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Fig. 1. Our algorithm is demonstrated to work reliably on a broad range
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of challenging models, with high geometric complexity and high genus. Three

examples shown above: the highest-genus model from Thingi10k dataset [Zhou and Jacobson 2016], "yeahright" model courtesy of Keenan Crane, and the

Filigree model from the dataset of Myles et al. [2014].

We introduce a conceptually simple and efficient algorithm for seamless
parametrization, a key element in constructing quad layouts and texture

charts on surfaces. More specifically, we consider the construction of parametriza-

tions with prescribed holonomy signatures i.e., a set of angles at singularities,
and rotations along homology loops, preserving which is essential for con-
structing parametrizations following an input field, as well as for user control
of the parametrization structure. Our algorithm performs exceptionally well
on a large dataset based on Thingil0k [Zhou and Jacobson 2016], (16156
meshes) as well as on a challenging smaller dataset of [Myles et al. 2014], con-
verging, on average, in 9 iterations. Although the algorithm lacks a formal
mathematical guarantee, presented empirical evidence and the connections
between convex optimization and closely related algorithms, suggest that a
similar formulation can be found for this algorithm in the future.
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1 INTRODUCTION

Seamless parametrization is an important starting point for a widely
used family of algorithms for constructing quad layouts. It can be
applied in any context that requires an atlas of texture charts on
the surface with complete freedom for choosing the cuts with no or
minimal transition artifacts. Informally, a global parametrization i.e.,
a locally injective map from a cut surface to the plane, is seamless,
if the parametric lines along u and v directions continue smoothly
across the cut, and the parametric lengths of cut edges match.

A geometrically natural way to define a seamless parametriza-
tion is as a metric on the mesh (i.e., an assignment of lengths to
edges) with angle constraints. A map to the plane corresponds to
the angle constraint that at almost all vertices the sum of angles
is 27r. The vertices where the sum is not 27 (cones) are necessary
due to topological reasons for all surfaces of genus g # 1. Seamless
parametrizations require additional conditions on sums of angles
at cones and more generally along all dual loops: these need to be
multiples of /2 if added with appropriate signs (Section 5). There
is a basis of n. + 2g loops, n. loops around cone vertices and 2g
homology basis loops, that completely determines the angles on all
dual loops.

Following Campen and Zorin [2017b], we refer to this collection
of n¢ + 2g angles of the form k;z/2 as holonomy signature. One
can think about this as defining the coarse topology of a seam-
less parameterization: e.g., if a parameterization is used to obtain a
quadrangulation by tracing u and v lines, then cones become extraor-
dinary vertices of valence different from 4, and holonomy angles on
non-contractible loops define how quads are linked together along
closed loops. As this qualitative behavior is a defining quality of a
parametrization, its control is critical: e.g., changing one holonomy
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angle on a loop may increase the distortion considerably, and make
alignment with natural directions on the surface impossible.

In existing methods, holonomy signature is often determined
partially or in full from an optimized cross-field, an optimization
process for cone placement, or user input (placing cones). To have
complete freedom of manipulating parametrization topology it is
natural to ask the question on the constraints that need to be ob-
served, specifically

For which holonomy signatures, seamless parametriza-
tions with corresponding topology exist? [Shen et al.
2022]

Under mild assumptions, this question was answered in Shen
et al. [2022]. There is a seamless parametrization of a refinement
of an input mesh for any holonomy signature (e.g., implied by a
cross-field) under a simple condition: it is sufficient to have at least
one cone with angle 37/2 or 57/2 (the actual condition is even
weaker), unless the signature has exactly two cones (nc = 2) with
angles 377/2 and 57 /2 respectively.

Shen et al. [2022] also describes an algorithm which, with an
important caveat of numerical precision limitations, produces a
seamless parametrization for any valid input holonomy signature.
While in principle one can take any input cross-field and produce a
parametrization with matching topology, the algorithm is complex
and time-consuming, as we discuss in Section 2 in greater detail.
It requires a combinatorial search for suitable loops, and extreme
refinement at intermediate stages that may fail at standard floating
point precisions.

Contributions. We propose a conceptually simple (effectively a
Newton iteration on a set of equations), and efficient algorithm that
we demonstrate to succeed on a version of Thingil0k dataset, for
shapes of widely varying geometric and topological complexity, up
to 800,000 vertices and genus over 4,000, as well as on the smaller
dataset from Myles et al. [2014] that includes highly challenging
crossfields. It typically obtains accurate constraint satisfaction and
low distortion in just a few iterations.

A critical element of the algorithm following Capouellez and
Zorin [2023], is working in the space of Penner coordinates, which
establish a one-to-one correspondence between metrics on meshes
with a given set of vertices, and assignment of real numbers to edges,
which reduce to logarithmic lengths if an intrinsic Delaunay condi-
tion is satisfied. If it is not satisfied, Penner coordinates correspond
to valid metrics on different connectivity with the same vertices,
obtained by a simple flip algorithm from the original.

While we do not present a mathematical proof of its correctness,
we outline the mathematical reasons why (under suitable limitations
on the prescribed angles) we can expect the algorithm to succeed.

