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Abstract

An explicit construction is presented of homotopy-invariant iterated integrals on a
Riemann surface of arbitrary genus in terms of a flat connection valued in a freely gen-
erated Lie algebra. The integration kernels consist of modular tensors, built from con-
volutions of the Arakelov Green function and its derivatives with holomorphic Abelian
differentials, combined into a flat connection. Our construction thereby produces ex-
plicit formulas for polylogarithms as higher-genus modular tensors. This construction
generalizes the elliptic polylogarithms of Brown-Levin, and prompts future investiga-
tions into the relation with the function spaces of higher-genus polylogarithms in the
work of Enriquez-Zerbini.
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1 Introduction

In a variety of research areas in theoretical physics, polylogarithms and related iterated inte-
grals have become almost as widely used as elementary functions. In particular, perturbative
computations in quantum field theory and string theory have benefitted significantly from
the systematic investigation of iterated integrals on the sphere and the torus, namely on
Riemann surfaces of genus zero and one. At genus zero, mathematical advances on mul-
tiple polylogarithms have become a driving force behind sophisticated loop calculations in
high-energy physics and evaluations of higher-order effective interactions in the low-energy
expansion of string theory. At genus one, the construction of elliptic polylogarithms in the
mathematics literature has dramatically increased our computational reach in quantum field
theory and string perturbation theory and spawned a vibrant collaboration between these
two communities. Comprehensive overviews of the literature may be found in reviews and
white papers, such as [1, 2, 3, 4] for quantum field theory and [5, 6, 7, 8, 9] for string theory.

A major impetus for the use of polylogarithms and their elliptic analogues is the fact that
they span a space of functions which is closed under taking primitives. As a result, integration
is rendered completely algorithmic. This property is at the source of the ubiquity of genus-
zero polylogarithms [10, 11, 12] in the study of quantum-field-theory amplitudes [13, 14,
15, 16] and string-theory amplitudes [17, 18, 19]. Elliptic polylogarithms were introduced
in [20, 21, 22], used to reformulate Feynman-integral calculations in [23, 24, 25, 26], and
applied to one-loop string amplitudes in [27, 28].

The formulation of elliptic polylogarithms crucially hinges on the existence of suitable
integration kernels, which were identified in [22] and naturally enter genus-one string am-
plitudes [29, 27, 30, 31]. For the torus, these kernels are usually expressed via Jacobi theta
functions, obtained by expanding certain Kronecker-Eisenstein series, and combined into
a flat connection. The flatness of the connection guarantees homotopy invariance of the
iterated integrals generated by its path-ordered exponential. The translation of Kronecker-
Eisenstein kernels from tori to elliptic curves was performed in [26].

Higher loop orders of scattering amplitudes in both quantum field theory and string
theory involve functions and integrals on higher-genus Riemann surfaces, whose role in string
theory dates back to the early days of the subject [32, 33, 34, 35]. In Feynman integrals,
both hyperelliptic curves [36, 37, 38] and higher-dimensional geometric varieties, such as
Calabi-Yau spaces, have recently been encountered [39, 40, 41, 42, 43]. However, a general
and explicit construction of the functions necessary to describe Feynman integrals and string
amplitudes beyond (elliptic) polylogarithms was still missing. For polylogarithms on higher-
genus Riemann surfaces, proposals to characterize the function spaces and flat connections
have been advanced in the mathematics literature by Enriquez [44] and Enriquez-Zerbini
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[45, 46], but these have not yet led to tractable expressions for the individual polylogarithms
necessary for physics applications. An investigation into the precise relation between these
proposals and the construction presented here is relegated to future work.

In this paper, we shall eliminate this bottleneck for compact Riemann surfaces of arbitrary
genus and present a generating series of homotopy-invariant iterated integrals that generalize
the polylogarithms and their elliptic analogues to concrete expressions at arbitrary genera.
These higher-genus polylogarithms are built out of modular tensors and can be organized to
themselves enjoy tensorial modular transformation properties.

Our main result here is to provide an explicit proposal for the higher-genus generaliza-
tion of the integration kernels and flat connection of Brown and Levin. The higher-genus
integration kernels in this work share the logarithmic singularities of their genus-one coun-
terparts and the Lie algebra structure of the formulation of Enriquez and Zerbini [45] (see
also [47, 44] for earlier work). While the meromorphic higher-genus connections in the math-
ematics literature exhibit multi-valuedness [44], or poles of arbitrary order [45] in marked
points, our construction features non-meromorphic kernels which reconcile single-valuedness
with the presence of at most simple poles.

Instead of extending the Jacobi theta-function or elliptic-curve description of the Brown-
Levin integration kernels used at genus one, our construction on Riemann surfaces of arbi-
trary genus is driven by the Arakelov Green function [48, 49] which, in turn, is built from the
prime form [50] and Abelian integrals (for a recent account see [51]). We employ convolutions
of Arakelov Green functions and their derivatives with holomorphic Abelian differentials to
construct higher-genus analogues of the Kronecker-Eisenstein-type integration kernels that
were crucial for elliptic polylogarithms. The differential properties of the Arakelov Green
function then lead us to identify a flat connection which in turn yields infinite families of
homotopy-invariant iterated integrals to be referred to as higher-genus polylogarithms.

The Arakelov Green function is by now widely used in string perturbation theory [52, 53,
51, 54, 55] and has stimulated the construction of tensor-valued functions on the Torelli-space
of compact genus-h Riemann surfaces [56, 57, 58, 59]. Our integration kernels for higher-
genus polylogarithms enjoy similar tensorial transformation properties under the modular
group Sp(2h,Z) of compact genus-h Riemann surfaces and are related to the vector-valued
modular forms investigated by van der Geer and collaborators in [60, 61, 62].

Organization

In section 2, we review the construction of polylogarithms at genus zero following Goncharov
and at genus one following Brown and Levin, while emphasizing the role played by flat
connections. Section 3 provides a summary of the function theory on Riemann surfaces of
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arbitrary genus h that will be needed here, including the Arakelov Green function. We use
these tools to build the Sp(2h,Z) modular tensors needed for the explicit construction of a
flat connection valued in a Lie algebra that is freely generated by 2h elements. In section 4,
we use this connection to construct the promised higher-genus polylogarithms. We discuss
their modular properties; provide examples at low order; discuss their meromorphic variants;
give evidence for their closure under taking primitives; and present a proposal for higher-
genus generalizations of elliptic associators. In section 5 we generalize the higher-genus
connection to the case of multiple marked points on the surface. In section 6 we consider
the behavior of the higher-genus flat connection under separating degenerations and recover
the Brown-Levin connection at genus one from the degeneration of a genus-two surface. We

conclude and discuss some open directions in section 7.
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2 Review of genus-zero and genus-one polylogarithms

The construction of homotopy-invariant iterated integrals on a surface of arbitrary genus,
including genus zero and genus one, is based on the existence of a flat connection. We begin
by reviewing this well-known construction. A flat connection J on a Riemann surface 3,
which takes values in a Lie algebra L, is defined to satisfy the Maurer-Cartan equation,

dJ-JNT =0 (2.1)

As a result, the differential equation dI' = JT is integrable (and so is dI" = —T"7). Its
solution I takes values in the simply-connected Lie group associated with £ and is given by
the path-ordered exponential along an arbitrary open path C between points zg, z € 3,

IN(OEE Pexp/cj(-) = Pexp/0 dt J(t) (2.2)

We have parametrized the path C by ¢ € [0,1] with C(0) = 2o and C(1) = z and set
J = J(t)dt. The path-ordered exponential is defined by placing J(t) to the left of J(t') for
t > t’' following physics conventions. Its expansion in powers of J takes the form,

Pexp/oldtJ(t):1+/01dt1 J(t1)+/01dt1 /Otl dty J() T (8) + -+ (2.3)

Flatness of the connection J guarantees that I'(C) is unchanged under continuous deforma-
tions of the path C, so that I'(C) depends only on the end-points z5 and z. However, T'(C)
may be multiple-valued in zy and z as these points are taken around non-contractible cycles
on Y. Such iterated integrals will be referred to as homotopy-invariant.

Polylogarithms on surfaces ¥ of arbitrary genus are obtained from the path-ordered
exponential (2.3) by extracting the coefficients of independent words in the generators of L.
Homotopy invariance of T'(C) implies that the resulting polylogarithms are functions of the
endpoints zp and z and the homotopy class of the path C, but do not depend on the specific
path chosen within a homotopy class. In general, the polylogarithms are multiple valued in
z and 2 as these points are taken around a non-trivial homology cycle on .

2.1 Genus zero

Multiple polylogarithms at genus zero are iterated integrals of rational forms dz/(z — s) with
z,s € C. They are defined recursively as follows [12],

le

21—S1

G(817827"' 7STL;Z) = / G(827"' 7SH;Z1) (24)
0
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with initial value G(0;z) = 1 for s, # 0. When s,, = 0, an endpoint divergence is shuffle-
reqularized preserving holomorphicity by setting G(0; z) = In(z) (see for example [63, 2] for
pedagogical accounts). The integer n > 0 is referred to as the transcendental weight. A gen-
erating series for the polylogarithms (2.4) may be constructed starting from the Knizhnik-
Zamolodchikov (KZ) connection Jkz(z) for a Lie algebra L that is freely generated by
elements ey, - - - , e, associated with the marked points s, - - , s,

sz(Z) = Z dz ~ G (2-5)

Since Jiz(z) is a meromorphic (1,0) form in z € C, it automatically satisfies the Maurer-
Cartan equation (2.1) and is therefore a flat connection, away from the points s;. The
path-ordered exponential I'kz(z), produced by the connection Jkz(z) using (2.2) and (2.3),
is homotopy-invariant by construction and depends only on the end-points. Choosing zy = 0
by translation invariance and z; = z, we may organize the expansion of the path-ordered ex-
ponential in powers of Jkz in terms of the generators eq, - - - , e, (of the universal enveloping

algebra of L),
Pexp/ Jxz(-) =1+ Z o G(1o; 2) (2.6)
0 o

The sum runs over all words tv with at least one letter, formed out of the alphabet eq, - - - | e,,,
and we identify G(e;,€iy, -+ €15 2) = G(Siy, Sin, 58,5 2) for ig, -+ i, € {1,--- ,m}.
The construction confirms that every coefficient function G(w;z2) is a homotopy-invariant
iterated integral. Without loss of generality we may set (s1, s2) = (0, 1) by using the SL(2, C)
invariance on the sphere, as a result of which these coefficient functions G(tv; z) reduce to
the standard genus-zero polylogarithms in m—1 variables [10, 11, 12].

2.2 Genus one

At genus zero, the coefficient of each Lie-algebra generator e; in the connection (2.5) is a
single-valued meromorphic (1,0)-form with simple poles (as opposed to higher-order poles).
On a compact Riemann surface of genus h > 1, however, it is not possible to maintain
these properties simultaneously without introducing additional marked points. Instead, the
available options are as follows.

1. a single-valued but non-meromorphic connection with at most simple poles;

2. a meromorphic but not single-valued connection with at most simple poles;

3. a meromorphic and single-valued connection with a single pole of higher order, or poles
of lower order distributed over multiple marked points.
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The Brown-Levin construction of elliptic polylogarithms via iterated integrals [22] follows
option 1, and will be briefly reviewed below.! It will be generalized to higher genus in the
next subsection following option 1. The constructions at genus one following options 1 and 2
will be related at the end of this section, while their relation with option 3 will be relegated
to future work.

2.2.1 The Brown-Levin construction

A genus-one surface 3 with modulus 7 in the Poincaré upper half plane may be represented by
Y. = C/(Z+7Z), and parametrized by local complex coordinates z, Z subject to identifications
z=2z+1and z = z+ 7. The Brown-Levin connection Jgy,(2|7) takes values in the Lie
algebra L generated freely by elements a, b and is given as follows,

JIeL(z|T) = % (dz—dz) b+ dz (a + Z F(z2|7) adg(a)) (2.7)

where ad,(-) = [b,-]. Flatness of the connection, namely d g1, — Jpr, A JpL = 0, requires the
following relations between the coefficient functions f™(z|r),

0" (elr) = —== f" V() fOr) =1 (2.8)

The functions f™(z|7) may be constructed in different but equivalent ways. Following
Brown and Levin, they are given by expanding the doubly-periodic Kronecker-Eisenstein
series )(z, a|T) in powers of an auxiliary parameter a € C,

. Imz\ 97(0]7)01 (24alT) 1
Q = 2 " 2.
(z,alT) exp( i ImT) REEIACD E ot (2.9)
The relations (2.8) immediately result from the following 1dent1ty for Q(z, alr) for z # 0,
T
0:Q(z,a|T) = e Qz, af7) (2.10)

One may obtain the connection Jgy, in (2.7) by a formal substitution o — ad, as follows,
IsL(z|T) = % (dz—dz) b+ dz ad, Q(z, ady|7) a (2.11)
T

The factor ady to the left of ) ensures the cancellation of the pole that Q(z, a|7) has in a.

