each subperiod, a circular 
buffer was created for every station and the proportion of impervious 
surface area within the buffer was calculated. A station was defined as 
an urban station only if the impervious fraction exceeded a predefined 
threshold. Otherwise, the station was determined to be a rural station. 
In this case, each station was dynamically classified as urban or rural 
during 1980–2020. Here the buffer radius and impervious surface 
threshold were determined by calculating the correlation coefficient 
between meteorological series and urban expansion rate for buffers 
with different buffer sizes51,68,69. Following previous studies10,14,32,51, typi-
cal selections of buffer radius (km) and impervious surface threshold 
(%) include 7 km and 20% and 2 km and 33%. The former combination 
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is usually applied when using 1 km of LULC (land use land cover) data 
to classify urban and rural stations, while 2 km and 33% is the most 
frequently chosen when using 30 m LULC data. Considering the use 
of 30 m impervious surface area data in this study, we finally selected 
2 km and 33% as the buffer radius and impervious surface threshold to 
classify urban and rural stations.

To reduce the impacts of potential regional confounding factors, 
for each urban station, we paired its rural stations within its 100 km 
buffer zone68,70. The rural stations with elevation difference larger 
than 500 m from paired urban station were further excluded to mini-
mize the topographical effects. For each urban–rural pair, the urban 
and rural mean drought series were then calculated by averaging all 
urban and rural stations within the pair based on the dynamic station 
classification results. It should be noted that if the urban station in an 
urban–rural pair was classified as the rural station in the early period 
according to the dynamic classification, its drought series in this period 
was replaced as the average of all rural stations within the pair. Then 
the differences of drought metrics between the urban and rural sta-
tions within an urban–rural pair were assumed as the contribution of 
urbanization50,68,70.

After the classification and pairing of urban and rural stations, we 
quantified the urbanization effects (UE) by Mann–Kendall trend test 
and Sen’s slope. The urbanization effect can be quantified as follows45,51:

UE = Turban − Trural (3)

where Turban and Trural are the Sen’s slope of average urban and rural 
drought series of an urban–rural pair, respectively. The negative (posi-
tive) value of UE represents a negative (positive) urbanization effect, 
indicating exacerbation (mitigation) effect on local drought. The sig-
nificance (95% confidence level) of the urbanization effect can be 
examined by calculating the Mann–Kendall trend of the differences 
between urban and rural series.

In addition to the station-scale analysis, we also investigated the 
effects of urbanization on local drought by using GUB data to classify 
the areal urban and rural regions (that is, city-scale analysis). To ensure 
available pixels for further calculation, we removed city boundaries 
with areas smaller than 100 km2 and a total of 1,029 city boundaries 
were selected. The locations of selected cities are shown in Supple-
mentary Fig. 1b. Each selected urban boundary was regarded as the 
urban region. To determine the corresponding rural region, for each 
city boundary, we created a buffer outward with the buffer distance 
calculated by34:

D = (√2 − 1)√
S
π (4)

where S represents the area of the city. The function can ensure that the 
area of urban region is approximately the same as its outward buffer 
(that is, rural area). The drought metrics for the urban and rural bounda-
ries were calculated based on the ERA5-Land data. Then equation (3) was 
applied to calculate urbanization effects on the city scale.

Urbanization is also likely to affect the drought frequency. Here 
we used return period to characterize the drought frequency, which 
represents the historical interval of a drought event with given dura-
tion and severity. To investigate the association between urbanization 
and drought frequency, we calculated the return period using copula 
functions. Copula is usually applied to establish the joint probability 
distribution of multiple variables in the field of drought and flood esti-
mation. In drought-related studies, the copula functions can calculate 
the return period for joint occurrence of drought characteristics71. In 
this study, we adopted exponential distribution and gamma distribu-
tion as the marginal distributions to fit drought severity and drought 
duration following previous studies72. The bivariate Gumbel copula was 
then used to construct the joint distribution for drought severity and 

duration. In general, the return period can be classified into two types, 
namely an AND return period (both the given duration and severity are 
exceeded) or a OR return period (either the given duration or severity 
is exceeded), which can be calculated as:

TAND =
E (L)

1 − FD (d ) − FS (s) + C (FD (d ) , FS (s))
(D ≥ d AND S ≥ s) (5)

TOR =
E (L)

1 − C (FD (d ) , FS (s))
(D ≥ d OR S ≥ s) (6)

where D and S are drought duration and severity; L is the interval 
between the onset of two adjacent drought events while E(L) is the 
average of L; FD and FS are the marginal distributions of drought dura-
tion and severity, and C is the joint copula function. The difference of 
return period between paired urban and rural series was regarded as 
the urbanization effect on drought frequency.

WRF simulations for potential mechanism analysis
We used WRF coupled with single-layer urban canopy model to simulate 
the drought development across typical urban clusters. We selected 
a total of six representative urban clusters that had suffered severe 
drought across different climatic backgrounds and continents, includ-
ing the YRD urban cluster in Asia, Madrid urban cluster in Europe, IWI 
urban cluster in North America, São Paulo (SP) urban cluster in South 
America, Cape Town urban cluster in Africa and NSW urban cluster in 
Australia. The model was configured to have 9–3 km nested domain. 
We ran the WRF simulation during the historical drought years for each 
urban region (2010–2012 for YRD, 2013–2015 for the Madrid urban 
cluster, 2011–2013 for IWI, 2013–2015 for SP, 2015–2017 for Cape Town, 
2017–2019 for NSW). The first month for each year was set as the spin-up 
period. The detailed information of each domain is shown in Supple-
mentary Table 3. The model configuration is listed in Supplementary 
Table 4. To validate the performance of WRF simulations, we selected 
the middle year of simulation periods in the URB scenario (which used 
the actual LULC data) for each region (that is, 2011 for YRD, 2014 for the 
Madrid urban cluster, 2012 for IWI, 2014 for SP, 2016 for Cape Town, 
2018 for NSW) as the validation period. The simulated precipitation 
and temperature were validated against local in situ measurements. For 
each region, the average observed and WRF-simulated precipitation 
and/or temperature are calculated over all validation stations and their 
corresponding model grid cells, respectively. The Pearson correlation 
coefficient, r.m.s.e. and mean absolute error were used to evaluate the 
simulation performance.

To evaluate urbanization effects on local drought development 
in urban regions, we designed two separate experiments with differ-
ent input LULC data for each region. The highly URB used the normal 
LULC data of the simulation year as the input. We further replaced the 
urban pixels of the URB LULC data with the other dominant land cover 
type to simulate a NOURB. The ERA5 with single level and pressure 
level was used as the initial boundary condition. The first month of 
the simulation period was regarded as the spin-up period. To validate 
performance of the model simulation, we compared the simulated 
precipitation and temperature with the in situ measurements obtained 
from the weather stations near the cities. Finally, by comparing the dif-
ferences of drought development in URB and NOURB cases, we were 
able to investigate the urbanization effects on drought in local scale.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
GSOD and GHCN global in situ meteorological data can be accessed 
at https://www.ncei.noaa.gov/data/global-summary-of-the-day/ and 
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https://www.ncei.noaa.gov/data/global-historical-climatology-net-
work-daily/. CMA meteorological data are available at http://data.
cma.cn/en/?r=data/detail&dataCode=A.0012.0001. ECAD data are 
available at https://www.ecad.eu/dailydata/predefinedseries.php. 
ERA5-Land and ERA5 products are obtained from https://cds.climate.
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form and 
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-
pressure-levels?tab=form. CHIRPS precipitation can be retrieved at 
https://data.chc.ucsb.edu/products/CHIRPS-2.0/. CRU product is 
available at https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.06/. CPC 
data can be accessed at https://downloads.psl.noaa.gov/Datasets/
cpc_global_precip/. CMIP6 simulation data are obtained from https://
esgf-node.llnl.gov/search/cmip6/. The GISA2.0 product is available via 
Zenodo at https://zenodo.org/record/6476661 (ref. 73). GUB data can 
be obtained at http://data.starcloud.pcl.ac.cn/zh/resource/14. Koppen 
climate classification product is provided by https://www.gloh2o.org/
koppen. MCD12Q1 product is provided by https://e4ftl01.cr.usgs.gov/
MOTA/MCD12Q1.061/. The future urban expansion data are available at 
https://doi.org/10.1594/PANGAEA.905890. All base maps used in this 
study are obtained from the Database of Global Administrative Areas 
(GADM) at https://gadm.org/download_world.html.