Aside from solving the seamless parametrization problem, the
algorithm can be easily modified to solve other types of problems,
e.g., the less restricted problem of parametrization with prescribed
cones, computing a similarity map with a given holonomy structure,
or adding additional angle-based constraints.
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2 RELATED WORK

There is a wealth of work on various types of parametrization and
related geometric problems. We briefly review the most closely re-
lated work; a more complete review can be found in surveys, e.g.,
Naitsat et al. [2021] and Fu et al. [2021]). Seamless parametrization
in particular is a starting point for many quad layout algorithms,
e.g., Bommes et al. [2009]; Campen et al. [2015]; Lyon et al. [2021]
and many others. A range of general methods that can be applied
both for seamless and other parametrizations, assume a feasible
starting point already satisfying all constraints, is obtained by an-
other method, e.g., Liu et al. [2018]; Rabinovich et al. [2017]; Schiiller
et al. [2013].

Intrinsic methods. Our method belongs to the category of intrinsic
methods, working with variables intrinsic to the metric, as opposed
to representing maps to the plane directly. Many intrinsic methods
were proposed [Ben-Chen et al. 2008; Kharevych et al. 2006; Sheffer
and de Sturler 2001; Springborn et al. 2008]. Among these, the most
closely related to our work is the approach to discrete conformal
maps described in Springborn et al. [2008] and extended in Campen
et al. [2021] and Gillespie et al. [2021] to methods providing guaran-
tees of correctness, based on the mathematical foundations built in
Gu et al. [2018a,b]; Springborn [2020]. Angle constraints are natural
for intrinsic methods; however, so far, no intrinsic method has been
proposed for a full set of holonomy constraints: critically, there are
not enough degrees of freedom in discrete conformal maps to satisfy
all seamlessness constraints.

Another important extension, which considers similarity maps
extending conformal maps, is Campen and Zorin [2017b]. While
this method provides greater flexibility and thus making it possi-
ble to satisfy constraints on the loops, the resulting maps do not
correspond to a metric.

Most recently, Capouellez and Zorin [2023], extended these ap-
proaches to general metric optimization, which is the closest work
to ours. Crucially, it still relies on conformal maps to enforce con-
straints, and has the same limitation on the number of constraints
that can be enforced. We discuss the similarities and differences in
Section 6 in more detail.

Seamless parametrization constructions. Many methods for seam-
less parametrization were based on parametric plane coordinates.
While most aim to preserve cones and input field topology, i.e.,
holonomy signature, in many cases, this goal is not stated explicitly.

To the best of our knowledge, Shen et al. [2022] is the only work
presenting a method handling general seamless constraints with
theoretical guarantees; however, the algorithm has many complex
stages, and first constructs an extremely distorted parametrization
that needs to be optimized at considerable expense. Less complete so-
lutions with guarantees include Campen et al. [2019] and Zhou et al.
[2020] which also involve a highly distorted parametrization stage,
and do not provide control over loop holonomy angles. Another
work with partial control of holonomy is Levi [2023].

The majority of methods are used for seamless parametrization,
starting with Kélberer et al. [2007]; Tong et al. [2006], often in the
context of quadrangulation applications. These methods often do
not guarantee injectivity or finding a solution. For example, Bommes



et al. [2009], which is a foundation for many quadrangulation meth-
ods, uses a heuristic change of weights in an optimization problem
to reduce the chance of foldovers. Other methods, e.g., Bommes et al.
[2013]; Bright et al. [2017]; Campen et al. [2015]; Hefetz et al. [2019]
use various types of convexified injectivity constraints [Lipman
2012], but there is no guarantee that a solution can be obtained;
as shown in Myles et al. [2014], these methods do not find a valid
solution in many cases. An alternative approach is to construct a
T-mesh partition of the surface that does not necessarily correspond
to a valid seamless parametrization, e.g., by tracing a cross-field,
and then modify it by inserting or merging singularities [Lyon et al.
2021; Myles et al. 2014]. In comparison, our method produces a
result without failures on a large dataset, with numerical difficulties
only for extremely low mesh quality.

Cross-fields. As most common holonomy angles for parametriza-
tion are determined by a cross-field or a frame field [Vaxman et al.

2016], we briefly mention important work on field generation: Bommes

et al. [2009]; Crane et al. [2010]; Farchi and Ben-Chen [2018]; Li
et al. [2006]; Ray et al. [2009, 2008]; many of these offer control over
the fields’ turning numbers. Moreover, as demonstrated in Ray et al.
[2008], a metric field can be obtained for any set of turning numbers,
the field equivalent of the holonomy signature for parametrizations.
In contrast, for parametrizations there are some exceptions, e.g.,
signatures with exactly two cones with angles 377/2 and 57/2.

3 OVERVIEW

We start with a precise formulation of a "naive" algorithm (that, in
general, does not work) to make the problem formulation exact, and
explain the approach in the simplest form.

Let M be a triangular mesh with N, vertices, N ' faces, and N,
edges. For a vertex i and incident triangle T, let aiT be the angle of
T at vertex i. Consider 2g dual loops Lj, j = 1...2g, i.e., chains of
triangles T3, with two sequential triangles sharing an edge, and the
first and last triangles sharing an edge. Each triangle has exactly one
edge on the boundary of the triangle; let }, be the angle opposite
this edge. This is the angle between two internal edges e{n_l and

ef;l of the loop, where m — 1 is modulo loop length n;. The notation
is illustrated in Figure 2.
The vertex angles are defined as ), 5; aiT, where the summation

is over all triangles incident at vertex i. The loop holonomy angles

J
m-—1

are defined as Z:lnjzl d{nafn where dfn is 1, if the rotation from e
to e], is counterclockwise, and —1 if it is clockwise. This sum is
equal to the discrete geodesic curvature of the loop, as each signed
angle measures the rotation between two dual edges.