! An alternative construction of elliptic polylogarithms given in the same Brown-Levin reference [22] relies
on certain averages of genus-zero polylogarithms which preserve meromorphicity. Throughout this work, we
use the term Brown-Levin (elliptic) polylogarithms to refer to the non-meromorphic iterated integrals in [22]
and not to the meromorphic functions obtained from the averaging procedure of the reference.

2 As we shall see below, the relation for n = 1 actually holds up to a é-function, 9; f(V)(z) = w6(z) —n/Im 7,
so that the corresponding relation (2.8) holds for z # 0, as does the flatness condition of Jpr. Throughout,
we shall set d®z = £dz A dz and normalize the é-function by [ d*z6(z) = 1.

8



2.2.2 Alternative construction via convolutions of Green functions
An alternative construction of the functions f(™(z|7), and the one that will generalize to

higher genus, is in terms of the scalar Green function g(z|7) on 3, which is defined by,

0:0, g(z|1) = —7md(2) + S /zd2z g(z|T) =0 (2.12)

Imr

and may expressed in terms of J-functions and the Dedekind eta-function n as follows,

Nz |* (2=2)?
=—1 — 2.1
otelr) = —tn |2 7D (2.13)
Furthermore, we define two-dimensional convolutions of g recursively as follows,
d*x
Guni(2]7) = | 1 g(z=|7) gu(2|7) g1(z|7) = g(x[7) (2.14)
s ImT
In terms of these convolutions g,(z|7) the integration kernels f™(z|7) are given by,
F () = =0 gn(zI7) (2.15)
and may thus also be defined recursively by convolutions over 3 [31],
(m) dr (n-1)
[T == | —— Y (e=zfr) f7 (2|7) n=>2 (2.16)
s Im 7

We note that, in co-moving coordinates u,v € [0,1] with z = ur+wv, the non-holomorphic
prefactor in the definition (2.9) of Q(z, a|7) becomes e*™** so that, for fixed u, v, the functions
f™(ur+v|7) are holomorphic in the modulus 7.

2.2.3 Modular properties of the Brown-Levin construction
Under a modular transformation on the modulus 7, z, and « given by,

—>~—AT+B - Z= : — Q= a (2.17)
T 7—_C'7'+D : Z_C’7'+D @ a_CT+D ’

where A, B,C, D € Z with AD—BC = 1, the Kronecker-FEisenstein series €2 and the functions
f™ in (2.9) transform as modular forms of weight (1,0) and (n,0), respectively,

7) = (C1 + D)"f™(2|7) (2.18)



These transformation properties may be readily established by using (2.9) and the transfor-
mation properties of the Jacobi ¥-function,

91 (3,d|7) = e (CT + D)2/ €7D0y, (2|7) e =1 (2.19)

or the modular invariance of the functions g,(z|7) along with the relation (2.15). The
modular properties of the Brown-Levin connection and polylogarithms are most transparent
by assigning the following transformation law to the generators a,b in (2.11),

- b

a— a=(Ct+ D)a+ 2miCb b—b= criD (2.20)

This choice renders the flat connection Jpr, modular invariant under (2.17). The extra
contribution 2wiCb to a in (2.20) is engineered to compensate the transformation of the first
term in the expression (2.11) for the connection

7Td2~_C7"+D Tdz

Im7  Cr+ D Imrt (2.21)

2.2.4 Homotopy-invariant iterated integrals

Homotopy-invariant iterated integrals on a genus-one surface are constructed by expanding
the path-ordered exponential in terms of words in the (rather frugal) alphabet a, b as follows,

Pexp /0 Ton([r) =1+ 1w (rw; 2|7) (2.22)

The Brown-Levin connection [Jgp, can be found in (2.11), and the sum runs over all words
to with at least one letter, formed out of the alphabet a,b. The construction guarantees
that every coefficient function I'(w; z|7) is a homotopy-invariant iterated integral. These
functions were dubbed elliptic polylogarithms in [22].

In this construction, the requirement of doubly-periodicity introduces non-holomorphicity
into the functions f™(z|7), into the connection Jgr,, and into the elliptic polylogarithms in
(2.22). Still, any z-dependence of I'(tv; z|7) occurs only via polynomials in 27i(Im z)/Im 7,
so that the key structure is carried essentially by meromorphic iterated integrals.
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2.2.5 Meromorphic variant

Given the meromorphic counterparts of the doubly-periodic Kronecker-Eisenstein series
Q(z,a|7) and its expansion coefficients f™(z|7) of (2.9),

P (0|7)0 (24| T) o (n
PNEDIACE Za (2|7) (2.23)

a meromorphic variant of the Brown-Levin polylogarithms (2.22) may be recursively defined
as follows [26],

f‘(f{} [ ;z|7‘) = / dz g(”l)(zl—a1|7')f‘(f{§ o Z:;zl|7') (2.24)
0

with ['((); z|7) = 1 and 7, n; € Ny. These meromorphic elliptic polylogarithms coincide with
the formulation via I'( 4! 52 §7;2|7) in [27] on the real line and exhibit a closer analogy
to the recursive definition (2.4) at genus zero than the I'(to;2|7) in (2.22). However, the

meromorphic integration kernels g™ (z|7) in (2.23) such as

I
O (zr) = 1 gD (elr) = 0. vy (27) = fO(ef7) —2mi = (2.25)
ImT
which enter the construction (2.24) of I' are generically multiple-valued on the torus, and

thus more properly live on the universal covering space, which is C.

Note that the Brown-Levin polylogarithms (2.22) associated with words to — ab---b
reduce to a single integral over the meromorphic kernels (2.23), for instance

[(ab; z|7) :/0 dt <27Ti IIrrr?j- — f(l)(t|7')) = —/0 dt gV (t|r) = =T (4;2|7) (2.26)

(see [27, 64] for the regularization of endpoint divergences) and more generally

T(ab-- b zlr) = (—1)"/ dt Z% ( 270 IIIIE—t) F ()

n 0 j=0

= (=1)" /0 dt g™ (t|7) = (=1)"T(§; 2|7) (2.27)

These examples illustrate that the Brown-Levin polylogarithms in (2.22) are Q[27i{22]-linear
combinations of the meromorphic ones in (2.24).

3The meromorphic functions ¢(™ (z|7) in the expansion given in (2.23) are not to be confused with the
real-analytic convolutions g, (z|7) of the scalar Green function on the torus defined in (2.14). Both notations
have, by now, become standard for historical reasons and can be distinguished through the placement of
n € Ny in the superscript and in parenthesis in case of (2.23).
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3 A flat connection at higher genus

This section is dedicated to the construction of a flat connection which generalizes the Brown-
Levin flat connection Jpr, in (2.11) to higher genus. We begin by introducing some functions
and forms on Riemann surfaces of arbitrary genus that will provide the key ingredients in our
construction. Further background material on Riemann surfaces and their function theory,
including ¥-functions, may be found in [50, 65, 33].

3.1 Basics

The topology of a compact Riemann surface ¥ without boundary is specified by its genus h.
The homology group H;(X,Z) is isomorphic to Z?" and supports an anti-symmetric non-
degenerate intersection pairing denoted by J. A canonical homology basis of cycles 2; and
B, with I, J = 1,---, h has symplectic intersection matrix J(;,B;) = —J(B,,A;) = 017,
and J(Ar,A;) = J(B1,B;) =0, as illustrated in Figure 1 for genus two.

Figure 1: A choice of canonical homology basis on a compact genus-two Riemann surface .

A canonical basis of holomorphic Abelian differentials w; may be normalized on 2A-cycles,*

% wJ:(S]J % wJ:Q[J (31)
Q[I (BI

The complex variables 2;; denote the components of the period matrix 2 of the surface X.
By the Riemann relations, €2 is symmetric, and has positive definite imaginary part,

Q=0 Y =ImQ >0 (3.2)

4Throughout, differential forms are denoted in boldface, while their component functions in local complex
coordinates z,zZ on ¥ are denoted by the same letter in normal font, such as for example w; = wy(z)dz. The
coordinate volume form on ¥ is d*z = $dz A dz and the §-function is normalized by [y, d*zd(z,w) = 1 for
any w € ¥. Finally, repeated pairs of identical indices are to be summed following the Einstein convention
1J h 1J
so that, for example, we set Y'Vw; =377 V' w;.
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The matrix Y7, = Im Q;; and its inverse Y/ = ((Im Q)_l)U may be used to raise and lower
indices as follows,

w =YW, ol =Y"a, YIEY ;=64 (3.3)

In particular, it will be useful to express the Riemann bilinear relations as follows,

3/wl/\af’:é;’ (3.4)
2 s

The choice of canonical 2 and B-cycles is not unique: a new canonical basis 2 and B
is obtained by applying a modular transformation M € Sp(2h,Z), such that M satisfies
M'3IM =3, and the column matrices of cycles are transformed as follows,

(a)-(& 2)(3) u=(c ») =(7 ) e

Under a modular transformation M, the row matrix w of holomorphic Abelian differentials
wr, the period matrix €2, and its imaginary part Y, transform as follows,

O=w(CQ+D)!
Q= (AQ+ B)(CQ+ D)™
Y = (QC'+ DY) Y (CQ+ D) (3.6)

where we have denoted transformed quantities with a tilde as in the discussion of the genus-
one case in section 2.2.3.

The moduli space of compact Riemann surfaces of genus h will be denoted by M,,. The
moduli space My, for h = 1,2,3 may be identified with H;/Sp(2h,Z) provided we remove
from the Siegel upper half space H;, for h = 2, 3 all elements which correspond to disconnected
surfaces, and take into account the effect of automorphisms including the involution on the
hyper-elliptic locus for h = 3. For h > 4, the moduli space M, is a complex co-dimension
2(h —2)(h — 3) subspace of H;/Sp(2h, Z) known as the Schottky locus.

3.2 The Arakelov Green function

The Arakelov Green function G(z, y|Q2) on X x ¥ generalizes the Green function g(z|7) which
was defined at genus one in (2.12), and is defined by,

0:0,G(x,y|Q) = —7wd(x,y) + mr(x) /En(x)g(x,ym) =0 (3.7)
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where & is given by the pull-back to ¥ under the Abel map of the unique translation invariant
Kihler form on the Jacobian variety J(X) = C"/(Z" 4+ QZ"), normalized to unit volume,’

K= Lw; A& = k(2) d*z / k=1 (3.8)
2h by

Here and throughout the rest of this work, we shall suppress the dependence on the period
matrix {2 unless otherwise indicated. Both k and G(z,y) are conformally invariant. An
explicit formula for G(z,y) may be given in terms of the non-conformally invariant string
Green function G(x,y) as follows,

G(z,y) = G(x,y) —v(x) —v(Yy) + 7 (3.9)

where () and 7 are given by,

) = [ w62 = [ m (3.10)

The string Green function is given in terms of the prime form E(z,y) by,°

Gla,y) = —log | E(w, y)[2 + 27 (Im /y xw;) (Im /y mwf) (3.11)

see Appendix A for the definition of the prime form in terms of theta functions. The following
double derivatives,

0,0,G(w,y) = —0,0, In E(w,y) + mwi(z) ' (y)
0,0;G(x,y) = mé(x,y) — mwr(x) @' (y) (3.12)

will prove useful in the sequel.

3.3 Convolution of Arakelov Green functions and modular tensors

Convolutions involving the Arakelov Green function and various integration measures were
used to construct a variety of modular tensors in [56, 57, 58, 59]. Here we shall extend this
library of modular tensors by including convolutions that involve not only Arakelov Green

5A recent account of the Arakelov Green function and its properties needed here may for instance be
found in [51].