Code availability
The data analysis was conducted using Python v.9, MATLAB v.022b and 
ArcMap v.0.6. The code and necessary data can be accessed on GitHub 
(https://github.com/szhuangGIS/Urbanization-Drought). Additional 
code and data related to this paper are available from the correspond-
ing authors upon reasonable request.
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Land and ERA5 products are obtained from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form and https://
cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview. CHIRPS precipitation can be retrieved at https://data.chc.ucsb.edu/
products/CHIRPS-2.0/. CRU product is available at https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.06/. CPC data can be accessed at https://
downloads.psl.noaa.gov/Datasets/cpc_global_precip/. CMIP6 simulation data is obtained from https://esgf-node.llnl.gov/search/cmip6/. GISA2.0 product is 
released at https://zenodo.org/record/6476661. GUB data can be obtained at http://data.starcloud.pcl.ac.cn/zh/resource/14. Koppen climate classification product 
is provided by https://www.gloh2o.org/koppen. MCD12Q1 product are provided by https://e4ftl01.cr.usgs.gov/MOTA/MCD12Q1.061/.

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender This study did not involve human research participants.

Population characteristics This study did not involve human research participants.

Recruitment This study did not involve human research participants.

Ethics oversight This study did not involve human research participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This study provides a quantitative analysis of the effects of urbanization on local drought development based on local observations 
and model simulations. By examining the spatial and temporal distributions of urbanization effects on each drought metric at global 
urban-rural pairs, we identify the major associations between urbanization and local drought. We also apply the Weather Research 
and Forecasting (WRF) high-resolution regional climate model to simulate local drought under highly urbanized and non-urbanized 
scenarios in six representative cities spread across each continent. Subsequently, we delve into the potential mechanisms underlying 
these urbanization effects. The findings enhance our understanding of the role of urbanization in shaping drought patterns—a critical 
step towards sustainable urban development.

Research sample Most data used in this study  was collected from international community, such as NOAA, ECMWF, and CMIP6. All the dataset can be 
access by the public. The global impervious data and urban boundary data were obtained from published papers (Huang et al., 2022; 
Li et al., 2020).

Sampling strategy This study was performed at a global scale. The selection of recent four decades as study period mainly considered the rapid urban 
expansion over this period, highlight the urbanization induced effects. The Sen's Slope and Mann-Kendall trend test were applied to 
examine the trends. For model simulation, we selected six representative urban regions across various continents due to their 
significant urban expansion and historical severe drought occurrences.

Data collection All data used in this study was downloaded from the corresponding websites without any software.

Timing and spatial scale For historical analysis, the data was collected from 1980 to 2020 with daily temporal resolution. For future projection, the collected 
CMIP6 data ranged from 2015 to 2050 with both daily and monthly time scale. The study area for station-based analysis included the 
regions with available in-situ measurements in the globe. The study area for model simulation consisted of six representative urban 
regions across various continents, including Yangtze River Delta in Asia, Madrid in Europe, Chicago in North America, São Paulo in 
South America, Cape Town in Africa, and Sydney in Australia.

Data exclusions No collected data was excluded from analysis.

Reproducibility The code for each experiment and analysis was ran multiple times to verify the reproducibility.

Randomization Randomization is not relevant for this study as all data analysis was based on observational and widely adopted remotely sensed and 
reanalysis products.

Blinding No blinding process was used in this study since there are no participants that can be influenced.
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Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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