The holonomy signature is an assignment k7, i = 1... Ny, and K¢,
Jj =1...2g of integers to vertices and loops, corresponding to angles
k?r/2and kjfrr /2, and satisfying the discrete Gauss-Bonnet theorem,
i.e., the sum of all vertex angles should be equal to 27 (2 — 2g)

For an edge e, let £, denote the length of the edge, and A, = 2log fe
the (scaled) logarithmic edge length. Clearly, the angles can be
computed from edge lengths: al.T = aiT(A), where A € RMe is a
vector of the logarithmic edge lengths.

The seamless metric is defined as a (nonunique) solution with
respect to A of the following constrained system of N, + 29 — 1
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equations in N, variables (one vertex constraint is redundant due
to Gauss-Bonnet):

Fig. 2. Holonomy angle notation. The signed loop holonomy angles d{nwfn
measure the rotation between dual edges.

kor
ZJ(A): sl

T>i

oo kr
Zd{na{n(A) = ’7,1': 1...2g.
m=1

Ny -1,
1

This is a nonlinear, underdetermined system of equations in vari-
ables A. Let a(A) be the vector of triangle angles, and let C be the
(Ny +2g — 1) X (3Ny) matrix of equations above, which are linear
in @, and O the vector of holonomy signature angles. Then in vector
form, the system is Ca(1) = ©.

The naive algorithm for obtaining a feasible seamless parametriza-
tion is to solve this system of equations using Newton’s method (it
is not as naive as it sounds, as we explain below). As the system
is underdetermined, we can solve it using the extended Newton
method. Let F(1) = Ca(4) — © with (N, + 2g — 1) X N, Jacobian
matrix VF = CV, «a,

Algorithm 1: Naive Newton algorithm.

1 Function FEAsIBLESEAMLESS(A?, ©):

2 Ae A0

3 while not CoNVERGED(A, ©) do
4 VF « CV)«a

5 L « VFVFT

6 Solve Ly = —F

7 d « VFTp

8 B < LINESEARCH(A, d)

9 Ae— A+ pd

10 return A

We note that the gradient V j« is closely related to the well-known
cotangent matrix.

It is important that the algorithm is initialized with A°, the original
edge lengths. If the constraints were linear, then the pseudoinverse
solve would minimize the norm ||A — A°||2, which is a measure of
isometry used in Capouellez and Zorin [2023]. In the nonlinear
setting, the change in the norm is minimized at each step; this is
not equivalent to minimizing the norm subject to linear constraints,
but, as we will see, it is a useful approximation.
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However, clearly, there is no a priori reason to believe that the
algorithm can find a solution to the constraint system: the solution
may not even exist on fixed connectivity. In the next sections, we
make changes to the algorithm which ensures that it converges in
the case of seamless parametrization with only vertex constraints
and provide empirical evidence and mathematical considerations
that it can also handle the additional loop constraints.

Connection to discrete conformal maps. We further note that the
algorithm is not as naive as it may first appear. With two changes,
(1) eliminating the constraints on loops, and (2) reducing variables
A to Ny — 1 vertex logarithmic scale factors u via A, = /12 +u; +uj,
where vertices i and j are the endpoints of edge e, the N — 1 vertex
constraints happen to be the gradient of a convex function with
respect to scale factors u. As a consequence, solving this restricted
version of the constraint system by the Newton method is efficient
and robust, and globally converges to a solution if one exists, as
demonstrated in Campen et al. [2021]; Gillespie et al. [2021]. The
critical step for making the conformal algorithm provably conver-
gent was to enlarge the space by allowing connectivity changes,
which we do next for our algorithm.

4 BACKGROUND: PENNER COORDINATES

We briefly summarize the idea and use of Penner coordinates. While
the type of problems we consider (seamless parametrization with
prescribed cones) does not necessarily have a solution for an arbi-
trary input mesh connectivity, it turns out that it can be solved if
the connectivity is allowed to change, and it is sufficient to change
it in a restrictive way: specifically, the vertices remain the same,
but the connectivity may change through edge flips. However, per-
forming optimization on varying mesh connectivity is difficult, as
the variables and equations typically are connectivity-dependent.
Penner coordinates provide a way to parameterize, with coherent
variables, all metrics defined on all mesh connectivities sharing the
same vertex set.

We start with an assignment (M, ¢) of edge lengths ¢ to the edges
of a mesh M, satisfying the triangle inequality. We will also use
(M, 1) to denote an equivalent assignment of logarithmic lengths.
(We use logarithmic edge lengths to eliminate a positivity constraint,
and as we will see these are particularly natural for our algorithm.)

If we consider each triangle as flat, this assignment defines a
cone metric on the mesh, with nonzero curvature only at vertices. If
we are allowed to change connectivity, then there are many ways
to describe the same metric: if we perform an intrinsic edge flip
(Figure 3), the metric does not change, but we get new connectivity
and new edge lengths (M’, £’).

We can convert a description of a metric in terms of edge lengths
to a (nearly) uniquely defined one if we require that the mesh M is
Delaunay. In other words, given a pair (M, £), we can produce a pair
(M, ) = Del(M, £) such that each edge e of M satisfies the intrinsic
Delaunay condition a; +a; < 7, where a;, a; are the triangle angles
opposite edge e. In terms of edge lengths, the Delaunay condition
for edge e is equivalent to a simple rational expression:

£(a)? + £(b)? — £(e)?
2t(a)t(b)

2(c)? +¢(d)? — £(e)?
20(c)t(d) -

@
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Fig. 3. Intrinsic flip. Week’s flip algorithm uses Ptolemy formula for £(e”)
which coincides with the Euclidean length if the angles opposite to e’ sum
up to .

edge a flip @btab’=1 _
a’b—ab®+1 -0
b +ab® +1 o
—a a
—a edge b flip
L7

he

Fig. 4. Penner cell decomposition of cone metrics with 3 vertices and 3
edges (Figure from Capouellez and Zorin [2023])

Del(M, £) can be computed using the standard intrinsic Delaunay
flip algorithm, which repeatedly flips every edge that does not satisfy
this condition until none are left.