SHere, it is understood that the prime form, and thus the string Green function, are defined in a suitable
fundamental domain for ¥ in the universal covering space of ¥, and that the integrals in (3.10) are to be
carried out in that same domain [51].
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functions (as was the case in [58]) but also derivatives on Arakelov Green functions and holo-
morphic Abelian differentials. The building blocks of our flat connection and corresponding
higher-genus polylogarithms will be modular tensors, and the resulting modular properties
of the connection and the polylogarithms themselves will be discussed in section 3.5 and 4.4,
respectively.

3.3.1 Definition of modular tensors

Modular tensors are defined on Torelli space, which is the moduli space of compact Riemann
surfaces endowed with a choice of canonical homology basis of 2 and B cycles. The signif-
icance of modular tensors has been articulated in the work of Kawazumi [56, 57, 59] and
two of the authors of the present paper in [58]. Modular tensors generalize modular forms
at genus one by replacing the familiar automorphy factor (C'1 + D) of SL(2,7Z) discussed in
section 2.2.3 by an automorphy tensor @ and its inverse R = Q~1,

Q=Q(M,Q)=CQ+D
R=R(M,Q)=(CQ+ D)™ (3.13)

for M € Sp(2h,Z) and the matrices C' and D given in (3.5). The composition law for the
automorphy tensors may be read off from the transformation properties of € given in (3.6),

Q(MlMQ, Q) - Q(Ml, (AQQ + BQ)(CQQ —|— Dg)_l)Q(Mg, Q) (314)

In (3.6) we already encountered the tensors wy, w!, Y7, and its inverse Y77, In the notation
(3.13) of the automorphy factors ) and R, their transformation properties are given by,

wr = wI’RI,I Y/IJ =Yy RI’I RJ,J
& = Q7w YU =0l O, v (3.15)
More generally, a modular tensor 7 of arbitrary rank transforms as follows,
Iy Iy Jn (O — O] In A7 ) I s dys o Jg
Tl sl In(Q) = QN yy woe Qg Q1 gy - Q0 TH- Tl i) (3.16)

The tensors Y7; and Y/’ may be used to lower and raise indices, respectively, and can be
made to compensate any anti-holomorphic automorphy factor: instead of the Q” g in (3.16),
the tensor,

U7 Q) = Yo, - Yo, T koK () (3.17)

exclusively transforms with holomorphic automorphy factors Q' r; and R7i Jis

!

U (@) = QMg - QM Ry, - R UG5 (Q) (3.18)
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The above tensors may be reducible. Symmetrization, anti-symmetrization, and removal of
the trace by contracting with factors of Y;; or 67 may be used to extract irreducible tensors.
For genus h, the anti-symmmetrization of h indices I (resp. J indices) produces a factor of

det Q (resp. det Q).

3.3.2 The interchange lemma

The modular tensor defined by the following convolution,

O (z) = /E P22 G(x, =) 0 () (2) (3.19)

was found to play a central role in the studies of more general modular tensors and their
relations. In view of the second equation in (3.7), the tensor ® is trace-less, and therefore
vanishes identically at genus one. In particular, it enters into the interchange lemma which
was stated and proved in [55, 58],

0:G(x, y) wiy) + 0,9(x,y) w(x) — 0@ y(x) wily) — 0, @ s(y)wr(x) =0 (3.20)

The genus-one version of this formula holds trivially by translation invariance on the torus
and the vanishing of ®. At higher genus, ® may be viewed as compensating for the lack of
translation invariance on higher-genus Riemann surfaces.

3.3.3 Higher convolutions of the Arakelov Green function

The fundamental building blocks for a flat connection on higher-genus Riemann surfaces are
modular tensors defined recursively by convolutions on ¥ as follows,

ohl (x) = / d*2G(x,2) 0" (2) 0.1 5(2) r>2 (3.21)
b

Ghle(z,y) = / d?2 G(x, 2) 0" (2) 0.6+ (2,y) 52> 1
Y

where ®;(x) was defined in (3.19) and G%(z,y) = G(z,y). By construction, &I ;(z)
and GIIs(z,y) are scalar functions of x,y and Sp(2h,Z) tensors of rank r+1 and s, re-
spectively, with the purely holomorphic transformation law in (3.18). The vanishing of the
trace ®/1Ir; = 0 for arbitrary genus implies that ®-tensors for arbitrary r > 1 vanish
identically for genus one. Furthermore, at genus one, the derivatives of the tensor G/**s for
I, = --- = I, = 1 equal the Kronecker-Eisenstein integration kernels f®*1) given in (2.9)
and (2.16),

0,G" (2, y) [, = —FC (@—yl7) (3.22)
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From the differential relations satisfied by the Arakelov Green function in (3.7) and (3.12)
we derive analogous differential relations satisfied by &1 ;(x),

a@ax @IJ(I') = —

o' (z)wy(z) + 765 k()
0:0, 11 (1) = —m o

o (z) 0,021 ;(2) r>2 (3.23)
and by GI'Is(z, ) for s > 1,

0:0, G () = —m & () 0, G" (2, y)
040 G 1 (2,y) = w061 @, ) () — w0 (@)@ ) (3.24)

These relations will be fundamental in the construction of the flat connection at higher genus.

3.3.4 Modular properties of convolutions

The convolutions GI%s(x,y) and ®/1 ;(z) are modular tensors. Their transformation
properties may be read off directly from those of w; and @&/,

@'(z) = Q' ' (x) (3.25)
see (3.15), and provide the following transformation rules,

g~Il---IS ([L’, y) — Qh[{ L. lejégli...lg (ZL’, y)
(i)h---ITJ(x) _ Qh[i .. 'QITI;. q)fi"'fﬁ(],(x) RJ'J (3.26)

We note that all automorphy tensors @, R in (3.13) are holomorphic on Torelli space. Thus
we may view GIIs(z,y) and &1 ;(z) as sections of holomorphic vector bundles over
Torelli space, whose transition functions are given by the tensor () and its inverse R.

3.4 Generating functions

For genus one, the functions f((z|7) were obtained by expanding the Kronecker-Eisenstein
series Q(z, a|7) in powers of the free parameter a. At higher genus, we may also assemble
the families of modular tensors, defined in the previous subsection, into generating functions.
To do so, we introduce a non-commutative algebra freely generated by By for I =1,--- , h,
and that will soon be extended to a larger free algebra. We also fix an arbitrary auxiliary
marked point p on the Riemann surface ¥. With the help of the generators B;, we introduce
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the following generating functions,

H(SL’,ZL B> = (%Q(x,p) + Z amghbm[r (x7p>BI1Blz U Blr

r=1

= 0,G(z,p) + 0,G" (z,p) By, + 0,G""* (2, p) B, By, + - - -

T

HJ(I’; B) = WJ(ZL') + Z a:cq)hhmITJ(l’)BhBIz - By
r=1

= WJ(ZL') + 895(1)]1](1')3]1 + 0x(1>11]2J(x)BhBIQ + - (327)

Note that the modular tensors G"Ir(x, p) and ®/1I* ;(z) are not necessarily symmetric
in their indices Iy,---, .. This absence of symmetry is captured by the non-commutative
nature of the algebra of the B;. The differential relations (3.7), (3.23), and (3.24) on the
components imply the following differential relations on the generating functions,

O:H(x,p; B) = 7 k(z) — w0 (x, p) — n’ () B H(x, p; B)
O5H (x, p; B) = md(x, p) + n’ (p) (H(x, p; B)Br — Hy(x; B))
0:Hj(z; B) = mk(x)By — 7 &' (2) By H(x; B) (3.28)

By forming the combination,
U,y (x,p; B) = Hy(x; B) — H(z,p; B) B, (3.29)

the differential form x in (3.8) is found to cancel between the Z-derivative of both terms in
(3.28), and the result may be compactly written as follows,

9:V ;(x,p; B) = n6(x, p) By — 7w’ (z) B; ¥ ;(x, p; B)
9V s(z,p; B) = —78(x,p) By + 7w’ (p) Uy (x, p; B) By (3.30)

The delta functions on the right-hand side signal the simple pole of 0,G(x, p) = —m%p +0(1)
whereas all the tensorial integration kernels 9,8 ;(x) and 9,G™ " (x,p) with r > 1 are

n)

regular on the entire surface. This generalizes the pole structure of the f(™ to arbitrary genus

where f0)(z—p|7) = x%p + O(xz—p) exhibits the only pole among the genus-one kernels.

To obtain tensorial modular transformations properties for the generating function (3.29),
the modular transformations of its components must be accompanied by the following trans-
formation properties for the algebra generators By,

By =ByR",
H,(x; B) = Hy(a; B)R
Uy (x,p; B) = (x,p; BIR” (3.31)

The generating function H(x, p; B) is then invariant.
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3.5 The flat connection

We are now ready to assemble all the results of the previous sections into a flat and modular
invariant connection.

To do so, we begin by extending the algebra generated by the elements B; as follows.
We introduce the Lie algebra £ freely generated by elements a’ and b; for I = 1,--- . h
and set By = ady, = [br,-]. The algebra admits a dual grading counting independently the
number of letters a and the number of letters b in each word, irrespective of the value of their
indices. This algebra was already considered by Enriquez and Zerbini in their construction
of Maurer-Cartan elements in [45], where the generators a’ and b; correspond to generators
of the fundamental group of the surface ¥ with the point p removed. For a general reference
on freely generated Lie algebras and their applications we refer to Reutenauer’s book [66].

It remains to generalize the term proportional to (dz — dz)b in the genus-one connection

JpL in (2.11) to higher genus. Since the single b at genus one generalizes to a tensor b; at

higher genus, it might seem natural to generalize dz — dZ to the closed differential w! — &'.

Actually, this choice does not lead to a flat connection, but promoting the w! part of this
construction to H' in (3.27) does the job. The result is the following theorem.

Theorem 3.1 The connection J(x,p), on a Riemann surface ¥ of arbitrary genus h with
a marked point p € ¥ and valued in the Lie algebra L freely generated by the 2h elements
al,by with I = 1,--- , h, is given in terms of @!(x) and the generating functions H!(x; B) =
Y1/ H ;(x; B) and Vi(z, p; B) as follows,

J(x,p) = —mdz @I(:E) by + mdx ”Hl(x; B) by + dxV,(x,p; B) al (3.32)

where By = ady, = [by,+]. The connection J(x,p) is flat and reproduces the Brown-Levin
connection (2.11) at genus one.

To prove the theorem we begin by using the differential equations (3.28) and (3.30)
satisfied by the generating functions H!(z; B) and ¥;(z,p; B), and readily establish the
following results,

d,J (z,p) = 7dT A d:c{é(x, p)br, al] — 7! (z) By H (x; B) b (3.33)
—@'(x) By Y (z, p; B) a‘]}
J(z,p) NT(x,p) = mdT N dx<—7r w!(z) By H’ (v; B)by — @' (x) B; VY (z, p; B) a‘])
The difference of the two lines shows that the connection is flat away from x = p,

d T (x,p) — T (x,p) A T (x,p) = 7dx A dx 6(x, p) [br, '] (3.34)
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To prove that the connection J(x,p) reduces to the non-holomorphic single-valued Brown-
Levin connection, we specialize to the case of genus one and relabel a! = a and b; = b. Since
the tensor ®!; of (3.19) and its higher-rank versions of (3.21) all vanish identically at genus
one, the generating function H!(x; B) reduces to,

W B)|  =w'(@) = %@T) (3.35)

so that the first two terms in (3.32) combine to m(dz — dz)b/Im T thereby reproducing the
contributions ~ (Im7)~! to the non-meromorphic Brown-Levin connection of (2.11). The
third term in (3.32) reproduces the Kronecker-Eisenstein series by (3.35) and (3.22),

Uy (x, p; B) = wi(x) — H(z,p; B) By L= ad, Q(z—p, ady|T) (3.36)

concluding the proof of Theorem 3.1.

The expression (3.32) for the flat connection is modular invariant for suitable Sp(2h,Z)
transformation rules of the generators a’, b; to be stated in the following theorem:

Theorem 3.2 Under a modular transformation M € Sp(2h,Z), parametrized in (3.5),

1

which acts on &' as given in (3.25), on Br, H;, and V; as given in (3.31), and on the

Lie algebra generators a’ and by by,

al s al =Qyal +2miCct by

by — by =by R, (3.37)
the connection J(x,p) is invariant. In the basis (a’,by) of generators of the Lie algebra L,
a =o' +7Y!b, (3.38)
subject to
al - al =Q' 4’ (3.39)
the connection J(z,p) takes on a simplified form,
J(x,p) = —mdz @' (x) by + dx VU (x,p; B) a’ (3.40)

and is manifestly invariant under Sp(2h,Z).

Proving modular invariance of J(x,p) is most transparently achieved by first carrying
out the change of basis of (3.38) to the equivalent form (3.40) which immediately follows
from the observation that Y?/B;b; = 0 so that ¥;(z, p; B)Y!/b; = H!(x; B)b;. The connec-
tion J(x,p), presented in the form of (3.40), is term-by-term invariant under the modular
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transformations of @!, By, ¥y, and af, by stated in the theorem: in both of dz @!(x)b; and
dx Uy (x,p; B)al, the respective ingredients transform with opposite automorphy factors as
can be verified from (3.15), (3.31), (3.37) and (3.39). The modular invariance of dz & (z) by
and dz U (z, p; B) al established in this way completes the proof of Theorem 3.2.

Finally, the connection (7 may be expanded in words with r+1 letters in the basis (a’, b;),

J(x,p) = —mdz @’ (x)b; + mdww! (2)by + wda Y 0,97 ;(x) Y'X By, -+ By, b

r=1

+ dl’z <8I(I>Il"'IT'J(a:) _ chfl“'l“l(:)s,p)cs?)Bh . 'BIT aJ (341)

r=1

or, equivalently, in the basis (af, by),
T(z,p) =7 <dx W (z) — dz @I(x)> by

+dl’z<0x®]1"'b](l') _ 8969]1"'1“1(18,17)5?)311 . BIT.CAV] (342)

r=1

where we abbreviate By = ad;,. These expressions will be useful in the subsequent section
to illustrate the expansion of higher-genus polylogarithms, and the simplified representation
in (3.42) may be easily obtained from the change of basis using (3.38).

The higher-genus polylogarithms obtained by expanding the path-ordered exponential
(2.2) of the connection J (z, p) in words of the generators (a, b;) or (a, b;) will automatically
be homotopy invariant. Examples to low letter count will be given in the next section.
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4 Higher-genus polylogarithms

In this section, the flat connection J assembled in the preceding section will be used to
construct higher-genus polylogarithms. The flat connection J(x,p) of (3.32) is well-defined
and single-valued on two copies of ¥ but this property came at the cost of giving up mero-
morphicity in both of x and p. We shall outline a method to restore meromorphicity in
the first variable x for certain combinations of integration kernels at the cost of giving up
single-valuedness. Moreover, non-trivial evidence will be provided that the higher-genus
polylogarithms in this section are closed under taking primitives. We close this section with
a proposal for higher-genus analogues of elliptic associators.

4.1 Construction of higher-genus polylogarithms

The flat connection J(z, p) of Theorem 3.1 integrates to a homotopy-invariant path-ordered
exponential T'(x, y; p),

T(z,y:p) = Poxp / () (4.1)

Expanding the path-ordered exponential in terms of the generators of the Lie algebra £
produces homotopy-invariant iterated integrals, as explained in the preamble of section 2,

D(z,y;p) =1+ Y wl(w;z,y;p) (4.2)
o
Here, the sum over tv is over all words, containing at least one letter, made out of the
alphabet of the Lie algebra generators introduced in section 3.5. In this way, the path-
ordered exponential is the generating function for the iterated integrals I'(to;x,y;p) and,
for each word to, defines a polylogarithm I'(w; z, y; p). Their iterated-integral definition via
(4.1) and (4.2) implies the following shuffle property,

D(wy;z,y;p) - T(wgsz,y;p) = Y Tz, y;p) (4.3)

et Lo

which holds in identical form for the polylogarithms (2.6) and (2.22) at genus zero and genus
one. Following the standard shuffle product, the sum over tv € tv; Lty includes all ordered
sets obtained from to; U tv, that preserve the order within the individual words toq, to,.

In Theorem 3.1 and Theorem 3.2, the modular invariant connection J (x, p) was expressed
in terms of two different bases for the same Lie algebra £ in which J (z, p) takes its values. In
the first basis (a!, b;) the relation with the Brown-Levin connection at genus one is manifest,
while the second basis (a’, by) leads to polylogarithms I'(to; z, y; p) that transform as modular
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tensors by the Sp(2h, Z)-invariance of J(x, p) established in Theorem 3.2. The expansion in
either basis will be of interest, and both will be pursued in the sequel.

In order to avoid cluttering, we compactly label the polylogarithms in the expansion of
(4.2) through an ordered sequence of upper and lower indices encoding the accompanying
words in either the basis (af, br) or the basis (a’, b;),

oo/ (zyp)=T(..d .. by 52,y;p)
r ;- J"'(:E,y;p):F(...dl...bj...;x,y;p) (4.4)

For example, for words with at most two letters in the basis (af,br), the expansion (4.2)
takes the following form,

T(x,y;p) = 1+ a'Tr(z,y;p) + b0 (2, y;p) + a’a’Try(x, y; p)
+ biby D (2, y;p) + o’y (2, y; ) + bra’ T (2, y;p) + -+ (4.5)

while in the basis (af,b;) it is given by,

T(z,y;p) = 1+ a' T (2, y;p) + b0l (2, 45 p) + ala’ Ty (0, y; p)
+ by T (s p) + "1 (0,95 p) + bra” T 5 (2, y5p) + - - (4.6)

Identifying term by term in both expansions gives the relations I'; = [y and Ty = Iy to
be established in all generality in (4.10), as well as the following relations to this order,

M =1 —ay"r,
fIJ:FIJ—WYIKFKJ
f[J = F[J—WF[KYKJ

DY =1 —aY B! — D e Y 4 22 YK T Y (4.7)

We have suppressed the common arguments (z, y; p) of the polylogarithms in order to avoid
unnecessary clutter.

4.1.1 Tangential end-point regularization and specialization to genus one

Apart from their dependence on the endpoints x,y of the integration path in (4.1) and on
the moduli of 3, the higher-genus polylogarithms defined in (4.1) also depend on the marked
point p that enters the connection [J (¢, p) in (3.32). Setting p = x or p = y leads to endpoint
divergences caused by the simple pole of 0,G(t,p) = —ﬁ + O(1) which we shall shuffle
regularize using the procedure introduced in [27]. This may be done by shifting one or the
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other of the endpoints in the exponent of (4.1) by |e| < 1 along a prescribed tangent vector
67, 68, 63, 2,

xT

/_ ﬂtmﬁp=x or J(t,p)ifp=y (4.8)
Y

y+e

expanding the regularized integral in powers of €, and defining the value of the integral as
the term of order zero in the expansion, thus omitting divergent terms such as In(2mie).

At genus one, the regularization procedure of [27] leads to the elliptic polylogarithms
(2.22) of Brown-Levin which are obtained by setting y = p =0 in (4.1) or (4.4),

[(...a...b...;2)=T_1 " (z,0;0) (4.9)

4.2 The special case of polylogarithms for words without b;

The polylogarithms associated with words tv that do not involve any of the letters b; are the
same in the bases (a’,b;) and (a’,b;) and are given by the following simple formula,

) x t1 tr—1
Unper (z,y30) = Ungeer, (2,95 p) :/ wh(tl)/ wlz(tz)"'/ wr, () (4.10)
) Yy )

which makes clear that these polylogarithms are actually independent of the marked point
p and confirms explicitly that they are modular tensors of rank r. For the case r = 1,
we recover the basic Abelian integrals. For r = 2, a particular combination of the A-cycle
monodromy in z gives the Riemann vector [50] with base point zo,

Ar(a) = —5 — 31+ ij wy(2) / w (4.11)

For r > 2, the simple subclass (4.10) of polylogarithms generalizes Abelian integrals to
modular tensors of rank r. They obey the differential equations,

Ol n e, (z,y; p) = wr (@) gy, (2, Y3 p) (4.12)

and the simplest instance of the shuffle property (4.3) reads,

Ui(z,y;p) - Tulz,y;p) = Lrs(@,y3p) + Lor(z,y;p) (4.13)
Specializing to genus h = 1 they may be evaluated explicitly,
1

r!

Cipoc1 @y 2) |, == (@—y) (4.14)
—

r
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4.3 Low letter count polylogarithms in the basis (af,b;)

Using the expansion (4.5) of the path-ordered exponential I'(x,y;p) in powers of the con-
nection combined with the expansion of the flat connection J(z,p) in (3.41),

J(z,p) = wra' + 7(w! — &by + dx <8x¢lj(x)[b1, a‘]] — 0,G(x,p)[br, aI]
+ w@xélJ(x)YJK[bI, bK] + 896(1)”;{(:17) [b], [bJ, GKH

— 0,G"(,p) [br, [by, a”]] + 70, ®" g (x) Y [by, by, bi]] + - ) (4.15)

in terms of words in the alphabet a’, b;, we construct polylogarithms for words that contain
the letters b; as well as a’. For the single-letter word b;, we obtain,

D, yip) = 7 / (! — @) (4.16)

which is independent of p but, as expected in the basis (af,b;), not a modular tensor. For
double-letter words with at least one letter b;, we obtain,

I (z,y;p) = w/yx (dt (02" k(YT — 0,07 ()Y ™) + 7 (w(t) — &' (1)) /yt(u] — wJ))
(2, y;p) = /ym (dt @7 (t) — dt 9,G(t,p)d] + m(w’(t) — @/ (1)) /yt wl)

L/ (x,y;p) = /yz (—dt 0,®71(t) + dt 0,G(t,p)d7 + Twi(t) /yt(w’ — wJ)> (4.17)

The entry I''Y and the off-diagonal components of I'/; and I';7 are independent on p.

4.3.1 Simplified representations

The polylogarithms in (4.16) and (4.17) with upper indices admit simplified representations
in terms of (4.10), their complex conjugates and contractions with Y?/. For words with a
single letter b; we have,

I (z,y;p) = 7Y (Cy(,y;p) — Ts(x, y;p)) (4.18)

25



while for two-letter words that contain at least one b;, we have,

U (z,y;p) = 7Y 75Tk (z,y;p) + / dt (—8@"1(15) +6/8,G(t, p) — 7w ()Y KTk (¢, y;p))
Y
I y(z,y;p) = 7Y ™ Ty, yip) — Tu(z,y;p) Tk (2, 45 p))
+ [ ar (00!50) ~ 10,6 p) + mas Y N Ticle i)
Y

' (z,y;p) = YKy 7" (FKL(% y;p) + Tz, y;p) — Ti(z, y; )T (2, y;p)>
t / dt <8t<I>IK(t)YKJ — 8,07 (Y]
Y
b O TG 3 9) — ! (0Y TG i) (1.19)

These expressions already illustrate the general fact that the indices on these polylogarithms
cannot be simply raised or lowered by contraction with Y;; or its inverse. Indeed, ' (z, y; p)
in (4.18) is not obtained by contracting I';(x,y; p) with Y/,

Homotopy-invariance of the higher-genus polylogarithms in (4.18) and (4.19) can be seen
directly from the fact that the integrands with respect to t entering I';” (z, y; p), I (2, y; p)
and T'!7(z,y;p) are meromorphic in ¢. The vanishing of the respective Op-derivatives can
be checked via (3.7), (3.23) and (4.12). The shuffle relations IV - TV = TI'"Y 4+ I'’! and
I'1-T;=T%; 4T, in (4.3) are easily verified from the expressions in (4.18) and (4.19).