If we fix the connectivity M, then there is a set of choices of cone
metrics for which M is Delaunay. This set of metrics is called a
Penner cell of M, which we denote P (M). For each cell, we have
local coordinates for metrics, which are simply the edge lengths ¢.

Penner cells cover the whole space of metrics with a fixed set
of vertices and surface genus (Figure 4). Two adjacent cells differ
by a single flip at an edge e. Since the sum of angles opposite e is
equal to 7 at the boundary between the cells, this flip corresponds
to a simple transformation for the lengths, defined by the Ptolemy
formula. Removing e and inserting the flipped edge €’ in a pair of
adjacent triangles with external edges £, £, {;, {; corresponds to

the edge length update ¢’ (¢’) = w, and ¢’ (f) = ¢(f)
for all edges f # e. These formulas define a transition from lengths
with respect to connectivities M and M’ of two adjacent cells. We
denote this transition map 7(f).

The idea of Penner coordinates is to extend the length coordi-
nates ¢ on one, arbitrarily picked, cell (Mp) to the whole space of
metrics, by using the formulas above as transition maps. Note that
the formula can be applied to an assignment of positive numbers
to the edges whether these correspond to actual lengths (i.e., sat-
isfy triangle inequality) or not. Then for a chain of flips of edges
ei, ..., en connecting two connectivities M and My, we can define
the transition map (M, Mp) : Rive - Ri\]@ as the composition
Tn © Tn—1 © - - - o 77 of the transition maps for the individual flips.
These transition maps are smooth and well-defined, i.e., they do not



depend on the sequence of flips used to construct the map [Penner
1987].

More formally, given a connectivity My and a metric (M, ) the
Penner coordinates of (M, £) are defined as follows:

Definition 4.1. [Capouellez and Zorin 2023] Penner coordinates
for a cone metric with length coordinates (M, ) in Penner cell P (M),
with respect to My is a vector Pyg, (M, £) of positive numbers in
Ri\]e defined as Py, (M, £) = (M, Mp) (). i.e., simply the coordinate
change from P (M) to P (Mp) by a composition of Ptolemy formulas.

The key features of Penner coordinates that we need for our
algorithm are:

e For a fixed mesh M, any choice of logarithmic edge length
assignments defines a metric. Its canonical representation
(M, 1) can be obtained by the Week’s flip algorithm, which
is identical to the standard Delaunay flip algorithm, but with
length updates based on the Ptolemy formula. It is important
to note that the Delaunay criterion expressed in terms of
lengths is well-defined for Penner coordinates, i.e., does not
require triangle inequality, and Week’s algorithm is guaran-
teed to produce a Delaunay mesh, i.e., at termination, Penner
coordinates become lengths.

e Conversely, for any metric (M, A) its logarithmic Penner co-
ordinates (Mp, A°) can be obtained by finding a flip sequence
connecting M and My and applying Ptolemy transformations
to A at ever flip.

In this way, (logarithmic) Penner coordinates establish a one-to-one
correspondence between the space of metrics on a mesh and RNe.

The idea of extending Algorithm 1 to work on arbitrary meshes
is to apply it to Penner coordinates on a mesh, which allows one to
optimize in a larger space where, e.g., solutions for conformal maps
are known to exist.

5 COMPLETE ALGORITHM

Next, we describe the modified version of Algorithm 1, now extended
to solving the system over the whole space of metrics. Compared
to the naive version, the most significant change to the algorithm
is that the optimization is performed in Penner coordinates, i.e.,
variables assigned to the edges of the initial connectivity, which
may not satisfy the triangle inequality.

To compute the angles that are needed both for constraints and
constraint Jacobians in the algorithm, we simply apply the flip
algorithm with Ptolemy length changes, to find the connectivity M
which is Delaunay with respect to the updated coordinates 1. As M
is Delaunay w.r.t, 1, the triangle inequality is satisfied, and angles
can be computed. Our constraint function F in Penner coordinates
thus becomes

F(4) = Ca(Del(Mp, 1)) —© =0 3)

The rest of the algorithm is largely unchanged, but some addi-
tional work is also necessary to update the angle Jacobian V,«a
and the constraint matrix C in Penner coordinates, which we now
delineate.
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Fig. 5. Dual loop update for a flip.
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Jacobian update. In order to compute
Via = Vja - V,Del

we need to compute the Jacobian V)Del of the transition map to
the Delaunay connectivity M. We use an incremental update of the
Jacobian matrix as in Capouellez and Zorin [2023]. Specifically, the
function DIFFPTOLEMY(M, ¢, e) computes an update matrix corre-
sponding to the Jacobian of the transition map corresponding to
the change of coordinates resulting from flipping the edge e, with
incident edges a, b, ¢, d as in Figure 3. Define the standard shear
_ tale
=ty
The matrix of derivatives of the transition map with respect to A,
is an identity matrix, except the rows corresponding to e, which is
zero except the subrow corresponding to edges e, a, b, ¢, d, which
has the form:
~ 2t 2 2 2
Deleabed) = |7 00 T30 Top Tor
By the chain rule, V;Del is simply the product of the matrices
corresponding to the sequence of flips determined by the flip algo-
rithm.