4.4 Low letter count polylogarithms in the basis (a’,b;)

The polylogarithms T’ (z,; p) in the basis (al, by) defined by the expansion (4.6) are modular
tensors by the Sp(2h,Z) invariance of the connection J(z,p) established in Theorem 3.2.
For words involving only a’ letters and no by letters, the expressions were already given in
(4.10). For the general case, it will be convenient to introduce the following expansion of the
generating function V;(z, p; B),

Uy (z,p; B) = wy(@) + > _ Br, -+ Br, f" ) (x,p)
r=1
ot (2, p) = 0,07y () — 0,611 (w, p) STy (4.20)

Expanding the connection [J(z,p) accordingly,

T(z,p) = —ma! (2)b; + (wf(x)af + (@, p)[bs, al] + £5 (2, p) [y, [, 6']] + - -)(4.21)
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we compute the polylogarithms for a one- and two-letter words, starting with the coefficient
of the letter by,

M (z,y;p) = —W/ @' = —mY ™" T (x, y; p) (4.22)
Yy

This example illustrates that, also in the (a’,b;) basis, indices of polylogarithms [’ cannot
be raised or lowered via Y/ or Y;;. For two-letter words that contain at least one letter by,
the simplest examples (4.19) translate into,

. x t1
M (2, y;p) = WQ/ ‘:)I(tl)/ o’ = 1YY I T (x, y: p)
Y Y
x t
O i) = - [ (f%(t,p)wwf(t) / aﬂ)
Y Y

B (e, i p) = / Cat (ffJ<t,p>+w<t> / wf) YK Ty Tolanyip)  (423)

Y

under the conversion (4.7) between the (a’,b;) and (a’,b;) basis. These examples line up
with the general transformation law of higher-genus polylogarithms I' in the expansion (4.6)
as modular tensors with holomorphic automorphy factors R’ ; and Q7 in (3.13),

o7 (wyp)=- R Q7 - T (2,93 p) (4.24)

4.4.1 Genus-one illustration of the modular properties

We shall now illustrate how modularity is realized in the last two polylogarithms in equation
(4.23) specialized to genus one. Upon specializing the expansion (4.6) and transformation law
(4.24) to genus one, any elliptic polylogarithm I ;=7 (z, y; p)|s=1 with m uppercase indices

and n lowercase indices transforms as a modular form of SL(2,Z) with weight (m—n,0). In
particular, the genus-one incarnation of the second example in (4.23),

U@ yip) sy = D (sulr) = T(3ialr) + = [H—9) = 3(e—p)” + (G-P)(e—)](4.25)

is modular invariant by this counting. Indeed, SL(2,Z)-invariance of the term ~ %
is manifest whereas modular invariance of the leftover expression ~ % — % and
f(ll, : y\T) — f(;}, : x\T) =Ind(y—p|7) — Ind(z—p|T) (4.26)

relies on cancellations between the respective SL(2, Z)-transformations obtained from (2.19).

For the endpoint divergences of higher-genus polylogarithms L. “(x,y;p)at p=xor
p = y, the regularization prescription (4.8) necessitates the specification of a tangent vector.
It remains to be investigated which choices of tangent vectors preserve the tensorial modular
transformation of I'..... "7 (x, y: p) at p € {z,y}.
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4.5 Meromorphic variants

The first example of the higher-genus polylogarithms in (4.19) can be written as,

Ui’ (z,y;p) = T(a'by; 2, y;p) (4.27)

= / dt (—&@Jl(t) +67/0,G(t,p) + 7w ()Y (T (t,y; p) — Tk (¢, y;p))
Y

Upon specializing to genus A = 1 and setting p = y = 0, this reproduces the Brown-Levin
polylogarithm I'(ab; p|7) = —f‘(é;p|7‘) in (2.26), namely the integral over the meromorphic
kernel (M (¢|7) in (2.25). Accordingly, one may view the integrand with respect to ¢ in the
second line of (4.27) as a higher-genus uplift of the Kronecker-Eisenstein kernel g™ (¢|7),

t
g’ 1(t,y;p) = 0,97 1(t) — 670,G(t, p) — 2micw; ()Y KIm / Wi (4.28)
y

Indeed, the Laplace equations (3.7) and (3.23) of G(t, p) and ®7;(¢) readily imply meromor-
phicity in ¢,

99’ 1(t, y; p) = 707 8(t, p) (4.29)

verifying homotopy invariance of (4.27). However, (4.28) is not meromorphic in the end-
point y of the integration path or the second argument p of the flat connection. At genus
h = 1, setting y — p readily reduces g”’;(t,y;p) to the kernel g™ (t—y|7) meromorphic in
both ¢ and y. Starting from genus h > 2, by contrast, (4.28) at y = p does not yield a
meromorphic function of two points ¢,y on X since

O(a” 1t yip) |,,) = =707 8(t,y) + 7 (e (D (y) — w2’ () (430)

Corrections of g7 (¢, y; p) ‘y:p by abelian integrals w;(¢)Im f; w? or 67w (t)Im fyt wi do not
suffice to attain simultaneous meromorphicity in ¢ and y. Still, one can add combinations of
abelian integrals w;(t)Im fpy w’ and 67w (t)Im fpy w to render ¢g”; (¢, y; p) meromorphic in
both ¢ and y at the cost of a separate dependence on a third marked point p.

One can similarly take the Brown-Levin polylogarithms I'(ab- - - b; p|7) = (—1)”f(8;p|7‘)
in (2.26) with n > 2 letters b as a starting point to motivate higher-genus analogues of the
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meromorphic kernels ¢("=?) in (2.23), e.g.
L% (2, y;p) = T(a'bsbre; x, y; p) (4.31)
= / dt {&@K‘]z(t) — 670,65 (t,p) — W@tCPJI(t)YKL(FL(t, y;p) — FL(t,y;p))
v

+7570,G(t, 2)Y ¥ (Dr(t,y;p) — Tt yip))
+ 72w ()Y TEYEM(T g (8, y; p) — Tt y; 2)Tae(t v p) + Tom (8, w3 p))

+ Wwf(t)/ dt' (8 @7 ("Y' — aw’ (¢ \YRIT (¢, y;p) — (T K))}

Again, the integrand on the right-hand side is meromorphic in ¢ and may be viewed as a
higher-genus generalization ¢*”/; of ¢'®. However, simultaneous meromorphicity in ¢ and y
cannot be attained without admitting dependences on additional marked points z. Hence,
our construction does not suggest any straightforward generalizations of the meromorphic
Kronecker-Eisenstein coefficients ¢ (t—y|7) to higher genus which meromorphically depend
on two points ,y on the surface without any reference to additional points. Instead, the
tensors 9, ®71 ;(t) and 9,G1 T+ (t, y) of section 3.3 naturally generalize the doubly-periodic
Kronecker-Eisenstein kernels f (t—y|7) to arbitrary genus.

The above examples motivate the study of gauge transformations U(x, p), whose action
on the connection is given by,

JI(z,p) = Uz, p)T (z,p)U(z,p)~" + (dU(z,p))U(z,p)™" (4.32)

and which induce the following transformation on the path-ordered exponential,

L(z,y;p) = U(z,p)T(z,y;p)U(y, p) " (4.33)

such that f‘(x, y; p) is meromorphic in z and y to all orders in a’ and b;. Based on the gen-
eralized abelian integrals (4.10) and their complex conjugates, it is not difficult to construct
a gauge transformation that implements meromorphicity in x and yields generating series of
the elliptic polylogarithms (2.24) upon specialization to genus one. Refined choices of U(x, p)
that additionally preserve the vanishing of 2-cycle monodromies of J(z,p) in x and make
contact with the meromorphic connections in the work of Enriquez [44] and Enriquez-Zerbini
[45, 46] are currently under investigation.

4.6 Closure under taking primitives

The closure of elliptic polylogarithms under taking primitives crucially hinges on translation
invariance at genus one and the Fay identity among Kronecker-Eisenstein kernels [22, 27, 26].
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We shall now present evidence that a similar closure holds for products of the higher-genus
polylogarithms in (4.1) with the integration kernels in the connection (3.32). As we will
see below, the two key mechanisms for closure under taking primitives are the interchange
lemma (3.20) and Fay identities at higher genus.

4.6.1 Implications of the interchange lemma

Given that the path-ordered exponential in (4.1) only involves integrals over the first ar-
gument ¢ of the connection J(¢,p) in the integrand, the primitive of 0,G(t, p)w;(p) with
respect to p is not obvious from the definition of higher-genus polylogarithms. However,
the interchange lemma (3.20) yields an alternative representation of 0,G(t, p)w;(p) where its
primitive with respect to p can be readily found in terms of higher-genus polylogarithms via
(4.12) and (4.18),

QG (t, pws(p) = 0, s (p)wi(t) + 0" s (t)wr(p) — G (P, t)w, () (4.34)
— 9, (—rjf(p, t: )i (1) + Trp, t:6)0,07 5 (t)

(Y [Loc(p. ) = Da(p )T (0, 1)) )

Similarly, convolutions of the interchange lemma (3.20) with Arakelov Green functions allow
to rewrite higher-rank expressions 9;,G""2%= (¢, p)w;(p) as (see section 5 of [69] for a proof),

0G" (4 p)r(p) = (=1)" 78,6 (p, e (1 (4.35)

+ { Z(_l)iatq)hJ2~--JsfiKI(t)apq)Jstfl...JsfiHK(p)

i=1

O8I o) + (1) (i )|

where the primitives of the right-hand side with respect to p are accessible from the higher-

genus polylogarithms in (4.1) and their complex conjugates. The instruction to add (—1)*

times the image under the simultaneous relabelling t <> p and JiJy---Js < Jg---Joq
applies to both the second and the third line of (4.35).

4.6.2 Towards higher-genus Fay identities

In order to find the primitive of
(A)[(l)agg(Q, 1)839(3, 1) = w[(zl)aZQQ(Zg, Zl)aZSQ(Zg, Zl> (436)
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with respect to zj, the interchange lemmas (3.20) and (4.35) need to be augmented by
higher-genus generalizations of the genus-one Fay identity,
Q21, a1|7)Q(22, 2| 7) = Q(21, rta|7)Q(22—21, 2| T) (4.37)
+ Q(29, 1 +as|T)Q(21 —22, a1 |T)
of the Kronecker-Eisenstein series (2.9). The need for identities beyond the scope of inter-
change lemmas can be seen from the appearance of z; in two factors 9,G(2, 1) and 9;G(3, 1) of

(4.36) which persists after trading 0;G (i, 1)w;(1) for 1G(1,7)w;(i) and P-tensors via (3.20).
As a first example of higher-genus Fay identities, the expression (4.36) can be rewritten as,

wr(1)0:G(2,1)G(3,1) = {—81Q(1, 3)02G(2, 3)w;(3) — wi(3)01G% (1, 2)wr(2) (4.38)
+ Wi (3) P (1w (2) + wi (3)01 DXL (1)0, 91 (2)
T (22 0 29) |+ wrc()B0VE (2,3)
such that each term on the right-hand side features only one z;-dependent factor and can be

readily integrated over z; via higher-genus polylogarithms (4.1). In the last line of (4.38),
we encounter the convolution,

0.0,V (2.9) = [ 20,000, 95" (n(2)0,010.2) (4.39)
s
= 8y<1>KL(y)a:c<DLI(I) + 8yq)KLI(y)wL(93) - 8ng(y, z)wr()

which has been reduced to the integration kernels of (3.32) in passing to the second line. The
derivation of (4.38) is based on the fact that the first three lines of the right-hand side have the
same anti-holomorphic derivative with respect to 21, 22, 23 as the left-hand side. Moreover,
both sides of (4.38) vanish upon multiplication by &f(1)0%(2)wf(3) and integrating all of
21, 29, z3 over the surface which excludes the addition of holomorphic terms.

At genus one, (4.38) reduces to the Fay identity,
f(l)(21—22\T)f(1)(22—23|7') + f(2)(21_z3‘7—) + cycl(z1, 22, 23) = 0 (4.40)
at the afa$ order of (4.37) through the identifications (3.22) as well as
0,0,V (2, y) |,y = [ (a—y|7) (4.41)

Similar Fay identities should reduce higher-rank analogues wr(1)9,G™ "= (2,1)95G717+ (3, 1)
of (4.36) to convolutions of Arakelov Green functions whose primitives with respect to z;
are determined by the differential equations of higher-genus polylogarithms. This is ex-
pected since products of convolutions of Arakelov Green functions span a rich function
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space which offers multiple distinct expressions with the same anti-holomorphic derivatives
as wy(1)0,G1+1:(2,1)95G717(3,1). By iteratively simplifying these alternative solutions
to the differential equations with respect to z; via interchange lemmas and lower-rank Fay
identities, the z;-dependence can be eventually arranged to occur through a single factor of
either wy(1), 0, P11 ;(1) or 9,G11+(1,4) in each term.

The detailed form of higher-rank Fay identities at arbitrary genus and their proof can be
found in [69].

4.7 Higher-genus associators

The Drinfeld associator for genus zero evaluates monodromy properties of solutions to the
Knizhnik-Zamolodchikov equation with a connection given in (2.5) [70, 71]. The associator
was generalized to genus one in [72, 73, 74] using the meromorphic connection Jg(z|7), and
the associated Knizhnik-Zamolodchikov-Bernard equation,

V1(z + ady|7)ad,
V1 (z|7)0 (adp|T)

0.F(z|T) = Te(z|T)F(z|7) Je(z|T) = —dz (a) (4.42)

Since the connection satisfies Ji(z + 1|7) = Je(z|7) and Jg(z + 7|7) = e 2ad Ju(2|7)
the functions F(z|7), F(z + 1|7) and e*™F(z + 7|7) satisfy the same differential equation
in z. The solutions are normalized in [73] by their behavior as z — 0. As a result, their
Wronskians are given as follows,’

Oy(7) = F(2|7) ' F(2 + 1|7)
O (1) = F(2|7) ¥ F (2 + 7|7) (4.43)

are independent of z, as the notation ®y(7) and Py (7) indeed suggests, and are referred

to as the elliptic associators introduced in [73]. Equivalently, the solution F(z|7) may be
expressed in terms of the path-ordered exponential of the connection Jg in (4.42),

Flz)r) = <P exp / jE(t\T)) Flzol7) (4.44)

where t is the integration parameter and zj is a reference point chosen such that F' satisfies
the normalization as z — 0 introduced in [73]. In terms of this formulation, we obtain the

"The associators ®g, s and Py, , @3, in this section are not to be confused with the modular tensors
®! ;(z) and @111 ;(x) defined by (3.19) and (3.21).
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following expressions for the elliptic associators,
z+1
Py (1) = F(z|7)™* <P exp/ JE(t|7')) F(z|T)

Oy (1) = F(z|7) L™ (P exp /ZZ+T jE(t\T)) F(z|T) (4.45)

Using the properties of the path-ordered exponential, it may be verified immediately that
both expressions are independent of z. A parallel construction may be given in terms of
the non-meromorphic but doubly periodic Brown-Levin connection Jgy, defined in (2.7), in
which case the factor 2™ should be omitted. It is this non-meromorphic version that we
shall propose to generalize to higher genus.

Based on the polylogarithms that we have constructed in (4.1), we are led to a natu-
ral proposal for higher-genus associators, which generalize the elliptic associators reviewed
above. They may be defined by evaluating the path-ordered exponential of (4.1) around
the homology cycles of the Riemann surface. Those integrals, in turn, are generated by
the path-ordered exponentials of (4.1) around the basis of homology cycles 24; and B, and
defined in close analogy with the construction given in (4.45). We introduce a slight variant
of the generating function for higher-genus polylogarithms defined in (4.1),

FlasplQ) = (P o [ xj(t;pm)) FlaoplQ) = Dle,co: ) Flaoipl)  (4.46)

Here, we have exhibited the dependence on the moduli of the higher-genus Riemann surface
) in terms of the period matrix €2 so that the presentation is as close as possible to the genus-
one case (4.44), and retained the dependence on the point p explicitly. Since the connection
J (t; p|Q) is single-valued on ¥, the functions F(z;p|QQ), F(x + 2;;p|Q) and F(x + B;; p|Q)
satisfy the same differential equation d,F(x;p|Q?) = J(x;p|Q)F(x;p|). As a result, the
following combinations are independent of x,

By (0]0) = F(a:pl2) (P o [ " IJ(t;pIQ)) Fla:pl0)

D3, (p|2) = F(z;p|0) " <P exp /H I J(t;p\Q)) F(x;p|Q) (4.47)

A significant difference between the proposal for higher-genus associators made here and the
elliptic associators of Enriquez is the dependence on the point p on X. Also, it remains to
be investigated whether our proposal satisfies the general axioms enunciated for associators,
or whether these axioms can be relaxed and generalized to the case of higher-genus poly-
logarithms. Moreover, it would be interesting to relate our proposal to the operad-theory
approach to higher-genus associators in [75]. We shall return to these open questions in
future work, see section 7.
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5 Flat connection in the multiple variable case

In this section, we further generalize the construction of the flat connection and polyloga-
rithms on higher-genus Riemann surfaces to an arbitrary number of marked points, thereby
generalizing the multi-variable genus-one polylogarithms of Brown and Levin to higher gen-
era. This generalized flat connection may be formulated entirely in terms of the modular
tensors needed for the single-variable case, just as was the case for genus one.

The genus-one connection Jpr, in (2.7) may be generalized to depend on n additional

marked points z1,- - -, z, on the torus, and is then given as follows by [22],
TsL(z1, 205 2|T) = mi (dz —dz) b+ dz ad, Q(z,adp|7) a
T
+dz Z (Q(z — 21, ads|7) — Q(z, ady|7)) ¢ (5.1)

i=1
We now have a Lie algebra £,, that is freely generated by the elements a, b of section 2.2 and

additional elements ¢y, - - - , ¢, associated with the marked points z1,- - , z,. The generaliza-
tion to higher genus is given by the following theorem.

Theorem 5.1 The connection Jyy is defined on a compact Riemann surface 2 of arbitrary
genus h and with n + 1 marked points p, z1,- -+ , 2z, € % as follows,

jmv(zla e >Zn;$7p) = j(l’,p) + \771(217 T 7Zn;x>p) (52)

The connection J(x,p) for the single-variable case was constructed in Theorem 3.1 and is
repeated here for convenience, while the multi-variable addition 7, is given by,

J (x,p) = —wdz &' (x) by + wdx H' (2; B) by + dx ¥ (x, p; B) o

n

Tn(z1, s 2n;w,p) = —d:cz (’H(m, zi; B) — H(x, p; B)) ci (5.3)

i=1

The connection Jny takes values in a Lie algebra Ly, that is freely generated by the el-
ements a',b; with I = 1,--- h as seen in section 3.5 and additional elements c; with
1 = 1,---,n associated with the marked points z;. The connection Jn, s flat away from
the points p,z1,- -+ , Zn,

ATy — Ty A Ty = 7dT A da (5@, p)< (bryal] =" Ci) +3 " 8(2, 2) cZ) (5.4)
i=1 i=1

and reduces to the multi-variable Brown-Levin connection (5.1) in the genus-one case. Alter-
natively, one may express the connection J(x,p) in terms of the basis (a’,by) with tensorial
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modular transformations. This leads to a modular invariant multi-variable connection (5.2)
if the generators c; are taken to be Sp(2h,Z)-invariant.

To prove the theorem, we begin by showing that the connection Jp,, in (5.2) and (5.3)
reduces to Jpr, for h = 1. Indeed, the differences between the generating series H in 7,
reduce to differences between the Kronecker-Eisenstein series inside the sum in (5.1). In
particular, by expanding the components, it is easy to see from (3.22) that we have,

H(x, z;; B) — H(x, p; B) }hzl = —Q(x — z;, ady|7) + Q(x, ady|T) (5.5)

upon setting p — 0 on the torus and identifying a' = a as well as b; = b.

Furthermore, to prove flatness of 7, away from the points y, z;, we use the flatness
condition of the connection 7 in Theorem 3.1 to obtain the following relation,

ATy — Ty A Ty = ATy — T N T — T AT + 7dZ A da 6(z,p)[br, a'] (5.6)

The remaining contributions may be worked out using (3.28) as follows,

dJ, = —dz N\ dxi <85C”H(x, 2i; B) — Oz H(x, p; B)) ci
i—1

= 1dx A\ dzzz <5(9§, z) — 0(z, p) + @' (2) Br (H(, 2;; B) — H(z, p; B))) ¢ (5.7)

1=1

Similarly, the wedge products may be worked out as follows,

TINTy+ T NT = mdz A do o' (2) |:b[, Z (’H(m, zi; B) — H(x, p; B)) Ci:| (5.8)
i=1
Flatness of Jy,, then follows in view of B;H(z,p; B)e; = [br, H(x, p; B)cy.

Finally, modular invariance of J(z,p), H(z, z;; B)—H(z, p; B) and ¢; readily carries over
to the multi-variable connection Jp, in (5.2) and (5.3).

Multi-variable generalizations of the higher-genus polylogarithms in section 4.1 may now
be constructed from the flat connection 7, following the methods presented in section 4.
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6 Separating degeneration

In this section, we shall study the behavior of the generating functions and flat connection at
higher genus under separating degenerations of the genus-h Riemann surface 3. To keep the
discussion as simple and concrete as possible, we shall specialize here to the case of genus two
degenerating to two genus-one surfaces connected by a long funnel. The generalization of
this construction to the non-separating degeneration of higher-genus Riemann surfaces may
be found in section 3 of [51], while the separating, non-separating, and tropical degenerations
for genus two are presented in detail in [54].

6.1 The construction for genus two

A convenient parametrization of the neighborhood of the separating divisor is provided by
the funnel construction given in Fay’s book [50], and specifically for genus two in [54]. Here
we shall give a simplified presentation that will suffice for the problem at hand. For genus
two, the starting point of the construction of ¥ is provided by the compact genus-one surfaces
Y1 and X9, to which we add punctures p; and po, respectively. Next, we introduce a system
of local complex coordinates (x1, Z1) and (3, Z2) on each surface, and denote the coordinates
of the punctures simply by p; and p,. We specify a disc ©; centered at p; on ¥; and a disc
®, centered at py on Xy, as shown in Figure 2.

Do

: . hIP)
09, 09,
2y Ao
Figure 2: Funnel construction of a family of genus-two Riemann surfaces 3 near the separat-
ing divisor in terms of genus-one surfaces ¥; and 5. The circles 09 and 99, are centered
at the punctures p; and p, and bound the discs ®; and ®,, respectively. The surface X is
constructed from the surfaces ¥; \ ©; and ¥, \ ©, by identifying 09, and 09D,.

The genus-two surface Y is obtained by identifying annuli surrounding 09, and 09, with
respective local complex coordinates 1 and x via the relation (more complete discussions
of the construction are given in [50, 54]),

(w1 — p1) (29 — pa) = s (6.1)
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Here v, is a complex parameter governing the separating degeneration (which is referred to
as t in [50]) and is such that the separating degeneration corresponds to the limit v; — 0.
Customarily, the curves 091, 09, are defined to be circles in the local complex coordinates
on the surfaces but here instead we shall use a more intrinsic definition,

09, = {x; € ¥y such that g(z1 — p1|7) =1}
099 = {xy € ¥y such that g(zy — palo) = ta} (6.2)

where the scalar Green function g(z|7) = ¢1(z|7) on the torus was defined in (2.12). The
moduli 7 and o of the genus-one surfaces 3; and ¥ in (6.2) are given by the diagonal entries
of the period matrix 2 of the genus-two Riemann surface ¥ which will be parametrized by,

Q= (Z ;‘;) (6.3)

Note that, for sufficiently large values of ¢y, ts, each level-set 091,905 in (6.2) is connected.

In the separating degeneration limit, the diagonal entries 7,0 are kept fixed as v — 0.
The relation between the off-diagonal entry v and v, is linear and will be derived shortly in
(6.10) below. The relation between the parameters ti, t5, and vy is obtained as follows,

t1 +ty = —In 210, n(7)*n(0)?|* + O(v?) (6.4)
Here, we have used the short-distance expansion of the scalar Green function on the torus,
g(z|7) = —In 2m2 n(7)*|* + O(2?) (6.5)

to convert (6.1) into the expression above.

When performing integrals over the genus-two surface ¥, it will be convenient to decom-
pose the integral into a sum of the contribution from ¥; \ ®; plus the contribution from
Y9\ Dq, where the curves 091, 09, are defined such that t; = ¢, = ¢t. Under these conditions,
the Abelian differentials w; and ws remain uniformly bounded throughout > by a constant
of order O(v?), with corrections which are suppressed by powers of v;.