Constraint update. Another complication that needs to be ad-
dressed is the update of the constraints themselves, which must be
formulated in the Delaunay connectivity M where we can compute
angles. The update of the vertex angle constraints is simple: the
angles incident at the vertex in M are used for the constraint; the
update for the loops is more complicated.

During each intrinsic flip and for each dual loop Lj, we find a
dual loop on the flipped mesh M’ that is topologically equivalent
to the dual loop on the original mesh M. More formally, we find a
loop L;. that is homotopic to the original loop Lj, in the sense that
the closed loop of dual edges defined by L; can be continuously
deformed to that of L;., without passing through cones. Since the
intrinsic metric is flat away from cones, the holonomy of these two
dual loops with respect to the metric (which is unchanged by the
intrinsic flip) will be the same.

If L; does not intersect the pair of adjacent triangles Ti, T> where
a flip occurs, then there is nothing to do and the loop is left un-
changed. If a dual loop does contain Tj or T, we locally modify it
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so that it enters and exits the flipped triangle pair T, T, across the
same edges as in the original mesh. Three representative cases are
illustrated in Figure 5. The constraint matrix is then recomputed for
the new triangulation; the function UPDATECONSTRAINTS returns
the updated matrix.

Line search. We use a backtracking line search. Since our extended
Newton method does not correspond to a (known) convex energy,
we cannot use a sufficient decrease condition, so instead we use the
following conditions for the step size f:

(1) The norm of the constraint vector does not increase,
IF(A+pad)|l < [[F(Dl

(2) The direction of the constraint vector does not reverse,
F(A)-F(A+pd) >0

The first condition ensures that we make global progress in each
iteration toward satisfying our constraints, and the latter condition
ensures that our descent direction remains a descent direction at
the end of the line step.

Algorithm 2: Seamless parametrization algorithm.

Input :triangle mesh M = (V, E, F), closed, manifold,
edge lengths £ = eA'/2

inequality,

target angles © > 0 respecting Gauss-Bonnet at

vertices, and on a basis of dual loops.

Output:triangle mesh M= (v, E, 15),
A/2

satisfying triangle

edge lengths e”/“ satisfying triangle inequality,
with angles maxg ||© — Ol < e.
1 Function FEasIBLESEAMLESs(M, 10, ©):

2 A A0

3 while notConVERGED(M, 1) do

4 M,A,D,C « DiFFMAKEDELAUNAY (M, A, C)
5 a,V o= COMPUTEANGLESANDGRADIENT(M, )I)
6 VF <« CV ja D

7 L « VFVFT

8 Solve Ly = —F

9 d— VFTy

10 p « LINESEARCH(A, d)

11 Ae—A+pd

12 returnMAKEDELAUNAY (M, 1)

13 Function DiFFMAKEDELAUNAY(M, A, C):
14 ]\;I,j. — M, A

15 D« 1d

16 Q « {e|NoNDELAUNAY(M, A, €) }

17 while O # 0 do

18 remove e from Q

19 M, ) — ProLEmYFLIP(M, A e)

20 D « DirrPToLEMY (M, A e)-D

21 C « UPDATECONSTRAINTS(M, i, C,e)

22 return M, i, D,C
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Postprocessing: overlay meshes. Once the final lengths on the mesh
are computed, these need to be mapped to a refinement of the
original connectivity (the overlay mesh). We use the approach of
Capouellez and Zorin [2023] to do this without changes. Briefly,
the intersection points of the original edges and flipped edges are
tracked through the flips. As the Penner coordinates in intermedi-
ate configurations do not necessarily satisfy the triangle inequality,
hyperbolic geometry considerations are used to assign edge co-
ordinates to these vertices. At the end of the process, lengths are
assigned to the edges of the overlay mesh, and it is mapped to the
plane using a layout process similar to Springborn et al. [2008]. The
process is fast and robust. Whenever possible, inserted vertices are
removed, resulting only in a small percentage increase in mesh size
relative to the original [Capouellez and Zorin 2023].

Preprocessing: intrinsic improvement. Since our method is fun-
damentally intrinsic, it is amenable to intrinsic preprocessing to
improve the initial triangle quality without modifying the original
geometry. Intrinsic Delaunay refinement [Sharp et al. 2019b], which
inserts vertices in triangles with small angles to improve triangle
quality while maintaining the Delaunay property with edge flips, is
a particularly natural choice. Such vertex insertion is guaranteed
to produce meshes with a minimum triangle angle of up to 30° at
almost all vertices; however, thin needle-like features (see inset)
with a very small total angle at a vertex cannot be improved by
such intrinsic refinement. We use the implementation provided by
Sharp et al. [2019a] with vertex insertions sufficient to produce tri-
angle angles all above some threshold i, (away from needle-like
features).

A simpler complimentary approach for intrinsic pre-
processing is to interpolate between the Penner coor-
dinates A° of the original metric and perfectly regular
Penner coordinates A = 0, which corresponds to a met-
ric of completely equilateral triangles with a uniform
angle of 60°. In other words, rather than initializing
our method with A « 1%, we can use A « A% for any
B € [0, 1]. Such interpolation can achieve arbitrarily
regular triangles, but there is a trade-off between the
initial triangle quality and the final geometric distor-
tion as A ~ 0 may initialize the optimization with a
metric already far from A°.

We use a line search A° = "1 with f = 0.9 un-
til min ar(1°) > amin. We also recenter A%, which corresponds to
a global scaling with no impact on e, after interpolation so that
the average Penner coordinate does not change, i.e., Nie Secp A =

NL Y ecE Ae. This allows us to partially reduce the geometric distor-
tion of the interpolation without compromising triangle quality.

6 MATHEMATICAL CONSIDERATIONS

The empirical performance of the algorithm shown in Section 7
provides strong evidence that the algorithm is likely to be related
to a convex optimization problem: it is highly unlikely that Newton
method in a vast majority of cases converges in a near-optimal num-
ber of iterations, and in all tested cases converges to a solution (with
some caveats for extremely poor quality meshes). At the same time,
three closely related problems do correspond to convex problems:



(1) metric optimization of convex objectives described in Capouellez
and Zorin [2023] subject to angle constraints at vertices, but not
on dual loops, (2) the conformal mapping based on scale factors
described in Campen et al. [2021]; Gillespie et al. [2021], and (3) the
similarity mapping based on a scale-factor 1-form ¢ described in
Campen and Zorin [2017b], with details on the convex functional
provided in Campen and Zorin [2017a].

Comparison to metric optimization. Our algorithm is very close
to the projected gradient algorithm of Capouellez and Zorin [2023],
but is different in critical respects. The most important difference
is the absence of conformal projection. The algorithm of Capouellez
and Zorin [2023] performs a conformal projection at every state to
enforce constraints, which requires an inner loop conformal solve,
and more importantly limits the supported constraints to the ones
conformal maps support (i.e., not full seamless constraints).

The second major difference is the absence of explicitly optimized
energy. While this limits the type of parametrizations the method
can produce, at the same time, this has a substantial impact on
the algorithm’s performance. Note that the method described in
Capouellez and Zorin [2023] is inherently a first-order method,
with linear convergence. To apply a second-order Newton method
in the setting of constrained optimization, would require second
derivatives of the constraints. However, these are known to be
discontinuous. At the same time, our method is a Newton method
with quadratic convergence, and only first derivatives of constraints
are needed.

Comparison to conformal mapping. As described in Section 3, con-
formal methods, e.g., Campen et al. [2021]; Gillespie et al. [2021],
operate in a reduced subspace of Penner coordinates spanned by
logarithmic scale factors u € RNv. They minimize the convex func-
tion

E@ = ) (2 G dp de) = (i +uj + )| + OT
TeM

where a,b,c and i, j, k are the edges and vertices of triangle T’

respectively (see inset), and Oy are the vertex angle constraints.
As in our method, (M, /{) = Del(M, 1),

where Ag = A% +u; +u . f is a per-triangle

(
function involving Milnor’s Lobachevsky
C function [Springborn et al. 2008, Eq. (8)]
a with the important property that
k 2
f _ T
b —_— = ak,
j 0Aa

and the gradient of E(u) is precisely the ver-
tex constraints.

The iteration of our algorithm is very similar to the Newton
iteration used to solve for conformal maps in Gillespie et al. [2021]
and Campen et al. [2021]. There are several important differences:
most significantly, as we use N, length variables, rather than N,
vertex scale factors, we can introduce V+2g—1 holonomy constraints,
with degrees of freedom to spare. As the optimization problem in the
conformal case is fully constrained, there is no additional objective
optimized directly or indirectly. In our case, each iteration optimizes
the deviation from the metric at the previous step. For this reason,
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as in Capouellez and Zorin [2023], we evaluate the descent direction
and the Jacobian of constraints in Penner coordinates, i.e., with
respect to the initial mesh connectivity.

Comparison to similarity mapping. Similarity methods, e.g., [Campen
and Zorin 2017b], use the energy

EW) = Y 9wl .yl y) TPty
TeM
where lﬁlT is the value of the closed one-form i on the edge of
triangle T opposite vertex i, and P* is the pseodoinverse of a matrix
formed by coefficient vectors for a basis of closed one-forms. Like
f, the function g is a triangle function that depends on Milnor’s
Lobachevsky function with the corresponding property that

7]
1
Similarity map problems were also considered in a similar context
in Rivin [1994]. While these methods were developed in a fixed
connectivity setting and a fully rigorous analysis using Penner co-
ordinates is still absent in the literature, the theoretical extension is
straightforward.

The mathematical approach used successfully to obtain varia-
tional principles for seamless constraints do not directly apply in
the metric setting since the similarity methods produce a discrete
scaling one-form that generally will not be exact and thus not in-
tegrable on the surface. However, we note that, intuitively, there
are more than enough of degrees of freedom (N,) in the metric A to
satisfy (N, — 1) + 2g constraints, and the N, — 1 vertex constraints
can be satisfied using the conformal degrees of freedom alone.

Invalid signatures. Unlike in the similarity setting, in the metric
setting there are holonomy signatures that theoretically cannot
be satisfied by any seamless parameterization. The known invalid
signatures are:

e any signature with exactly two cones of angles 37/2 and
51/2, and

e a signature with no cones but nontrivial dual loop holonomy
angles, i.e., k§ # 0 on simple loops.

The first case is considered in [Izmestiev et al. 2013; Jucovi¢ and
Trenkler 1973] and the second follows from the classification of flat
metrics on a torus which all correspond to periodic tilings of the
plane by parallelograms, and have trivial holonomy.