Assuming that we set t; = t5, we can evaluate the dependence on v of the radii of the
coordinate discs D1, D5 in the limit where v is small. Using the asymptotic expression (6.5)
for the Green functions, we have for x1 € ©; and x5 € Do,

Nl

|21 — p1| = |2 — pa| = [2m0sn(7)*n(0)?| (6.6)

Thus, in the limit where vy — 0, the coordinate areas of the coordinate discs tend to zero
linearly in vy and thus linearly in v, as we shall establish below.
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6.2 Degeneration of Abelian differentials

We choose canonical homology bases 241,87 C X1 \ {p1} and Ay, By C s \ {p2} as in
Figure 2, and extend those to a canonical homology basis for . The genus-one holomorphic
Abelian differentials @; and @, on X7 and X5, respectively, are normalized as follows,

%@1:%@2:1 %@1:’7 %@220 (67)
Aq Ao B1 B2

To construct holomorphic one-forms on the genus-two surface ¥ with the period matrix €2
parametrized in (6.3) we extend @; to a differential w; on ¥ and ws to a differential wy on
Y. by using the identification (6.1). Choosing complex coordinates z1, x2 on ¥; and X5 such
that ©; = dz; and Wy = dxo, we see that the differential dr; extends to —v,/(z2 — p2)?dzs
in ¥, while the differential dzy extends to —v,/(x; — p;)?dz; in ;. Thus, the extensions
are governed by meromorphic one-forms with a double pole. The meromorphic one-forms
w(x1,y1|7) and w(xe, y2|0) on ¥y and Yo, respectively, are normalized to have vanishing
2-periods and a double pole of unit strength at x1 = y; and x9 = y,. Their B-periods are
given by the Riemann bilinear relations,

7{ w(x1,y1|T) = 2micw1 (1) % w(x2, ya|o) = 2miwe(ya) (6.8)
‘31 %2

The holomorphic one-forms w; and wy on the genus-two surface ¥, canonically normalized
on 2A; and 2Ay-cycles, are then given as follows,®

o (z (,:)1(1’1) T € X \@1
)= {vw<x2,p2\a>/<2mw2<p2>> re s\ D
vw(zy, pi|T)/(2mier (p1)) z1 € X1\ Dy
wo(z) — {@2(@) € 5\ D (6.9)

The parameter v, is related to the off-diagonal entry v of the genus-two period matrix 2 of
(6.3) by,

v :% Wa :% w1 = —277'7:1)5(2)1(]91)(2)2(])2) (610)
Bq Bo

The expressions in (6.9) are valid up to corrections of order O(v?) which have been omitted.

8Here and below, we shall use the notation z for a point on the genus-two surface ¥, and set it equal to
21 when the point lies in the genus-one component ¥; \ ©; and to z2 when it lies in the component X5 \ Ds.
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6.3 Degeneration of the Arakelov Green function

The separating degeneration of the Arakelov Green function G on the funnel construction of
genus-two surfaces > in Figure 2 is given by,

—s [0+ g(ar —wl|7) = 59(v1 = pal7) = 391 —palT) @1y € B\ Dy

—3 [0 + g(22 — y2|0) — 39(x2 — polo) = 39(y2 — p2lo) 2,52 € By \ Dy

+2In (0] + 1g(z1 — m|7) + 29(y2 — po|o) 71 €\ Dy, 12 €35\ Dy

+3In[0] + 39(x2 — p2lo) + 39(sn — p1|7) Ty € Yo\ D, y1 € 31\ Dy
(6.11)

G(x,y) =

where 0 is related to the entries v, 7, 0 of the genus-two period matrix (6.3) by the Dedekind
eta-function 7,

v = 2mvn(T)*n(0)? (6.12)

The combinations that will enter the flat connection and the generating functions of genus-
two polylogarithms are,

—fWO(zy —u|7) + 3D (21 — pi|7) 1,01 € 50\ Dy
—fW (o —yolo) + 3V (z2 — palo) 22,92 € To\ Dy
_%f(l)(xl_pl‘T) T € X1\ D1, Y2 € Xz \ Dy
_%f(l)(@_pﬂa) Ty € Yo \ Dy, y1 € X1\ Dy

0.G(x,y) — (6.13)

Conveniently, the dependence on In |0| cancels out in these derivative combinations.

6.4 Degeneration of 0,G" % (z,y)

We begin with the separating degenerations of the convolutions 9,G"*(x,y) of Arakelov
Green functions defined in (3.21) that carry the dependence of the flat connection on the
second marked point vy,

0,G" 1 (w,y) = / d*z 0,G(x, 2)0" (2)0.G" (2, y)
by
= 0:Gy" (w,y) + 0:G3, " (2, y) (6.14)

where the second equality is obtained by decomposing > = (21 \’Dl) U (22 \ ’Dg) with,

Gy (w,y) = / d?2 G, 2) W (2) 0,67 (21, ) i=1,2  (6.15)

Z:\9;

The asymptotics is given by the following lemma.

39



Lemma 6.1 The functions 0,G""s(z,y) have the following separating degenerations, up to
order O(v) which vanishes as v — 0,

00, G (21, 11) — _f(sH)(Il —y|T) + %f(sﬂ)(xl —pi1|T)
00, G (w1, 42) — _%f(sﬂ)(xl — p1|7)

02,G° (21, 4:) = 0 if 2¢ 9 i=1,2
8952923 (72,72) — —f(SH)(sz — y2|0) + %f(sﬂ)(ffz — p2|o)
0, G (T2, 1) — —%f(sﬂ)(ffz — p2|o)

02,G° (22, 1:) = 0 if 1S i=1,2 (6.16)

where 1, = 1---1 with s entries and similarly for 2,, and where S stands for an arbitrary
array Iy - - - Iy with each I; taking values 1 or 2.

The proof proceeds by induction on s. For s = 0, only the cases on the first, second,
fourth and fifth lines arise, and they are given by (6.13). We shall prove the validity of the
formulas of (6.16) for s = 1 in Appendix B, as these cases involve some detailed analyses.
The recursive definitions of (6.15) may then be used to show that the v — 0 limit of any
tensor 9,G11"Is(x,y) vanishes unless I; = --- = I, =1 or I; = --- I, = 2. In these cases, it is
readily shown that 8mg(125) (x,y) and 8mg(2f) (x,y) have vanishing limits, while &Bg(lf) (x,y) and
8wg(2;) (x,y) produce the remaining contributions to (6.16).

6.5 Degeneration of 9,11 ;(x)

It will be convenient to rewrite the recursive definition (3.21) of the functions 9,®" % ;(x)
in terms of 9,G"%-1(x,y) whose separating degeneration was already evaluated in the
preceding subsection,

0, @1 j(2) = /Zdzz .G 1 (1, 2) 0" (2)w s (2) (6.17)
One may split up the integration into the contributions from the surfaces ¥;\ D and o\ Do,
0,011 5 (x) = (9:Pw) " (@) + (0:B) () (6.18)

where,
()" " () = /E . B2 G (@, 2) @7 () wi () i=12 (6.19)

The analysis parallels the one carried out for 9,Gs(z,y), uses the results of Lemma 6.1,
and produces the following lemma, stated without proof.
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Lemma 6.2 The separating degenerations of the functions 0,97 % ;(x) are given by,

Oz @' 1(21) = 1) (21 — pul7) Oy @125 (1) = =2 (a1 — pu|7)
0, %5 (w3) = 5/ (22 — paf0) Op, ®% 11y (12) = —3f (22 — palo)  (6.20)

where again 13 = 1---1 with s entries and similarly for 2,. All other components such as
Op, @ Vo(;), 0, @2 (;) with i = 1,2 or O, ®'<1(xs) with s > 2 vanish. The degenerations
of (6.20) are consistent with the traceless property ®1; = 0.

6.6 Degeneration of the flat connection

The separating degenerations of the modular tensors 9,G™ < (x,y) and 9,91 ;(x) for the
special case of genus-two surfaces may now be used to evaluate the separating degeneration
limit of the flat connections discussed in Theorem 3.1 and Theorem 5.1.

We begin by assembling the limits of the generating function H(z,y; B) in the first line
of (327) with B[ = adbl,

H(z1, 1) —

/ng

[ = ylr) + 5 i) ) B

3
Il
—

Ejg

H(wa,2) = > (=17 (w2 = olo) + 3£ (@2 = palor) ) By~

3
Il
—

H(x1,y2) = — f(xy — po|7)BY!

3
Il
—

f(n)(xz — polo) By (6.21)

N = DN
e L[]

H(xo,y1) = —

S
I
—_

as well as the components I = 1,2 of H;(x; B) in the second line of (3.27),
Hi(z1) = 14 % i:l fO (21 — pi|7)BY
o) 1453 1= i)
Hi(w2) — —% g f0 (s — pa|o) By ' By

1 o0
Ha(r1) = =3 ; F™ (@1 — pi|7) By By (6.22)
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Note that the rightmost generator in both of H;(x1) and H;(z3) is given by By in each term
of (6.22). As a consequence, the contribution ~ H(z; B) b; to the flat connection (3.32) at
genus two reduces to w!(z)b; under separating degenerations in view of Y2/ B;b; = 0.

By the composition (3.29) of WU;(x,y), these results immediately imply the vanishing of
two cases for its components and arguments,

Uy (z9,y1) = 0
Uy (z1,1y2) = 0 (6.23)

Assembling the components V;(z,y) with non-vanishing limits we find,

Uy (21,91) = 1+ Zf(n)(% —y|7)BY = B Qz1 — y1, Bi|7)

n=1

Uy(w2,y2) = 1+ Zf(n)(% — y2|0) By = By Qw2 — Y2, Bao)

n=1

Uy (z1,92) = 1+ Zf(n)(ffl — pi|7)BY = Bi(z1 — p1, Bi|7)

n=1

\I’Q(l’g,yl) — 1+ Zf(n)(LUQ —pg‘U)Bg = BQ Q(SL’Q —p2,32‘0'>

n=1

<f(")(552 —1p|o) — f(")(932 —p2|0)>B;_1Bl

NE

Uy (29, y2) —

n=1

= (Q(Iz - y2>B2|0) - Q(Iz — D2, Bz|0))Bl
Uy(x1,y1) = Z <f(n)($1 —yilr) = [ (21 — p1|7')> By ™' By
n=1

= (1 — y1, Bi|7) = Q21 — p1, Bi|7)) Be (6.24)

8

Our results may be summarized in the form of the following theorem.

Theorem 6.3 To evaluate the separating degeneration of the flat connection in Theorem 3.1
at genus two, we may pick, without loss of generality, a point y = y; € X1 \ ©1. The
components of the connection then enjoy the following asymptotics,

J(z1,11) — ﬁ (dxy — dzy) by + dxy adeQ(xl — 1, adb1|7‘) at

+day (Q(:cl —yr,ady|7) — Qa1 — pr, ads, \T)) b, a2]

j(l’z, yl) — ﬁ (d.ﬁ(]g — dif‘g) bg + dZL’Q adeQ(@ — P2, adb2\a) CL2 (625)
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The proof proceeds by inserting (6.22), (6.23) and (6.24) into the genus-two instance of
the flat connection (3.32).

We conclude this section with a number of remarks.

1. Upon choosing y; = p; the second line in the expression (6.25) for J(z1,y1) cancels.
With this assumption, the connection [J(z,y) with y = y; = p; = 0 reduces to the
genus-one Brown-Levin connection (2.11) on a torus ¥; when the point x = z; is on
the surface ¥ \ {p1}.

2. At distinct points y; # p; and y; = 0, in turn, the separating degeneration of 7 (x1, y1)
in (6.25) yields the Brown-Levin connection (5.1) with one extra marked point z; = py,
and free Lie algebra generator ¢; = [a?, by.

3. Finally, when the point z = x5 is on the surface Y5 \ {p2}, the genus-two connection
J (z2,y1) reduces to the Brown-Levin connection on 3, with a shift by p, in the
Kronecker-Eisenstein series of (2.11).

4. The same methods determine the separating degeneration of the multi-variable addi-
tion J,(z1, -, zn; ,y) to the flat connection at genus two in (5.3). Once the extra
punctures are distributed via zq, 29, -+, 2, € 31 \ D1 and zZ,41, 00, 2, € 2o \ Do,
there are two inequivalent cases to consider: for x = x1 and y = y; on the same surface
Y1\ D4, we obtain the multi-variable additions (5.1) to the genus-one connection

jn(Zh Ty Rng $17y1) — dry Z (Q(Il — Zi B1|7') - Q(361 — Y1, Bl|7')) C;
i=1
+dz, Z (9(36’1 —p1, Bi|T) — Q21 — y1731|7')) ci  (6.26)
i=m+1
involving the generators cq, - - - , ¢, associated with the additional punctures z,--- , 2,
on both surfaces. If x = 27 € 31\ ©; and y = yo € ¥y \ Dy are chosen to be on
different surfaces, however, the generators ¢,,.1,- - , ¢, associated with the punctures
Zmal, c , 2n € 2o \ Do on a different surface than x; are absent,
Tn21,7+  Zn; 01, Y2) — day Z (Qz1 — 2, Bi|7) — Qa1 — p1, Bi|7)) ¢ (6.27)
i=1
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7 Conclusions and further directions

In this work, we have presented an explicit construction of polylogarithms on compact Rie-
mann surfaces of arbitrary genus. Generalizing the approach of Brown and Levin for the
genus-one case, our construction relies on a flat connection whose path-ordered exponen-
tial plays the role of a generating series for higher-genus polylogarithms and manifests their
homotopy-invariance. The flat connection takes values in the freely-generated Lie algebra
introduced by Enriquez and Zerbini in [45] and is assembled from convolutions on higher-
genus surfaces of Arakelov Green functions and their derivatives. Our construction furnishes
the first explicit proposal for a “complete” set of integration kernels beyond genus one: the
higher-genus polylogarithms constructed here are conjectured to close under taking primi-
tives with respect to the points on the surface.