By the discrete Gauss-Bonnet theorem, these particular invalid
cone prescriptions are only possible on genus 1 surfaces. They can
also be interpreted in our metric setting. For instance, signatures
with no cones correspond to flat tori, and the holonomy of any
dual loop on a flat torus is necessarily trivial, so the loop holonomy
constraints are redundant with the vertex angle constraints.

Verifying that our algorithm produces a valid solution whenever
one exists, or identifying cases when it does not work is an important
future direction.

7 EVALUATION

We evaluated our method on 94 closed meshes with challenging
fields provided in the dataset of Myles et al. [2014]. Our method pro-
duces a parameterization satisfying both vertex and loop holonomy

ACM Trans. Graph., Vol. 43, No. 4, Article 61. Publication date: July 2024.
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Fig. 6. Top: Distributions of mesh face counts, cross-field cone counts, and
surface genus for the dataset of Myles et al. [2014]. Bottom: Distributions
of iteration counts, average linear solve times, and RMSRE errors for our
method. Outliers are aggregated in the rightmost bin.

constraints without exception in under fifty iterations, with the
main bottleneck being a sparse linear solve for the descent direction,
and the resulting parametrizations exhibit low geometric distor-
tion. Example parametrizations are provided in Figure 11. Intrinsic
preprocessing is only necessary for three meshes with poor trian-
gle quality, and the final geometric distortion is qualitatively low.
We also measure the distortion quantitatively in terms of Penner
coordinates using the Root Mean Squared Relative Error

2\ 1/2
0 1 (te—£
RMSRE(¢, £°) = ZE = ,
e

ecE

where ¢° are the lengths of the original embedding metric. Distribu-
tions of the dataset constraints and the performance of our method
are provided in Figure 6.

Topological robustness. To evaluate the reliability of our method
on surface meshes with more varied and extreme topology, we
also tested our method on a dataset derived from Thingi10k [Zhou
and Jacobson 2016]. As our focus in this experiment is topological
robustness, i.e., the ability of the algorithm to handle high genus
joined with complex geometry, as well as complex fields, we used
the remeshed version of the dataset included with Hu et al. [2018],
which includes almost all meshes from the original dataset, but with
triangle quality improved to have worst inradius to circumradius
ratio typically above 1074, in contrast to the original dataset con-
taining many models with numerically degenerate triangles. As a
significant fraction of meshes produced by Tetwild are non-manifold,
but not in a fundamentally difficult way (i.e., a union of manifold
3D domains attached at edges and/or vertices), we separated all
non-manifold meshes into closed manifold components, and split
all meshes with at most 10 components into separate meshes, and
selected meshes with nontrivial genus. Smooth cross-fields and cor-
responding holonomy angle constraints were computed for this
dataset, and meshes for which the resulting vertex angle constraints
were theoretically unsatisfiable were discarded (3-5 torus topology
[Shen et al. 2022], 0 cone angles, and tori without cones but with
nontrivial holonomy). In total, we obtained 16156 meshes by this
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Fig. 7. Modified Thingi10k dataset and result statistics. 548 meshes have
genus above 20, with a maximum value of 4307.

procedure. Statistics for this dataset and our method’s performance
on it are shown in Figure 7. This dataset contains extremely high
genus meshes that impose proportionately many loop holonomy an-
gle constraints, but our method quickly produces parametrizations
satisfying these constraints with low distortion. The output and
performance of our method on some of the highest genus meshes
in this dataset are presented in Figure 10.

Intrinsic preprocessing. We evaluated both intrinsic preprocess-
ing approaches, i.e., refinement and interpolation, on the closed
manifold meshes of the original Thingi10k dataset [Zhou and Jacob-
son 2016]. After discarding meshes with degenerate triangles (with
angles or lengths less than 1071°), we obtained a dataset of 5342
connected meshes with generally poor triangle quality. By splitting
the disconnected meshes into separate manifold components, we
obtained a larger dataset of 27180 meshes. In order to test on this full
dataset, we applied simple heuristics (e.g., adding random cone pairs)
to minimally modify any theoretically unsatisfiable constraints and
produce a valid holonomy signature.

Unlike the extrinsic Tetwild remeshing, neither intrinsic method
individually succeeded on the dataset for any choice of apyjn. How-
ever, either intrinsic refinement or interpolation succeeded on the
full dataset of 27180 meshes with some ap,j, within 500 iterations.
That is, we parameterize any closed nondegenerate mesh in the
original Thingi10k dataset using only intrinsic methods for prepro-
cessing.

In Figure 8, we show the percentage of the 5342 connected models
that failed to converge in 100 iterations with a timeout of 1 hour
for increasing values of ap,in. Note that for larger values of ayin
the number of failures with interpolation actually starts to increase.
This degradation in performance is not surprising as the change
in initial triangle angles a(A°) resulting from small values of
may increase the initial angle constraint error F(SA%), e.g., at high
valence vertices. More iterations may thus be required to satisfy the
angle constraints, and poorly conditioned triangles can arise in later
iterations. We also note that the intrinsic refinement increases the
mesh size and thus increases the per-iteration cost of our method,
although we found that the increase in per-iteration time is often
well compensated by a decrease in the total number of iterations.
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Fig. 8. Convergence results on connected, nondegenerate meshes in the
original Thingi10k dataset with intrinsic preprocessing. Refinement and
interpolation are performed until some minimum triangle angle threshold
Omin is satisfied (away from needle-like features for refinement).
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Fig. 9. Comparison of the performance of our Newton method with the
projected gradient descent method of Capouellez and Zorin [2023] on the
dataset from Myles et al. [2014]. We plot (a) the number of linear solves
required by our method to converge to maxe [|© — O] < 1072, against
(b) the number of linear solves in projected gradient descent necessary to
achieve the same geometric distortion |[|A — A°||,. We also compare the
average time for each linear solve and the final energies after running the
metric isometry optimization to convergence.

Metric optimality. As stated above, our algorithm minimizes the
norm ||A — A%, at each Newton iteration, but, since our constraints
are nonlinear, our final solution only approximately minimizes this
norm. In contrast, Capouellez and Zorin [2023] explicitly optimizes
the isometry energy ||A—1°| |§ while satisfying the same vertex angle
constraints as our method; however, this method provides no control
over loop holonomy angle constraints. In Figure 9, we compare the
performance of this alternative approach and our method with only
vertex angle constraints. Our method produces a comparable amount
of geometric distortion while on average requiring fewer linear
solves.

Symmetric Dirichlet post-processing. Once an initial seamless pa-
rameterization is obtained, it can be robustly optimized further to
improve isometry using the symmetric Dirichlet energy by New-
ton’s method with linear constraints to preserve seamlessness. We
optimized our parameterizations of the dataset from Myles et al.
[2014]; examples of parameterizations before and after optimization

Seamless Parametrization in Penner Coordinates « 61:9

are demonstrated in Figure 13. Unlike conformal methods, which
can produce extreme geometric distortion and consequently nu-
merical instability, our method produces initial parameterizations
that are already approximately isometric and thus amenable to such
optimization, and in most cases such post-processing is not needed.

Arbitrary loop holonomy angle constraints. While we primarily
focus on parameterizations satisfying angle constraints arising from
frame or cross-fields, our method also supports arbitrary holonomy
angle constraints, including angle constraints that are not integral
multiples of /2. We demonstrate the effect of increasing the con-
straint for a single dual loop on the resulting parameterization in
Figure 12. While the parameterization quality suffers from this ex-
treme geometry distorting constraint, our method is still able to
robustly produce a valid solution.

Robustness compared to state-of-the-art UV and hybrid methods.
Our method succeeded on the closed meshes of the dataset intro-
duced in Myles et al. [2014] and used in a few papers, with original
connectivity and fields as input, as well as on 100% of 16,147 mesh
dataset described above. We focus on methods that solve the seam-
less parametrization problem, i.e., aim to satisfy both angle and loop
constraints.

The method of Myles et al. [2014] succeeds in producing a seam-
less parametrization (along with T-mesh partition) for all shapes,
but for four, all closed, needs to add cones, and for 39 required
T-mesh modification, which may result in changes in holonomy
on loops. Three other methods evaluated in that paper are: orig-
inal MIQ [Bommes et al. 2009], the IGM method [Bommes et al.
2013] (did not find a solution in 25% of cases), and MIQ combined
with the convexified bijectivity constraints [Lipman 2012] (did not
find a solution in 17%). Analyzing the data, we also observe that
while the remaining parameterizations are always bijective, they
often introduce integer-index cones, i.e., do not preserve holonomy
signature.

More recent work includes Campen and Zorin [2017a] which suc-
ceeds on the whole dataset of Myles et al. [2014], but produces only
similarity maps, not seamless maps. Most importantly, the recent
method Shen et al. [2022], while having theoretical guarantees, fails
on the highest genus models (6% of nontrivial genus models, highest
genus around 100) in Myles et al. [2014] due to the extreme distor-
tion of the intermediate maps it generates, and requiring expensive
path rerouting and optimization steps in the end. In contrast, our
method succeeds on the whole set (to the best of our knowledge, the
first one, without using cone insertion or cone or holonomy angle
modification).

8 CONCLUDING REMARKS

The main limitation of our algorithm that we have observed so far
is sensitivity to extremely bad mesh quality, which is somewhat
higher than for conformal maps. At the same time, its performance
on a large dataset, along with theoretical considerations suggests
that there are fundamental reasons for its convergence behavior, in
particular, that can be connected to convex function optimization.
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We identify several promising directions for future research: (1)
placing the algorithm on a solid theoretical basis, and fully describ-
ing constraints on the holonomy signature for which it does not
produce a seamless parametrization. (2) While the extension to han-
dling boundaries is straightforward, following the doubling process
described in Campen et al. [2021], the extension to constraints on
sharp features (e.g., requiring features to be straight and axis aligned
in parametric domain) requires more work. Techniques for doing
this in angle variables were developed in Myles and Zorin [2013].
(3) The algorithm produces feasible seamless parametrizations but
optimizes a specific energy only indirectly. (4) Due to its simplicity,
it is amenable to domain decomposition and hierarchical extensions,
to scale it to large meshes.

ACM Trans. Graph., Vol. 43, No. 4, Article 61. Publication date: July 2024.
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Fig. 10. Parametrizations produced by our method for the modified Thingi10k dataset with per-edge symmetric stretch factors and mesh statistics.
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Fig. 12. Parametrizations produced by our method with an increasing holonomy angle constraint for a single dual loop. We increase the angle constraint from
an initial value arising from a cross field in increments of /4.
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Fig. 13. Comparison of quality of parametrizations before (blue) and after (purple) symmetric Dirichlet optimization with seamless constraints. Histograms
show the distribution of per face symmetric Dirichlet values. Left: our parameterization already has low geometric distortion, and is largely unchanged by

further optimization. Right: intrinsic metric interpolation was used to improve the initial triangle quality, and our parameterization is distorted, but symmetric
Dirichlet optimization is able to produce a visually pleasing result.
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