While our construction of higher-genus polylogarithms builds on the Brown-Levin connec-
tion at genus one, it also draws heavily on the structure of families of higher-genus modular
tensors. We illustrate the importance of these tensorial building blocks and their proper-
ties in several examples of higher-genus polylogarithms, introduce a basis of polylogarithms
which themselves transform as modular tensors and provide non-trivial evidence for their
closure under taking primitives. Moreover, upon separating degeneration of the Riemann
surface, our flat connection reduces to flat connections on the degeneration components. We
illustrate this result here for the case of genus two, thereby paving the way for systematic
investigations into the rich network of relations among the higher-genus polylogarithms that
result from different types of degenerations.

It is expected that the higher-genus polylogarithms constructed in this work will find
broad applications in theoretical physics, ranging from multi-loop amplitudes in string theory
to Feynman integrals in quantum field theory and beyond. At the same time, our results
offer a concrete forward leap towards a coherent theory of integration on arbitrary Riemann
surfaces and should prove relevant to questions in number theory and algebraic geometry.
Among the myriad of mathematical and physical open problems raised by our construction,
the following questions readily qualify for tractable follow-up research:

(i) proving the conjecture advanced here that higher-genus polylogarithms close under
taking primitives, based on the generalizations to all orders of the interchange lemma
and Fay identities discussed in section 4.6 which are provided and proven in [69];

(ii) obtaining the separating and non-separating degenerations of the polylogarithms for
arbitrary genera, exploiting the properties of the Arakelov Green function in [51, 54];

(iii) determining the differential relations with respect to moduli variations satisfied by
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higher-genus polylogarithms and their integration kernels using complex-structure de-
formation theory [53, 76];

(iv) identifying generalizations of the (non-holomorphic) higher-genus modular graph ten-
sors in [56, 57, 58] that close under complex-structure variations and degenerations;

(v) exploring the properties of the higher-genus associators proposed in section 4.7, thereby
generalizing the studies of elliptic associators introduced in [72, 73, 74];

(vi) re-formulation of higher-genus string amplitudes in terms of the integration kernels
and polylogarithms constructed in this work, a program that was foreshadowed long
ago by the cohomological analysis of chiral blocks for the case of genus two in [77] and
implemented more recently at genus one in [27, 31, 7§].

We plan to report progress on some of these topics in future work.
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A Definiton of the prime form

Given that the Arakelov Green function is constructed from the prime form E(z,y) in (3.9)
and (3.11), we shall briefly review the definition of the prime form in this appendix. For this
purpose, we introduce the Riemann 9J-function of rank A,

19['%]((|Q) _ Z 67ri(n+n’)tﬂ(n+n’)+27ri(n+n’)t(C—i—n”) (A].)

nezh

where ¢ € C" and where the characteristics x = [+, k] comprises two h-component vectors
k', k" € C". Following the main text, we will henceforth suppress the dependence on the
period matrix €2.

The prime form at arbitrary genus A is built from a specialization of x to odd half-

characteristics or spin structures v = [1/,1"] with entries € {0,1} such that 40/ - v is
odd [50]:
W) ([ w)
E(x,y) = i A2
@) = @) 2

By virtue of the holomorphic (3, 0)-forms A, (z) in the denominator subject to

hela) = Y wilo) g0 |, (A3)

the definition (A.2) of the prime form is independent on the choice of the odd spin structure v.
Since the ¥-functions entering the prime form are odd under the flip ( — —( in (A.1), the
prime form is antisymmetric F(y,z) = —E(x,y) under exchange of x,y and in particular
exhibits the short-distance behaviour E(z,y) = (z —y) + O((z — y)*) in local complex
coordinates.
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B Separating degeneration of 9,G(x,y)

In this appendix, we derive the separating degeneration of the functions 9,G”(z,y) for genus
two with I = 1,2. These derivations are essential components of Lemma 6.1. Actually, it
will be convenient to derive first the asymptotic behavior in the separating degeneration of
the modular tensor with a lowered index, defined by 9,G;(z,y) = Y1;0,G7(x,y), and then
reconvert the result to 9,G7(x,y).

B.1 Degeneration of 9,,Gi(z1,y1) and 9,,G:(2, y2)

Following the decomposition of (6.14), we evaluate the contributions Qfl)(x, y) and Q§2) (z,y)
by substituting the degeneration limits of the various factors in its integrand,

g£1)(x17y1) = / d*z [9(351 —21|T) — %9(36’1 —p1|T) — %9(21 —pi|7) — %ln \17\]
21\D1

% [09(1 = 3117) = 20,9021 = pa|7)| (B.1)

The integral may be extended to all of 3; where it is absolutely convergent and differs from
the original integral by a contribution that is proportional to the coordinate volume, which is
of order O(v) in view of (6.6), and will be neglected. As an integral over ¥, the contributions
of the z;-independent terms inside the first bracket vanish in view of,

/ d*z 0., (g(zl — y1|7‘)>n =0 n>0 (B.2)
31

Evaluating the remaining integrals using the concatenated Green functions g, of (2.14), and
taking the derivative in 1, gives the following limit,

0 G (21, 51) = (m7) (82,05 (21 — 1 |7) = 402, galr — pa|7)) (B.3)

The overall factor of Im 7 arises from the integrand in the definition of gy in (2.14).

We proceed analogously for Oxlg}z) (x1,91),

1
g£2)(x17y1) =1 (L) /2 d*z [g(xl —pi|7) + g(22 — p2lo) + In |@\]

2miwy (p2) 2\D2

X 0., 0p, 111191(22 —pz‘U) 8229(22 —p2‘0) (B-4)

On the face of it, this contribution is automatically suppressed by a factor of v. However, the
integral does not extend to a convergent integral over >, so part or all of the suppression
might in principle be cancelled. To proceed, we extract the leading singularity near the
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puncture in terms of a contour integral over 09, which may be evaluated exactly in the
limit where the size of the disc ®; is small. First, we show that the combination,

I= / d*250.,0,, NV (29 — p2|0) 0., 9(22 — pa|o) (B.5)
32\ D2

remains bounded as v — 0 so that its contribution to sz) (x1,y1) vanishes in this limit. To
do so we write it as follows,

1= —/ d?25 0p, In V1 (20 — p2|0) 05,0.,9(22 — pa|o)
32\ D2
7
—3 / d|:d22 0.,9(2z2 — p2|0) 0y, In V1 (29 — pg\a)] (B.6)
32\ D2

Using 03,0.,9(2z2 — p2|0) = —md(z2, p2) + =, the fact that the support of the d-functions

Imo?
is outside the domain of integration, and that the integral involving the constant term is

convergent on Y; and integrates to zero there, we see that the first line on the right vanishes.
The remainder may be written as follows,

7 = —5% dzo ‘822g(z2 —p2\0)‘2 (B.7)
0909

In passing from the second line of (B.6) to (B.7) we have omitted a contribution proportional
to 2milm (23 — py)/Im o, as the integral involving this term is of order O(v). The overall
minus sign results from the fact that the orientation of the integrations over the boundary
of ¥5 \ D, is opposite to the ones over the boundary of ®,. The angular integration of the
pole term vanishes, and the remaining contribution is bounded as v — 0. We conclude that
G (x1,11) — 0 so that we obtain the following limit for 8,,G (zy,y1) from (B.3) and, by
swapping the role of the two surfaces,

02, G1(x1,71) = (Im7) (83192(% —|T) — % :%192(351 —p1|7')>
0r,Ga(w2,92) = (1m0) (82,02(w2 — 1) = 302, gn(22 — palo) (B:)

where we have neglected all contributions that vanish as v — 0.

B.2 Degeneration of 0,,Gs(z1,y1) and 0,,G1 (2, y2)

Following the corresponding analysis for these two cases, we find the limits,

02,Ga2(z1,11) = 0
02,G1(22,y2) — 0 (B.9)
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B.3 Degeneration of 0,,G(z1,y2) and 0,,G:(z2, y1)

Using once more the decomposition of (6.14), we have,

1 .
gﬁl)(i)fl,?h) = 5/ 4>z [9(551 —21|T) — %9(171 —pi|7) — %9(21 —pil|7T) — %ln |9
Y1\D1

x0., g(z1 — p1|T) (B.10)

The integrals may be continued to absolutely convergent integrals on ;. The z;-independent
terms inside the bracket integrate to zero, as does the term g(z; — pi|7) so that,

1
0" (ar00) = 5 [ gl alr) a9l ~ i)
3

1
= 5 (m7)0;,95(21 = pa|7) (B.11)

The remaining contribution is given by,

1
g£2)(x17y2) =5 <#) /2 d*z [g(xl —pi|7) + g(22 — p2lo) + In |@\]

27”;@2 (p2) 2\ D2

Xazzapz In 191(22 - p2‘0) [8229(22 - y2|o') - %8,229(22 - p2|o')] (B12)

The contribution of the second term in the bracket on the second line may be evaluated by
the method used for sz) (x1,y1) and vanishes as v — 0. In the remaining expression the
zo-independent terms in the first bracket integrate to a finite quantity as v — 0, leaving
contributions proportional to,

g§2>(x1,y2) ~ 17/ d*22 0,0, In V1 (20 — pal0) 0.,9(22 — y2|0)g(22 — palo)  (B.13)
32\ D2

Isolating the leading singularity in the form of a contour integral,

G (21, 10) ~ —v/ d?2 0, NV (25 — polo) O, [0229(22 —yolo)g(ze — P2|0)]
32\ D2

—|——17% dzy 0.,9(22 — Ya|0)g (22 — p2|0) Dy, IV (29 — po|o) (B.14)
099

2

The angular integration of the second term cancels the pole and gives a finite result which
vanishes as v — 0. Applying 0;, to the first factor in the bracket of the first line gives a
d(22,y2) and a constant term, both of which give finite contributions to the integral leading
to vanishing contributions to sz) (1,92) as v — 0. The remaining integral is then,

gf) (21,y2) ~ —77/ d*2y 0py IV (22 — P2|0) D2y g(22 — Y2|0)D2,9(22 — pa|o)  (B.15)
32\ D2
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The angular integration again kills the pole and we are left with a finite integral with a
vanishing contribution as v — 0. Hence, by the vanishing asymptotics of gf) (1,y2) and
the non-zero contribution (B.11) from gfl)(xl,yQ), we find the following asymptotics for
0y, G1(21,y2) and, by swapping the two surfaces, we obtain,

02, G1(w1, y2) = 3(Im7) D2, go (1 — pa|7)
02,G2(T2, 1) — %(Img) a93292(932 — p2lo) (B.16)

B.4 Degeneration of 9,G'(x,v)

Assembling the results obtained in (B.8), (B.9), and (B.16) for 9,G,(x,y), we obtain those
of G!(z,y) by raising the index J with the help of YZ/. The off-diagonal elements of Y’
are proportional to v and do not contribute in the limit v — 0. The role of the diagonal
elements of Y/ is to cancel the prefactor Im 7 in (B.8) and Im ¢ in (B.16). The final result
is the following table of limits,

8mgl($172/1) — 85192(% —y|T) — %85192(% — pi1|7)

00, G (21, y2) — 202 ga(x1 — 1| T)

00, G*(x1,91) = 0

00, G” (2, 0) — 83292(5172 —1yplo) — 505292(932 — p2|o)

00, G (22, 11) — 505292(932 — palo)

02, G (79, 12) = 0 (B.17)

Together with 92g,(z—p|7) = —f® (z—p|7) as in (2.15), this completes the proof of Lemma 6.1
for the case s = 1.
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